WorldWideScience

Sample records for optical sources

  1. Optical source transformations.

    Science.gov (United States)

    Kundtz, N; Roberts, D A; Allen, J; Cummer, S; Smith, D R

    2008-12-22

    Transformation optics is a recently appreciated methodology for the design of complex media that control the propagation of electromagnetic and other types of waves. The transformation optical technique involves the use of coordinate transformations applied to some region of space, providing a conceptual means to redirect the flow of waves. Successfully designed devices to date have made use of transformations acting on passive space only; however, the technique can also be applied when source distributions (e.g., current and charge) are included within the space being transformed. In this paper we present examples of source transformations that illustrate the potential of these expanded transformation optical methods. In particular, using finite-element full-wave simulations, we confirm the restoration of dipole radiation patterns from both a distorted 'pin-wheel' antenna and a bent dipole partially occluded by a cylindrical scatterer. We propose the technique of source transformations as a powerful approach for antenna design, especially in relation to conformal antennas.

  2. Linear-optic heralded photon source

    Science.gov (United States)

    Ferreira da Silva, Thiago; Amaral, Gustavo C.; Temporão, Guilherme P.; von der Weid, Jean Pierre

    2015-09-01

    We present a heralded photon source based only on linear optics and weak coherent states. By time-tuning a Hong-Ou-Mandel interferometer fed with frequency-displaced coherent states, the output photons can be synchronously heralded following sub-Poisson statistics, which is indicated by the second-order correlation function [ g2(0 )=0.556 ]. The absence of phase-matching restrictions makes the source widely tunable, with 100-nm spectral tunability on the telecom bands. The technique presents yield comparable to state-of-the-art spontaneous parametric down-conversion-based sources, with high coherence and fiber-optic quantum communication compatibility.

  3. Optical alignment using the Point Source Microscope

    Science.gov (United States)

    Parks, Robert E.; Kuhn, William P.

    2005-08-01

    We give an example of a Point Source Microscope (PSM) and describe its uses as an aid in the alignment of optical systems including the referencing of optical to mechanical datums. The PSM is a small package (about 100x150x30 mm), including a point source of light, beam splitter, microscope objective and digital CCD camera to detect the reflected light spot. A software package in conjunction with a computer video display locates the return image in three degrees of freedom relative to an electronic spatial reference point. The PSM also includes a Koehler illumination source so it may be used as a portable microscope for ordinary imaging and the microscope can be zoomed under computer control. For added convenience, the laser diode point source can be made quite bright to facilitate initial alignment under typical laboratory lighting conditions. The PSM is particularly useful in aligning optical systems that do not have circular symmetry or are distributed in space such as off-axis systems. The PSM is also useful for referencing the centers of curvatures of optical surfaces to mechanical datums of the structure in which the optics are mounted. By removing the microscope objective the PSM can be used as an electronic autocollimator because of the infinite conjugate optical design.

  4. Optical surfacing via linear ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lixiang, E-mail: wulx@hdu.edu.cn [Key Lab of RF Circuits and Systems of Ministry of Education, Zhejiang Provincial Key Lab of LSI Design, Microelectronics CAD Center, College of Electronics and Information, Hangzhou Dianzi University, Hangzhou (China); Wei, Chaoyang, E-mail: siomwei@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Shao, Jianda, E-mail: jdshao@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-04-15

    We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.

  5. Optically Faint Radio Sources: Reborn AGN?

    CERN Document Server

    Filho, Mercedes E; Lobo, Catarina; Antón, Sonia

    2011-01-01

    We have discovered a number of relatively strong radio sources in the field-of-view of SDSS galaxy clusters which present no optical counterparts down to the magnitude limits of the SDSS. The optically faint radio sources appear as double-lobed or core-jet objects on the FIRST radio images and have projected angular sizes ranging from 0.5 to 1.0 arcmin. We have followed-up these sources with near-infrared imaging using the wide-field imager HAWK-I on the VLT. K_s-band emitting regions, about 1.5 arcsec in size and coincident with the centers of the radio structures, were detected in all the sources, with magnitudes in the range 17-20 mag. We have used spectral modelling to characterize the sample sources. In general, the radio properties are similar to those observed in 3CRR sources but the optical-radio slopes are consistent with moderate to high redshift (z<4) gigahertz-peaked spectrum sources. Our results suggest that these unusual objects are galaxies whose black hole has been recently re-ignited but r...

  6. Optical spectroscopy of four young radio sources

    Science.gov (United States)

    Fan, Xu-Liang; Bai, Jin-Ming; Hu, Chen; Wang, Jian-Guo

    2017-01-01

    We report the optical spectroscopy of four young radio sources which are observed with the Lijiang 2.4 m telescope. The Eddington ratios of these sources are similar with those of narrow-line Seyfert 1 galaxies (NLS1s). Their Fe II emission is strong while [O III] strength is weak. These results confirm the NLS1 features of young radio sources, except that the width of broad Hβ of young radio sources is larger than that of NLS1s. We thus suggest that the young radio sources are the high black hole mass counterparts of steep-spectrum radio-loud NLS1s. In addition, the broad Hβ component of 4C 12.50 is the blue wing of the narrow component, but not from the broad line region.

  7. Optical Spectroscopy of Four Young Radio Sources

    CERN Document Server

    Fan, Xu-Liang; Hu, Chen; Wang, Jian-Guo

    2016-01-01

    We report the optical spectroscopy of four young radio sources which are observed with the Lijiang 2.4m telescope. The Eddington ratios of these sources are similar with those of narrow-line Seyfert 1 galaxies (NLS1s). Their Fe {\\sc ii} emission is strong while [O {\\sc iii}] strength is weak. These results confirm the NLS1 features of young radio sources, except that the width of broad H$\\beta$ of young radio sources is larger than that of NLS1s. We thus suggest that the young radio sources are the high black hole mass counterparts of steep-spectrum radio-loud NLS1s. In addition, the broad H$\\beta$ component of \\astrobj{4C 12.50} is the blue wing of the narrow component, but not from the broad line region.

  8. Laser controlled atom source for optical clocks

    Science.gov (United States)

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-11-01

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.

  9. Optically-electrically pumped THz source

    Science.gov (United States)

    Haji-Saeed, Bahareh; Khoury, Jed; Buchwald, Walter; Woods, Charles; Wentzell, Sandra; Krejca, Brian; Kierstead, John

    2010-08-01

    In this paper, we propose a design for a widely tunable solid-state optically and electrically pumped THz source based on the Smith-Purcell free-electron laser. Our design consists of a thin dielectric layer sandwiched between an upper corrugated structure and a lower layer of thin metal, semiconductor, or high electron mobility material. The lower layer is for current streaming, which replaces the electron beam in the Smith-Purcell free-electron laser design. The upper layer consists of two micro-gratings for optical pumping, and a nano-grating to couple with electrical pumping in the lower layer. The optically generated surface plasmon waves from the upper layer and the electrically induced surface plasmon waves from the lower layer are then coupled. Emission enhancement occurs when the plasmonic waves in both layers are resonantly coupled.

  10. Linear-Optic Heralded Photon Source

    OpenAIRE

    da Silva, Thiago Ferreira; Amaral, Gustavo C; Temporão, Guilherme P.; von der Weid, Jean Pierre

    2015-01-01

    We present a Heralded Photon Source based only on linear optics and weak coherent states. By time-tuning a Hong-Ou-Mandel interferometer fed with frequency-displaced coherent states, the output photons can be synchronously heralded following sub-Poisson statistics, which is indicated by the second-order correlation function ($g^2\\left(0\\right)=0.556$). The absence of phase-matching restrictions makes the source widely tunable, with 100-nm spectral tunability on the telecom bands. The techniqu...

  11. Development of Quasi-Homogeneous Optical Sources.

    Science.gov (United States)

    1979-11-01

    of physical optics is directly proportional to the "diagonal" element W(R9, Ri) of the cross 40 4. spectral density function W(rl, r2) S L A(V . A~~J...Using standard mathematical techniques for solving the Helmholtz equation, the cross spectral density function in the far field can be related to its...J (o)(t-,1𔃼) is the spatial Fourier transform of the cross spectral density function in the source plane WV () f~ SW ( VOL) . dIr, d r The vector is

  12. HIGH-STABLE ERBIUM SUPERLUMINESCENT FIBER OPTICAL SOURCES CREATION METHODS

    OpenAIRE

    A. S. Aleynik; N. E. Kikilich; V. N. Kozlov; A. A. Vlasov; NIKITENKO A.N.

    2016-01-01

    We present the overview of wideband Erbium doped superluminescent fiber sources (EDSFS) creation methods. This type of optical sources is mainly used in navigation accuracy class fiber-optical gyroscopes (FOG) production. For this application an optical source should have small coherence length to reduce FOG output signal error rate. Output signal errors are caused by different parasitic effects: reverse Rayleigh scattering, optical components mode swapping, Kerr effect. Consequently, the mos...

  13. A programmable optical few wavelength source for flexgrid optical networks

    Science.gov (United States)

    Imran, M.; Fresi, F.; Meloni, G.; Bhowmik, B. B.; Sambo, N.; Potì, L.

    2016-07-01

    Multi-wavelength (MW) sources will probably replace discrete lasers or laser arrays in next generation multi-carrier transponders (e.g., 1 Tb/s), currently called multi-flow transponders or sliceable bandwidth variable transponders (SBVTs). We present design and experimental demonstration of a few wavelength (FW) source suitable for SBVTs in a flexgrid scenario. We refer to FW instead of MW since for an SBVT just few subcarriers are required (e.g., eight). The proposed FW source does not require optical filtering for subcarrier modulation. The design exploits frequency shifting in IQ modulators by using single side band suppressed carrier modulation. A reasonable number of lines can be provided depending on the chosen architecture, tunable in the whole C-band. The scheme is also capable of providing symmetric (equally spaced) and asymmetric subcarrier spacing arbitrarily tunable from 6.25 GHz to 37.5 GHz. The control on the number of subcarriers (increase/decrease depending on line rate) provides flexibility to the SBVT, being the spacing dependent on transmission parameters such as line rate or modulation format. Transmission performance has been tested and compared with an array of standard lasers considering a 480 Gb/s transmission for different carrier spacing. Additionally, an integrable solution based on complementary frequency shifter is also presented to improve scalability and costs. The impact on transceiver techno-economics and network performance is also discussed.

  14. Optically thick outflows in ultraluminous supersoft sources

    CERN Document Server

    Urquhart, Ryan

    2015-01-01

    Ultraluminous supersoft sources (ULSs) are defined by a thermal spectrum with colour temperatures ~0.1 keV, bolometric luminosities ~ a few 10^39 erg/s, and almost no emission above 1 keV. It has never been clear how they fit into the general scheme of accreting compact objects. To address this problem, we studied a sample of seven ULSs with extensive Chandra and XMM-Newton coverage. We find an anticorrelation between fitted temperatures and radii of the thermal emitter, and no correlation between bolometric luminosity and radius or temperature. We compare the physical parameters of ULSs with those of classical supersoft sources, thought to be surface-nuclear-burning white dwarfs, and of ultraluminous X-ray sources (ULXs), thought to be super-Eddington stellar-mass black holes. We argue that ULSs are the sub-class of ULXs seen through the densest wind, perhaps an extension of the soft-ultraluminous regime. We suggest that in ULSs, the massive disk outflow becomes effectively optically thick and forms a large ...

  15. Optical Power Source Derived from Engine Combustion Chambers

    Science.gov (United States)

    Baumbick, Robert J. (Inventor)

    1999-01-01

    An optical power source is disclosed that collects the spectra of the light emissions created in a combustion chamber to provide its optical output signals that serve the needs of optical networks. The light spectra is collected by a collection ring serving as an optical waveguide.

  16. Compact Optical Counterparts of Ultraluminous X-ray Sources

    CERN Document Server

    Tao, Lian; Grise, Fabien; Kaaret, Philip

    2011-01-01

    Using archival Hubble Space Telescope (HST) imaging data, we report the multiband photometric properties of 13 ultraluminous X-ray sources (ULXs) that have a unique compact optical counterpart. Both magnitude and color variation are detected at time scales of days to years. The optical color, variability, and X-ray to optical flux ratio indicate that the optical emission of most ULXs is dominated by X-ray reprocessing on the disk, similar to that of low mass X-ray binaries. For most sources, the optical spectrum is a power-law, $F_{\

  17. Open-source 3D-printable optics equipment.

    Science.gov (United States)

    Zhang, Chenlong; Anzalone, Nicholas C; Faria, Rodrigo P; Pearce, Joshua M

    2013-01-01

    Just as the power of the open-source design paradigm has driven down the cost of software to the point that it is accessible to most people, the rise of open-source hardware is poised to drive down the cost of doing experimental science to expand access to everyone. To assist in this aim, this paper introduces a library of open-source 3-D-printable optics components. This library operates as a flexible, low-cost public-domain tool set for developing both research and teaching optics hardware. First, the use of parametric open-source designs using an open-source computer aided design package is described to customize the optics hardware for any application. Second, details are provided on the use of open-source 3-D printers (additive layer manufacturing) to fabricate the primary mechanical components, which are then combined to construct complex optics-related devices. Third, the use of the open-source electronics prototyping platform are illustrated as control for optical experimental apparatuses. This study demonstrates an open-source optical library, which significantly reduces the costs associated with much optical equipment, while also enabling relatively easily adapted customizable designs. The cost reductions in general are over 97%, with some components representing only 1% of the current commercial investment for optical products of similar function. The results of this study make its clear that this method of scientific hardware development enables a much broader audience to participate in optical experimentation both as research and teaching platforms than previous proprietary methods.

  18. Open-source 3D-printable optics equipment.

    Directory of Open Access Journals (Sweden)

    Chenlong Zhang

    Full Text Available Just as the power of the open-source design paradigm has driven down the cost of software to the point that it is accessible to most people, the rise of open-source hardware is poised to drive down the cost of doing experimental science to expand access to everyone. To assist in this aim, this paper introduces a library of open-source 3-D-printable optics components. This library operates as a flexible, low-cost public-domain tool set for developing both research and teaching optics hardware. First, the use of parametric open-source designs using an open-source computer aided design package is described to customize the optics hardware for any application. Second, details are provided on the use of open-source 3-D printers (additive layer manufacturing to fabricate the primary mechanical components, which are then combined to construct complex optics-related devices. Third, the use of the open-source electronics prototyping platform are illustrated as control for optical experimental apparatuses. This study demonstrates an open-source optical library, which significantly reduces the costs associated with much optical equipment, while also enabling relatively easily adapted customizable designs. The cost reductions in general are over 97%, with some components representing only 1% of the current commercial investment for optical products of similar function. The results of this study make its clear that this method of scientific hardware development enables a much broader audience to participate in optical experimentation both as research and teaching platforms than previous proprietary methods.

  19. Quantum theory of superresolution for two incoherent optical point sources

    CERN Document Server

    Tsang, Mankei; Lu, Xiaoming

    2015-01-01

    We prove that Rayleigh's criterion is fundamentally irrelevant to the localization of two incoherent point sources in far-field optical imaging. This is done in two ways: (1) We derive the quantum Cram\\'er-Rao error bound for the problem under standard assumptions for thermal optical sources, and the bound shows little sign of the accuracy degradation that plagues conventional imaging when Rayleigh's criterion is violated. (2) We propose a linear optical measurement method called spatial-mode demultiplexing (SPADE) that can attain the quantum bound for separation estimation regardless of the distance between the sources, a task conventional methods perform poorly for close sources. These results demonstrate that Rayleigh's criterion is nothing but a technicality specific to conventional imaging, and cleverer quantum measurements can locate two incoherent sources with arbitrary separation almost as accurately as conventional methods do for isolated sources.

  20. Optical Counterparts of Ultra Luminous X-ray Sources

    CERN Document Server

    Gutíerrez, C M

    2006-01-01

    We present optical identification and characterization of counterparts of four objects previously catalogued as ultra-luminous X-ray sources. The objects were selected from the Colbert & Ptak (2002) catalogue. The optical counterparts are identified as point-like objects with magnitudes in the range \\~17-19. The optical spectra of three of the sources (IXO 32, 37 and 40) show the presence of emission lines typical of quasars. The position of these lines allows a precise estimation of their redshifts (2.769, 0.567 and 0.789 for IXO 32, 37 and 40 respectively). The fourth X-ray source, IXO35, is associated with a red object that has a spectrum typical of an M star in our Galaxy. These identifications are useful for building clean samples of ULX sources, selecting suitable targets for future observations and performing statistical studies on the different populations of X-ray sources.

  1. Ion optics of RHIC electron beam ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  2. Semiclassical Theory of Superresolution for Two Incoherent Optical Point Sources

    CERN Document Server

    Tsang, Mankei; Lu, Xiao-Ming

    2016-01-01

    Using a semiclassical model of photodetection with Poissonian noise and insights from quantum metrology, we prove that linear optics and photon counting can optimally estimate the separation between two incoherent point sources without regard to Rayleigh's criterion. The model is applicable to weak thermal or fluorescent sources as well as lasers.

  3. Quantum Limits to Optical Point-Source Localization

    CERN Document Server

    Tsang, Mankei

    2014-01-01

    Many superresolution microscopic techniques rely on the accurate localization of optical point sources from far field. To investigate the fundamental limits to their resolution, here I derive measurement-independent quantum lower bounds on the error of locating point sources in free space, taking full account of the quantum, nonparaxial, and vectoral nature of photons. To arrive at analytic results, I focus mainly on the cases of one and two classical monochromatic sources with an initial vacuum optical state. For one source, a lower bound on the root-mean-square position estimation error is on the order of $\\lambda_0/\\sqrt{N}$, where $\\lambda_0$ is the free-space wavelength and $N$ is the average number of radiated photons. For two sources, owing to a nuisance parameter effect, the error bound diverges when their radiated fields overlap significantly. The use of squeezed light to further enhance the accuracy of locating one point source is also discussed.

  4. Optical design for EUV lithography source collector

    Institute of Scientific and Technical Information of China (English)

    Shuqing Zhang; Qi Wang; Dongyuan Zhu; Runshun Li; Chang Liu

    2011-01-01

    @@ Wolter I collector is the best collector for extreme ultraviolet (EUV) lithography, which has a series of nested mirrors.It has high collection efficiency and can obtain more uniform intensity distribution at the intermediate focus (IF).A new design with the calculation sequence from the outer mirror to the inner one on the premise of satisfying the requirements of the collector is introduced.Based on this concept, a computer program is established and the optical parameters of the collector using the program is calculated.The design results indicate that the collector satisfies all the requirements.%Wolter I collector is the best collector for extreme ultraviolet (EUV) lithography, which has a series of nested mirrors. It has high collection efficiency and can obtain more uniform intensity distribution at the intermediate focus (IF). A new design with the calculation sequence from the outer mirror to the inner one on the premise of satisfying the requirements of the collector is introduced. Based on this concept, acomputer program is established and the optical parameters of the collector using the program is calculated.The design results indicate that the collector satisfies all the requirements.

  5. HIGH-STABLE ERBIUM SUPERLUMINESCENT FIBER OPTICAL SOURCES CREATION METHODS

    Directory of Open Access Journals (Sweden)

    A. S. Aleynik

    2016-07-01

    Full Text Available We present the overview of wideband Erbium doped superluminescent fiber sources (EDSFS creation methods. This type of optical sources is mainly used in navigation accuracy class fiber-optical gyroscopes (FOG production. For this application an optical source should have small coherence length to reduce FOG output signal error rate. Output signal errors are caused by different parasitic effects: reverse Rayleigh scattering, optical components mode swapping, Kerr effect. Consequently, the most important characteristics of EDSFS are central wavelength time and wide temperature range stability and optical spectrum width and shape. The spectrum shape is needed to be close to the Gaussian distribution to minimize time coherence function. The paper deals with major EDSFS instability reasons and their most effective spectral parameters stabilization and optimization methods. We consider various methods of output optical radiation spectrum correction, and problems connected with output radiation residual polarization, the EDSFS principle of operation, structure and their basic construction schemes, the overview of Erbium-doped active fibers for EDSFS creation. The conclusions on most effective output optical radiation stabilization methods are drawn.

  6. Frequency-time coherence for all-optical sampling without optical pulse source

    Science.gov (United States)

    Preußler, Stefan; Raoof Mehrpoor, Gilda; Schneider, Thomas

    2016-09-01

    Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave. Since no optical source is required, a simple integration in appropriate platforms, such as Silicon Photonics might be possible. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift.

  7. Surface modeling for optical fabrication with linear ion source

    CERN Document Server

    Wu, Lixiang; Shao, Jianda

    2016-01-01

    We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. It is the first time that we have a surface descriptor for building a relationship between the fabrication process of optical surfaces and the surface characterization based on PSD analysis, which akin to Zernike polynomials used for mapping the relationship between surface errors and Seidel aberrations. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of surface errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that, in theory, optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approac...

  8. Fiber-Optic Sources of Quantum Entanglement

    CERN Document Server

    Kumar, P; Fiorentino, M; Voss, P L; Sharping, J E; Barbosa, G A

    2002-01-01

    We present a fiber-based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1.5$\\mu$m band of standard telecommunication fiber. Quantum-correlated signal and idler photon pairs are produced when a nonlinear-fiber Sagnac interferometer is pumped in the anomalous-dispersion region of the fiber. Recently, we have demonstrated nonclassical properties of such photon pairs by using Geiger-mode InGaAs/InP avalanche photodiodes. Polarization entanglement in the photon pairs can be created by pumping the Sagnac interferometer with two orthogonally polarized pulses. In this case the parametrically scattered signal-idler photons yield biphoton interference with $>$90% visibility in coincidence detection, while no interference is observed in direct detection of either the signal or the idler photons.

  9. Optics-less Sensors for Localization of Radiation Sources

    OpenAIRE

    Caulfield, H. J.; Yaroslavsky, L. P.; Goerzen, Ch.; Umansky, S.

    2008-01-01

    A new family of radiation sensors is introduced which do not require any optics. The sensors consist of arrays of elementary sub-sensors with natural cosine-law or similar angular sensitivity supplemented with a signal processing unit that computes optimal statistical estimations of source parameters. We show, both theoretically and by computer simulation, that such sensors are capable of accurate localization and intensity estimation of a given number of radiation sources and of imaging of a...

  10. Sources of noise in Brillouin optical time-domain analyzers

    OpenAIRE

    Urricelqui Polvorinos, Javier; Soto, Marcelo A.; Thévenaz, Luc

    2015-01-01

    This paper presents a thorough study of the different sources of noise affecting Brillouin optical time-domain analyzers (BOTDA), providing a deep insight into the understanding of the fundamental limitations of this kind of sensors. Analytical and experimental results indicate that the noise source ultimately fixing the sensor performance depends basically on the fiber length and the input pump-probe powers. Thus, while the phase-to-intensity noise conversion induced by stimulated Brillouin ...

  11. Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation

    OpenAIRE

    Yamanari, Masahiro; Makita, Shuichi; Yasuno, Yoshiaki

    2008-01-01

    We present fiber-based polarization-sensitive swept-source optical coherence tomography (SS-OCT) based on continuous source polarization modulation. The light source is a frequency swept laser centered at 1.31 μm with a scanning rate of 20 kHz. The incident polarization is modulated by a resonant electro-optic modulator at 33.3 MHz, which is one-third of the data acquisition frequency. The zeroth- and first-order harmonic components of the OCT signals with respect to the polarization modulati...

  12. Ultrahigh resolution optical coherence tomography using a superluminescent light source

    NARCIS (Netherlands)

    Kowalevicz, Andrew M.; Ko, Tony; Hartl, Ingmar; Fujimoto, James G.; Pollnau, Markus; Salathé, René P.

    2002-01-01

    A superluminescent Ti:Al2O3 crystal is demonstrated as a light source for ultrahigh resolution optical coherence tomography (OCT). Single spatial mode, fiber coupled output powers of ~40 μW can be generated with 138 nm bandwidth using a 5 W frequency doubled, diode pumped laser, pumping a thin Ti:Al

  13. Optical linear algebra processors: noise and error-source modeling.

    Science.gov (United States)

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  14. Optical linear algebra processors - Noise and error-source modeling

    Science.gov (United States)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  15. Coherent broadband light source for parallel optical coherence tomography

    NARCIS (Netherlands)

    Rivier, S.; Laversenne, L.; Bourquin, S.; Salathé, R.P.; Pollnau, M.; Grivas, C.; Shepherd, D.P.; Eason, R.W.; Flury, M.; Philipoussis, I.; Herzig, H.P.

    2004-01-01

    A Ti:sapphire planar waveguide is rib structured by Ar ion milling to provide parallel channel waveguides. By coupling high-power pump light through a microlens array into the waveguides, a novel broadband luminescent parallel emitter is demonstrated as a light source for parallel optical coherence

  16. Synergy Between Radio and Optical Telescopes: Optical Followup of Extragalactic Radio Sources

    Indian Academy of Sciences (India)

    C. H. Ishwara-Chandra

    2013-06-01

    Distance measurement is a must to characterize any source in the sky. In the radio band, it is rarely possible to get distance or redshift measurements. The optical band is the most used band to get distance estimate of sources, even for those originally discovered in other bands of the electromagnetic spectrum. However, the spectroscopic redshift measurements even for fairly bright radio sample is grossly incomplete, implying un-explored discovery space. Here we discuss the scope of optical follow up of radio sources, in particular the radio loud AGNs, from the present generation radio telescopes.

  17. Cold Atom Source Containing Multiple Magneto-Optical Traps

    Science.gov (United States)

    Ramirez-Serrano, Jaime; Kohel, James; Kellogg, James; Lim, Lawrence; Yu, Nan; Maleki, Lute

    2007-01-01

    An apparatus that serves as a source of a cold beam of atoms contains multiple two-dimensional (2D) magneto-optical traps (MOTs). (Cold beams of atoms are used in atomic clocks and in diverse scientific experiments and applications.) The multiple-2D-MOT design of this cold atom source stands in contrast to single-2D-MOT designs of prior cold atom sources of the same type. The advantages afforded by the present design are that this apparatus is smaller than prior designs.

  18. Fresnel spatial filtering of quasihomogeneous sources for wave optics simulations

    Science.gov (United States)

    Hyde, Milo W.; Bose-Pillai, Santasri R.

    2017-08-01

    High-spatial-frequency optical fields or sources are often encountered when simulating directed energy, active imaging, or remote sensing systems and scenarios. These spatially broadband fields are a challenge in wave optics simulations because the sampling required to represent and then propagate these fields without aliasing is often impractical. To address this, two spatial filtering techniques are presented. The first, called Fresnel spatial filtering, finds a spatially band-limited source that, after propagation, produces the exact observation plane field as the broadband source over a user-specified region of interest. The second, called statistical or quasihomogeneous spatial filtering, finds a spatially band-limited source that, after propagation and over a specified region of interest, yields an observation plane field that is statistically representative of that produced by the original broadband source. The pros and cons of both approaches are discussed in detail. A wave optics simulation of light transiting a ground glass diffuser and then propagating to an observation plane in the near-zone is performed to validate the two filtering approaches.

  19. Optical Systems for the Fourth Generation Light Source, 4GLS

    CERN Document Server

    Quinn, Frances; MacDonald, Mike; Roper, Mark

    2004-01-01

    4GLS is a multi-user, multi-source facility proposed for construction at Daresbury Laboratory in the UK. By exploiting super-conducting linac technology with energy recovery, it will combine three free electron lasers and a range of conventional synchrotron radiation sources covering the THz to SXR region. The facility will provide femtosecond pulses at high repetition rate, with the FELs delivering GW power in the VUV and XUV region. This paper discusses the options and challenges for the optical systems associated with the suite of photon sources. The beamlines will need to operate both independently and in flexible, synchronised combinations. Together with the requirements for preserving the ultra-bright, fast pulse properties, this places unique demands on the design, layout and operational modes. The paper summarises current technical achievements and identifies the research and development necessary before detailed design of the 4GLS optical systems.

  20. X-ray Optics for BES Light Source Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Dennis [Argonne National Lab. (ANL), Argonne, IL (United States); Padmore, Howard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lessner, Eliane [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  1. X-ray Optics for BES Light Source Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Dennis [Argonne National Lab. (ANL), Argonne, IL (United States); Padmore, Howard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lessner, Eliane [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  2. Optimizing Photon Collection from Point Sources with Adaptive Optics

    Science.gov (United States)

    Hill, Alexander; Hervas, David; Nash, Joseph; Graham, Martin; Burgers, Alexander; Paudel, Uttam; Steel, Duncan; Kwiat, Paul

    2015-05-01

    Collection of light from point-like sources is typically poor due to the optical aberrations present with very high numerical-aperture optics. In the case of quantum dots, the emitted mode is nonisotropic and may be quite difficult to couple into single- or even few-mode fiber. Wavefront aberrations can be corrected using adaptive optics at the classical level by analyzing the wavefront directly (e.g., with a Shack-Hartmann sensor); however, these techniques are not feasible at the single-photon level. We present a new technique for adaptive optics with single photons using a genetic algorithm to optimize collection from point emitters with a deformable mirror. We first demonstrate our technique for improving coupling from a subwavelength pinhole, which simulates isotropic emission from a point source. We then apply our technique in situto InAs/GaAs quantum dots, obtaining coupling increases of up to 50% even in the presence of an artificial source of drift.

  3. Simulation of atmospheric turbulence for optical systems with extended sources.

    Science.gov (United States)

    Safari, Majid; Hranilovic, Steve

    2012-11-01

    In this paper, the method of random wave vectors for simulation of atmospheric turbulence is extended to 2D×2D space to provide spatial degrees of freedom at both input and output planes. The modified technique can thus simultaneously simulate the turbulence-induced log-amplitude and phase distortions for optical systems with extended sources either implemented as a single large aperture or multiple apertures. The reliability of our simulation technique is validated in different conditions and its application is briefly investigated in a multibeam free-space optical communication scenario.

  4. Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-16

    This paper presents a novel SCM optical transmission system for next-generation WDM-PONs combining broadband optical sources and a Mach-Zehnder interferometric structure. The approach leeds to transport RF signals up to 50 GHz being compatible with RoF systems since a second configuration has been proposed in order to overcome dispersion carrier suppression effect using DSB modulation. The theoretical analysis validates the potentiality of the system also considering the effects of the dispersion slope over the transmission window.

  5. Frequency-time coherence for all-optical sampling without optical pulse source

    CERN Document Server

    Preussler, Stefan; Schneider, Thomas

    2016-01-01

    Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave, allowing simple integration in appropriate platforms, such as Silicon Photonics. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift.

  6. Optical Spectrophotometric Monitoring of Fermi/LAT Bright Sources

    CERN Document Server

    Patiño-Álvarez, V; León-Tavares, J; Valdés, J R; Carramiñana, A; Carrasco, L; Torrealba, J

    2013-01-01

    We describe an ongoing optical spectrophotometric monitoring program of a sample of Fermi/LAT bright sources showing prominent and variable {\\gamma}-ray emission, with the 2.1m telescope at Observatorio Astrof\\'isico Guillermo Haro (OAGH) located in Cananea, Sonora, M\\'exico. Our sample contains 11 flat spectrum radio quasars (FSRQ) and 1 Narrow Line Seyfert 1 (NLSy1) galaxy. Our spectroscopic campaign will allow us to study the spectroscopic properties (FWHM, EW, flux) of broad-emission lines in the optical (e.g. H{\\beta}) and mid-UV (e.g. Mg II {\\lambda}2800) regimes, depending on the redshift of the source. The cadence of the broad emission lines monitoring is about five nights per month which in turn will permit us to explore whether there is a correlated variability between broad emission line features and high levels of {\\gamma}-ray emission.

  7. Ultrahigh resolution optical coherence tomography using a superluminescent light source.

    Science.gov (United States)

    Kowalevicz, Andrew; Ko, Tony; Hartl, Ingmar; Fujimoto, James; Pollnau, Markus; Salathé, René

    2002-04-08

    A superluminescent Ti:Al2O(3) crystal is demonstrated as a light source for ultrahigh resolution optical coherence tomography (OCT). Single spatial mode, fiber coupled output powers of ~40 microW can be generated with 138 nm bandwidth using a 5 W frequency doubled, diode pumped laser, pumping a thin Ti:Al2O(3) crystal. Ultrahigh resolution OCT imaging is demonstrated with 2.2 microm axial resolution in air, or 1.7 microm in tissue, with >86 dB sensitivity. This light source provides a simple and robust alternative to femtosecond lasers for ultrahigh resolution OCT imaging.

  8. The first INTEGRAL-OMC catalogue of optically variable sources

    CERN Document Server

    Alfonso-Garzón, J; Mas-Hesse, J M; Giménez, A

    2012-01-01

    The Optical Monitoring Camera (OMC) onboard INTEGRAL provides photometry in the Johnson V-band. With an aperture of 50 mm and a field of view of 5deg x 5deg, OMC is able to detect optical sources brighter than V~18, from a previously selected list of potential targets of interest. After more than nine years of observations, the OMC database contains light curves for more than 70000 sources (with more than 50 photometric points each). The objectives of this work have been to characterize the potential variability of the objects monitored by OMC, to identify periodic sources and to compute their periods, taking advantage of the stability and long monitoring time of the OMC. To detect potential variability, we have performed a chi-squared test, finding 5263 variable sources out of an initial sample of 6071 objects with good photometric quality and more than 300 data points each. We have studied the periodicity of these sources using a method based on the phase dispersion minimization technique, optimized to hand...

  9. Optical theorem for multipole sources in wave diffraction theory

    Science.gov (United States)

    Eremin, Yu. A.; Sveshnikov, A. G.

    2016-05-01

    The optical theorem is generalized to the case of local body excitation by multipole sources. It is found that, to calculate the extinction cross section, it is sufficient to calculate the scattered field derivatives at a single point. It is shown that the Purcell factor, which is a rather important parameter, can be represented in analytic form. The result is generalized to the case of a local scatterer incorporated in a homogeneous halfspace.

  10. Characterization and Analysis of Relative Intensity Noise in Broadband Optical Sources for Optical Coherence Tomography

    Science.gov (United States)

    Shin, Sunghwan; Sharma, Utkarsh; Tu, Haohua; Jung, Woonggyu; Boppart, Stephen A.

    2011-01-01

    Relative intensity noise (RIN) is one of the most significant factors limiting the sensitivity of an optical coherence tomography (OCT) system. The existing and prevalent theory being used for estimating RIN for various light sources in OCT is questionable, and cannot be applied uniformly for different types of sources. The origin of noise in various sources differs significantly, owing to the different physical nature of photon generation. In this study, we characterize and compare RIN of several OCT light sources including superluminescent diodes (SLDs), an erbium-doped fiber amplifier, multiplexed SLDs, and a continuous-wave laser. We also report a method for reduction of RIN by amplifying the SLD light output by using a gain-saturated semiconductor optical amplifier. PMID:22090794

  11. Multibeam Electron Source using MEMS Electron Optical Components

    Energy Technology Data Exchange (ETDEWEB)

    Someren, B van; Bruggen, M J van; Zhang, Y; Hagen, C W; Kruit, P [Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands)

    2006-04-01

    Recent developments in electron beam equipment have given rise to ever more complex electron optical (EO) designs. Until now these designs were realized using standard workshop techniques like drilling, turning etc. With the need for even more complex designs to advance electron optics, we use the possibilities of manufacturing EO components with MEMS fabrication techniques. This leads to different design rules in the EO design. One can use one of the strong points of MEMS fabrication, mass manufacturing of identical and reliable components within tight specifications. One of our designs that demonstrates this is presented in this paper, the multi-beam electron source. We are developing an electron source for use in a standard scanning electron microscope that produces 100 beams instead of one. The design is made so that the performance in terms of spot size and current per beam is equal to the performance of the beam from a single beam source, around 1 nm and 25 pA. Furthermore, since we modify the SEM for nanolithography purposes, it is necessary to switch each of the individual beams on and off. For that purpose we integrate an array of blanker electrodes in the source unit.

  12. Fiber optic distributed temperature sensing for fire source localization

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  13. Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources

    Science.gov (United States)

    Boppart, Stephen A.; King, Matthew D.; Liu, Yuan; Tu, Haohua; Gruebele, Martin

    Optical imaging is essential in medicine and in fundamental studies of biological systems. Although many existing imaging modalities can supply valuable information, not all are capable of label-free imaging with high-contrast and molecular specificity. The application of molecular or nanoparticle contrast agents may adversely influence the biological system under investigation. These substances also present ongoing concerns over toxicity or particle clearance, which must be properly addressed before their approval for in vivo human imaging. Hence there is an increasing appreciation for label-free imaging techniques. It is of primary importance to develop imaging techniques that can indiscriminately identify and quantify biochemical compositions to high degrees of sensitivity and specificity through only the intrinsic optical response of endogenous molecular species. The development and use of nonlinear interferometric vibrational imaging, which is based on the interferometric detection of optical signals from coherent anti-Stokes Raman scattering (CARS), along with novel optical sources, offers the potential for label-free molecular imaging.

  14. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  15. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  16. Optical Pumping Experiments on Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S J; Fournier, K B; Scott, H; Chung, H K; Lee, R W

    2004-07-29

    Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at the redistribution of radiation. However, the possibilities for optical lasers end for plasmas with n{sub e}>10{sup 22}cm{sup -3} as light propagation is severely altered by the plasma. The construction of the Tesla Test Facility(TTF) at DESY(Deutsche Elektronen-Synchrotron), a short pulse tunable free electron laser in the vacuum-ultraviolet and soft X-ray regime (VUV FEL), based on the SASE(self amplified spontaneous emission) process, will provide a major advance in the capability for dense plasma-related research. This source will provide 10{sup 13} photons in a 200 fs duration pulse that is tunable from {approx} 6nm to 100nm. Since an VUV FEL will not have the limitation associated with optical lasers the entire field of high density plasmas kinetics in laser produced plasma will then be available to study with tunable source. Thus, one will be able to use this and other FEL x-ray sources to pump individual transitions creating enhanced population in the excited states that can easily be monitored. We show two case studies illuminating different aspects of plasma spectroscopy.

  17. Configuration of electro-optic fire source detection system

    Science.gov (United States)

    Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir

    2007-04-01

    The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.

  18. Tunable optical microwave source using spatially resolved laser eigenstates.

    Science.gov (United States)

    Brunel, M; Bretenaker, F; Le Floch, A

    1997-03-15

    A two-propagation-axis solid-state laser is shown to provide a widely tunable optical microwave source. The spatial separation of the laser eigenstates is shown to enable an étalon to act as a coarse tuner, forcing oscillation in any nonadjacent cavity modes. The frequency difference between opposite helicoidal eigenstates operating in nonadjacent cavity modes can then be tuned continuously. The beat note from such a solid-state laser is shown to vary from dc to 26 GHz, i.e., 30 times the laser free-spectral range, and is limited only by the free-spectral range of the étalon.

  19. All fiber optics circular-state swept source polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Lin, Hermann; Kao, Meng-Chun; Lai, Chih-Ming; Huang, Jyun-Cin; Kuo, Wen-Chuan

    2014-02-01

    A swept source (SS)-based circular-state (CS) polarization-sensitive optical coherence tomography (PS-OCT) constructed entirely with polarization-maintaining fiber optics components is proposed with the experimental verification. By means of the proposed calibration scheme, bulk quarter-wave plates can be replaced by fiber optics polarization controllers to, therefore, realize an all-fiber optics CS SSPS-OCT. We also present a numerical dispersion compensation method, which can not only enhance the axial resolution, but also improve the signal-to-noise ratio of the images. We demonstrate that this compact and portable CS SSPS-OCT system with an accuracy comparable to bulk optics systems requires less stringent lens alignment and can possibly serve as a technology to realize PS-OCT instrument for clinical applications (e.g., endoscopy). The largest deviations in the phase retardation (PR) and fast-axis (FA) angle due to sample probe in the linear scanning and a rotation angle smaller than 65 deg were of the same order as those in stationary probe setups. The influence of fiber bending on the measured PR and FA is also investigated. The largest deviations of the PR were 3.5 deg and the measured FA change by ~12 to 21 deg. Finally, in vivo imaging of the human fingertip and nail was successfully demonstrated with a linear scanning probe.

  20. Fast optical source for quantum key distribution based on semiconductor optical amplifiers.

    Science.gov (United States)

    Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V

    2011-02-28

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.

  1. Pure sources and efficient detectors for optical quantum information processing

    Science.gov (United States)

    Zielnicki, Kevin

    Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on

  2. Compact excimer laser light source for optical (mask) inspection systems

    Science.gov (United States)

    Pflanz, Tobias; Huber, Heinz

    2001-04-01

    The discharge pumped excimer laser is a gas laser providing ultra violet radiation with well defined spectral, temporal and spatial properties. The fast development of excimer lasers in recent years has succeeded in designing very compact, turn-key systems delivering up to 10 W of radiation at 248 nm (5 W at 193 nm and 1 W at 157 nm) with repetition rates up to 1000 Hz. Experimental data on important beam properties of excimer lasers in the field of mask inspection are being presented and discussed. Relevant parameters are spectral bandwidth, energetic pulse-to-pulse stability, pulse duration, beam pointing stability, beam direction stability, beam dimension, beam profile and coherence. We will compare the excimer laser with lamp sources and continuous wave lasers in the framework of these parameters. The discussion will show future opportunities of compact excimer lasers in optical inspection as well as in mask writing systems, improving resolution and throughput.

  3. An ion-optical bench for testing ion source lenses

    Science.gov (United States)

    Stoffels, J. J.; Ells, D. R.

    1988-06-01

    An ion-optical bench has been designed and constructed to obtain experimental data on the focusing properties of ion lenses in three dimensions. The heart of the apparatus is a position-sensitive detector (PSD) that gives output signals proportional to the x and y positions of each ion impact. The position signals can be displayed on an oscilloscope screen and analyzed by a two-parameter pulse-height analyzer, thereby giving a visual picture of the ion beam cross section and intensity distribution. The PSD itself is mounted on a track and is movable during operation from a position immediately following the ion lens to 30 cm away. This enables the rapid collection of accurate data on the intensity distribution and divergence angles of ions leaving the source lens. Examples of ion lens measurements are given.

  4. Optimum source concepts for optical intersatellite links with RZ coding

    Science.gov (United States)

    Strasser, Martin M.; Winzer, Peter J.; Leeb, Walter R.

    2001-06-01

    We discuss several potential methods of generating optical RZ data signals, distinguishing between direct RZ modulation and modulation of a primary pulse train which is either generated by using a modelocked laser, by sinusoidally driving of an external modulator, or by gainswitching of a laser diode. We analyze the properties of each method with regard to the most critical aspects for space-borne laser communication systems such as repetition rate, duty cycle, extinction ratio, frequency chirp, timing jitter, robustness, complexity, commercial availability, and lifetime. Most modelocked lasers are highly sensitive to ambient perturbations, necessitating accurate temperature control and mechanical stabilization. Also, they typically provide pulses with less than 10% duty cycle, which can result in a decreased sensitivity of optically preamplified receivers. Directly modulated semiconductor lasers are compact and robust but suffer from large frequency chirp, which deteriorates the receiver sensitivity. One reliable RZ source is a conventional DFB semiconductor laser with two intensity modulators, one for pulse generation and one for data modulation. Both Mach-Zehnder modulators co-packaged with a laser diode or monolithically integrated electroabsorption modulators should be considered. These modulators can provide almost transform-limited pulses at high repetition rates and with duty cycles of about 30%. Robustness and lifetime are highly promising.

  5. Microlensing optical depth as a function of source apparent magnitude

    CERN Document Server

    Wood, Alexander

    2007-01-01

    Measurements of the microlensing optical depth, tau, towards the Galactic bulge appear to depend on the method used to obtain them. Those values based on the lensing of red clump giants (RCGs) appear to be significantly lower than those based on the lensing of all stars along the line of sight. This discrepancy is still not understood. Through Monte Carlo simulations, it is found that the discrepancy cannot be explained by a dependance on the flux limits of the two methods. The optical depth is expected to be generally constant as a function of source apparent magnitude for I_0 >~ 13.0, except in the range 13.5 <~ I_0 <~ 15.5. Here many RCGs are detected, causing a significant oscillation in tau. The amplitude of this oscillation is a function of the inclination angle of the Galactic bar, theta_bar, which may thus be constrained. A further constraint comes from a similar dependance of tau with theta_bar: combining the predicted trends with the measured values provides 1-sigma upper limits, which exclude...

  6. Aerosol optical depths and their contributing sources in Taiwan

    Science.gov (United States)

    Chan, K. L.; Chan, K. L.

    2017-01-01

    In this paper, we present a quantitative investigation of the contributions of different aerosols to the aerosol optical depths (AODs) in Taiwan using a global chemical transport model (GEOS-Chem) and remote sensing measurements. The study focus is on the period from June 2012 to October 2013. Five different types of aerosols are investigated: sea salt, dust, sulfate, organic carbon and black carbon. Three of these aerosols, namely sulfate, organic carbon and black carbon, have significant anthropogenic sources. Model simulation results were compared with both ground based sun photometer measurements and MODerate resolution Imaging Spectroradiometer (MODIS) satellite observations. The model data shows good agreement with satellite observations (R = 0.72) and moderate correlation with sun photometer measurements (R = 0.52). Simulation results show the anthropogenic aerosols contribute ∼65% to the total AOD in Taipei, while natural originated aerosols only show a minor impact (∼35%). Among all the aerosols, sulfate is the dominating species, contributing 62.4% to the annual average total AOD. Organic carbon and black carbons respectively contribute 7.3% and 1.5% to the annual averaged total AOD. The annual average contributions of sea salt and dust aerosols to the total AOD are 26.4% and 2.4%, respectively. A sensitivity study was performed to identify the contributions of anthropogenic aerosol sources in each region to the AODs in Taipei. North-East Asia was identified as the major contributing source region of anthropogenic aerosols to Taipei, accounting for more than 50% of total sulfate, 32% of total organic carbon and 51% of total black carbon aerosols. South-East Asia is the second largest contributing source region, contributing 35%, 24% and 34% of total sulfate, organic carbon and black carbon aerosols, respectively. The aerosols from continents other than Asia only show minor impacts to the aerosol load in Taipei. In addition, a case study of a biomass

  7. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zenghai; Kasaragod, Deepa K; Matcher, Stephen J, E-mail: z.lu@sheffield.ac.uk, E-mail: s.j.matcher@sheffield.ac.uk [Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom)

    2011-02-21

    We describe a fibre-based variable-incidence angle (VIA) polarization-sensitive swept-source optical coherence tomography (PS-SS-OCT) system to determine the 3D optical axis of birefringent biological tissues. Single-plane VIA-PS-OCT is also explored which requires measurement of the absolute fast-axis orientation. A state-of-the-art PS-SS-OCT system with some improvements both in hardware and software was used to determine the apparent optical birefringence of equine tendon for a number of different illumination directions. Polar and azimuthal angles of cut equine tendon were produced by the VIA method and compared with the nominal values. A quarter waveplate (QWP) and equine tendon were used as test targets to validate the fast-axis measurements using the system. Polar and azimuthal angles of cut equine tendon broadly agreed with the expected values within about 8% of the nominal values. A theoretical and experimental analysis of the effect of the sample arm fibre on determination of optical axis orientation using a proposed definition based on the orientation of the eigenpolarization ellipse experimentally confirms that this algorithm only works correctly for special settings of the sample arm fibre. A proposed algorithm based on the angle between Stokes vectors on the Poincare sphere is confirmed to work for all settings of the sample arm fibre. A calibration procedure is proposed to remove the sign ambiguity of the measured orientation and was confirmed experimentally by using the QWP.

  8. Fast optical source for quantum key distribution based on semiconductor optical amplifiers

    CERN Document Server

    Jofre, M; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; Juan, J L San; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V; 10.1364/OE.19.003825

    2011-01-01

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as $1.14\\times 10^{-2}$ while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size,...

  9. Liquid-state acoustically-nonlinear nanoplasmonic source of optical frequency combs

    CERN Document Server

    Maksymov, Ivan S

    2016-01-01

    Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a hybrid, liquid-state and nanoplasmonic, source of optical frequency combs compatible with fibre-optic technology. This source relies on a nanoantenna to harness the strength of nonlinear acoustic effects and synthesise optical spectra from ultrasound.

  10. Optical counterpart positions of extragalactic radio sources and connecting optical and radio reference frames

    Science.gov (United States)

    Aslan, Z.; Gumerov, R.; Jin, W.; Khamitov, I.; Maigurova, N.; Pinigin, G.; Tang, Z.; Wang, S.

    2010-01-01

    We discuss the results of an investigation of astrometric positions of extragalactic radio sources from a list for the International Celestial Reference Frame. About 300 fields around extragalactic radio sources were observed during the years 2000-2003. The observations were performed mainly using two telescopes equipped with CCD cameras at TUG, Turkey (Russian-Turkish Telescope - RTT150) and at YAO (1 m telescope), (Kunming, China). The mean accuracies of the measured positions are 38 mas in right ascension and 35 mas in declination. A comparison between the measured optical positions determined using the UCAC2 catalog and the radio positions from the current ICRF shows that the overall optical-minus- radio offsets are -4 and +15 mas for right ascension and declination, respectively. The formal internal errors of these mean offsets are 4 mas. The results of optical positions with respect to the reference catalogue 2MASS are also given. A search for a relation between optical and radio reference frames indicates that the orientation angles are near zero within their accuracy of about 5 mas. The link accuracy becomes 3 mas when our observations are combined with other studies. Tables 2 and 3 giving the positions are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A10Present address: İstanbul Kültür University, Ataköy Yerleşkesi, 34156 Istanbul, Turkey

  11. Optical-Fiber Fluorosensors With Polarized Light Sources

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1995-01-01

    Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).

  12. Optical-Fiber Fluorosensors With Polarized Light Sources

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1995-01-01

    Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).

  13. Sources of optically active aerosol particles over the Amazon forest

    Science.gov (United States)

    Guyon, Pascal; Graham, Bim; Roberts, Gregory C.; Mayol-Bracero, Olga L.; Maenhaut, Willy; Artaxo, Paulo; Andreae, Meinrat O.

    Size-fractionated ambient aerosol samples were collected at a pasture site and a primary rainforest site in the Brazilian Amazon Basin during two field campaigns (April-May and September-October 1999), as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). The samples were analyzed for up to 19 trace elements by particle-induced X-ray emission analysis (PIXE), for equivalent black carbon (BC e) by a light reflectance technique and for mass concentration by gravimetric analysis. Additionally, we made continuous measurements of absorption and light scattering by aerosol particles. The vertical chemical composition gradients at the forest site have been discussed in a companion article (Journal of Geophysical Research-Atmospheres 108 (D18), 4591 (doi:4510.1029/2003JD003465)). In this article, we present the results of a source identification and quantitative apportionment study of the wet and dry season aerosols, including an apportionment of the measured scattering and absorption properties of the total aerosol in terms of the identified aerosol sources. Source apportionments (obtained from absolute principal component analysis) revealed that the wet and dry season aerosols contained the same three main components, but in different (absolute and relative) amounts: the wet season aerosol consisted mainly of a natural biogenic component, whereas pyrogenic aerosols dominated the dry season aerosol mass. The third component identified was soil dust, which was often internally mixed with the biomass-burning aerosol. All three components contributed significantly to light extinction during both seasons. At the pasture site, up to 47% of the light absorption was attributed to biogenic particles during the wet season, and up to 35% at the tower site during the wet-to-dry transition period. The results from the present study suggest that, in addition to pyrogenic particles, biogenic and soil dust aerosols must be

  14. Packaging considerations of fiber-optic laser sources

    Science.gov (United States)

    Heikkinen, Veli; Tukkiniemi, Kari; Vaehaekangas, Jouko; Hannula, Tapio

    1991-12-01

    The continuous progress in material and component technology has generated new laser-based applications that require special packaging techniques. Hybrid integration offers a flexible method to accomplish custom design needs. This paper discusses several aspects in fiber optic packaging including optical, thermal, and mechanical issues. Special emphasis is on optical coupling between a laser diode and a single-mode fiber.

  15. Asynchronously sampled blind source separation for coherent optical links

    Science.gov (United States)

    Detwiler, Thomas F.; Searcy, Steven M.; Stark, Andrew J.; Ralph, Stephen E.; Basch, Bert E.

    2011-01-01

    Polarization multiplexing is an integral technique for generating spectrally efficient 100 Gb/s and higher optical links. Post coherent detection DSP-based polarization demultiplexing of QPSK links is commonly performed after timing recovery. We propose and demonstrate a method of asynchronous blind source separation using the constant modulus algorithm (CMA) on the asynchronously sampled signal to initially separate energy from arbitrarily aligned polarization states. This method lends well to implementation as it allows for an open-loop sampling frequency for analog-to-digital conversion at less than twice the symbol rate. We show that the performance of subsequent receiver functions is enhanced by the initial pol demux operation. CMA singularity behavior is avoided through tap settling constraints. The method is applicable to QPSK transmissions and many other modulation formats as well, including general QAM signals, offset-QPSK, and CPM, or a combination thereof. We present the architecture and its performance under several different formats and link conditions. Comparisons of complexity and performance are drawn between the proposed architecture and conventional receivers.

  16. LIGHT SOURCE: Optics for the lattice of the compact storage ring for a Compton X-ray source

    Science.gov (United States)

    Yu, Pei-Cheng; Wang, Yu; Shen, Xiao-Zhe; Huang, Wen-Hui; Yan, Li-Xin; Du, Ying-Chao; Li, Ren-Kai; Tang, Chuan-Xiang

    2009-06-01

    We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode optics, an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate; as for the steady mode, the method to control momentum compact factor is adopted [Gladkikh P, Phys. Rev. ST Accel. Beams 8, 050702] to obtain stability of the electron beam.

  17. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  18. Design methodology for micro-discrete planar optics with minimum illumination loss for an extended source.

    Science.gov (United States)

    Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill

    2016-08-01

    Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source.

  19. Continuous wave terahertz spectroscopy system with stably tunable beat source using optical switch

    Science.gov (United States)

    Eom, Joo Beom; Kim, Chihoon; Ahn, Jaesung

    2017-01-01

    A tunable beat source has been made using an optical switch module. A stably-tunable beat source for continuous wave terahertz spectroscopy system was implemented by simply connecting 16 coaxial distributed feedback laser diodes to an optical switch. The terahertz frequency was rapidly changed without frequency drifts by changing the optical path. The continuous wave terahertz frequency was tuned from 0.05 to 0.8 THz in steps of 50 GHz or 0.4 nm. We measured continuous wave terahertz waveforms emitted from the photomixers using the switched optical beat source. We also calculated the terahertz frequency peaks by taking fast Fourier transforms of the measured terahertz waveforms. By equipping the implemented tunable beat source with an optical switch, a continuous wave terahertz spectroscopy system was constructed and used to demonstrate the feasibility of continuous wave terahertz spectroscopy for nondestructive tests using the spectra of two type of Si wafers with different resistivity.

  20. Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

    Science.gov (United States)

    Tsai, Tsung-Han; Ahsen, Osman O.; Lee, Hsiang-Chieh; Liang, Kaicheng; Giacomelli, Michael G.; Potsaid, Benjamin M.; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Kraus, Martin F.; Hornegger, Joachim; Figueiredo, Marisa; Huang, Qin; Mashimo, Hiroshi; Cable, Alex E.; Fujimoto, James G.

    2014-03-01

    We developed an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor based imaging catheter, which provided an imaging speed of 600 kHz axial scan rate and 8 μm axial resolution in tissue. The micromotor catheter was 3.2 mm in diameter and could be introduced through the 3.7 mm accessory port of an endoscope. Imaging was performed at 400 frames per second with an 8 μm spot size using a pullback to generate volumetric data over 16 mm with a pixel spacing of 5 μm in the longitudinal direction. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing standard upper and lower endoscopy at the Veterans Affairs Boston Healthcare System (VABHS). Patients with Barrett's esophagus, dysplasia, and inflammatory bowel disease were imaged. The use of distally actuated imaging catheters allowed OCT imaging with more flexibility such as volumetric imaging in the terminal ileum and the assessment of the hiatal hernia using retroflex imaging. The high rotational stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face and cross-sectional imaging. The ability to perform 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies to investigate the ability of OCT to detect pathology as well as assess treatment response.

  1. XID Cross-Association of ROSAT/Bright Source Catalog X-ray Sources with USNO A2 Optical Point Sources

    CERN Document Server

    Rutledge, R E; Prince, T A; Lonsdale, C; Rutledge, Robert E.; Brunner, Robert J.; Prince, Thomas A.; Lonsdale, Carol

    2000-01-01

    We quantitatively cross-associate the 18811 ROSAT Bright Source Catalog (RASS/BSC) X-ray sources with optical sources in the USNO-A2 catalog, calculating the the probability of unique association (Pid) between each candidate within 75 arcsec of the X-ray source position, on the basis of optical magnitude and proximity. We present catalogs of RASS/BSC sources for which the probability of association is >98%, >90%, and >50%, which contain 2705, 5492, and 11301 unique USNO-A2 optical counterparts respectively down to the stated level of significance. We include in this catalog a list of objects in the SIMBAD database within 10 arcsec of the USNO position, as an aid to identification and source classification. The catalog is more useful than previous catalogs which either rely on plausibility arguments for association, or do not aid in selecting a counterpart between multiple off-band sources in the field. We find that a fraction ~65.8% of RASS/BSC sources have an identifiable optical counterpart, down to the mag...

  2. The Chandra Galactic Bulge Survey: optical catalogue and point-source counterparts to X-ray sources

    Science.gov (United States)

    Wevers, T.; Hodgkin, S. T.; Jonker, P. G.; Bassa, C.; Nelemans, G.; van Grunsven, T.; Gonzalez-Solares, E. A.; Torres, M. A. P.; Heinke, C.; Steeghs, D.; Maccarone, T. J.; Britt, C.; Hynes, R. I.; Johnson, C.; Wu, Jianfeng

    2016-06-01

    As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centred at Galactic latitude b = 1.5° above and below the Galactic Centre, spanning (l × b) = (6° × 1°). The catalogue consists of two or more epochs of observations for each line of sight in r', i' and H α filters. The catalogue is complete down to r' = 20.2 and i' = 19.2 mag; the mean 5σ depth is r' = 22.5 and i' = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ˜10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all optical sources within the 4σ X-ray error circle. This analysis yields 1480 potential counterparts (˜90 per cent of the sample). 584 counterparts have saturated photometry (r' ≤ 17, i' ≤ 16), indicating these objects are likely foreground sources and the real counterparts. 171 candidate counterparts are detected only in the i' band. These sources are good qLMXB and CV candidates as they are X-ray bright and likely located in the Bulge.

  3. Tunable Optical Sources and Synthetic Nonlinear Media: Growth and Characterization of Nonlinear Optical Materials

    Science.gov (United States)

    1992-02-13

    niobate and absolute measurements of nonlinear optical coefficients of six different commonly used nonlinear optical materials. The refractometry data for...applied radiation and is now an established technology for Nd:YAG lasers. Optical parametric oscillation and amplification provide a method of generating...continuously tunable output -3- The relative advantages of nonlinear optical frequency conversion compared to other methods for the generation of near

  4. Recent Developments in UV Optics for Ultra-Short, Ultra-Intense Coherent Light Sources

    Directory of Open Access Journals (Sweden)

    Daniele Cocco

    2015-01-01

    Full Text Available With the advent of Free Electron Lasers and general UV ultra-short, ultra-intense sources, optics needed to transport such radiation have evolved significantly to standard UV optics. Problems like surface damage, wavefront preservation, beam splitting, beam shaping, beam elongation (temporal stretching pose new challenges for the design of beam transport systems. These problems lead to a new way to specify optics, a new way to use diffraction gratings, a search for new optical coatings, to tighter and tighter polishing requirements for mirrors, and to an increased use of adaptive optics. All these topics will be described in this review article, to show how optics could really be the limiting factor for future development of these new light sources.

  5. Improvement of a polarized alkali ion source by means of optical pumping

    Energy Technology Data Exchange (ETDEWEB)

    Dreves, W.; Koch, E.; Jaensch, H.; Kamke, W.; Broermann, W.; Fick, D.

    1982-01-01

    A source for polarized alkali ions can be improved considerably by optical pumping of the atom beam in combination with a modified weak field transition. M-level populations were investigated using laser induced fluorescence in a magnetic field.

  6. Fabrication of glass optical power splitter in thallium source by ion-exchange method

    Institute of Scientific and Technical Information of China (English)

    Zigang Zhou(周自刚); Desen Liu(刘德森)

    2003-01-01

    The use of a new thallium-ion (T1+) source for glass optical power splitter fabrication based on a NaNO3-TlaSO4 mixture is proposed and demonstrated. Planar optical power splitters were made using glassessuch as K6, K8, K9. The optical quality of the devices prepared compares favorably with the qualityobtained using other fabrication techniques (such as dry etching) and the processing time is considerablyreduced.

  7. X-ray sources and their optical counterparts in the globular cluster M 22

    CERN Document Server

    Webb, N A; Gendre, B; Barret, D; Lasota, J P; Rizzi, L

    2004-01-01

    Using XMM-Newton EPIC imaging data, we have detected 50 low-luminosity X-ray sources in the field of view of M 22, where 5 +/- 3 of these sources are likely to be related to the cluster. Using differential optical photometry, we have identified probable counterparts to those sources belonging to the cluster. Using X-ray spectroscopic and timing studies, supported by the optical colours, we propose that the most central X-ray sources in the cluster are cataclysmic variables, millisecond pulsars, active binaries and a blue straggler. We also identify a cluster of galaxies behind this globular cluster.

  8. Optical coupling of flexible microstructured organic light sources for automotive applications

    NARCIS (Netherlands)

    Melpignano, P.; Sinesi, S.; Rotaris, G.; Antonipieri, M.; Cicoira, F.; Loi, M.A.; Muccini, M.; Zamboni, R.; Gale, M.T.; Westenhöfer, S.

    2003-01-01

    In this paper, we report on modelling and processing of customised optical patterns coupled with microstructured large area organic light emitting device (OLED) sources for automotive lighting. Different approaches for the optical control of the light emitted from an OLED are discussed and compared

  9. Spatial Coherence and Intensity Properties of Quasihomogeneous Optical Sources,

    Science.gov (United States)

    1980-06-01

    defined above. (U) By suppressing the time factor in Eq.(2) one can tbov-that the cross- spectral density function , W r, ,r 2), obeys the Helmholtz...cal techniques for solving the Helmholtz equation, the cross- spectral density function in the optical far-field can be related to its values at all

  10. The Chandra Galactic Bulge Survey: optical catalogue and point-source counterparts to X-ray sources

    CERN Document Server

    Wevers, T; Jonker, P G; Bassa, C; Nelemans, G; van Grunsven, T; Gonzalez-Solares, E A; Torres, M A P; Heinke, C; Steeghs, D; Maccarone, T J; Britt, C; Hynes, R I; Johnson, C; Wu, Jianfeng

    2016-01-01

    As part of the Chandra Galactic Bulge Survey (GBS), we present a catalogue of optical sources in the GBS footprint. This consists of two regions centered at Galactic latitude b = 1.5 degrees above and below the Galactic Centre, spanning (l x b) = (6x1) degrees. The catalogue consists of 2 or more epochs of observations for each line of sight in r', i' and H{\\alpha} filters. It is complete down to r' = 20.2 and i' = 19.2 mag; the mean 5{\\sigma} depth is r' = 22.5 and i' = 21.1 mag. The mean root-mean-square residuals of the astrometric solutions is 0.04 arcsec. We cross-correlate this optical catalogue with the 1640 unique X-ray sources detected in Chandra observations of the GBS area, and find candidate optical counterparts to 1480 X-ray sources. We use a false alarm probability analysis to estimate the contamination by interlopers, and expect ~ 10 per cent of optical counterparts to be chance alignments. To determine the most likely counterpart for each X-ray source, we compute the likelihood ratio for all o...

  11. Effects of source temperature and characteristics on the optical emission from a gallium liquid metal ion source

    Energy Technology Data Exchange (ETDEWEB)

    Hornsey, R.I.; Marriott, P.

    1989-05-14

    The light emitted from the region close to the tip of an emitting liquid metal ion source has been observed. It is shown that at high currents the light intensity rises almost as the cube of the current, but that the optical emission also depends on the source characteristics. A model based on the break-up of charged droplets is proposed to account for these results, thermal evaporation being found to be insignificant. Measurements of the effects of source temperature on light emission are also presented. From these measurements it is demonstrated that field ionisation cannot be responsible for the distortion of the total ion energy distribution seen at elevated temperatures. (author).

  12. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    Energy Technology Data Exchange (ETDEWEB)

    Canova, Federico [Amplitude Technologies, Evry (France); Poletto, Luca (ed.) [National Research Council, Padova (Italy). Inst. of Photonics and Nanotechnology

    2015-07-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advanced. New problems were faced for the realization of optical components of beamlines demanding to manage coherent X-ray photons, e.g. the preservation of coherence and time structure of ultra short pulses.

  13. Optical Pumping of Metastable Helium Atoms in Polarized Electron Sources

    Science.gov (United States)

    Brissaud, I.

    1995-04-01

    In this paper we present a comparison between the Orsay and Rice University polarized electron sources. Different explanations of the polarization degradation are discussed for the two cases. For the Rice source radiation, trapping can account for the observed reduction in polarization because of the high absorption cross sections associated with the D1 transition. Some improvements are proposed that might increase the electron polarization.

  14. Optical Pumping of Metastable Helium Atoms in Polarized Electron Sources

    OpenAIRE

    1995-01-01

    In this paper we present a comparison between the Orsay and Rice University polarized electron sources. Different explanations of the polarization degradation are discussed for the two cases. For the Rice source radiation, trapping can account for the observed reduction in polarization because of the high absorption cross sections associated with the D1 transition. Some improvements are proposed that might increase the electron polarization.

  15. All-optical Compton gamma-ray source

    CERN Document Server

    Phuoc, K Ta; Thaury, C; Malka, V; Tafzi, A; Goddet, J P; Shah, R C; Sebban, S; Rousse, A; 10.1038/nphoton.2012.82

    2013-01-01

    One of the major goals of research for laser-plasma accelerators is the realization of compact sources of femtosecond X-rays. In particular, using the modest electron energies obtained with existing laser systems, Compton scattering a photon beam off a relativistic electron bunch has been proposed as a source of high-energy and high-brightness photons. However, laser-plasma based approaches to Compton scattering have not, to date, produced X-rays above 1 keV. Here, we present a simple and compact scheme for a Compton source based on the combination of a laser-plasma accelerator and a plasma mirror. This approach is used to produce a broadband spectrum of X-rays extending up to hundreds of keV and with a 10,000-fold increase in brightness over Compton X-ray sources based on conventional accelerators. We anticipate that this technique will lead to compact, high-repetition-rate sources of ultrafast (femtosecond), tunable (X- through gamma-ray) and low-divergence (~1 degree) photons from source sizes on the order...

  16. Electrical Equivalent Model for an Optical VCO in a PLL Synchronization Scheme for Ultrashort Optical Pulse Sources

    Science.gov (United States)

    Bogoni, Antonella; Potì, Luca; Ponzini, Filippo; Ghelfi, Paolo

    2006-01-01

    The electrical modeling of complex electrooptical devices is a useful task for the correct design of its schemes and for the estimation of its performance. In this paper, we consider an electrooptical phase-locked loop (PLL) used to synchronize an RF system clock to the repetition rate of an optical pulsed source, realized by an active fiber mode-locking (ML) technique in the regenerative configuration. The synchronization scheme is suggested by a description of the pulsed source, for the first time, as an optical voltage-control oscillator (VCO). In particular, we present a simple new all-electrical model for the proposed optical VCO, and we verify its accuracy by the implementation of the whole PLL scheme at 2.5 and 10 GHz.

  17. Optical Synchronization Systems for Femtosecond X-raySources

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Russell; Staples, John W.; Holzwarth, Ronald

    2004-05-09

    In femtosecond pump/probe experiments using short X-Ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error over 100 meter of glass fiber. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1 10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with a piezoelectric phase modulator. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range we will lock two single-frequency lasers separated by several tera Hertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  18. Optics for the lattice of the compact storage ring for a Compton X-ray source

    Institute of Scientific and Technical Information of China (English)

    YU Pei-Cheng; WANG Yu; SHEN Xiao-zhe; HUANG Wen-Hui; YAN Li-xin; DU Ying-Chao; LI Ren-Kai; TANG Chuan-Xiang

    2009-01-01

    We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source.The optics design for different operation modes of the storage ring are discussed in detail.For the pulse mode optics,an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate;as for the steady mode,the method to control momentum compact factor is adopted[Gladkikh P,Phys.Rev.ST Accel.Beams 8,050702]to obtain stability of the electron beam.

  19. Noise analysis in photonic true time delay systems based on broadband optical source and dispersion components.

    Science.gov (United States)

    Xue, Xiaoxiao; Wen, He; Zheng, Xiaoping; Zhang, Hanyi; Guo, Yili; Zhou, Bingkun

    2009-02-01

    The noise in photonic true time delay systems based on broadband optical source and dispersion components is investigated. It is found that the beat noise induced by the optical source begins to dominate and grows far larger than other noise terms quickly, as long as the detected optical power is above some certain value P(thr). When the system dispersion is nonzero, the output carrier-to-noise ratio (CNR) will change periodically with the optical bandwidth due to the noise power increment and the dispersion induced radio frequency signal power degradation. The maximum CNR is the peak value of the first period. For a set of specified system conditions, the P(thr) is calculated to be -21 dBm, and the optimal optical bandwidth is 0.8 nm, at which the maximum CNR is 93.3 dB by considering the noise in a 1 Hz bandwidth. The results are verified experimentally.

  20. Optical Studies of Ultra Luminous X-ray Sources in NGC4490

    Science.gov (United States)

    Akyuz, Aysun; Avdan, Hasan; Avdan, Senay; Aksaker, Nazim

    2016-07-01

    We present optical studies of Ultraluminous X-ray sources (ULXs) in the spiral galaxy NGC4490 which is interacting with the irregular galaxy NGC 4485. ULXs are extra-nuclear, point-like X-ray sources with isotropic luminosities (Lx > 10 ^{39} erg s ^{-1}) above the Eddington limit for a 10 Msun black hole. HST/ACS/WFC and WFPC3 archival data have been analyzed to investigate the optical counterparts of five ULXs in NGC4490. Using relative astrometry the corrected ULX positions were derived only for three sources within the 1σ error radius of 0.5 arcsec on the HST images. We discuss the properties of three optical counterparts and constraints on their physical nature from multiband optical observations.

  1. Gaia Data Release 1. Reference frame and optical properties of ICRF sources

    Science.gov (United States)

    Mignard, F.; Klioner, S.; Lindegren, L.; Bastian, U.; Bombrun, A.; Hernández, J.; Hobbs, D.; Lammers, U.; Michalik, D.; Ramos-Lerate, M.; Biermann, M.; Butkevich, A.; Comoretto, G.; Joliet, E.; Holl, B.; Hutton, A.; Parsons, P.; Steidelmüller, H.; Andrei, A.; Bourda, G.; Charlot, P.

    2016-11-01

    Context. As part of the data processing for Gaia Data Release 1 (Gaia DR1) a special astrometric solution was computed, the so-called auxiliary quasar solution. This gives positions for selected extragalactic objects, including radio sources in the second realisation of the International Celestial Reference Frame (ICRF2) that have optical counterparts bright enough to be observed with Gaia. A subset of these positions was used to align the positional reference frame of Gaia DR1 with the ICRF2. Although the auxiliary quasar solution was important for internal validation and calibration purposes, the resulting positions are in general not published in Gaia DR1. Aims: We describe the properties of the Gaia auxiliary quasar solution for a subset of sources matched to ICRF2, and compare their optical and radio positions at the sub-mas level. Methods: Descriptive statistics are used to characterise the optical data for the ICRF sources and the optical-radio differences. The most discrepant cases are examined using online resources to find possible alternative explanations than a physical optical-radio offset of the quasars. Results: In the auxiliary quasar solution 2191 sources have good optical positions matched to ICRF2 sources with high probability. Their formal standard errors are better than 0.76 milliarcsec (mas) for 50% of the sources and better than 3.35 mas for 90%. Optical magnitudes are obtained in Gaia's unfiltered photometric G band. The Gaia results for these sources are given as a separate table in Gaia DR1. The comparison with the radio positions of the defining sources shows no systematic differences larger than a few tenths of a mas. The fraction of questionable solutions, not readily accounted for by the statistics, is less than 6%. Normalised differences have extended tails requiring case-by-case investigations for around 100 sources, but we have not seen any difference indisputably linked to an optical-radio offset in the sources. Conclusions: With

  2. Analysis of Energy Efficiency in Dynamic Optical Networks Employing Solar Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    The paper presents energy efficient routing in dynamic optical networks, where solar energy sources are employed for the network nodes. Different parameters are evaluated, including the number of nodes that have access to solar energy sources, the different maximum solar output power, traffic type...

  3. High-flux two-dimensional magneto-optical-trap source for cold lithium atoms

    NARCIS (Netherlands)

    Tiecke, T.G.; Gensemer, S.D.; Ludewig, A.; Walraven, J.T.M.

    2009-01-01

    We demonstrate a two-dimensional magneto-optical trap (2D MOT) as a beam source for cold Li-6 atoms. The source is side loaded from an oven operated at temperatures in the range 600 less than or similar to T less than or similar to 700 K. The performance is analyzed by loading the atoms into a

  4. The ultraviolet, optical, and infrared properties of Sloan Digital Sky Survey sources detected by GALEX

    NARCIS (Netherlands)

    Agueros, MA; Ivezic, Z; Covey, KR; Obric, M; Hao, L; Walkowicz, LM; West, AA; Vanden Berk, DE; Lupton, RH; Knapp, GR; Gunn, JE; Richards, GT; Bochanski, J; Brooks, A; Claire, M; Haggard, D; Kaib, N; Kimball, A; Gogarten, SM; Seth, A; Solontoi, M

    2005-01-01

    We discuss the ultraviolet, optical, and infrared properties of the Sloan Digital Sky Survey (SDSS) sources detected by the Galaxy Evolution Explorer ( GALEX) as part of its All-sky Imaging Survey Early Release Observations. Virtually all (> 99%) the GALEX sources in the overlap region are detected

  5. The ultraviolet, optical, and infrared properties of Sloan Digital Sky Survey sources detected by GALEX

    NARCIS (Netherlands)

    Agueros, MA; Ivezic, Z; Covey, KR; Obric, M; Hao, L; Walkowicz, LM; West, AA; Vanden Berk, DE; Lupton, RH; Knapp, GR; Gunn, JE; Richards, GT; Bochanski, J; Brooks, A; Claire, M; Haggard, D; Kaib, N; Kimball, A; Gogarten, SM; Seth, A; Solontoi, M

    We discuss the ultraviolet, optical, and infrared properties of the Sloan Digital Sky Survey (SDSS) sources detected by the Galaxy Evolution Explorer ( GALEX) as part of its All-sky Imaging Survey Early Release Observations. Virtually all (> 99%) the GALEX sources in the overlap region are detected

  6. Beam optics optimization of a negative-ion sputter source

    Indian Academy of Sciences (India)

    F Osswald; R Rebmeister

    2002-11-01

    A negative-ion sputter source has been studied in order to increase the beam intensity delivered by the Vivitron tandem injector. The aim was to characterize the influence on the beam intensity of some factors related to the configuration of the source such as the shape of the target holder, the target surface topography and the anode/cathode voltage. The paper reports the results carried out by experimentation on a test facility and on the injector itself as well as the investigations performed with computer simulations.

  7. Research and evolution of mid-infrared optical source

    Science.gov (United States)

    Chen, Changshui; Hu, Hui; Xu, Lei

    2016-10-01

    3-5 μm mid-infrared wave band is in the atmosphere window, it has lots of promising applications on the spectroscopy, remote sensing, medical treatment, environmental protection and military affairs. So, it has been a hot topic around the world to research the lasers at this wave band. In recent years, adiabatic passage technology has been applied in frequency conversion area, which borrowed from atomic physics. In this paper we will introduce efficient nonlinear optics frequency conversion by suing this technology.

  8. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source.

    Science.gov (United States)

    Ko, Tony; Adler, Desmond; Fujimoto, James; Mamedov, Dmitry; Prokhorov, Viatcheslav; Shidlovski, Vladimir; Yakubovich, Sergei

    2004-05-17

    Ultrahigh resolution optical coherence tomography imaging is performed with a compact broadband superluminescent diode light source. The source consists of two multiplexed broadband superluminescent diodes and has a power output of 4 mW with a spectral bandwidth of 155 nm, centered at a wavelength of 890 nm. In vivo imaging was performed with approximately 2.3 microm axial resolution in scattering tissue and approximately 3.2 microm axial resolution in the retina. These results demonstrate that it is possible to perform in vivo ultrahigh resolution optical coherence tomography imaging using a superluminescent diode light source that is inexpensive, compact, and easy to operate.

  9. Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping.

    Science.gov (United States)

    Shoji, Tatsuya; Tsuboi, Yasuyuki

    2014-09-04

    This Perspective describes recent progress in optical trappings of nanoparticles based on localized surface plasmon. This plasmonic optical trapping has great advantages over the conventional optical tweezers, being potentially applicable for a molecular manipulation technique. We review this novel trapping technique from the viewpoints of (i) plasmonic nanostructure, (ii) the light source for plasmon excitation, and (iii) the polarizability of the trapping target. These findings give us future outlook for plasmonic optical trapping. In addition to a brief review, recent developments on plasmonic optical trapping of soft nanomaterials such as proteins, polymer chains, and DNA will be discussed to point out the important issue for further development on this trapping method. Finally, we explore new directions of plasmonic optical trapping.

  10. Search for correlated radio and optical events in long-term studies of extragalactic sources

    Science.gov (United States)

    Pomphrey, R. B.; Smith, A. G.; Leacock, R. J.; Olsson, C. N.; Scott, R. L.; Pollock, J. T.; Edwards, P.; Dent, W. A.

    1976-01-01

    For the first time, long-term records of radio and optical fluxes of a large sample of variable extragalactic sources have been assembled and compared, with linear cross-correlation analysis being used to reinforce the visual comparisons. Only in the case of the BL Lac object OJ 287 is the correlation between radio and optical records strong. In the majority of cases there is no evidence of significant correlation, although nine sources show limited or weak evidence of correlation. The results do not support naive extrapolation of the expanding source model. The general absence of strong correlation between the radio and optical regions has important implications for the energetics of events occurring in such sources.

  11. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  12. DFB fiber laser as source for optical communication systems

    DEFF Research Database (Denmark)

    Varming, Poul; Hübner, Jörg; Kristensen, Martin

    1997-01-01

    The results demonstrate that DFB fiber lasers are an attractive alternative as sources in telecommunication systems. The lasers show excellent long-term stability with very high signal to noise ratio and a reasonable output power, combined with exceptional temperature stability and inherent fiber...

  13. Optical Synchronization Systems for Femtosecond X-Ray Sources

    CERN Document Server

    Wilcox, Russell; Staples, John W

    2005-01-01

    In femtosecond pump/probe experiments using short x-ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error. For the sub-100fs range we use an amplitude modulated CW laser at 1GHz to transmit RF phase information, and control the delay through a 100m fiber by observing the retroreflected signal. Initial results show 40fs peak-to-peak error above 10Hz, and 200fs long term drift, mainly due to amplitude sensitivity in the analog mixers. For the sub-10fs range we will lock two single-frequency lasers separated by several teraHertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes. For attosecond synchronization we propose a stabilized, free space link using bulk lens wavegu...

  14. Optical technologies for extreme-ultraviolet and soft X-ray coherent sources

    CERN Document Server

    Poletto, Luca

    2015-01-01

    The book reviews the most recent achievements in optical technologies for XUV and X-ray coherent sources. Particular attention is given to free-electron-laser facilities, but also to other sources available at present, such as synchrotrons, high-order laser harmonics and X-ray lasers. The optical technologies relevant to each type of source are discussed. In addition, the main technologies used for photon handling and conditioning, namely multilayer mirrors, adaptive optics, crystals and gratings are explained. Experiments using coherent light received during the last decades a lot of attention for the X-ray regime. Strong efforts were taken for the realization of almost fully coherent sources, e.g. the free-electron lasers, both as independent sources in the femtosecond and attosecond regimes and as seeding sources for free-electron-lasers and X-ray gas lasers. In parallel to the development of sources, optical technologies for photon handling and conditioning of such coherent and intense X-ray beams advance...

  15. Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices

    Science.gov (United States)

    Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla

    2017-08-01

    We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (˜100 ps, ˜0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.

  16. The Strathclyde terahertz to optical pulse source (TOPS)

    CERN Document Server

    Jaroszynski, D A; Giraud, G; Jamison, S; Jones, D R; Issac, R C; McNeil, B M W; Phelps, A D R; Robb, G R M; Sandison, H; Vieux, G; Wiggins, S M; Wynne, K

    2000-01-01

    We describe the newly created free-electron laser facility situated at the University of Strathclyde in Scotland, which will produce ultra-short pulses of high-power electromagnetic radiation in the terahertz frequency range. The FEL will be based on a 4 MeV photoinjector producing picosecond 1 nC electron pulses and driven by a frequency tripled Ti:sapphire laser thus ensuring synchronism with conventional laser based tuneable sources. A synchronised multi-terawatt Ti:sapphire laser amplifier will be used in the study of laser/plasma/electron beam interactions and as a plasma based X-ray source. A substantial user commitment has already been made in support of the programme.

  17. Particle damage sources for fused silica optics and their mitigation on high energy laser systems.

    Science.gov (United States)

    Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S

    2017-05-15

    High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm(2) of beam area) for shots from 8.6 J/cm(2) to 9.5 J/cm(2) of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.

  18. Water vapor: An extraordinary terahertz wave source under optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith [Massachusetts Institute of Technology, PO Box 380792, Cambridge, MA 02238-0792 (United States); HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada)], E-mail: kjohnson@mit.edu; Price-Gallagher, Matthew [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Mamer, Orval; Lesimple, Alain [Mass Spectroscopy Unit, 740 Dr. Penfield, Suite 5300, McGill University, Montreal, QC, H3A 1A4 (Canada); Fletcher, Clark [HydroElectron Ventures Inc., 1303 Greene Avenue Suite 102, Westmount, QC, H3Z 2A7 (Canada); Chen Yunqing; Lu Xiaofei; Yamaguchi, Masashi; Zhang, X.-C. [W.M. Keck Laboratory for Terahertz Science, Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2008-09-15

    In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H{sub 2}O vapor is significantly stronger than that from D{sub 2}O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.

  19. Swept-source optical coherence tomography of lower limb wound healing with histopathological correlation

    Science.gov (United States)

    Barui, Ananya; Banerjee, Provas; Patra, Rusha; Das, Raunak Kumar; Dhara, Santanu; Dutta, Pranab K.; Chatterjee, Jyotirmoy

    2011-02-01

    Direct noninvasive visualization of wound bed with depth information is important to understand the tissue repair. We correlate skin swept-source-optical coherence tomography (OCT) with histopathological and immunohistochemical evaluation on traumatic lower limb wounds under honey dressing to compare and assess the tissue repair features acquired noninvasively and invasively. Analysis of optical biopsy identifies an uppermost brighter band for stratum corneum with region specific thickness (p technology.

  20. Partial coherence and imperfect optics at a synchrotron radiation source modeled by wavefront propagation

    Science.gov (United States)

    Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg

    2014-09-01

    A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.

  1. The optical theorem for local source excitation of a particle near a plane interface

    Science.gov (United States)

    Eremin, Yuri; Wriedt, Thomas

    2015-11-01

    Based on classic Maxwell's theory and the Gauss Theorem we extended the Optical Theorem to the case of a penetrable particle excited by a local source deposited near a plane interface. We demonstrate that the derived Extinction Cross-Section involves the total point source radiating cross-section and some definite integrals responsible for the scattering by the interface. The derived extinction cross-section can be employed to estimate the quantum yield and the optical antenna efficiency without computation of the absorption cross-section.

  2. VCSEL sources for optical fiber-wireless composite data links at 60GHz

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Lebedev, Alexander

    2013-01-01

    This paper presents a performance assessment of 60-GHz mm-wave signal generation using photonic upconversion employing a VCSEL as source. The system reaches 10−9 BER over a variety of optical fibers for data rates of 1.25-Gbit/s.......This paper presents a performance assessment of 60-GHz mm-wave signal generation using photonic upconversion employing a VCSEL as source. The system reaches 10−9 BER over a variety of optical fibers for data rates of 1.25-Gbit/s....

  3. Optical sensors of gas on the basis of semiconductor sources of infrared emission

    Directory of Open Access Journals (Sweden)

    Kabatsiy V. N.

    2008-08-01

    Full Text Available Various constructions of optic sensors of gas and gas analyzers on their basis with the use of low-powered semiconductor sources of infrared emission for wave-length of 2,5–5,0 mm made on basis of InGaAs/InAs and InAsSbP/InAs heterostructures are worked out. The experimental results demonstrating the ability of application of semiconductor sources of infrared emission in optic sensors for measuring of metan concentration (CH4 and carbon dioxide (CO2 are given. The availability of use of such sensors in the gas analysis equipment of new generation is shown.

  4. Digital Square-Wave Frequency Modulated Microwave Sources for a Miniature Optically Pumped Cesium Beam Clock

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; ZHU Chengjin; LIU Ge; WANG Fengzhi; WANG Yiqiu; YANG Donghai

    2001-01-01

    Three different digital frequencymodulated microwave sources have been designed andapplied to our miniature optically pumped cesiumbeam clock.The main features and their influenceon clock accuracy have been experimentally tested.Itis proved that a digital square-wave frequency modu-lated microwave source using a microprocessor con-trolled direct-digital frequency synthesizer (DDFS)for our miniature optically pumped cesium beamclock works well,the frequency short term stability2 × 10 11/x r and the long term stability 3.5 x 10-13 forone day sample time have been obtained.

  5. Evaluation of a cheap ultrasonic stage for light source coherence function measurement, optical coherence tomography, optical coherence microscopy, and dynamic focusing

    NARCIS (Netherlands)

    Krstajic, Nikola; Matcher, Stephen J.; Childs, David; Hogg, Richard; Smallwood, Rod; Steenbergen, Wiendelt; Andersen, Peter E.; Bouma, Brett E.

    2009-01-01

    We evaluate the performance of a cheap ultrasonic stage in setups related to optical coherence tomography. The stage was used in several configurations: 1) optical delay line in optical coherence tomography (OCT) setup; 2) as a delay line measuring coherence function of a low coherence source (e.g.

  6. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source.

    Science.gov (United States)

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-04-07

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm(-1). For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm(-1). With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  7. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source

    Science.gov (United States)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm-1. For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm-1. With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  8. The Catalog of Positions of Optically Bright Extragalactic Radio Sources OBRS-1

    Science.gov (United States)

    Petrov, L.

    2011-01-01

    It is expected that the European Space Agency mission Gaia will make it possible to determine coordinates in the optical domain of more than 500,000 quasars. In 2006, a radio astrometry project was launched with the overall goal of making comparisons between coordinate systems derived from future space-born astrometry instruments and the coordinate system constructed from analysis of global very long baseline interferometry (VLBI) more robust. Investigation of the rotation, zonal errors, and non-alignment of the radio and optical positions caused by both radio and optical structures is needed to validate both techniques. In order to support these studies, the densification of the list of compact extragalactic objects that are bright in both radio and optical ranges is desirable. A set of 105 objects from the list of 398 compact extragalactic radio sources with decl. > -10deg was observed with the Very Long Baseline Array and European VLBI Network (EVN) with the primary goal of producing images with milliarcsecond resolution. These sources are brighter than 18 mag in the V band, and they were previously detected by the EVN. In this paper, coordinates of observed sources have been derived with milliarcsecond accuracies from analysis of these VLBI observations using an absolute astrometry method. The catalog of positions for 105 target sources is presented. The accuracies of source coordinates are in the range of 0.3.7 mas, with a median of 1.1 mas.

  9. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations

    CERN Document Server

    Dornic, D; Busto, J; Samarai, I Al; Basa, S; Gendre, B; Mazure, A; Klotz, Alain; ANTARES, Michel Boer on behalf the

    2009-01-01

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active nuclei... To enhance the sensitivity to these sources, we have developed a new detection method based on the optical follow-up of "golden" neutrino events such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES Collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow to trigger an optical telescope network; since February 2009. ANTARES is sending alert trigger one or two times per month to the two 25 cm robotic telescope of TAROT. This follow-up of such special events would not only give access to the nature of the sources but also improves the sensitivity for transient neutrino sources.

  10. TOWARDS 100% POLARIZATION IN THE OPTICALLY-PUMPED POLARIZED ION SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    ZELENSKI,A.; ALESSI, J.; KOKHANOVSKI, S.; KPONOU, A.; RITTER, B.J.; ZUBETS, V.

    2007-06-25

    The depolarization factors in the multi-step spin-transfer polarization technique and basic limitations on maximum polarization in the OPPIS (Optically-Pumped Polarized H{sup -} Ion Source) are discussed. Detailed studies of polarization losses in the RHIC OPPIS and the source parameters optimization resulted in the OPPIS polarization increase to 86-90%. This contributed to increasing polarization in the AGS and RHIC to 65-70%.

  11. A new small-package super-continuum light source for optical coherence tomography

    Science.gov (United States)

    Meissner, Sven; Cimalla, Peter; Fischer, Björn; Taudt, Christopher; Baselt, Tobias; Hartmann, Peter; Koch, Edmund

    2013-03-01

    Broadband light sources provide a significant benefit for optical coherence tomography (OCT) imaging concerning the axial resolution. Light sources with bandwidths over 200 nm result in an axial resolution up to 2 microns. Such broad band OCT imaging can be achieved utilizing super continuum (SC) light sources. The main important disadvantage of commercial SC light sources is the overall size and the high costs. Therefore, the use of SC light sources in small OCT setups and applications is limited. We present a new small housing and costeffective light source, which is suitable for OCT imaging. The used light source has dimensions of 110 x 160 x 60 mm and covers a wavelength range from 390 nm up to 2500 nm. The light source was coupled in a dual band OCT system. The light is guided into the interferometer and split in reference and sample beam. The superimposed signal is guided to the spectrometer unit, which consists of two spectrometers. This spectrometer system separates the light. One band centered at 800 nm with a full bandwidth of 176 nm and a second band centered at 1250 nm with a full spectral width of 300 nm was extracted. The 800 nm interference signal is detected by a silicon line scan camera and the 1250 nm signal by an indium gallium arsenide linear image sensor. In this test measurement a plastic foil was used as a sample, which is composed of several plastic film layers. Three dimensional images were acquired simultaneous with the dual band OCT setup. The images were acquired at an A-scan rate of 1 kHz. The 1 kHz A-line rate was chosen because so far the optical power of the light source is not optimal for high speed OCT imaging. The source provides 2 mW in the range of 390 nm to 800 nm and 25 mW in the range from 390 nm to 1650 nm. Furthermore, we coupled the light source by a 50:50 optical fiber coupler, which also reduces the overall optical power of the light source within the OCT setup. Nevertheless, we demonstrated that this new small

  12. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    Science.gov (United States)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  13. Acoustic Source Localization via Distributed Sensor Networks using Tera-scale Optical-Core Devices

    Energy Technology Data Exchange (ETDEWEB)

    Imam, Neena [ORNL; Barhen, Jacob [ORNL; Wardlaw, Michael [Office of Naval Research

    2008-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. The complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot be met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on an optical-core digital processing platform recently introduced by Lenslet Inc. They investigate key concepts of threat-detection algorithms such as Time Difference Of Arrival (TDOA) estimation via sensor data correlation in the time domain with the purpose of implementation on the optical-core processor. they illustrate their results with the aid of numerical simulation and actual optical hardware runs. The major accomplishments of this research, in terms of computational speedup and numerical accurcy achieved via the deployment of optical processing technology, should be of substantial interest to the acoustic signal processing community.

  14. At-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  15. X-ray Sources and their Optical Counterparts in the Globular Cluster M4

    CERN Document Server

    Bassa, C; Homer, L; Verbunt, F; Gaensler, B M; Lewin, W H G; Anderson, S F; Margon, B; Kaspi, V M; Van der Klis, M; Bassa, Cees; Pooley, David; Homer, Lee; Verbunt, Frank; Gaensler, Bryan M.; Lewin, Walter H. G.; Anderson, Scott F.; Margon, Bruce; Kaspi, Victoria M.; Klis, Michiel van der

    2004-01-01

    We report on the Chandra X-ray Observatory ACIS-S3 imaging observation of the Galactic globular cluster M4 (NGC 6121). We detect 12 X-ray sources inside the core and 19 more within the cluster half-mass radius. The limiting luminosity of this observation is Lx~10e29 erg/sec for sources associated with the cluster, the deepest X-ray observation of a globular cluster to date. We identify 6 X-ray sources with known objects and use ROSAT observations to show that the brightest X-ray source is variable. Archival data from the Hubble Space Telescope allow us to identify optical counterparts to 16 X-ray sources. Based on the X-ray and optical properties of the identifications and the information from the literature, we classify two (possibly three) sources as cataclysmic variables, one X-ray source as a millisecond pulsar and 12 sources as chromospherically active binaries. Comparison of M4 with 47 Tuc and NGC 6397 suggests a scaling of the number of active binaries in these clusters with the cluster (core) mass.

  16. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    Energy Technology Data Exchange (ETDEWEB)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence, University of Neuchâtel, Neuchâtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002 (Switzerland)

    2014-02-03

    Miniature (optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  17. Early Swept-Source Optical Coherence Tomography Angiography Findings in Unilateral Acute Idiopathic Maculopathy.

    Science.gov (United States)

    Nicolo, Massimo; Rosa, Raffaella; Musetti, Donatella; Musolino, Maria; Traverso, Carlo Enrico

    2016-02-01

    Unilateral acute idiopathic maculopathy (UAIM) is a rare disorder presenting in young people with an acute onset of unilateral central visual loss often associated with a prodromal flu-like illness. The authors present the early anatomical findings of a 35-year-old man clinically diagnosed with UAIM using swept-source optical coherence tomography (SS-OCT) and SS-OCT angiography.

  18. Optical Identifications of Companion Soft X-ray Sources of Mrk 231

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We present optical identification results for four ROSAT PSPC soft X-ray companions of Mrk 231 based on the deep BATC 6660 A-band image and the optical spectra obtained by the 60/90cm Schmidt telescope and the 2.16mtelescope at the Xinglong Station, NAOC. Three optical counterparts are quasarswith redshifts z > 1 and the remaining X-ray source is probably a background galaxycluster. Therefore, none of these soft X-ray companions are physically connectedwith the central X-ray source Mrk 231. Incorporating the previous results of Arp 220and Mrk 273 (Xia et al. 1998, 1999), we suggest that the apparent soft X-rayassociations with ULIRGs are chance coincidence in most cases.

  19. Quasi-homogeneous partial coherent source modeling of multimode optical fiber output using the elementary source method

    Science.gov (United States)

    Fathy, Alaa; Sabry, Yasser M.; Khalil, Diaa A.

    2017-10-01

    Multimode fibers (MMF) have many applications in illumination, spectroscopy, sensing and even in optical communication systems. In this work, we present a model for the MMF output field assuming the fiber end as a quasi-homogenous source. The fiber end is modeled by a group of partially coherent elementary sources, spatially shifted and uncorrelated with each other. The elementary source distribution is derived from the far field intensity measurement, while the weighting function of the sources is derived from the fiber end intensity measurement. The model is compared with practical measurements for fibers with different core/cladding diameters at different propagation distances and for different input excitations: laser, white light and LED. The obtained results show normalized root mean square error less than 8% in the intensity profile in most cases, even when the fiber end surface is not perfectly cleaved. Also, the comparison with the Gaussian–Schell model results shows a better agreement with the measurement. In addition, the complex degree of coherence, derived from the model results, is compared with the theoretical predictions of the modified Van Zernike equation showing very good agreement, which strongly supports the assumption that the large core MMF could be considered as a quasi-homogenous source.

  20. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Science.gov (United States)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  1. Note: Tormenta: An open source Python-powered control software for camera based optical microscopy

    Science.gov (United States)

    Barabas, Federico M.; Masullo, Luciano A.; Stefani, Fernando D.

    2016-12-01

    Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.

  2. Portable, Battery Operated Capillary Electrophoresis with Optical Isomer Resolution Integrated with Ionization Source for Mass Spectrometry

    Science.gov (United States)

    Moini, Mehdi; Rollman, Christopher M.

    2016-03-01

    We introduce a battery operated capillary electrophoresis electrospray ionization (CE/ESI) source for mass spectrometry with optical isomer separation capability. The source fits in front of low or high resolution mass spectrometers similar to a nanospray source with about the same weight and size. The source has two high voltage power supplies (±25 kV HVPS) capable of operating in forward or reverse polarity modes and powered by a 12 V rechargeable lithium ion battery with operation time of ~10 h. In ultrafast CE mode, in which short narrow capillaries (≤15 μm i.d., 15-25 cm long) and field gradients ≥1000 V/cm are used, peak widths at the base are <1 s wide. Under these conditions, the source provides high resolution separation, including optical isomer resolution in ~1 min. Using a low resolution mass spectrometer (LTQ Velos) with a scan time of 0.07 s/scan, baseline separation of amino acids and their optical isomers were achieved in ~1 min. Moreover, bovine serum albumin (BSA) was analyzed in ~1 min with 56% coverage using the data-dependent MS/MS. Using a high resolution mass spectrometer (Thermo Orbitrap Elite) with 15,000 resolution, the fastest scan time achieved was 0.15 s, which was adequate for CE-MS analysis when optical isomer separation is not required or when the optical isomers were well separated. Figures of merit including a detection limit of 2 fmol and linear dynamic range of two orders of magnitude were achieved for amino acids.

  3. Spectroscopic Redshifts to z > 2 for Optically Obscured Sources Discovered with the Spitzer Space Telescope

    CERN Document Server

    Houck, J R; Weedman, D; Higdon, S J U; Higdon, J L; Herter, T; Brown, M J I; Dey, A; Jannuzi, B T; Le Floc'h, E; Rieke, M; Armus, L; Charmandaris, V; Brandl, B R; Tepliitz, H I

    2005-01-01

    We have surveyed a field covering 9.0 degrees^2 within the NOAO Deep Wide-Field Survey region in Bootes with the Multiband Imaging Photometer on the Spitzer Space Telescope (SST) to a limiting 24 um flux density of 0.3 mJy. Thirty one sources from this survey with F(24um) > 0.75 mJy which are optically very faint (R > 24.5 mag) have been observed with the low-resolution modules of the Infrared Spectrograph on SST. Redshifts derived primarily from strong silicate absorption features are reported here for 17 of these sources; 10 of these are optically invisible (R > 26 mag), with no counterpart in B_W, R, or I. The observed redshifts for 16 sources are 1.7 < z < 2.8. These represent a newly discovered population of highly obscured sources at high redshift with extreme infrared to optical ratios. Using IRS spectra of local galaxies as templates, we find that a majority of the sources have mid-infrared spectral shapes most similar to ultraluminous infrared galaxies powered primarily by AGN. Assuming the sam...

  4. Swept source optical coherence tomography based on non-uniform discrete fourier transform

    Institute of Scientific and Technical Information of China (English)

    Tong Wu; Zhihua Ding; Kai Wang; Chuan Wang

    2009-01-01

    A high-speed high-sensitivity swept source optical coherence tomography (SSOCT) system using a high speed swept laser source is developed.Non-uniform discrete fourier transform (NDFT) method is introduced in the SSOCT system for data processing.Frequency calibration method based on a Mach-Zender interferometer (MZI) and conventional data interpolation method is also adopted in the system for comparison.Optical coherence tomography (OCT) images from SSOCT based on the NDFT method,the MZI method,and the interpolation method are illustrated.The axial resolution of the SSOCT based on the NDFT method is comparable to that of the SSOCT system using MZI calibration method and conventional data interpolation method.The SSOCT system based on the NDFT method can achieve higher signal intensity than that of the system based on the MZI calibration method and conventional data interpolation method because of the better utilization of the power of source.

  5. Quantum limit for two-dimensional resolution of two incoherent optical point sources

    CERN Document Server

    Ang, Shan Zheng; Tsang, Mankei

    2016-01-01

    We obtain the multiple-parameter quantum Cram\\'er-Rao bound for estimating the Cartesian components of the centroid and separation of two incoherent optical point sources using an imaging system with finite spatial bandwidth. Under quite general and realistic assumptions on the point-spread function of the imaging system, and for weak source strengths, we show that the Cram\\'er-Rao bounds for the x and y components of the separation are independent of the values of those components, which may be well-below the conventional Rayleigh resolution limit. We also propose two linear optics-based measurement methods that approach the quantum bound for the estimation of the Cartesian components of the separation once the centroid has been located. One of the methods is an interferometric scheme that approaches the quantum bound for sub-Rayleigh separations. The other method uses fiber coupling to attain the bound regardless of the distance between the two sources.

  6. Evaluation of a cheap ultrasonic stage for light source coherence function measurement, optical coherence tomography and dynamic focusing

    NARCIS (Netherlands)

    Krstajic, Nikola; Matcher, Stephen J.; Childs, David; Steenbergen, Wiendelt; Hogg, Richard; Smallwood, Rod

    2009-01-01

    We evaluate the performance of a cheap ultrasonic stage in setups related to optical coherence tomography. The stage was used in several configurations: (1) optical delay line in an optical coherence tomography (OCT) setup; (2) as a delay line measuring coherence function of a low coherence source (

  7. Matrix light and pixel light: optical system architecture and requirements to the light source

    Science.gov (United States)

    Spinger, Benno; Timinger, Andreas L.

    2015-09-01

    Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.

  8. Generation of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators

    Science.gov (United States)

    Hyde, Milo W.; Bose-Pillai, Santasri; Voelz, David G.; Xiao, Xifeng

    2016-12-01

    A simple and flexible optical system for generating electromagnetic or vector partially coherent sources or beams is presented. The alternative design controls field amplitude (beam shape), coherence, and polarization using only spatial light modulators. This improvement makes the apparatus simpler to construct and significantly increases the flexibility of vector partially coherent source generators by allowing many different types of sources to be produced without changing the physical setup. The system's layout and theoretical foundations are thoroughly discussed. The utility and flexibility of the proposed system are demonstrated by producing a vector Schell-model and non-Schell-model source. The experimental results are compared to theoretical predictions to validate the design. Lastly, design aspects, which must be considered when building a vector partially coherent source generator for a specific application, are discussed.

  9. Searches for Optical Counterparts to Fermi Unassociated Sources with the Intermediate Palomar Transient Factory

    Science.gov (United States)

    Bellm, Eric Christopher; Prince, Thomas A.; Kaplan, David L. A.; Kupfer, Thomas; DeCesar, Megan E.; Laher, Russ; Masci, Frank J.; Shupe, David L.; Intermediate Palomar Transient Factory Collaboration

    2017-01-01

    The Intermediate Palomar Transient Factory (iPTF) has accumulated an extensive optical variability dataset across the Northern Sky, including at low Galactic latitudes (|b| < 20 degrees). We are using this dataset to search for optical counterparts to unassociated Fermi gamma-ray sources, particular the companions of eclipsing binary millisecond pulsars. So-called redback binary millisecond pulsars are a key evolutionary stage in the recycling process that spins up millisecond pulsars. The Roche-distorted and irradiated pulsar companion produces a periodic signature at the orbital period that may be readily identified with iPTF. We report on the progress of this search and present interesting candidates found.

  10. Optical Microscopy Characterization for Borehole U-15n#12 in Support of NCNS Source Physics Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Jennifer E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sussman, Aviva Joy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-22

    Optical microscopy characterization of thin sections from corehole U-15n#12 is part of a larger material characterization effort for the Source Physics Experiment (SPE). The SPE program was conducted in Nevada with a series of explosive tests designed to study the generation and propagation of seismic waves inside Stock quartz monzonite. Optical microscopy analysis includes the following: 1) imaging of full thin sections (scans and mosaic maps); 2) high magnification imaging of petrographic texture (grain size, foliations, fractures, etc.); and 3) measurement of microfracture density.

  11. Computer Modeling and Simulation Evaluation of High Power LED Sources for Secondary Optical Design

    Institute of Scientific and Technical Information of China (English)

    SU Hong-dong; WANG Ya-jun; DONG Ji-yang; CHEN Zhong

    2007-01-01

    Proposed and demonstrated is a novel computer modeling method for high power light emitting diodes(LEDs). It contains geometrical structure and optical property of high power LED as well as LED dies definition with its spatial and angular distribution. Merits and non-merits of traditional modeling methods when applied to high power LEDs based on secondary optical design are discussed. Two commercial high power LEDs are simulated using the proposed computer modeling method. Correlation coefficient is proposed to compare and analyze the simulation results and manufacturing specifications. The source model is precisely demonstrated by obtaining above 99% in correlation coefficient with different surface incident angle intervals.

  12. Limit of detection of a fiber optics gyroscope using a super luminescent radiation source

    CERN Document Server

    Sandoval, G E

    2003-01-01

    The main objective of this work is to establish the dependence of characteristics of the fiber optics gyroscope (FOG) with respect to the parameters of the super luminescent emission source based on doped optical fiber with rare earth elements (Super luminescent Fiber Source, SFS), argument the pumping rate election of the SFS to obtain characteristics limits of the FOG sensibility. By using this type of emission source in the FOG is recommend to use the rate when the direction of the pumping signal coincide with the super luminescent signal. The most results are the proposition and argumentation of the SFS election as emission source to be use in the FOG of the phase type. Such a decision allow to increase the characteristics of the FOG sensibility in comparison with the use of luminescent source of semiconductors emission which are extensively used in the present time. The use of emission source of the SFS type allow to come closer to the threshold of the obtained sensibility limit (detection limit) which i...

  13. Gaia Data Release 1: The reference frame and the optical properties of ICRF sources

    CERN Document Server

    Mignard, F; Lindegren, L; Bastian, U; Bombrun, A; Hernandez, J; Hobbs, D; Lammers, U; Michalik, D; Ramos-Lerate, M; Biermann, M; Butkevich, A; Comoretto, G; Joliet, E; Holl, B; Hutton, A; Parsons, P; Steidelmueller, H; Andrei, A; Bourda, G; Charlot, P

    2016-01-01

    As part of the data processing for Gaia Data Release~1 (Gaia DR1) a special astrometric solution was computed, the so-called auxiliary quasar solution. This gives positions for selected extragalactic objects, including radio sources in the second realisation of the International Celestial Reference Frame (ICRF2) that have optical counterparts bright enough to be observed with Gaia. A subset of these positions was used to align the positional reference frame of Gaia DR1 with the ICRF2. We describe the properties of the Gaia auxiliary quasar solution for a subset of sources matched to ICRF2, and compare their optical and radio positions at the sub-mas level. Their formal standard errors are better than 0.76~milliarcsec (mas) for 50% of the sources and better than 3.35~mas for 90%. Optical magnitudes are obtained in Gaia's unfiltered photometric G band. The comparison with the radio positions of the defining sources shows no systematic differences larger than a few tenths of a mas. The fraction of questionable s...

  14. Brilliant radiation sources by laser-plasma accelerators and optical undulators

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander

    2012-09-06

    This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical

  15. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated.

  16. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Maslennikov, K. [Central Astronomical Observatory at Pulkovo, Pulkovskoye Shosse, 65/1, 196140, St. Petersburg (Russian Federation); Boldycheva, A., E-mail: oleg.titov@ga.gov.au [Ioffe Physical Technical Institute, 26 Polytekhnicheskaya, St. Petersburg, 194021 (Russian Federation)

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame. We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.

  17. Optical modeling of sunlight by using partially coherent sources in organic solar cells.

    Science.gov (United States)

    Alaibakhsh, Hamzeh; Darvish, Ghafar

    2016-03-01

    We investigate the effects of coherent and partially coherent sources in optical modeling of organic solar cells. Two different organic solar cells are investigated: one without substrate and the other with a millimeter-sized glass substrate. The coherent light absorption is calculated with rigorous coupled-wave analysis. The result of this method is convolved with a distribution function to calculate the partially coherent light absorption. We propose a new formulation to accurately model sunlight as a set of partially coherent sources. In the structure with glass substrate, the accurate sunlight modeling results in the elimination of coherent effects in the thick substrate, but the coherency in other layers is not affected. Using partially coherent sources instead of coherent sources for simulations with sunlight results in a smoother absorption spectrum, but the change in the absorption efficiency is negligible.

  18. Performance evaluation of reflective electro-absorption modulator based optical source using a broadband light seed source for colorless WDM-PON applications.

    Science.gov (United States)

    Kim, Chul Han

    2013-05-20

    The performance of reflective electro-absorption modulator (R-EAM) based optical source has been evaluated for the use in high-capacity wavelength-division multiplexed passive optical networks (WDM-PONs). In our measurements, a broadband light source (BLS) was used as a seeding source for the cost-effective implementation of R-EAM based optical source. At first, a bit-error rate (BER) floor at 10(-6) was observed even in a back-to-back configuration with the BLS seeded R-EAM source. This is mainly because of the excess intensity noise (EIN) within BLS and the signal-to-noise ratio (SNR) degradation induced by a high insertion loss of R-EAM. To mitigate both effects of EIN and SNR degradation, a reflective semiconductor optical amplifier (RSOA) was also used for the implementation of our BLS seeded R-EAM source. Then, we have evaluated the impact of various noises, such as EIN, chromatic dispersion of transmission fiber and in-band crosstalk, on the system's performance using our BLS seeded R-EAM optical source. From the results, we have found that a 3-dB bandwidth of the BLS seeded R-EAM optical source should be wider than ~0.8 nm to achieve an error-free transmission of 1.25 Gb/s signal. We have also confirmed that there was a trade-off between the dispersion- and the in-band crosstalk-induced penalties due to the wide source bandwidth of our BLS seeded R-EAM source, like the cases of BLS seeded RSOA and Fabry-Perot laser diode (FP-LD) sources.

  19. Deploying quantum light sources on nanosatellites I: lessons and perspectives on the optical system

    CERN Document Server

    Chandrasekara, Rakhitha; Chuan, Tan Yue; Cheng, Cliff; Septriani, Brigitta; Durak, Kadir; Grieve, James Anthony; Ling, Alexander

    2015-01-01

    The Small Photon Entangling Quantum System is an integrated instrument where the pump, photon pair source and detectors are combined within a single optical tray and electronics package that is no larger than 10cm x 10cm x 3cm. This footprint enables the instrument to be placed onboard nanosatellites or the CubeLab facility within the International Space Station. The first mission is to understand the different environmental conditions that may affect the operation of an entangled photon source in low Earth orbit. This understanding is crucial for the construction of cost-effective entanglement based experiments that utilize nanosatellite architecture. We will discuss the challenges and lessons we have learned over three years of development and testing of the integrated optical platform and review the perspectives for future advanced experiments.

  20. Integration of highly probabilistic sources into optical quantum architectures: perpetual quantum computation

    CERN Document Server

    Devitt, Simon J; Munro, William J; Nemoto, Kae

    2011-01-01

    In this paper we introduce a design for an optical topological cluster state computer constructed exclusively from a single quantum component. Unlike previous efforts we eliminate the need for on demand, high fidelity photon sources and detectors and replace them with the same device utilised to create photon/photon entanglement. This introduces highly probabilistic elements into the optical architecture while maintaining complete specificity of the structure and operation for a large scale computer. Photons in this system are continually recycled back into the preparation network, allowing for a arbitrarily deep 3D cluster to be prepared using a comparatively small number of photonic qubits and consequently the elimination of high frequency, deterministic photon sources.

  1. Partially coherent sources which produce the same far zone optical force as a laser beam

    CERN Document Server

    Auñon, Juan Miguel

    2013-01-01

    On applying a theorem previously derived by Wolf and Collett, we demonstrate that partially coherent Gaussian Schell model uctuating sources (GSMS) produce exactly the same optical forces as a fully coherent laser beam. We also show that this kind of sources helps to control the light-matter interaction in biological samples which are very sensitive to thermal heating induced by higher power intensities; and hence the invasiveness of the manipulation. This is a consequence of the fact that the same photonic force can be obtained with a low intensity GSMS as with a high intensity laser beam.

  2. Single-frequency mid-infrared optical parametric oscillator source for coherent laser radar.

    Science.gov (United States)

    Hanson, F; Poirier, P; Arbore, M A

    2001-11-15

    We report on the design and characterization of a highly coherent mid-IR source at 3.57mum based on a single-frequency optical parametric oscillator. Detailed frequency and amplitude noise spectra have been measured. The rms intensity noise from 1.2 to 1000 Hz was 0.03%, and a rms frequency drift of 8 kHz in 1 ms was observed. We have also demonstrated the utility of this source for coherent laser radar applications by measuring micro-Doppler spectra from vibrating targets.

  3. Optics of the NIFS negative ion source test stand by infrared calorimetry and numerical modelling.

    Science.gov (United States)

    Veltri, P; Antoni, V; Agostinetti, P; Brombin, M; Ikeda, K; Kisaki, M; Nakano, H; Sartori, E; Serianni, G; Takeiri, Y; Tsumori, K

    2016-02-01

    At National Institute for Fusion Science (NIFS), a multi-ampere negative ion source is used to support the R&D on H(-) production, extraction, and acceleration. In this contribution, we study the characteristics of the acceleration system of this source, in order to characterize the beam optics at different operational conditions. A dedicated experimental campaign was carried out at NIFS, using as main diagnostic the infra-red imaging of the beam profiles. The experimental measurements are also compared with 3D numerical simulations, in order to validate the codes and to assess their degree of reliability. The simulations show a satisfactory agreement with the experimental results.

  4. Optics of the NIFS negative ion source test stand by infrared calorimetry and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, P., E-mail: pierluigi.veltri@igi.cnr.it; Antoni, V.; Agostinetti, P.; Brombin, M.; Sartori, E.; Serianni, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Ikeda, K.; Kisaki, M.; Nakano, H.; Takeiri, Y.; Tsumori, K. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2016-02-15

    At National Institute for Fusion Science (NIFS), a multi-ampere negative ion source is used to support the R&D on H{sup −} production, extraction, and acceleration. In this contribution, we study the characteristics of the acceleration system of this source, in order to characterize the beam optics at different operational conditions. A dedicated experimental campaign was carried out at NIFS, using as main diagnostic the infra-red imaging of the beam profiles. The experimental measurements are also compared with 3D numerical simulations, in order to validate the codes and to assess their degree of reliability. The simulations show a satisfactory agreement with the experimental results.

  5. Optics of the NIFS negative ion source test stand by infrared calorimetry and numerical modelling

    Science.gov (United States)

    Veltri, P.; Antoni, V.; Agostinetti, P.; Brombin, M.; Ikeda, K.; Kisaki, M.; Nakano, H.; Sartori, E.; Serianni, G.; Takeiri, Y.; Tsumori, K.

    2016-02-01

    At National Institute for Fusion Science (NIFS), a multi-ampere negative ion source is used to support the R&D on H- production, extraction, and acceleration. In this contribution, we study the characteristics of the acceleration system of this source, in order to characterize the beam optics at different operational conditions. A dedicated experimental campaign was carried out at NIFS, using as main diagnostic the infra-red imaging of the beam profiles. The experimental measurements are also compared with 3D numerical simulations, in order to validate the codes and to assess their degree of reliability. The simulations show a satisfactory agreement with the experimental results.

  6. Spectral Classification of Optical Counterparts to ROSAT All-Sky Survey X-ray Sources

    CERN Document Server

    Dragomir, D; Rutledge, R E; Dragomir, Diana; Roy, Philippe; Rutledge, Robert E.

    2007-01-01

    Previous work statistically identified 5492 optical counterparts, with approximately 90% confidence, from among the approximately 18,000 X-ray sources appearing in the ROSAT All-Sky Survey Bright Source Catalog (RASS/BSC). Using low resolution spectra in the wavelength range 3700-7900 angstroms, we present spectroscopic classifications for 195 of these counterparts which have not previously been classified. Of these 195, we find 168 individual stars of F, G, K or M type, 6 individual stars of unknown type, 6 double stars, 6 AGN or galaxies and 7 unclassifiable objects; the spectra of the 2 remaining objects were saturated.

  7. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors.

    Science.gov (United States)

    Nashy, El-Shahat H A; Al-Ashkar, Emad; Moez, A Abdel

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Recovery of optical properties using interstitial cylindrical diffusers as source and detector fibers

    Science.gov (United States)

    Baran, Timothy M.

    2016-07-01

    We demonstrate recovery of optical properties using arrays of interstitial cylindrical diffusing fibers as sources and detectors. A single 1-cm diffuser delivered laser illumination at 665 nm, while seven 1- and 2-cm diffusers at 1-cm grid spacing acted as detectors. Extraction of optical properties from these measurements was based upon a diffusion model of emission and detection distributions for these diffuser fibers, informed by previous measurements of heterogeneous axial detection. Verification of the technique was performed in 15 liquid tissue-simulating phantoms consisting of deionized water, India ink as absorber, and Intralipid 20% as scatterer. For the range of optical properties tested, mean errors were 4.4% for effective attenuation coefficient, 12.6% for absorption coefficient, and 7.6% for reduced scattering coefficient. Error in recovery tended to increase with decreasing transport albedo. For therapeutic techniques involving the delivery of light to locations deep within the body, such as interstitial photodynamic and photothermal therapies, the methods described here would allow the treatment diffuser fibers also to be used as sources and detectors for recovery of optical properties. This would eliminate the need for separately inserted fibers for spectroscopy, reducing clinical complexity and improving the accuracy of treatment planning.

  9. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors

    Science.gov (United States)

    Nashy, El-Shahat H. A.; Al-Ashkar, Emad; Abdel Moez, A.

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  10. Simulation of multicomponent light source for optical-electronic system of color analysis objects

    Science.gov (United States)

    Peretiagin, Vladimir S.; Alekhin, Artem A.; Korotaev, Valery V.

    2016-04-01

    Development of lighting technology has led to possibility of using LEDs in the specialized devices for outdoor, industrial (decorative and accent) and domestic lighting. In addition, LEDs and devices based on them are widely used for solving particular problems. For example, the LED devices are widely used for lighting of vegetables and fruit (for their sorting or growing), textile products (for the control of its quality), minerals (for their sorting), etc. Causes of active introduction LED technology in different systems, including optical-electronic devices and systems, are a large choice of emission color and LED structure, that defines the spatial, power, thermal and other parameters. Furthermore, multi-element and color devices of lighting with adjustable illumination properties can be designed and implemented by using LEDs. However, devices based on LEDs require more attention if you want to provide a certain nature of the energy or color distribution at all the work area (area of analysis or observation) or surface of the object. This paper is proposed a method of theoretical modeling of the lighting devices. The authors present the models of RGB multicomponent light source applied to optical-electronic system for the color analysis of mineral objects. The possibility of formation the uniform and homogeneous on energy and color illumination of the work area for this system is presented. Also authors showed how parameters and characteristics of optical radiation receiver (by optical-electronic system) affect on the energy, spatial, spectral and colorimetric properties of a multicomponent light source.

  11. Detailed atmospheric abundance analysis of the optical counterpart of the IR source IRAS 16559-2957

    CERN Document Server

    Molina, R E

    2013-01-01

    We have undertaken a detailed abundance analysis of the optical counterpart of the IR source IRAS16559-2957 with the aim of confirming its possible post-AGB nature. The star shows solar metallicity and our investigation of a large number of elements including CNO and 12C/13C suggests that this object has experienced the first dredge-up and it is likely still at RGB stage.

  12. AM CVn systems as optical, X-ray and GWR sources

    NARCIS (Netherlands)

    Yungelson, L.; Nelemans, G.; Portegies Zwart, S.F.; Tovmassian, G.; Sion, E.

    2004-01-01

    We discuss the model for the Galactic sample of the AM CVn systems with P[orb] ≤ 1500 s that can be detected in the optical and/or X-ray bands and may be resolved by the gravitational waves detector LISA. At 3 ≲P ≲ 10 min all detectable systems are X-ray sources. At P ≳ 10 min most systems are only

  13. Realization of rapid debugging for detection circuit of optical fiber gas sensor: Using an analog signal source

    Science.gov (United States)

    Tian, Changbin; Chang, Jun; Wang, Qiang; Wei, Wei; Zhu, Cunguang

    2015-03-01

    An optical fiber gas sensor mainly consists of two parts: optical part and detection circuit. In the debugging for the detection circuit, the optical part usually serves as a signal source. However, in the debugging condition, the optical part can be easily influenced by many factors, such as the fluctuation of ambient temperature or driving current resulting in instability of the wavelength and intensity for the laser; for dual-beam sensor, the different bends and stresses of the optical fiber will lead to the fluctuation of the intensity and phase; the intensity noise from the collimator, coupler, and other optical devices in the system will also result in the impurity of the optical part based signal source. In order to dramatically improve the debugging efficiency of the detection circuit and shorten the period of research and development, this paper describes an analog signal source, consisting of a single chip microcomputer (SCM), an amplifier circuit, and a voltage-to-current conversion circuit. It can be used to realize the rapid debugging detection circuit of the optical fiber gas sensor instead of optical part based signal source. This analog signal source performs well with many other advantages, such as the simple operation, small size, and light weight.

  14. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations

    Science.gov (United States)

    Ageron, Michel; Al Samarai, Imen; Akerlof, Carl; Basa, Stéphane; Bertin, Vincent; Boer, Michel; Brunner, Juergen; Busto, Jose; Dornic, Damien; Klotz, Alain; Schussler, Fabian; Vallage, Bertrand; Vecchi, Manuela; Zheng, Weikang

    2012-11-01

    The ANTARES telescope is well suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all the times with a duty cycle close to unity and an angular resolution better than 0.5°. Potential sources include gamma-ray bursts (GRBs), core collapse supernovae (SNe), and flaring active galactic nuclei (AGNs). To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated one or two times per month for special events such as two or more neutrinos coincident in time and direction or single neutrinos of very high energy. Since February 2009, ANTARES has sent 37 alert triggers to the TAROT and ROTSE telescope networks, 27 of them have been followed. First results on the optical images analysis to search for GRBs are presented.

  15. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, Michel [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Al Samarai, Imen, E-mail: samarai@cppm.in2p3.fr [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Akerlof, Carl [Randall Laboratory of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040 (United States); Basa, Stephane [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Bertin, Vincent [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Boer, Michel [OHP, 04870 Saint Michel de l' Observatoire (France); Brunner, Juergen; Busto, Jose; Dornic, Damien [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Klotz, Alain [OHP, 04870 Saint Michel de l' Observatoire (France); IRAP, 9 avenue du colonel Roche, 31028 Toulouse Cedex 4 (France); Schussler, Fabian; Vallage, Bertrand [CEA-IRFU, centre de Saclay, 91191 Gif-sur-Yvette (France); Vecchi, Manuela [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Zheng, Weikang [Randall Laboratory of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040 (United States)

    2012-11-11

    The ANTARES telescope is well suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all the times with a duty cycle close to unity and an angular resolution better than 0.5 Degree-Sign . Potential sources include gamma-ray bursts (GRBs), core collapse supernovae (SNe), and flaring active galactic nuclei (AGNs). To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated one or two times per month for special events such as two or more neutrinos coincident in time and direction or single neutrinos of very high energy. Since February 2009, ANTARES has sent 37 alert triggers to the TAROT and ROTSE telescope networks, 27 of them have been followed. First results on the optical images analysis to search for GRBs are presented.

  16. Modeling and interpreting speckle pattern formation in swept-source optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Demidov, Valentin; Vitkin, I. Alex; Doronin, Alexander; Meglinski, Igor

    2017-03-01

    We report on the development of a unified Monte-Carlo based computational model for exploring speckle pattern formation in swept-source optical coherence tomography (OCT). OCT is a well-established optical imaging modality capable of acquiring cross-sectional images of turbid media, including biological tissues, utilizing back scattered low coherence light. The obtained OCT images include characteristic features known as speckles. Currently, there is a growing interest to the OCT speckle patterns due to their potential application for quantitative analysis of medium's optical properties. Here we consider the mechanisms of OCT speckle patterns formation for swept-source OCT approaches and introduce further developments of a Monte-Carlo based model for simulation of OCT signals and images. The model takes into account polarization and coherent properties of light, mutual interference of back-scattering waves, and their interference with the reference waves. We present a corresponding detailed description of the algorithm for modeling these light-medium interactions. The developed model is employed for generation of swept-source OCT images, analysis of OCT speckle formation and interpretation of the experimental results. The obtained simulation results are compared with selected analytical solutions and experimental studies utilizing various sizes / concentrations of scattering microspheres.

  17. HST/ACS Imaging of Omega Centauri: Optical Counterparts of Chandra X-Ray Sources

    CERN Document Server

    Cool, Adrienne M; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Anderson, Jay

    2012-01-01

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel (WFC) images obtained using F625W, F435W, and F658N filters; with 9 pointings we cover the central ~10'x10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ~40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M_625 = 10.4 - 12.6, making them comparable in brightness to field CVs near the period minimum discovered in the SDSS (Gansicke et al. 2009). Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously-reported quiescent low-mass X-ray ...

  18. The ROSAT deep survey; 5, X-rays Sources and Optical Identifications in the Marano Field

    CERN Document Server

    Zamorani, G; Hasinger, G; Burg, R; Giacconi, R; Schmidt, M; Trümper, J E; Ciliegi, P; Gruppioni, C; Marano, B

    1999-01-01

    We present the X-ray data and the optical identifications for a deep ROSAT PSPC observation in the "Marano field". In the inner region of the ROSAT field (15' radius) we detected 50 X-ray sources with Sx >= 3.7x10^(-15) erg/cm^2/s. When corrected for the different sensitivity over the field, the estimated observed surface density at Sx >= 4x10^(-15) erg/cm^2/s is 272+/-40 sources/sq.deg. Four X-ray sources, corresponding to 8% of the total sample, have been detected in radio images with a flux limit of about 0.2 mJy. Careful statistical analysis of multicolour CCD data in the error boxes of the 50 X-ray sources has led to the identification of 42 sources, corresponding to 84% of the X-ray sample. These 42 reliable identifications are 33 AGNs (including two radio galaxies and one BL Lac candidate; 79% of the identified sources), 2 galaxies, 3 groups or clusters of galaxies and 4 stars. We also show that it is likely that a few of the 8 unidentified sources are such because the derived X-ray positions may be of...

  19. The Gridless Plasma Ion Source(GIS)for Plasma Ion Assisted Optical Coating

    Institute of Scientific and Technical Information of China (English)

    尤大伟; 李晓谦; 王宇; 林永昌

    2004-01-01

    High-quality optical coating is a key technology for modern optics. Ion-assisted deposition technology was used to improve the vaporized coating in 1980's. The GIS (gridless ion source), which is an advanced plasma source for producing a high-quality optical coating in large area, can produce a large area uniformity>1000 mm(diameter), a high ion current density ~ 0.5mA/cm2, 20 eV ~ 200 eV energetic plasma ions and can activate reactive gas and film atoms. Now we have developed a GIS system. The GIS and the plasma ion-assisted deposition technology are investigated to achieve a high-quality optical coating. The GIS is a high power and high current source with a power of I kW ~ 7.5 kW, a current of 10 A ~ 70 A and an ion density of 200μA/cm2 ~ 500μA/cm2. Because of the special magnetic structure, the plasma-ion extraction efficiency has been improved to obtain a maximum ion density of 500μA/cm2 in the medium power (~ 4 kW) level. The GIS applied is of a special cathode structure, so that the GIS operation can be maintained under a rather low power and the lifetime of cathode will be extended. The GIS has been installed in the LPSX-1200 type box coating system. The coated TiO2, SiO2 films such as antireflective films with the system have the same performance reported by Leybold Co, 1992, along with a controllable refractive index and film structure.

  20. Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography.

    Science.gov (United States)

    Unterhuber, A; Povazay, B; Bizheva, K; Hermann, B; Sattmann, H; Stingl, A; Le, T; Seefeld, M; Menzel, R; Preusser, M; Budka, H; Schubert, Ch; Reitsamer, H; Ahnelt, P K; Morgan, J E; Cowey, A; Drexler, W

    2004-04-07

    Novel ultra-broad bandwidth light sources enabling unprecedented sub-2 microm axial resolution over the 400 nm-1700 nm wavelength range have been developed and evaluated with respect to their feasibility for clinical ultrahigh resolution optical coherence tomography (UHR OCT) applications. The state-of-the-art light sources described here include a compact Kerr lens mode locked Ti:sapphire laser (lambdaC = 785 nm, delta lambda = 260 nm, P(out) = 50 mW) and different nonlinear fibre-based light sources with spectral bandwidths (at full width at half maximum) up to 350 nm at lambdaC = 1130 nm and 470 nm at lambdaC = 1375 nm. In vitro UHR OCT imaging is demonstrated at multiple wavelengths in human cancer cells, animal ganglion cells as well as in neuropathologic and ophthalmic biopsies in order to compare and optimize UHR OCT image contrast, resolution and penetration depth.

  1. Moving-source elastic wave reconstruction for high-resolution optical coherence elastography

    Science.gov (United States)

    Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-11-01

    Optical coherence tomography (OCT)-based elasticity imaging can map soft tissue elasticity based on speckle-tracking of elastic wave propagation using highly sensitive phase measurements of OCT signals. Using a fixed elastic wave source and moving detection, current imaging sequences have difficulty in reconstructing tissue elasticity within speckle-free regions, for example, within the crystalline lens of the eye. We present a moving acoustic radiation force imaging sequence to reconstruct elastic properties within a speckle-free region by tracking elastic wave propagation from multiple laterally moving sources across the field of view. We demonstrate the proposed strategy using heterogeneous and partial speckle-free tissue-mimicking phantoms. Harder inclusions within the speckle-free region can be detected, and the contrast-to-noise ratio slightly enhanced compared to current OCE imaging sequences. The results suggest that a moving source approach may be appropriate for OCE studies within the large speckle-free regions of the crystalline lens.

  2. Mid-IR fiber optic light source around 6 micron through parametric wavelength translation

    CERN Document Server

    Barh, A; Varshney, R K; Pal, B P; Sanghera, J; Shaw, L B; Aggarwal, I D

    2014-01-01

    We report numerically designed highly nonlinear all glass chalcogenide microstructured optical fiber for efficient generation of light around 6 micron through degenerate four wave mixing by considering continuous wave CO laser of 5 to 10 Watts power emitting at 5.6 micron as the pump. By tuning the pump wavelength, pump power, fiber dispersion and nonlinear properties, narrow and broad band mid-IR all-fiber light source could be realized. Parametric amplification of more than 20 decibel is achievable for the narrow band source at 6.46 micron with a maximum power conversion efficiency of 33 percent while amplification of 22 decibel is achievable for a B-band source over the wavelength range of 5 to 6.3 micron with a conversion efficiency of 40 percent.

  3. Non-imaging Optics of multi-LED light source for hyperspectral imaging

    Science.gov (United States)

    Islam, Kashif; Gosnell, Martin E.; Ploschner, Martin; Anwer, Ayad G.; Goldys, Ewa M.

    2016-12-01

    The main objective of our work was to design a light source which should be capable to collect and illuminate light of LEDs at the smaller aperture of cone (9mm) which could be either coupled with secondary optics of a microscope or utilized independently for hyperspectral studies. Optimized performance of cone was assessed for different substrates (diffused glass silica, Alumina, Zerodur glass, acrylic plastic) and coating surfaces (white diffused, flat white paint, standard mirror) using a simulation software. The parameters optimized for truncated cone include slanting length and Top Major R (Larger diameter of cone) which were also varied from 10 to 350 mm and 10 to 80 mm respectively. In order to see affect of LED positions on cone efficiency, the positions of LED were varied from central axis to off-axis. Similarly, interLED distance was varied from 2 mm to 6 mm to reckon its effect on the performance of cone. The optimized Slant length (80 mm) and Top Major R (50 mm) were determined for substrates (glass zerodur or acrylic plastic) and coating surface (standard mirror). The output profile of truncated source was found non uniform, which is a typical presentation of non imaging optics problem. The maximum efficiency of cone has been found for LED at the centre and it was found decreasing as LED moves away from the central axis. Moreover, shorter the interLED distance, better is the performance of cone. The primary optics of cone shaped light source is capable to lit visible and UV LEDs in practical design. The optimum parameters obtained through simulations could be implemented in the fabrication procedure if the reflectance of source would have been maintained upto finish level of a standard mirror.

  4. The Chandra COSMOS Survey: III. Optical and Infrared Identification of X-ray Point Sources

    CERN Document Server

    Civano, F; Brusa, M; Comastri, A; Salvato, M; Zamorani, G; Aldcroft, T; Bongiorno, A; Capak, P; Cappelluti, N; Cisternas, M; Fiore, F; Fruscione, A; Hao, H; Kartaltepe, J; Koekemoer, A; Gilli, R; Impey, C D; Lanzuisi, G; Lusso, E; Mainieri, V; Miyaji, T; Lilly, S; Masters, D; Puccetti, S; Schawinski, K; Scoville, N Z; Silverman, J; Trump, J; Urry, M; Vignali, C; Wright, N J

    2012-01-01

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.9 deg^2 of the COSMOS field down to limiting depths of 1.9 10^-16 erg cm^-2 s-1 in the 0.5-2 keV band, 7.3 10^-16 erg cm^-2 s^-1 in the 2-10 keV band, and 5.7 10^-16 erg cm^-2 s-1 in the 0.5-10 keV band. In this paper we report the i, K and 3.6micron identifications of the 1761 X-ray point sources. We use the likelihood ratio technique to derive the association of optical/infrared counterparts for 97% of the X-ray sources. For most of the remaining 3%, the presence of multiple counterparts or the faintness of the possible counterpart prevented a unique association. For only 10 X-ray sources we were not able to associate a counterpart, mostly due to the presence of a very bright field source close by. Only 2 sources are truly empty fields. Making use of the large number of X-ray sources, we update the "classic locus" of AGN and define a new locus containing 90% of the AGN in the survey with full band luminosi...

  5. Using swept source optical coherence tomography to monitor wound healing in tissue engineered skin

    Science.gov (United States)

    Smith, L. E.; Lu, Z.; Bonesi, M.; Smallwood, R.; Matcher, S. J.; MacNeil, S.

    2010-02-01

    There is an increasing need for a robust simple to use non-invasive imaging technology for monitoring tissue engineered constructs as they develop. We have applied optical coherence tomography (OCT), a relatively new optical technique, to image tissue engineered constructs. Our aim was to evaluate the use of swept-source optical coherence tomography (SSOCT) to non-invasively image reconstructed skin as it developed over several weeks. The epidermis of the reconstructed skin was readily distinguished from the neodermis when examined with standard histology - a destructive imaging technique - of samples. The development of reconstructed skin based on deepithelialised acellular dermis (DED) was accurately monitored with SS-OCT over three weeks and confirmed with conventional histology. It was also possible to image changes in the epidermis due to the presence of melanoma and the healing of these 3D models after wounding with a scalpel, with or without the addition of a fibrin clot. SS-OCT is proving to be a valuable tool in tissue engineering, showing great promise for the non-invasive imaging of optically turbid tissue engineered constructs, including tissue engineered skin.

  6. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  7. Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique

    CERN Document Server

    Ho, Sze Phing; Shalaby, Mostafa; Peccianti, Marco; Clerici, Matteo; Pasquazi, Alessia; Ozturk, Yavuz; Ali, Jalil; Morandotti, Roberto

    2015-01-01

    We propose an all-optical Knife Edge characterization technique and we demonstrate its working principle by characterizing the sub-{\\lambda} features of a spatially modulated Terahertz source directly on the nonlinear crystal employed for the Terahertz generation.

  8. Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source.

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-04-01

    In this paper, a reflective semiconductor optical amplifier (RSOA) is configured to demodulate dynamic spectral shifts of a fiber Bragg grating (FBG) dynamic strain sensor. The FBG sensor and the RSOA source form an adaptive fiber cavity laser. As the reflective spectrum of the FBG sensor changes due to dynamic strains, the wavelength of the laser output shifts accordingly, which is subsequently converted into a corresponding phase shift and demodulated by an unbalanced Michelson interferometer. Due to the short transition time of the RSOA, the RSOA-FBG cavity can respond to dynamic strains at high frequencies extending to megahertz. A demodulator using a PID controller is used to compensate for low-frequency drifts induced by temperature and large quasi-static strains. As the sensitivity of the demodulator is a function of the optical path difference and the FBG spectral width, optimal parameters to obtain high sensitivity are presented. Multiplexing to demodulate multiple FBG sensors is also discussed.

  9. Integrated Quantum Optics: Experiments towards integrated quantum-light sources and quantum-enhanced sensing

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk

    The work presented in this thesis is focused on experimental application and generation of continuous variable quantum correlated states of light in integrated dielectric structures. Squeezed states are among the most exploited continuous variable optical states for free-space quantum-enhanced se......The work presented in this thesis is focused on experimental application and generation of continuous variable quantum correlated states of light in integrated dielectric structures. Squeezed states are among the most exploited continuous variable optical states for free-space quantum...... in this thesis: Firstly, we present proof-of-principle demonstration of interfacing squeezed light with an on-chip optomechanical resonator, demonstrating a quantum-enhanced sensitivity to the vibrations of the micromechanical object. Secondly, work on developing an integrated source of squeezed light...

  10. Research on the distributed optical remote sensing of methane employing single laser source

    Institute of Scientific and Technical Information of China (English)

    Wangbao Yin(尹王保); Weiguang Ma(马维光); Lirong Wang(汪丽蓉); Jianming Zhao(赵建明); Liantuan Xiao(肖连团); Suotang Jia(贾锁堂)

    2004-01-01

    @@ A design and testing of a cost-effective distributed optical remote sensing methane system,which will helpone to detect gas leaks from multi-coal face in mines simultaneously,is presented.The fundamentals ofthe remote detection are based on frequency-modulation spectroscopy(FMS)and harmonic detection.Byutilizing fiber-optic splitting technique and reference-signal restoring circuit,the remote sensing system isfeasible to employ single laser source to get multi-spot measurement in the near infrared region so thatthe system described here shows sufficient sensibility,considerably increased reliability and marketabilityover the presently available system.The minimum measurable path-integrated concentration is estimatedto be about 423 ppb-m by experimentation.

  11. Unveiling the nature of INTEGRAL objects through optical spectroscopy. II. The nature of four unidentified sources

    CERN Document Server

    Masetti, N; Bassani, L; Bird, A J; Maiorano, E; Malizia, A; Palazzi, E; Stephen, J B; Bazzano, A; Dean, A J; Ubertini, P; Walter, R

    2005-01-01

    We present the results of our optical spectrophotometric campaign ongoing at the Astronomical Observatory of Bologna in Loiano (Italy) on hard X-ray sources detected by INTEGRAL. We observed spectroscopically the putative optical counterparts of four more INTEGRAL sources, IGR J12391-1610, IGR J18406-0539, 2E 1853.7+1534 and IGR J19473+4452. These data have allowed us to determine their nature, finding that IGR J12391-1610 (=LEDA 170194) and IGR J19473+4452 are Seyfert 2 galaxies at redshifts z = 0.036 and z = 0.053, respectively, IGR J18406-0539 (=SS 406) is a Be massive X-ray binary located at about 1.1 kpc from Earth, and 2E 1853.7+1534 is a Type 1 Seyfert galaxy with z = 0.084. Physical parameters for these objects are also evaluated by collecting and discussing the available multiwavelength information. The determination of the extragalactic nature of a substantial fraction of sources inside the INTEGRAL surveys underlines the importance of hard X-ray observations for the study of background Active Galac...

  12. Short-Pulse Limits in Optical Instrumentation Design for the SLAC Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, R.

    2005-01-31

    The source properties of linac-driven X-Ray Free-Electron Lasers (XRFELs) operating in the Self-Amplified Spontaneous Emission (SASE) regime differ markedly from those of ordinary insertion devices on synchrotron storage rings. In the case of the 1.5 {angstrom} SLAC Linac Coherent Light Source (LCLS), the longitudinal output profile typically consists of a randomly-distributed train of fully-transversely-coherent micropulses of randomly varying intensity and an average length (corresponding to the source coherence length) two to three orders of magnitude smaller than the transverse diameter of the beam. Total pulse lengths are typically of the same order of size as the beam diameter. Both of these properties can be shown to significantly impact the performance of otherwise conventional synchrotron radiation optics; viz., mirrors, lenses, zone plates, crystals, multilayers, etc. In this paper we outline an analysis of short-pulse effects on selected optical components for the SLAC LCLS and discuss the implications for critical applications such as microfocusing and monochromatization.

  13. Fiber-integrated single photon source of high efficiency based on a concept of ultra-broadband optical antenna

    CERN Document Server

    Grosjean, T; Burr, G W; Baida, F I

    2016-01-01

    We theoretically demonstrate a fiber-integrated single photon source of unprecedented efficiency. This fiber single photon source is achieved by coupling optically a single quantum emitter to a monomode optical fiber with a new concept of ultra-broadband optical antenna. Such an optical antenna concept is the result of the transposition to optical frequencies of the well-known low-frequency horn antenna The optical horn antenna is here shown to be capable of directing the radiation from the emitter toward the optical fiber and efficiently phase-matching the photon emission with the fiber mode. Numerical results show that an optical horn antenna can funnel up to 85% of the radiation from a dipolar source within an emission cone semi-angle as small as 7 degrees (antenna directivity of 300). It is also shown that 50% of the emitted power from the dipolar source can be collected and coupled to an SMF-28 fiber mode over spectral ranges larger than 1000 nm, with a maximum energy transfer reaching 70 %. This approac...

  14. 8×40 Gb/s 55-km WDM transmission over conventional fiber using a new RZ optical source

    DEFF Research Database (Denmark)

    Yu, Jianjun; Zheng, Xueyan; Liu, Fenghai;

    2000-01-01

    A multiwavelength RZ optical source with equal amplitudes and pulsewidths is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of a common dispersion shifted fiber. The converted wavelengths of the eight signal pulses are in agreement with the ITU...

  15. Optical-Fiber-Matrix Exposure Using Light-Emitting-Diode Sources

    Science.gov (United States)

    Horiuchi, Toshiyuki; Mirumachi, Naofumi; Ooshima, Yuki

    2007-09-01

    A new projection exposure method without using reticles was proposed, and the feasibility of printing arbitrary patterns was investigated. The preparation of expensive reticles is not favorable for the small-volume production of micro-electro-mechanical systems (MEMS), optomechanical systems, and their components. On the other hand, long turnaround time (TAT) becomes a fatal bottleneck preventing the rapid follow-up of various design changes. As a countermeasure, we previously proposed a new exposure method named optical-fiber-matrix exposure. In this method, patterns are delineated by superimposing light spots from an optical-fiber matrix, and expensive reticles are not necessary. Therefore, patterns are easily changeable by controlling the pattern delineation program. However, in the previous method, light rays from one intensive lamp were divided and switched using small mechanical shutters placed at each fiber entrance, and the shutters were not sufficiently reliable. For this reason, violet light-emitting diodes (LEDs) were used in this research in place of the lamp source and mechanical shutters, and the light or dark state at each optical fiber end was controlled using a microcomputer that switched each LED attached to each fiber entrance one by one. Since the illuminance of each LED was different, LEDs with approximately the same illuminance were selectively used, and each illuminance was adjusted to be uniform by inserting an individual color filter. Thus, the widths of patterns printed by scanning different fiber elements were homogenized. Since line-and-space patterns and various alphabet patterns were successfully printed, the feasibility of fabricating a large-scale optical-fiber matrix was also investigated. An optical-fiber line matrix composed of more than 330 fibers was fabricated without including any gaps between neighbor fibers. There will probably be no fatal problems to enlarge the matrix scale. Although the exposure speed should be improved

  16. Structural and optical properties of AlN grown by solid source solution growth method

    Science.gov (United States)

    Kangawa, Yoshihiro; Suetsugu, Hiroshige; Knetzger, Michael; Meissner, Elke; Hazu, Kouji; Chichibu, Shigefusa F.; Kajiwara, Takashi; Tanaka, Satoru; Iwasaki, Yosuke; Kakimoto, Koichi

    2015-08-01

    Structural and optical properties of AlN grown on AlN(0001) by the solid source solution growth (3SG) method were investigated. Transmission electron microscopy (TEM) analysis revealed that the geometrical relationship between the growth directions and slip planes influenced the dislocation propagation behaviors and annihilation mechanisms. Panchromatic and monochromatic images in the cathodoluminescence (CL) spectrum further revealed that C impurities were segregated near the surface, while Al vacancies were widely distributed in the AlN/AlN(0001) grown using the 3SG method.

  17. Wavelength multicasting through four-wave mixing with an optical comb source.

    Science.gov (United States)

    Ting, Hong-Fu; Wang, Ke-Yao; Stroud, Jasper R; Petrillo, Keith G; Sun, Hongcheng; Foster, Amy C; Foster, Mark A

    2017-04-17

    Based on four-wave mixing (FWM) with an optical comb source (OCS), we experimentally demonstrate 26-way or 15-way wavelength multicasting of 10-Gb/s differential phase-shift keying (DPSK) data in a highly-nonlinear fiber (HNLF) or a silicon waveguide, respectively. The OCS provides multiple spectrally equidistant pump waves leading to a multitude of FWM products after mixing with the signal. We achieve error-free operation with power penalties less than 5.7 dB for the HNLF and 4.2 dB for the silicon waveguide, respectively.

  18. Colorectal neoplasm characterization based on swept-source optical coherence tomography

    Science.gov (United States)

    Lu, Chih-Wei; Chiu, Han-Mo; Sun, Chia-Wei

    2009-07-01

    Most of the colorectal cancer has grown from the adenomatous polyp. Adenomatous lesions have a well-documented relationship to colorectal cancer in previous studies. Thus, to detect the morphological changes between polyp and tumor can allow early diagnosis of colorectal cancer and simultaneous removal of lesions. In this paper, the various adenoma/carcinoma in-vitro samples are monitored by our swept-source optical coherence tomography (SS-OCT) system. The significant results indicate a great potential for early detection of colorectal adenomas based on the SS-OCT imaging.

  19. HST/ACS IMAGING OF OMEGA CENTAURI: OPTICAL COUNTERPARTS OF CHANDRA X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Adrienne M.; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Haggard, Daryl [Center for Interdisciplinary Exploration and Research in Astrophysics, Physics and Astronomy Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Anderson, Jay, E-mail: cool@sfsu.edu, E-mail: dhaggard@northwestern.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-02-15

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel images obtained using F625W, F435W, and F658N filters; with nine pointings we cover the central {approx}10' Multiplication-Sign 10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, {approx}40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M {sub 625} =10.4-12.6, making them comparable in brightness to field CVs near the period minimum discovered in the Sloan Digital Sky Survey. Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously reported quiescent low-mass X-ray binary. We also identify 3 foreground stars and 11 probable active galactic nuclei. Finally, we report the discovery of a group of seven stars whose X-ray properties are suggestive of magnetically active binaries, and whose optical counterparts lie on or very near the metal-rich anomalous giant and subgiant branches in {omega} Cen. If the apparent association between these seven stars and the RGB/SGB-a stars is real, then the frequency of X-ray sources in this metal-rich population is enhanced by a factor of at least five relative to the other giant and subgiant populations in the cluster. If these stars are not members of the metal-rich population, then they bring the total number of red stragglers (also known as sub-subgiants) that have been identified in {omega} to Cen 20, the largest number yet known in any globular cluster.

  20. Research and Development for X-Ray Optics and Diagnostics on the Linac Coherent Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Bionta, R M; Arthur, J; Chapman, H; Craig, B; Klingmann, J; Kuba, J; London, R A; Ott, L; Ryutov, D; Shepherd, R; Shlyaptsev, V; Wootton, A

    2002-09-24

    The Linac Coherent Light Source (LCLS) is a 1.5 to 15 {angstrom} wavelength Free-Electron Laser (PEL), under development at the Stanford Linear Accelerator Center (SLAC). The photon output consists of high brightness, transversely coherent pulses with duration < 300 fs, together with a broad spontaneous spectrum. The output energy density per unit area, pulse duration, repetition rate, and small FEL spot size pose special challenges for optical components and diagnostics downstream of the undulator. Planning for the photon beam transport, manipulation and diagnostics downstream of the undulator has begun.

  1. Optical studies of the ultraluminous X-ray source NGC1313 X-2

    CERN Document Server

    Liu, J; Miller, J; Kaaret, Philip; Liu, Jifeng; Bregman, Joel; Miller, Jon; Kaaret, Philip

    2007-01-01

    NGC1313 X-2 was among the first ultraluminous X-ray sources discovered, and has been a frequent target of X-ray and optical observations. Using the HST/ACS multi-band observations, this source is identified with a unique counterpart within an error circle of $0\\farcs2$. The counterpart is a blue star on the edge of a young cluster of $\\le10^7$ years amid a dominant old stellar population. Its spectral energy distribution is consistent with that for a Z=0.004 star with 8.5 $M_\\odot$ about $5\\times10^6$ years old, or for an O7 V star at solar metallicity. The counterpart exhibited significant variability of $\\Delta m = 0.153\\pm0.033$ mag between two F555W observations separated by three months, reminiscent of the ellipsoidal variability due to the orbital motion of this ULX binary.

  2. An integrable optical-fiber source of polarization entangled photon-pairs in the telecom band

    CERN Document Server

    Li, X; Kumar, P; Lee, K F; Liang, C; Voss, P L; Chen, Jun; Kumar, Prem; Lee, Kim Fook; Li, Xiaoying; Liang, Chuang; Voss, Paul L.

    2006-01-01

    We demonstrate an optical-fiber based source of polarization entangled photon-pairs with improved quality and efficiency, which has been integrated with off-the-shelf telecom components and is, therefore, well suited for quantum communication applications in the 1550\\,nm telecom band. Polarization entanglement is produced by simultaneously pumping a loop of standard dispersion-shifted fiber with two orthogonally-polarized pump pulses, one propagating in the clockwise and the other in the counter-clockwise direction. We characterize this source by investigating two-photon interference between the generated signal-idler photon-pairs under various conditions. The experimental parameters are carefully optimized to maximize the generated photon-pair correlation and to minimize contamination of the entangled photon-pairs from extraneously scattered background photons that are produced by the pump pulses for two reasons: i) spontaneous Raman scattering causes uncorrelated photons to be emitted in the signal/idler ba...

  3. Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs

    CERN Document Server

    Herrmann, Harald; Thomas, Abu; Poppe, Andreas; Sohler, Wolfgang; Silberhorn, Christine

    2013-01-01

    We present an integrated source of polarization entangled photon pairs in the telecom regime, which is based on type II-phasematched parametric down-conversion (PDC) in a Ti-indiffused waveguide in periodically poled lithium niobate. The domain grating -- consisting of an interlaced bi-periodic structure -- is engineered to provide simultaneous phase-matching of two PDC processes, and enables the direct generation of non-degenerate, polarization entangled photon pairs with a brightness of $B=7\\times10^3$ pairs/(s mW GHz). The spatial separation of the photon pairs is accomplished by a fiber-optical multiplexer facilitating a high compactness of the overall source. Visibilities exceeding 95% and a violation of the Bell inequality with $S=2.57\\pm0.06$ could be demonstrated.

  4. Spatially resolved optical-emission spectroscopy of a radio-frequency driven iodine plasma source

    Science.gov (United States)

    Dedrick, James; Doyle, Scott; Grondein, Pascaline; Aanesland, Ane

    2016-09-01

    Iodine is of interest for potential use as a propellant for spacecraft propulsion, and has become attractive as a replacement to xenon due to its similar mass and ionisation potential. Optical emission spectroscopy has been undertaken to characterise the emission from a low-pressure, radio-frequency driven inductively coupled plasma source operating in iodine with respect to axial distance across its transverse magnetic filter. The results are compared with axial profiles of the electron temperature and density for identical source conditions, and the spatial distribution of the emission intensity is observed to be closely correlated with the electron temperature. This work has been done within the LABEX Plas@Par project, and received financial state aid managed by the ``Agence Nationale de la Recherche'', as part of the ``Programme d'Investissements d'Avenir'' under the reference ANR-11-IDEX-0004-02.

  5. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    Science.gov (United States)

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  6. VizieR Online Data Catalog: Optically Bright extragalactic Radio Sources II (Petrov, 2013)

    Science.gov (United States)

    Petrov, L.

    2014-06-01

    The first VLBI (Very Long Baseline Interferometry) observing campaign in 2007 resulted in the detection of 398 targets with the European VLBI Network (EVN; Bourda et al., 2010, cat. J/A+A/520/A113). During the second observing campaign, a subset of 105 sources detected in the previous campaign was observed (Bourda et al., 2011, cat. J/A+A/526/A102). Their positions were derived by Petrov (2011, cat. J/AJ/142/105) and formed the OBRS-1 (Optically Bright extragalactic Radio Sources) catalog. The remaining sources were observed in the third campaign, called OBRS-2. During the OBRS-2 campaign, there were three observing sessions with 10 VLBA (Very Long Baseline Array) stations and 5-6 EVN stations from this list: EFLSBERG, MEDICINA, ONSALA60, YEBES40M, DSS63, HARTRAO, and NOTO. Observations were made on 2010 Mar 23 (session ID gc034a), on 2011 Nov 8 (gc034bcd), and on 2011 Mar 15 (gc034ef). The OBRS-2 catalog presents precise positions of the 295 extragalactic radio sources as well as median correlated flux densities at 8.4 and 2.2GHz at baseline lengths shorter than 900km and at baseline lengths longer than 5000km. (1 data file).

  7. A new positron source with high flux and excellent electron-optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Manfred [Physics Department, University of Texas at Austin, 1 University Station, C1600, Austin, TX 78712 (United States)]. E-mail: Fink@physics.utexas.edu; Wellenstein, Hermann [Physics Department, Brandeis University, Waltham, MA 02454 (United States); Nguyen, Scott V. [Physics Department, Harvard University, Cambridge, MA 02138 (United States)

    2007-08-15

    Positron annihilation spectroscopy is a well established research tool to study the surface and bulk electron distributions of solids and liquids. These are extracted from the energy and angular distributions of the two 511 keV X-rays, produced during the annihilation of a thermal positron and an electron from the sample. Positron investigations and monitoring, however are currently not used in an industrial environment due to the lack of a sufficiently intense positron sources to record distribution functions with good statistics within minutes. Most positron spectrometers have radioactive sources which produce only modest intensities (10{sup 6} e{sup +}/s). An improvement by at least a factor of 100 is needed to become viable for on-line positron metrology. We propose to combine several technologies to generate a positron beam with good electron-optical properties, such as a small divergence angle and small beam diameter and a flux of 10{sup 8} e{sup +}/s or more. Positrons from a 10 Ci beta source will be moderated with a stack of 12 layers of tungsten meshes. The thermalized positrons will be accelerated into a deflection focusing analyzer (DFA) which focuses the positrons into a small (1-2 mm{sup 2}) area of a second moderator. A rare gas solid will be used to thermalize the positrons once more. The moderating area forms the small emitter source for a accelerating gun that generate a beam of mono-energetic positrons of any desired energy.

  8. An all-optical Compton source for single-exposure x-ray imaging

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Andriyash, I.; Lifschitz, A.; Malka, V.; Rousse, A.; Phuoc, K. Ta

    2016-03-01

    All-optical Compton sources are innovative, compact devices to produce high energy femtosecond x-rays. Here we present results on a single-pulse scheme that uses a plasma mirror to reflect the drive beam of a laser plasma accelerator and to make it collide with the highly-relativistic electrons in its wake. The accelerator is operated in the self-injection regime, producing quasi-monoenergetic electron beams of around 150 MeV peak energy. Scattering with the intense femtosecond laser pulse leads to the emission of a collimated high energy photon beam. Using continuum-attenuation filters we measure significant signal content beyond 100 keV and with simulations we estimate a peak photon energy of around 500 keV. The source divergence is about 13 mrad and the pointing stability is 7 mrad. We demonstrate that the photon yield from the source is sufficiently high to illuminate a centimeter-size sample placed 90 centimeters behind the source, thus obtaining radiographs in a single shot.

  9. NeuroPG: Open source software for optical pattern generation and data acquisition

    Directory of Open Access Journals (Sweden)

    Benjamin W. Avants

    2015-03-01

    Full Text Available Patterned illumination using a digital micromirror device (DMD is a powerful tool for optogenetics. Compared to a scanning laser, DMDs are inexpensive and can easily create complex illumination patterns. Combining these complex spatiotemporal illumination patterns with optogenetics allows DMD-equipped microscopes to probe neural circuits by selectively manipulating the activity of many individual cells or many subcellular regions at the same time. To use DMDs to study neural activity, scientists must develop specialized software to coordinate optical stimulation patterns with the acquisition of electrophysiological and fluorescence data. To meet this growing need we have developed an open source optical pattern generation software for neuroscience - NeuroPG - that combines, DMD control, sample visualization, and data acquisition in one application. Built on a MATLAB platform, NeuroPG can also process, analyze, and visualize data. The software is designed specifically for the Mightex Polygon400; however, as an open source package, NeuroPG can be modified to incorporate any data acquisition, imaging, or illumination equipment that is compatible with MATLAB’s Data Acquisition and Image Acquisition toolboxes.

  10. An Optically Stabilized Fast-Switching Light Emitting Diode as a Light Source for Functional Neuroimaging

    Science.gov (United States)

    Wagenaar, Daniel A.

    2012-01-01

    Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED) light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 s, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes. PMID:22238663

  11. An optically stabilized fast-switching light emitting diode as a light source for functional neuroimaging.

    Directory of Open Access Journals (Sweden)

    Daniel A Wagenaar

    Full Text Available Neuroscience research increasingly relies on optical methods for evoking neuronal activity as well as for measuring it, making bright and stable light sources critical building blocks of modern experimental setups. This paper presents a method to control the brightness of a high-power light emitting diode (LED light source to an unprecedented level of stability. By continuously monitoring the actual light output of the LED with a photodiode and feeding the result back to the LED's driver by way of a proportional-integral controller, drift was reduced to as little as 0.007% per hour over a 12-h period, and short-term fluctuations to 0.005% root-mean-square over 10 seconds. The LED can be switched on and off completely within 100 μs, a feature that is crucial when visual stimuli and light for optical recording need to be interleaved to obtain artifact-free recordings. The utility of the system is demonstrated by recording visual responses in the central nervous system of the medicinal leech Hirudo verbana using voltage-sensitive dyes.

  12. Lifetime Calculations on Collector Optics from Laser Plasma Extreme Ultraviolet Sources with Minimum Mass

    Institute of Scientific and Technical Information of China (English)

    WU Tao; WANG Xin-Bing

    2011-01-01

    An ion flux and its kinetic energy spectrum are obtained using a self similar spherically symmetric fluid model of expansion of a collisionless plasma into vacuum. According to the ion flux and energy distribution, the collector optical lifetime is estimated by knowledge of the sputtering yield of conventional Mo/Si multilayer coatings for the CO2 and Nd:YAG pulsed-laser produced plasmas based on the minimum mass tin droplet target without debris mitigation. The results show that the longer wavelength of the CO2 laser produced plasma light source is more suitable for extreme ultraviolet lithography than Nd:YAG laser in respect of fast ion debris induced sputtering damage to the collector mirror.%@@ An ion flux and its kinetic energy spectrum are obtained using a self similar spherically symmetric fluid model of expansion of a collisionless plasma into vacuum.According to the ion flux and energy distribution,the collector optical lifetime is estimated by knowledge of the sputtering yield of conventional Mo/Si multilayer coatings for the CO2 and Nd:YAG pulsed-laser produced plasmas based on the minimum mass tin droplet target without debris mitigation.The results show that the longer wavelength of the CO2 laser produced plasma light source is more suitable for extreme ultraviolet lithography than Nd:YAG laser in respect of fast ion debris induced sputtering damage to the collector mirror.

  13. The complex of SAO RAS optical instruments as an instrument for studying transient sources in the Universe

    Science.gov (United States)

    Vlasyuk, V. V.; Sokolov, V. V.

    2016-06-01

    The paper describes the optical telescopes of SAO RAS and available equipment suitable for studying transient sources. The first experience of investigation of one of the fist gamma-ray bursts (GRB 970508) dates back to 1997. The experience accumulated since then in studying transient sources is also described. Future prospects are outlined.

  14. Planck intermediate results XXXVI. Optical identification and redshifts of Planck SZ sources with telescopes at the Canary Islands observatories

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.;

    2016-01-01

    We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with telescopes at the Canary Islands observatories as part of the general optical follow-up programme undertaken by the Planck Collaboration. In total, 78 SZ sources are discussed. Deep-i...

  15. Improved thermal-vacuum compatible flat plate radiometric source for system-level testing of remote optical sensors

    Science.gov (United States)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2016-09-01

    In this work, we describe an improved thermal-vacuum compatible flat plate radiometric source which has been developed and utilized for the characterization and calibration of remote optical sensors. This source is unique in that it can be used in situ, in both ambient and thermal-vacuum environments, allowing it to follow the sensor throughout its testing cycle. The performance of the original flat plate radiometric source was presented at the 2009 SPIE1. Following the original efforts, design upgrades were incorporated into the source to improve both radiometric throughput and uniformity. The pre-thermal-vacuum (pre-TVAC) testing results of a spacecraft-level optical sensor with the improved flat plate illumination source, both in ambient and vacuum environments, are presented. We also briefly discuss potential FPI configuration changes in order to improve its radiometric performance. Keywords: Calibration, radiometry, remote sensing, source.

  16. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

    Energy Technology Data Exchange (ETDEWEB)

    Dornic, Damien, E-mail: dornic@cppm.in2p3.f [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); IFIC, Edificios Investigacion de Paterna, CSIC-Universitat de Valenciaa, Apdo. de correos 22085, 46071 Valencia (Spain); Brunner, Jurgen [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Basa, Stephane [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Al Samarai, Imen; Bertin, Vincent [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Boer, Michel [OHP, 04870 Saint Michel de l' Observatoire (France); Busto, Jose; Escoffier, Stephanie [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Klotz, Alain [OHP, 04870 Saint Michel de l' Observatoire (France); CESR, Observatiore Midi-Pyrenees, CNRS Universite de Toulouse, BP4346, 31028 Toulouse Cedex 04 (France); Mazure, Alain [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Vallage, Bertrand [CEA-IRFU, Centre de Saclay, 91191 Gif-sur-Yvette (France)

    2011-01-21

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active galactic nuclei. In order to enhance the sensitivity to these sources, we have developed a new detection method based on the follow-up by optical telescopes of 'golden' neutrino events, such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow us to trigger an optical telescope network. Since February 2009, ANTARES is sending alert triggers once or twice per month to the two 25 cm robotic telescope of TAROT. This optical follow-up of such special events would not only give access to the nature of the sources, but also would improve the sensitivity to transient neutrino sources.

  17. Optical-faint, Far-infrared-bright Herschel Sources in the CANDELS Fields: Ultra-Luminous Infrared Galaxies at z>1 and the Effect of Source Blending

    CERN Document Server

    Yan, Haojing; Ma, Zhiyuan; Willner, Steven; Somerville, Rachel; Ashby, Matthew; Dave, Romeel; Perez-Gonzalez, Pablo G; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha

    2013-01-01

    Optical counterpart identification is a critical link in maximizing the science returns of the Herschel very wide-field survey data. Currently, the Sloan Digital Sky Survey (SDSS) is the best resource for optical counterpart identifications over such wide areas. However a large number of very bright FIR sources are not detected in the SDSS, and their true nature remains to be determined. Using the public HerMES data, we studied seven such sources that are within the CANDELS fields. To deal with the source blending problem, we used the near-IR or the optical images directly for position priors and decomposed these FIR sources. This new appraoch is an improvement over the previous decomposition efforts where the position priors are derived from the mid-IR data that still suffer from the source blending problem in the first place, and can be applied to the regions where the mid-IR data are not available. We found that in most cases the single Herschel sources are made of multiple components that may or may not b...

  18. Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography

    OpenAIRE

    Choi, Dong-hak; YOSHIMURA, Reiko; Ohbayashi, Kohji

    2013-01-01

    Monolithic Vernier tuned super-structure grating distributed Bragg reflector (SSG-DBR) lasers are expected to become one of the most promising sources for swept source optical coherence tomography (SS-OCT) with a long coherence length, reduced sensitivity roll-off, and potential capability for a very fast A-scan rate. However, previous implementations of the lasers suffer from four main problems: 1) frequencies deviate from the targeted values when scanned, 2) large amounts of noise appear as...

  19. Light Source Matters--Students' Explanations about the Behavior of Light When Different Light Sources Are Used in Task Assignments of Optics

    Science.gov (United States)

    Kesonen, Mikko Henri Petteri; Asikainen, Mervi Anita; Hirvonen, Pekka Emil

    2017-01-01

    In the present article, the context-dependency of student reasoning is studied in a context of optics. We investigated introductory students' explanations about the behavior of light when different light sources, namely a small light bulb and a laser, were used in otherwise identical task assignments. The data was gathered with the aid of pretest…

  20. An Optical Streak Diagnostic for Observing Anode-Cathode Plasmas for Radiographic Source Development

    Energy Technology Data Exchange (ETDEWEB)

    Droemer, Darryl W. [National Security Technologies, LLC; Crain, Marlon D.; Lare, Gregory A. [National Security Technologies, LLC; Bennett, Nichelle L. [National Security Technologies, LLC; Johnston, Mark D. [Sandia National Laboratories

    2013-06-13

    National Security Technologies, LLC, and Sandia National Laboratories are collaborating in the development of pulsed power–driven flash x-ray radiographic sources that utilize high-intensity electron beam diodes. The RITS 6 (Radiographic Integrated Test Stand) accelerator at Sandia is used to drive a self magnetic pinch diode to produce a Bremsstrahlung x-ray source. The high electric fields and current densities associated with these short A-K gap pinch beam diodes present many challenges in diode development. Plasmas generated at both the anode and cathode affect the diode performance, which is manifested in varying spot (source) sizes, total dose output, and impedance profiles. Understanding the nature of these plasmas including closure rates and densities is important in modeling their behavior and providing insight into their mitigation. In this paper we describe a streak camera–based optical diagnostic that is capable of observing and measuring plasma evolution within the A-K gap. By imaging a region of interest onto the input slit of a streak camera, we are able to produce a time-resolved one-dimensional image of the evolving plasma. Typical data are presented.

  1. Variable Faint Optical Sources Discovered by Comparing POSS and SDSS Catalogs

    CERN Document Server

    Sesar, B; Ivezic, Z; Lupton, R H; Munn, J A; Finkbeiner, D; Steinhardt, W; Siverd, R J; Johnston, D E; Knapp, G R; Gunn, J E; Rockosi, C M; Schlegel, D J; Vanden Berk, Daniel E; Hall, P; Schneider, D P; Brunner, R J

    2004-01-01

    We present a study of variable faint optical sources discovered by comparing the Sloan Digital Sky Survey (SDSS) and the Palomar Observatory Sky Survey (POSS) catalogs. We use SDSS measurements to photometrically recalibrate several publicly available POSS catalogs; a piecewise recalibration in 100 arcmin2 patches generally results in an improvement of photometric accuracy (rms) by nearly a factor of two, compared to the original data. The POSS I magnitudes can be improved to ~0.15 mag accuracy, and POSS II magnitudes to \\~0.10 mag accuracy. We use the recalibrated catalogs for the ~2,000 deg2 of sky in the SDSS Data Release 1 to construct a catalog of ~60,000 sources variable on time scales 10-50 years. A series of statistical tests based on the morphology of SDSS color-color diagrams, as well as visual comparison of images and comparison with repeated SDSS observations, demonstrate the robustness of the selection methods. We quantify the distribution of variable sources in the SDSS color-color diagrams, and...

  2. Analysis of dead zone sources in a closed-loop fiber optic gyroscope.

    Science.gov (United States)

    Chong, Kyoung-Ho; Choi, Woo-Seok; Chong, Kil-To

    2016-01-01

    Analysis of the dead zone is among the intensive studies in a closed-loop fiber optic gyroscope. In a dead zone, a gyroscope cannot detect any rotation and produces a zero bias. In this study, an analysis of dead zone sources is performed in simulation and experiments. In general, the problem is mainly due to electrical cross coupling and phase modulation drift. Electrical cross coupling is caused by interference between modulation voltage and the photodetector. The cross-coupled signal produces spurious gyro bias and leads to a dead zone if it is larger than the input rate. Phase modulation drift as another dead zone source is due to the electrode contamination, the piezoelectric effect of the LiNbO3 substrate, or to organic fouling. This modulation drift lasts for a short or long period of time like a lead-lag filter response and produces gyro bias error, noise spikes, or dead zone. For a more detailed analysis, the cross-coupling effect and modulation phase drift are modeled as a filter and are simulated in both the open-loop and closed-loop modes. The sources of dead zone are more clearly analyzed in the simulation and experimental results.

  3. Optical fiber sources and transmission controls for multi-Tb/s systems

    Science.gov (United States)

    Nowak, George Adelbert

    The accelerating demand for bandwidth capacity in backbone links of terrestrial communications systems is projected to exceed 1Tb/s by 2002. Lightwave carrier frequencies and fused-silica optical fibers provide the natural combination of high passband frequencies and low- loss medium to satisfy this evolving demand for bandwidth capacity. This thesis addresses three key technologies for enabling multi-Tb/s optical fiber communication systems. The first technology is a broadband source based on supercontinuum generation in optical fiber. Using a single modelocked laser with output pulsewidths of 0.5psec pulses, we generate in ~2m of dispersion-shifted fiber more that 200nm of spectral continuum in the vicinity of 1550nm that is flat to better than +/- 0.5 dB over more than 60nm. The short fiber length prevents degradation of timing jitter of the seed pulses and preserves coherence of the continuum by inhibiting environmental perturbations and mapping of random noise from the vicinity of the input pulse across the continuum. Through experiments and simulations, we find that the continuum characteristics result from 3rd order dispersion effects on higher-order soliton compression. We determine optimal fiber properties to provide desired continuum broadness and flatness for given input pulsewidth and energy conditions. The second technology is a novel delay-shifted nonlinear optical loop mirror (DS-NOLM) that performs a transmission control function by serving as an intensity filter and frequency compensator for 4ps soliton transmission over 75km of standard dispersion fiber, with 25km spacing between amplifiers, by filtering the dispersive waves and compensating for Raman-induced soliton self-frequency shift. The third technology is all-fiber wavelength conversion employing induced modulational instability. We obtain wavelength conversion over 40nm with a peak conversion efficiency of 28dB using 600mW pump pulses in 720m of high-nonlinearity optical fiber. We show

  4. A survey of the optical hazards associated with hospital light sources with reference to the Control of Artificial Optical Radiation at Work Regulations 2010

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, A; Fedele, F; Freeman, P [Medical Physics Department, Guy' s and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH (United Kingdom); Khazova, M [Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Radiation Protection Division, Chilton, Didcot, Oxfordshire OX11 ORQ (United Kingdom); Sarkany, R, E-mail: andrew.coleman@gstt.nhs.u [St John' s Institute of Dermatology, Guy' s and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH (United Kingdom)

    2010-09-15

    Workplace exposure to coherent and incoherent optical radiation from artificial sources is regulated under the Artificial Optical Radiation Directive (AORD) 2006/25/EC, now implemented in the UK under the Control of Artificial Optical Radiation at Work Regulations (AOR) 2010. These regulations set out exposure limit values. Implementing the AOR (2010 Health and Safety Statutory Instrument No 1140 www.legislation.gov.uk/uksi/2010/1140/pdf/uksi{sub 2}0101140{sub e}n.pdf) requirements in a hospital environment is a potentially complex problem because of the wide variety of sources used for illumination, diagnosis and therapy. A survey of sources of incoherent optical radiation in a large hospital is reported here. The survey covers examples of office lighting, operating theatre lighting, examination lamps, and sources for ultraviolet phototherapy and visible phototherapies, including photodynamic therapy and neonatal blue-light therapy. The results of the survey are used to inform consideration of the strategy that a hospital might reasonably adopt both to demonstrate compliance with the AOR (2010) and to direct implementation effort.

  5. Optical-fiber source of polarization-entangled photon pairs in the 1550nm telecom band

    CERN Document Server

    Li, X; Sharping, J E; Kumar, P; Li, Xiaoying; Voss, Paul L.; Sharping, Jay E.; Kumar, Prem

    2005-01-01

    We present a fiber based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1550nm band of standard fiber-optic telecommunications. Polarization entanglement is created by pumping a nonlinear-fiber Sagnac interferometer with two time-delayed orthogonally-polarized pump pulses and subsequently removing the time distinguishability by passing the parametrically scattered signal-idler photon pairs through a piece of birefringent fiber. Coincidence detection of the signal-idler photons yields biphoton interference with visibility greater than 90%, while no interference is observed in direct detection of either the signal or the idler photons. All four Bell states can be prepared with our setup and we demonstrate violations of CHSH form of Bell's inequalities by up to 10 standard deviations of measurement uncertainty.

  6. Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror

    Science.gov (United States)

    Wang, Donglin; Fu, Linlai; Wang, Xin; Gong, Zhongjian; Samuelson, Sean; Duan, Can; Jia, Hongzhi; Ma, Jun Shan; Xie, Huikai

    2013-08-01

    A microelectromechanical system (MEMS) mirror based endoscopic swept-source optical coherence tomography (SS-OCT) system that can perform three-dimensional (3-D) imaging at high speed is reported. The key component enabling 3-D endoscopic imaging is a two-axis MEMS scanning mirror which has a 0.8×0.8 mm2 mirror plate and a 1.6×1.4 mm2 device footprint. The diameter of the endoscopic probe is only 3.5 mm. The imaging rate of the SS-OCT system is 50 frames/s. OCT images of both human suspicious oral leukoplakia tissue and normal buccal mucosa were taken in vivo and compared. The OCT imaging result agrees well with the histopathological analysis.

  7. An extended-source spatial acquisition process based on maximum likelihood criterion for planetary optical communications

    Science.gov (United States)

    Yan, Tsun-Yee

    1992-01-01

    This paper describes an extended-source spatial acquisition process based on the maximum likelihood criterion for interplanetary optical communications. The objective is to use the sun-lit Earth image as a receiver beacon and point the transmitter laser to the Earth-based receiver to establish a communication path. The process assumes the existence of a reference image. The uncertainties between the reference image and the received image are modeled as additive white Gaussian disturbances. It has been shown that the optimal spatial acquisition requires solving two nonlinear equations to estimate the coordinates of the transceiver from the received camera image in the transformed domain. The optimal solution can be obtained iteratively by solving two linear equations. Numerical results using a sample sun-lit Earth as a reference image demonstrate that sub-pixel resolutions can be achieved in a high disturbance environment. Spatial resolution is quantified by Cramer-Rao lower bounds.

  8. Noise sources and improved performance of a mid-wave infrared uncooled silicon carbide optical photodetector.

    Science.gov (United States)

    Lim, Geunsik; Manzur, Tariq; Kar, Aravinda

    2014-12-20

    An uncooled photon detector is fabricated for the mid-wave infrared (MWIR) wavelength of 4.21 μm by doping an n-type 4H-SiC substrate with gallium using a laser doping technique. The dopant creates a p-type energy level of 0.3 eV, which is the energy of a photon corresponding to the MWIR wavelength 4.21 μm. This energy level was confirmed by optical absorption spectroscopy. The detection mechanism involves photoexcitation of carriers by the photons of this wavelength absorbed in the semiconductor. The resulting changes in the carrier densities at different energy levels modify the refractive index and, therefore, the reflectance of the semiconductor. This change in the reflectance constitutes the optical response of the detector, which can be probed remotely with a laser beam such as a He-Ne laser and the power of the reflected probe beam can be measured with a conventional laser power meter. The noise mechanisms in the probe laser, silicon carbide MWIR detector, and laser power meter affect the performance of the detector in regards to aspects such as the responsivity, noise equivalent temperature difference (NETD), and detectivity. For the MWIR wavelengths of 4.21 and 4.63 μm, the experimental detectivity of the optical photodetector of this study was found to be 1.07×10(10)  cm·Hz(1/2)/W, while the theoretical value was 1.11×10(10)  cm·Hz(1/2)/W. The values of NETD are 404 and 15.5 mK based on experimental data for an MWIR radiation source with a temperature of 25°C and theoretical calculations, respectively.

  9. Volumetric cutaneous microangiography of human skin in vivo by VCSEL swept-source optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Woo June Choi; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We demonstrate volumetric cutaneous microangiography of the human skin in vivo that utilises 1.3-μm high-speed sweptsource optical coherence tomography (SS-OCT). The swept source is based on a micro-electro-mechanical (MEMS)-tunable vertical cavity surface emission laser (VCSEL) that is advantageous in terms of long coherence length over 50 mm and 100 nm spectral bandwidth, which enables the visualisation of microstructures within a few mm from the skin surface. We show that the skin microvasculature can be delineated in 3D SS-OCT images using ultrahigh-sensitive optical microangiography (UHS-OMAG) with a correlation mapping mask, providing a contrast enhanced blood perfusion map with capillary flow sensitivity. 3D microangiograms of a healthy human finger are shown with distinct cutaneous vessel architectures from different dermal layers and even within hypodermis. These findings suggest that the OCT microangiography could be a beneficial biomedical assay to assess cutaneous vascular functions in clinic. (laser biophotonics)

  10. Spectral variability of the IR-source IRAS 01005+7910 optical component

    CERN Document Server

    Klochkova, V G; Panchuk, V E; Sendzikas, E G; Yushkin, M V

    2014-01-01

    Highly-resolution optical spectra of the optical component of the IR-source IRAS01005+7910 are used to determine the spectral type of its central star, B1.5$ \\pm $0.3, identify the spectral features, and analyze their profile and radial velocity variations. The systemic velocity Vsys =$-50.5$ km/s is determined from the positions of the symmetric and stable profiles of the forbidden [NI], [NII], [OI], [SII], and [FeII] emission lines. The presence of the [NII] and [SII] forbidden emissions indicates the onset of the ionization of the circumstellar envelope and the fact that the star is very close to undergoing the planetary nebula stage. The broad range of heliocentric radial velocity Vr estimates based on the core lines, which amounts to about 34 km/s, is partly due to the deformations of the profiles caused by variable emissions. The variations of the Vr in the line wings are smaller, about 23 km/s, and may be due to pulsations and/or hidden binarity of the star. The deformations of the profiles of complex ...

  11. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Shoeiby, Mehrdad; Nguyen, Thach G.; Chu, Sai T.; Little, Brent E.; Morandotti, Roberto; Mitchell, Arnan; Moss, David J.

    2017-09-01

    We propose and experimentally demonstrate a microwave photonic intensity differentiator based on a Kerr optical comb generated by a compact integrated micro-ring resonator (MRR). The on-chip Kerr optical comb, containing a large number of comb lines, serves as a high-performance multi-wavelength source for implementing a transversal filter, which will greatly reduce the cost, size, and complexity of the system. Moreover, owing to the compactness of the integrated MRR, frequency spacings of up to 200-GHz can be achieved, enabling a potential operation bandwidth of over 100 GHz. By programming and shaping individual comb lines according to calculated tap weights, a reconfigurable intensity differentiator with variable differentiation orders can be realized. The operation principle is theoretically analyzed, and experimental demonstrations of the first-, second-, and third-order differentiation functions based on this principle are presented. The radio frequency amplitude and phase responses of multi-order intensity differentiations are characterized, and system demonstrations of real-time differentiations for a Gaussian input signal are also performed. The experimental results show good agreement with theory, confirming the effectiveness of our approach.

  12. Robust numerical phase stabilization for long-range swept-source optical coherence tomography.

    Science.gov (United States)

    Song, Shaozhen; Xu, Jingjiang; Men, Shaojie; Shen, Tueng T; Wang, Ruikang K

    2017-05-09

    A novel phase stabilization technique is demonstrated with significant improvement in the phase stability of a micro-electromechanical (MEMS) vertical cavity surface-emitting laser (VCSEL) based swept-source optical coherence tomography (SS-OCT) system. Without any requirements of hardware modifications, the new fully numerical phase stabilization technique features high tolerance to acquisition jitter, and significantly reduced budget in computational effort. We demonstrate that when measured with biological tissue, this technique enables a phase sensitivity of 89 mrad in highly scattering tissue, with image ranging distance of up to 12.5 mm at A-line scan rate of 100.3 kHz. We further compare the performances delivered by the phase-stabilization approach with conventional numerical approach for accuracy and computational efficiency. Imaging result of complex signal-based optical coherence tomography angiography (OCTA) and Doppler OCTA indicate that the proposed phase stabilization technique is robust, and efficient in improving the image contrast-to-noise ratio and extending OCTA depth range. The proposed technique can be universally applied to improve phase-stability in generic SS-OCT with different scale of scan rates without a need for special treatment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The ultraluminous X-ray source NGC 1313 X-2 - Its optical counterpart and environment

    CERN Document Server

    Grisé, F; Soria, R; Motch, C; Smith, I A; Ryder, S D; Böttcher, M

    2008-01-01

    NGC 1313 X-2 is one of the brightest ultraluminous X-ray sources in the sky, at both X-ray and optical wavelengths; therefore, quite a few studies of available ESO VLT and HST data have appeared in the literature. Here, we present our analysis of VLT/FORS1 and HST/ACS photometric data, confirming the identification of the B ~ 23 mag blue optical counterpart. We show that the system is part of a poor cluster with an age of 20 Myr, leading to an upper mass limit of some 12 M_sun for the mass donor. We attribute the different results with respect to earlier studies to the use of isochrones in the F435W and F555W HST/ACS photometric system that appear to be incompatible with the corresponding Johnson B and V isochrones. The counterpart exhibits significant photometric variability of about 0.2 mag amplitude, both between the two HST observations and during the one month of monitoring with the VLT. This includes variability within one night and suggests that the light is dominated by the accretion disk in the syste...

  14. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit.

    Science.gov (United States)

    Baumann, Bernhard; Choi, WooJhon; Potsaid, Benjamin; Huang, David; Duker, Jay S; Fujimoto, James G

    2012-04-23

    Polarization sensitive optical coherence tomography (PS-OCT) is a functional imaging method that provides additional contrast using the light polarizing properties of a sample. This manuscript describes PS-OCT based on ultrahigh speed swept source / Fourier domain OCT operating at 1050 nm at 100 kHz axial scan rates using single mode fiber optics and a multiplexing approach. Unlike previously reported PS-OCT multiplexing schemes, the method uses a passive polarization delay unit and does not require active polarization modulating devices. This advance decreases system cost and avoids complex synchronization requirements. The polarization delay unit was implemented in the sample beam path in order to simultaneously illuminate the sample with two different polarization states. The orthogonal polarization components for the depth-multiplexed signals from the two input states were detected using dual balanced detection. PS-OCT images were computed using Jones calculus. 3D PS-OCT imaging was performed in the human and rat retina. In addition to standard OCT images, PS-OCT images were generated using contrast form birefringence and depolarization. Enhanced tissue discrimination as well as quantitative measurements of sample properties was demonstrated using the additional contrast and information contained in the PS-OCT images.

  15. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems

    Science.gov (United States)

    Ratheesh, K. M.; Seah, L. K.; Murukeshan, V. M.

    2016-11-01

    The automatic calibration in Fourier-domain optical coherence tomography (FD-OCT) systems allows for high resolution imaging with precise depth ranging functionality in many complex imaging scenarios, such as microsurgery. However, the accuracy and speed of the existing automatic schemes are limited due to the functional approximations and iterative operations used in their procedures. In this paper, we present a new real-time automatic calibration scheme for swept source-based optical coherence tomography (SS-OCT) systems. The proposed automatic calibration can be performed during scanning operation and does not require an auxiliary interferometer for calibration signal generation and an additional channel for its acquisition. The proposed method makes use of the spectral component corresponding to the sample surface reflection as the calibration signal. The spectral phase function representing the non-linear sweeping characteristic of the frequency-swept laser source is determined from the calibration signal. The phase linearization with improved accuracy is achieved by normalization and rescaling of the obtained phase function. The fractional-time indices corresponding to the equidistantly spaced phase intervals are estimated directly from the resampling function and are used to resample the OCT signals. The proposed approach allows for precise calibration irrespective of the path length variation induced by the non-planar topography of the sample or galvo scanning. The conceived idea was illustrated using an in-house-developed SS-OCT system by considering the specular reflection from a mirror and other test samples. It was shown that the proposed method provides high-performance calibration in terms of axial resolution and sensitivity without increasing computational and hardware complexity.

  16. Swept Source Optical Coherence Tomography Angiography for Contact Lens-Related Corneal Vascularization

    Directory of Open Access Journals (Sweden)

    Marcus Ang

    2016-01-01

    Full Text Available Purpose. To describe a novel technique of adapting a swept-source optical coherence tomography angiography (OCTA to image corneal vascularization. Methods. In this pilot cross-sectional study, we obtained 3 × 3 mm scans, where 100,000 A-scans are acquired per second with optical axial resolution of 8 μm and lateral resolution of 20 μm. This was performed with manual “XYZ” focus without the anterior segment lens, until the focus of the corneoscleral surface was clearly seen and the vessels of interest were in focus on the corresponding red-free image. En face scans were evaluated based on image quality score and repeatability. Results. We analyzed scans from 10 eyes (10 patients with corneal vascularization secondary to contact lens use in 4 quadrants, with substantial repeatability of scans in all quadrants (mean image quality score 2.7 ± 0.7; κ=0.75. There was no significant difference in image quality scores comparing quadrants (superior temporal: 2.9 ± 0.6, superior nasal: 2.8 ± 0.4, inferior temporal: 2.5 ± 0.9, and inferior nasal: 2.4 ± 1.0; P=0.276 and able to differentiate deep and superficial corneal vascularization. Conclusion. This early clinical study suggests that the swept-source OCTA used may be useful for examining corneal vascularization, which may have potential for clinical applications such as detecting early limbal stem cell damage.

  17. Design and analysis of a dual-axis resonator fiber-optic gyroscope employing a single source.

    Science.gov (United States)

    Pinnoji, Prerana Dabral; Nayak, Jagannath

    2013-08-01

    In this paper, design of a resonator fiber-optic gyroscope comprised of a single laser source and two optical fiber resonator rings is presented. A typical gyroscope measures angular rotation around a fixed axis, whereas the proposed design can sense simultaneous rotation about two orthogonal axes. Two variants of the design are proposed and analyzed using a mathematical model based on Jones matrix methodology.

  18. Construction of a single/multiple wavelength RZ optical pulse source at 40 GHz by use of wavelength conversion in a high-nonlinearity DSF-NOLM

    DEFF Research Database (Denmark)

    Yu, Jianjun; Yujun, Qian; Jeppesen, Palle;

    2001-01-01

    A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber.......A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber....

  19. Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit

    Science.gov (United States)

    Lee, Kenneth K. C.; Mariampillai, Adrian; Yu, Joe X. Z.; Cadotte, David W.; Wilson, Brian C.; Standish, Beau A.; Yang, Victor X. D.

    2012-01-01

    Abstract: Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second. PMID:22808428

  20. CENSORS: A Combined EIS-NVSS Survey Of Radio Sources. I. Sample definition, radio data and optical identifications

    CERN Document Server

    Best, P N; Röttgering, H J A; Rengelink, R B; Brookes, M H; Wall, J

    2003-01-01

    A new sample of radio sources, with the designated name CENSORS (A Combined EIS-NVSS Survey Of Radio Sources), has been defined by combining the NRAO VLA Sky Survey (NVSS) at 1.4 GHz with the ESO Imaging Survey (EIS) Patch D, a 3 by 2 degree region of sky centred at 09 51 36.0, -21 00 00 (J2000). New radio observations of 199 NVSS radio sources with NVSS flux densities S(1.4GHz) > 7.8mJy are presented, and compared with the EIS I-band imaging observations which reach a depth of I~23; optical identifications are obtained for over two-thirds of the ~150 confirmed radio sources within the EIS field. The radio sources have a median linear size of 6 arcseconds, consistent with the trend for lower flux density radio sources to be less extended. Other radio source properties, such as the lobe flux density ratios, are consistent with those of brighter radio source samples. From the optical information, 30-40% of the sources are expected to lie at redshifts z >~ 1.5. One of the key goals of this survey is to accuratel...

  1. Planck Intermediate Results. XXXVI. Optical identification and redshifts of Planck SZ sources with telescopes in the Canary Islands Observatories

    CERN Document Server

    Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Barrena, R; Bartolo, N; Battaner, E; Benabed, K; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bikmaev, I; Böhringer, H; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Burenin, R; Burigana, C; Calabrese, E; Cardoso, J -F; Catalano, A; Chamballu, A; Chary, R -R; Chiang, H C; Chon, G; Christensen, P R; Clements, D L; Colombo, L P L; Combet, C; Comis, B; Crill, B P; Curto, A; Cuttaia, F; Dahle, H; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Ferragamo, A; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Fromenteau, S; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Giard, M; Gjerløw, E; González-Nuevo, J; Górski, K M; Gruppuso, A; Hansen, F K; Harrison, D L; Hempel, A; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Keihänen, E; Keskitalo, R; Khamitov, I; Kisner, T S; Knoche, J; Kunz, M; Kurki-Suonio, H; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; León-Tavares, J; Levrier, F; Lietzen, H; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; McGehee, P; Melchiorri, A; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Novikov, D; Novikov, I; Oxborrow, C A; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Perdereau, O; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Plaszczynski, S; Pointecouteau, E; Polenta, G; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Stolyarov, V; Streblyanska, A; Sudiwala, R; Sunyaev, R; Suur-Uski, A -S; Sygnet, J -F; Terenzi, L; Toffolatti, L; Tomasi, M; Tramonte, D; Tristram, M; Tucci, M; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A

    2015-01-01

    We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with telescopes at the Canary Islands observatories, as part of the general optical follow-up programme undertaken by the Planck collaboration. In total, 78 SZ sources are discussed. Deep imaging observations were obtained for most of those sources; spectroscopic observations in either in long-slit or multi-object modes were obtained for many. We found optical counterparts for 73 of the 78 candidates. This sample includes 53 spectroscopic redshifts determinations, 20 of them obtained with a multi-object spectroscopic mode. The sample contains new redshifts for 27 Planck clusters that were not included in the first Planck SZ source catalogue (PSZ1).

  2. Experimental optimization of an erbium-doped super-fluorescent fiber source for fiber optic gyroscopes

    Institute of Scientific and Technical Information of China (English)

    Chang Jinlong; Tan Manqing

    2011-01-01

    Double-pass forward and double-pass backward erbium-doped super-fluorescent fiber sources (EDSFSs) were combined in one configuration.A 980 nm laser diode pumped the same erbium-doped fiber from both directions using a coupler as a power splitter.The double-pass configuration was achieved by coating the fiber end face.Firstly,an optimal fiber length was found to obtain a high stability of output light wavelength with pump power,and then 1530/1550 nm wavelength division multiplexing was used for spectrum planarization,which expanded the bandwidth to more than 22 nm.The final step was a test of temperature stability.The results show that the rate of the central wavelength change kept to below 3.5 pprn/℃ in the range of-40 to 60 ℃ and 1-2 ppm/℃ in the range of 20-30 ℃.Considering all the three factors of the fiber optic gyro applications,we selected 80 mA as the pump current,in which case the central wavelength temperature instability was calculated as 2.70 ppm/℃,3 dB bandwidth 22.85 nm,spectral flatness 0.2 dB,output power 5.17 mW and power efficiency up to 9.92%.This experimental result has a significant reference value to the selection of devices and proper design of ED-SFSs for the application of high-precision fiber optic gyroscopes.

  3. Quantitative monitoring of relative clock wander between signal and sampling sources in asynchronous optical under-sampling system

    Institute of Scientific and Technical Information of China (English)

    Huixing Zhang; Wei Zhao

    2012-01-01

    Optical performance monitoring using asynchronous optical or electrical sampling has gained considerable attention. Relative clock wander between data signal and sampling source is a typical occurrence in such systems. A method for the quantitative monitoring of the relative clock wander in asynchronous optical under-sampling system is presented. With a series of simulations, the clock wanders recovered using this method are in good agreement with the preset clock wanders of different amounts and frequencies for both RZ and NRZ signals. Hence, the reliability and robustness of the method are proven.%Optical performance monitoring using asynchronous optical or electrical sampling has gained considerable attention.Relative clock wander between data signal and sampling source is a typical occurrence in such systems.A method for the quantitative monitoring of the relative clock wander in asynchronous optical under-sampling system is presented.With a series of simulations,the clock wanders recovered using this method are in good agreement with the preset clock wanders of different amounts and frequencies for both RZ and NRZ signals.Hence,the reliability and robustness of the method are proven.

  4. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  5. The Hamburg/RASS Catalogue of optical identifications. Northern high-galactic latitude ROSAT Bright Source Catalogue X-ray sources

    CERN Document Server

    Zickgraf, F J; Hagen, H J; Reimers, D; Voges, W

    2003-01-01

    We present the Hamburg/RASS Catalogue (HRC) of optical identifications of X-ray sources at high-galactic latitude. The HRC includes all X-ray sources from the ROSAT Bright Source Catalogue (RASS-BSC) with galactic latitude |b| >= 30 degr and declination delta >= 0 degr. In this part of the sky covering ~10 000 deg^2 the RASS-BSC contains 5341 X-ray sources. For the optical identification we used blue Schmidt prism and direct plates taken for the northern hemisphere Hamburg Quasar Survey (HQS) which are now available in digitized form. The limiting magnitudes are 18.5 and 20, respectively. For 82% of the selected RASS-BSC an identification could be given. For the rest either no counterpart was visible in the error circle or a plausible identification was not possible. With ~42% AGN represent the largest group of X-ray emitters, \\~31% have a stellar counterpart, whereas galaxies and cluster of galaxies comprise only ~4% and ~5%, respectively. In ~3% of the RASS-BSC sources no object was visible on our blue dire...

  6. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle near- to mid-IR pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin

    2011-01-01

    Through cascaded second-harmonic generation, few-cycle solitons can form that resonantly emit strongly red-shifted optical Cherenkov radiation. Numerical simulations show that such dispersive waves can be an efficient source of near- to mid-IR few-cycle broadband pulses....

  7. Repeatability of swept-source optical coherence tomography retinal and choroidal thickness measurements in neovascular age-related macular degeneration

    DEFF Research Database (Denmark)

    Hanumunthadu, Daren; Ilginis, Tomas; Restori, Marie

    2017-01-01

    BACKGROUND: The aim was to determine the intrasession repeatability of swept-source optical coherence tomography (SS-OCT)-derived retinal and choroidal thickness measurements in eyes with neovascular age-related macular degeneration (nAMD). METHODS: A prospective study consisting of patients with...

  8. OPTICAL STUDY OF THE HYPER-LUMINOUS X-RAY SOURCE 2XMM J011942.7+032421

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez, Carlos M. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Moon, Dae-Sik, E-mail: cgc@iac.es [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

    2014-12-10

    We present the identification and characterization of the optical counterpart to 2XMM J011942.7+032421, one of the most luminous and distant ultra-luminous X-ray sources (ULXs). The counterpart is located near a star-forming region in a spiral arm of the galaxy NGC 470 with u, g, and r magnitudes of 21.53, 21.69, and 21.71 mag, respectively. The luminosity of the counterpart is much larger than that of a single O-type star, indicating that it may be a stellar cluster. Our optical spectroscopic observations confirm the association of the X-ray source and the optical counterpart with its host galaxy NGC 470, which validates the high, ≳10{sup 41} erg s{sup -1}, X-ray luminosity of the source. Its optical spectrum is embedded with numerous emission lines, including H recombination lines, metallic forbidden lines, and more notably the high-ionization He II (λ4686) line. That line shows a large velocity dispersion of ≅410 km s{sup -1}, consistent with the existence of a compact (<5 AU) highly ionized accretion disk rotating around the central X-ray source. The ∼1.4 × 10{sup 37} erg s{sup -1} luminosity of the He II line emission makes the source one of the most luminous ULXs in that emission. This, together with the high X-ray luminosity and the large velocity dispersion of the He II emission, suggests that the source is an ideal candidate for more extensive follow-up observations for understanding the nature of hyper-luminous X-ray sources, a more luminous subgroup of ULXs, and more likely candidates for intermediate-mass black holes.

  9. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    Energy Technology Data Exchange (ETDEWEB)

    Aquila, Andrew Lee [Univ. of California, Berkeley, CA (United States)

    2009-05-21

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs

  10. Colorless ONU Based on All-VCSEL Sources with Remote Optical Injection for WDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Zhao, Ying; Pang, Xiaodan;

    2011-01-01

    We propose a novel low-cost and colorless WDM-PON architecture by using all VCSELs-based optical injection locking technique. A bidirectional transmission system over 26 km SMF at 5 Gbps without optical amplification is successfully achieved....

  11. Colorless ONU Based on All-VCSEL Sources with Remote Optical Injection for WDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Zhao, Ying; Pang, Xiaodan

    2011-01-01

    We propose a novel low-cost and colorless WDM-PON architecture by using all VCSELs-based optical injection locking technique. A bidirectional transmission system over 26 km SMF at 5 Gbps without optical amplification is successfully achieved....

  12. All-optical ultra-wideband doublet signal source based on the cross-gain modulation in a semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zan-shan; LI Pei-li; ZHENG Jia-jin; PAN Ting-ting; HUANG Shi-jie; LUO You-hong

    2012-01-01

    We propose a novel scheme to generate the ultra-wideband (UWB) doublet signal pulse based on the cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA).In the scheme,only an optical source and an SOA are needed.As there is only one wavelength included in the output doublet signal pulse,no time difference between the upper and down pulses is introduced during the transmission process.By using the software of Optisystem 7.0,the impacts of the optical power,the SOA current,the wavelength and the input signal pulse width on the generated doublet pulse are simulated and tudied numerically.The results show that when the pulse width of the input signal pulse is larger,the output signal pulse is better,and is insensitive to the change of wavelength.In addition,the ultra-wideband positive and negative monocycles can be generated by choosing suitable optical source power and SOA current.

  13. Evaluation of Anterior Chamber Volume in Cataract Patients with Swept-Source Optical Coherence Tomography.

    Science.gov (United States)

    He, Wenwen; Zhu, Xiangjia; Wolff, Don; Zhao, Zhennan; Sun, Xinghuai; Lu, Yi

    2016-01-01

    Purpose. To evaluate the anterior chamber volume in cataract patients with Swept-Source Optical Coherence Tomography (SS-OCT) and its influencing factors. Methods. Anterior chamber volume of 92 cataract patients was evaluated with SS-OCT in this cross-sectional study. Univariate analyses and multiple linear regression were used to investigate gender, age, operated eye, posterior vitreous detachment, lens opacity grading, and axial length (AXL) related variables capable of influencing the ACV. Results. The average ACV was 139.80 ± 38.21 mm(3) (range 59.41 to 254.09 mm(3)). The average ACV was significantly larger in male patients than in female patients (P = 0.001). ACV was negatively correlated with age and LOCS III cortical (C) grading of the lens (Pearson's correlation analysis, r = -0.443, P ACV was also increased with AXL (Pearson's correlation analysis, r = 0.552, P ACV (F = 10.252  P ACV varied significantly among different subjects. Influencing factors that contribute to reduced ACV were female gender, increased age, LOCS III C grade, and shorter AXL.

  14. Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography

    Science.gov (United States)

    Su, Johnny P.; Li, Yan; Tang, Maolong; Liu, Liang; Pechauer, Alex D.; Huang, David; Liu, Gangjun

    2015-12-01

    A custom-built dynamic-focus swept-source optical coherence tomography (SS-OCT) system with a central wavelength of 1310 nm was used to image the anterior eye from the cornea to the lens. An electrically tunable lens was utilized to dynamically control the positions of focusing planes over the imaging range of 10 mm. The B-scan images were acquired consecutively at the same position but with different focus settings. The B-scan images were then registered and averaged after filtering the out-of-focus regions using a Gaussian window. By fusing images obtained at different depth focus locations, high-resolution and high signal-strength images were obtained over the entire imaging depth. In vivo imaging of human anterior segment was demonstrated. The performance of the system was compared with two commercial OCT systems. The human eye ciliary body was better visualized with the dynamic-focusing SS-OCT system than using the commercial 840 and 1310 nm OCT systems. The sulcus-to-sulcus distance was measured, and the result agreed with that acquired with ultrasound biomicroscopy.

  15. Swept source optical coherence tomography for quantitative and qualitative assessment of dental composite restorations

    Science.gov (United States)

    Sadr, Alireza; Shimada, Yasushi; Mayoral, Juan Ricardo; Hariri, Ilnaz; Bakhsh, Turki A.; Sumi, Yasunori; Tagami, Junji

    2011-03-01

    The aim of this work was to explore the utility of swept-source optical coherence tomography (SS-OCT) for quantitative evaluation of dental composite restorations. The system (Santec, Japan) with a center wavelength of around 1300 nm and axial resolution of 12 μm was used to record data during and after placement of light-cured composites. The Fresnel phenomenon at the interfacial defects resulted in brighter areas indicating gaps as small as a few micrometers. The gap extension at the interface was quantified and compared to the observation by confocal laser scanning microscope after trimming the specimen to the same cross-section. Also, video imaging of the composite during polymerization could provide information about real-time kinetics of contraction stress and resulting gaps, distinguishing them from those gaps resulting from poor adaptation of composite to the cavity prior to polymerization. Some samples were also subjected to a high resolution microfocus X-ray computed tomography (μCT) assessment; it was found that differentiation of smaller gaps from the radiolucent bonding layer was difficult with 3D μCT. Finally, a clinical imaging example using a newly developed dental SS-OCT system with an intra-oral scanning probe (Panasonic Healthcare, Japan) is presented. SS-OCT is a unique tool for clinical assessment and laboratory research on resin-based dental restorations. Supported by GCOE at TMDU and NCGG.

  16. Assessment of Choroidal Thickness in Healthy and Glaucomatous Eyes Using Swept Source Optical Coherence Tomography

    Science.gov (United States)

    Zhang, Chunwei; Tatham, Andrew J.; Medeiros, Felipe A.; Zangwill, Linda M.; Yang, Zhiyong; Weinreb, Robert N.

    2014-01-01

    Purpose To evaluate choroidal thickness (CT) in healthy and glaucomatous eyes using Swept Source Optical Coherence Tomography (SS-OCT). Methods A cross-sectional observational study of 216 eyes of 140 subjects with glaucoma and 106 eyes of 67 healthy subjects enrolled in the Diagnostic Innovations in Glaucoma Study. CT was assessed from wide-field (12×9 mm) SS-OCT scans. The association between CT and potential confounding variables including age, gender, axial length, intraocular pressure, central corneal thickness and ocular perfusion pressure was examined using univariable and multivariable regression analyses. Results Overall CT was thinner in glaucomatous eyes with a mean (± standard deviation) of 157.7±48.5 µm in glaucoma compared to 179.9±36.1 µm in healthy eyes (Pchoroid was thinner in both the peripapillary and macular regions in glaucoma compared to controls. Mean peripapillary CT was 154.1±44.1 µm and 134.0±56.9 µm (Pchoroid and when differences in age and axial length between glaucomatous and healthy subjects were accounted for, glaucoma was not significantly associated with CT. There was also no association between glaucoma severity and CT. Conclusions Glaucoma was not associated with CT measured using SS-OCT; however, older age and longer axial length were associated with thinner choroid so should be considered when interpreting CT measurements. PMID:25295876

  17. Detection of occlusal caries in primary teeth using swept source optical coherence tomography

    Science.gov (United States)

    Nakajima, Yukie; Shimada, Yasushi; Sadr, Alireza; Wada, Ikumi; Miyashin, Michiyo; Takagi, Yuzo; Tagami, Junji; Sumi, Yasunori

    2014-01-01

    This study aimed to investigate swept source optical coherence tomography (SS-OCT) as a detecting tool for occlusal caries in primary teeth. At the in vitro part of the study, 38 investigation sites of occlusal fissures (noncavitated and cavitated) were selected from 26 extracted primary teeth and inspected visually using conventional dental equipment by six examiners without any magnification. SS-OCT cross-sectional images at 1330-nm center wavelength were acquired on the same locations. The teeth were then sectioned at the investigation site and directly viewed under a confocal laser scanning microscope (CLSM) by two experienced examiners. The presence and extent of caries were scored in each observation. The results obtained from SS-OCT and conventional visual inspections were compared with those of CLSM. Consequently, SS-OCT could successfully detect both cavitated and noncavitated lesions. The magnitude of sensitivity for SS-OCT was higher than those for visual inspection (sensitivity of visual inspection and SS-OCT, 0.70 versus 0.93 for enamel demineralization, 0.49 versus 0.89 for enamel cavitated caries, and 0.36 versus 0.75 for dentin caries). Additionally, occlusal caries of a few clinical cases were observed using SS-OCT in vivo. The results indicate that SS-OCT has a great detecting potential for occlusal caries in primary teeth.

  18. Detection of occlusal caries in primary teeth using swept source optical coherence tomography.

    Science.gov (United States)

    Nakajima, Yukie; Shimada, Yasushi; Sadr, Alireza; Wada, Ikumi; Miyashin, Michiyo; Takagi, Yuzo; Tagami, Junji; Sumi, Yasunori

    2014-01-01

    This study aimed to investigate swept source optical coherence tomography (SS-OCT) as a detecting tool for occlusal caries in primary teeth. At the in vitro part of the study, 38 investigation sites of occlusal fissures (noncavitated and cavitated) were selected from 26 extracted primary teeth and inspected visually using conventional dental equipment by six examiners without any magnification. SS-OCT cross-sectional images at 1330-nm center wavelength were acquired on the same locations. The teeth were then sectioned at the investigation site and directly viewed under a confocal laser scanning microscope (CLSM) by two experienced examiners. The presence and extent of caries were scored in each observation. The results obtained from SS-OCT and conventional visual inspections were compared with those of CLSM. Consequently, SS-OCT could successfully detect both cavitated and noncavitated lesions. The magnitude of sensitivity for SS-OCT was higher than those for visual inspection (sensitivity of visual inspection and SS-OCT, 0.70 versus 0.93 for enamel demineralization, 0.49 versus 0.89 for enamel cavitated caries, and 0.36 versus 0.75 for dentin caries). Additionally, occlusal caries of a few clinical cases were observed using SS-OCT in vivo. The results indicate that SS-OCT has a great detecting potential for occlusal caries in primary teeth.

  19. A novel optical calorimetry dosimetry approach applied to an HDR Brachytherapy source

    Science.gov (United States)

    Cavan, A.; Meyer, J.

    2013-06-01

    The technique of Digital Holographic Interferometry (DHI) is applied to the measurement of radiation absorbed dose distribution in water. An optical interferometer has been developed that captures the small variations in the refractive index of water due to the radiation induced temperature increase ΔT. The absorbed dose D is then determined with high temporal and spatial resolution using the calorimetric relation D=cΔT (where c is the specific heat capacity of water). The method is capable of time resolving 3D spatial calorimetry. As a proof-of-principle of the approach, a prototype DHI dosimeter was applied to the measurement of absorbed dose from a High Dose Rate (HDR) Brachytherapy source. Initial results are in agreement with modelled doses from the Brachyvision treatment planning system, demonstrating the viability of the system for high dose rate applications. Future work will focus on applying corrections for heat diffusion and geometric effects. The method has potential to contribute to the dosimetry of diverse high dose rate applications which require high spatial resolution such as microbeam radiotherapy (MRT) or small field proton beam dosimetry but may potentially also be useful for interface dosimetry.

  20. All ceramic table tops analyzed using swept source optical coherence tomography

    Science.gov (United States)

    Stoica, Eniko Tunde; Marcauteanu, Corina; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Topala, Florin; Duma, Virgil Florin; Bradu, Adrian; Podoleanu, Adrian Gh.

    2016-03-01

    Erosion is the progressive loss of tooth substance by chemical processes that do not involve bacterial action. The affected teeth can be restored by using IPS e.max Press "table tops", which replace the occlusal surfaces. In this study we applied a fast in-house Swept Source Optical Coherence Tomography (SS OCT) system to analyze IPS e.max Press "table tops". 12 maxillary first premolars have been extracted and prepared for "table tops". These restorations were subjected to 3000 alternating cycles of thermo-cycling in a range from -10°C to +50°C mechanical occlusal loads of 200 N were also applied. Using SS OCT we analyze the marginal seal of these restorations, before and after applying the mechanical and thermal strain. The characteristics of the SS OCT system utilized are presented. Its depth resolution, measured in air is 10 μm. The system is able to acquire entire volumetric reconstructions in 2.5 s. From the dataset acquired high resolution en-face projections were also produced. Thus, the interfaces between all ceramic "table tops" and natural teeth were analyzed on the cross-sections (i.e., the B-scans) produced and also on the volumetric (tri-dimensional (3D)) reconstructions, several open interfaces being detected. The study therefore demonstrates the utility of SS OCT for the analysis of lithium disilicate glass ceramic "table tops".

  1. The Local Environment of Ultraluminous X-ray Sources Viewed by XMM Newton's Optical Monitor

    CERN Document Server

    Berghea, Ciprian T

    2014-01-01

    We have used XMM-Newton's Optical Monitor (OM) images to study the local environment of a sample of 27 Ultraluminous X-ray Sources (ULXs) in nearby galaxies. UVW1 fluxes were extracted from 100 pc regions centered on the ULX positions. We find that at least 4 ULXs (out of 10 published) have spectral types that are consistent with previous literature values. In addition the colors are similar to those of young stars. For the highest-luminosity ULXs, the UVW1 fluxes may have an important contribution from the accretion disk. We find that the majority of ULXs are associated with recent star-formation. Many of the ULXs in our sample are located inside young OB associations or star-forming regions (SFRs). Based on their colors, we estimated ages and masses for star-forming regions located within 1 kpc from the ULXs in our sample. The resolution of the OM was insufficient to detect young dense super-clusters, but some of these star-forming regions are massive enough to contain such clusters. Only three ULXs have no...

  2. A Comparison between Two Heterodyne Light Sources Using Different Electro-Optic Modulators for Optical Temperature Measurements at Visible Wavelengths

    Directory of Open Access Journals (Sweden)

    Ruey-Ching Twu

    2010-10-01

    Full Text Available In this paper we have successfully demonstrated a z-propagating Zn-indiffused lithium niobate electro-optic modulator used for optical heterodyne interferometry. Compared to a commercial buck-type electro-optic modulator, the proposed waveguide-type modulator has a lower driving voltage and smaller phase variation while measuring visible wavelengths of 532 nm and 632.8 nm. We also demonstrate an optical temperature measurement system using a homemade modulator. The results show that the measurement sensitivities are almost the same values of 25 deg/°C for both the homemade and the buck-type modulators for a sensing light with a wavelength of 632.8 nm. Because photorefractive impacts are essential in the buck-type modulator at a wavelength of 532 nm, it is difficult to obtain reliable phase measurements, whereas the stable phase operation of the homemade one allows the measurement sensitivity to be improved up to 30 deg/°C with the best measurement resolution at about 0.07 °C for 532 nm.

  3. A Combined Multiple-SLED Broadband Light Source at 1300 nm for High Resolution Optical Coherence Tomography.

    Science.gov (United States)

    Wang, Hui; Jenkins, Michael W; Rollins, Andrew M

    2008-04-01

    We demonstrate a compact, inexpensive, and reliable fiber-coupled light source with broad bandwidth and sufficient power at 1300 nm for high resolution optical coherence tomography (OCT) imaging in real-time applications. By combining four superluminescent diodes (SLEDs) with different central wavelengths, the light source has a bandwidth of 145 nm centered at 1325 nm with over 10 mW of power. OCT images of an excised stage 30 embryonic chick heart acquired with our combined SLED light source (<5 μm axial resolution in tissue) are compared with images obtained with a single SLED source (~10 μm axial resolution in tissue). The high resolution OCT system with the combined SLED light source provides better image quality (smaller speckle noise) and a greater ability to observe fine structures in the embryonic heart.

  4. A Combined Multiple-SLED Broadband Light Source at 1300 nm for High Resolution Optical Coherence Tomography

    Science.gov (United States)

    Wang, Hui; Jenkins, Michael W.; Rollins, Andrew M.

    2013-01-01

    We demonstrate a compact, inexpensive, and reliable fiber–coupled light source with broad bandwidth and sufficient power at 1300 nm for high resolution optical coherence tomography (OCT) imaging in real-time applications. By combining four superluminescent diodes (SLEDs) with different central wavelengths, the light source has a bandwidth of 145 nm centered at 1325 nm with over 10 mW of power. OCT images of an excised stage 30 embryonic chick heart acquired with our combined SLED light source (<5 μm axial resolution in tissue) are compared with images obtained with a single SLED source (~10 μm axial resolution in tissue). The high resolution OCT system with the combined SLED light source provides better image quality (smaller speckle noise) and a greater ability to observe fine structures in the embryonic heart. PMID:24347689

  5. The potential for optical beam shaping of UV laser sources for mass scale quarantine disinfection applications

    Science.gov (United States)

    Lizotte, Todd

    2010-08-01

    disinfection systems using high intensity UV laser sources instead of UV bulb techniques by using laser beam shaping optics in conjunction with traditional optical laser beam delivery techniques.

  6. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    Science.gov (United States)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  7. Optical system design of a speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed second harmonic generation from a TZDW source

    Science.gov (United States)

    Yao, Yuhong; Knox, Wayne H.

    2015-03-01

    We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.

  8. 200 GHz-spacing 8-channel multi-wavelength lasers for WDM-PON optical line terminal sources.

    Science.gov (United States)

    Oh, Su Hwan; Shin, Jang-Uk; Kim, Ki Soo; Lee, Dong-Hoon; Park, Sang-Ho; Sung, Hee-Kyung; Baek, Yong-Soon; Oh, Kwang-Ryong

    2009-05-25

    We have fabricated modules of 8-channel multi-wavelength lasers (MWLs) with a wavelength separation of 200 GHz for the wavelength division multiplexed-passive optical network (WDM-PON) optical line terminal sources. The variation in the output power is minimized by inserting silicone between the superluminescent diode (SLD) and the silica waveguide. The wavelength shift of each channel is less than 0.21 nm from the ITU grid and can be controlled in the range of 0.36 nm without any reductions of the output power by a tuning heater. MWLs operated successfully in the direct modulation for 1.25 Gbit/s transmissions over 20 km.

  9. Focused beam total reflection X-ray fluorescence with low power sources coupled to doubly curved crystal optics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.W. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States)]. E-mail: zchen@xos.com; Mail, N. [Center For X-ray Optics, State University of New York, University at Albany (United States); Wei, F.Z. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States); MacDonald, C.A. [Center For X-ray Optics, State University of New York, University at Albany (United States); Gibson, W.M. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States)

    2005-04-30

    A focused beam total X-ray fluorescence technique was developed based on doubly curved crystal optics. This technique provides good detection sensitivity and spatial resolution for localized detection of surface deposits. Compact low power X-ray sources were used to demonstrate the benefit of the X-ray optics for focusing Cr K{alpha}, Cu K{alpha} and Mo K{alpha} radiation. The detection capability of the focused beam Total reflection X-ray fluorescence system was investigated with dried droplets of calibrated low concentration solutions. Detection limits at the femtogram level were demonstrated.

  10. Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography

    OpenAIRE

    Omodaka, Kazuko; Takahashi, Seri; Matsumoto, Akiko; Maekawa, Shigeto; Kikawa, Tsutomu; Himori, Noriko; Takahashi, Hidetoshi; Maruyama, Kazuichi; Kunikata, Hiroshi; Akiba, Masahiro; Nakazawa, Toru

    2016-01-01

    Purpose To investigate the influence of various risk factors on thinning of the lamina cribrosa (LC), as measured with swept-source optical coherence tomography (SS-OCT; Topcon). Methods This retrospective study comprised 150 eyes of 150 patients: 22 normal subjects, 28 preperimetric glaucoma (PPG) patients, and 100 open-angle glaucoma patients. Average LC thickness was determined in a 3 x 3 mm cube scan of the optic disc, over which a 4 x 4 grid of 16 points was superimposed (interpoint dist...

  11. Spatiotemporal stability of a femtosecond hard-x-ray undulator source studied by control of coherent optical phonons.

    Science.gov (United States)

    Beaud, P; Johnson, S L; Streun, A; Abela, R; Abramsohn, D; Grolimund, D; Krasniqi, F; Schmidt, T; Schlott, V; Ingold, G

    2007-10-26

    We report on the temporal and spatial stability of the first tunable femtosecond undulator hard-x-ray source for ultrafast diffraction and absorption experiments. The 2.5-1 Angstrom output radiation is driven by an initial 50 fs laser pulse employing the laser-electron slicing technique. By using x-ray diffraction to probe laser-induced coherent optical phonons in bulk bismuth, we estimate an x-ray pulse duration of 140+/-30 fs FWHM with timing drifts below 30 fs rms measured over 5 days. Optical control of coherent lattice motion is demonstrated.

  12. A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

    DEFF Research Database (Denmark)

    Maria J., Sanjuan-Ferrer,; Bravo Gonzalo, Ivan; Bondu, Magalie

    2017-01-01

    Supercontinuum (SC) light is a well-established technology, which finds applications in several domains ranging from chemistry to material science and imaging systems [1-2]. More specifically, its ultra-wide optical bandwidth and high average power make it an ideal tool for Optical Coherence...... Tomography (OCT). Over the last 5 years, numerous examples have demonstrated its high potential [3-4] in this context. However, SC light sources present pulse-to-pulse intensity variation that can limit the performance of any OCT system [5] by degrading their signal to noise ratio (SNR). To this goal, we...

  13. Optical sites in Eu- and Mg-codoped GaN grown by NH3-source molecular beam epitaxy

    Science.gov (United States)

    Sekiguchi, Hiroto; Sakai, Masaru; Kamada, Takuho; Tateishi, Hiroki; Syouji, Atsushi; Wakahara, Akihiro

    2016-10-01

    Mg codoping can improve the luminescence properties of Eu-doped GaN. However, the enhanced optical sites differ depending on the fabrication method. In this study, the optical sites in Eu- and Mg-codoped GaN [GaN:(Eu, Mg)] grown by NH3-source molecular beam epitaxy (MBE) were evaluated. The optical properties of an Eu-Mg-related site grown by NH3-MBE were highly stable against thermal annealing. Although the luminescence at sites A (622.3 and 633.8 nm) and B (621.9 and 622.8 nm) was dominant under indirect excitation of Eu ions through GaN, four different optical site groups in addition to sites A and B were observed under resonant excitation. These optical sites are inconsistent with the Eu-Mg-related sites reportedly observed in GaN:(Eu, Mg) fabricated by organometallic vapor phase epitaxy, indicating that the optical site constitution strongly depends on the growth method. Furthermore, site A, with a high cross section, contributed to as much as 22% of the total photoluminescence (PL) integrated intensity for GaN:(Eu, Mg) grown by NH3-MBE, which resulted in a high PL intensity.

  14. First Search for an X-ray -- Optical Reverberation Signal in an Ultraluminous X-ray Source

    CERN Document Server

    Pasham, Dheeraj R; Cenko, S Bradley; Trippe, Margaret L; Mushotzky, Richard F; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to AGN broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (RMS of 9.0$\\pm$0.5%), the optical emission does not show any statistically significant variations. We set a 3$\\sigma$ upper limit on the RMS optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected RMS optical variability is $\\approx$2% which is still a factor of roughly two lower than what was possible with the VLT observations in...

  15. X-ray Sources and Their Optical Counterparts in the Galactic Globular Cluster M12 (NGC 6218)

    CERN Document Server

    Lu, Ting-Ni; Bassa, Cees; Verbunt, Frank; Lewin, Walter H G; Anderson, Scott F; Pooley, David

    2009-01-01

    We study a Chandra X-ray Observatory ACIS-S observation of the Galactic globular cluster M12. With a 26 ks exposure time, we detect 6 X-ray sources inside the half-mass radius (2'.16) and two of them are inside the core radius (0'.72) of the cluster. If we assume these sources are all within the globular cluster M12, the luminosity Lx among these sources between 0.3-7.0 keV varies roughly from 10^30 to 10^32 ergs s^-1. For identification, we also analyzed the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) data and identified the optical counterparts to five X-ray sources inside the HST field of view. According to the X-ray and optical features, we found 2-5 candidate active binaries (ABs) or cataclysmic variables (CVs) and 0-3 background galaxies within the HST ACS field of view. Based on the assumption that the number of X-ray sources scales with the encounter rate and the mass of the globular cluster, we expect 2 X-ray source inside M12, and the expectation is consistent with our observation...

  16. Correction Factor for Gaussian Deconvolution of Optically Thick Linewidths in Homogeneous Sources

    Science.gov (United States)

    Kastner, S. O.; Bhatia, A. K.

    1999-01-01

    Profiles of optically thick, non-Gaussian emission line profiles convoluted with Gaussian instrumental profiles are constructed, and are deconvoluted on the usual Gaussian basis to examine the departure from accuracy thereby caused in "measured" linewidths. It is found that "measured" linewidths underestimate the true linewidths of optically thick lines, by a factor which depends on the resolution factor r congruent to Doppler width/instrumental width and on the optical thickness tau(sub 0). An approximating expression is obtained for this factor, applicable in the range of at least 0 tau(sub 0) estimates of the true linewidth and optical thickness.

  17. Evaluation of Anterior Chamber Volume in Cataract Patients with Swept-Source Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Wenwen He

    2016-01-01

    Full Text Available Purpose. To evaluate the anterior chamber volume in cataract patients with Swept-Source Optical Coherence Tomography (SS-OCT and its influencing factors. Methods. Anterior chamber volume of 92 cataract patients was evaluated with SS-OCT in this cross-sectional study. Univariate analyses and multiple linear regression were used to investigate gender, age, operated eye, posterior vitreous detachment, lens opacity grading, and axial length (AXL related variables capable of influencing the ACV. Results. The average ACV was 139.80 ± 38.21 mm3 (range 59.41 to 254.09 mm3. The average ACV was significantly larger in male patients than in female patients (P=0.001. ACV was negatively correlated with age and LOCS III cortical (C grading of the lens (Pearson’s correlation analysis, r=-0.443, P<0.001, and Spearman’s correlation analysis, ρ=-0.450, P<0.001. ACV was also increased with AXL (Pearson’s correlation analysis, r=0.552, P<0.001. Multiple linear regression showed that, with all of the covariates entered into the model, gender (P=0.002, age (P=0.015, LOCS III C grade (P=0.043, and AXL (P=0.001 were still associated with ACV (F=10.252  P<0.001  R2=0.498. Conclusion. With SS-OCT, we found that, in healthy cataract patients, ACV varied significantly among different subjects. Influencing factors that contribute to reduced ACV were female gender, increased age, LOCS III C grade, and shorter AXL.

  18. En face mode of swept-source optical coherence tomography in circumscribed choroidal haemangioma.

    Science.gov (United States)

    Flores-Moreno, Ignacio; Caminal, Josep M; Arias-Barquet, Luis; Rubio-Caso, Marcos J; Catala-Mora, Jaume; Vidal-Martí, María; Muñoz-Blanco, Alex; Filloy, Alejandro; Ruiz-Moreno, José M; Duker, Jay S; Arruga, Jorge

    2016-03-01

    To describe the findings in circumscribed choroidal haemangioma (CCH) using en face swept-source optical coherence tomography (SS-OCT). En face images were obtained employing DRI-1 Atlantis OCT (Topcon, Tokyo, Japan), using a three-dimensional volumetric scan of 12×9 mm. Images were obtained from the retinal pigment epithelium to 1000 μm in depth of the tumour. Twenty-two eyes from 22 patients with the clinical diagnosis of CCH were included. In 20 eyes (90.9%), a characteristic pattern was visualised in the en face image across the vascular tumour. A multilobular pattern, similar to a honeycomb, with hyporeflective, confluent, oval or round areas corresponding with the lumen of the tumour vascular spaces, and hyper-reflective zones, which may represent the vessels walls and connective tissue of the tumour. Ten eyes (45.4%) showed a hyper-reflective halo surrounding the tumour. Seventeen tumours (77.2%) showed small diameter vessels at the inner zone and larger vessels in the outer area. Twelve patients (54.5%) had previously received treatment (photodynamic therapy, transpupillary thermotherapy, dexamethasone intravitreal implant or brachytherapy with ruthenium-106). No differences were found between treated and untreated patients in any of the measured parameters. En face SS-OCT is a rapid, non-invasive, high-resolution, technology, which allows a complementary study to cross-sectional scans in CCH. A characteristic multilobular pattern, with a hyper-reflective halo surrounding the tumour, was found in en face SS-OCT images. No morphological differences were found between naïve patients and patients who received previous treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging

    Science.gov (United States)

    Chen, Wei; You, Jiang; Gu, Xiaochun; Du, Congwu; Pan, Yingtian

    2016-12-01

    Noninvasive microvascular imaging using optical coherence Doppler tomography (ODT) has shown great promise in brain studies; however, high-speed microcirculatory imaging in deep brain remains an open quest. A high-speed 1.3 μm swept-source ODT (SS-ODT) system is reported which was based on a 200 kHz vertical-cavity-surface-emitting laser. Phase errors induced by sweep-trigger desynchronization were effectively reduced by spectral phase encoding and instantaneous correlation among the A-scans. Phantom studies have revealed a significant reduction in phase noise, thus an enhancement of minimally detectable flow down to 268.2 μm/s. Further in vivo validation was performed, in which 3D cerebral-blood-flow (CBF) networks in mouse brain over a large field-of-view (FOV: 8.5 × 5 × 3.2 mm3) was scanned through thinned skull. Results showed that fast flows up to 3 cm/s in pial vessels and minute flows down to 0.3 mm/s in arterioles or venules were readily detectable at depths down to 3.2 mm. Moreover, the dynamic changes of the CBF networks elicited by acute cocaine such as heterogeneous responses in various vessel compartments and at different cortical layers as well as transient ischemic events were tracked, suggesting the potential of SS-ODT for brain functional imaging that requires high flow sensitivity and dynamic range, fast frame rate and a large FOV to cover different brain regions.

  20. Assessment of choroidal thickness in healthy and glaucomatous eyes using swept source optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Chunwei Zhang

    Full Text Available PURPOSE: To evaluate choroidal thickness (CT in healthy and glaucomatous eyes using Swept Source Optical Coherence Tomography (SS-OCT. METHODS: A cross-sectional observational study of 216 eyes of 140 subjects with glaucoma and 106 eyes of 67 healthy subjects enrolled in the Diagnostic Innovations in Glaucoma Study. CT was assessed from wide-field (12×9 mm SS-OCT scans. The association between CT and potential confounding variables including age, gender, axial length, intraocular pressure, central corneal thickness and ocular perfusion pressure was examined using univariable and multivariable regression analyses. RESULTS: Overall CT was thinner in glaucomatous eyes with a mean (± standard deviation of 157.7±48.5 µm in glaucoma compared to 179.9±36.1 µm in healthy eyes (P<0.001. The choroid was thinner in both the peripapillary and macular regions in glaucoma compared to controls. Mean peripapillary CT was 154.1±44.1 µm and 134.0±56.9 µm (P<0.001 and macular CT 199.3±46.1 µm and 176.2±57.5 µm (P<0.001 for healthy and glaucomatous eyes respectively. However, older age (P<0.001 and longer axial length (P<0.001 were also associated with thinner choroid and when differences in age and axial length between glaucomatous and healthy subjects were accounted for, glaucoma was not significantly associated with CT. There was also no association between glaucoma severity and CT. CONCLUSIONS: Glaucoma was not associated with CT measured using SS-OCT; however, older age and longer axial length were associated with thinner choroid so should be considered when interpreting CT measurements.

  1. Apices of maxillary premolars observed by swept source optical coherence tomography

    Science.gov (United States)

    Ebihara, Arata; Iino, Yoshiko; Yoshioka, Toshihiko; Hanada, Takahiro; Sunakawa, Mitsuhiro; Sumi, Yasunori; Suda, Hideaki

    2015-02-01

    Apicoectomy is performed for the management of apical periodontitis when orthograde root canal treatment is not possible or is ineffective. Prior to the surgery, cone beam computed tomography (CBCT) examination is often performed to evaluate the lesion and the adjacent tissues. During the surgical procedure, the root apex is resected and the resected surface is usually observed under dental operating microscope (DOM). However, it is difficult to evaluate the details and the subsurface structure of the root using CBCT and DOM. A new diagnostic system, swept source optical coherence tomography (SS-OCT), has been developed to observe the subsurface anatomical structure. The aim of this study was to observe resected apical root canals of human maxillary premolars using SS-OCT and compare the findings with those observed using CBCT and DOM. Six extracted human maxillary premolars were used. After microfocus computed tomography (Micro CT; for gold standard) and CBCT scanning of the root, 1 mm of the apex was cut perpendicular to the long axis of the tooth. Each resected surface was treated with EDTA, irrigated with saline solution, and stained with methylene blue dye. The resected surface was observed with DOM and SS-OCT. This sequence was repeated three times. The number of root canals was counted and statistically evaluated. There was no significant difference in the accuracy of detecting root canals among CBCT, DOM and SS-OCT (p > 0.05, Wilcoxon test). Because SS-OCT can be used in real time during surgery, it would be a useful tool for observing resected apical root canals.

  2. Optical Spectroscopic Follow-up Of Hard X-ray Sources In The Xmm-slew Survey

    Science.gov (United States)

    Lewis, Karen T.; Buckingham, S.; Mushotzky, R. F.

    2007-12-01

    The XMM Slew Survey is projected to cover 80% of the sky in the soft (0.5--2 keV) and hard (2--10 keV) bands. The survey has a flux limit of 4 × 10-12 erg s-1 cm-2 in the hard band. Like all hard-band surveys, it has the ability to detect even heavily absorbed AGN, and the large area coverage makes it possible to detect rare and/or luminous AGN. Thus the XMM Slew Survey offers a rare opportunity to obtain an accurate "census" of the z\\ 0.1-0.2 AGN population which has not been well probed by previous, less-sensitive hard-band all sky surveys or deep "pencil beam" surveys. Over the past year, we have used the 4m Mayall and Blanco telescopes to obtain optical spectra of all the optical sources within the error circle of the un-identified X-ray sources in the 1st release of the XMM Sleww Survey. Approximately 2/3 of the sources have been robustly identified as AGN with an average redshift of 0.15. The precise classification of the remaining sources is unknown as follow-up observations with Swift XRT revealed that some sources were transient and most likely stellar in nature. In other cases, the more accurate position provided by Swift made it clear that none of the observed sources was the counterpart, implying that the counterpart has an r-band magnitude of greater than 20 which is unexpected for a source with such a large X-ray flux. The overwhelming majority of the AGN exhibit broad optical emission lines. This is very surprising because the X-ray properties suggested that many of these sources were heavily absorbed. Here we present our preliminary results and motivate the need for dedicated X-ray observations ( 5 ks) of this sample to help unravel the apparent discrepancy between the optical and X-ray properties of these sources.

  3. FIRST SEARCH FOR AN X-RAY–OPTICAL REVERBERATION SIGNAL IN AN ULTRALUMINOUS X-RAY SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley [Code 661, Astrophysics Science Division, NASA’s Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Trippe, Margaret L. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Mushotzky, Richard F. [Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States); Gandhi, Poshak, E-mail: dheerajrangareddy.pasham@nasa.gov [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2016-02-10

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 ± 0.5%), the optical emission does not show any statistically significant variations. We set a 3σ upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is ≈2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3σ) for optical variability on a ∼24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  4. Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography.

    Science.gov (United States)

    Choi, Dong-Hak; Yoshimura, Reiko; Ohbayashi, Kohji

    2013-01-01

    Monolithic Vernier tuned super-structure grating distributed Bragg reflector (SSG-DBR) lasers are expected to become one of the most promising sources for swept source optical coherence tomography (SS-OCT) with a long coherence length, reduced sensitivity roll-off, and potential capability for a very fast A-scan rate. However, previous implementations of the lasers suffer from four main problems: 1) frequencies deviate from the targeted values when scanned, 2) large amounts of noise appear associated with abrupt changes in injection currents, 3) optically aliased noise appears due to a long coherence length, and 4) the narrow wavelength coverage of a single chip limits resolution. We have developed a method of dynamical frequency tuning, a method of selective data sampling to eliminate current switching noise, an interferometer to reduce aliased noise, and an excess-noise-free connection of two serially scanned lasers to enhance resolution to solve these problems. An optical frequency comb SS-OCT system was achieved with a sensitivity of 124 dB and a dynamic range of 55-72 dB that depended on the depth at an A-scan rate of 3.1 kHz with a resolution of 15 μm by discretely scanning two SSG-DBR lasers, i.e., L-band (1.560-1.599 μm) and UL-band (1.598-1.640 μm). A few OCT images with excellent image penetration depth were obtained.

  5. Axicon on a gradient index lens (AXIGRIN): integrated optical bench for Bessel beam generation from a point-like source.

    Science.gov (United States)

    Xie, Z; Armbruster, V; Grosjean, T

    2014-09-10

    We propose and demonstrate a novel concept of a compact optical component aimed at transforming a point-like source into a Bessel beam. This component, called AXIGRIN, consists of an axicon fabricated at the end facet of a gradient index lens. It can be directly coupled to an optical fiber, a microscope objective, or vertical-external-cavity surface-emitting-laser to be used without preliminary adjustments, which is of practical interest for end users. This opens new avenues in domains, such as imaging, particle acceleration and manipulation, optical coherence tomography, data storage, laser cutting, etc. AXIGRIN also opens the perspective of using Bessel beams for endoscopy. The generation of linearly and radially polarized Bessel beams is demonstrated with a fiber AXIGRIN.

  6. Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror

    Science.gov (United States)

    Costa, Christopher; Bradu, Adrian; Rogers, John; Phelan, Pauline; Podoleanu, Adrian

    2015-01-01

    We present a swept source optical coherence tomography (OCT) system at 1060 nm equipped with a wavefront sensor at 830 nm and a deformable mirror in a closed-loop adaptive optics (AO) system. Due to the AO correction, the confocal profile of the interface optics becomes narrower than the OCT axial range, restricting the part of the B-scan (cross section) with good contrast. By actuating on the deformable mirror, the depth of the focus is changed and the system is used to demonstrate Gabor filtering in order to produce B-scan OCT images with enhanced sensitivity throughout the axial range from a Drosophila larvae. The focus adjustment is achieved by manipulating the curvature of the deformable mirror between two user-defined limits. Particularities of controlling the focus for Gabor filtering using the deformable mirror are presented.

  7. Research and development for X-ray optics and diagnostics on the linac coherent light source (LCLS)

    CERN Document Server

    Wootton, A; Barbee, T W; Bionta, R; Jankowski, A; London, R; Ryutov, D; Shepherd, R; Shlyaptsev, V; Tatchyn, R; Toor, A

    2002-01-01

    The Linac Coherent Light Source is a 1.5-15 A-wavelength free-electron laser (FEL), currently proposed for the Stanford Linear Accelerator Center. The photon output consists of high brightness, transversely coherent pulses with duration <300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We first discuss the specific requirements for the initial scientific experiments, and our proposed solutions. We then describe the supporting research and development program that includes: experimental and theoretical material damage studies; high-resolution multilayer design, fabrication, and testing; replicated closed-form optics design and manufacturing; BeB manufacturing; and low-Z Fresnel lens design, fabrication and testing. Finally, some novel concepts for optical components are presented.

  8. Study on the algorithm of vibration source identification based on the optical fiber vibration pre-warning system

    Science.gov (United States)

    Qu, Hongquan; Ren, Xuecong; Li, Guoxiang; Li, Yonghong; Zhang, Changnian

    2015-06-01

    One of the key technologies for optical fiber vibration pre-warning system (OFVWS) refers to identifying the vibration source accurately from the detected vibration signals. Because of many kinds of vibration sources and complex geological structures, the implement of identifying vibration sources presents some interesting challenges which need to be overcome in order to achieve acceptable performance. This paper mainly conducts on the time domain and frequency domain analysis of the vibration signals detected by the OFVWS and establishes attribute feature models including an energy information entropy model to identify raindrop vibration source and a fundamental frequency model to distinguish the construction machine and train or car passing by. Test results show that the design and selection of the feature model are reasonable, and the rate of identification is good.

  9. The novel stable control scheme of the light source power in the closed-loop fiber optic gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Ji Zhongxiao [Graduate University of the Chinese Academy of Sciences, Beijing (China); Ma Caiwen, E-mail: jzx@opt.ac.cn [Xi' an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, NO.17 Xinxi Road, New Industrial Park, Xi' an Hi-Tech Industrial Development Zone, Xi' an, Shaanxi (China)

    2011-02-01

    The light source power stability of the Fiber-Optic Gyroscope (FOG) affects directly the scale factor and bias stability of FOG. The typical control scheme of the light source power employs an additional photodetector to detect the output power of the light source. When the fiber loss of FOG varied due to the temperature change, the light power in the additional photodetector did not indicate this change, which decreased the control effect. The spike pulse overlapping on the gyro signal denotes potentially the change of the light power and fiber loss. In the novel scheme, the spike pulse is extracted from the gyro signal, and is transformed into the square wave by the differential circuit. According to the change of the square wave amplitude, FOG adjusts the bias current of the light source to keep the stable light power in the signal photodetector. It is a simple and low-cost scheme without an additional photodetector.

  10. Frequency-swept laser light source at 1050 nm with higher bandwidth due to multiple semiconductor optical amplifiers in series

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Thrane, Lars; Andersen, Peter E.;

    2009-01-01

    We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance......Hz) the SSOA configuration can maintain a significantly higher bandwidth (~50% higher) compared to the MOPA architecture. Correspondingly narrower point spread functions can be generated in a Michelson interferometer.......We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance...

  11. X-ray optics design studies for the SLAC 1.5-15 A Linac Coherent Light Source (LCLS)

    CERN Document Server

    Tatchyn, R; Boyce, R; Fassò, A; Montgomery, J; Vylet, V; Walz, D; Yotam, R; Freund, A K; Howells, M

    1999-01-01

    In recent years, a number of systematic studies have been carried out on the design and R and D aspects of X-ray free-electron laser (XRFEL) schemes based on driving highly compressed electron bunches from a multi-GeV linac through long (30 m - 100+ m) undulators. These sources, when operated in the self-amplified spontaneous emission (SASE) mode, feature singularly high peak output power densities and frequently unprecedented combinations of phase-space and output-parameter values. This has led to correspondingly pivotal design challenges and opportunities for the optical materials, systems, components, and experimental configurations for transporting and utilizing this radiation. In this paper we summarize the design and R and D status of the X-ray optics section of the SLAC Linac Coherent Light Source (LCLS), a 1.5 Angstrom SASE FEL driven by the last kilometer of the SLAC 3-kilometer S-band linac.

  12. Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography.

    Science.gov (United States)

    Vergnole, Sébastien; Lévesque, Daniel; Lamouche, Guy

    2010-05-10

    We evaluate various signal processing methods to handle the non-linearity in wavenumber space exhibited by most laser sources for swept-source optical coherence tomography. The following methods are compared for the same set of experimental data: non-uniform discrete Fourier transforms with Vandermonde matrix or with Lomb periodogram, resampling with linear interpolation or spline interpolation prior to fast-Fourier transform (FFT), and resampling with convolution prior to FFT. By selecting an optimized Kaiser-Bessel window to perform the convolution, we show that convolution followed by FFT is the most efficient method. It allows small fractional oversampling factor between 1 and 2, thus a minimal computational time, while retaining an excellent image quality. (c) 2010 Optical Society of America.

  13. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  14. Fluorescent all-fiber light source based on micro-capillaries and on microstructured optical fibers terminated with a microbulb

    Science.gov (United States)

    Vladev, Veselin; Eftimov, Tinko; Bock, Wojtek

    2015-12-01

    An integrated fiber-optic fluorescent light source compatible with photonic-crystal and hollow-core fibers is presented in this paper. We have studied the dependence of the fluorescence spectra on the length of a micro-capillary filled with Rhodamine 6G dissolved in glycerin. As the capillary, we used a standard fiber-optic glass ferrule with two parallel holes having an inner diameter of 125 μm. One of the holes was filled with fluorescing solution, while an SMF-28 fiber polished at 45° with aluminum coating was placed in the second hole to serve as a pumping fiber. As the solution was pumped by continuous-wave laser light at 532 nm, the fluorescence was captured by a microstructured optical fiber immersed in the filled hole. To prevent the solution from penetrating into this receiving fiber, its end was capped by molten borosilicate glass forming a ball lens. Combining the spectra of several fluorescent organic dyes can create a broadband light source compatible with optical fibers that could be used for the development of compact photonic-crystal and hollow-core fiber sensors.

  15. Aerosol optical properties at a coastal site in Hong Kong, South China: temporal features, size dependencies and source analysis

    Science.gov (United States)

    Wang, Jiaping; Ding, Aijun; Virkkula, Aki; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Xu, Zheng

    2016-04-01

    Hong Kong is a typical coastal city adjacent to the Pearl River Delta (PRD) region in southern China, which is one of the regions suffering from severe air pollution. Atmospheric aerosols can affect the earth's radiative balance by scattering and absorbing incoming solar radiation. Black Carbon (BC) aerosol is a particularly emphasized component due to its strong light absorption. Aerosol transported from different source areas consists of distinct size distributions, leading to different optical properties. As the byproducts of the incomplete oxidation, BC and CO both have relatively long life time, their relationship is a good indicator for distinguishing different pollutant sources. In this study, temporal variations of aerosol optical properties and concentrations of BC and CO at a coastal background station in Hong Kong were investigated. Transport characteristics and origins of aerosol were elucidated by analyzing backward Lagrangian particle dispersion modeling (LPDM) results, together with related parameters including the relationships between optical properties and particle size, BC-CO correlations, ship location data and meteorological variables. From February 2012 to September 2013 and March 2014 to February 2015, continuous in-situ measurements of light scattering and absorption coefficients, particle size distribution and concentrations of BC and CO were conducted at Hok Tsui (HT), a coastal background station on the southeast tip of Hong Kong Island (22.22°N, 114.25°E, 60 m above the sea level) with few local anthropogenic activities. Affected by the Asian monsoon, this region is dominated by continental outflow in winter and by marine inflow from the South China Sea in summer, which is an ideal station for identifying the transport characteristics of aerosol and their effects on optical properties from different anthropogenic emission sources. 7-day backward Lagrangian particle dispersion modeling was performed for source identification. Three

  16. 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma

    OpenAIRE

    Kazuko Omodaka; Takaaki Horii; Seri Takahashi; Tsutomu Kikawa; Akiko Matsumoto; Yukihiro Shiga; Kazuichi Maruyama; Tetsuya Yuasa; Masahiro Akiba; Toru Nakazawa

    2015-01-01

    Purpose Although the lamina cribrosa (LC) is the primary site of axonal damage in glaucoma, adequate methods to image and measure it are currently lacking. Here, we describe a noninvasive, in vivo method of evaluating the LC, based on swept-source optical coherence tomography (SS-OCT), and determine this method’s ability to quantify LC thickness. Methods This study comprised 54 eyes, including normal (n = 18), preperimetric glaucoma (PPG; n = 18), and normal tension glaucoma (NTG; n = 18) eye...

  17. Blind Source Separation Model of Earth-Rock Junctions in Dike Engineering Based on Distributed Optical Fiber Sensing Technology

    Directory of Open Access Journals (Sweden)

    Huaizhi Su

    2015-01-01

    Full Text Available Distributed temperature sensing (DTS provides an important technology support for the earth-rock junctions of dike projects (ERJD, which are binding sites between culvert, gates, and pipes and dike body and dike foundation. In this study, a blind source separation model is used for the identification of leakages based on the temperature data of DTS in leakage monitoring of ERJD. First, a denoising method is established based on the temperature monitoring data of distributed optical fiber in ERJD by a wavelet packet signal decomposition technique. The temperature monitoring messages of fibers are combined response for leakages and other factors. Its character of unclear responding mechanism is very obvious. Thus, a blind source separation technology is finally selected. Then, the rule of temperature measurement data for optical fiber is analyzed and its temporal and spatial change process is also discussed. The realization method of the blind source separation model is explored by combining independent component analysis (ICA with principal component analysis (PCA. The practical test result in an example shows that the method could efficiently locate and identify the leakage location of ERJD. This paper is expected to be useful for further scientific research and efficient applications of distributed optical fiber sensing technology.

  18. Optical Identification of Multiple Faint X-ray Sources in the Globular Cluster NGC 6752 Evidence for Numerous Cataclysmic Variables

    CERN Document Server

    Pooley, D; Homer, L; Verbunt, F; Anderson, S F; Gaensler, B M; Margon, B; Miller, J; Fox, D W; Kaspi, V M; Van der Klis, M

    2002-01-01

    We report on the Chandra ACIS-S3 imaging observation of the globular cluster NGC 6752. We detect 6 X-ray sources within the 10.5" core radius and 13 more within the 115" half-mass radius down to a limiting luminosity of Lx approx 10^{30} erg/s for cluster sources. We reanalyze archival data from the Hubble Space Telescope and the Australia Telescope Compact Array and make 12 optical identifications and one radio identification. Based on X-ray and optical properties of the identifications, we find 10 likely cataclysmic variables (CVs), 1-3 likely RS CVn or BY Dra systems, and 1 or 2 possible background objects. Of the 7 sources for which no optical identifications were made, we expect that ~2-4 are background objects and that the rest are either CVs or some or all of the 5 millisecond pulsars whose radio positions are not yet accurately known. These and other Chandra results on globular clusters indicate that the dozens of CVs per cluster expected by theoretical arguments are finally being found. The findings ...

  19. Characterization of a Low-Cost Optical Flow Sensor When Using an External Laser as a Direct Illumination Source

    Directory of Open Access Journals (Sweden)

    Jordi Palacín

    2011-12-01

    Full Text Available In this paper, a low cost optical flow sensor is combined with an external laser device to measure surface displacements and mechanical oscillations. The measurement system is based on applying coherent light to a diffuser surface and using an optical flow sensor to analyze the reflected and transferred light to estimate the displacement of the surface or the laser spot. This work is focused on the characterization of this measurement system, which can have the optical flow sensor placed at different angles and distances from the diffuser surface. The results have shown that the displacement of the diffuser surface is badly estimated when the optical mouse sensor is placed in front of the diffuser surface (angular orientation >150° while the highest sensitivity is obtained when the sensor is located behind the diffuser surface and on the axis of the laser source (angular orientation 0°. In this case, the coefficient of determination of the measured displacement, R2, was very high (>0.99 with a relative error of less than 1.29%. Increasing the distance between the surface and the sensor also increased the sensitivity which increases linearly, R2 = 0.99. Finally, this measurement setup was proposed to measure very low frequency mechanical oscillations applied to the laser device, up to 0.01 Hz in this work. The results have shown that increasing the distance between the surface and the optical flow sensor also increases the sensitivity and the measurement range.

  20. Ultra-Stable Beacon Source for Laboratory Testing of Optical Tracking

    Science.gov (United States)

    Aso, Yoichi; Marka, Szabolcs; Kovalik, Joseph

    2008-01-01

    The ultra-stable beacon source (USBS) provides a laser-beam output with a very low angular jitter and can be used as an absolute angular reference to simulate a beacon in the laboratory. The laser is mounted on the top of a very short (approximately equal to 1 m) inverted pendulum (IP) with its optical axis parallel to the carbon fiber pendulum leg. The 85-cm, carbon fiber rods making up the leg are very lightweight and rigid, and are supported by a flex-joint at the bottom (see figure). The gimbal-mounted laser is a weight-adjustable load of about 1.5 kg with its center of rotation co-located with the center of percussion of the inverted pendulum. This reduces the coupling of transverse motion at the base of the pendulum to angular motion of the laser at the top. The inverted pendulum is mounted on a gimbal with its center of rotation coinciding with the pivot position of the inverted pendulum flexure joint. This reduces coupling of ground tilt at the inverted pendulum base to motion of the laser mounted at the top. The mass of the top gimbal is adjusted to give the pendulum a very low resonant frequency (approximately equal to 10 mHz) that filters transverse seismic disturbances from the ground where the base is attached. The motion of the IP is monitored by an optical-lever sensor. The laser light is reflected by the mirror on the IP, and then is detected by a quadrant photo-detector (QPD). The position of the beam spot on the QPD corresponds to the tilt of the IP. Damping of this motion is provided by two coil and magnet pairs. The bottom gimbal mount consists of two plates. The IP is mounted on the second plate. The first plate is supported by two posts through needles and can be rotated about the axis connecting the tips of the needles. The second plate hangs from the first plate and can be rotated about the axis perpendicular to the first plate. As a result, the second plate acts as a two-axis rotation stage. Its center of rotation is located at the

  1. A fibre optic scintillator dosemeter for absorbed dose measurements of low-energy X-ray-emitting brachytherapy sources.

    Science.gov (United States)

    Sliski, Alan; Soares, Christopher; Mitch, Michael G

    2006-01-01

    A newly developed dosemeter using a 0.5 mm diameter x 0.5 mm thick cylindrical plastic scintillator coupled to the end of a fibre optic cable is capable of measuring the absorbed dose rate in water around low-activity, low-energy X-ray emitters typically used in prostate brachytherapy. Recent tests of this dosemeter showed that it is possible to measure the dose rate as a function of distance in water from 2 to 30 mm of a (103)Pd source of air-kerma strength 3.4 U (1 U = 1 microGy m(2) h(-1)), or 97 MBq (2.6 mCi) apparent activity, with good signal-to-noise ratio. The signal-to-noise ratio is only dependent on the integration time and background subtraction. The detector volume is enclosed in optically opaque, nearly water-equivalent materials so that there is no polar response other than that due to the shape of the scintillator volume chosen, in this case cylindrical. The absorbed dose rate very close to commercial brachytherapy sources can be mapped in an automated water phantom, providing a 3-D dose distribution with sub-millimeter spatial resolution. The sensitive volume of the detector is 0.5 mm from the end of the optically opaque waterproof housing, enabling measurements at very close distances to sources. The sensitive detector electronics allow the measurement of very low dose rates, as exist at centimeter distances from these sources. The detector is also applicable to mapping dose distributions from more complex source geometries such as eye applicators for treating macular degeneration.

  2. Characterization of Choroidal Layers in Normal Aging Eyes Using Enface Swept-Source Optical Coherence Tomography

    Science.gov (United States)

    Mullins, Robert F.; Baumal, Caroline R.; Mohler, Kathrin J.; Kraus, Martin F.; Liu, Jonathan; Badaro, Emmerson; Alasil, Tarek; Hornegger, Joachim; Fujimoto, James G.; Duker, Jay S.; Waheed, Nadia K.

    2015-01-01

    Purpose To characterize qualitative and quantitative features of the choroid in normal eyes using enface swept-source optical coherence tomography (SS-OCT). Methods Fifty-two eyes of 26 consecutive normal subjects were prospectively recruited to obtain multiple three-dimensional 12x12mm volumetric scans using a long-wavelength high-speed SS-OCT prototype. A motion-correction algorithm merged multiple SS-OCT volumes to improve signal. Retinal pigment epithelium (RPE) was segmented as the reference and enface images were extracted at varying depths every 4.13μm intervals. Systematic analysis of the choroid at different depths was performed to qualitatively assess the morphology of the choroid and quantify the absolute thicknesses as well as the relative thicknesses of the choroidal vascular layers including the choroidal microvasculature (choriocapillaris, terminal arterioles and venules; CC) and choroidal vessels (CV) with respect to the subfoveal total choroidal thickness (TC). Subjects were divided into two age groups: younger (choroidal-scleral interface were used to assess specific qualitative features. In the younger age group, the mean absolute thicknesses were: TC 379.4μm (SD±75.7μm), CC 81.3μm (SD±21.2μm) and CV 298.1μm (SD±63.7μm). In the older group, the mean absolute thicknesses were: TC 305.0μm (SD±50.9μm), CC 56.4μm (SD±12.1μm) and CV 248.6μm (SD±49.7μm). In the younger group, the relative thicknesses of the individual choroidal layers were: CC 21.5% (SD±4.0%) and CV 78.4% (SD±4.0%). In the older group, the relative thicknesses were: CC 18.9% (SD±4.5%) and CV 81.1% (SD±4.5%). The absolute thicknesses were smaller in the older age group for all choroidal layers (TC p=0.006, CC p=0.0003, CV p=0.03) while the relative thickness was smaller only for the CC (p=0.04). Conclusions Enface SS-OCT at 1050nm enables a precise qualitative and quantitative characterization of the individual choroidal layers in normal eyes. Only the CC is

  3. Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Jonathan J Liu

    Full Text Available To describe enhanced vitreous imaging for visualization of anatomic features and microstructures within the posterior vitreous and vitreoretinal interface in healthy eyes using swept-source optical coherence tomography (SS-OCT. The study hypothesis was that long-wavelength, high-speed, volumetric SS-OCT with software registration motion correction and vitreous window display or high-dynamic-range (HDR display improves detection sensitivity of posterior vitreous and vitreoretinal features compared to standard OCT logarithmic scale display.Observational prospective cross-sectional study.Multiple wide-field three-dimensional SS-OCT scans (500×500A-scans over 12×12 mm2 were obtained using a prototype instrument in 22 eyes of 22 healthy volunteers. A registration motion-correction algorithm was applied to compensate motion and generate a single volumetric dataset. Each volumetric dataset was displayed in three forms: (1 standard logarithmic scale display, enhanced vitreous imaging using (2 vitreous window display and (3 HDR display. Each dataset was reviewed independently by three readers to identify features of the posterior vitreous and vitreoretinal interface. Detection sensitivities for these features were measured for each display method.Features observed included the bursa premacularis (BPM, area of Martegiani, Cloquet's/BPM septum, Bergmeister papilla, posterior cortical vitreous (hyaloid detachment, papillomacular hyaloid detachment, hyaloid attachment to retinal vessel(s, and granular opacities within vitreous cortex, Cloquet's canal, and BPM. The detection sensitivity for these features was 75.0% (95%CI: 67.8%-81.1% using standard logarithmic scale display, 80.6% (95%CI: 73.8%-86.0% using HDR display, and 91.9% (95%CI: 86.6%-95.2% using vitreous window display.SS-OCT provides non-invasive, volumetric and measurable in vivo visualization of the anatomic microstructural features of the posterior vitreous and vitreoretinal interface. The

  4. Optical identification of the supersoft X-ray source RX J0439.8-6809.

    Science.gov (United States)

    van Teeseling, A.; Reinsch, K.; Beuermann, K.

    1996-03-01

    We have identified RXJ0439.X-6809 with a very blue B=21.5 object. There is no evidence for x-ray or optical variability. The optical spectrum does not show any absorption or emission features. The very blue optical spectrum suggests that the optical flux is the Rayleigh-Jeans tail of the soft X-ray component. The spectral parameters are consistent with a location in the Large Magellanic Cloud. RXJ0439 may be an accreting binary in which a low-mass white dwarf is recurrently burning accreted matter with a very long X-ray on-time. Alternatively, RXJ0439 may be a ~1Msun_ post-AGB star, which may have re-entered the high-luminosity phase due to a late helium shell flash.

  5. Multibeam scanning optics with single laser source for full-color printers.

    Science.gov (United States)

    Maruo, S; Arimoto, A; Kobayashi, S

    1997-10-01

    In the novel optical system described here, four-color toners can be developed in one rotation of the photoconductor, and the color control information is given when the intensities of the laser power levels are changed and the two polarization directions are switched. A polarizing beam splitter between the common scanning optics and the photoconductor enables the laser beam to pass through a common scanning system and to illuminate two positions on the photoconductive material. The laser beam polarization direction is controlled by an electro-optical device immediately behind the laser. In each illuminated position, two-color toners are developed by a three-level (trilevel) photographic process. This simplified optical system eliminates the registration errors that occur with four-color information items and can be useful in high-speed printing systems.

  6. Holographic Optical Element-Based Laser Diode Source System for Direct Metal Deposition in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To meet the challenges of rapid prototyping, direct hardware fabrication, and on-the-spot repairs on the ground and on NASA space platforms, Physical Optics...

  7. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  8. Characterizing the resolvability of real superluminescent diode sources for application to optical coherence tomography using a low coherence interferometry model

    Science.gov (United States)

    Jansz, Paul Vernon; Richardson, Steven; Wild, Graham; Hinckley, Steven

    2014-08-01

    The axial resolution is a critical parameter in determining whether optical coherent tomography (OCT) can be used to resolve specific features in a sample image. Typically, measures of resolution have been attributed to the light source characteristics only, including the coherence length and the point spread function (PSF) width of the OCT light sources. The need to cost effectively visualize the generated PSF and OCT cross-correlated interferogram (A-scan) using many OCT light sources have led to the extrinsic evolution of the OCT simulation model presented. This research indicated that empirical resolution in vivo, as well as depending on the light source's spectral characteristics, is also strongly dependent on the optical characteristics of the tissue, including surface reflection. This research showed that this reflection could be digitally removed from the A-scan of an epithelial model, enhancing the stratum depth resolution limit (SDRL) of the subsurface tissue. Specifically, the A-scan portion above the surface, the front surface interferogram, could be digitally subtracted, rather than deconvolved, from the subsurface part of each A-scan. This front surface interferogram subtraction resulted in considerably reduced empirical SDRLs being much closer to the superluminescent diodes' resolution limits, compared to the untreated A-scan results.

  9. X-ray and optical monitoring of the peculiar source 4U 1700+24/V934 Her

    CERN Document Server

    Masetti, N; Cusumano, G; Amati, L; Bartolini, C; Del Sordo, S; Frontera, F; Guarnieri, A; Orlandini, M; Palazzi, E; Parmar, A N; Piccioni, A; Santangelo, A

    2002-01-01

    (Abridged) We report on ASCA and BeppoSAX observations of the X-ray source 4U 1700+24 and on (quasi-)simultaneous spectroscopy of its optical counterpart, V934 Her, from the Loiano 1.5-meter telescope. Archival ROSAT and RXTE data as well as the RXTE ASM light curve of 4U 1700+24 are also analyzed along with a 1985 EXOSAT pointing. The optical spectra are typical of a M2 III star; a revised distance to the object of ~400 pc is inferred. While these spectra do not show either any change between the two epochs or any peculiar feature, the X-ray spectra reveal a complex and long-term variable shape, with a clear soft excess. The X-ray spectral properties of the source are best described by a thermal Comptonization spectrum plus a soft energy(<1 keV) excess, which can be modeled with a blackbody emission with kT_BB ~ 1 keV; the latter component is not detected at the lowest source flux levels. The ratio between the two components varies substantially with the source flux. The X-ray emission from the object app...

  10. Design and implementation of omni-directional light source and receiving system used in underwater wireless optical communication

    Science.gov (United States)

    Rao, Jionghui; Yao, Wenming; Chen, Nannan

    2013-08-01

    Underwater wireless optical communication is a communication mode which uses light as an information carrier and water as transmission medium. As a result of the inherent characteristics of the light waves, underwater wireless optical communication has the advantages of high transmission rate, good security, and strong anti-interference ability. It is suitable for high-speed, short-range communication between underwater mobile vehicles. Underwater optical wireless communication system designed in this paper is composed of the omni-directional communication light source and the receiving system. In the omni-directional communication light source, the laser beams with small divergence angle of 532nm wavelength produced by modulated laser are expanded through a combination refraction-reflection solid and then obtain more than 2π space divergence angle. The paper use TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and test in the air and underwater, the result shows that the effect is fine. Unlike in the air, light attenuation is heavy in the water and a large range of variations in light intensity at different distances appear during underwater optical communication. In order to overcome this problem, the paper use a small photomultiplier as the detection device, design the receiving system using the automatic gain control technique. Underwater wireless optical communication system designed in this paper has the characteristics of small size, low power dissipation and the omni-directional communication function, it is suitable for application in the UUV, AUV, Swimmer Delivery Vehicle (SDV) and other underwater mobile platform, it realizes point-to-point communications and point-to-multipoint communications.

  11. VNIR, MWIR, and LWIR source assemblies for optical quality testing and spectro-radiometric calibration of earth observation satellites

    Science.gov (United States)

    Compain, Eric; Maquet, Philippe; Leblay, Pierrick; Gavaud, Eric; Marque, Julien; Glastre, Wilfried; Cortese, Maxime; Sugranes, Pierre; Gaillac, Stephanie; Potheau, Hervé

    2015-09-01

    This document presents several original OGSEs, Optical Ground Support Equipment, specifically designed and realized for the optical testing and calibration of earth observation satellites operating in a large spectral band from 0.4μm to 14.7μm. This work has been mainly supported by recent development dedicated to MTG, Meteosat Third Generation, the ESA next generation of meteorological satellites. The improved measurement capabilities of this new satellite generation has generated new challenging requirements for the associated optical test equipments. These improvements, based on design and component innovation will be illustrated for the MOTA, the GICS and the DEA OGSEs. MOTA and GICS are dedicated to the AIT, Assembly Integration and Test, of FCI, the Flexible Combined Imager of the imaging satellite MTG-I. DEA OGSE is dedicated to the AIT of the DEA, Detection Electronics Assembly, which is part of IRS instrument, an IR sounder part of MTG-S satellite. From an architectural point of view, the presented original designs enable to run many optical tests with a single system thanks to a limited configuration effort. Main measurement capabilities are optical quality testing (MTF based mainly on KEF measurement), Line of Sight (LoS) stability measurement, straylight analyses, VNIR-MWIR-LWIR focal plane array co-registration, and broadband large dynamic spectro-radiometric calibration. Depending on the AIT phase of the satellite, these source assemblies are operated at atmospheric pressure or under secondary vacuum. In operation, they are associated with an opto-mechanical projection system that enables to conjugate the image of the source assembly with the focal plane of the satellite instruments. These conjugation systems are usually based on high resolution, broadband collimator, and are optionally mounted on hexapod to address the entire field of instruments.

  12. Multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography at 400 kHz

    Science.gov (United States)

    El-Haddad, Mohamed T.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-02-01

    Multimodal imaging systems that combine scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) have demonstrated the utility of concurrent en face and volumetric imaging for aiming, eye tracking, bulk motion compensation, mosaicking, and contrast enhancement. However, this additional functionality trades off with increased system complexity and cost because both SLO and OCT generally require dedicated light sources, galvanometer scanners, relay and imaging optics, detectors, and control and digitization electronics. We previously demonstrated multimodal ophthalmic imaging using swept-source spectrally encoded SLO and OCT (SS-SESLO-OCT). Here, we present system enhancements and a new optical design that increase our SS-SESLO-OCT data throughput by >7x and field-of-view (FOV) by >4x. A 200 kHz 1060 nm Axsun swept-source was optically buffered to 400 kHz sweep-rate, and SESLO and OCT were simultaneously digitized on dual input channels of a 4 GS/s digitizer at 1.2 GS/s per channel using a custom k-clock. We show in vivo human imaging of the anterior segment out to the limbus and retinal fundus over a >40° FOV. In addition, nine overlapping volumetric SS-SESLO-OCT volumes were acquired under video-rate SESLO preview and guidance. In post-processing, all nine SESLO images and en face projections of the corresponding OCT volumes were mosaicked to show widefield multimodal fundus imaging with a >80° FOV. Concurrent multimodal SS-SESLO-OCT may have applications in clinical diagnostic imaging by enabling aiming, image registration, and multi-field mosaicking and benefit intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted image-based surrogate biomarkers of disease.

  13. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III.

    Science.gov (United States)

    Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ˜160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  14. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  15. Correlation of choroidal thickness and volume measurements with axial length and age using swept source optical coherence tomography and optical low-coherence reflectometry.

    Science.gov (United States)

    Michalewski, Janusz; Michalewska, Zofia; Nawrocka, Zofia; Bednarski, Maciej; Nawrocki, Jerzy

    2014-01-01

    To report choroidal thickness and volume in healthy eyes using swept source optical coherence tomography (SS-OCT). A prospective observational study of 122 patients examined with swept source OCT (DRI-OCT, Topcon, Japan). In each eye, we performed 256 horizontal scans, 12 mm in length and centered on the fovea. We calculated choroidal thickness manually with a built-in caliper and automatically using DRI-OCT mapping software. Choroidal volume was also automatically calculated. We measured axial length with optical low-coherence reflectometry (Lenstar LS 900, Haag-Streit, Switzerland). The choroid has focally increased thickness under the fovea. Choroid was thinnest in the outer nasal quadrant. In stepwise regression analysis, age was estimated as the most significant factor correlating with decreased choroidal thickness (F=23.146, Pchoroidal thickness and volume maps. Choroidal thickness is increased at the fovea and is thinnest nasally. Age and axial length are critical for the estimation of choroidal thickness and volume. Choroidal measurements derived from SS-OCT images have potential value for objectively documenting disease-related choroidal thickness abnormalities and monitoring progressive changes over time.

  16. AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-09-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  17. Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic

    Directory of Open Access Journals (Sweden)

    R. Adam de Villiers

    2009-12-01

    Full Text Available Airborne lidar and in-situ measurements of the aerosol properties were conducted between Svalbard Island and Scandinavia in April 2008. Evidence of aerosol transport from Europe and Asia is given. The analysis of the aerosol optical properties based on a multiwavelength lidar (355, 532, 1064 nm including depolarization at 355 nm aims at distinguishing the role of the different aerosol sources (Siberian wild fires, Eastern Asia and European anthropogenic emissions. Combining, first aircraft measurements, second FLEXPART simulations with a calculation of the PBL air fraction originating from the three different mid-latitude source regions, and third level-2 CALIPSO data products (i.e. backscatter coefficient, depolarisation and color ratio in aerosol layers along the transport pathways, appears a valuable approach to identify the role of the different aerosol sources even after a transport time larger than 4 days. Above Asia, CALIPSO data indicate more depolarisation (up to 15% and largest color ratio (>0.5 for the northeastern Asia emissions (i.e. an expected mixture of Asian pollution and dust, while low depolarisation together with smaller and quasi constant color ratio (≈0.3 are observed for the Siberian biomass burning emissions. A similar difference is visible between two layers observed by the aircraft above Scandinavia. The analysis of the time evolution of the aerosol optical properties revealed by CALIPSO between Asia and Scandinavia shows a gradual decrease of the aerosol backscatter, depolarisation ratio and color ratio which suggests the removal of the largest particles in the accumulation mode. A similar study conducted for a European plume has shown aerosol optical properties intermediate between the two Asian sources with color ratio never exceeding 0.4 and moderate depolarisation ratio being always less than 8%, i.e. less aerosol from the accumulation mode.

  18. Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography

    Science.gov (United States)

    Choi, Dong-hak; Yoshimura, Reiko; Ohbayashi, Kohji

    2013-01-01

    Monolithic Vernier tuned super-structure grating distributed Bragg reflector (SSG-DBR) lasers are expected to become one of the most promising sources for swept source optical coherence tomography (SS-OCT) with a long coherence length, reduced sensitivity roll-off, and potential capability for a very fast A-scan rate. However, previous implementations of the lasers suffer from four main problems: 1) frequencies deviate from the targeted values when scanned, 2) large amounts of noise appear associated with abrupt changes in injection currents, 3) optically aliased noise appears due to a long coherence length, and 4) the narrow wavelength coverage of a single chip limits resolution. We have developed a method of dynamical frequency tuning, a method of selective data sampling to eliminate current switching noise, an interferometer to reduce aliased noise, and an excess-noise-free connection of two serially scanned lasers to enhance resolution to solve these problems. An optical frequency comb SS-OCT system was achieved with a sensitivity of 124 dB and a dynamic range of 55-72 dB that depended on the depth at an A-scan rate of 3.1 kHz with a resolution of 15 μm by discretely scanning two SSG-DBR lasers, i.e., L-band (1.560-1.599 μm) and UL-band (1.598-1.640 μm). A few OCT images with excellent image penetration depth were obtained. PMID:24409394

  19. Dual-modal photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source

    Science.gov (United States)

    Lee, Changho; Han, Seunghoon; Kim, Sehui; Jeon, Minyoung; Jeon, Mansik; Kim, Chulhong; Kim, Jeehyun

    2013-03-01

    We report the development of a combined dual-modal photoacoustic and optical coherence tomography (PA-OCT) system using a single near-infrared (NIR) supercontinuum laser source which can provide both optical absorption and scattering contrasts simultaneously. By using a small sized pulsed Nd:YAG microchip laser and a photonic crystal fiber, we fabricated a pulsed broadband supercontinuum source from 600 to 1700 nm. Under the same optical hardware system, intrinsically registered PA and OCT images are acquired in a single scanning. In order to demonstrate feasibility of our system, we successfully acquired the PA and OCT images of black and white hairs images at the same time. The black hair was detected in both PA and OCT images, while the white hair appeared only in the OCT image. This result suggests the potential of compact, cost-effective, and simple dual-modal PA-OCT system. Moreover, we believe that this approach will be a key point for commercialization and clinical translation.

  20. Optical counterparts of two ultraluminous X-ray sources NGC4559 X-10 and NGC4395 ULX-1

    CERN Document Server

    Vinokurov, A; Atapin, K

    2016-01-01

    We study the optical counterparts of ultraluminous X-ray sources NGC4559 X-10 and NGC4395 ULX-1. Their absolute magnitudes, after taking the reddening into account, are $M_V \\approx -5.3$ and $M_V \\approx -6.2$, respectively. The spectral energy distribution of the NGC4559 X-10 counterpart is well fitted by a spectrum of an F-type star, whereas NGC4395 ULX-1 has a blue power-law spectrum. Optical spectroscopy of NGC4395 ULX-1 has shown a broad and variable HeII~$\\lambda$4686 emission, which puts this object in line with all the other spectrally-studied ULXs. Using the Swift archival X-ray data for NGC4395 ULX-1, we have found a period of $62.8\\pm 2.3$ days. The X-ray phase curve of the source is very similar to the precession curve of SS433. The optical variation of the counterpart (between two accurate measurements) amounts to 0.10 mag. Analyzing the absolute magnitudes of 16 well-studied ULX counterparts one may suggest that as the original accretion rate decreases (but nevertheless remains supercritical), ...

  1. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-03-01

    Full Text Available Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning.

  2. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI.

    Science.gov (United States)

    Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao

    2016-03-19

    Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning.

  3. Optical phase-locked loop signal sources for phased-array communications antennas

    Science.gov (United States)

    Langley, Lloyd N.; Edge, Colin; Wale, Michael J.; Gliese, Ulrik B.; Seeds, Alwyn J.; Walton, Channing; Wright, James G.; Coryell, Louis A.

    1997-10-01

    A coherent, optical heterodyne approach to signal generation and beamforming is particularly advantageous in multi-beam mobile phased arrays. Use of optical technology allows an optimum distribution of weight and power to be achieved between the antenna face and central electronics, together with an efficient implementation of the beamforming function and a modular design approach in which the basic building blocks are frequency-independent. Systems of this type employ a pair of optical carriers with a difference frequency equal to the required microwave signal. Phased- locking is necessary in order to achieve sufficiently low phase noise in the radio communication link. Optical phase locked loops (OPLLs) have been shown to be potential candidates for this application, yet work still needs to be done to bring them from the laboratory to field demonstrations. This paper describes the construction of a laser-diode OPLL subsystem for evaluation in a proof-of- concept beamforming system. This involves optimization of the loop design, development of single-frequency laser diodes with the correct linewidth, modulation and tuning characteristics and integration into a micro-optic assembly with custom wideband electronics.

  4. 10 Gbps Colorless Optical Source in Wavelength-Division Multiplexed Passive Optical Networks for Monolithic Integration of Deep-Ridge Waveguide Electroabsorption Modulator with Planar Buried-Heterostructure Semiconductor Optical Amplifier

    Science.gov (United States)

    Kim, Dong Churl; Kim, Ki Soo; Kim, Hyun-Soo; Choi, Byung-Seok; Kwon, O.-Kyun

    2012-05-01

    For the 10 Gbps colorless optical source in wavelength-division multiplexed passive optical networks (WDM-PONs), we have fabricated a semiconductor optical amplifier-reflective electorabsorption modulator (SOA-REAM) by monolithic integration of deep-ridge waveguide REAM (DRW-REAM) with planar buried-heterostructure (PBH) SOA using a PNP-current blocking layer. The SOA-REAM has a spot-size convertor for easy fiber coupling. Using a butterfly module with an SMA connector, we have packaged the SOA-REAM. At a -10 dBm input power of 1550 nm, the saturation output power is about 6 dBm. At 10.7 Gbps, we can obtain clear eye diagrams, and the power penalty at 10-9 bit-error rate (BER) after 20 km transmission is less than 1 dB over 35 nm.

  5. An intelligent despeckling method for swept source optical coherence tomography images of skin

    Science.gov (United States)

    Adabi, Saba; Mohebbikarkhoran, Hamed; Mehregan, Darius; Conforto, Silvia; Nasiriavanaki, Mohammadreza

    2017-03-01

    Optical Coherence Optical coherence tomography is a powerful high-resolution imaging method with a broad biomedical application. Nonetheless, OCT images suffer from a multiplicative artefacts so-called speckle, a result of coherent imaging of system. Digital filters become ubiquitous means for speckle reduction. Addressing the fact that there still a room for despeckling in OCT, we proposed an intelligent speckle reduction framework based on OCT tissue morphological, textural and optical features that through a trained network selects the winner filter in which adaptively suppress the speckle noise while preserve structural information of OCT signal. These parameters are calculated for different steps of the procedure to be used in designed Artificial Neural Network decider that select the best denoising technique for each segment of the image. Results of training shows the dominant filter is BM3D from the last category.

  6. Characterization of Choroidal Layers in Normal Aging Eyes Using Enface Swept-Source Optical Coherence Tomography.

    Directory of Open Access Journals (Sweden)

    Mehreen Adhi

    Full Text Available To characterize qualitative and quantitative features of the choroid in normal eyes using enface swept-source optical coherence tomography (SS-OCT.Fifty-two eyes of 26 consecutive normal subjects were prospectively recruited to obtain multiple three-dimensional 12 x 12 mm volumetric scans using a long-wavelength high-speed SS-OCT prototype. A motion-correction algorithm merged multiple SS-OCT volumes to improve signal. Retinal pigment epithelium (RPE was segmented as the reference and enface images were extracted at varying depths every 4.13 μm intervals. Systematic analysis of the choroid at different depths was performed to qualitatively assess the morphology of the choroid and quantify the absolute thicknesses as well as the relative thicknesses of the choroidal vascular layers including the choroidal microvasculature (choriocapillaris, terminal arterioles and venules; CC and choroidal vessels (CV with respect to the subfoveal total choroidal thickness (TC. Subjects were divided into two age groups: younger (<40 years and older (≥ 40 years.Mean age of subjects was 41.92 (24-66 years. Enface images at the level of the RPE, CC, CV, and choroidal-scleral interface were used to assess specific qualitative features. In the younger age group, the mean absolute thicknesses were: TC 379.4 μm (SD ± 75.7 μm, CC 81.3 μm (SD ± 21.2 μm and CV 298.1 μm (SD ± 63.7 μm. In the older group, the mean absolute thicknesses were: TC 305.0 μm (SD ± 50.9 μm, CC 56.4μm (SD ± 12.1 μm and CV 248.6μm (SD ± 49.7 μm. In the younger group, the relative thicknesses of the individual choroidal layers were: CC 21.5% (SD ± 4.0% and CV 78.4% (SD ± 4.0%. In the older group, the relative thicknesses were: CC 18.9% (SD ± 4.5% and CV 81.1% (SD ± 4.5%. The absolute thicknesses were smaller in the older age group for all choroidal layers (TC p=0.006, CC p=0.0003, CV p=0.03 while the relative thickness was smaller only for the CC (p=0.04.Enface SS-OCT at 1050

  7. Electromagnetic Propagation in Multimode Optical Fibers, Excited by Sources of Finite Bandwidth.

    Science.gov (United States)

    1980-08-15

    2 treatment generalizes that of Marcuse , since it is ap- plicable to the propagation of a polychromatic signal, a However, it is hardly necessary to...situations. ’D. Marcuse , Theory of Dielectric Optical Waveguides (Aca- demic, New York, 1974). The general case of time-dependent propagation of 2S. D...fibers,",2 the mth and nth mode, that is 1586 J. Opt. Soc. Am., Vol. 68 , No. 11, November 1978 0030-3941178/6811-15800.50 0 1978 Optical Society of

  8. Electro-optic sampling of THz pulses at the CTR source at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Steffen

    2012-06-15

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  9. Scalable standard optical sources in the VUV: Emissions from electron impact on metals. [tantalum and tungsten

    Science.gov (United States)

    Hughes, R.

    1980-01-01

    The use of electron impact on metals in the development of a compact optical standard lamp in the vacuum ultraviolet is described. Two different mechanisms are exploited, transition radiation and bremsstrahlung. Transition radiation will be used as a primary standard from 1200A to 3000A using 10 keV electron impact on tungsten. Bremsstrahlung will be used in the soft X-ray region below 1200A to less than 5A as an optical transfer standard from 4 keV electron impact on tantalum or tungsten.

  10. Optical non-contact floating object tracking using an open-source library

    DEFF Research Database (Denmark)

    2013-01-01

    In this paper, an optical non-contact low budget method for tracking the position of multi-object is presented for marine/off-shore laboratory applications. Particular focus is given at the wave energy field and the analysis of floating wave energy converters dynamics. The measurement of the posi......In this paper, an optical non-contact low budget method for tracking the position of multi-object is presented for marine/off-shore laboratory applications. Particular focus is given at the wave energy field and the analysis of floating wave energy converters dynamics. The measurement...

  11. The optical properties of regenerated silk fibroin films obtained from different sources

    Science.gov (United States)

    Perotto, Giovanni; Zhang, Yuji; Naskar, Deboki; Patel, Nereus; Kaplan, David L.; Kundu, Subhas C.; Omenetto, Fiorenzo G.

    2017-09-01

    Silk fibroin possesses unique properties for bio-functional optical interfaces and has been attracting increasing interest as an optical material. Here, we report on the refractive index and absorption coefficient of silk fibroin extracted from Bombyx mori, Antheraea mylitta, Samia ricini, and Antheraea assamensis. The influence of protein molecular weight, residual water content, and crystallinity on refractive index was investigated. The parameters for the Cauchy dispersion law and Urbach absorption were determined for each of the silk fibroins. By exploiting the differences in refractive index between the different fibroins, an all-protein slab waveguide was fabricated.

  12. Optical coherence photoacoustic microscopy (OC-PAM) with an intensity-modulated continuous-wave broadband light source

    Science.gov (United States)

    Liu, Xiaojing; Wen, Rong; Li, Yiwen; Jiao, Shuliang

    2016-06-01

    We developed an optical coherence photoacoustic microscopy system using an intensity-modulated continuous-wave superluminescent diode with a center wavelength of 840 nm. The system can accomplish optical coherence tomography (OCT) and photoacoustic microscopy (PAM) simultaneously. Compared to the system with a pulsed light source, this system is able to achieve OCT imaging with quality as high as conventional spectral-domain OCT. Since both of the OCT and PAM images are generated from the same group of photons, they are intrinsically registered in the lateral directions. The system was tested for multimodal imaging the vasculature of mouse ear in vivo by using gold nanorods as contrast agent for PAM, as well as excised porcine eyes ex vivo. The OCT and PAM images showed complimentary information of the sample.

  13. Single-source bidirectional free-space optical communications using reflective SOA-based amplified modulating retro-reflection

    Science.gov (United States)

    Wang, Xiaoyan; Feng, Xianglian; Zhang, Peng; Wang, Tianshu; Gao, Shiming

    2017-03-01

    A novel amplified modulating retro-reflector (AMRR) based on a reflective semiconductor optical amplifier (RSOA) is proposed and a bidirectional free-space optical communication (FSO) system including both downstream and upstream links is experimentally demonstrated with only a single light source using this AMRR. The RSOA-based AMRR can provide a net gain more than 4 dB and support the modulation bit rate up to 1.25 Gbit/s. The bidirectional FSO transmission performance is evaluated by observing eye diagrams and measuring bit error rate (BER) results of both 10-Gbit/s DPSK downstream and 1.25-Gbit/s OOK upstream signals. The factors that limit the modulation bit rate and transmission quality are analyzed. The power penalties of both links are less than 0.69 dB in the bidirectional FSO system at the BER of 1×10-3.

  14. Ultrasonic condition monitoring of composite structures using a low-profile acoustic source and an embedded optical fiber sensor

    Science.gov (United States)

    Pierce, S. Gareth; Staszewski, Wieslaw J.; Gachagan, Anthony; James, I. R.; Philip, Wayne R.; Worden, Keith; Culshaw, Brian; McNab, Alistair; Tomlinson, Geoffrey R.; Hayward, Gordon

    1997-06-01

    The purpose of this paper is to provide a concise introduction to the developments and recent findings of a BRITE-EURAM program of work (BRE2.CT94-0990 , structurally integrated system for the comprehensive evaluation of composites). The aim of the program has been to develop an acoustic/ultrasonic based structural monitoring system for composite structures using material compatible sensors. Since plate-like structures have been investigated, it has been a requirement to utilize the propagation of ultrasonic Lamb waves through the sample materials. Preliminary investigations utilized conventional piezo-electric sources coupled to the sample via perspex wedges. The Lamb waves generated by these sources were monitored using either a fully embedded or surface mounted optical fiber sensors. The system was tested with a variety of different carbon and glass fiber reinforced panels, and the interaction of the lamb waves with different defects in these materials was monitored. Conventional signal processing allowed the location of defects such as impact damage sites, delaminations and holes. Subsequent investigations have endeavored to refine the system. This paper reports the development of advanced wavelet based signal processing techniques to enhance defect visibility, the optical connectorization of composite panels, and the development of flexible low profile acoustic sources for efficient Lamb wave generation.

  15. Phase-sensitive optical coherence tomography-based vibrometry using a highly phase-stable akinetic swept laser source

    Energy Technology Data Exchange (ETDEWEB)

    Applegate, Brian E.; Park, Jesung; Carbajal, Esteban [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States); Oghalai, John S. [Department of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, California (United States)

    2015-12-31

    Phase-sensitive Optical Coherence Tomography (PhOCT) is an emerging tool for in vivo investigation of the vibratory function of the intact middle and inner ear. PhOCT is able to resolve micron scale tissue morphology in three dimensions as well as measure picometer scale motion at each spatial position. Most PhOCT systems to date have relied upon the phase stability offered by spectrometer detection. On the other hand swept laser source based PhOCT offers a number of advantages including balanced detection, long imaging depths, and high imaging speeds. Unfortunately the inherent phase instability of traditional swept laser sources has necessitated complex user developed hardware/software solutions to restore phase sensitivity. Here we present recent results using a prototype swept laser that overcomes these issues. The akinetic swept laser is electronically tuned and precisely controls sweeps without any mechanical movement, which results in high phase stability. We have developed an optical fiber based PhOCT system around the akinetic laser source that had a 1550 nm center wavelength and a sweep rate of 140 kHz. The stability of the system was measured to be 4.4 pm with a calibrated reflector, thus demonstrating near shot noise limited performance. Using this PhOCT system, we have acquired structural and vibratory measurements of the middle ear in a mouse model, post mortem. The quality of the results suggest that the akinetic laser source is a superior laser source for PhOCT with many advantages that greatly reduces the required complexity of the imaging system.

  16. Ultra-pure RF tone from a micro-ring resonator based optical frequency comb source

    CERN Document Server

    Pasquazi, Alessia; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2014-01-01

    We demonstrate a novel mode locked ultrafast laser, based on an integrated high-Q micr-oring resonator. Our scheme exhibits stable operation of two slightly shifted spectral optical comb replicas. It generates a highly monochromatic radiofrequency modulation of 60MHz on a 200GHz output pulse train, with a linewidth < 10kHz

  17. An atomic beam source for fast loading of a magneto-optical trap under high vacuum

    DEFF Research Database (Denmark)

    McDowall, P.D.; Hilliard, Andrew; Grünzweig, T.

    2012-01-01

    is capable of loading 90 of a magneto-optical trap (MOT) in less than 7 s while maintaining a low vacuum pressure of 10 -11 Torr. The transverse velocity components of the atomic beam are measured to be within typical capture velocities of a rubidium MOT. Finally, we show that the atomic beam can be turned...

  18. Optical dating of single sand-sized grains of quartz: Sources of variability

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Murray, A.S.

    2000-01-01

    Optically stimulated luminescence (OSL) measurements have been made of over 3000 sand-sized grains of quartz. Analysis at this scale highlights the variability in the luminescence sensitivity and the dose saturation characteristics of individual quartz grains. Using a new instrument capable of me...... intensity, dose saturation characteristics and instrument uncertainty in equivalent dose calculation. (C) 2000 Elsevier Science Ltd. All rights reserved....

  19. White light sources based on multiple precision selective micro-filling of structured optical waveguides.

    Science.gov (United States)

    Canning, J; Stevenson, M; Yip, T K; Lim, S K; Martelli, C

    2008-09-29

    Multiple precision selective micro-filling of a structured optical fibre using three luminescent dyes enables the simultaneous capture of red, blue and green luminescence within the core to generate white light. The technology opens up a new approach to integration and superposition of the properties of multiple materials to create unique composite properties within structured waveguides.

  20. Fiber optic Cerenkov radiation sensor system to estimate burn-up of spent fuel: characteristic evaluation of the system using Co-60 source

    Science.gov (United States)

    Shin, S. H.; Jang, K. W.; Jeon, D.; Hong, S.; Kim, S. G.; Sim, H. I.; Yoo, W. J.; Park, B. G.; Lee, B.

    2013-09-01

    Cerenkov radiation occurs when charged particles are moving faster than the speed of light in a transparent dielectric medium. In optical fibers, the Cerenkov light also can be generated due to their dielectric components. Accordingly, the radiation-induced light signals can be obtained using optical fibers without any scintillating material. In this study, to measure the intensities of Cerenkov radiation induced by gamma-rays, we have fabricated the fiber-optic Cerenkov radiation sensor system using silica optical fibers, plastic optical fibers, multi-anode photomultiplier tubes, and a scanning system. To characterize the Cerenkov radiation generated in optical fibers, the spectra of Cerenkov radiation generated in the silica and plastic optical fibers were measured. Also, the intensities of Cerenkov radiation induced by gamma-rays generated from a cylindrical Co-60 source with or without lead shielding were measured using the fiberoptic Cerenkov radiation sensor system.

  1. Influence of high-order optical parameters of tissue on spatially resolved reflectance in the region close to the source

    Institute of Scientific and Technical Information of China (English)

    Huijuan Tian; Ying Liu; Lijun Wang; Xiaojuan Zhang; Zonghui Gao

    2006-01-01

    @@ Influences of the scattering phase functions on spatially resolved diffuse reflectance from a homogenous semi-infinite medium close to source are studied with Monte Carlo simulation. It is shown that the influences of optical parameters higher than the second order on the diffuse reflectance are quite weak in the region from 0.3 to several transport mean free pathes when Henyey-Greenstein phase function or a combined phase function of two parameters are used. But this influence may be substantial if the double Henyey-Greenstein function is used to describe the scattering property of tissue.

  2. Design of an efficient Mid-IR light source using As2S3 based highly nonlinear microstructured optical fibers

    CERN Document Server

    Barh, A; Agrawal, G P; Varshney, R K; Aggarwal, I D; Pal, B P

    2012-01-01

    We report on the design of a highly-nonlinear specialty fiber as a mid-infrared light source at 4.3 {\\mu}m. A meter length of the designed solid-core chalcogenide based index-guided microstructured optical fiber (MOF) with circular air holes has been exploited to translate wavelength via four wave mixing using a thulium-doped fiber laser as the pump with a relatively low peak power of 5 W. A peak gain value of around 37 dB with full width at half maxima (FWHM) less than 3 nm is achieved.

  3. Optical design and performance of the phase II inelastic scattering beamline at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Caliebe, W.A.; Kao, C.-C.; Oversluizen, T.; Montanez, P.; Hastings, J.B. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton New York, 11973 (United States); Caliebe, W.A. [Hamburger Synchrotronstrahlungslabor HASYLAB, Deutsches Elektronen-Synchrotron DESY, 22603Hamburg (Germany)] Krisch, M. [European Synchrotron Radiation Facility, F-38043Grenoble Cedex (France)

    1997-07-01

    We report the optical design and performance of the phase II inelastic scattering beamline at the National Synchrotron Light Source. The new beamline consists of a four-crystal Si(220) monochromator followed by a bent cylinder mirror. The monochromator is tunable from 5 to 10 keV with about 0.2 eV energy resolution throughout the tuning range. The size of the focused beam is about 0.5mm(H){times}0.3mm(V). {copyright} {ital 1997 American Institute of Physics.}

  4. Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic

    Directory of Open Access Journals (Sweden)

    R. A. de Villiers

    2010-06-01

    Full Text Available Airborne lidar and in-situ measurements of the aerosol properties were conducted between Svalbard Island and Scandinavia in April 2008. Evidence of aerosol transport from Europe and Asia is given. The analysis of the aerosol optical properties based on a multiwavelength lidar (355, 532, 1064 nm including volume depolarization at 355 nm aims at distinguishing the role of the different aerosol sources (Siberian wild fires, Eastern Asia and European anthropogenic emissions. Combining, first aircraft measurements, second FLEXPART simulations with a calculation of the PBL air fraction originating from the three different mid-latitude source regions, and third level-2 CALIPSO data products (i.e. backscatter coefficient 532 nm,volume depolarization and color ratio between 1064 and 532 nm in aerosol layers along the transport pathways, appears a valuable approach to identify the role of the different aerosol sources even after a transport time larger than 4 days. Optical depth of the aerosol layers are always rather small (<4% while transported over the Arctic and ratio of the total attenuated backscatter (i.e. including molecular contribution provide more stable result than conventional aerosol backscatter ratio. Above Asia, CALIPSO data indicate more depolarization (up to 15% and largest color ratio (>0.5 for the northeastern Asia emissions (i.e. an expected mixture of Asian pollution and dust, while low depolarization together with smaller and quasi constant color ratio (≈0.3 are observed for the Siberian biomass burning emissions. A similar difference is visible between two layers observed by the aircraft above Scandinavia. The analysis of the time evolution of the aerosol optical properties revealed by CALIPSO between Asia and Scandinavia shows a gradual decrease of the aerosol backscatter, depolarization ratio and color ratio which suggests the removal of the largest particles in the accumulation mode. A similar study conducted for a European

  5. An efficient broad-band mid-wave IR fiber optic light source: Design and performance simulation

    CERN Document Server

    Barh, A; Varshney, R K; Pal, B P

    2013-01-01

    Design of a mid-wave IR (MWIR) broad-band fiber-based light source exploiting four-wave mixing (FWM) in a meter long suitably designed highly nonlinear (NL) chalcogenide microstructured optical fiber (MOF) is reported. This superior FWM bandwidth (BW) was obtained through precise tailoring of the fibers dispersion profile so as to realize positive quartic dispersion at the pump wavelength. We consider an Erbium (Er3+) doped continuous wave (CW) ZBLAN fiber laser emitting at 2.8 micron as the pump source with an average power of 5 W. Amplification factor as high as 25 dB is achievable in the 3 to 3.9 microns spectral range with average power conversion efficiency more than 32 percent.

  6. Non-contact investigation of the corneal biomechanics with air-puff swept source optical coherence tomography

    Science.gov (United States)

    Maczynska, Ewa; Karnowski, Karol; Kaluzny, Bartlomiej; Grulkowski, Ireneusz; Wojtkowski, Maciej

    2016-08-01

    In this paper, we use swept source optical coherence tomography combined with air-puff module (air-puff SS-OCT) to investigate the properties of the cornea. During OCT measurement the cornea was stimulated by short, air pulse, and corneal response was recorded. In this preliminary study, the air-puff SS-OCT instrument was applied to measure behavior of the porcine corneas under varied, well-controlled intraocular pressure conditions. Additionally, the biomechanical response of the corneal tissue before, during and after crosslinking procedure (CXL) was assessed. Air-puff swept source OCT is a promising tool to extract information about corneal behavior as well as to monitor and assess the effect of CXL.

  7. Quantum Optics with Quantum Dots in Photonic Wires: Basics and Application to “Ultrabright” Single Photon Sources

    DEFF Research Database (Denmark)

    Gérard, J. M.; Claudon, J.; Bleuse, J.

    2011-01-01

    We review recent experimental and theoretical results, which highlight the strong interest of the photonic wire (PW) geometry for quantum optics experiments with solid-state emitters, and for quantum optoelectronic devices. By studying single InAs QDs embedded within single-mode cylindrical GaAs PW......, we have noticeably observed a very strong (16 fold) inhibition of their spontaneous emission rate in the thin-wire limit, and a nearly perfect funnelling of their spontaneous emission into the guided mode for larger PWs. We present a novel single -photon-source based on the emission of a quantum dot...... embedded in an engineered PW, comprising a tapered tip so as to control the radiation pattern, and an integrated hybrid bottom mirror. Unlike microcavity-based devices, this source displays for the first time simultaneously a record-high efficiency (0.73 photon per pulse) and a very low g(2) parameter...

  8. Frequency-swept Light Sources for Optical Coherence Tomography in the 1060nm range

    DEFF Research Database (Denmark)

    Marschall, Sebastian

    by cataract. For the 1060nm band, rapidly tunable lasers|so-called swept sources|are available which enable ultra-high speed acquisition of large three-dimensional datasets. However, these light sources require further improvements: higher output power for sufficient signal quality and wider tuning bandwidth...... of retinal imaging. Our simulation reveals a general relationship between the light source bandwidth and the optimal center wavelength, which is supported by our experimental results. This relationship constitutes an important design criterion for future development of high-speed broadband swept sources....... instrument in the biomedical eld, especially in ophthalmology, where it is used for diagnosing retinal diseases. Using light at 1060nm permits deep penetration into the retina and into the layers beneath, the choroid and the sclera. This wavelength range is also benecial for imaging in eyes affected...

  9. Conjugate adaptive optics in widefield microscopy with an extended-source wavefront sensor

    CERN Document Server

    Li, Jiang; Paudel, Hari; Barankov, Roman; Bifano, Thomas; Mertz, Jerome

    2015-01-01

    Adaptive optics is a strategy to compensate for sample-induced aberrations in microscopy applications. Generally, it requires the presence of "guide stars" in the sample to serve as localized reference targets. We describe an implementation of conjugate adaptive optics that is amenable to widefield (i.e. non-scanning) microscopy, and can provide aberration corrections over potentially large fields of view without the use of guide stars. A unique feature of our implementation is that it is based on wavefront sensing with a single-shot partitioned-aperture sensor that provides large dynamic range compatible with extended samples. Combined information provided by this sensor and the imaging camera enable robust image de-blurring based on a rapid estimation of sample and aberrations obtained by closed-loop feedback. We present the theoretical principle of our technique and proof of concept experimental demonstrations.

  10. Iterative procedure for in-situ EUV optical testing with an incoherent source

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaka, Ryan; Naulleau, Patrick; Zakhor, Avideh

    2009-12-01

    We propose an iterative method for in-situ optical testing under partially coherent illumination that relies on the rapid computation of aerial images. In this method a known pattern is imaged with the test optic at several planes through focus. A model is created that iterates through possible aberration maps until the through-focus series of aerial images matches the experimental result. The computation time of calculating the through-focus series is significantly reduced by a-SOCS, an adapted form of the Sum Of Coherent Systems (SOCS) decomposition. In this method, the Hopkins formulation is described by an operator S which maps the space of pupil aberrations to the space of aerial images. This operator is well approximated by a truncated sum of its spectral components.

  11. An open source digital servo for atomic, molecular, and optical physics experiments.

    Science.gov (United States)

    Leibrandt, D R; Heidecker, J

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  12. Optical activity of the transient X-ray source A0535+26/HDE 245770

    Science.gov (United States)

    Giovannelli, F.; Bisnovatyi-Kogan, G. S.; Bruni, I.; Martinelli, F.; Monaci, M.; Rossi, C.

    2014-10-01

    We planned optical photometry of HDE 245770 at the Loiano observatory with the 1.52 m Cassini telescope, and at the Montecatini Val di Cecina Astronomical Center 36 cm telescope around the periastron passage of the neutron star A0535+26 (JD 2456821) following the ephemeris of Giovannelli et al.: 2013, A & A, 560, A1G (JD_opt-outb = JD_0(2444944) +- n(111.0 +- 0.4) days).

  13. Optical spectroscopy of p-GaAs nanopillars on Si for monolithic integrated light sources

    Science.gov (United States)

    Morales, J. S. D.; Gandan, S.; Ren, D.; Ochalski, Tomasz J.; Huffaker, Diana L.

    2017-02-01

    In this work, we study the optical properties and emission dynamics of the novel nanostructure p-GaAs nanopillars (NPs) on Si. The integration of III-V optoelectronics on Si substrates is essential for next-generation high-speed communications. NPs on Si are good candidates as gain media in monolithically integrated small-scale lasers on silicon. In order to develop this technology, an in-depth knowledge of the NP structure is necessary to resolve its optimal optical properties. The optical characterization which has been carried out consists of the emission analysis for different NP geometries. We measured NPs with different combinations of pitch (of the order of a few μm) and diameter (of the order of tens of nm). A comparison of intensities for the various NPs provides us with the most efficient geometry. The quality of the crystal grown has been studied from temperature-dependent photoluminescence (PL). A red shift and a significant reduction of the intensity of the NP emission are observed with an increase in temperature. The results also show the presence of two non-radiative recombination channels when the intensity peaks at different temperatures are analyzed with the activation energy function.

  14. Optical 40 GHz pulse source module based on a monolithically integrated mode locked DBR laser

    Science.gov (United States)

    Huettl, B.; Kaiser, R.; Kroh, M.; Schubert, C.; Jacumeit, G.; Heidrich, H.

    2005-11-01

    In this paper the performance characteristics of compact optical 40 GHz pulse laser modules consisting of a monolithic mode-locked MQW DBR laser on GaInAsP/InP are reported. The monolithic devices were fabricated as tunable multi-section buried heterostructure lasers. A DBR grating is integrated at the output port of an extended cavity in order to meet the standardized ITU wavelength channels allocated in the spectral window around 1.55 μm in optical high speed communication networks. The fabricated 40 GHz lasers modules not only emit short optical pulses (< 1.5 ps) with very low amplitude noise (<1.5 %) and phase noise levels (timing jitter: 50 fs) but also enable good pulse-to-pulse phase and long-term stability. A wavelength tuning range of 6 nm is possible and large locking bandwidths between 100 ... 260 MHz are observed. All data have been achieved by operating the lasers in a hybrid mode-locking scheme with a required minimum micro-wave power of only 12 dBm for pulse synchronization. Details on laser chip architecture and module performance are summarized and the results of a stable and error free module performance in first 160 Gb/s (4 x 40 Gb/s OTDM) RZ-DPSK transmission experiments are presented.

  15. Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing.

    Science.gov (United States)

    Zhang, Chongfu; Chen, Chen; Feng, Yuan; Qiu, Kun

    2012-03-12

    We propose and experimentally demonstrate a novel cost-effective optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system, wherein all optical network units (ONUs) are source-free not only in the optical domain but also in the electric domain, by utilizing polarization multiplexing (PolMUX) in the downlink transmission. Two pure optical bands with a frequency interval of 10 GHz and downlink up-converted 10 GHz OFDM signal are carried in two orthogonal states of polarization (SOPs), respectively. 10 GHz radio frequency (RF) source can be generated by a heterodyne of two pure optical bands after polarization beam splitting in each ONU, therefore it can be used to down-convert the downlink OFDM signal and up-convert the uplink OFDM signal. In the whole bidirectional up-converted OFDM-PON system, only one single RF source is employed in the optical line terminal (OLT). Experimental results successfully verify the feasibility of our proposed cost-effective optical OFDM-PON system.

  16. SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition.

    Science.gov (United States)

    Sun, Ryan; Bouchard, Matthew B; Hillman, Elizabeth M C

    2010-08-02

    Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software's framework and provide details to guide users with development of this and similar software.

  17. All-diamond optical assemblies for a beam-multiplexing X-ray monochromator at the Linac Coherent Light Source

    CERN Document Server

    Stoupin, S; Blank, V D; Shvyd'ko, Yu V; Goetze, K; Assoufid, L; Polyakov, S N; Kuznetsov, M S; Kornilov, N V; Katsoudas, J; Alonso-Mori, R; Chollet, M; Feng, Y; Glownia, J M; Lemke, H; Robert, A; Song, S; Sikorski, M; Zhu, D

    2014-01-01

    A double-crystal diamond (111) monochromator recently implemented at the Linac Coherent Light Source (LCLS) enables splitting of the primary X-ray beam into a pink (transmitted) and a monochromatic (reflected) branch. The first monochromator crystal with a thickness of 100 um provides sufficient X-ray transmittance to enable simultaneous operation of two beamlines. Here we report on the design, fabrication, and X-ray characterization of the first and second (300-um-thick) crystals utilized in the monochromator and the optical assemblies holding these crystals. Each crystal plate has a region of about 5 X 2 mm2 with low defect concentration, sufficient for use in X-ray optics at the LCLS. The optical assemblies holding the crystals were designed to provide mounting on a rigid substrate and to minimize mounting-induced crystal strain. The induced strain was evaluated using double-crystal X-ray topography and was found to be small over the 5 X 2 mm2 working regions of the crystals.

  18. Comparative optical study of epitaxial InGaAs quantum rods grown with As{sub 2} and As{sub 4} sources

    Energy Technology Data Exchange (ETDEWEB)

    Nedzinskas, Ramūnas; Čechavičius, Bronislovas; Kavaliauskas, Julius; Karpus, Vytautas; Valušis, Gintaras [Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius (Lithuania); Li, Lianhe; Khanna, Suraj P.; Linfield, Edmund H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2013-12-04

    Photoreflectance and photoluminescence (PL) spectroscopies are used to examine the optical properties and electronic structure of InGaAs quantum rods (QRs), embedded within InGaAs quantum well (QW). The nanostructures studied were grown by molecular beam epitaxy using As{sub 2} or As{sub 4} sources. The impact of As source on spectral features associated with interband optical transitions in the QRs and the surrounding QW are demonstrated. A red shift of the QR- and a blue shift of the QW-related optical transitions, along with a significant increase in PL intensity, have been observed if an As{sub 4} source is used. The changes in optical properties are attributed mainly to carrier confinement effects caused by variation of In content contrast between the QR material and the surrounding well.

  19. Optical and infrared counterparts of the X-ray sources detected in the Chandra Cygnus OB2 Legacy Survey

    CERN Document Server

    Guarcello, M G; Wright, N J; Naylor, T; Flaccomio, E; Kashyap, V L; Garcia-Alvarez, D

    2015-01-01

    The young massive OB association Cygnus OB2, in the Cygnus X complex, is the closest (1400 pc) star forming region to the Sun hosting thousands of young low mass stars and up to 1000 OB stars, among which are some of the most massive stars known in our Galaxy. This region holds great importance for several fields of modern astrophysics, such as the study of the physical properties of massive and young low-mass stars and the feedback provided by massive stars on star and planet formation process. Cygnus OB2 has been recently observed with Chandra/ACIS-I as part of the 1.08Msec Chandra Cygnus OB2 Legacy Project. This survey detected 7924 X-ray sources in a square degree area centered on Cyg OB2. Since a proper classification and study of the observed X-ray sources also requires the analysis of their optical and infrared counterparts, we combined a large and deep set of optical and infrared catalogs available for this region with our new X-ray catalog. In this paper we describe the matching procedure and present...

  20. Choroidal and Retinal Thickness in Children With Different Refractive Status Measured by Swept-Source Optical Coherence Tomography.

    Science.gov (United States)

    Jin, Peiyao; Zou, Haidong; Zhu, Jianfeng; Xu, Xun; Jin, Jiali; Chang, Ta Chen; Lu, Lina; Yuan, Hong; Sun, Sifei; Yan, Bo; He, Jiangnan; Wang, Mingjin; He, Xiangui

    2016-08-01

    To investigate the choroidal and retinal thickness in myopic, emmetropic, and hyperopic Chinese children by swept-source longer-wavelength optical coherence tomography. Cross-sectional study. Two-hundred and seventy-six schoolchildren aged 7-13 years underwent comprehensive ophthalmic examinations, including cycloplegic refraction, and swept-source optical coherence tomography measurements. The thickness of the choroid, retina, ganglion cell layer, and nerve fiber layer were compared among children of different refractive status. The topographic variation and factors related to the thickness of the choroid and retinal layers were analyzed. Compared to emmetropic subjects, those with myopia had a significantly thinner choroid in all regions (P choroid in most regions (P .05). The axial length and refractive diopters were independently related to central foveal choroidal thickness (R(2) = 0.17, P thicknesses (R(2) = 0.10, P choroidal and retinal thickness were unrelated in children of different refractive status (P > .05). Choroidal thickness, but not retinal thickness, correlated closely with axial length and refractive diopters in Chinese children. Choroid thinning occurs before retina thinning early in myopic progression. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Customizable electron beams from optically controlled laser plasma acceleration for γ-ray sources based on inverse Thomson scattering

    Science.gov (United States)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2016-09-01

    Laser wakefield acceleration of electrons in the blowout regime can be controlled by tailoring the laser pulse phase and the plasma target. The 100 nm-scale bandwidth and negative frequency chirp of the optical driver compensate for the nonlinear frequency red-shift imparted by wakefield excitation. This mitigates pulse self-steepening and suppresses continuous injection. The plasma channel suppresses diffraction of the pulse leading edge, further reducing self-steepening, making injection even quieter. Besides, the channel destabilizes the pulse tail confined within the accelerator cavity (the electron density "bubble"), causing oscillations in the bubble size. The resulting periodic injection generates background-free comb-like beams - sequences of synchronized, low phase-space volume bunches. Controlling the number of bunches, their energy, and energy spacing by varying the channel radius and the pulse length (as permitted by the large bandwidth) enables the design of a tunable, all-optical source of polychromatic, pulsed γ-rays using the mechanism of inverse Thomson scattering. Such source may radiate ~107 quasi-monochromatic 10 MeV-scale photons per shot into a microsteradian-scale observation angle. The photon energy is distributed among several distinct bands, each having sub-25% energy spread dictated by the mrad-scale divergence of electron beam.

  2. Herschel/PACS observations of young sources in Taurus: the far-infrared counterpart of optical jets

    Science.gov (United States)

    Podio, L.; Kamp, I.; Flower, D.; Howard, C.; Sandell, G.; Mora, A.; Aresu, G.; Brittain, S.; Dent, W. R. F.; Pinte, C.; White, G. J.

    2012-09-01

    Context. Observations of the atomic and molecular line emission associated with jets and outflows emitted by young stellar objects provide sensitive diagnostics of the excitation conditions, and can be used to trace the various evolutionary stages they pass through as they evolve to become main sequence stars. Aims: To understand the relevance of atomic and molecular cooling in shocks, and how accretion and ejection efficiency evolves with the evolutionary state of the sources, we will study the far-infrared counterparts of bright optical jets associated with Class I and II sources in Taurus (T Tau, DG Tau A, DG Tau B, FS Tau A+B, and RW Aur). Methods: We have analysed Herschel/PACS observations of a number of atomic ([O i]63 μm, 145 μm, [C ii]158 μm) and molecular (high-J CO, H2O, OH) lines, collected within the open time key project GASPS (PI: W. R. F. Dent). To constrain the origin of the detected lines we have compared the obtained FIR emission maps with the emission from optical-jets and millimetre-outflows, and the measured line fluxes and ratios with predictions from shock and disk models. Results: All of the targets are associated with extended emission in the atomic lines; in particular, the strong [O i] 63 μm emission is correlated with the direction of the optical jet/mm-outflow. The line ratios suggest that the atomic lines can be excited in fast dissociative J-shocks occurring along the jet. The molecular emission, on the contrary, originates from a compact region, that is spatially and spectrally unresolved, and lines from highly excited levels are detected (e.g., the o-H2O 818-707 line, and the CO J = 36-35 line). Disk models are unable to explain the brightness of the observed lines (CO and H2O line fluxes up to 10-15-6 × 10-16 W m-2). Slow C- or J-shocks with high pre-shock densities reproduce the observed H2O and high-J CO lines; however, the disk and/or UV-heated outflow cavities may contribute to the observed emission. Conclusions

  3. An XMM-Newton view of the young open cluster NGC 6231 - III. Optically faint X-ray sources

    Science.gov (United States)

    Sana, H.; Rauw, G.; Sung, H.; Gosset, E.; Vreux, J.-M.

    2007-05-01

    We discuss the properties of the X-ray sources with faint optical counterparts in the very young open cluster NGC 6231. From their positions in the Hertzsprung-Russell diagram, we find that the bulk of these objects probably consists of low-mass pre-main-sequence (PMS) stars with masses in the range 0.3-3.0 Msolar. The age distribution of these objects indicates that low-mass star formation in NGC 6231 started more than 10Myr ago and culminated in a starburst-like event about 1-4Myr ago when the bulk of the low-mass PMS stars as well as the massive cluster members formed. We find no evidence for a spatial age gradient that could point towards a sequential star formation process. Only a few X-ray sources have counterparts with a reddening exceeding the average value of the cluster or with infrared colours indicating the presence of a moderate near-IR excess. The X-ray spectra of the brightest PMS sources are best fitted by rather hard thermal plasma models and a significant fraction of these sources display flares in their light curve. The X-ray brightest flaring sources have decay times between 2 and 16ks. The X-ray selected PMS stars in NGC 6231 have logLX/Lbol values that increase strongly with decreasing bolometric luminosity and can reach a saturation level (logLX/Lbol ~ -2.4) for non-flaring sources and even more extreme values during flares. Based on observations with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA). E-mail: hsana@eso.org ‡ FNRS Research Associate (Belgium).

  4. The Calan-Yale Deep Extragalactic Research (CYDER) Survey: Optical Properties and Deep Spectroscopy of Extragalactic Serendipitous X-Ray Sources

    NARCIS (Netherlands)

    P.S. Coppi; E. Treister; F.J. Castander; T.J. Maccarone; E. Gawiser; J. Maza; D. Herrera; C.M. Urry; V. Gonzalez; C. Montoya; P. Pineda

    2004-01-01

    We present the results of deep optical imaging and spectroscopy of archival Chandra sources with intermediate fluxes (>1e-15 erg/cm2/sec). 267 Chandra sources were detected in 5 archival fields, with 106 spectroscopic IDs obtained using Magellan and the VLT. The survey is designed to fill the gap be

  5. Exterior optical cloaking and illusions by using active sources: A boundary element perspective

    Science.gov (United States)

    Zheng, H. H.; Xiao, J. J.; Lai, Y.; Chan, C. T.

    2010-05-01

    Recently, it was demonstrated that active sources can be used to cloak any objects that lie outside the cloaking devices [F. Guevara Vasquez, G. W. Milton, and D. Onofrei, Phys. Rev. Lett. 103, 073901 (2009)]. Here, we propose that active sources can create illusion effects so that an object outside the cloaking device can be made to look like another object. Invisibility is a special case in which the concealed object is transformed to a volume of air. From a boundary element perspective, we show that active sources can create a nearly “silent” domain which can conceal any objects inside and at the same time make the whole system look like an illusion of our choice outside a virtual boundary. The boundary element method gives the fields and field gradients, which can be related to monopoles and dipoles, on continuous curves which define the boundary of the active devices. Both the cloaking and illusion effects are confirmed by numerical simulations.

  6. 基于LED光源的DLP光学引擎的光学设计%Optical Design of DLP Optical Engine Based on LED Light Source

    Institute of Scientific and Technical Information of China (English)

    邱崧; 王蔚生; 王淑仙; 朱兵; 童雁; 刘锦高; 毛敏; 张鸣杰; 徐佳

    2008-01-01

    设计了一种基于LED光源照明系统的DLP背投电视光学引擎,样机以HD2+数字微镜(DMD),蝇眼透镜,X棱镜作为主要光学系统构件.介绍了基于光学扩展量etendue的光学系统设计方法,采用了蝇眼透镜阵列作为匀光方案来提高光能利用率和光源均匀度,分析了照明系统的工作原理和系统结构,并给出了仿真结果,样机在三组LED占空比为10:15:11的时序工作模式下白场输出光通量达到了112.3 lm,单色输出光通量分别为R.26.1 lm、G-51.4 lm、B-19.0 lm,光场均匀度小于±20%.%A new DLP Optical Engine based on LED Light Source in the illuminating system for rear projection television(RPTV)is proposed.The prototype employs HD2+Digital Micromirror Device(DMD)as the image chip,and the Fly-Lens as the homogeneous elements.The principle of the optical design method based on etendue is analyzed to design the system structure.The Fly-Lens illumination system has been employed tO realize high light collection efficiency and the optical uniformities and the optical component design is discussed.The simulation result is also proposed.Finally,the prototype is manufactured and the test result is compared to the simulation result.The white field output flux is 112.3 lm,and the homochromatic output flux R-26.1 lm,G-51.4 lm and B-19.0 lm is achieved with timing sequence distribution for the three groups of LEDs R:G:B(10:15:11).The uniformities are below±20%.

  7. The advantages of a swept source optical coherence tomography system in the evaluation of occlusal disorders

    Science.gov (United States)

    Marcauteanu, Corina; Bradu, Adrian; Sinescu, Cosmin; Topala, Florin Ionel; Negrutiu, Meda Lavinia; Duma, Virgil Florin; Podoleanu, Adrian Gh.

    2014-01-01

    Occlusal disorders are characterized by multiple dental and periodontal signs. Some of these are reversible (such as excessive tooth mobility, fremitus, tooth pain, migration of teeth in the absence of periodontitis), some are not (pathological occlusal/incisal wear, abfractions, enamel cracks, tooth fractures, gingival recessions). In this paper we prove the advantages of a fast swept source OCT system in the diagnosis of pathological incisal wear, a key sign of the occlusal disorders. On 15 extracted frontal teeth four levels of pathological incisal wear facets were artificially created. After every level of induced defect, OCT scanning was performed. B scans were acquired and 3D reconstructions were generated. A swept source OCT instrument is used in this study. The swept source is has a central wavelength of 1050 nm and a sweeping rate of 100 kHz. A depth resolution determined by the swept source of 12 μm in air was experimentally measured. The pathological incisal wear is qualitatively observed on the B-scans as 2D images and 3D reconstructions (volumes). For quantitative evaluations of volumes, we used the Image J software. Our swept source OCT system has several advantages, including the ability to measure (in air) a minimal volume of 2352 μm3 and to collect high resolution volumetric images in 2.5 s. By calculating the areas of the amount of lost tissue corresponding to each difference of B-scans, the final volumes of incisal wear were obtained. This swept source OCT method is very useful for the dynamic evaluation of pathological incisal wear.

  8. Optical properties and source analysis of aerosols over a desert area in Dunhuang, Northwest china

    Science.gov (United States)

    Ma, Yongjing; Xin, Jinyuan; Ma, Yining; Kong, Lingbin; Zhang, Kequan; Zhang, Wenyu; Wang, Yuesi; Wang, Xiuqin; Zhu, Yongfeng

    2017-08-01

    Aerosol observational data for 2012 obtained from Dunhuang Station of CARE-China (Campaign on Atmospheric Aerosol Research Network of China) were analyzed to achieve in-depth knowledge of aerosol optical properties over Dunhuang region. The results showed that the annual average aerosol optical depth (AOD) at 500 nm was 0.32±0.06, and the Ångström exponent ( α) was 0.73 ± 0.27. Aerosol optical properties revealed significant seasonal characteristics. Frequent sandstorms in MAM (March-April-May) resulted in the seasonal maximum AOD, 0.41 ± 0.04, and a relatively smaller α value, 0.44±0.04. The tourism seasons, JJA (June-July-August) and SON (September-October-November) coincide with serious emissions of small anthropogenic aerosols. While in DJF (December-January-February), the composition of the atmosphere was a mixture of dust particles and polluted aerosols released by domestic heating; the average AOD and α were 0.29 ± 0.02 and 0.66 ± 0.17, respectively. Different air masses exhibited different degrees of influence on the aerosol concentration over Dunhuang in different seasons. During MAM, ranges of AOD (0.11-1.18) and α (0.06-0.82) were the largest under the dust influence of northwest-short-distance air mass in the four trajectories. Urban aerosols transported by northwest-short-distance air mass accounted for a very large proportion in JJA and the mixed aerosols observed in SON were mainly conveyed by air masses from the west. In DJF, the similar ranges of AOD and α under the three air mass demonstrated the analogous diffusion effects on regional pollutants over Dunhuang.

  9. Noninvasive characterisation of foot reflexology areas by swept source-optical coherence tomography in patients with low back pain.

    Science.gov (United States)

    Dalal, Krishna; Elanchezhiyan, D; Das, Raunak; Dalal, Devjyoti; Pandey, Ravindra Mohan; Chatterjee, Subhamoy; Upadhyay, Ashish Datt; Maran, V Bharathi; Chatterjee, Jyotirmoy

    2013-01-01

    Objective. When exploring the scientific basis of reflexology techniques, elucidation of the surface and subsurface features of reflexology areas (RAs) is crucial. In this study, the subcutaneous features of RAs related to the lumbar vertebrae were evaluated by swept source-optical coherence tomography (SS-OCT) in subjects with and without low back pain (LBP). Methods. Volunteers without LBP (n = 6 (male : female = 1 : 1)) and subjects with LBP (n = 15 (male : female = 2 : 3)) were clinically examined in terms of skin colour (visual perception), localised tenderness (visual analogue scale) and structural as well as optical attributes as per SS-OCT. From each subject, 6 optical tomograms were recorded from equidistant transverse planes along the longitudinal axis of the RAs, and from each tomogram, 25 different spatial locations were considered for recording SS-OCT image attributes. The images were analysed with respect to the optical intensity distributions and thicknesses of different skin layers by using AxioVision Rel. 4.8.2 software. The SS-OCT images could be categorised into 4 pathological grades (i.e., 0, 1, 2, and 3) according to distinctness in the visible skin layers. Results. Three specific grades for abnormalities in SS-OCT images were identified considering gradual loss of distinctness and increase in luminosity of skin layers. Almost 90.05% subjects were of mixed type having predominance in certain grades. Conclusion. The skin SS-OCT system demonstrated a definite association of the surface features of healthy/unhealthy RAs with cutaneous features and the clinical status of the lumbar vertebrae.

  10. Noninvasive Characterisation of Foot Reflexology Areas by Swept Source-Optical Coherence Tomography in Patients with Low Back Pain

    Directory of Open Access Journals (Sweden)

    Krishna Dalal

    2013-01-01

    Full Text Available Objective. When exploring the scientific basis of reflexology techniques, elucidation of the surface and subsurface features of reflexology areas (RAs is crucial. In this study, the subcutaneous features of RAs related to the lumbar vertebrae were evaluated by swept source-optical coherence tomography (SS-OCT in subjects with and without low back pain (LBP. Methods. Volunteers without LBP (n=6 (male : female = 1 : 1 and subjects with LBP (n=15 (male : female = 2 : 3 were clinically examined in terms of skin colour (visual perception, localised tenderness (visual analogue scale and structural as well as optical attributes as per SS-OCT. From each subject, 6 optical tomograms were recorded from equidistant transverse planes along the longitudinal axis of the RAs, and from each tomogram, 25 different spatial locations were considered for recording SS-OCT image attributes. The images were analysed with respect to the optical intensity distributions and thicknesses of different skin layers by using AxioVision Rel. 4.8.2 software. The SS-OCT images could be categorised into 4 pathological grades (i.e., 0, 1, 2, and 3 according to distinctness in the visible skin layers. Results. Three specific grades for abnormalities in SS-OCT images were identified considering gradual loss of distinctness and increase in luminosity of skin layers. Almost 90.05% subjects were of mixed type having predominance in certain grades. Conclusion. The skin SS-OCT system demonstrated a definite association of the surface features of healthy/unhealthy RAs with cutaneous features and the clinical status of the lumbar vertebrae.

  11. Tunable narrow band source via the strong coupling between optical emitter and nanowire surface plasmons

    CERN Document Server

    Yang, J; Niu, Y P; Qi, Y H; Zhou, F X; Gong, S Q

    2014-01-01

    The spectrum width can be narrowed to a certain degree by decreasing the coupling strength for the two-level emitter coupled to the propagating surface plasmon. But the width can not be narrowed any further because of the loss of the photon out of system by spontaneous emission from the emitter. Here we propose a new scheme to construct a narrow-band source via a one-dimensional waveguide coupling with a three-level emitter. It is shown that the reflective spectrum width can be narrowed avoiding the impact of the loss. This approach opens up the possibility of plasmonic ultranarrow single-photon source.

  12. The radio and optical counterpart of the new Fermi LAT flaring source J0109+6134

    Science.gov (United States)

    Paredes, J. M.; Martí, J.; Peracaula, M.

    2010-02-01

    Following the recent ATELs #2414, #2416 and #2420 concerning the Fermi-LAT, AGILE and Swift/XRT consistent detections of the new gamma-ray flaring source J0109+6134, we wish to remind that the proposed radio counterpart (VCS2 J0109+6133/GT 0106+613) was extensively observed nearly two decades ago by different authors in the context of the GT catalogue of Galactic Plane radio sources (Taylor and Gregory 1983, AJ, 88, 1784; Gregory and Taylor 1986, AJ 92, 371).

  13. Experimental Results of the Superluminescent Fiber Laser Sources for Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    E. F. Pinzón-Escobar

    2012-03-01

    Full Text Available We are presenting experimental work on an erbium-doped fiber operating in the superluminescent regime. Experimental results for different pump power levels and fiber length show that the theoretical and numerical model could render useful information for predicting the total output power as a function of fiber doped length and the input pump power. These types of sources could have direct application in wavelength multiplexed arrangements of fiber sensors, fiber gyroscopes or, in general, in any sensors in which a broad wavelength and stable light source is required.

  14. Optical depth for VHE gamma-rays from distant sources from a generic EBL density

    OpenAIRE

    Raue, M.; Mazin, D.

    2008-01-01

    Very-high-energy (VHE; E>100GeV) gamma-rays from distant sources suffer attenuation through pair-production with low energy photons from the diffuse extragalactic photon fields in the ultraviolet (UV) to far-infrared (FIR) (commonly referred to as Extragalactic Background Light; EBL). When modeling the intrinsic spectra of the VHE gamma-ray sources it is crucial to correctly account for the attenuation. Unfortunately, direct measurements of the EBL are difficult and the knowledge about the EB...

  15. Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview

    Science.gov (United States)

    Brustlein, Sophie; Ferrand, Patrick; Walther, Nico; Brasselet, Sophie; Billaudeau, Cyrille; Marguet, Didier; Rigneault, Hervé

    2011-02-01

    We present the assets and constraints of using optical parametric oscillators (OPOs) to perform point scanning nonlinear microscopy and spectroscopy with special emphasis on coherent Raman spectroscopy. The difterent possible configurations starting with one OPO and two OPOs are described in detail and with comments that are intended to be practically useful for the user. Explicit examples on test samples such as nonlinear organic crystal, polystyrene beads, and fresh mouse tissues are given. Special emphasis is given to background-free coherent Raman anti-Stokes scattering (CARS) imaging, including CARS hyperspectral imaging in a fully automated mode with commercial OPOs.

  16. Tunable, all-optical quasi-monochromatic Thomson X-ray source

    CERN Document Server

    Khrennikov, K; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S

    2014-01-01

    Brilliant X-ray sources are of great interest for many research fields from biology via medicine to material research. The quest for a cost-effective, brilliant source with unprecedented temporal resolution has led to the recent realization of various high-intensity-laser-driven X-ray beam sources. Here we demonstrate the first all-laser-driven, energy-tunable and quasi-monochromatic X-ray source based on Thomson backscattering. This is a decisive step beyond previous results, where the emitted radiation exhibited an uncontrolled broad energy distribution. In the experiment, one part of the laser beam was used to drive a few-fs bunch of quasi-monoenergetic electrons from a Laser-Wakefield Accelerator (LWFA), while the remainder was scattered off the bunch in a near-counter-propagating geometry. When the electron energy was tuned from 10-50 MeV, narrow-bandwidth X-ray spectra peaking at 5-35keV were directly measured, limited in photon energy by the sensitivity curve of our X-ray detector. Due to the ultrashor...

  17. Application of the method of auxiliary sources in optical diffraction microscopy

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Sørensen, Mads Peter; Hansen, Poul-Erik

    2010-01-01

    The Method of Auxiliary Sources is used for characterisation of grating defects. Grating profiles are characterised by best fit matching of a library of diffraction efficiencies with numerical simulated diffraction efficiencies with defects. It is shown that the presented method can solve...

  18. Year-round optical properties and source characterization of Arctic organic carbon aerosols on the North Slope Alaska

    Science.gov (United States)

    Barrett, T. E.; Sheesley, R. J.

    2017-09-01

    Long-term data on organic aerosol concentration and optical properties are needed in the Arctic to improve characterization of radiative forcing by atmospheric aerosols. This study presents the seasonal trends (summer 2012 to summer 2013) of organic carbon (OC) and water-soluble organic carbon (WSOC) along with optical properties of light-absorbing OC from a yearlong sampling campaign in Utqiaġvik, AK. Ambient OC concentrations for the year range from 0.008 ± 0.002 μg m-3 to 0.95 ± 0.06 μg m-3 with peaks in late summer, early fall, and late winter. On average, WSOC accounted for 57 ± 11% of the total OC burden throughout the sampling campaign, which is consistent with previous WSOC values. In order to understand the potential radiative impacts of light-absorbing OC, the light absorption properties of WSOC were determined. Seasonal averaging revealed that the highest average mass absorption efficiency value of 1.54 ± 0.75 m2 g-1 was in the fall, with an annual range of 0.70 ± 0.44 to 1.54 ± 0.75 m2 g-1. To quantify the contributions of fossil and contemporary carbon sources to OC, radiocarbon abundance measurements were performed. For OC, fossil contributions were the greatest for select samples in the fall at 61.4 ± 9.8%, with contemporary contributions dominating OC in the spring and summer (68.9 ± 9.8% and 64.8 ± 9.8%, respectively). Back trajectories identified five major source regions to Utqiaġvik throughout the year, with a marine influence from the Arctic Ocean potentially present in all seasons. All these results point to impact from primary and secondary sources of OC in the Arctic.

  19. Ultrahigh phase-stable swept-source optical coherence tomography as a cardiac imaging platform (Conference Presentation)

    Science.gov (United States)

    Ling, Yuye; Hendon, Christine P.

    2016-02-01

    Functional extensions to optical coherence tomography (OCT) provide useful imaging contrasts that are complementary to conventional OCT. Our goal is to characterize tissue types within the myocardial due to remodeling and therapy. High-speed imaging is necessary to extract mechanical properties and dynamics of fiber orientation changes in a beating heart. Functional extensions of OCT such as polarization sensitive and optical coherence elastography (OCE) require high phase stability of the system, which is a drawback of current mechanically tuned swept source OCT systems. Here we present a high-speed functional imaging platform, which includes an ultrahigh-phase-stable swept source equipped with KTN deflector from NTT-AT. The swept source does not require mechanical movements during the wavelength sweeping; it is electrically tuned. The inter-sweep phase variance of the system was measured to be less than 300 ps at a path length difference of ~2 mm. The axial resolution of the system is 20 µm and the -10 dB fall-off depth is about 3.2 mm. The sample arm has an 8 mmx8 mm field of view with a lateral resolution of approximately 18 µm. The sample arm uses a two-axis MEMS mirror, which is programmable and capable of scanning arbitrary patterns at a sampling rate of 50 kHz. Preliminary imaging results showed differences in polarization properties and image penetration in ablated and normal myocardium. In the future, we will conduct dynamic stretching experiments with strips of human myocardial tissue to characterize mechanical properties using OCE. With high speed imaging of 200 kHz and an all-fiber design, we will work towards catheter-based functional imaging.

  20. Longitudinal Evaluation of Cornea With Swept-Source Optical Coherence Tomography and Scheimpflug Imaging Before and After Lasik.

    Science.gov (United States)

    Chan, Tommy C Y; Biswas, Sayantan; Yu, Marco; Jhanji, Vishal

    2015-07-01

    Swept-source optical coherence tomography (OCT) is the latest advancement in anterior segment imaging. There are limited data regarding its performance after laser in situ keratomileusis (LASIK). We compared the reliability of swept-source OCT and Scheimpflug imaging for evaluation of corneal parameters in refractive surgery candidates with myopia or myopic astigmatism. Three consecutive measurements were obtained preoperatively and 1 year postoperatively using swept-source OCT and Scheimpflug imaging. The study parameters included central corneal thickness (CCT), thinnest corneal thickness (TCT), keratometry at steep (Ks) and flat (Kf) axes, mean keratometry (Km), and, anterior and posterior best fit spheres (Ant and Post BFS). The main outcome measures included reliability of measurements before and after LASIK was evaluated using intraclass correlation coefficient (ICC) and reproducibility coefficients (RC). Association between the mean value of corneal parameters with age, spherical equivalent (SEQ), and residual bed thickness (RBT) and association of variance heterogeneity of corneal parameters and these covariates were analyzed. Twenty-six right eyes of 26 participants (mean age, 32.7 ± 6.9 yrs; mean SEQ, -6.27 ± 1.67 D) were included. Preoperatively, swept-source OCT demonstrated significantly higher ICC for Ks, CCT, TCT, and Post BFS (P ≤ 0.016), compared with Scheimpflug imaging. Swept-source OCT demonstrated significantly smaller RC values for CCT, TCT, and Post BFS (P ≤ 0.001). After LASIK, both devices had significant differences in measurements for all corneal parameters (P ≤ 0.015). Swept-source OCT demonstrated a significantly higher ICC and smaller RC for all measurements, compared with Scheimpflug imaging (P ≤ 0.001). Association of variance heterogeneity was only found in pre-LASIK Ant BFS and post-LASIK Post BFS for swept-source OCT, whereas significant association of variance heterogeneity was noted for all measurements except Ks and

  1. Laser-plasma electron accelerator for all-optical inverse Compton X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, K. [University of Tokyo, 2-22 Shirakata shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)], E-mail: koyama@nuclear.jp; Yamazaki, A.; Maekawa, A.; Uesaka, M. [University of Tokyo, 2-22 Shirakata shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan); Hosokai, T. [Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8503 (Japan); Miyashita, M. [Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Masuda, S.; Miura, E. [AIST, Tsukuba-central-2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2009-09-01

    Inverse Compton scattering has been gaining attention as a process for the generation of X/{gamma}-ray, since it produces tunable X/{gamma}-ray pulses with a small cone angle of radiation. A table-top tunable Compton X/{gamma}-ray source would be realized by replacing a radio frequency (rf) linac with a laser wakefield accelerator (LWFA), which is one of the advanced accelerators. An empirical scaling law for the LWFA in the self-injection mode showed that the energy gain was inversely proportional to the plasma density. In order to effectively employ the LWFA as a Compton X/{gamma}-ray source, its stability must be improved. For this purpose, we are developing techniques for the injection of initial electrons by a localized wavebreaking at the density ramp of a plasma. The pointing stability and acceleration efficiency of the electron beam were significantly improved by applying an axial magnetic field to the plasma channel.

  2. Sources

    OpenAIRE

    2015-01-01

    SOURCES MANUSCRITES Archives nationales Rôles de taille 1768/71 Z1G-344/18 Aulnay Z1G-343a/02 Gennevilliers Z1G-340/01 Ivry Z1G-340/05 Orly Z1G-334c/09 Saint-Remy-lès-Chevreuse Z1G-344/18 Sevran Z1G-340/05 Thiais 1779/80 Z1G-391a/18 Aulnay Z1G-380/02 Gennevilliers Z1G-385/01 Ivry Z1G-387b/05 Orly Z1G-388a/09 Saint-Remy-lès-Chevreuse Z1G-391a/18 Sevran Z1G-387b/05 Thiais 1788/89 Z1G-451/18 Aulnay Z1G-452/21 Chennevières Z1G-443b/02 Gennevilliers Z1G-440a/01 Ivry Z1G-452/17 Noiseau Z1G-445b/05 ...

  3. Optical Counterparts of Ultra-Luminous X-ray Sources identified from Archival Hubble Space Telescope/WFPC2

    CERN Document Server

    Ptak, A; Van der Marel, R; Roye, E; Heckman, T; Towne, B

    2006-01-01

    We present a systematic analysis of archival HST WFPC2 ``Association'' data sets that correlate with the Chandra positions of a set of 44 ultra-luminous X-ray sources (ULXs) of nearby galaxies. We have improved the Chandra-HST relative astrometry whenever possible. Disparate numbers of potential ULX counterparts are found, and in some cases none are found. The lack of or low number of counterparts in some cases may be due to insufficient depth in the WFPC2 images. Particularly in late-type galaxies, the HST image in the ULX region was often complex or crowded. We therefore address various scenarios for the nature of the ULX since it is not known which, if any, of the sources found are true counterparts. The optical luminosities of the sources are typically in the range 10^4-6 L_sun. In several cases color information is available, with the colors roughly tending to be more red in early-type galaxies. This suggests that, in general, the (potential) counterparts found in early-type galaxies are likely to be old...

  4. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    Science.gov (United States)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  5. The Nature of ULX Source M101 X-1: Optically Thick Outflow from A Stellar Mass Black Hole

    CERN Document Server

    Shen, Rong-Feng; Nakar, Ehud; Piran, Tsvi

    2014-01-01

    The nature of ultra-luminous X-ray sources (ULXs) has long been plagued by an ambiguity about whether the central compact objects are intermediate-mass (IMBH, >~ 10^3 M_sun) or stellar-mass (a few tens M_sun) black holes (BHs). The high luminosity (~ 10^39 erg/s) and super-soft spectrum (T ~ 0.1 keV) during the high state of the ULX source X-1 in the galaxy M101 suggest a large emission radius (>~ 10^9 cm), consistent with being an IMBH accreting at a sub-Eddington rate. However, recent kinematic measurement of the binary orbit of this source and identification of the secondary as a Wolf-Rayet star suggest a stellar-mass BH primary with a super-Eddington accretion. If that is the case, a hot, optically thick outflow from the BH can account for the large emission radius and the soft spectrum. By considering the interplay of photons' absorption and scattering opacities, we determine the radius and mass density of the emission region of the outflow and constrain the outflow mass loss rate. The analysis presented...

  6. Effect of light source instability on uniformity of 3D reconstructions from a cone beam optical CT scanner.

    Science.gov (United States)

    Begg, J; Taylor, M L; Holloway, L; Kron, T; Franich, R D

    2014-12-01

    Temporally varying light intensity during acquisition of projection images in an optical CT scanner can potentially be misinterpreted as physical properties of the sample. This work investigated the impact of LED light source intensity instability on measured attenuation coefficients. Different scenarios were investigated by conducting one or both of the reference and data scans in a 'cold' scanner, where the light source intensity had not yet stabilised. Uniform samples were scanned to assess the impact on measured uniformity. The orange (590 nm) light source decreased in intensity by 29 % over the first 2 h, while the red (633 nm) decreased by 9 %. The rates of change of intensity at 2 h were 0.1 and 0.03 % respectively over a 5 min period-corresponding to the scan duration. The normalisation function of the reconstruction software does not fully account for the intensity differences and discrepancies remain. Attenuation coefficient inaccuracies of up to 8 % were observed for data reconstructed from projection images acquired with a cold scanner. Increased noise was observed for most cases where one or both of the scans was acquired without sufficient warm-up. The decrease in accuracy and increase in noise were most apparent for data reconstructed from reference and data scans acquired with a cold scanner on different days.

  7. Pan-STARRS and PESSTO search for the optical counterpart to the LIGO gravitational wave source GW150914

    CERN Document Server

    Smartt, S J; Smith, K W; Huber, M E; Young, D R; Cappellaro, E; Wright, D E; Coughlin, M; Schultz, A S B; Denneau, L; Flewelling, H; Heinze, A; Magnier, E A; Primak, N; Rest, A; Sherstyuk, A; Stalder, B; Stubbs, C W; Tonry, J; Waters, C; Willman, M; Anderson, J P; Baltay, C; Botticella, M T; Campbell, H; Dennefeld, M; Chen, T -W; Della Valle, M; Elias-Rosa, N; Fraser, M; Inserra, C; Kankare, E; Kotak, R; Kupfer, T; Harmanen, J; Galbany, L; Gal-Yam, A; Guillou, L L; Lyman, J D; Maguire, K; Mitra, A; Nicholl, M; E, F Olivares; Rabinowitz, D; Razza, A; Sollerman, J; Smith, M; Terreran, G; Valenti, S

    2016-01-01

    We have searched for an optical counterpart to the first gravitational wave source discovered by the LIGO experiment, GW150914, using a combination of the Pan-STARRS1 wide-field telescope and the PESSTO spectroscopic follow-up programme. We mapped out 442 square degrees of the northern sky region of the initial map. We discovered 56 astrophysical transients over a period of 41 days from the discovery of the source. Of these, 19 were spectroscopically classified and a further 13 have host galaxy redshifts. All transients appear to be fairly normal supernovae and AGN variability and none is obviously linked with GW150914. We find one high energy type II supernova with an estimated explosion date consistent with that of GW150914, but no causal link can be inferred. We quantify the upper limits by defining parameterised lightcurves with timescales of 4, 20 and 40 days and use the sensitivity of the Pan-STARRS1 images to set limits on the luminosities of possible sources. The Pan-STARRS1 images reach limiting magn...

  8. Optical properties of organic-silicon photonic crystal nanoslot cavity light source

    Science.gov (United States)

    Yang, Ming-Jay; Lin, Chun-Chi; Wu, Yu-Shu; Wang, Likarn; Na, Neil

    2017-03-01

    We theoretically study a dielectric photonic crystal nanoslot cavity immersed in an organic fluid containing near-infrared dyes by means of a full rate equation model including the complete cavity QED effects. Based on the modeling results, we numerically design an organic-silicon cavity light source in which its mode volume, quality factor, and far-field emission pattern are optimized for energy-efficient, high-speed applications. Dye quantum efficiency improved by two orders of magnitude and 3dB modulation bandwidth of a few hundred GHz can be obtained.

  9. Application of the method of auxiliary sources to a defect-detection inverse problem of optical diffraction microscopy

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Sørensen, Mads Peter; Hansen, Poul Erik

    2010-01-01

    We propose a method of numerical solution of a type of inverse scattering problem that arises in the optical characterisation/quality control of nanostructures. The underlying global, ill-posed, nonlinear optimisation problem is first localised by best-fit matching of library and measured...... the proposed method, we apply it in a concrete quantitative characterisation of a non-periodic, nano-scale grating defect, with numerically simulated measurements. It is shown that the presented procedure can solve the inverse problem with an accuracy usually thought to require rigorous electromagnetic...... diffraction efficiency patterns. The inverse problem is then solved using piecewise linear interpolation between the best far-field matches. Finally, the results are refined, on average, by solving an additional local optimisation problem formulated in terms of the method of auxiliary sources. To illustrate...

  10. Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Maria [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico); Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Apartado Postal 2732, BC 22860 Ensenada (Mexico); Garay-Palmett, Karina; U' Ren, Alfred B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico)

    2011-09-15

    We study the third-order spontaneous parametric down-conversion (TOSPDC) process, as a means to generate entangled photon triplets. Specifically, we consider thin optical fibers as the nonlinear medium to be used as the basis for TOSPDC in configurations where phase matching is attained through the use of more than one fiber transverse modes. Our analysis in this paper, which follows from our earlier paper [Opt. Lett. 36, 190-192 (2011)], aims to supply experimentalists with the details required in order to design a TOSPDC photon-triplet source. Specifically, our analysis focuses on the photon triplet state, on the rate of emission, and on the TOSPDC phase-matching characteristics for the cases of frequency-degenerate and frequency nondegenerate TOSPDC.

  11. Optical Design of a Broadband Infrared Spectrometer for Bunch Length Measurement at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kiel; /SLAC

    2012-09-07

    The electron pulses generated by the Linac Coherent Light Source at the SLAC National Accelerator Laboratory occur on the order of tens of femtoseconds and cannot be directly measured by conventional means. The length of the pulses can instead be reconstructed by measuring the spectrum of optical transition radiation emitted by the electrons as they move toward a conducting foil. Because the emitted radiation occurs in the mid-infrared from 0.6 to 30 microns a novel optical layout is required. Using a helium-neon laser with wavelength 633 nm, a series of gold-coated off-axis parabolic mirrors were positioned to direct a beam through a zinc selenide prism and to a focus at a CCD camera for imaging. Constructing this layout revealed a number of novel techniques for reducing the aberrations introduced into the system by the off-axis parabolic mirrors. The beam had a recorded radius of less than a millimeter at its final focus on the CCD imager. This preliminary setup serves as a model for the spectrometer that will ultimately measure the LCLS electron pulse duration.

  12. Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914

    Science.gov (United States)

    Smartt, S. J.; Chambers, K. C.; Smith, K. W.; Huber, M. E.; Young, D. R.; Cappellaro, E.; Wright, D. E.; Coughlin, M.; Schultz, A. S. B.; Denneau, L.; Flewelling, H.; Heinze, A.; Magnier, E. A.; Primak, N.; Rest, A.; Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.; Willman, M.; Anderson, J. P.; Baltay, C.; Botticella, M. T.; Campbell, H.; Dennefeld, M.; Chen, T.-W.; Della Valle, M.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Kankare, E.; Kotak, R.; Kupfer, T.; Harmanen, J.; Galbany, L.; Gal-Yam, A.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra, A.; Nicholl, M.; Olivares E, F.; Rabinowitz, D.; Razza, A.; Sollerman, J.; Smith, M.; Terreran, G.; Valenti, S.; Gibson, B.; Goggia, T.

    2016-11-01

    We searched for an optical counterpart to the first gravitational-wave source discovered by LIGO (GW150914), using a combination of the Pan-STARRS1 wide-field telescope and the Public ESO Spectroscopic Survey of Transient Objects (PESSTO) spectroscopic follow-up programme. As the final LIGO sky maps changed during analysis, the total probability of the source being spatially coincident with our fields was finally only 4.2 per cent. Therefore, we discuss our results primarily as a demonstration of the survey capability of Pan-STARRS and spectroscopic capability of PESSTO. We mapped out 442 deg2 of the northern sky region of the initial map. We discovered 56 astrophysical transients over a period of 41 d from the discovery of the source. Of these, 19 were spectroscopically classified and a further 13 have host galaxy redshifts. All transients appear to be fairly normal supernovae (SNe) and AGN variability and none is obviously linked with GW150914. We illustrate the sensitivity of our survey by defining parametrized light curves with time-scales of 4, 20 and 40 d and use the sensitivity of the Pan-STARRS1 images to set limits on the luminosities of possible sources. The Pan-STARRS1 images reach limiting magnitudes of iP1 = 19.2, 20.0 and 20.8, respectively, for the three time-scales. For long time-scale parametrized light curves (with full width half-maximum ≃40 d), we set upper limits of M_i ≤ -17.2^{-0.9}_{+1.4} if the distance to GW150914 is DL = 400 ± 200 Mpc. The number of Type Ia SN we find in the survey is similar to that expected from the cosmic SN rate, indicating a reasonably complete efficiency in recovering SN like transients out to DL = 400 ± 200 Mpc.

  13. Revisiting the ultraluminous supersoft source in M101: an optically thick outflow model

    CERN Document Server

    Soria, Roberto

    2015-01-01

    The M101 galaxy contains the best-known example of an ultraluminous supersoft source (ULS), dominated by a thermal component at kT ~ 0.1 keV. The origin of the thermal component and the relation between ULSs and standard (broad-band spectrum) ultraluminous X-ray sources (ULXs) are still controversial. We re-examined the X-ray spectral and timing properties of the M101 ULS using archival Chandra and XMM-Newton observations. We show that the X-ray time-variability and spectral properties are inconsistent with standard disk emission. The characteristic radius R_{bb} of the thermal emitter varies from epoch to epoch between ~10,000 km and ~100,000 km; the colour temperature kT_{bb} varies between ~50 eV and ~140 eV; and the two quantities scale approximately as R_{bb} ~ T_{bb}^{-2}. In addition to the smooth continuum, we also find (at some epochs) spectral residuals well fitted with thermal plasma models and absorption edges: we interpret this as evidence that we are looking at a clumpy, multi-temperature outflo...

  14. Integrated Wavelength-Tunable Light Source for Optical Gas Sensing Systems

    Directory of Open Access Journals (Sweden)

    Bin Li

    2015-01-01

    Full Text Available A compact instrument consisting of a distributed feedback laser (DFB at 1.65 μm was developed as a light source for gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS technique. The wavelength of laser is tuned by adjusting the laser working temperature and injection current, which are performed by self-developed temperature controller and current modulator respectively. Stability test shows the fluctuation of the laser temperature is within the range of ±0.02°C. For gas detection experiments, the wavelength is tuned around the gas absorption line by adjusting laser temperature and is then shifted periodically to scan across the absorption line by the laser current modulator, which generates a 10 Hz saw wave signal. In addition, the current modulator is able to generate sine wave signal for gas sensing systems using wavelength modulation spectroscopy (WMS technique involving extraction of harmonic signals. The spectrum test proves good stability that the spectrum was measured 6 times every 10 minutes at the constant temperature and current condition. This standalone instrument can be applied as a light source for detection systems of different gases by integrating lasers at corresponding wavelength.

  15. Evaluation of Five Phase Digitally Controlled Rotating Field Plasma Source for Photochemical Mercury Vapor Generation Optical Emission Spectrometry.

    Science.gov (United States)

    Matusiewicz, Henryk; Ślachciński, Mariusz; Pawłowski, Paweł; Portalski, Marek

    2015-01-01

    A new sensitive method for total mercury determination in reference materials using a 5-phase digitally controlled rotating field plasma source (RFP) for optical emission spectrometry (OES) was developed. A novel synergic effect of ultrasonic nebulization (USN) and ultraviolet-visible light (UV-Vis) irradiation when used in combination was exploited for efficient Hg vapor generation. UV- and Vis-based irradiation systems were studied. It was found that the most advantageous design was an ultrasonic nebulizer fitted with a 6 W mercury lamp supplying a microliter sample to a quartz oscillator, converting liquid into aerosol at the entrance of the UV spray chamber. Optimal conditions involved using a 20% v/v solution of acetic acid as the generation medium. The mercury cold vapor, favorably generated from Hg(2+) solutions by UV irradiation, was rapidly transported into a plasma source with rotating field generated within the five electrodes and detected by digitally controlled rotating field plasma optical emission spectrometry (RFP-OES). Under optimal conditions, the experimental concentration detection limit for the determination, calculated as the concentration giving a signal equal to three times the standard deviation of the blank (LOD, 3σblank criterion, peak height), was 4.1 ng mL(-1). The relative standard deviation for samples was equal to or better than 5% for liquid analysis and microsampling capability. The methodology was validated through determination of mercury in three certified reference materials (corresponding to biological and environmental samples) (NRCC DOLT-2, NRCC PACS-1, NIST 2710) using the external aqueous standard calibration techniques in acetic acid media, with satisfactory recoveries. Mercury serves as an example element to validate the capability of this approach. This is a simple, reagent-saving, cost-effective and green analytical method for mercury determination.

  16. Optical properties and possible sources of brown carbon in PM2.5 over Xi'an, China

    Science.gov (United States)

    Shen, Zhenxing; Zhang, Qian; Cao, Junji; Zhang, Leiming; Lei, Yali; Huang, Yu; Huang, R.-J.; Gao, Jinjin; Zhao, Zhuzi; Zhu, Chongshu; Yin, Xiuli; Zheng, Chunli; Xu, Hongmei; Liu, Suixin

    2017-02-01

    To quantify optical and chemical properties of PM2.5 brown carbon (BrC) in Xi'an, 58 high-volume ambient PM2.5 samples were collected during 2 November 2009 to 13 October 2010. Mass concentrations of chemical components were determined, including water-soluble ions, water-soluble organic carbon, levoglucosan, organic carbon (OC), and element carbon (EC). BrC, as an unidentified and wavelength-dependent organic compound, was also measured from water-soluble carbon (WSOC) at 340 nm using UV-vis spectrometer. The wavelength-dependent absorption coefficient (babs) and mass absorption coefficient (MAC) were much abundant at 340 nm, and the high Absorption Ångström coefficient (AAC) values were observed around 5.4, corresponding to the existence of BrC in ambient PM2.5, especially in winter. Good correlations (R > 0.60) between babs and biomass burning markers, such as levoglucosan and K+, in winter indicated significant amounts of primary BrC from biomass burning emissions. Secondary organic carbon BrC (SOCsbnd BrC) was more abundant in winter than in summer. SOCsbnd BrC in winter was mainly fresh SOC formed from aqueous phase reactions while in summer, aged SOC from photo-chemical formation. Source profiles of BrC optical parameters were detected, which verified sources of BrC from biomass burning and coal burning emissions in areas surrounding Xi'an. The rapidly decreasing babs-340nm values from biomass burning smoldering to straw pellet burning suggested that burning straw pellet instead of burning straw directly is an effective measure for reducing BrC emissions.

  17. Identifying four INTEGRAL sources in the Galactic plane via VLT/optical and XMM-Newton/X-ray spectroscopy

    Science.gov (United States)

    Rahoui, Farid; Tomsick, John. A.; Krivonos, Roman

    2017-02-01

    We report on FORS2 (FOcal Reducer/low dispersion Spectrograph 2) spectroscopy aiming at the identification of four Galactic plane sources discovered by INTEGRAL, IGR J18088-2741, IGR J18381-0924, IGR J17164-3803, and IGR J19173+0747, complemented by XMM-Newton spectroscopy for IGR J18381-0924. The presence of broad H I and He I emission lines and a flat Balmer decrement Hα/Hβ show that IGR J18088-2741 is a cataclysmic variable located beyond 8 kpc. For IGR J18381-0924, the detection of redshifted Hα and O I emission signatures and the absence of narrow forbidden emission lines point towards a low-luminosity Seyfert 1.9 nature at z = 0.031 ± 0.002. Its XMM-Newton spectrum, best fitted by an absorbed Γ = 1.19 ± 0.07 power law combined with a z=0.026_{-0.008}^{+0.016} redshifted iron emission feature, is in agreement with this classification. The likely IGR J17164-3803 optical counterpart is an M2 III star at 3-4 kpc which, based on the X-ray spectrum of the source, is the companion of a white dwarf in an X-ray faint symbiotic system. Finally, we challenge the accepted identification of IGR J19173+0747 as a high-mass X-ray binary. Indeed, the USNO optical counterpart is actually a blend of two objects located at the most likely 3 kpc distance, both lying within the error circle of the Swift position. The first is a cataclysmic variable, which we argue is the real nature of IGR J19173+0747. However, we cannot rule out the second one which we identify as an F3 V star which, if associated with IGR J19173+0747, likely belongs to a quiescent X-ray binary.

  18. Agreement between Gonioscopic Examination and Swept Source Fourier Domain Anterior Segment Optical Coherence Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Mohammed Rigi

    2016-01-01

    Full Text Available Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4 years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69 and FD ASOCT (0.58 and 0.75. Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86 and FD ASOCT (0.57 and 0.85. Interinstrument agreements were fair to good (0.34 to 0.63, with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy.

  19. In-canopy gradients, composition, and sources of optically active aerosols over the Amazon forest

    Science.gov (United States)

    Guyon, P.; Graham, B.; Roberts, G. C.; Mayol-Bracero, O. L.; Andreae, M. O.; Artaxo, P.; Maenhaut, W.

    2003-04-01

    As part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH), size-fractionated aerosol samples were collected at a primary rainforest site in the Brazilian Amazon during the wet and dry seasons. Daytime-nighttime segregated sampling was carried out at three different heights (above, within and below canopy level) on a 54 m meteorological tower. The samples were analyzed for up to 19 trace elements, equivalent black carbon (BCe) and mass concentrations. Additionally, measurements of scattering and absorption coefficients were performed. Absolute principal component analysis revealed that the wet and dry season aerosols contained the same three main aerosol components, namely a natural biogenic, a pyrogenic, and a soil dust component, but that these were present in different (absolute and relative) amounts. The elements related to biomass burning and soil dust generally exhibited highest concentrations above the canopy and during daytime, whilst forest-derived aerosol was more concentrated underneath the canopy and during nighttime. These variations can be largely attributed to daytime convective mixing and the formation of a shallow nocturnal boundary layer, along with the possibility of enhanced nighttime release of biogenic aerosol particles. All three components contributed significantly to light extinction, suggesting that, in addition to pyrogenic particles, biogenic and soil dust aerosols must be taken into account when modeling the physical and optical properties of aerosols in forested regions such the Amazon Basin.

  20. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin;

    2011-01-01

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2...... efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses....

  1. Compensating the Electron Beam Energy Spread by the Natural Transverse Gradient of Laser Undulator in All-Optical X-ray Sources

    CERN Document Server

    Zhang, Tong; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2013-01-01

    All-optical schemes provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this letter, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly dispersing the electron beam transversely. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  2. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    Science.gov (United States)

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  3. The fields of reference stars for optical positional observations of astrometric extragalactic radio sources

    Science.gov (United States)

    Dement'eva, A. A.; Ryl'Kov, V. P.

    The Pulkovo programme (Pul ERS) and the techniques used to create a catalogue of coordinates and magnitudes for more than 7000 faint stars in 73 small fields around extragalactic radiosources (ERS) are described. Accurate positions of stars in the fields around ERS 2200+420 and ERS 2021+614 are given. The catalogue containing 223 stars is presented. The errors of coordinate reductions in the system of reference stars from the CMC catalogue are found to be 1.5-2.0 times smaller than for those in the system of the PPM catalogue. This programme (Pul ERS) is required for quick identification of the extragalactic radio sources and for obtaining their characteristics from observations with large telescopes and CCD detectors.

  4. Which optical processes are suitable to make probabilistic single photon sources for quantum cryptography?

    CERN Document Server

    Verma, Amit

    2009-01-01

    Single photon sources to be used in quantum cryptography must show higher order antibunching (HOA). HOA is reported by us in several many wave mixing processes. In the present work we have investigated the possibility of observing HOA in multiwave mixing processes in general. The generalized Hamiltonian is solved for several particular cases in Heisenberg picture and possibility of observing HOA is investigated with the help of criterion of Pathak and Garcia. Several particular cases of the generalized Hamiltonian are solved with the help of short time approximation technique and HOA is reported for pump modes of different multiwave mixing processes. It is also found that HOA can not be observed for the signal and stokes modes in of the cases studied here.

  5. Select Features of Diabetic Retinopathy on Swept-Source Optical Coherence Tomographic Angiography Compared With Fluorescein Angiography and Normal Eyes

    Science.gov (United States)

    Salz, David A.; de Carlo, Talisa E.; Adhi, Mehreen; Moult, Eric; Choi, WhooJhon; Baumal, Caroline R.; Witkin, Andre J.; Duker, Jay S.; Fujimoto, James G.; Waheed, Nadia K.

    2017-01-01

    IMPORTANCE Optical coherence tomographic angiography (OCTA) is a recently developed noninvasive imaging technique that can visualize the retinal and choroidal microvasculature without the injection of exogenous dyes. OBJECTIVE To evaluate the potential clinical utility of OCTA using a prototype swept-source OCT (SS-OCT) device and compare it with fluorescein angiography (FA) for analysis of the retinal microvasculature in diabetic retinopathy. DESIGN, SETTING, AND PARTICIPANTS Prospective, observational cross-sectional study conducted at a tertiary care academic retina practice from November 2013 through November 2014. A cohort of diabetic and normal control eyes were imaged with a prototype SS-OCT system. The stage of diabetic retinopathy was determined by clinical examination. Imaging was performed using angiographic 3 × 3-mm and 6 × 6-mm SS-OCT scans to generate 3-dimensional en-face OCT angiograms for each eye. Two trained Boston Image Reading Center readers reviewed and graded FA and OCTA images independently. MAIN OUTCOMES AND MEASURES The size of the foveal nonflowzone and the perifoveal intercapillary area on OCTA were measured in both normal and diabetic eyes using Boston Image Reading Center image analysis software. RESULTS The study included 30 patients with diabetes (mean [SD] age, 55.7 [10] years) and 6 control individuals (mean [SD] age, 55.1 [6.4] years). A total of 43 diabetic and 11 normal control eyes were evaluated with OCTA. Fluorescein angiography was performed in 17 of 43 diabetic eyes within 8 weeks of the OCTA. Optical coherence tomographic angiography was able to identify a mean (SD) of 6.4 (4.0) microaneurysms (95% CI, 4.4–8.5), while FA identified a mean (SD) of 10 (6.9) microaneurysms (95% CI, 6.4–13.5). The exact intraretinal depth of microaneurysms on OCTA was localized in all cases (100%). The sensitivity of OCTA in detecting microaneuryms when compared with FA was 85% (95% CI, 53–97), while the specificity was 75% (95% CI, 21

  6. Identifying four $INTEGRAL$ sources in the Galactic Plane via VLT/optical and $XMM$-$Newton$/X-ray spectroscopy

    CERN Document Server

    Rahoui, Farid; Krivonos, Roman

    2016-01-01

    We report on FORS2 spectroscopy aiming at the identification of four Galactic Plane sources discovered by $INTEGRAL$, IGR J18088-2741, IGR J18381-0924, IGR J17164-3803, and IGR J19173+0747, complemented by $XMM$-$Newton$ spectroscopy for IGR J18381-0924. The presence of broad emission lines of neutral H and He and a flat Balmer decrement H{\\alpha}/H{\\beta} show that IGR J18088-2741 is a cataclysmic variable located beyond 8 kpc. For IGR J18381-0924, the detection of red-shifted H{\\alpha} and neutral O emission signatures and the absence of narrow forbidden emission lines point towards a low-luminosity Seyfert 1.9 nature at $z=0.031\\pm0.002$. Its $XMM$-$Newton$ spectrum, best-fit by an absorbed ${\\Gamma}=1.19\\pm0.07$ power law combined with a $z=0.026_{-0.016}^{+0.008}$ red-shifted iron emission feature, is in agreement with this classification. The likely IGR J17164-3803 optical counterpart is an M2 III star at 3 to 4 kpc which, based on the X-ray spectrum of the source, is the companion of a white dwarf in a...

  7. Visible light communication using InGaN optical sources with AlInGaP nanomembrane down-converters.

    Science.gov (United States)

    Santos, J M M; Rajbhandari, S; Tsonev, D; Chun, H; Guilhabert, B; Krysa, A B; Kelly, A E; Haas, H; O'Brien, D C; Laurand, N; Dawson, M D

    2016-05-02

    We report free space visible light communication using InGaN sources, namely micro-LEDs and a laser diode, down-converted by a red-emitting AlInGaP multi-quantum-well nanomembrane. In the case of micro-LEDs, the AlInGaP nanomembrane is capillary-bonded between the sapphire window of a micro-LED array and a hemispherical sapphire lens to provide an integrated optical source. The sapphire lens improves the extraction efficiency of the color-converted light. For the case of the down-converted laser diode, one side of the nanomembrane is bonded to a sapphire lens and the other side optionally onto a dielectric mirror; this nanomembrane-lens structure is remotely excited by the laser diode. Data transmission up to 870 Mb/s using pulse amplitude modulation (PAM) with fractionally spaced decision feedback equalizer is demonstrated for the micro-LED-integrated nanomembrane. A data rate of 1.2 Gb/s is achieved using orthogonal frequency division multiplexing (ODFM) with the laser diode pumped sample.

  8. Distributed Bragg reflector ring oscillators: A large aperture source of high single-mode optical power

    Energy Technology Data Exchange (ETDEWEB)

    Dzurko, K.M.; Hardy, A.; Scifres, D.R.; Welch, D.F.; Waarts, R.G.; Lang, R.J. (Spectra Diode Labs., San Jose, CA (United States))

    1993-06-01

    Distributed Bragg reflector (DBR) ring oscillators are the first monolithic semiconductor lasers containing broad-area active regions which operate in a single mode to several times their threshold current. Orthogonally oriented diffraction gratings surrounding an unpatterned active region select a single spatial and temporal mode of oscillation. This paper presents both analytic and experimental verification of single mode operation for active dimensions up to 368 [times] 1000 [mu]m. Threshold current densities under 200 A/cm[sup 2] and total differential efficiencies greater than 60% have been measured. DBR ring oscillators have demonstrated over 1 W of single frequency output power, 460 mW of spatially coherent, single frequency output power, and nearly circular diffraction limited output to 4 [times] I[sub th]. The performance potential of these devices is enormous, considering that the output apertures are nearly two orders of magnitude wider than conventional single mode sources which generate up to 0.2 W of coherent output.

  9. Numerical modeling of the intracavity stimulated Raman scattering as a source of subnanosecond optical pulses

    Science.gov (United States)

    Yashkir, Yuri M.; Yashkir, Yuriy Y.

    2004-09-01

    We present a computer numerical model (virtual sub-nanosecond laser) utilizing intracavity stimulated Raman scattering. The goal of this work is to shorten laser output pulses (for which the highly nonlinear frequency conversion process stimulated Raman scattering is used) and to obtain high efficiency (which is enhanced by placing a Raman-active crystal inside the cavity where the fundamental laser frequency intensity is maximal). The following laser components were modeled: a diodepumped solidstate laser active medium (a crystal of the Nd3+:YLF type), a closed cavity for a wave on its fundamental frequency with a Q-switching element and an internal subcavity with a Ramanactive crystal with controlled output coupler transmission at the Raman frequency. The model components are: a numerical integrator of a set of three rate equations (for an inverse population of the laser medium and for the number of fundamental and Stokes frequency photons), random number sources for radiation seeding, and an interactive data input interface and graphic output. A wide range of parameters was investigated and output pulses as short as 0.8 ns were found. The optimal conditions for the maximal peak power of Stokes pulses were determined and the conditions for generating pulse trains for burst laser machining were identified.

  10. Efficient THZ Source Based on Cascaded Optical Down-Conversion in Orientation-Patterned GaAs Structures

    Science.gov (United States)

    2008-11-20

    structured nonlinear optical materials , GaAs, optical THz generation, cavity-enhanced, nonlinear-optical frequency down-conversion, quasi-phasematched...Many nonlinear optical materials are relatively transparent at THz frequencies below lowest phonon resonance (e.g. at 8 THz for GaAs and 5 THz for... optical materials : both collinear (forward and backward) and noncollinear phase matching was used to generate broadly tunable, 20-190cm-1 (0.6-5.7 THz

  11. Assessment of Anterior Segment Measurements with Swept Source Optical Coherence Tomography before and after Ab Interno Trabeculotomy (Trabectome) Surgery

    Science.gov (United States)

    Huang, Ping

    2016-01-01

    Purpose. To compare the changes of anterior segment parameters, assessed by swept source anterior segment optical coherence tomography (AS-OCT) after combined Trabectome-cataract surgery and Trabectome-only surgery in open angle glaucoma patients. Methods. Thirty-eight eyes of 24 patients with open angle glaucoma were scanned with swept source AS-OCT before and 4 weeks after combined Trabectome-cataract or Trabectome-only surgery. Intraocular pressure, number of medications, and AS-OCT parameters, such as angle opening distance at 500 and 750 μm from the scleral spur (AOD500 and AOD750), trabecular-iris space area at 500 and 750 mm2 (TISA500, TISA750), angle recess area at 500 and 750 mm2 (ARA500, ARA750), trabecular iris angle (TIA), anterior chamber depth (ACD), anterior chamber width (ACW), and anterior chamber volume (ACV), were obtained before the surgery. These parameters were compared to evaluate whether the outcome of the surgery differed among the patients after the surgery. The width of the trabecular cleft was also measured for both groups. Results. The reduction of IOP and number of medications was found to be statistically significant in both groups (p ACV, and angle parameters such as AOD 500/750, TISA 500/750, ARA 500/750, and TIA500 showed significantly greater changes from the preoperative values to postoperative 1st month values in combined Trabectome-cataract surgery group (p 0.05). There was no statistically significant difference between two groups for the width of the trabecular cleft (p = 0.7). Conclusion. Anterior chamber angle parameters measured with swept source AS-OCT may be useful for evaluating glaucoma patients before and after Trabectome surgery with or without cataract surgery. PMID:27795855

  12. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source.

    Science.gov (United States)

    Granton, Patrick V; Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-04-07

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light's spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  13. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source

    Science.gov (United States)

    Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  14. Evaluation of Tizian overlays by means of a swept source optical coherence tomography system

    Science.gov (United States)

    Marcauteanu, Corina; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Stoica, Eniko Tunde; Topala, Florin; Duma, Virgil Florin; Bradu, Adrian; Podoleanu, Adrian Gh.

    2016-03-01

    The teeth affected by pathologic attrition can be restored by a minimally invasive approach, using Tizian overlays. In this study we prove the advantages of a fast swept source (SS) OCT system in the evaluation of Tizian overlays placed in an environment characterized by high occlusal forces. 12 maxillary first premolars were extracted and prepared for overlays. The Tizian overlays were subjected to 3000 alternating cycles of thermo-cycling (from -10°C to +50°C) and to mechanical occlusal overloads (at 800 N). A fast SS OCT system was used to evaluate the Tizian overlays before and after the mechanical and thermal straining. The SS (Axsun Technologies, Billerica, MA) has a central wavelength of 1060 nm, sweeping range of 106 nm (quoted at 10 dB) and a 100 kHz line rate. The depth resolution of the system, measured experimentally in air was 10 μm. The imaging system used for this study offers high spatial resolutions in both directions, transversal and longitudinal of around 10 μm, a high sensitivity, and it is also able to acquire entire tridimensional (3D)/volume reconstructions as fast as 2.5 s. Once the full dataset was acquired, rendered high resolutions en-face projections could be produced. Using them, the overlay (i.e., cement) abutment tooth interfaces were remarked both on B-scans/two-dimensional (2D) sections and in the 3D reconstructions. Using the system several open interfaces were possible to detect. The fast SS OCT system thus proves useful in the evaluation of zirconia reinforced composite overlays, placed in an environment characterized by high occlusal forces.

  15. Defense of fake fingerprint attacks using a swept source laser optical coherence tomography setup

    Science.gov (United States)

    Meissner, Sven; Breithaupt, Ralph; Koch, Edmund

    2013-03-01

    The most established technique for the identification at biometric access control systems is the human fingerprint. While every human fingerprint is unique, fingerprints can be faked very easily by using thin layer fakes. Because commercial fingerprint scanners use only a two-dimensional image acquisition of the finger surface, they can only hardly differentiate between real fingerprints and fingerprint fakes applied on thin layer materials. A Swept Source OCT system with an A-line rate of 20 kHz and a lateral and axial resolution of approximately 13 μm, a centre wavelength of 1320 nm and a band width of 120 nm (FWHM) was used to acquire fingerprints and finger tips with overlying fakes. Three-dimensional volume stacks with dimensions of 4.5 mm x 4 mm x 2 mm were acquired. The layering arrangement of the imaged finger tips and faked finger tips was analyzed and subsequently classified into real and faked fingerprints. Additionally, sweat gland ducts were detected and consulted for the classification. The manual classification between real fingerprints and faked fingerprints results in almost 100 % correctness. The outer as well as the internal fingerprint can be recognized in all real human fingers, whereby this was not possible in the image stacks of the faked fingerprints. Furthermore, in all image stacks of real human fingers the sweat gland ducts were detected. The number of sweat gland ducts differs between the test persons. The typical helix shape of the ducts was observed. In contrast, in images of faked fingerprints we observe abnormal layer arrangements and no sweat gland ducts connecting the papillae of the outer fingerprint and the internal fingerprint. We demonstrated that OCT is a very useful tool to enhance the performance of biometric control systems concerning attacks by thin layer fingerprint fakes.

  16. Spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Panitzsch, Lauri

    2013-02-08

    The experimental determination of the spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources (ECRIS) defines the focus of this thesis. The spatial distributions of different ion species were obtained in the object plane of the bending magnet ({approx}45 cm downstream from the plasma electrode) and in the plane of the plasma electrode itself, both in high spatial resolution. The results show that each of the different ion species forms a bloated, triangular structure in the aperture of the plasma electrode. The geometry and the orientation of these structures are defined by the superposition of the radial and axial magnetic fields. The radial extent of each structure is defined by the charge of the ion. Higher charge states occupy smaller, more concentrated structures. The total current density increases towards the center of the plasma electrode. The circular and star-like structures that can be observed in the beam profiles of strongly focused, extracted ion beams are each dominated by ions of a single charge state. In addition, the spatially resolved current density distribution of charged particles in the plasma chamber that impinge on the plasma electrode was determined, differentiating between ions and electrons. The experimental results of this work show that the electrons of the plasma are strongly connected to the magnetic field lines in the source and thus spatially well confined in a triangular-like structure. The intensity of the electrons increases towards the center of the plasma electrode and the plasma chamber, as well. These electrons are surrounded by a spatially far less confined and less intense ion population. All the findings mentioned above were already predicted in parts by simulations of different groups. However, the results presented within this thesis represent the first (and by now only) direct experimental verification of those predictions and are qualitatively transferable to

  17. Ion-Optics Calculations and Preliminary Precision Estimates of the Gas-Capable Ion Source for the 1-MV LLNL BioAMS Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ognibene, T J; Bench, G; Brown, T A; Vogel, J S

    2005-12-13

    Ion-optics calculations were performed for a new ion source and injection beam line. This source, which can accept both solid and gaseous targets, will be installed onto the 1-MV BioAMS spectrometer at the Center for Accelerator Mass Spectrometry, located at Lawrence Livermore National Laboratory and will augment the current LLNL cesium-sputter solid sample ion source. The ion source and its associated injection beam line were designed to allow direct quantification of {sup 14}C/{sup 12}C and {sup 3}H/{sup 1}H isotope ratios from both solid and gaseous targets without the need for isotope switching. Once installed, this source will enable the direct linking of a nanoflow LC system to the spectrometer to provide for high-throughput LC-AMS quantitation from a continuous flow. Calculations show that, for small samples, the sensitivity of the gas-accepting ion source could be precision limited but zeptomole quantitation should be feasible.

  18. Development of low-energy x-ray fluorescence micro-distribution analysis using a laser plasma x-ray source and multilayer optics?

    NARCIS (Netherlands)

    Stuik, R.; Shmaenok, L. A.; Fledderus, H.; Andreev, S. S.; Shamov, E. A.; Zuev, S. Y.; Salashchenko, N. N.; F. Bijkerk,

    1999-01-01

    A new technique is presented for low-energy X-ray fluorescence micro-distribution analysis of low-Z elements at micrometer spatial resolutions. The technique is based on the use of a laser plasma X-ray source and spherically curved multilayer optics. A large collimator is used to focus the light fro

  19. Total radiated power, infrared output, and heat generation by cold light sources at the distal end of endoscopes and fiber optic bundle of light cables.

    Science.gov (United States)

    Hensman, C; Hanna, G B; Drew, T; Moseley, H; Cuschieri, A

    1998-04-01

    Skin burns and ignition of drapes have been reported with the use of cold light sources. The aim of the study was to document the temperature generated by cold light sources and to correlate this with the total radiated power and infrared output. The temperature, total radiated power, and infrared output were measured as a function of time at the end of the endoscope (which is inserted into the operative field) and the end of the fiber optic bundle of the light cable (which connects the cable to the light port of the endoscope) using halogen and xenon light sources. The highest temperature recorded at the end of the endoscope was 95 degrees C. The temperature measured at the optical fiber location of the endoscope was higher than at its lens surface (p cables, the temperature reached 225 degrees C within 15 s. The temperature recorded at the optical fiber location of all endoscopes and light cables studied rose significantly over a period of 10 min to reach its maximum (p power. High temperatures are reached by 10 min at the end of fiber optic bundle of light cables and endoscopes with both halogen and xenon light sources. This heat generation is largely due to the radiated power in the visible light spectrum.

  20. Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function

    Science.gov (United States)

    Talebi, Nahid

    2017-10-01

    Investigating the interaction of electron beams with materials and light has been a field of research for more than a century. The field was advanced theoretically by the rise of quantum mechanics and technically by the introduction of electron microscopes and accelerators. It is possible nowadays to uncover a multitude of information from electron-induced excitations in matter by means of advanced techniques like holography, tomography, and, most recently, photon-induced near-field electron microscopy. The question is whether the interaction can be controlled in an even, more efficient way in order to unravel important questions like modal decomposition of the electron-induced polarization by performing experiments with better spatial, temporal, and energy resolutions. This review discusses recent advances in controlling electron and light interactions at the nanoscale. Theoretical and numerical aspects of the interaction of electrons with nanostructures and metamaterials will be discussed with the aim of understanding the mechanisms of radiation in the interaction of electrons with even more sophisticated structures. Based on these mechanisms of radiation, state-of-the art and novel electron-driven few-photon sources will be discussed. Applications of such sources to gain an understanding of quantum optical effects and also to perform spectral interferometry with electron microscopes will be covered. In an inverse approach, as in the case of the inverse Smith–Purcell effect, laser-induced excitations of nanostructures can cause electron beams traveling in the near-field of such structures to accelerate, provided a synchronization criterion is satisfied. This effect is the basis for linear dielectric and metallic electron accelerators. Moreover, acceleration is accompanied by bunching of the electrons. When single electrons are considered, an efficient design of nanostructures can lead to the shaping of the electron wave function travelling adjacent to them, for

  1. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    Science.gov (United States)

    Schindler, Andreas; Bartels, Andreas

    2016-05-24

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding.

  2. Novel time-of-flight fiber dispersion measurement technique using supercontinuum light sources and acousto-optical tunable filters.

    Science.gov (United States)

    Blume, Niels Göran; Wagner, Steven

    2015-07-20

    Long-distance fiber links require precise knowledge of fiber dispersion characteristics. Similar dispersion characteristics are necessary for supercontinuum broadband laser absorption spectroscopy (SCLAS) to allow proper data evaluation and species concentration determination, as well as numerous other applications. In this work, a time-of-flight approach to measuring the dispersion characteristic of fibers with supercontinuum laser light sources (SCLs) and acousto-optical tunable filters (AOTFs) is presented. Broadband emission of the SCL is filtered with a narrowband AOTF and dispersed in time by the fiber under test. By using the wavelength-specific delay, the dispersion characteristic can be calculated. The technique is especially suited for longer fibers and was verified against a state-of-the-art phase-shift-based dispersion measurement system. Advantages of the new approach include solely utilizing SCLAS system components, as well as a high level of automation and wide spectral coverage, ranging from 1100 to 1700 nm in a single measurement setup.

  3. Estimation of lesion progress in artificial root caries by swept source optical coherence tomography in comparison to transverse microradiography.

    Science.gov (United States)

    Natsume, Yuko; Nakashima, Syozi; Sadr, Alireza; Shimada, Yasushi; Tagami, Junji; Sumi, Yasunori

    2011-07-01

    This study aimed to investigate whether swept source optical coherence tomography (SS-OCT) could estimate the lesion depth and mineral loss quantitatively without the use of polarization sensitivity, and to examine a relationship between OCT data and transverse microradiography (TMR) lesion parameters. Twenty-four bovine root dentin specimens were allocated to three groups of 4-, 7-, and 14-day demineralization. Cross-sectional images of the specimens before and after the demineralization were captured by OCT at 1319 nm center wavelength. Following the demineralization, these specimens were cut into sections for TMR analysis. Correlations between the OCT data and TMR lesion parameters were examined. TMR images of the specimens showed cavitated lesions (lesion depth or LD(TMR): 200 to 500 μm, ΔZ or mineral loss: 10,000 to 30,000 vol % μm). The OCT images showed "boundaries," suggesting the lesion front. Integrated dB values before and after the demineralization and their difference (R(D), R(S), and ΔR, respectively) were calculated from the lesion surface to the corrected depth of boundary (LD(OCT)). A statistically significant correlation was found between LD(OCT) and LD(TMR) (p < 0.05, r = 0.68). Similarly, statistically significant correlations were found between ΔZ and R(D) or ΔR. The OCT showed a potential for quantitative estimation of lesion depth and mineral loss with cavitated dentin lesions in vitro.

  4. Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo.

    Science.gov (United States)

    Shimada, Yasushi; Nakagawa, Hisaichi; Sadr, Alireza; Wada, Ikumi; Nakajima, Masatoshi; Nikaido, Toru; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2014-07-01

    The aim of this study was to determine the diagnostic accuracy of swept-source optical coherent tomography (SS-OCT) in detecting and estimating the depth of proximal caries in posterior teeth in vivo. SS-OCT images and bitewing radiographs were obtained from 86 proximal surfaces of 53 patients. Six examiners scored the locations according to a caries lesion depth scale (0-4) using SS-OCT and the radiographs. The results were compared with clinical observations obtained after the treatment. SS-OCT could detect the presence of proximal caries in tomograms that were synthesized based on the backscatter signal obtained from the proximal carious lesion through occlusal enamel. SS-OCT showed significantly higher sensitivity and larger area under the receiver operating characteristic curve than radiographs for the detection of cavitated enamel lesions and dentin caries (Student's t -test, p SS-OCT appears to be a more reliable and accurate method than bitewing radiographs for the detection and estimation of the depth of proximal lesions in the clinical environment.

  5. Observation of white spot lesions using swept source optical coherence tomography (SS-OCT): in vitro and in vivo study.

    Science.gov (United States)

    Ibusuki, Takahide; Kitasako, Yuichi; Sadr, Alireza; Shimada, Yasushi; Sumi, Yasunori; Tagami, Junji

    2015-01-01

    This study aimed to assess swept source optical coherence tomography (SS-OCT) for in vitro and in vivo detection of enamel white spot lesion (WSL). WSLs without surface breakdown on 33 extracted human posterior teeth were non-invasively scanned using SSOCT. The teeth were then cross-sectioned and imaged under confocal laser scanning microscope (CLSM) and light microscopy (LM). SS-OCT cross-sectional images were compared with CLSM and LM. WSL shapes in SS-OCT images closely corresponded to those of LM. There were significant correlations (pSS-OCT and LM (r=0.92), SS-OCT and CLSM (r=0.80) and CLSM and LM (r=0.85). Six WSLs were also evaluated clinically using SS-OCT; clear in-depth images of these natural WSLs were obtained in vivo. SS-OCT appears to be an effective tool for observation of the internal structure of WSLs, enabling quantitative assessment of WSL depth. Such data can be considered in the clinical management of WSLs.

  6. OPERATIONAL EXPERIENCE WITH FAST FIBER-OPTIC BEAM LOSS MONITORS FOR THE ADVANCED PHOTON SOURCE STORAGE RING SUPERCONDUCTING UNDULATORS

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J.; Harkay, K.; Sajaev, V.; Shang, H.

    2017-06-25

    Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016 and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.

  7. Macular Choroidal Thickness and Volume Measured by Swept-source Optical Coherence Tomography in Healthy Korean Children.

    Science.gov (United States)

    Lee, Jung Wook; Song, In Seok; Lee, Ju-hyang; Shin, Yong Un; Lim, Han Woong; Lee, Won June; Lee, Byung Ro

    2016-02-01

    To evaluate the thickness and volume of the choroid in healthy Korean children using swept-source optical coherence tomography. We examined 80 eyes of 40 healthy children and teenagers (choroidal thickness map. We also examined 44 eyes of 35 healthy adult volunteers (≥18 years) and compared adult measurements with the findings in children. The mean age of the children and teenagers was 9.47 ± 3.80 (4 to 17) vs. 55.04 ± 12.63 years (36 to 70 years) in the adult group (p choroid were thinner (p = 0.004, p = 0.002, respectively) than the surrounding areas. The mean choroidal volumes of the inner and outer nasal areas were smaller (p = 0.004, p = 0.003, respectively) than those of all the other areas in each circle. Among the nine subfields, all areas in the children, except the outer nasal subfield, were thicker than those in adults (p choroidal thickness (p choroidal thickness and volume in children and teenagers were significantly greater than in adults. The nasal choroid was significantly thinner than the surrounding areas. The pediatric subfoveal choroid is prone to thinning with increasing age, axial length, and refractive error. These differences should be considered when choroidal thickness is evaluated in children with chorioretinal diseases.

  8. Correlation of Aging and Segmental Choroidal Thickness Measurement using Swept Source Optical Coherence Tomography in Healthy Eyes.

    Science.gov (United States)

    Wakatsuki, Yu; Shinojima, Ari; Kawamura, Akiyuki; Yuzawa, Mitsuko

    2015-01-01

    To assess and compare choroidal thickness changes related to aging, we determined whether changes are due to thinning of the choriocapillaris plus Sattler's (CS) layer and/or the large vessel layer in healthy eyes using swept-source optical coherence tomography (SS-OCT) at a wavelength of 1,050-nm. We studied 115 normal eyes of 115 healthy volunteers, all with refractive errors of less than -6 diopters. All 115 eyes underwent analysis of choroidal thickness at the fovea, the CS layer and the large choroidal vessel layer. In 68 of the 115 eyes, choroidal thickness was determined at five sites (the fovea, and superior, inferior, nasal, and temporal sites) using SS-OCT with an Early Treatment of Diabetic Retinopathy grid scan. Total choroidal thicknesses at each of the five sites were related to subject age (Pchoroid was thinnest at the nasal site, followed by the temporal, inferior, superior and finally the subfoveal site itself. The total choroidal thickness at the nasal site was significantly less than those at the other four sites (pthickness of the choroidal large vessel layer also decreased with age (p = 0.02). Subfoveal choroidal thickness was calculated as follows: 443.89-2.98×age (μm) (Pchoroidal thickness decreases by 2.98 μm each year. Total choroidal thickness diminishes with age. The CS and large vessel layers of the choroid at the subfovea showed significant decreases, though only the former correlated strongly with age.

  9. Swept source optical coherence tomography for in vivo imaging and vibrometry in the apex of the mouse cochlea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Yoon [E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California (United States); Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California (United States); Raphael, Patrick D.; Oghalai, John S. [Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California (United States); Ellerbee, Audrey K. [E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California (United States); Applegate, Brian E. [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States)

    2015-12-31

    Cochlear amplification has been most commonly investigated by measuring the vibrations of the basilar membrane in animal models. Several different techniques have been used for measuring these vibrations such as laser Doppler vibrometry, miniature pressure sensors, low coherence interferometry, and spectral-domain optical coherence tomography (SD-OCT). We have built a swept-source OCT (SS-OCT) system, which is similar to SD-OCT in that it is capable of performing both imaging and vibration measurements within the mouse cochlea in vivo without having to open the bone. In vivo 3D images of a mouse cochlea were obtained, and the basilar membrane, tectorial membrane, Reissner’s membrane, tunnel of Corti, and reticular lamina could all be resolved. We measured vibrations of multiple structures within the mouse cochlea to sound stimuli. As well, we measured the radial deflections of the reticular lamina and tectorial membrane to estimate the displacement of the outer hair cell stereocilia. These measurements have the potential to more clearly define the mechanisms underlying the linear and non-linear processes within the mammalian cochlea.

  10. Accurately computing the optical pathlength difference for a michelson interferometer with minimal knowledge of the source spectrum.

    Science.gov (United States)

    Milman, Mark H

    2005-12-01

    Astrometric measurements using stellar interferometry rely on precise measurement of the central white light fringe to accurately obtain the optical pathlength difference of incoming starlight to the two arms of the interferometer. One standard approach to stellar interferometry uses a channeled spectrum to determine phases at a number of different wavelengths that are then converted to the pathlength delay. When throughput is low these channels are broadened to improve the signal-to-noise ratio. Ultimately the ability to use monochromatic models and algorithms in each of the channels to extract phase becomes problematic and knowledge of the spectrum must be incorporated to achieve the accuracies required of the astrometric measurements. To accomplish this an optimization problem is posed to estimate simultaneously the pathlength delay and spectrum of the source. Moreover, the nature of the parameterization of the spectrum that is introduced circumvents the need to solve directly for these parameters so that the optimization problem reduces to a scalar problem in just the pathlength delay variable. A number of examples are given to show the robustness of the approach.

  11. Optically Levitated Targets as a Source for High Brightness X-rays and a Platform for Mass-Limited Laser-interaction Experiments

    Science.gov (United States)

    Giltrap, Samuel; Stuart, Nick; Robinson, Tim; Armstrong, Chris; Hicks, George; Eardley, Sam; Gumbrell, Ed; Smith, Roland

    2016-10-01

    Here we report on the development of an optical levitation based x-ray and proton source, motivated by the requirement for a debris free, high spatial resolution, and low EMP source for x-ray radiography and proton production. Research at Imperial College has led to the development of a feedback controlled optical levitation trap which is capable of holding both solid (Glass beads) and liquid (silicon based oil) micro-targets ( 3-10um). The optical levitation trap has been successfully fielded in a high-intensity laser interaction experiment at Imperial College London and at the Vulcan Petawatt Laser system at the Rutherford Appleton Laboratory (RAL). Here we report on the results from that RAL run including; an x-ray source size of 10-15um with very good spherical symmetry when compared to wire targets, secondly very low EMP signal from isolated levitated targets (9 times less RF signal than a comparable wire target). At Imperial College we were also able to record an x-ray energy spectrum which produced an electron temperature of 0.48KeV, and performed interferometry of a shock evolving into a blast wave off an optically levitated droplet which allowed us to infer the electron density within the shock front.

  12. Tunable Optical Sources.

    Science.gov (United States)

    1980-11-01

    scale, carbondioxide is measure sulfur dioxide with the OPO important to monitor due to its effect LIOAR earlier’z . The v1+v3 combination on the thermal...electrodes were stripped ;and the ends were re-cut and polished. The Domain structte was checked by etching the crystal in a 3 : L HNO3 /IIF solution

  13. 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma.

    Directory of Open Access Journals (Sweden)

    Kazuko Omodaka

    Full Text Available Although the lamina cribrosa (LC is the primary site of axonal damage in glaucoma, adequate methods to image and measure it are currently lacking. Here, we describe a noninvasive, in vivo method of evaluating the LC, based on swept-source optical coherence tomography (SS-OCT, and determine this method's ability to quantify LC thickness.This study comprised 54 eyes, including normal (n = 18, preperimetric glaucoma (PPG; n = 18, and normal tension glaucoma (NTG; n = 18 eyes. We used SS-OCT to obtain 3 x 3 mm cube scans of an area centered on the optic disc, and then synchronized reconstructed B- and en-face images from this data. We identified the LC in these B-scan images by marking the visible borders of the LC pores. We marked points on the anterior and posterior borders of the LC in 12 B-scan images in order to create a skeleton model of the LC. Finally, we used B-spline interpolation to form a 3D model of the LC, including only reliably measured scan areas. We calculated the average LC thickness (avgLCT in this model and used Spearman's rank correlation coefficient to compare it with circumpapillary retinal nerve fiber layer thickness (cpRNFLT.We found that the correlation coefficient of avgLCT and cpRNFLT was 0.64 (p < 0.01. The coefficient of variation for avgLCT was 5.1%. AvgLCT differed significantly in the groups (normal: 282.6 ± 20.6 μm, PPG: 261.4 ± 15.8 μm, NTG: 232.6 ± 33.3 μm. The normal, PPG and NTG groups did not significantly differ in age, sex, refractive error or intraocular pressure (IOP, although the normal and NTG groups differed significantly in cpRNFLT and Humphrey field analyzer measurements of mean deviation.Thus, our results indicate that the parameters of our newly developed method of measuring LC thickness with SS-OCT may provide useful and important data for glaucoma diagnosis and research.

  14. Development of an ultra-widely tunable DFG-THz source with switching between organic nonlinear crystals pumped with a dual-wavelength BBO optical parametric oscillator.

    Science.gov (United States)

    Notake, Takashi; Nawata, Kouji; Kawamata, Hiroshi; Matsukawa, Takeshi; Qi, Feng; Minamide, Hiroaki

    2012-11-01

    We developed a difference frequency generation (DFG) source with an organic nonlinear optical crystal of DAST or BNA selectively excited by a dual-wavelength β-BaB(2)O(4) optical parametric oscillator (BBO-OPO). The dual-wavelength BBO-OPO can independently oscillate two lights with different wavelengths from 800 to 1800 nm in a cavity. THz-wave generation by using each organic crystal covers ultrawide range from 1 to 30 THz with inherent intensity dips by crystal absorption modes. The reduced outputs can be improved by switching over the crystals with adequately tuned pump wavelengths of the BBO-OPO.

  15. Theoretical Evaluation of Terahertz Sources Generated From SnGa4 Q7 (Q=S, Se) as Infrared Nonlinear Optical Materials.

    Science.gov (United States)

    Cheng, Wen-Dan; Lin, Chen-Sheng; Zhang, Hao; Huang, Yi-Zhi; Chai, Guo-Liang

    2017-03-03

    We theoretically evaluated the integrated knowledge that contributes to conversion efficiency, including the phonon, photon, and electron properties of infrared nonlinear optical materials such as SnGa4 Q7 (Q=S, Se), which are terahertz (THz) sources. Specifically, we developed a new formula to calculate the susceptibility of the difference frequency generation (DFG) optical process. By evaluating the characteristics of the materials themselves in the THz region, we found that a larger nonlinear susceptibility or a large figure of merit resulted in a large efficiency of the THz source by comparing the findings of SnGa4 Se7 and SnGa4 S7 under the same experimental conditions; furthermore, THz absorption was found to reduce the efficiency of the THz source for the two SnGa4 Q7 (Q=S, Se) materials. The efficiency of the THz source also depended on the experimental conditions. A large crystal size, strong pump intensity, and small THz wavelength resulted in better efficiency of the THz source based on the DFG process. The efficiency was found to be a comprehensive index to evaluate the THz source based on the DFG process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Correlation of Aging and Segmental Choroidal Thickness Measurement using Swept Source Optical Coherence Tomography in Healthy Eyes.

    Directory of Open Access Journals (Sweden)

    Yu Wakatsuki

    Full Text Available To assess and compare choroidal thickness changes related to aging, we determined whether changes are due to thinning of the choriocapillaris plus Sattler's (CS layer and/or the large vessel layer in healthy eyes using swept-source optical coherence tomography (SS-OCT at a wavelength of 1,050-nm.We studied 115 normal eyes of 115 healthy volunteers, all with refractive errors of less than -6 diopters. All 115 eyes underwent analysis of choroidal thickness at the fovea, the CS layer and the large choroidal vessel layer. In 68 of the 115 eyes, choroidal thickness was determined at five sites (the fovea, and superior, inferior, nasal, and temporal sites using SS-OCT with an Early Treatment of Diabetic Retinopathy grid scan.Total choroidal thicknesses at each of the five sites were related to subject age (P<0.0001. The choroid was thinnest at the nasal site, followed by the temporal, inferior, superior and finally the subfoveal site itself. The total choroidal thickness at the nasal site was significantly less than those at the other four sites (p<0.05. The CS layer showed thinning which correlated with age (P<0.0001. The thickness of the choroidal large vessel layer also decreased with age (p = 0.02. Subfoveal choroidal thickness was calculated as follows: 443.89-2.98×age (μm (P<0.0001.Subfoveal choroidal thickness decreases by 2.98 μm each year. Total choroidal thickness diminishes with age. The CS and large vessel layers of the choroid at the subfovea showed significant decreases, though only the former correlated strongly with age.

  17. Repeatability of swept-source optical coherence tomography retinal and choroidal thickness measurements in neovascular age-related macular degeneration.

    Science.gov (United States)

    Hanumunthadu, Daren; Ilginis, Tomas; Restori, Marie; Sagoo, Mandeep S; Tufail, Adnan; Balaggan, Kamaljit S; Patel, Praveen J

    2017-05-01

    The aim was to determine the intrasession repeatability of swept-source optical coherence tomography (SS-OCT)-derived retinal and choroidal thickness measurements in eyes with neovascular age-related macular degeneration (nAMD). A prospective study consisting of patients with active nAMD enrolled in the Distance of Choroid Study at Moorfields Eye Hospital, London. Patients underwent three 12×9 mm macular raster scans using the deep range imaging (DRI) OCT-1 SS-OCT (Topcon) device in a single imaging session. Retinal and choroidal thicknesses were calculated for the ETDRS macular subfields. Repeatability was calculated according to methods described by Bland and Altman. 39 eyes of 39 patients with nAMD were included with a mean (±SD) age of 73.9 (±7.2) years. The mean (±SD) retinal thickness of the central macular subfield was 225.7 μm (±12.4 μm). The repeatability this subfield, expressed as a percentage of the mean central macular subfield thickness, was 23.2%. The percentage repeatability of the other macular subfields ranged from 13.2% to 28.7%. The intrasession coefficient of repeatability of choroidal thickness of the central macular subfield was 57.2 μm with a mean choroidal thickness (±SD) of 181 μm (±15.8 μm). This study suggests that a change >23.2% of retinal thickness and 57.2 μm choroidal thickness in the central macular subfield is required to distinguish true clinical change from measurement variability when using the DRI OCT-1 device to manage patients with nAMD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Choroidal thickness maps from spectral domain and swept source optical coherence tomography: algorithmic versus ground truth annotation.

    Science.gov (United States)

    Philip, Ana-Maria; Gerendas, Bianca S; Zhang, Li; Faatz, Henrik; Podkowinski, Dominika; Bogunovic, Hrvoje; Abramoff, Michael D; Hagmann, Michael; Leitner, Roland; Simader, Christian; Sonka, Milan; Waldstein, Sebastian M; Schmidt-Erfurth, Ursula

    2016-10-01

    The purpose of the study was to create a standardised protocol for choroidal thickness measurements and to determine whether choroidal thickness measurements made on images obtained by spectral domain optical coherence tomography (SD-OCT) and swept source (SS-) OCT from patients with healthy retina are interchangeable when performed manually or with an automatic algorithm. 36 grid cell measurements for choroidal thickness for each volumetric scan were obtained, which were measured for SD-OCT and SS-OCT with two methods on 18 eyes of healthy volunteers. Manual segmentation by experienced retinal graders from the Vienna Reading Center and automated segmentation on >6300 images of the choroid from both devices were statistically compared. Model-based comparison between SD-OCT/SS-OCT showed a systematic difference in choroidal thickness of 16.26±0.725 μm (pthickness of -0.68±0.513 μm (p=0.1833). The correlation coefficients for SD-OCT and SS-OCT measures within eyes were 0.975 for manual segmentation and 0.955 for automatic segmentation. Choroidal thickness measurements of SD-OCT and SS-OCT indicate that these two devices are interchangeable with a trend of choroidal thickness measurements being slightly thicker on SD-OCT with limited clinical relevance. Use of an automated algorithm to segment choroidal thickness was validated in healthy volunteers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness.

    Science.gov (United States)

    Dastiridou, Anna I; Bousquet, Elodie; Kuehlewein, Laura; Tepelus, Tudor; Monnet, Dominique; Salah, Sawsen; Brezin, Antoine; Sadda, Srinivas R

    2017-08-01

    To characterize choroidal thickness and choroidal reflectivity in the eyes of patients with birdshot chorioretinopathy (BSCR). Cross-sectional observational study. Two hundred twenty BSCR patients and 59 healthy controls. Patients with BSCR and healthy controls underwent imaging of the macula in both eyes with a swept-source optical coherence tomography device (DRI-OCT1 Atlantis; Topcon). Images were exported from the device, and analysis was performed by 2 graders in the Doheny Image Reading Center using Image J software. The choroidal thickness at the foveal center was measured. In addition, the inner and outer boundaries of the choroid and retinal pigment epithelium (RPE) as well as the inner retinal surface all were segmented to allow the brightness and reflectivity of the pixels in the choroid, RPE band, and overlying vitreous to be quantified. An adjusted or normalized choroidal reflectivity, with the RPE as the bright reference standard and the vitreous as the dark reference standard, was computed using the formula: normalized choroidal reflectivity = (choroidal reflectivity-vitreous reflectivity)/RPE reflectivity. Choroidal reflectivity and choroidal thickness. Three hundred eighty-six eyes in the BSCR group and 59 eyes in the control group were included in this analysis. Higher choroidal reflectivity and lower choroidal thickness were documented in inactive BSCR patients compared with active BSCR and controls (P choroidal thickness compared with controls (P choroidal reflectivity and choroidal thickness (r = -0.793; P choroidal thickness, age, and disease duration (all P choroidal reflectivity. Choroidal reflectivity and choroidal thickness changes are evident in active and inactive BSCR patients. Novel choroidal parameters such as choroidal reflectivity may warrant further study in the setting of BSCR. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  20. The Extended Chandra Deep Field-South Survey: Optical spectroscopy of faint X-ray sources with the VLT and Keck

    CERN Document Server

    Silverman, J D; Salvato, M; Hasinger, G; Bergeron, J; Capak, P; Szokoly, G; Finoguenov, A; Gilli, R; Rosati, P; Tozzi, P; Vignali, C; Alexander, D M; Brandt, W N; Lehmer, B D; Luo, B; Rafferty, D; Xue, Y Q; Balestra, I; Bauer, F E; Brusa, M; Comastri, A; Kartaltepe, J; Koekemoer, A M; Miyaji, T; Schneider, D P; Treister, E; Wisotski, L; Schramm, M

    2010-01-01

    We present the results of a program to acquire high-quality optical spectra of X-ray sources detected in the E-CDF-S and its central area. New spectroscopic redshifts are measured for 283 counterparts to Chandra sources with deep exposures (t~2-9 hr per pointing) using multi-slit facilities on both the VLT and Keck thus bringing the total number of spectroscopically-identified X-ray sources to over 500 in this survey field. We provide a comprehensive catalog of X-ray sources detected in the E-CDF-S including the optical and near-infrared counterparts, and redshifts (both spectroscopic and photometric) that incorporate published spectroscopic catalogs thus resulting in a final sample with a high fraction (80%) of X-ray sources having secure identifications. We demonstrate the remarkable coverage of the Lx-z plane now accessible from our data while emphasizing the detection of AGNs that contribute to the faint end of the luminosity function at 1.5

  1. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Science.gov (United States)

    Corvan, D. J.; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16-18 MeV) and ultra-high brilliance (exceeding 1020 photons s-1mm-2mrad-2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.

  2. Optical spectroscopy of X-ray sources in the Taurus molecular cloud: discovery of ten new pre-main sequence stars

    CERN Document Server

    Scelsi, L; Affer, L; Argiroffi, C; Pillitteri, I; Maggio, A; Micela, G

    2008-01-01

    We have analyzed optical spectra of 25 X-ray sources identified as potential new members of the Taurus molecular cloud (TMC), in order to confirm their membership in this SFR. Fifty-seven candidates were previously selected among the X-ray sources in the XEST survey, having a 2MASS counterpart compatible with a PMS star based on color-magnitude and color-color diagrams. We obtained high-resolution optical spectra for 7 of these candidates with the SARG spectrograph at the TNG telescope, which were used to search for Li absorption and to measure the Ha line and the radial and rotational velocities; 18 low-resolution optical spectra obtained with DOLORES for other candidate members were used for spectral classification, for Ha measurements, and to assess membership together with IR color-color and color-magnitude diagrams and additional information from the X-ray data. We found that 3 sources show Li absorption, with equivalent widths of ~500 mA, broad spectral line profiles, indicating v sin i ~20-40 km/s, rad...

  3. 40-$\\mu$J passively CEP-stable seed source for ytterbium-based high-energy optical waveform synthesizers

    OpenAIRE

    Cankaya, Huseyin; Calendron, Anne-Laure; Zhou, Chun; Chia, Shih-Hsuan; Muecke, Oliver D.; Cirmi, Giovanni; Kärtner, Franz X.

    2016-01-01

    We demonstrate experimentally for the first time a ~40-µJ two-octave-wide passively carrier-envelope phase (CEP)-stable parametric front-end for seeding an ytterbium (Yb)-pump-based, few-optical-cycle, high-energy optical parametric waveform synthesizer. The system includes a CEP-stable white-light continuum and two-channel optical parametric chirped pulse amplifiers (OPCPAs) in the near- and mid-infrared spectral regions spanning altogether a two-octave-wide spectrum driven by a regenerative...

  4. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Corvan, D.J., E-mail: dcorvan01@qub.ac.uk; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 10{sup 20} photons s{sup −1}mm{sup −2}mrad{sup −2} 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above. - Highlights: • How synchrotron radiation can be produced in an all optical setting using laser-plasmas. • Generating high-energy, high-flux gamma ray beams. • Presenting results from a recent NLTS experimental campaign. • Reveal insight into the experimental techniques employed.

  5. En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy.

    Science.gov (United States)

    Ferrara, Daniela; Mohler, Kathrin J; Waheed, Nadia; Adhi, Mehreen; Liu, Jonathan J; Grulkowski, Ireneusz; Kraus, Martin F; Baumal, Caroline; Hornegger, Joachim; Fujimoto, James G; Duker, Jay S

    2014-03-01

    To characterize en face features of the retinal pigment epithelium (RPE) and choroid in eyes with chronic central serous chorioretinopathy (CSCR) using a high-speed, enhanced-depth swept-source optical coherence tomography (SS-OCT) prototype. Consecutive patients with chronic CSCR were prospectively examined with SS-OCT. Fifteen eyes of 13 patients. Three-dimensional 6×6 mm macular cube raster scans were obtained with SS-OCT operating at 1050 nm wavelength and 100000 A-lines/sec with 6 μm axial resolution. Segmentation of the RPE generated a reference surface; en face SS-OCT images of the RPE and choroid were extracted at varying depths every 3.5 μm (1 pixel). Abnormal features were characterized by systematic analysis of multimodal fundus imaging, including color photographs, fundus autofluorescence, fluorescein angiography, and indocyanine-green angiography (ICGA). En face SS-OCT morphology of the RPE and individual choroidal layers. En face SS-OCT imaging at the RPE level revealed absence of signal corresponding to RPE detachment or RPE loss in 15 of 15 (100%) eyes. En face SS-OCT imaging at the choriocapillaris level showed focally enlarged vessels in 8 of 15 eyes (53%). At the level of Sattler's layer, en face SS-OCT documented focal choroidal dilation in 8 of 15 eyes (53%) and diffuse choroidal dilation in 7 of 15 eyes (47%). At the level of Haller's layer, these same features were observed in 3 of 15 eyes (20%) and 12 of 15 eyes (80%), respectively. In all affected eyes, these choroidal vascular abnormalities were seen just below areas of RPE abnormalities. In 2 eyes with secondary choroidal neovascularization (CNV), distinct en face SS-OCT features corresponded to the neovascular lesions. High-speed, enhanced-depth SS-OCT at 1050 nm wavelength enables the visualization of pathologic features of the RPE and choroid in eyes with chronic CSCR not usually appreciated with standard spectral domain (SD) OCT. En face SS-OCT imaging seems to be a useful tool in

  6. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    Science.gov (United States)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  7. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    Science.gov (United States)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  8. VizieR Online Data Catalog: Optical spectroscopy of ECDF-S X-ray sources (Silverman+, 2010)

    Science.gov (United States)

    Silverman, J. D.; Mainieri, V.; Salvato, M.; Hasinger, G.; Bergeron, J.; Capak, P.; Szokoly, G.; Finoguenov, A.; Gilli, R.; Rosati, P.; Tozzi, P.; Vignali, C.; Alexander, D. M.; Brandt, W. N.; Lehmer, B. D.; Luo, B.; Rafferty, D.; Xue, Y. Q.; Balestra, I.; Bauer, F. E.; Brusa, M.; Comastri, A.; Kartaltepe, J.; Koekemoer, A. M.; Miyaji, T.; Schneider, D. P.; Treister, E.; Wisotski, L.; Schramm, M.

    2010-11-01

    We have acquired optical spectra with the VLT, using the Visible Multi-Object Spectrograph (VIMOS) in Oct-Dec 2004, Jan and Oct 2005, Dec 2007 and Jan-Feb 2008. We have carried out two pointings, each with two different setups, in the northern half of the E-CDF-S field. Optical spectra were also obtained in January of 2007, 2008, and 2010 on Keck II with the Deep Imaging Multi-object Spectrograph (DEIMOS). (3 data files).

  9. AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2014-10-01

    Smoke aerosols from biomass burning are an important component of the global aerosol system. Analysis of Aerosol Robotic Network (AERONET) retrievals of aerosol microphysical/optical parameters at 10 sites reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke observed at coastal/island AERONET sites also mostly lie within the range of variability at the near-source sites. Differences between sites tend to be larger than variability at an individual site, although optical properties for some sites in different regions can be quite similar. Across the sites, typical midvisible SSA ranges from ~ 0.95-0.97 (sites dominated by boreal forest or peat burning, typically with larger fine-mode particle radius and spread) to ~ 0.88-0.9 (sites most influenced by grass, shrub, or crop burning, typically smaller fine-mode particle radius and spread). The tropical forest site Alta Floresta (Brazil) is closer to this second category, although with intermediate SSA ~ 0.92. The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average midvisible SSA ~ 0.85. Sites with stronger absorption also tend to have stronger spectral gradients in SSA, becoming more absorbing at longer wavelengths. Microphysical/optical models are presented in detail so as to facilitate their use in radiative transfer calculations, including extension to UV (ultraviolet) wavelengths, and lidar ratios. One intended application is to serve as candidate optical models for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean often have insufficient absorption (i.e. too high SSA) to represent these biomass burning aerosols. The underestimates in satellite-retrieved AOD in smoke outflow regions, which have important consequences for applications of these satellite data sets, are consistent with

  10. Optical second harmonic generation measurements for investigating electron injection into a pentacene field effect transistor with Au source and drain electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Eunju; Manaka, Takaaki; Tamura, Ryosuke [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan); Iwamoto, Mitsumasa [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)], E-mail: iwamoto@pe.titech.ac.jp

    2008-03-03

    The pentacene field effect transistors (FETs)' operation for the injection carrier was revealed by means of the drain current-elapsed time (I{sub ds}-t) and optical second harmonic generation (SHG) measurements. The charge carriers forming the conducting channel of pentacene FETs were mainly holes injected from the Au source electrode. Carrier injection from source and drain electrodes was followed by the carrier trapping, and the SHG signal modulated by the change in the electric field distribution between Au the source and drain electrodes was shown. In particular, at the off state of the FET, electron injection and succeeding trapping were suggested. Furthermore, hole injection assisted by trapped electrons was also suggested.

  11. A survey of sources of incoherent artificial optical radiation in a hospital environment in accordance with European Directive 2006/25/EC: evaluation of the related exposure risk.

    Science.gov (United States)

    Cavatorta, Claudia; Lualdi, Manuela; Meroni, Silvia; Polita, Giovanni; Bolchi, Mauro; Pignoli, Emanuele

    2016-03-01

    The evaluation of incoherent artificial optical radiation (AOR) exposure in hospital environments is a complex task due to the variety of sources available. This study has been designed to provide a proposal for the precautionary assessment of the related risk. This survey suggested that, in our Institution, at least three kinds of AOR sources required specific investigations: ambient lighting, theatre operating lighting and ultraviolet radiation (UVR) sources. For each kind of evaluated sources a specific measurement approach was developed. All irradiance measurements were made using a commercial spectroradiometer. The obtained results were compared with the appropriate exposure limit values (ELVs) defined in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and adopted by the European Directive 2006/25/EC. The risk related to the evaluated AOR exposure was finally assessed according to our risk matrix. According to our results, the emission of ambient lighting in the actual exposure conditions was always in accordance with the ELVs and the related risk was classifiable as not relevant. The risk related to the exposure to theatre operating lighting resulted not negligible, especially when two or more sources were used with focal spots overlapping on reflective objects. UVR sources emission may represent a health hazard depending, in particular, on the set up of the device containing the source. In case of laminar flow cabinets and closed transilluminators, if the UVR source is well contained within an enclosure with interlock, it presents no risk of exposure. Otherwise, the emission arising from UVR lamps, open transilluminators or sources not provided with interlock, may represent a risk classifiable as high even in the actual working conditions. The personal protective equipment used by workers were also assessed and their suitability was discussed.

  12. Source apportionment of the carbonaceous aerosol in Norway – quantitative estimates based on 14C, thermal-optical and organic tracer analysis

    Directory of Open Access Journals (Sweden)

    K. Stenström

    2011-09-01

    Full Text Available In the present study, source apportionment of the ambient summer and winter time particulate carbonaceous matter (PCM in aerosol particles (PM1 and PM10 has been conducted for the Norwegian urban and rural background environment. Statistical treatment of data from thermal-optical, 14C and organic tracer analysis using Latin Hypercube Sampling has allowed for quantitative estimates of seven different sources contributing to the ambient carbonaceous aerosol. These are: elemental carbon from combustion of biomass (ECbb and fossil fuel (ECff, primary and secondary organic carbon arising from combustion of biomass (OCbb and fossil fuel (OCff, primary biological aerosol particles (OCPBAP, which includes plant debris, OCpbc, and fungal spores, OCpbs, and secondary organic aerosol from biogenic precursors (OCBSOA. Our results show that emissions from natural sources were particularly abundant in summer, and with a more pronounced influence at the rural compared to the urban background site. 80% of total carbon (TCp, corrected for the positive artefact in PM10 and ca. 70% of TCpin PM1 could be attributed to natural sources at the rural background site in summer. Natural sources account for about 50% of TCp in PM10 at the urban background site as well. The natural source contribution was always dominated by OCBSOA, regardless of season, site and size fraction. During winter anthropogenic sources totally dominated the carbonaceous aerosol (80–90%. Combustion of biomass contributed slightly more than fossil-fuel sources in winter, whereas emissions from fossil-fuel sources were more abundant in summer. Mass closure calculations show that PCM made significant contributions to the mass concentration of the ambient PM regardless of size fraction, season, and site. A larger fraction of PM1 (ca. 40–60% was accounted for by carbonaceous matter compared to PM10 (ca. 40–50%, but only by a small margin. In general, there were no pronounced differences in the

  13. Source apportionment of the carbonaceous aerosol in Norway – quantitative estimates based on 14C, thermal-optical and organic tracer analysis

    Directory of Open Access Journals (Sweden)

    K. Stenström

    2011-03-01

    Full Text Available In the present study, source apportionment of the ambient summer and winter time particulate carbonaceous matter (PCM in aerosol particles (PM1 and PM10 has been conducted for the Norwegian urban and rural background environment. Statistical treatment of data from thermal-optical, 14C and organic tracer analysis using Latin Hypercube Sampling has allowed for quantitative estimates of seven different sources contributing to the ambient carbonaceous aerosol. These are: elemental carbon from combustion of biomass (ECbb and fossil fuel (ECff, organic carbon from combustion of biomass (OCbb, fossil fuel (OCff, primary biological aerosol particles (OCPBAP, which includes plant debris, OCpbc, and fungal spores, OCpbs, and secondary organic aerosol from biogenic precursors (OCBSOA. Our results show that emissions from natural sources were particularly abundant in summer, and with a more pronounced influence at the rural compared to the urban background site. 80% of total carbon (TCp, corrected for the positive artefact in PM10 and 70% of TCp in PM1 could be attributed to natural sources at the rural background site in summer. Natural sources account for about 50% of TCp in PM10 at the urban background site as well. The natural source contribution was always dominated by OCBSOA, regardless of season, site and size fraction. During winter anthropogenic sources totally dominated the carbonaceous aerosol (83–90%. Combustion of biomass contributed slightly more than fossil-fuel sources in winter, whereas emissions from fossil-fuel sources were more abundant in summer. Mass closure calculations show that PCM likely dominated the mass concentration of the ambient PM regardless of size fraction, season, and site. A larger fraction of PM1 (64–69% was accounted for by carbonaceous matter compared to PM10 (51–67%, but only by a small margin. In general, there were no pronounced differences in the relative contribution of carbonaceous matter to PM with

  14. PPLN-based photon-pair source compatible with solid state quantum memories and telecom optical fibers

    Science.gov (United States)

    Latypov, I. Z.; Shkalikov, A. V.; Akat'ev, D. O.; Kalachev, A. A.

    2017-06-01

    We report on the realization of a tunable source of correlated photon pairs compatible with telecommunication networks and quantum memories involving dielectric crystals doped by Nd3+ ions. The source is based on spontaneous parametric down-conversion in a 25 mm periodically poled lithium niobate crystal pumped by 532 nm cw laser. Spectral and correlation characteristics of the corresponding heralded single-photon source compatible with quantum memories are presented.

  15. 电光调制器驱动源电路研究%Research of electro-optic modulator circuit of the driving source

    Institute of Scientific and Technical Information of China (English)

    谭丰菊; 张志伟

    2011-01-01

    High-speed optical fiber communication systems are usually driven by external modulation circuit, the external modulation drive circuit must be able to provide sufficient output drive voltage and DC bias to meet the needs of the modulator. Based on the above purpose, it researched the circuit design of the source of electro-optic modulator driver.%高速光纤通信系统中通常采用外调制驱动电路,外调制驱动电路必须能够提供足够的输出驱动电压和直流偏压以满足调制器的需要.基于上述目的,研究了电光调制器的驱动源电路设计.

  16. Optical Cherenkov radiation by cascaded nonlinear interaction: an efficient source of few-cycle energetic near- to mid-IR pulses.

    Science.gov (United States)

    Bache, M; Bang, O; Zhou, B B; Moses, J; Wise, F W

    2011-11-07

    When ultrafast noncritical cascaded second-harmonic generation of energetic femtosecond pulses occur in a bulk lithium niobate crystal optical Cherenkov waves are formed in the near- to mid-IR. Numerical simulations show that the few-cycle solitons radiate Cherenkov (dispersive) waves in the λ = 2.2 - 4.5 μm range when pumping at λ₁ = 1.2 - 1.8 μm. The exact phase-matching point depends on the soliton wavelength, and we show that a simple longpass filter can separate the Cherenkov waves from the solitons. The Cherenkov waves are born few-cycle with an excellent Gaussian pulse shape, and the conversion efficiency is up to 25%. Thus, optical Cherenkov waves formed with cascaded nonlinearities could become an efficient source of energetic near- to mid-IR few-cycle pulses.

  17. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks using Tera-scale Optical-Core Devices

    Energy Technology Data Exchange (ETDEWEB)

    Imam, Neena [ORNL; Barhen, Jacob [ORNL

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot be readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.

  18. Development of Extended-Depth Swept Source Optical Coherence Tomography for Applications in Ophthalmic Imaging of the Anterior and Posterior Eye

    Science.gov (United States)

    Dhalla, Al-Hafeez Zahir

    extending the imaging range of OCT systems are developed. These techniques include the use of a high spectral purity swept source laser in a full-field OCT system, as well as the use of a peculiar phenomenon known as coherence revival to resolve the complex conjugate ambiguity in swept source OCT. In addition, a technique for extending the depth of focus of OCT systems by using a polarization-encoded, dual-focus sample arm is demonstrated. Along the way, other related advances are also presented, including the development of techniques to reduce crosstalk and speckle artifacts in full-field OCT, and the use of fast optical switches to increase the imaging speed of certain low-duty cycle swept source OCT systems. Finally, the clinical utility of these techniques is demonstrated by combining them to demonstrate high-speed, high resolution, extended-depth imaging of both the anterior and posterior eye simultaneously and in vivo.

  19. Effect of the degree of phase-correlation of laser sources on the transmission and optical coherent detection in radio-over-fibre systems

    Science.gov (United States)

    Maldonado-Basilio, Ramón; Li, Ran; Abdul-Majid, Sawsan; Nikkhah, Hamdam; Leong, Kin-Wai; Hall, Trevor J.

    2013-01-01

    The deployment of high capacity Radio-over-Fiber (RoF) systems rely, among many aspects, on the capability to efficiently generate, transport, and detect millimeter-wave carriers modulated at high data rates. Photonic approaches based on the heterodyne beating of two free-running laser sources have been proposed as an alternative to generate multi-Gbps quadrature phase modulated signals imposed on millimeter wave carriers. Implementing photonic approaches in the down-link avoids the need for electronic generation of high frequency carriers and decreases the requirements at the base band electronics. In addition, implementing complex modulation formats overcomes some of the typical issues found in intensity modulation direct detection approaches such as non­ linearity, receiver sensitivity and dynamic range. In this work, the performance improvement of a coherent RoF system carrying 10 Gbps QPSK signals is numerically analyzed in terms of both the frequency linewidth and the degree of phase correlation between the lasers utilised at the down-link (for the optical heterodyne beating) and at the up-link (for the optical coherent detection). Relative to phase correlated lasers featuring linewidths of 5 MHz, the peak power of the 60 G Hz carrier generated at the down-link is reduced by 8 dB for un-correlated lasers. In addition, the error vector magnitude of the received signal at the up-link is improved from over 20% (for un-correlated lasers and linewidths of 5 MHz) to around 15% (for correlated lasers) at an optical received power of -30 dBm. The results obtained reinforce the idea of using coherent comb laser sources with phase correlated modes located at the Central Office. It also motivates the eventual deployment of techniques to control the degree of phase correlation between the lasers used as signal and local oscillator at the optical coherent receivers.

  20. UNVEILING THE NATURE OF UNIDENTIFIED GAMMA-RAY SOURCES. II. RADIO, INFRARED, AND OPTICAL COUNTERPARTS OF THE GAMMA-RAY BLAZAR CANDIDATES

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); D' Abrusco, R.; Paggi, A.; Smith, Howard A. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Masetti, N. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129 Bologna (Italy); Giroletti, M. [INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Tosti, G. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy)

    2013-06-01

    A significant fraction ({approx}30%) of the high-energy gamma-ray sources listed in the second Fermi Large Area Telescope catalog (2FGL) are still of unknown origin, being not yet associated with counterparts at low energies. We recently developed a new association method to identify if there is a {gamma}-ray blazar candidate within the positional uncertainty region of a generic 2FGL source. This method is entirely based on the discovery that blazars have distinct infrared colors with respect to other extragalactic sources found, thanks to the Wide-field Infrared Survey Explorer (WISE) all-sky observations. Several improvements have also been performed to increase the efficiency of our method in recognizing {gamma}-ray blazar candidates. In this paper we applied our method to two different samples, the first constituted by unidentified {gamma}-ray sources (UGSs), and the second by active galaxies of uncertain type, both listed in the 2FGL. We present a catalog of IR counterparts for {approx}20% of the UGSs investigated. Then, we also compare our results for the associated sources with those present in the literature. In addition, we illustrate the extensive archival research carried out to identify the radio, infrared, optical, and X-ray counterparts of the WISE-selected, {gamma}-ray blazar candidates. Finally, we discuss the future developments of our method based on ground-based follow-up observations.

  1. The analytical investigation of the super-Gaussian pump source on the thermal, stress and thermo-optics properties of double-clad Yb:glass fiber lasers

    Indian Academy of Sciences (India)

    H Nadgaran; P Elahi

    2005-07-01

    Fiber lasers have attracted considerable attention when their power can realistically be scaled to kilowatt level and beyond. In this paper, we assumed that the fiber core and first clad are exposed to a pump source with a super-Gaussian profile of order four. The effects of this non-uniform heat deposition on thermal, stress and thermo-optics properties such as temperature-dependent change of refractive index and thermally induced stress have been comprehensively studied and their equations analytically derived.

  2. Compact and tunable mid-infrared source based on a 2μm dual-wavelength KTiOPO4 intracavity optical parametric oscillator

    Institute of Scientific and Technical Information of China (English)

    Geng You-Fu; Tan Xiao-Ling; Li Xue-Jin; Yao Jian-Quan

    2010-01-01

    Using a double resonant KTiOPO4(KTP)intracavity optical parametric oscillator operating at degenerated point of 2 μm,we demonstrate a unique mid-infrared source based on difference frequency generation in GaSe crystal.The output tuning range is 8.42-19.52 μm,and a peak power of 834 W for type-Ⅰ phase matching scheme and 730 W for type-Ⅱ phase matching scheme are achieved.Experimental results show that this oscillator is a good alternative to the generator of a compact and tabletop mid-infrared radiation with a widely tunable range.

  3. Characteristics of Optical Fire Detector False Alarm Sources and Qualification Test Procedures to Prove Immunity. Phase 2. Volume 1

    Science.gov (United States)

    1993-09-01

    Features of Typical Lightning Flashes 95 xii LIST OF FIGURES (CONCLUDED) FIGURE TITLE PAGE 32 Examples of Spectral Energy Distribution of 98 Various...Yel IR..IR IR Eastern Electric 3 N/A N/A SB-1O1W 4 N/A N/A 21 UV Bug Lamp 3 0 0O 145 Tabla 29 (Continued)[SOURCE TEST OISTANC CHOP0 NO. SOURCE NO

  4. Nocturnal aerosol optical depth measurements with a small-aperture automated photometer using the moon as a light source

    Science.gov (United States)

    Berkoff, T.A.; Sorokin, M.; Stone, T.; Eck, T.F.; Hoff, R.; Welton, E.; Holben, B.

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA's Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities. ?? 2011 American Meteorological Society.

  5. Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source

    Science.gov (United States)

    Berkoff, Timothy A.; Sorokin, Mikail; Stone, Tom; Eck, Thomas F.; Hoff, Raymond; Welton, Ellsworth; Holben, Brent

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA s Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities.

  6. Nocturnal Aerosol Optical Depth Measurements with a Small-Aperture Automated Photometer Using the Moon as a Light Source

    Science.gov (United States)

    Berkoff, Timothy A.; Sorokin, Mikail; Stone, Tom; Eck, Thomas F.; Hoff, Raymond; Welton, Ellsworth; Holben, Brent

    2011-01-01

    A method is described that enables the use of lunar irradiance to obtain nighttime aerosol optical depth (AOD) measurements using a small-aperture photometer. In this approach, the U.S. Geological Survey lunar calibration system was utilized to provide high-precision lunar exoatmospheric spectral irradiance predictions for a ground-based sensor location, and when combined with ground measurement viewing geometry, provided the column optical transmittance for retrievals of AOD. Automated multiwavelength lunar measurements were obtained using an unmodified Cimel-318 sunphotometer sensor to assess existing capabilities and enhancements needed for day/night operation in NASA s Aerosol Robotic Network (AERONET). Results show that even existing photometers can provide the ability for retrievals of aerosol optical depths at night near full moon. With an additional photodetector signal-to-noise improvement of 10-100, routine use over the bright half of the lunar phase and a much wider range of wavelengths and conditions can be achieved. Although the lunar cycle is expected to limit the frequency of observations to 30%-40% compared to solar measurements, nevertheless this is an attractive extension of AERONET capabilities.

  7. Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe

    Science.gov (United States)

    Gurbani, Saumya S.; Wilkening, Paul; Zhao, Mingtao; Gonenc, Berk; Cheon, Gyeong Woo; Iordachita, Iulian I.; Chien, Wade; Taylor, Russell H.; Niparko, John K.; Kang, Jin U.

    2014-05-01

    Cochlear implantation offers the potential to restore sensitive hearing in patients with severe to profound deafness. However, surgical placement of the electrode array within the cochlea can produce trauma to sensorineural components, particularly if the initial turn of the cochlea is not successfully navigated as the array is advanced. In this work, we present a robot-mounted common-path swept-source optical coherence tomography endoscopic platform for three-dimensional (3-D) optical coherence tomography (OCT) registration and preoperative surgical planning for cochlear implant surgery. The platform is composed of a common-path 600-μm diameter fiber optic rotary probe attached to a five degrees of freedom robot capable of 1 μm precision movement. The system is tested on a dry fixed ex vivo human temporal bone, and we demonstrate the feasibility of a 3-D OCT registration of the cochlea to accurately describe the spatial and angular profiles of the canal formed by the scala tympani into the first cochlear turn.

  8. Generation and healing behavior of radiation-induced optical absorption in fluoride phosphate glasses: The dependence on UV radiation sources and temperature

    Science.gov (United States)

    Natura, U.; Ehrt, D.

    2001-03-01

    High purity fluoride phosphate (FP) glasses have a large transmission range from the vacuum ultraviolet to the infrared. They are attractive candidates for lens systems in microlithography equipment and excimer laser optics. Fluoride single crystals and vitreous silica are well-known traditional materials for ultraviolet optics. Crystal sizes are limited and glass is better for fabricating optics. For lens systems, a variety of glasses with different refractive indices and dispersion are required. The UV resonance wavelengths of FP glasses with a low content of phosphate using a two-term Sellmeier dispersion formula are comparable with those of silica and fluoride single crystals. It is known, that UV radiation induces the generation of several defect centers leading to additional absorption bands. The investigation of the kinetics of defect generation is very important for the prediction of transmission losses in case of long-time irradiation. To predict the kinetics of defect generation, first the separation of absorption bands is necessary. Experiments were carried out using UV-lamps, the KrF excimer laser (ns- and fs-pulses) and the ArF excimer laser (ns-pulses). The healing behavior of radiation-induced absorption bands was investigated using thermal treatment (temperature-dependence) and bleaching experiments (radiation-dependence). The results of these experiments enable the separation of absorption bands and the prediction of the defect generation depending on the used radiation source. The healing of strong defects at room temperature is postulated to be a diffusion-controlled process.

  9. Perspectives of Imaging of Single Protein Molecules with the Present Design of the European XFEL. - Part I - X-ray Source, Beamlime Optics and Instrument Simulations

    CERN Document Server

    Serkez, Svitozar; Saldin, Evgeni; Zagorodnov, Igor; Geloni, Gianluca; Yefanov, Oleksandr

    2014-01-01

    The Single Particles, Clusters and Biomolecules (SPB) instrument at the European XFEL is located behind the SASE1 undulator, and aims to support imaging and structure determination of biological specimen between about 0.1 micrometer and 1 micrometer size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. This wide operation range is a cause for challenges to the focusing optics. In particular, a long propagation distance of about 900 m between x-ray source and sample leads to a large lateral photon beam size at the optics. The beam divergence is the most important parameter for the optical system, and is largest for the lowest photon energies and for the shortest pulse duration (corresponding to the lowest charge). Due to the large divergence of nominal X-ray pulses with duration shorter than 10 fs, one suffers diffraction from mirror aperture, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which are ideal for imaging of single biomolecules. The nominal...

  10. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    Science.gov (United States)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  11. The Subaru-XMM-Newton Deep Survey (SXDS) VIII.: Multi-wavelength Identification, Optical/NIR Spectroscopic Properties, and Photometric Redshifts of X-ray Sources

    CERN Document Server

    Akiyama, Masayuki; Watson, Mike G; Furusawa, Hisanori; Takata, Tadafumi; Simpson, Chris; Morokuma, Tomoki; Yamada, Toru; Ohta, Kouji; Iwamuro, Fumihide; Yabe, Kiyoto; Tamura, Naoyuki; Moritani, Yuuki; Takato, Naruhisa; Kimura, Masahiko; Maihara, Toshinori; Dalton, Gavin; Lewis, Ian; Lee, Hanshin; Lake, Emma Curtis; Macaulay, Edward; Clarke, Frazer; Silverman, John D; Croom, Scott; Ouchi, Masami; Hanami, Hitoshi; Tello, J Diaz; Yoshikawa, Tomohiro; Fujishiro, Naofumi; Sekiguchi, Kazuhiro

    2015-01-01

    We report the multi-wavelength identification of the X-ray sources found in the Subaru-XMM-Newton Deep Survey (SXDS) using deep imaging data covering the wavelength range between the far-UV to the mid-IR. We select a primary counterpart of each X-ray source by applying the likelihood ratio method to R-band, 3.6micron, near-UV, and 24micron source catalogs as well as matching catalogs of AGN candidates selected in 1.4GHz radio and i'-band variability surveys. Once candidates of Galactic stars, ultra-luminous X-ray sources in a nearby galaxy, and clusters of galaxies are removed there are 896 AGN candidates in the sample. We conduct spectroscopic observations of the primary counterparts with multi-object spectrographs in the optical and NIR; 65\\% of the X-ray AGN candidates are spectroscopically-identified. For the remaining X-ray AGN candidates, we evaluate their photometric redshift with photometric data in 15 bands. Utilising the multi-wavelength photometric data of the large sample of X-ray selected AGNs, w...

  12. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    Science.gov (United States)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  13. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source.

    Science.gov (United States)

    Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K

    2016-11-01

    Current optical coherence tomography (OCT) imaging suffers from short ranging distance and narrow imaging field of view (FOV). There is growing interest in searching for solutions to these limitations in order to expand further in vivo OCT applications. This paper describes a solution where we utilize an akinetic swept source for OCT implementation to enable ~10 cm ranging distance, associated with the use of a wide-angle camera lens in the sample arm to provide a FOV of ~20 x 20 cm(2). The akinetic swept source operates at 1300 nm central wavelength with a bandwidth of 100 nm. We propose an adaptive calibration procedure to the programmable akinetic light source so that the sensitivity of the OCT system over ~10 cm ranging distance is substantially improved for imaging of large volume samples. We demonstrate the proposed swept source OCT system for in vivo imaging of entire human hands and faces with an unprecedented FOV (up to 400 cm(2)). The capability of large-volume OCT imaging with ultra-long ranging and ultra-wide FOV is expected to bring new opportunities for in vivo biomedical applications.

  14. J-GEM follow-up observations to search for an optical counterpart of the first gravitational wave source GW150914

    Science.gov (United States)

    Morokuma, Tomoki; Tanaka, Masaomi; Asakura, Yuichiro; Abe, Fumio; Tristram, Paul J.; Utsumi, Yousuke; Doi, Mamoru; Fujisawa, Kenta; Itoh, Ryosuke; Itoh, Yoichi; Kawabata, Koji S.; Kawai, Nobuyuki; Kuroda, Daisuke; Matsubayashi, Kazuya; Motohara, Kentaro; Murata, Katsuhiro L.; Nagayama, Takahiro; Ohta, Kouji; Saito, Yoshihiko; Tamura, Yoichi; Tominaga, Nozomu; Uemura, Makoto; Yanagisawa, Kenshi; Yatsu, Yoichi; Yoshida, Michitoshi

    2016-08-01

    We present our optical follow-up observations to search for an electromagnetic counterpart of the first gravitational wave source GW150914 in the framework of the Japanese collaboration for Gravitational wave ElectroMagnetic follow-up (J-GEM), which is an observing group utilizing optical and radio telescopes in Japan, as well as in New Zealand, China, South Africa, Chile, and Hawaii. We carried out a wide-field imaging survey with the Kiso Wide Field Camera (KWFC) on the 1.05 m Kiso Schmidt telescope in Japan and a galaxy-targeted survey with Tripole5 on the B&C 61 cm telescope in New Zealand. Approximately 24 deg2 regions in total were surveyed in i-band with KWFC and 18 nearby galaxies were observed with Tripole5 in g-, r-, and i-bands 4-12 days after the gravitational wave detection. Median 5 σ depths are i ˜ 18.9 mag for the KWFC data and g ˜ 18.9 mag, r ˜ 18.7 mag, and i ˜ 18.3 mag for the Tripole5 data. The probability for a counterpart to be in the observed area is 1.2% in the initial skymap and 0.1% in the final skymap. We do not find any transient source associated to an external galaxy with spatial offset from its center, which is consistent with the local supernova rate.

  15. Efficient THz Source Based on Cascaded Optical Down-Conversion in Orientation-Patterned GaAs Structures

    Science.gov (United States)

    2006-12-29

    With an optimized OPO cavity we expect to generate 8 cascades and beat Manley-Rowe limit by about the same factor . TRAINING OF GRADUATE STUDENTS: At...and (ii) orientation-patterned GaAs (OP-GaAs). N = LIA grating periods N THz periods A T THz THz Vf- Vph (THZ) , optical I __ _ _v 2=vg/opt) L Fig.5...both peaks are comparable. Efficiency reduction (1/32) 9 due to the 3 rd order QPM is offset by the VT1 1 z 2 factor which appears in the expression

  16. Hilbert Transform based Quadrature Hybrid RF Photonic Coupler via a Micro-Resonator Optical Frequency Comb Source

    CERN Document Server

    Nguyen, Thach G; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2015-01-01

    We demonstrate a photonic RF Hilbert transformer for broadband microwave in-phase and quadrature-phase generation based on an integrated frequency optical comb, generated using a nonlinear microring resonator based on a CMOS compatible, high-index contrast, doped-silica glass platform. The high quality and large frequency spacing of the comb enables filters with up to 20 taps, allowing us to demonstrate a quadrature filter with more than a 5-octave (3 dB) bandwidth and an almost uniform phase response.

  17. Euphorbia helioscopia Linn as a green source for synthesis of silver nanoparticles and their optical and catalytic properties.

    Science.gov (United States)

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Babaei, Ferydon; Maham, Mehdi

    2015-07-15

    During this study, we report the green synthesis of silver nanoparticles (Ag NPs) using Euphorbia helioscopia Linn leaf extract for the synthesis of propargylamines. Also, the structural and optical properties are studied. The synthesized nanoparticles are characterized by TEM, XRD, FT-IR and UV-visible techniques. UV-visible studies show an absorption band at 440 nm due to surface plasmon resonance (SPR) of the silver nanoparticles. Furthermore, the catalyst exhibits high catalytic activity, superior cycling stability and excellent substrate applicability. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Principles of adaptive optics

    CERN Document Server

    Tyson, Robert

    2010-01-01

    History and BackgroundIntroductionHistoryPhysical OpticsTerms in Adaptive OpticsSources of AberrationsAtmospheric TurbulenceThermal BloomingNonatmospheric SourcesAdaptive Optics CompensationPhase ConjugationLimitations of Phase ConjugationArtificial Guide StarsLasers for Guide StarsCombining the LimitationsLinear AnalysisPartial Phase ConjugationAdaptive Optics SystemsAdaptive Optics Imaging SystemsBeam Propagation Syst

  19. Incoherent broadband optical pulse generation using an optical gate

    Institute of Scientific and Technical Information of China (English)

    Biao Chen; Qiong Jiang

    2008-01-01

    In two-dimensional (2D) time-spreading/wavelength-hopping optical code division multiple access (OCDMA) systems, employing less coherent broadband optical pulse sources allows lower electrical operating rate and better system performance. An optical gate based scheme for generating weakly coherent(approximately incoherent) broadband optical pulses was proposed and experimentally demonstrated. Inthis scheme, the terahertz optical asymmetric demultiplexer, together with a coherent narrowband controlpulse source, turns an incoherent broadband continuous-wave (CW) light source into the required pulse source.

  20. Long-slit optical spectroscopy of powerful far-infrared galaxies - The nature of the nuclear energy source

    Science.gov (United States)

    Armus, Lee; Heckman, Timothy M.; Miley, George K.

    1989-01-01

    Optical spectroscopic data are presented for a sample of 47 powerful far-IR galaxies chosen for IR spectral shape, and for six other IR-bright galaxies. The stellar absorption lines expected from a population of old stars are generally very weak in the nuclei of the galaxies. Very weak Mg I absorption is found in regions well off the nucleus, implying that the visible spectrum is dominated by young stars and not by an AGN. At least one, and probably five, of the galaxies have detectable WR emission features, providing additional evidence for a young stellar population. About 20 percent of the galaxies have strong Balmer absorption lines, indicating the presence of a substantial intermediate-age stellar population. The equivalent width of the H-alpha emission line can be modeled as arising from a mixture of a large young population and an intermediate-age population of stars.

  1. Observation of nonlinear optical phenomena in fused silica and air using a 100 GW, 1.54 um source.

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, James Van; Law, R. J.; Luk, Ting Shan; Naudeau, Madeline L.; Nelson, Thomas Robert; Cameron, Stewart M.

    2006-02-01

    A 100-GW optical parametric chirped-pulse amplifier system is used to study nonlinear effects in the 1.54 {micro}m regime. When focusing this beam in air, strong third-harmonic generation (THG) is observed, and both the spectra and efficiency are measured. Broadening is observed on only the blue side of the third-harmonic signal and an energy conversion efficiency of 0.2% is achieved. When propagated through a 10-cm block of fused silica, a collimated beam is seen to collapse and form multiple filaments. The measured spectral features span 400-2100 nm. The spectrum is dominated by previously unobserved Stokes emissions and broad emissions in the visible.

  2. Long-slit optical spectroscopy of powerful far-infrared galaxies - The nature of the nuclear energy source

    Science.gov (United States)

    Armus, Lee; Heckman, Timothy M.; Miley, George K.

    1989-01-01

    Optical spectroscopic data are presented for a sample of 47 powerful far-IR galaxies chosen for IR spectral shape, and for six other IR-bright galaxies. The stellar absorption lines expected from a population of old stars are generally very weak in the nuclei of the galaxies. Very weak Mg I absorption is found in regions well off the nucleus, implying that the visible spectrum is dominated by young stars and not by an AGN. At least one, and probably five, of the galaxies have detectable WR emission features, providing additional evidence for a young stellar population. About 20 percent of the galaxies have strong Balmer absorption lines, indicating the presence of a substantial intermediate-age stellar population. The equivalent width of the H-alpha emission line can be modeled as arising from a mixture of a large young population and an intermediate-age population of stars.

  3. In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source.

    Science.gov (United States)

    Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger

    2014-02-01

    In this paper a multi-wavelength optical-resolution photoacoustic microscopy (OR-PAM) system using stimulated Raman scattering is demonstrated for both phantom and in vivo imaging. A 1-ns pulse width ytterbium-doped fiber laser is coupled into a single-mode polarization maintaining fiber. Discrete Raman-shifted wavelength peaks extending to nearly 800 nm are generated with pulse energies sufficient for OR-PAM imaging. Bandpass filters are used to select imaging wavelengths. A dual-mirror galvanometer system was used to scan the focused outputs across samples of carbon fiber networks, 200μm dye-filled tubes, and Swiss Webster mouse ears. Photoacoustic signals were collected in transmission mode and used to create maximum amplitude projection C-scan images. Double dye experiments and in vivo oxygen saturation estimation confirmed functional imaging potential.

  4. New Bright Optical Object on South Hemisphere detected by MASTER at the X-Ray source position.

    Science.gov (United States)

    Gagarin, Yu. A.; Korolev, S. P.; Lipunov, V.; Pogrosheva, T.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Gress, O.; Kuznetsov, A.; Shumkov, V.; Popova, E.; Vladimirov, V.; Kornilov, V.; Gorbunov, I.; Krylov, A.; Chazov, V.; Podesta, R.; Levato, H.; Lopez, C.; Saffe, C.; Gabovich, A.; Rebolo, R.; Serra-Ricart, M.

    2017-04-01

    MASTER-OAFA auto-detection (Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 349171 ) system discovered OT source at (RA, Dec) = 17h 45m 34.82s -64d 30m 44.4s with 0.7 arcsec error on 2017-04-12.25627 UT. OT unfiltered magnitude is 16.7m (mlimit=18.2m).

  5. Evaluation of Uncertainties in Measuring Particulate Matter Emission Factors from Atmospheric Fugitive Sources Using Optical Remote Sensing

    Science.gov (United States)

    Yuen, W.; Ma, Q.; Du, K.; Koloutsou-Vakakis, S.; Rood, M. J.

    2015-12-01

    Measurements of particulate matter (PM) emissions generated from fugitive sources are of interest in air pollution studies, since such emissions vary widely both spatially and temporally. This research focuses on determining the uncertainties in quantifying fugitive PM emission factors (EFs) generated from mobile vehicles using a vertical scanning micro-pulse lidar (MPL). The goal of this research is to identify the greatest sources of uncertainty of the applied lidar technique in determining fugitive PM EFs, and to recommend methods to reduce the uncertainties in this measurement. The MPL detects the PM plume generated by mobile fugitive sources that are carried downwind to the MPL's vertical scanning plane. Range-resolved MPL signals are measured, corrected, and converted to light extinction coefficients, through inversion of the lidar equation and calculation of the lidar ratio. In this research, both the near-end and far-end lidar equation inversion methods are considered. Range-resolved PM mass concentrations are then determined from the extinction coefficient measurements using the measured mass extinction efficiency (MEE) value, which is an intensive PM property. MEE is determined by collocated PM mass concentration and light extinction measurements, provided respectively by a DustTrak and an open-path laser transmissometer. These PM mass concentrations are then integrated with wind information, duration of plume event, and vehicle distance travelled to obtain fugitive PM EFs. To obtain the uncertainty of PM EFs, uncertainties in MPL signals, lidar ratio, MEE, and wind variation are considered. Error propagation method is applied to each of the above intermediate steps to aggregate uncertainty sources. Results include determination of uncertainties in each intermediate step, and comparison of uncertainties between the use of near-end and far-end lidar equation inversion methods.

  6. The optical counterpart of the supersoft X-ray source r3-8 in M31

    Science.gov (United States)

    Orio, M.; Luna, G. J. M.; Kotulla, R.; Gallagher, J. S. G.

    2015-10-01

    On behalf of a larger collaboration we announce that we have obtained spectra of the M31 supersoft X-ray source defined as r3-8 in the Chandra catalogs (see Chiosi et al. 2014, MNRAS 443, 1821, and references therein) using GMOS and the B600 grating at Gemini North, in the 4150-7100 Angstrom range, on 2015/9/9.

  7. Effects of source spatial partial coherence on temporal fade statistics of irradiance flux in free-space optical links through atmospheric turbulence.

    Science.gov (United States)

    Chen, Chunyi; Yang, Huamin; Zhou, Zhou; Zhang, Weizhi; Kavehrad, Mohsen; Tong, Shoufeng; Wang, Tianshu

    2013-12-01

    The temporal covariance function of irradiance-flux fluctua-tions for Gaussian Schell-model (GSM) beams propagating in atmospheric turbulence is theoretically formulated by making use of the method of effective beam parameters. Based on this formulation, new expressions for the root-mean-square (RMS) bandwidth of the irradiance-flux temporal spectrum due to GSM beams passing through atmospheric turbulence are derived. With the help of these expressions, the temporal fade statistics of the irradiance flux in free-space optical (FSO) communication systems, using spatially partially coherent sources, impaired by atmospheric turbulence are further calculated. Results show that with a given receiver aperture size, the use of a spatially partially coherent source can reduce both the fractional fade time and average fade duration of the received light signal; however, when atmospheric turbulence grows strong, the reduction in the fractional fade time becomes insignificant for both large and small receiver apertures and in the average fade duration turns inconsiderable for small receiver apertures. It is also illustrated that if the receiver aperture size is fixed, changing the transverse correlation length of the source from a larger value to a smaller one can reduce the average fade frequency of the received light signal only when a threshold parameter in decibels greater than the critical threshold level is specified.

  8. Optical-NIR spectroscopy of the puzzling gamma-ray source 3FGL 1603.9-4903/PMN J1603-4904 with X-shooter

    CERN Document Server

    Goldoni, P; Boisson, C; Mueller, C; Dauser, T; Jung, I; Krauss, F; Lenain, J -P; Sol, H

    2015-01-01

    The Fermi/LAT instrument has detected about two thousands Extragalactic High Energy (E > 100 MeV) gamma-ray sources. One of the brightest is 3FGL 1603.9-4903, associated to the radio source PMN J1603-4904. Its nature is not yet clear, it could be either a very peculiar BL Lac or a CSO (Compact Symmetric Object) radio source, considered as the early stage of a radio galaxy. The latter, if confirmed, would be the first detection in gamma-rays for this class of objects. Recently a redshift z=0.18 +/- 0.01 has been claimed on the basis of the detection of a single X-ray line at 5.44 +/- 0.05 keV interpreted as a 6.4 keV (rest frame) fluorescent line. We aim to investigate the nature of 3FGL 1603.9-4903/PMN J1603-4904 using optical to NIR spectroscopy. We observed PMN J1603-4904 with the UV-NIR VLT/X-shooter spectrograph for two hours. We extracted spectra in the VIS and NIR range that we calibrated in flux and corrected for telluric absorption and we systematically searched for absorption and emission features. T...

  9. A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications

    Science.gov (United States)

    Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.

    2017-10-01

    A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.

  10. Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac

    Science.gov (United States)

    Rosu, Ana-Maria; Pierrot-Deseilligny, Marc; Delorme, Arthur; Binet, Renaud; Klinger, Yann

    2015-02-01

    Image correlation is one of the most efficient techniques to determine horizontal ground displacements due to earthquakes, landslides, ice flows or sand dune migrations. Analyzing these deformations allows a better understanding of the causes and mechanisms of the events. By using sub-pixel correlation on before- and after-event ortho-images obtained from high resolution satellite images it is possible to compute the displacement field with high planimetric resolution. In this paper, we focus on measuring the ground displacements due to seismotectonic events. The three sub-pixel correlators used are: COSI-Corr - developed by Caltech, a free, closed-source correlator, dependent on commercial software (ENVI) and widely used by the geoscience community for measuring ground displacement; Medicis - developed by CNES, also a closed-source correlator capable of measuring this type of deformation; and MicMac - developed by IGN, the free open-source correlator we study and tune for measuring fine ground displacements. We measured horizontal ground deformation using these three correlators on SPOT images in three study cases: the 2001 Kokoxili earthquake, the 2005 dyke intrusion in the Afar depression and the 2008 Yutian earthquake.

  11. Automated detection of inflammatory cells in whole anterior chamber of a uveitis mouse from swept-source optical coherence tomography images

    Science.gov (United States)

    Choi, Woo June; Pepple, Kathryn L.; Wang, Ruikang K.

    2016-03-01

    Cell grading in a rodent anterior chamber is essential for anterior inflammation evaluation in preclinical vision research. This paper describes a computerized method for detection and counting of the anterior chamber cells from swept-source optical coherence tomography (SS-OCT) images of a experimental rodent model of uveitis. The volumetric anterior segment OCT data is obtained from 100 kHz SS-OCT imaging of mouse eye in vivo. For the OCT cross-sections, each OCT structural image is de-speckled and binarized. After removal of cornea, iris, and crystalline lens structures connected to the binary image border, an area thresholding is then employed for each labeled region to isolate only celllike objects in the anterior chamber, followed by roundness estimation of the objects to identify potential cell candidates in the data. Eventually, the cell candidates are counted and graded as total number of cells in the anterior chamber.

  12. Suppression of single cesium atom heating in a microscopic optical dipole trap for demonstration of an 852nm triggered single-photon source

    CERN Document Server

    Liu, Bei; He, Jun; Wang, Junmin

    2016-01-01

    We investigate single cesium (Cs) atom heating owing to the momentum accumulation process induced by the resonant pulsed excitation in a microscopic optical dipole trap formed by a strongly focused 1064 nm laser beam. The heating depends on the trap frequency which restricts the maximum repetition rate of pulsed excitation. We experimentally verify the heating of a single atom and then demonstrate how to suppress it with an optimized pulsed excitation/cooling method. The typical trap lifetime of single Cs atom is extended from 108 +/- 6 us to 2536 +/- 31 ms, and the corresponding number of excitation increases from ~ 108 to ~ 360000. In applying this faster cooling method, we use the trapped single Cs atom as a triggered single-photon source at an excitation repetition rate of 10 MHz. The second-order intensity correlations of the emitted single photons are characterized by implementing Hanbury Brown and Twiss setup, and clear anti-bunching effect has been observed.

  13. Facile preparation of PbS nanostructures and PbS/f-CNT nanocomposites using xanthate as sulfur source: Thermal and optical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Golabi, Parisa; Akbarzadeh, Raziyeh; Dehghani, Hossein, E-mail: dehghani@kashanu.ac.ir

    2015-10-25

    PbS nanostructures with different morphologies were fabricated using a new sulfur source through a facile and low cost hydro(solvo)thermal method. The influence of different reaction factors such as sulfur source, temperature, reactant, solvent and surfactant on the size and morphology of the obtained PbS particles were investigated. Beside, a simple hydrothermal process at low temperature (60 °C) for little time (4 h), has been used for preparation of PbS nanoparticles (NPs)/functionalized multi wall carbon nanotubes (f-MWCNTs) nanocomposite. The as-prepared nanocomposite possesses excellent thermal and optical properties. Thermal stability increases by depositing PbS nanoparticles on the surface of CNT. The structure, morphology, thermal and optical properties of the as-prepared nanocompounds were studied by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy, Thermogravimetric analysis (TGA), Pl spectra and UV–Vis absorption spectra. Photoluminescence spectra of PbS NPs and nanocomposite are consist of two emission peaks which centered at around 402 and 423 nm, when excited at 350 nm. It was noteworthy that the blue luminescence intensity over PbS/f-CNT nanocomposite is very lower than that of pure PbS NPs. Remarkable blue-shift from bulk material was observed on the PbS nanoparticles using UV–Vis spectrum. Furthermore, possible growth mechanism of PbS nanostructures is presented. - Graphical abstract: PbS nanostructures with different morphologies were fabricated using xanthate as sulfide source. Also, PbS/f-CNT nanocomposites were synthesized by simple hydrothermal process at low temperature (60 °C) for little time (4 h). - Highlights: • Sodium tert-butyl xanthate was used as sulfur source for synthesis of PbS. • Pb(CH{sub 3}COO){sub 2}·3H{sub 2}O salt was used for synthesis of PbS. • PbS/CNT nanocomposite was synthesized in deionized water for 4 h at 60

  14. J-GEM Follow-Up Observations to Search for an Optical Counterpart of The First Gravitational Wave Source GW150914

    CERN Document Server

    Morokuma, Tomoki; Asakura, Yuichiro; Abe, Fumio; Tristram, Paul J; Utsumi, Yousuke; Doi, Mamoru; Fujisawa, Kenta; Itoh, Ryosuke; Itoh, Yoichi; Kawabata, Koji S; Kawai, Nobuyuki; Kuroda, Daisuke; Matsubayashi, Kazuya; Motohara, Kentaro; Murata, Katsuhiro L; Nagayama, Takahiro; Ohta, Kouji; Saito, Yoshihiko; Tamura, Yoichi; Tominaga, Nozomu; Uemura, Makoto; Yanagisawa, Kenshi; Yatsu, Yoichi; Yoshida, Michitoshi

    2016-01-01

    We present our optical follow-up observations to search for an electromagnetic counterpart of the first gravitational wave source GW150914 in the framework of the Japanese collaboration for Gravitational wave ElectroMagnetic follow-up (J-GEM), which is an observing group utilizing optical and radio telescopes in Japan, as well as those in New Zealand, China, South Africa, Chile, and Hawaii. We carried out a wide-field imaging survey with Kiso Wide Field Camera (KWFC) on the 1.05-m Kiso Schmidt telescope in Japan and a galaxy-targeted survey with Tripole5 on the B&C 61-cm telescope in New Zealand. Approximately 24 deg2 regions in total were surveyed in i-band with KWFC and 18 nearby galaxies were observed with Tripole5 in g-, r-, and i-bands 4-12 days after the gravitational wave detection. Median 5-sigma depths are i~18.9 mag for the KWFC data and g~18.9 mag, r~18.7 mag, and i~18.3 mag for the Tripole5 data. Probability for a counterpart to be in the observed area is 1.2% in the initial skymap and 0.1% in...

  15. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.

    Science.gov (United States)

    Wang, Zhao; Lee, Hsiang-Chieh; Vermeulen, Diedrik; Chen, Long; Nielsen, Torben; Park, Seo Yeon; Ghaemi, Allan; Swanson, Eric; Doerr, Chris; Fujimoto, James

    2015-07-01

    Optical coherence tomography (OCT) is a widely used three-dimensional (3D) optical imaging method with many biomedical and non-medical applications. Miniaturization, cost reduction, and increased functionality of OCT systems will be critical for future emerging clinical applications. We present a silicon photonic integrated circuit swept-source OCT (SS-OCT) coherent receiver with dual polarization, dual balanced, in-phase and quadrature (IQ) detection. We demonstrate multiple functional capabilities of IQ polarization resolved detection including: complex-conjugate suppressed full-range OCT, polarization diversity detection, and polarization-sensitive OCT. To our knowledge, this is the first demonstration of a silicon photonic integrated receiver for OCT. The integrated coherent receiver provides a miniaturized, low-cost solution for SS-OCT, and is also a key step towards a fully integrated high speed SS-OCT system with good performance and multi-functional capabilities. With further performance improvement and cost reduction, photonic integrated technology promises to greatly increase penetration of OCT systems in existing applications and enable new applications.

  16. Induced soliton ejection from a continuous-wave source waveguided by an optical pulse-soliton train

    CERN Document Server

    Dikande, Alain M

    2010-01-01

    It has been established for some time that high-power pump can trap a probe beam of lower intensity that is simultaneously propagating in a Kerr-type optical medium, inducing a focusing of the probe with the emergence of modes displaying solitonic properties. To understand the mechanism by which such self-sustained modes are generated, and mainly the changes on probe spectrum induced by the cross-phase-modulation effect for an harmonic probe trapped by a multiplex of temporal pulses, a linear equation (for the probe) and a nonlinear Schr\\"odinger equation (for the pump) both coupled by a cross-phase-modulation term, are considered simultaneously. In general the set of coupled probe-pump equations is not exactly tractable at any arbitrary value of the ratio of the cross-phase to the self-phase modulation strengths. However, for certain values of this ratio, the probe modulation wavector develops into $\\vert n,l\\textgreater$ {\\it quantum states} involving $2n+1$ soliton-shaped eigenfunctions which spectral prop...

  17. Trabecular-Iris Circumference Volume in Open Angle Eyes Using Swept-Source Fourier Domain Anterior Segment Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Mohammed Rigi

    2014-01-01

    Full Text Available Purpose. To introduce a new anterior segment optical coherence tomography parameter, trabecular-iris circumference volume (TICV, which measures the integrated volume of the peripheral angle, and establish a reference range in normal, open angle eyes. Methods. One eye of each participant with open angles and a normal anterior segment was imaged using 3D mode by the CASIA SS-1000 (Tomey, Nagoya, Japan. Trabecular-iris space area (TISA and TICV at 500 and 750 µm were calculated. Analysis of covariance was performed to examine the effect of age and its interaction with spherical equivalent. Results. The study included 100 participants with a mean age of 50 (±15 years (range 20–79. TICV showed a normal distribution with a mean (±SD value of 4.75 µL (±2.30 for TICV500 and a mean (±SD value of 8.90 µL (±3.88 for TICV750. Overall, TICV showed an age-related reduction (P=0.035. In addition, angle volume increased with increased myopia for all age groups, except for those older than 65 years. Conclusions. This study introduces a new parameter to measure peripheral angle volume, TICV, with age-adjusted normal ranges for open angle eyes. Further investigation is warranted to determine the clinical utility of this new parameter.

  18. Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source

    Science.gov (United States)

    Ozaki, Nobuhiko; Childs, David T. D.; Sarma, Jayanta; Roberts, Timothy S.; Yasuda, Takuma; Shibata, Hiroshi; Ohsato, Hirotaka; Watanabe, Eiichiro; Ikeda, Naoki; Sugimoto, Yoshimasa; Hogg, Richard A.

    2016-02-01

    We report a broadband-gain superluminescent diode (SLD) based on self-assembled InAs quantum dots (QDs) for application in a high-resolution optical coherence tomography (OCT) light source. Four InAs QD layers, with sequentially shifted emission wavelengths achieved by varying the thickness of the In0.2Ga0.8As strain-reducing capping layers, were embedded in a conventional p-n heterojunction comprising GaAs and AlGaAs layers. A ridge-type waveguide with segmented contacts was formed on the grown wafer, and an as-cleaved 4-mm-long chip (QD-SLD) was prepared. The segmented contacts were effective in applying a high injection current density to the QDs and obtaining emission from excited states of the QDs, resulting in an extension of the bandwidth of the electroluminescence spectrum. In addition, gain spectra deduced with the segmented contacts indicated a broadband smooth positive gain region spanning 160 nm. Furthermore, OCT imaging with the fabricated QD-SLD was performed, and OCT images with an axial resolution of ˜4 μm in air were obtained. These results demonstrate the effectiveness of the QD-SLD with segmented contacts as a high-resolution OCT light source.

  19. Comparing different light-emitting diodes as light sources for long path differential optical absorption spectroscopy NO2 and SO2 measurements

    Institute of Scientific and Technical Information of China (English)

    Chan Ka-Lok; Mark Wenig; Ling Liu-Yi; Andreas Hartl; Zheng Ni-Na; Gerrit Kuhlmann; Qin Min; Sun You-Wen; Xie Pin-Hua; Liu Wen-Qing

    2012-01-01

    In this paper,we present a comparison of different light-emitting diodes (LEDs) as the light source for long path differential optical absorption spectroscopy (LP-DOAS) atmospheric trace gas measurements.In our study,we use a fiberoptic design,where high power LEDs used as the light source are coupled into the telescope using a Y shape fiber bundle.Two blue and one ultraviolet (UV) LEDs with different emission wavelength ranges are tested for NO2 and SO2 measurements.The detailed description of the instrumental setup,the NO2 and SO2 retrieval procedure,the error analysis,and the preliminary results from the measurements carried out in Science Island,Hefei,Anhui,China are presented.Our first measurement results show that atmospheric NO2 and SO2 have strong temporal variations in that area and that the measurement accuracy is strongly dependent on the visibility conditions.The measured NO2 and SO2 data are compared to the Ozone Monitoring Instrument (OMI) satellite observations.The results show that the OMI NO2 product underestimates the ground level NO2 by 45%,while the OMI SO2 data are highly influenced by clouds and aerosols,which can lead to large biases in the ground level concentrations.During the experiment,the mixing ratios of the atmospheric NO2 and SO2 vary from 8 ppbv to 36 ppbv and from 3 ppbv to 18 ppbv,respectively.

  20. Comparing different light-emitting diodes as light sources for long path differential optical absorption spectroscopy NO2 and SO2 measurements

    Science.gov (United States)

    Chan, Ka-Lok; Ling, Liu-Yi; Andreas, Hartl; Zheng, Ni-Na; Gerrit, Kuhlmann; Qin, Min; Sun, You-Wen; Xie, Pin-Hua; Liu, Wen-Qing; Mark, Wenig

    2012-11-01

    In this paper, we present a comparison of different light-emitting diodes (LEDs) as the light source for long path differential optical absorption spectroscopy (LP-DOAS) atmospheric trace gas measurements. In our study, we use a fiberoptic design, where high power LEDs used as the light source are coupled into the telescope using a Y shape fiber bundle. Two blue and one ultraviolet (UV) LEDs with different emission wavelength ranges are tested for NO2 and SO2 measurements. The detailed description of the instrumental setup, the NO2 and SO2 retrieval procedure, the error analysis, and the preliminary results from the measurements carried out in Science Island, Hefei, Anhui, China are presented. Our first measurement results show that atmospheric NO2 and SO2 have strong temporal variations in that area and that the measurement accuracy is strongly dependent on the visibility conditions. The measured NO2 and SO2 data are compared to the Ozone Monitoring Instrument (OMI) satellite observations. The results show that the OMI NO2 product underestimates the ground level NO2 by 45%, while the OMI SO2 data are highly influenced by clouds and aerosols, which can lead to large biases in the ground level concentrations. During the experiment, the mixing ratios of the atmospheric NO2 and SO2 vary from 8 ppbv to 36 ppbv and from 3 ppbv to 18 ppbv, respectively.