WorldWideScience

Sample records for optical solitons

  1. Spatiotemporal optical solitons

    International Nuclear Information System (INIS)

    Malomed, Boris A; Mihalache, Dumitru; Wise, Frank; Torner, Lluis

    2005-01-01

    In the course of the past several years, a new level of understanding has been achieved about conditions for the existence, stability, and generation of spatiotemporal optical solitons, which are nondiffracting and nondispersing wavepackets propagating in nonlinear optical media. Experimentally, effectively two-dimensional (2D) spatiotemporal solitons that overcome diffraction in one transverse spatial dimension have been created in quadratic nonlinear media. With regard to the theory, fundamentally new features of light pulses that self-trap in one or two transverse spatial dimensions and do not spread out in time, when propagating in various optical media, were thoroughly investigated in models with various nonlinearities. Stable vorticity-carrying spatiotemporal solitons have been predicted too, in media with competing nonlinearities (quadratic-cubic or cubic-quintic). This article offers an up-to-date survey of experimental and theoretical results in this field. Both achievements and outstanding difficulties are reviewed, and open problems are highlighted. Also briefly described are recent predictions for stable 2D and 3D solitons in Bose-Einstein condensates supported by full or low-dimensional optical lattices. (review article)

  2. Hydrodynamic optical soliton tunneling

    Science.gov (United States)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  3. Optical solitons and quasisolitons

    International Nuclear Information System (INIS)

    Zakharov, V.E.; Kuznetsov, E.A.

    1998-01-01

    Optical solitons and quasisolitons are investigated in reference to Cherenkov radiation. It is shown that both solitons and quasisolitons can exist, if the linear operator specifying their asymptotic behavior at infinity is sign-definite. In particular, the application of this criterion to stationary optical solitons shifts the soliton carrier frequency at which the first derivative of the dielectric constant with respect to the frequency vanishes. At that point the phase and group velocities coincide. Solitons and quasisolitons are absent, if the third-order dispersion is taken into account. The stability of a soliton is proved for fourth order dispersion using the sign-definiteness of the operator and integral estimates of the Sobolev type. This proof is based on the boundedness of the Hamiltonian for a fixed value of the pulse energy

  4. Optical spatial solitons: historical overview and recent advances.

    Science.gov (United States)

    Chen, Zhigang; Segev, Mordechai; Christodoulides, Demetrios N

    2012-08-01

    Solitons, nonlinear self-trapped wavepackets, have been extensively studied in many and diverse branches of physics such as optics, plasmas, condensed matter physics, fluid mechanics, particle physics and even astrophysics. Interestingly, over the past two decades, the field of solitons and related nonlinear phenomena has been substantially advanced and enriched by research and discoveries in nonlinear optics. While optical solitons have been vigorously investigated in both spatial and temporal domains, it is now fair to say that much soliton research has been mainly driven by the work on optical spatial solitons. This is partly due to the fact that although temporal solitons as realized in fiber optic systems are fundamentally one-dimensional entities, the high dimensionality associated with their spatial counterparts has opened up altogether new scientific possibilities in soliton research. Another reason is related to the response time of the nonlinearity. Unlike temporal optical solitons, spatial solitons have been realized by employing a variety of noninstantaneous nonlinearities, ranging from the nonlinearities in photorefractive materials and liquid crystals to the nonlinearities mediated by the thermal effect, thermophoresis and the gradient force in colloidal suspensions. Such a diversity of nonlinear effects has given rise to numerous soliton phenomena that could otherwise not be envisioned, because for decades scientists were of the mindset that solitons must strictly be the exact solutions of the cubic nonlinear Schrödinger equation as established for ideal Kerr nonlinear media. As such, the discoveries of optical spatial solitons in different systems and associated new phenomena have stimulated broad interest in soliton research. In particular, the study of incoherent solitons and discrete spatial solitons in optical periodic media not only led to advances in our understanding of fundamental processes in nonlinear optics and photonics, but also had a

  5. Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers: Soliton interaction and soliton control

    International Nuclear Information System (INIS)

    Liu Wenjun; Tian Bo; Xu Tao; Sun Kun; Jiang Yan

    2010-01-01

    Symbolically investigated in this paper is a nonlinear Schroedinger equation with the varying dispersion and nonlinearity for the propagation of optical pulses in the normal dispersion regime of inhomogeneous optical fibers. With the aid of the Hirota method, analytic one- and two-soliton solutions are obtained. Relevant properties of physical and optical interest are illustrated. Different from the previous results, both the bright and dark solitons are hereby derived in the normal dispersion regime of the inhomogeneous optical fibers. Moreover, different dispersion profiles of the dispersion-decreasing fibers can be used to realize the soliton control. Finally, soliton interaction is discussed with the soliton control confirmed to have no influence on the interaction. The results might be of certain value for the study of the signal generator and soliton control.

  6. Matter-Wave Solitons In Optical Superlattices

    International Nuclear Information System (INIS)

    Louis, Pearl J. Y.; Ostrovskaya, Elena A.; Kivshar, Yuri S.

    2006-01-01

    In this work we show that the properties of both bright and dark Bose-Einstein condensate (BEC) solitons trapped in optical superlattices can be controlled by changing the shape of the trapping potential whilst maintaining a constant periodicity and lattice height. Using this method we can control the properties of bright gap solitons by dispersion management. We can also control the interactions between dark lattice solitons. In addition we demonstrate a method for controlled generation of matter-wave gap solitons in stationary optical lattices by interfering two condensate wavepackets, producing a single wavepacket at a gap edge with properties similar to a gap soliton. As this wavepacket evolves, it forms a bright gap soliton

  7. Intermode Breather Solitons in Optical Microresonators

    Science.gov (United States)

    Guo, Hairun; Lucas, Erwan; Pfeiffer, Martin H. P.; Karpov, Maxim; Anderson, Miles; Liu, Junqiu; Geiselmann, Michael; Jost, John D.; Kippenberg, Tobias J.

    2017-10-01

    Dissipative solitons can be found in a variety of systems resulting from the double balance between dispersion and nonlinearity, as well as gain and loss. Recently, they have been observed to spontaneously form in Kerr nonlinear microresonators driven by a continuous wave laser, providing a compact source of coherent optical frequency combs. As optical microresonators are commonly multimode, intermode interactions, which give rise to avoided mode crossings, frequently occur and can alter the soliton properties. Recent works have shown that avoided mode crossings cause the soliton to acquire a single-mode dispersive wave, a recoil in the spectrum, or lead to soliton decay. Here, we show that avoided mode crossings can also trigger the formation of breather solitons, solitons that undergo a periodic evolution in their amplitude and duration. This new breather soliton, referred to as an intermode breather soliton, occurs within a laser detuning range where conventionally stationary (i.e., stable) dissipative Kerr solitons are expected. We experimentally demonstrate the phenomenon in two microresonator platforms (crystalline magnesium fluoride and photonic chip-based silicon nitride microresonators) and theoretically describe the dynamics based on a pair of coupled Lugiato-Lefever equations. We show that the breathing is associated with a periodic energy exchange between the soliton and a second optical mode family, a behavior that can be modeled by a response function acting on dissipative solitons described by the Lugiato-Lefever model. The observation of breathing dynamics in the conventionally stable soliton regime is relevant to applications in metrology such as low-noise microwave generation, frequency synthesis, or spectroscopy.

  8. Optical rogue waves and soliton turbulence in nonlinear fibre optics

    DEFF Research Database (Denmark)

    Genty, G.; Dudley, J. M.; de Sterke, C. M.

    2009-01-01

    We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....

  9. Coupled matter-wave solitons in optical lattices

    Science.gov (United States)

    Golam Ali, Sk; Talukdar, B.

    2009-06-01

    We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (Veff(NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well Veff(LOL). But these effective potentials have opposite k dependence in the sense that the depth of Veff(LOL) increases as k increases and that of Veff(NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during evolution

  10. Coupled matter-wave solitons in optical lattices

    International Nuclear Information System (INIS)

    Golam Ali, Sk; Talukdar, B.

    2009-01-01

    We make use of a potential model to study the dynamics of two coupled matter-wave or Bose-Einstein condensate (BEC) solitons loaded in optical lattices. With separate attention to linear and nonlinear lattices we find some remarkable differences for response of the system to effects of these lattices. As opposed to the case of linear optical lattice (LOL), the nonlinear lattice (NOL) can be used to control the mutual interaction between the two solitons. For a given lattice wave number k, the effective potentials in which the two solitons move are such that the well (V eff (NOL)), resulting from the juxtaposition of soliton interaction and nonlinear lattice potential, is deeper than the corresponding well V eff (LOL). But these effective potentials have opposite k dependence in the sense that the depth of V eff (LOL) increases as k increases and that of V eff (NOL) decreases for higher k values. We verify that the effectiveness of optical lattices to regulate the motion of the coupled solitons depends sensitively on the initial locations of the motionless solitons as well as values of the lattice wave number. For both LOL and NOL the two solitons meet each other due to mutual interaction if their initial locations are taken within the potential wells with the difference that the solitons in the NOL approach each other rather rapidly and take roughly half the time to meet as compared with the time needed for such coalescence in the LOL. In the NOL, the soliton profiles can move freely and respond to the lattice periodicity when the separation between their initial locations are as twice as that needed for a similar free movement in the LOL. We observe that, in both cases, slow tuning of the optical lattices by varying k with respect to a time parameter τ drags the oscillatory solitons apart to take them to different locations. In our potential model the oscillatory solitons appear to propagate undistorted. But a fully numerical calculation indicates that during

  11. Soliton coding for secured optical communication link

    CERN Document Server

    Amiri, Iraj Sadegh; Idrus, Sevia Mahdaliza

    2015-01-01

    Nonlinear behavior of light such as chaos can be observed during propagation of a laser beam inside the microring resonator (MRR) systems. This Brief highlights the design of a system of MRRs to generate a series of logic codes. An optical soliton is used to generate an entangled photon. The ultra-short soliton pulses provide the required communication signals to generate a pair of polarization entangled photons required for quantum keys. In the frequency domain, MRRs can be used to generate optical millimetre-wave solitons with a broadband frequency of 0?100 GHz. The soliton signals are multi

  12. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    ... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  13. Soliton generation from a multi-frequency optical signal

    International Nuclear Information System (INIS)

    Panoiu, N-C; Mel'nikov, I V; Mihalache, D; Etrich, C; Lederer, F

    2002-01-01

    We present a comprehensive analysis of the generation of optical solitons in a monomode optical fibre from a superposition of soliton-like optical pulses at different frequencies. It is demonstrated that the structure of the emerging optical field is highly dependent on the number of input channels, the inter-channel frequency separation, the time shift between the pulses belonging to adjacent channels, and the polarization of the pulses. Also, it is found that there exists a critical frequency separation above which wavelength-division multiplexing with solitons is feasible and that this critical frequency increases with the number of transmission channels. Moreover, for the case in which only two channels are considered, we analyse the propagation of the emerging two-soliton solutions in the presence of several perturbations important for optical networks: bandwidth-limited amplification, nonlinear amplification, and amplitude and phase modulation. Finally, the influence of the birefringence of the fibre on the structure of the emerging optical field is discussed. (review article)

  14. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  15. Attraction of nonlocal dark optical solitons

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw

    2004-01-01

    We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...

  16. Weyl solitons in three-dimensional optical lattices

    Science.gov (United States)

    Shang, Ce; Zheng, Yuanlin; Malomed, Boris A.

    2018-04-01

    Weyl fermions are massless chiral quasiparticles existing in materials known as Weyl semimetals. Topological surface states, associated with the unusual electronic structure in the Weyl semimetals, have been recently demonstrated in linear systems. Ultracold atomic gases, featuring laser-assisted tunneling in three-dimensional optical lattices, can be used for the emulation of Weyl semimetals, including nonlinear effects induced by the collisional nonlinearity of atomic Bose-Einstein condensates. We demonstrate that this setting gives rise to topological states in the form of Weyl solitons at the surface of the underlying optical lattice. These nonlinear modes, being exceptionally robust, bifurcate from linear states for a given quasimomentum. The Weyl solitons may be used to design an efficient control scheme for topologically protected unidirectional propagation of excitations in light-matter-interaction physics. After the recently introduced Majorana and Dirac solitons, the Weyl solitons proposed in this work constitute the third (and the last) member in this family of topological solitons.

  17. Mathematical Theory of Dispersion-Managed Optical Solitons

    CERN Document Server

    Biswas, Anjan; Edwards, Matthew

    2010-01-01

    "Mathematical Theory of Dispersion-Managed Optical Solitons" discusses recent advances covering optical solitons, soliton perturbation, optical cross-talk, Gabitov-Turitsyn Equations, quasi-linear pulses, and higher order Gabitov-Turitsyn Equations. Focusing on a mathematical perspective, the book bridges the gap between concepts in engineering and mathematics, and gives an outlook to many new topics for further research. The book is intended for researchers and graduate students in applied mathematics, physics and engineering and also it will be of interest to those who are conducting research in nonlinear fiber optics. Dr. Anjan Biswas is an Associate Professor at the Department of Applied Mathematics & Theoretical Physics, Delaware State University, Dover, DE, USA; Dr. Daniela Milovic is an Associate Professor at the Department of Telecommunications, Faculty of Electronic Engineering, University of Nis, Serbia; Dr. Matthew Edwards is the Dean of the School of Arts and Sciences at Alabama A & M Univ...

  18. Matter-wave dark solitons in optical lattices

    International Nuclear Information System (INIS)

    Louis, Pearl J Y; Ostrovskaya, Elena A; Kivshar, Yuri S

    2004-01-01

    We analyse the Floquet-Bloch spectrum of matter waves in Bose-Einstein condensates loaded into single-periodic optical lattices and double-periodic superlattices. In the framework of the Gross-Pitaevskii equation, we describe the structure and analyse the mobility properties of matter-wave dark solitons residing on backgrounds of extended nonlinear Bloch-type states. We demonstrate that interactions between dark solitons can be effectively controlled in optical superlattices

  19. Stability of matter-wave solitons in optical lattices

    Science.gov (United States)

    Ali, Sk. Golam; Roy, S. K.; Talukdar, B.

    2010-08-01

    We consider localized states of both single- and two-component Bose-Einstein condensates (BECs) confined in a potential resulting from the superposition of linear and nonlinear optical lattices and make use of Vakhitov-Kolokolov criterion to investigate the effect of nonlinear lattice on the stability of the soliton solutions in the linear optical lattice (LOL). For the single-component case we show that a weak nonlinear lattice has very little effect on the stability of such solitons while sufficiently strong nonlinear optical lattice (NOL) squeezes them to produce narrow bound states. For two-component condensates we find that when the strength of the NOL (γ1) is less than that of the LOL (V0) a relatively weak intra-atomic interaction (IAI) has little effect on the stability of the component solitons. This is true for both attractive and repulsive IAI. A strong attractive IAI, however, squeezes the BEC solitons while a similar repulsive IAI makes the component solitons wider. For γ1 > V0, only a strong attractive IAI squeezes the BEC solitons but the squeezing effect is less prominent than that found for γ1 < V0. We make useful checks on the results of our semianalytical stability analysis by solving the appropriate Gross-Pitaevskii equations numerically.

  20. Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation

    Energy Technology Data Exchange (ETDEWEB)

    Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com [Department of Physics, Anna University, Madurai Region, Ramanathapuram (India); Mahalingam, A. [Department of Physics, Anna University, Chennai - 600 025 (India); Uthayakumar, A. [Department of Physics, Presidency College, Chennai - 600 005 (India)

    2014-07-15

    We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.

  1. Bidirectional soliton spectral tunneling effects in the regime of optical event horizon

    DEFF Research Database (Denmark)

    Gu, Jie; Guo, Hairun; Wang, Shaofei

    2015-01-01

    We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects.......We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....

  2. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  3. Helmholtz solitons in power-law optical materials

    International Nuclear Information System (INIS)

    Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.

    2007-01-01

    A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified

  4. Soliton robustness in optical fibers

    International Nuclear Information System (INIS)

    Menyuk, C.R.

    1993-01-01

    Simulations and experiments indicate that solitons in optical fibers are robust in the presence of Hamiltonian deformations such as higher-order dispersion and birefringence but are destroyed in the presence of non-Hamiltonian deformations such as attenuation and the Raman effect. Two hypotheses are introduced that generalize these observations and give a recipe for when deformations will be Hamiltonian. Concepts from nonlinear dynamics are used to make these two hypotheses plausible. Soliton stabilization with frequency filtering is also briefly discussed from this point of view

  5. Bright, dark and singular optical solitons in a cascaded system

    International Nuclear Information System (INIS)

    Zhou, Qin; Zhu, Qiuping; Yu, Hua; Liu, Yaxian; Wei, Chun; Yao, Ping; Bhrawy, Ali H; Biswas, Anjan

    2015-01-01

    This work studies nonlinear dynamics of optical solitons in a cascaded system with Kerr law nonlinearity and spatio-temporal dispersion. The mathematical model that describes the propagation of optical solitons through a cascaded system is given by the vector-coupled nonlinear Schrödinger equation. It is investigated analytically using three integration algorithms. The Jacobian elliptic equation expansion method, Bernoulli equation expansion approach and Riccati equation expansion scheme are the integration tools of this model that are recruited to extract singular, bright and dark solitons. The restrictions that need to hold for the existence of these solitons are derived. (paper)

  6. Quantum Entangled Dark Solitons Formed by Ultracold Atoms in Optical Lattices

    International Nuclear Information System (INIS)

    Mishmash, R. V.; Carr, L. D.

    2009-01-01

    Inspired by experiments on Bose-Einstein condensates in optical lattices, we study the quantum evolution of dark soliton initial conditions in the context of the Bose-Hubbard Hamiltonian. An extensive set of quantum measures is utilized in our analysis, including von Neumann and generalized quantum entropies, quantum depletion, and the pair correlation function. We find that quantum effects cause the soliton to fill in. Moreover, soliton-soliton collisions become inelastic, in strong contrast to the predictions of mean-field theory. These features show that the lifetime and collision properties of dark solitons in optical lattices provide clear signals of quantum effects.

  7. Spatial optical (2+1)-dimensional scalar- and vector-solitons in saturable nonlinear media

    Energy Technology Data Exchange (ETDEWEB)

    Weilnau, C.; Traeger, D.; Schroeder, J.; Denz, C. [Institute of Applied Physics, Westfaelische Wilhelms-Universitaet Muenster, Corrensstr. 2/4, 48149 Muenster (Germany); Ahles, M.; Petter, J. [Institute of Applied Physics, Technische Universitaet Darmstadt, Hochschulstr. 6, 64289 Darmstadt (Germany)

    2002-10-01

    (2+1)-dimensional optical spatial solitons have become a major field of research in nonlinear physics throughout the last decade due to their potential in adaptive optical communication technologies. With the help of photorefractive crystals that supply the required type of nonlinearity for soliton generation, we are able to demonstrate experimentally the formation, the dynamic properties, and especially the interaction of solitary waves, which were so far only known from general soliton theory. Among the complex interaction scenarios of scalar solitons, we reveal a distinct behavior denoted as anomalous interaction, which is unique in soliton-supporting systems. Further on, we realize highly parallel, light-induced waveguide configurations based on photorefractive screening solitons that give rise to technical applications towards waveguide couplers and dividers as well as all-optical information processing devices where light is controlled by light itself. Finally, we demonstrate the generation, stability and propagation dynamics of multi-component or vector solitons, multipole transverse optical structures bearing a complex geometry. In analogy to the particle-light dualism of scalar solitons, various types of vector solitons can - in a broader sense - be interpreted as molecules of light. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  8. Spatial optical (2+1)-dimensional scalar- and vector-solitons in saturable nonlinear media

    International Nuclear Information System (INIS)

    Weilnau, C.; Traeger, D.; Schroeder, J.; Denz, C.; Ahles, M.; Petter, J.

    2002-01-01

    (2+1)-dimensional optical spatial solitons have become a major field of research in nonlinear physics throughout the last decade due to their potential in adaptive optical communication technologies. With the help of photorefractive crystals that supply the required type of nonlinearity for soliton generation, we are able to demonstrate experimentally the formation, the dynamic properties, and especially the interaction of solitary waves, which were so far only known from general soliton theory. Among the complex interaction scenarios of scalar solitons, we reveal a distinct behavior denoted as anomalous interaction, which is unique in soliton-supporting systems. Further on, we realize highly parallel, light-induced waveguide configurations based on photorefractive screening solitons that give rise to technical applications towards waveguide couplers and dividers as well as all-optical information processing devices where light is controlled by light itself. Finally, we demonstrate the generation, stability and propagation dynamics of multi-component or vector solitons, multipole transverse optical structures bearing a complex geometry. In analogy to the particle-light dualism of scalar solitons, various types of vector solitons can - in a broader sense - be interpreted as molecules of light. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  9. Slow-light solitons in atomic media and doped optical fibers

    International Nuclear Information System (INIS)

    Korolkova, N.; Sinclair, G.F.; Leonhardt, U.

    2005-01-01

    Full text: We show how to generate optical solitons in atomic media that can be slowed down or accelerated at will. Such slow-light soliton is a polarization structure propagating with a speed that is proportional to the total intensity of the incident light. Ultimately, this method will allow the storage, retrieval and possibly the manipulation of the quantum information in atomic media. Solitons with controllable speed are constructed generalizing the theory of slow-light propagation to an integrable regime of nonlinear dynamics. For the first time, the inverse scattering method for slow-light solitons is developed. In contrast to the pioneering experimental demonstrations of slow light, we consider strong spin modulations where the non-linear dynamics of light and atoms creates polarization solitons. We also analyze how this scheme can be implemented in optical fibers doped with Lambda-atoms. In quantum-information applications, such slow-light solitons could complement the use of quantum solitons in fibres with the advantage of storing quantum information in media and complement methods for quantum memory with the advantages of non-linear dynamics, in particular the intrinsic stability of solitons. (author)

  10. Highly stable families of soliton molecules in fiber-optic systems

    Science.gov (United States)

    Moubissi, A.-B.; Tchofo Dinda, P.; Nse Biyoghe, S.

    2018-04-01

    We develop an efficient approach to the design of families of single solitons and soliton molecules most suited to a given fiber system. The obtained solitonic entities exhibit very high stability, with a robustness which allows them to propagate over thousands of kilometers and to survive collisions with other solitonic entities. Our approach enables the generation of a large number of solitonic entities, including families of single solitons and two-soliton molecules, which can be distinguished sufficiently by their respective profiles or energy levels, and so can be easily identifiable and detectable without ambiguity. We discuss the possible use of such solitonic entities as symbols of a multi-level modulation format in fiber-optic communication systems.

  11. Optical soliton solutions for two coupled nonlinear Schroedinger systems via Darboux transformation

    International Nuclear Information System (INIS)

    Zhang Haiqiang; Li Juan; Xu Tao; Zhang Yaxing; Hu Wei; Tian Bo

    2007-01-01

    In nonlinear optical fibers, the vector solitons can be governed by the systems of coupled nonlinear Schroedinger from polarized optical waves in an isotropic medium. Based on the Ablowitz-Kaup-Newell-Segur technology, the Darboux transformation method is successfully applied to two coupled nonlinear Schroedinger systems. With the help of symbolic computation, the bright vector one- and two-soliton solutions including one-peak and two-peak solitons are further constructed via the iterative algorithm of Darboux transformation. Through the figures for several sample solutions, the stable propagation and elastic collisions for these kinds of bright vector solitons are discussed and the possible applications are pointed out in optical communications and relevant optical experiments.In addition, the conserved quantities of such two systems, i.e., the energy, momentum and Hamiltonian, are also presented

  12. On the Creation of Solitons in Amplifying Optical Fibers

    Directory of Open Access Journals (Sweden)

    Christoph Mahnke

    2018-01-01

    Full Text Available We treat the creation of solitons in amplifying fibers. Strictly speaking, solitons are objects in an integrable setting while in real-world systems loss and gain break integrability. That case usually has been treated in the perturbation limit of low loss or gain. In a recent approach fiber-optic solitons were described beyond that limit, so that it became possible to specify how and where solitons are eventually destroyed. Here we treat the opposite case: in the presence of gain, new solitons can arise from an initially weak pulse. We find conditions for that to happen for both localized and distributed gain, with no restriction to small gain. By tracing the energy budget we show that even when another soliton is already present and copropagates, a newly created soliton takes its energy from radiation only. Our results may find applications in amplified transmission lines or in fiber lasers.

  13. Ring resonator systems to perform optical communication enhancement using soliton

    CERN Document Server

    Amiri, Iraj Sadegh

    2014-01-01

    The title explain new technique of secured and high capacity optical communication signals generation by using the micro and nano ring resonators. The pulses are known as soliton pulses which are more secured due to having the properties of chaotic and dark soliton signals with ultra short bandwidth. They have high capacity due to the fact that ring resonators are able to generate pulses in the form of solitons in multiples and train form. These pulses generated by ring resonators are suitable in optical communication due to use the compact and integrated rings system, easy to control, flexibi

  14. Probe-controlled soliton frequency shift in the regime of optical event horizon.

    Science.gov (United States)

    Gu, Jie; Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2015-08-24

    In optical analogy of the event horizon, temporal pulse collision and mutual interactions are mainly between an intense solitary wave (soliton) and a dispersive probe wave. In such a regime, here we numerically investigate the probe-controlled soliton frequency shift as well as the soliton self-compression. In particular, in the dispersion landscape with multiple zero dispersion wavelengths, bi-directional soliton spectral tunneling effects is possible. Moreover, we propose a mid-infrared soliton self-compression to the generation of few-cycle ultrashort pulses, in a bulk of quadratic nonlinear crystals in contrast to optical fibers or cubic nonlinear media, which could contribute to the community with a simple and flexible method to experimental implementations.

  15. Exact optical solitons in (n + 1)-dimensions with anti-cubic nonlinearity

    Science.gov (United States)

    Younis, Muhammad; Shahid, Iram; Anbreen, Sumaira; Rizvi, Syed Tahir Raza

    2018-02-01

    The paper studies the propagation of optical solitons in (n + 1)-dimensions under anti-cubic law of nonlinearity. The bright, dark and singular optical solitons are extracted using the extended trial equation method. The constraint conditions, for the existence of these solitons, are also listed. Additionally, a couple of other solutions known as singular periodic and Jacobi elliptic solutions, fall out as a by-product of this scheme. The obtained results are new and reported first time in (n + 1)-dimensions with anti-cubic law of nonlinearity.

  16. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    Science.gov (United States)

    Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  17. Topological Vortex and Knotted Dissipative Optical 3D Solitons Generated by 2D Vortex Solitons.

    Science.gov (United States)

    Veretenov, N A; Fedorov, S V; Rosanov, N N

    2017-12-29

    We predict a new class of three-dimensional (3D) topological dissipative optical one-component solitons in homogeneous laser media with fast saturable absorption. Their skeletons formed by vortex lines where the field vanishes are tangles, i.e., N_{c} knotted or unknotted, linked or unlinked closed lines and M unclosed lines that thread all the closed lines and end at the infinitely far soliton periphery. They are generated by embedding two-dimensional laser solitons or their complexes in 3D space after their rotation around an unclosed, infinite vortex line with topological charge M_{0} (N_{c}, M, and M_{0} are integers). With such structure propagation, the "hula-hoop" solitons form; their stability is confirmed numerically. For the solitons found, all vortex lines have unit topological charge: the number of closed lines N_{c}=1 and 2 (unknots, trefoils, and Solomon knots links); unclosed vortex lines are unknotted and unlinked, their number M=1, 2, and 3.

  18. Probe-controlled soliton frequency shift in the regime of optical event horizon

    DEFF Research Database (Denmark)

    Gu, Jie; Guo, Hairun; Wang, Shaofei

    2015-01-01

    In optical analogy of the event horizon, temporal pulse collision and mutual interactions are mainly between an intense solitary wave (soliton) and a dispersive probe wave. In such a regime, here we numerically investigate the probe-controlled soliton frequency shift as well as the soliton self...

  19. Dynamics of surface solitons at the edge of chirped optical lattices

    International Nuclear Information System (INIS)

    Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.

    2007-01-01

    We address soliton formation at the edge of chirped optical lattices imprinted in Kerr-type nonlinear media. We find families of power thresholdless surface waves that do not exist at other types of lattice interfaces. Such solitons form due to combined action of internal reflection at the interface, distributed Bragg-type reflection, and focusing nonlinearity. Remarkably, we discover that surfaces of chirped lattices are soliton attractors: Below an energy threshold, solitons launched well within the lattice self-bend toward the interface, and then stick to it

  20. Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices

    International Nuclear Information System (INIS)

    Luz, H. L. F. da; Gammal, A.; Abdullaev, F. Kh.; Salerno, M.; Tomio, Lauro

    2010-01-01

    The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.

  1. Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices

    Science.gov (United States)

    da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro

    2010-10-01

    The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.

  2. Shape changing collisions of optical solitons, universal logic gates ...

    Indian Academy of Sciences (India)

    communication via optical fibers [1] and the observation of self trapping of optical beams ... From a theoretical point of view, in the context of intense optical pulse ...... play a pivotal role in the shape changing collision process. ...... [1] See for example, several articles in the Focus Issue on “Optical Solitons - Perspectives and.

  3. Anderson localisation and optical-event horizons in rogue-soliton generation.

    Science.gov (United States)

    Saleh, Mohammed F; Conti, Claudio; Biancalana, Fabio

    2017-03-06

    We unveil the relation between the linear Anderson localisation process and nonlinear modulation instability. Anderson localised modes are formed in certain temporal intervals due to the random background noise. Such localised modes seed the formation of solitary waves that will appear during the modulation instability process at those preferred intervals. Afterwards, optical-event horizon effects between dispersive waves and solitons produce an artificial collective acceleration that favours the collision of solitons, which could eventually lead to a rogue-soliton generation.

  4. Optical soliton communication using ultra-short pulses

    CERN Document Server

    Sadegh Amiri, Iraj

    2015-01-01

    This brief analyzes the characteristics of a microring resonator (MRR) to perform communication using ultra-short soliton pulses. The raising of nonlinear refractive indices, coupling coefficients and radius of the single microring resonator leads to decrease in input power and round trips wherein the bifurcation occurs. As a result, bifurcation or chaos behaviors are seen at lower input power of 44 W, where the nonlinear refractive index is n2=3.2×10−20 m2/W. Using a decimal convertor system, these ultra-short signals can be converted into quantum information. Results show that multi solitons with FWHM and FSR of 10 pm and 600 pm can be generated respectively. The multi optical soliton with FWHM and FSR of 325 pm and 880 nm can be incorporated with a time division multiple access (TDMA) system wherein the transportation of quantum information is performed.

  5. Models of few optical cycle solitons beyond the slowly varying envelope approximation

    International Nuclear Information System (INIS)

    Leblond, H.; Mihalache, D.

    2013-01-01

    In the past years there was a huge interest in experimental and theoretical studies in the area of few-optical-cycle pulses and in the broader fast growing field of the so-called extreme nonlinear optics. This review concentrates on theoretical studies performed in the past decade concerning the description of few optical cycle solitons beyond the slowly varying envelope approximation (SVEA). Here we systematically use the powerful reductive expansion method (alias multiscale analysis) in order to derive simple integrable and nonintegrable evolution models describing both nonlinear wave propagation and interaction of ultrashort (femtosecond) pulses. To this aim we perform the multiple scale analysis on the Maxwell–Bloch equations and the corresponding Schrödinger–von Neumann equation for the density matrix of two-level atoms. We analyze in detail both long-wave and short-wave propagation models. The propagation of ultrashort few-optical-cycle solitons in quadratic and cubic nonlinear media are adequately described by generic integrable and nonintegrable nonlinear evolution equations such as the Korteweg–de Vries equation, the modified Korteweg–de Vries equation, the complex modified Korteweg–de Vries equation, the sine–Gordon equation, the cubic generalized Kadomtsev–Petviashvili equation, and the two-dimensional sine–Gordon equation. Moreover, we consider the propagation of few-cycle optical solitons in both (1+1)- and (2+1)-dimensional physical settings. A generalized modified Korteweg–de Vries equation is introduced in order to describe robust few-optical-cycle dissipative solitons. We investigate in detail the existence and robustness of both linearly polarized and circularly polarized few-cycle solitons, that is, we also take into account the effect of the vectorial nature of the electric field. Some of these results concerning the systematic use of the reductive expansion method beyond the SVEA can be relatively easily extended to few

  6. Nonlinear soliton matching between optical fibers

    DEFF Research Database (Denmark)

    Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.

    2011-01-01

    In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η...

  7. Defect solitons in saturable nonlinearity media with parity-time symmetric optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Sumei [Department of Physics, Guangdong University of Petrochemical Technology, Maoming 525000 (China); Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631 (China); Hu, Wei, E-mail: huwei@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631 (China)

    2013-11-15

    We reported the existence and stability of defect solitons in saturable nonlinearity media with parity-time (PT) symmetric optical lattices. Families of fundamental and dipole solitons are found in the semi-infinite gap and the first gap. The power of solitons increases with the increasing of the propagation constant and saturation parameter. The existence areas of fundamental and dipole solitons shrink with the growth of saturation parameter. The instability of dipole solitons for positive and no defect induced by the imaginary part of PT symmetric potentials can be suppressed by the saturation nonlinearity, but for negative defect it cannot be suppressed by the saturation nonlinearity.

  8. On combined optical solitons of the one-dimensional Schrödinger’s equation with time dependent coefficients

    Directory of Open Access Journals (Sweden)

    Kilic Bulent

    2016-01-01

    Full Text Available This paper integrates dispersive optical solitons in special optical metamaterials with a time dependent coefficient. We obtained some optical solitons of the aforementioned equation. It is shown that the examined dependent coefficients are affected by the velocity of the wave. The first integral method (FIM and ansatz method are applied to reach the optical soliton solutions of the one-dimensional nonlinear Schrödinger’s equation (NLSE with time dependent coefficients.

  9. Mismatch management for optical and matter-wave quadratic solitons

    International Nuclear Information System (INIS)

    Driben, R.; Oz, Y.; Malomed, B. A.; Gubeskys, A.; Yurovsky, V. A.

    2007-01-01

    We propose a way to control solitons in χ (2) (quadratically nonlinear) systems by means of periodic modulation imposed on the phase-mismatch parameter ('mismatch management', MM). It may be realized in the cotransmission of fundamental-frequency (FF) and second-harmonic (SH) waves in a planar optical waveguide via a long-period modulation of the usual quasi-phase-matching pattern of ferroelectric domains. In an altogether different physical setting, the MM may also be implemented by dint of the Feshbach resonance in a harmonically modulated magnetic field in a hybrid atomic-molecular Bose-Einstein condensate (BEC), with the atomic and molecular mean fields (MFs) playing the roles of the FF and SH, respectively. Accordingly, the problem is analyzed in two different ways. First, in the optical model, we identify stability regions for spatial solitons in the MM system, in terms of the MM amplitude and period, using the MF equations for spatially inhomogeneous configurations. In particular, an instability enclave is found inside the stability area. The robustness of the solitons is also tested against variation of the shape of the input pulse, and a threshold for the formation of stable solitons is found in terms of the power. Interactions between stable solitons are virtually unaffected by the MM. The second method (parametric approximation), going beyond the MF description, is developed for spatially homogeneous states in the BEC model. It demonstrates that the MF description is valid for large modulation periods, while, at smaller periods, non-MF components acquire gain, which implies destruction of the MF under the action of the high-frequency MM

  10. Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices

    International Nuclear Information System (INIS)

    Carusotto, Iacopo; Embriaco, Davide; La Rocca, Giuseppe C.

    2002-01-01

    We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture of the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due to the atom-atom interaction are discussed in detail, such as atom-optical limiting and atom-optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties

  11. Symbolic computation and solitons of the nonlinear Schroedinger equation in inhomogeneous optical fiber media

    International Nuclear Information System (INIS)

    Li Biao; Chen Yong

    2007-01-01

    In this paper, the inhomogeneous nonlinear Schroedinger equation with the loss/gain and the frequency chirping is investigated. With the help of symbolic computation, three families of exact analytical solutions are presented by employing the extended projective Riccati equation method. From our results, many previous known results of nonlinear Schroedinger equation obtained by some authors can be recovered by means of some suitable selections of the arbitrary functions and arbitrary constants. Of optical and physical interests, soliton propagation and soliton interaction are discussed and simulated by computer, which include snake-soliton propagation and snake-solitons interaction, boomerang-like soliton propagation and boomerang-like solitons interaction, dispersion managed (DM) bright (dark) soliton propagation and DM solitons interaction

  12. Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems

    International Nuclear Information System (INIS)

    Proukakis, N P; Parker, N G; Frantzeskakis, D J; Adams, C S

    2004-01-01

    Dark solitons have been observed in optical systems (optical fibres, dielectric guides and bulk media), and, more recently, in harmonically confined atomic Bose-Einstein condensates. This paper presents an overview of some of the common features and analogies experienced by these two intrinsically nonlinear systems, with emphasis on the stability of dark solitons in such systems and their decay via emission of radiation. The closely related issue of vortex dynamics in such systems is also briefly discussed

  13. Ultrafast optical ranging using microresonator soliton frequency combs

    Science.gov (United States)

    Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M. H. P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; Freude, W.; Kippenberg, T. J.; Koos, C.

    2018-02-01

    Light detection and ranging is widely used in science and industry. Over the past decade, optical frequency combs were shown to offer advantages in optical ranging, enabling fast distance acquisition with high accuracy. Driven by emerging high-volume applications such as industrial sensing, drone navigation, or autonomous driving, there is now a growing demand for compact ranging systems. Here, we show that soliton Kerr comb generation in integrated silicon nitride microresonators provides a route to high-performance chip-scale ranging systems. We demonstrate dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for in-flight sampling of gun projectiles moving at 150 meters per second. Combining integrated soliton-comb ranging systems with chip-scale nanophotonic phased arrays could enable compact ultrafast ranging systems for emerging mass applications.

  14. Molecule condensate production from an atomic Bose-Einstein condensate via Feshbach scattering in an optical lattice: Gap solitons

    International Nuclear Information System (INIS)

    Tasgal, Richard S.; Menabde, G.; Band, Y. B.

    2006-01-01

    We propose a scheme for making a Bose-Einstein condensate (BEC) of molecules from a BEC of atoms in a strongly confining two-dimensional optical lattice and a weak one-dimensional optical lattice in the third dimension. The stable solutions obtained for the order parameters take the form of a different type of gap soliton, with both atomic and molecular BECs, and also standard gap solitons with only a molecular BEC. The strongly confining dimensions of the lattice stabilize the BEC against inelastic energy transfer in atom-molecule collisions. The solitons with atoms and molecules may be obtained by starting with an atomic BEC, and gradually tuning the resonance by changing the external magnetic-field strength until the desired atom-molecule soliton is obtained. A gap soliton of a BEC of only molecules may be obtained nonadiabatically by starting from an atom-only gap soliton, far from a Feshbach resonance and adjusting the magnetic field to near Feshbach resonance. After a period of time in which the dimer field grows, change the magnetic field such that the detuning is large and negative and Feshbach effects wash out, turn off the optical lattice in phase with the atomic BEC, and turn on an optical lattice in phase with the molecules. The atoms disperse, leaving a gap soliton composed of a molecular BEC. Regarding instabilities in the dimension of the weak optical lattice, the solitons which are comprised of both atoms and molecules are sometimes stable and sometimes unstable--we present numerically obtained results. Gap solitons comprised of only molecules have the same stability properties as the standard gap solitons: stable from frequencies slightly below the middle of the band gap to the top, and unstable below that point. Instabilities are only weakly affected by the soliton velocities, and all instabilities are oscillatory

  15. Oscillations in the interactions among multiple solitons in an optical fibre

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wen-Qiang; Gao, Yi-Tian; Zhao, Chen; Feng, Yu-Jie; Su, Chuan-Qi [Beijing University of Aeronautics and Astronautics (China). Ministry of Education Key Laboratory of Fluid Mechanics; Beijing University of Aeronautics and Astronautics (China). National Laboratory for Computational Fluid Dynamics

    2016-07-01

    In this article, under the investigation on the interactions among multiple solitons for an eighth-order nonlinear Schroedinger equation in an optical fibre, oscillations in the interaction zones are observed theoretically. With different coefficients of the operators in this equation, we find that (1) the oscillations in the solitonic interaction zones have different forms with different spectral parameters of this equation; (2) the oscillations in the interactions among the multiple solitons are affected by the choice of spectral parameters, the dispersive effects and nonlinearity of the eighth-order operator; (3) the second-, fifth-, sixth-, and seventh-order operators restrain oscillations in the solitonic interaction zones and the higher-order operators have stronger attenuated effects than the lower ones, while the third- and fourth-order operators stimulate and extend the scope of oscillations.

  16. Chaotic behaviour from smooth and non-smooth optical solitons ...

    Indian Academy of Sciences (India)

    2016-07-14

    Jul 14, 2016 ... In particular, solitons in optical fibre models are rarely researched. ... where m is an integer, n is a positive integer, d is the amplitude, w ... transmission system. .... will intersect an infinite number of times, thus forming a type of ...

  17. Optical computing with soliton trains in Bose–Einstein condensates

    KAUST Repository

    Pinsker, Florian

    2015-07-01

    © 2015 World Scientific Publishing Company. Optical computing devices can be implemented based on controlled generation of soliton trains in single and multicomponent Bose-Einstein condensates (BEC). Our concepts utilize the phenomenon that the frequency of soliton trains in BEC can be governed by changing interactions within the atom cloud [F. Pinsker, N. G. Berloff and V. M. Pérez-García, Phys. Rev. A87, 053624 (2013), arXiv:1305.4097]. We use this property to store numbers in terms of those frequencies for a short time until observation. The properties of soliton trains can be changed in an intended way by other components of BEC occupying comparable states or via phase engineering. We elucidate, in which sense, such an additional degree of freedom can be regarded as a tool for controlled manipulation of data. Finally, the outcome of any manipulation made is read out by observing the signature within the density profile.

  18. Multi-wavelength and multi-colour temporal and spatial optical solitons

    DEFF Research Database (Denmark)

    Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.

    2000-01-01

    We present an overview of several novel types of multi- component envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for high performance computer networks, multi......-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons in Fibonacci optical superlattices....

  19. Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules

    Science.gov (United States)

    Krupa, Katarzyna; Nithyanandan, K.; Andral, Ugo; Tchofo-Dinda, Patrice; Grelu, Philippe

    2017-06-01

    Real-time access to the internal ultrafast dynamics of complex dissipative optical systems opens new explorations of pulse-pulse interactions and dynamic patterns. We present the first direct experimental evidence of the internal motion of a dissipative optical soliton molecule generated in a passively mode-locked erbium-doped fiber laser. We map the internal motion of a soliton pair molecule by using a dispersive Fourier-transform imaging technique, revealing different categories of internal pulsations, including vibrationlike and phase drifting dynamics. Our experiments agree well with numerical predictions and bring insights to the analogy between self-organized states of lights and states of the matter.

  20. Vector pulsing soliton of self-induced transparency in waveguide

    International Nuclear Information System (INIS)

    Adamashvili, G.T.

    2015-01-01

    A theory of an optical resonance vector pulsing soliton in waveguide is developed. A thin transition layer containing semiconductor quantum dots forms the boundary between the waveguide and one of the connected media. Analytical and numerical solutions for the optical vector pulsing soliton in waveguide are obtained. The vector pulsing soliton in the presence of excitonic and bi-excitonic excitations is compared with the soliton for waveguide TM-modes with parameters that can be used in modern optical experiments. It is shown that these nonlinear waves have significantly different parameters and shapes. - Highlights: • An optical vector pulsing soliton in a planar waveguide is presented. • Explicit form of the optical vector pulsing soliton are obtained. • The vector pulsing soliton and the soliton have different parameters and profiles

  1. Dynamics of bound vector solitons induced by stochastic perturbations: Soliton breakup and soliton switching

    International Nuclear Information System (INIS)

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2013-01-01

    We respectively investigate breakup and switching of the Manakov-typed bound vector solitons (BVSs) induced by two types of stochastic perturbations: the homogenous and nonhomogenous. Symmetry-recovering is discovered for the asymmetrical homogenous case, while soliton switching is found to relate with the perturbation amplitude and soliton coherence. Simulations show that soliton switching in the circularly-polarized light system is much weaker than that in the Manakov and linearly-polarized systems. In addition, the homogenous perturbations can enhance the soliton switching in both of the Manakov and non-integrable (linearly- and circularly-polarized) systems. Our results might be helpful in interpreting dynamics of the BVSs with stochastic noises in nonlinear optics or with stochastic quantum fluctuations in Bose–Einstein condensates.

  2. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    Science.gov (United States)

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-09-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  3. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with spatially modulated nonlinearity

    International Nuclear Information System (INIS)

    Zhang Jiefang; Meng Jianping; Wu Lei; Li Yishen; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.

  4. Matter-wave solitons and finite-amplitude Bloch waves in optical lattices with a spatially modulated nonlinearity

    OpenAIRE

    Zhang, Jie-Fang; Li, Yi-Shen; Meng, Jianping; Wu, Lei; Malomed, Boris A.

    2010-01-01

    We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices. By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite number of exact soliton solutions in terms of the Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite bandgap of the optical-lattice-induced spectrum. Starting from the exact solutions, we employ the relaxation met...

  5. Solitonic guide and multiphoton absorption processes in photopolymerizable materials for optical integrated circuits

    Science.gov (United States)

    Klein, Stephane; Barsella, Alberto; Acker, D.; Sutter, C.; Beyer, N.; Andraud, Chantal; Fort, Alain F.; Dorkenoo, Kokou D.

    2004-09-01

    Up to now, most of the optical integrated devices are realized on glass or III-V substrates and the waveguides are usually obtained by photolithography techniques. We present here a new approach based on the use of photopolymerizable compounds. The conditions of self-written channel creation by solitonic propagation inside the bulk of these photopolymerizable formulations are analyzed. Both experimental and theoretical results of the various stages of self-written guide propagation are presented. A further step has been achieved by using a two-photon absorption process for the polymerization via a confocal microscopy technique. Combined with the solitonic guide creation, this technique allows to draw 3D optical circuits. Finally, by doping the photopolymerizable mixtures with push-pull chromophores having a controlled orientation, it will be possible to create active optical integrated devices.

  6. Quantum solitons

    Energy Technology Data Exchange (ETDEWEB)

    Abram, I [Centre National d' Etudes des Telecommunications (CNET), 196 Avenue Henri Ravera, F-92220 Bagneux (France)

    1999-02-01

    Two of the most remarkable properties of light - squeezing and solitons - are being combined in a new generation of experiments that could revolutionize optics and communications. One area of application concerns the transmission and processing of classical (binary) information, in which the presence or absence of a soliton in a time-window corresponds to a ''1'' or ''0'', as in traditional optical-fibre communications. However, since solitons occur at fixed power levels, we do not have the luxury of being able to crank up the input power to improve the signal-to-noise ratio at the receiving end. Nevertheless, the exploitation of quantum effects such as squeezing could help to reduce noise and improve fidelity. In long-distance communications, where the signal is amplified every 50-100 kilometres or so, the soliton pulse is strongest just after the amplifier. Luckily this is where the bulk of the nonlinear interaction needed to maintain the soliton shape occurs. However, the pulse gets weaker as it propagates along the fibre, so the nonlinear interaction also becomes weakerand weaker. This means that dispersive effects become dominant until the next stage of amplification, where the nonlinearity takes over again. One problem is that quantum fluctuations in the amplifiers lead to random jumps in the central wavelength of the individual solitons, and this results in a random variation of the speed of individual solitons in the fibre. Several schemes have been devised to remove this excess noise and bring the train of solitons back to the orderly behaviour characteristic of a stable coherent state (e.g. the solitons could be passed through a spectral filter). Photon-number squeezing could also play a key role in solving this problem. For example, if the solitons are number-squeezed immediately after amplification, there will be a smaller uncertainty in the nonlinearity that keeps the soliton in shape and, therefore, there will also be less noise in the soliton. This

  7. Dark-dark solitons for a coupled variable-coefficient higher-order nonlinear Schrödinger system in an inhomogeneous optical fiber

    Science.gov (United States)

    Li, Ming-Zhen; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Liu, Lei; Du, Zhong

    2017-12-01

    In this paper, under investigation is a coupled variable-coefficient higher-order nonlinear Schrödinger system, which describes the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the Lax pair and binary Darboux transformation, we present the nondegenerate N-dark-dark soliton solutions. With the graphical simulation, soliton propagation and interaction are discussed with the group velocity dispersion and fourth-order dispersion effects, which affect the velocity but have no effect on the amplitude. Linear, parabolic and periodic one dark-dark solitons are displayed. Interactions between the two solitons are presented as well, which are all elastic.

  8. Simulation of optical soliton control in micro- and nanoring resonator systems

    CERN Document Server

    Daud, Suzairi; Ali, Jalil

    2015-01-01

    This book introduces optical soliton control in micro- and nanoring resonator systems. It describes how the ring resonator systems can be optimized as optical tweezers for photodetection by controlling the input power, ring radii and coupling coefficients of the systems. Numerous arrangements and configurations of micro and nanoring resonator systems are explained. The analytical formulation and optical transfer function for each model and the interaction of the optical signals in the systems are discussed. This book shows that the models designed are able to control the dynamical behaviour of generated signals.

  9. Stable optical soliton in the ring-cavity fiber system with carbon nanotube as saturable absorber

    Science.gov (United States)

    Li, Bang-Qing; Ma, Yu-Lan; Yang, Tie-Mei

    2018-01-01

    Main attention focuses on the theoretical study of the ring-cavity fiber laser system with carbon nanotubes (CNT) as saturable absorber (SA). The system is modelled as a non-standard Schrödinger equation with the coefficients blended real and imaginary numbers. New stable exact soliton solution is constructed by the bilinear transformation method for the system. The influences of the key parameters related to CNTs and SA on the optical pulse soliton are discussed in simulation. The soliton amplitude and phase can be tuned by choosing suitable parameters.

  10. Direct method for the periodic amplification of a soliton in an optical fibre link with loss

    International Nuclear Information System (INIS)

    Li Lu; Xue Wenrui; Xu Zhiyong; Li Zhonghao; Zhou Guosheng

    2003-01-01

    A direct approach is applied to the periodic amplification of a soliton in an optical fibre link with loss. In a single soliton case, the adiabatic solution and first-order correction are given for the system. The apparent advantage of this direct approach is that it not only presents the slow evolution of soliton parameters, but also the perturbation-induced radiation, and can be easily used to investigate the system of dispersion management with periodically varying dispersion and other fields

  11. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model

    Science.gov (United States)

    Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref

    2017-11-01

    This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.

  12. Cross-talk dynamics of optical solitons in a broadband Kerr nonlinear system with weak cubic loss

    International Nuclear Information System (INIS)

    Peleg, Avner; Nguyen, Quan M.; Chung, Yeojin

    2010-01-01

    We study the dynamics of fast soliton collisions in a Kerr nonlinear optical waveguide with weak cubic loss. We obtain analytic expressions for the amplitude and frequency shifts in a single two-soliton collision and show that the impact of a fast three-soliton collision is given by the sum of the two-soliton interactions. Our analytic predictions are confirmed by numerical simulations with the perturbed nonlinear Schroedinger (NLS) equation. Furthermore, we show that the deterministic collision-induced dynamics of soliton amplitudes in a broadband waveguide system with N frequency channels is described by a Lotka-Volterra model for N competing species. For a two-channel system we find that stable transmission with equal prescribed amplitudes can be achieved by a proper choice of linear amplifier gain. The predictions of the Lotka-Volterra model are confirmed by numerical solution of a perturbed coupled-NLS model.

  13. Massive WDM and TDM Soliton Transmission Systems : a ROSC Symposium

    CERN Document Server

    2002-01-01

    This book summarizes the proceedings of the invited talks presented at the “International Symposium on Massive TDM and WDM Optical Soliton Tra- mission Systems” held in Kyoto during November 9–12, 1999. The symposium is the third of the series organized by Research Group for Optical Soliton C- munications (ROSC) chaired by Akira Hasegawa. The research group, ROSC, was established in Japan in April 1995 with a support of the Japanese Ministry of Post and Telecommunications to promote collaboration and information - change among communication service companies, communication industries and academic circles in the theory and application of optical solitons. The symposium attracted enthusiastic response from worldwide researchers in the field of soliton based communications and intensive discussions were made. In the symposium held in 1997, new concept of soliton transmission based on dispersion management of optical fibers were presented. This new soliton is now called the dispersion managed soliton. The p...

  14. Dark solitons for a variable-coefficient higher-order nonlinear Schrödinger equation in the inhomogeneous optical fiber

    Science.gov (United States)

    Sun, Yan; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Yuan, Yu-Qiang

    2017-04-01

    Under investigation in this paper is a variable-coefficient higher-order nonlinear Schrödinger equation, which has certain applications in the inhomogeneous optical fiber communication. Through the Hirota method, bilinear forms, dark one- and two-soliton solutions for such an equation are obtained. We graphically study the solitons with d1(z), d2(z) and d3(z), which represent the variable coefficients of the group-velocity dispersion, third-order dispersion and fourth-order dispersion, respectively. With the different choices of the variable coefficients, we obtain the parabolic, periodic and V-shaped dark solitons. Head-on and overtaking collisions are depicted via the dark two soliton solutions. Velocities of the dark solitons are linearly related to d1(z), d2(z) and d3(z), respectively, while the amplitudes of the dark solitons are not related to such variable coefficients.

  15. A Numerical Development in the Dynamical Equations of Solitons in Optical Fibers

    Directory of Open Access Journals (Sweden)

    Érica Regina Takano Natti

    2006-02-01

    Full Text Available It was evaluated the numerical resolution of a nonlinear differential equations system that describes the solitons propagation in dielectric optical fibers, through the method of finite elements, which is implemented based on Streamline Upwind Petrov-Galerkin (SUPG and Consistent Approximate Upwind (CAU formulations.

  16. Rational solitons in deep nonlinear optical Bragg grating

    NARCIS (Netherlands)

    Alatas, H.; Iskandar, A.A.; Tjia, M.O.; Valkering, T.P.

    2006-01-01

    We have examined the rational solitons in the Generalized Coupled Mode model for a deep nonlinear Bragg grating. These solitons are the degenerate forms of the ordinary solitons and appear at the transition lines in the parameter plane. A simple formulation is presented for the investigation of the

  17. Soliton models in resonant and nonresonant optical fibers

    Indian Academy of Sciences (India)

    where Γ is the damping (> 0) and gain (< 0) parameter. Using the perturbation method and zeroth approximation, one-soliton solution is constructed and the amplification and damping of soliton is explained in figure 2. In addition, by introducing the initial phase. Figure 1. Two soliton solutions of the NLS equation. Figure 2.

  18. Accessible solitons of fractional dimension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Zhang, Yiqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2016-05-15

    We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential. •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.

  19. New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method

    Science.gov (United States)

    Yaşar, Elif; Yıldırım, Yakup; Yaşar, Emrullah

    2018-06-01

    This paper devotes to conformable fractional space-time perturbed Gerdjikov-Ivanov (GI) equation which appears in nonlinear fiber optics and photonic crystal fibers (PCF). We consider the model with full nonlinearity in order to give a generalized flavor. The sine-Gordon equation approach is carried out to model equation for retrieving the dark, bright, dark-bright, singular and combined singular optical solitons. The constraint conditions are also reported for guaranteeing the existence of these solitons. We also present some graphical simulations of the solutions for better understanding the physical phenomena of the behind the considered model.

  20. Scaling relations for soliton compression and dispersive-wave generation in tapered optical fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2018-01-01

    In this paper, scaling relations for soliton compression in tapered optical fibers are derived and discussed. The relations allow simple and semi-accurate estimates of the compression point and output noise level, which is useful, for example, for tunable dispersive-wave generation with an agile ...

  1. Tunnelling effects of solitons in optical fibers with higher-order effects

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chao-Qing [Zhejiang A and F Univ., Lin' an (China). School of Sciences; Suzhou Univ., Jiangsu (China). School of Physical Science and Technology; Zhu, Hai-Ping [Zhejiang Lishui Univ., Zhejiang (China). School of Science; Zheng, Chun-Long [Shaoguan Univ., Guangdong (China). College of Physics and Electromechanical Engineering

    2012-06-15

    We construct four types of analytical soliton solutions for the higher-order nonlinear Schroedinger equation with distributed coefficients. These solutions include bright solitons, dark solitons, combined solitons, and M-shaped solitons. Moreover, the explicit functions which describe the evolution of the width, peak, and phase are discussed exactly. We finally discuss the nonlinear soliton tunnelling effect for four types of femtosecond solitons. (orig.)

  2. Observation of Fermi-Pasta-Ulam Recurrence Induced by Breather Solitons in an Optical Microresonator

    Science.gov (United States)

    Bao, Chengying; Jaramillo-Villegas, Jose A.; Xuan, Yi; Leaird, Daniel E.; Qi, Minghao; Weiner, Andrew M.

    2016-10-01

    We present, experimentally and numerically, the observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in a high-Q SiN microresonator. Breather solitons can be excited by increasing the pump power at a relatively small pump phase detuning in microresonators. Out of phase power evolution is observed for groups of comb lines around the center of the spectrum compared to groups of lines in the spectral wings. The evolution of the power spectrum is not symmetric with respect to the spectrum center. Numerical simulations based on the generalized Lugiato-Lefever equation are in good agreement with the experimental results and unveil the role of stimulated Raman scattering in the symmetry breaking of the power spectrum evolution. Our results show that optical microresonators can be exploited as a powerful platform for the exploration of soliton dynamics.

  3. Coupling effects of grey-grey separate spatial screening soliton pairs

    International Nuclear Information System (INIS)

    Jiang Qichang; Su Yanli; Ji Xuanmang

    2012-01-01

    The existence and coupling effects of grey-grey separate spatial soliton pairs in a biased series non-photovoltaic photorefractive crystal circuit are investigated in this paper. The numerical solution of grey-grey soliton pairs is derived. The coupling effects between two grey solitons resulting from the input optical intensity and crystal temperature are analyzed numerically. The results show that when the input optical intensity of one crystal changes, two grey solitons in a soliton pair will all change; that is, two grey solitons can affect each other by the light-induced current that flows from one crystal to another. When the temperature of one crystal increases, the intensity width of the grey soliton in this crystal first decreases and then increases. Simultaneously, the intensity width of another grey soliton increases monotonically.

  4. The application of the extending symmetry group approach in optical soliton communication

    International Nuclear Information System (INIS)

    Ruan Hangyu; Li Huijun; Chen Yixin

    2005-01-01

    A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the nonlinear Schroedinger equation (NLS) with distributed dispersion, nonlinearity and gain or loss. We study the transformations between the standard NLS equation and the NLS equations with distributed dispersion, nonlinearity and gain or loss. Appropriate solitary wave solutions can be applied to discuss soliton propagation in optical fibres, and the amplification and compression of pulses in optical fibre amplifiers

  5. Vibron Solitons and Soliton-Induced Infrared Spectra of Crystalline Acetanilide

    Science.gov (United States)

    Takeno, S.

    1986-01-01

    Red-shifted infrared spectra at low temperatures of amide I (C=O stretching) vibrations of crystalline acetanilide measured by Careri et al. are shown to be due to vibron solitons, which are nonlinearity-induced localized modes of vibrons arising from their nonlinear interactions with optic-type phonons. A nonlinear eigenvalue equation giving the eigenfrequency of stationary solitons is solved approximately by introducing lattice Green's functions, and the obtained result is in good agreement with the experimental result. Inclusion of interactions with acoustic phonons yields the Debye-Waller factor in the zero-phonon line spectrum of vibron solitons, in a manner analogous to the case of impurity-induced localized harmonic phonon modes in alkali halides.

  6. Solitonic Dispersive Hydrodynamics: Theory and Observation

    Science.gov (United States)

    Maiden, Michelle D.; Anderson, Dalton V.; Franco, Nevil A.; El, Gennady A.; Hoefer, Mark A.

    2018-04-01

    Ubiquitous nonlinear waves in dispersive media include localized solitons and extended hydrodynamic states such as dispersive shock waves. Despite their physical prominence and the development of thorough theoretical and experimental investigations of each separately, experiments and a unified theory of solitons and dispersive hydrodynamics are lacking. Here, a general soliton-mean field theory is introduced and used to describe the propagation of solitons in macroscopic hydrodynamic flows. Two universal adiabatic invariants of motion are identified that predict trapping or transmission of solitons by hydrodynamic states. The result of solitons incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves is the same, an effect termed hydrodynamic reciprocity. Experiments on viscous fluid conduits quantitatively confirm the soliton-mean field theory with broader implications for nonlinear optics, superfluids, geophysical fluids, and other dispersive hydrodynamic media.

  7. A combined variational-topological approach for dispersion-managed solitons in optical fibers

    Czech Academy of Sciences Publication Activity Database

    Hakl, Robert; Torres, P.J.

    2011-01-01

    Roč. 62, č. 2 (2011), s. 245-266 ISSN 0044-2275 Institutional research plan: CEZ:AV0Z10190503 Keywords : optical soliton * Schrödinger equation * singular equation * periodic solution * upper and lower function Subject RIV: BA - General Mathematics Impact factor: 0.951, year: 2011 http://www.springerlink.com/content/y1534p553r530451/

  8. Integrability and solitons for the higher-order nonlinear Schrödinger equation with space-dependent coefficients in an optical fiber

    Science.gov (United States)

    Su, Jing-Jing; Gao, Yi-Tian

    2018-03-01

    Under investigation in this paper is a higher-order nonlinear Schrödinger equation with space-dependent coefficients, related to an optical fiber. Based on the self-similarity transformation and Hirota method, related to the integrability, the N-th-order bright and dark soliton solutions are derived under certain constraints. It is revealed that the velocities and trajectories of the solitons are both affected by the coefficient of the sixth-order dispersion term while the amplitudes of the solitons are determined by the gain function. Amplitudes increase when the gain function is positive and decrease when the gain function is negative. Furthermore, we find that the intensities of dark solitons are presented as a superposition of the solitons and stationary waves.

  9. Dissipation-Managed Bright Soliton in a 1D Bose-Einstein Condensate in an Optical-Lattice Potential

    International Nuclear Information System (INIS)

    Zhou Zheng; Yu Huiyou; Ao Shengmei; Yan Jiaren

    2010-01-01

    We study the formation of a dynamically-stabilized dissipation-managed bright soliton in a quasi-one-dimensional Bose-Einstein condensate by including an imaginary three-body recombination loss term and an imaginary linear feeding one in the Gross-Pitaevskii equation, trapped in a shallow optical-lattice potential. Based on the direct approach of perturbation theory for the nonlinear Schroedinger equation, we demonstrate that the height (as well as width) of bright soliton may have little change through selecting experimental parameters. (general)

  10. Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrödinger equation and its applications in mono-mode optical fibers

    Science.gov (United States)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.

  11. Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space

    International Nuclear Information System (INIS)

    Ju, Heongkyu; Lee, Euncheol

    2010-01-01

    Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.

  12. Controllable generation and propagation of ultraslow optical solitons via parameters management in a five-level hyper inverted-Y atomic system

    International Nuclear Information System (INIS)

    Si Liugang; Lue Xinyou; Li Jiahua; Hao Xiangying; Wang Meng

    2009-01-01

    The dynamics of generation and propagation of ultraslow optical solitons in a lifetime-broadened five-level hyper inverted-Y atomic system are investigated. Due to the novel absorption and dispersion properties of this system which provide the necessary ingredients for making the probe field propagate nearly transparent in three regimes, the generation of bright or dark optical solitons can be controlled with parameters management by actively manipulating the dispersion, the nonlinearity and the gain (absorption coefficient) via adjusting the corresponding one-, two- and three-photon detunings and the Rabi frequencies.

  13. Quadratic spatial soliton interactions

    Science.gov (United States)

    Jankovic, Ladislav

    degrees rotation, was measured in the experiments performed. The parameters relevant for characterizing soliton collision processes were also studied in detail. Measurements were performed for various collision angles (from 0.2 to 4 degrees), phase mismatch, relative phase between the solitons and the distance to the collision point within the sample (which affects soliton formation). Both the individual and combined effects of these collision variables were investigated. Based on the research conducted, several all-optical switching scenarios were proposed.

  14. Basic methods of soliton theory

    CERN Document Server

    Cherednik, I

    1996-01-01

    In the 25 years of its existence Soliton Theory has drastically expanded our understanding of "integrability" and contributed a lot to the reunification of Mathematics and Physics in the range from deep algebraic geometry and modern representation theory to quantum field theory and optical transmission lines.The book is a systematic introduction to the Soliton Theory with an emphasis on its background and algebraic aspects. It is the first one devoted to the general matrix soliton equations, which are of great importance for the foundations and the applications.Differential algebra (local cons

  15. Matter-wave bright solitons in effective bichromatic lattice potentials

    Indian Academy of Sciences (India)

    Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and (ii) a linear and a nonlinear optical lattice. Effective potentials are found for the solitons in both ...

  16. Observation of soliton compression in silicon photonic crystals

    Science.gov (United States)

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  17. Stable rotating dipole solitons in nonlocal media

    DEFF Research Database (Denmark)

    Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.

    2006-01-01

    We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....

  18. Enhanced mutual capture of colored solitons by matched modulator

    Science.gov (United States)

    Feigenbaum, Eyal; Orenstein, Meir

    2004-08-01

    The mutual capture of two colored solitons is enhanced by a modulator, to a level which enables its practical exploitation, e.g., for a read- write mechanism in a soliton buffer. The enhanced capture was analyzed using closed form particle-like soliton perturbation, and verified by numerical simulations. Optimal modulator frequency and modulation depth are obtained. This mutual capture can be utilized for all-optical soliton logic and memory.

  19. Bose-Einstein condensates in optical lattices: Band-gap structure and solitons

    International Nuclear Information System (INIS)

    Louis, Pearl J. Y.; Kivshar, Yuri S.; Ostrovskaya, Elena A.; Savage, Craig M.

    2003-01-01

    We analyze the existence and stability of spatially extended (Bloch-type) and localized states of a Bose-Einstein condensate loaded into an optical lattice. In the framework of the Gross-Pitaevskii equation with a periodic potential, we study the band-gap structure of the matter-wave spectrum in both the linear and nonlinear regimes. We demonstrate the existence of families of spatially localized matter-wave gap solitons, and analyze their stability in different band gaps, for both repulsive and attractive atomic interactions

  20. Dynamic analysis of optical soliton pair and four-wave mixing via Fano interference in multiple quantum wells

    International Nuclear Information System (INIS)

    Yan, Wei; Qu, Junle; Niu, H B

    2014-01-01

    We perform a time-dependent analysis of the formation and stable propagation of an ultraslow optical soliton pair, and four-wave mixing (FWM) via tunable Fano interference in double-cascade type semiconductor multiple quantum wells (SMQWs). By using the probability amplitude method to describe the interaction of the system, we demonstrate that the electromagnetically induced transparency (EIT) can be controlled by Fano interference in the linear case and the strength of Fano interference has an important effect on the group velocity and amplitude of the soliton pair in the nonlinear case. Then, when the signal field is removed, the dynamic FWM process is analyzed in detail, and we find that the strength of Fano interference also has an important effect on the FWM’s efficiency: the maximum FWM efficiency is ∼28% in appropriate conditions. The investigations are promising for practical applications in optical devices and optical information processing for solid systems. (paper)

  1. Soliton-like solutions of a generalized variable-coefficient higher order nonlinear Schroedinger equation from inhomogeneous optical fibers with symbolic computation

    International Nuclear Information System (INIS)

    Li Juan; Zhang Haiqiang; Xu Tao; Zhang, Ya-Xing; Tian Bo

    2007-01-01

    For the long-distance communication and manufacturing problems in optical fibers, the propagation of subpicosecond or femtosecond optical pulses can be governed by the variable-coefficient nonlinear Schroedinger equation with higher order effects, such as the third-order dispersion, self-steepening and self-frequency shift. In this paper, we firstly determine the general conditions for this equation to be integrable by employing the Painleve analysis. Based on the obtained 3 x 3 Lax pair, we construct the Darboux transformation for such a model under the corresponding constraints, and then derive the nth-iterated potential transformation formula by the iterative process of Darboux transformation. Through the one- and two-soliton-like solutions, we graphically discuss the features of femtosecond solitons in inhomogeneous optical fibers

  2. Bragg Fibers with Soliton-like Grating Profiles

    Directory of Open Access Journals (Sweden)

    Bugaychuk S.

    2016-01-01

    Full Text Available Nonlinear dynamical system corresponding to the optical holography in a nonlocal nonlinear medium with dissipation contains stable localized spatio-temporal states, namely the grid dissipative solitons. These solitons display a non-uniform profile of the grating amplitude, which has the form of the dark soliton in the reflection geometry. The transformation of the grating amplitude gives rise many new atypical effects for the beams diffracted on such grating, and they are very suitable for the fiber Brass gratings. The damped nonlinear Schrodinger equation is derived that describes the properties of the grid dissipative soliton.

  3. Error of quantum-logic simulation via vector-soliton collisions

    International Nuclear Information System (INIS)

    Janutka, Andrzej

    2007-01-01

    In a concept of simulating the quantum logic with vector solitons by the author (Janutka 2006 J. Phys. A: Math. Gen. 39 12505), the soliton polarization is thought of as a state vector of a system of cebits (classical counterparts of qubits) switched via collisions with other solitons. The advantage of this method of information processing compared to schemes using linear optics is the possibility of the determination of the information-register state in a single measurement. Minimization of the information-processing error for different optical realizations of the logical systems is studied in the framework of a quantum analysis of soliton fluctuations. The problem is considered with relevance to general difficulties of the quantum error-correction schemes for the classical analogies of the quantum-information processing

  4. Solitonic guides in photopolymerizable materials for optical devices

    Science.gov (United States)

    Dorkenoo, Kokou D.; Cregut, Olivier; Fort, Alain

    2003-11-01

    These last twenty years, advanced studies in integrated optics have demonstrated the capacity to elaborate optical circuits in planar substrates. Most of the optical integrated devices are realized on glass substrate and the guide areas are usually obtained by photolithography techniques. We present here a new approach based on the use of compounds photopolymerizable in the visible range. The conditions of self written channel creation by solitonic propagation inside the bulk of the photopolymerizable formulation are analyzed. Waveguides can be self-written in photopolymerizable materials1,2 due to the dependence of their refractive index on intensity and duration of the active light. This process results from the competition between the diffraction of the incident Gaussian beam and the photopolymerization which tends to increase the refractive index where light intensity is the highest. By controlling the difference between the refractive index values of the polymerized and non polymerized zones, the beam can be self-trapped along the propagation axis giving rise to a waveguide over distances as large as 10 cm without any broadening. Such permanent waveguides can be structured by inscription of gratings and doped with a dye in a plastic cell leading to the elaboration of a completely plastic laser.

  5. The effect of quintic nonlinearity on the propagation characteristics of dispersion managed optical solitons

    International Nuclear Information System (INIS)

    Konar, S.; Mishra, Manoj; Jana, S.

    2006-01-01

    The role of quintic nonlinearity on the propagation characteristics of optical solitons in dispersion managed optical communication systems has been presented in this paper. It has been shown that quintic nonlinearity has only marginal influence on single pulse propagation. However, numerical simulation has been undertaken to reveal that quintic nonlinearity reduces collision distance between neighbouring pulses of the same channel. It is found that for lower map strength the collapse distance between intra channel pulses is very much sensitive to the dispersion map strength

  6. Mechanisms of crossing for an X-junction based on dark spatial solitons

    International Nuclear Information System (INIS)

    Torres-Cisneros, M; Aguilera-Cortes, L A; Meneses-Nava, M A; Sanchez-Mondragon, J J; Torres-Cisneros, G E

    2004-01-01

    We present a fundamental study on the capability of a crossing of two optical waveguides based on dark spatial solitons to act as a controllable optical beam splitter. Our study is based on the fact that the guided beam is diffracted at the waveguide crossing by an effective phase screen formed by the soliton collision profile. We find that when the two dark solitons are immersed into the same finite bright background, the energy of a guided beam can be split into the desired optical channel according to the collision angle. We also found that even the corresponding phase diffractive screen possesses a quite different structure in the bright and dark soliton cases; the physics involved is the same

  7. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    The study of solitons in those physical systems reveals some exciting .... With the following power series expansions for g(z,t) and f(z,t): g(z,t) = εg1(z,t) + ... If nonlinearity γ (z) is also taken as a function in figure 1b, the periodic and oscillation.

  8. Spinning solitons in cubic-quintic nonlinear media

    Indian Academy of Sciences (India)

    in contrast to a recently found azimuthal instability of spinning doughnut-shaped solitons in the CQ NLS equation, their GL counterparts may be completely stable. On the other hand, a problem of fundamental interest is the possibility of the formation of fully three-dimensional (3D) optical spatiotemporal solitons, also referred ...

  9. Spectral tunneling of lattice nonlocal solitons

    International Nuclear Information System (INIS)

    Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.

    2010-01-01

    We address spectral tunneling of walking spatial solitons in photorefractive media with nonlocal diffusion component of the nonlinear response and an imprinted shallow optical lattice. In contrast to materials with local nonlinearities, where solitons traveling across the lattice close to the Bragg angle suffer large radiative losses, in photorefractive media with diffusion nonlinearity resulting in self-bending, solitons survive when their propagation angle approaches and even exceeds the Bragg angle. In the spatial frequency domain this effect can be considered as tunneling through the band of spatial frequencies centered around the Bragg frequency where the spatial group velocity dispersion is positive.

  10. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.

    2005-01-01

    We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  11. Simple and efficient generation of gap solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Matuszewski, Michal; Krolikowski, Wieslaw; Trippenbach, Marek; Kivshar, Yuri S.

    2006-01-01

    We suggest an efficient method for generating matter-wave gap solitons in a repulsive Bose-Einstein condensate, when the gap soliton is formed from a condensate cloud in a harmonic trap after turning on a one-dimensional optical lattice. We demonstrate numerically that this approach does not require preparing the initial atomic wave packet in a specific state corresponding to the edge of the Brillouin zone of the spectrum, and losses that occur during the soliton generation process can be suppressed by an appropriate adiabatic switching of the optical lattice

  12. Soliton-soliton effective interaction

    International Nuclear Information System (INIS)

    Maki, J.N.

    1986-01-01

    A scheme of semi-phenomenological quantization is proposed for the collision process of two equal size envelopes-solitons provided by nonlinear Schroedinger equation. The time advance due to two envelopes-solitons collision was determined. Considering the solitons as puntual particles and using the description of classical mechanics, the effective envelope soliton-envelope soliton attractive potential, denominated modified Poschl-Teller potential. The obtainment of this potential was possible using the information in from of system memory, done by an analytical expression of time delay. Such system was quantized using this effective potential in Schroeding equation. The S col matrix of two punctual bodies was determined, and it is shown that, in the limit of 1 2 2 /mN 4 it reproduces the exact S 2N matrix obtained from soliton packet wich incurs on another soliton packet. Every ones have the same mass, interacts by contact force between two bodies. These packets have only one bound state, i e, do not have excited states. It was verified that, using the S col matrix, the binding energy of ground state of the system can be obtained, which is coincident with 2N particles in the 1/N approximation. In this scheme infinite spurious bound states are found (M.C.K.) [pt

  13. Matter-wave solitons supported by quadrupole-quadrupole interactions and anisotropic discrete lattices

    Science.gov (United States)

    Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin

    2018-04-01

    We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.

  14. Solitons

    International Nuclear Information System (INIS)

    Bullough, R.K.

    1978-01-01

    Two sorts of solitons are considered - the classical soliton, a solitary wave which shows great stability in collision with other solitary waves, and the quantal, that is quantised, soliton. Solitons as mathematical objects have excited theoreticians because of their wide ranging applications in physics. They appear as solutions of particular nonlinear wave equations which often have a certain universal significance. The importance of solitons in modern physics is discussed with especial reference to; nonlinearity and solitons, the nonlinear Schroedinger equation, the sine-Gordon equation, notional spins and particle physics. (U.K.)

  15. Ultrashort optical solitons in the cubic-quintic complex Ginzburg-Landau equation with higher-order terms

    International Nuclear Information System (INIS)

    Fewo, Serge I.; Kofane, Timoleon C.; Ngabireng, Claude M.

    2008-01-01

    With the help of the Maxwell equations, a basic equation modeling the propagation of ultrashort optical solitons in optical fiber is derived, namely the higher-order complex Ginzburg-Landau equation (HCGLE). Considering this one-dimensional HCGLE, we obtain a set of differential equations characterizing the variation of the pulse parameters called collective variables (CVs), of a pulse propagating in dispersion-managed (DM) fiber optic-links. Equations obtained are investigated numerically in order to observe the behaviour of pulse parameters along the optical fiber. A fully numerical simulation of the one-dimensional HCGLE finally tests the results of the CV theory. A good agreement between both methods is observed. Among various behaviours, chaotic pulses, attenuate pulses and stable pulses can be obtained under certain parameter values. (author)

  16. Multi-soliton management by the integrable nonautonomous nonlinear integro-differential Schrödinger equation

    International Nuclear Information System (INIS)

    Zhang, Yu-Juan; Zhao, Dun; Luo, Hong-Gang

    2014-01-01

    We consider a wide class of integrable nonautonomous nonlinear integro-differential Schrödinger equation which contains the models for the soliton management in Bose–Einstein condensates, nonlinear optics, and inhomogeneous Heisenberg spin chain. With the help of the nonisospectral AKNS hierarchy, we obtain the N-fold Darboux transformation and the N-fold soliton-like solutions for the equation. The soliton management, especially the synchronized dispersive and nonlinear management in optical fibers is discussed. It is found that in the situation without external potential, the synchronized dispersive and nonlinear management can keep the integrability of the nonlinear Schrödinger equation; this suggests that in optical fibers, the synchronized dispersive and nonlinear management can control and maintain the propagation of a multi-soliton. - Highlights: • We consider a unified model for soliton management by an integrable integro-differential Schrödinger equation. • Using Lax pair, the N-fold Darboux transformation for the equation is presented. • The multi-soliton management is considered. • The synchronized dispersive and nonlinear management is suggested

  17. Stability limits for gap solitons in a Bose-Einstein condensate trapped in a time-modulated optical lattice

    International Nuclear Information System (INIS)

    Mayteevarunyoo, Thawatchai; Malomed, Boris A.

    2006-01-01

    We investigate stability of gap solitons (GSs) in the first two band gaps in the framework of the one-dimensional Gross-Pitaevskii equation, combining the repulsive nonlinearity and a moderately strong optical lattice (OL), which is subjected to ''management,'' in the form of time-periodic modulation of its depth. The analysis is performed for parameters relevant to the experiment, characteristic values of the modulation frequency being ω∼2πx20 Hz. First, we present several GS species in the two band gaps in the absence of the management. These include fundamental solitons and their bound states, as well as a subfundamental soliton in the second gap, featuring two peaks of opposite signs in a single well of the periodic potential. This soliton is always unstable, and quickly transforms into a fundamental GS, losing a considerable part of its norm. In the first band gap (stable) bound states of two fundamental GSs are possible solely with opposite signs, if they are separated by an empty site. Under the periodic modulation of the OL depth, we identify stability regions for various GS species, in terms of ω and modulation amplitude, at fixed values of the soliton's norm, N. In either band gap, the GS species with smallest N has a largest stability area; in the first and second gaps, they are, respectively, the fundamental GS proper, or the one spontaneously generated from the subfundamental soliton. However, with the increase of N, the stability region of every species expands in the first gap, and shrinks in the second one. The outcome of the instability development is also different in the two band gaps: it is destruction of the GS in the first gap, and generation of extra side lobes by unstable GSs in the second one

  18. Solitons in the Peierls condensate

    International Nuclear Information System (INIS)

    Horowitz, B.; Krumhansl, J.A.

    1983-05-01

    The electron-phonon system in one dimension is studied within the adiabatic (Hartree) and Hartree-Fock approximations. The equations of motion for the Peierls order parameter at zero temperature are derived from a microscopic Hamiltonian and an effective Lagrangian is constructed. Charged phase solitons describe systems whose electron density is at or near M fold commensurability with M >= 3. For M = 2 the order parameter is real in the adiabatic approximation, but becomes complex when both acoustic and optical phonons are coupled, or for a non-adiabatic theory. The latter is studied with Coulomb exchange force and phase solitons are derived. The soliton charge is 2/M for all M > = 2. When M = 4 the pinning potential can be anomalously low, in agreement with data on TaS 3 and similar compounds. (author)

  19. Writing single-mode waveguides in lithium niobate by ultra-low intensity solitons

    International Nuclear Information System (INIS)

    Fazio, E.; Ramadan, W.; Petris, A.; Chauvet, M.; Bosco, A.; Vlad, V.I.; Bertolotti, M.

    2005-01-01

    Optical waveguides can be conveniently written in photorefractive materials by using spatial solitons. We have generated bright spatial solitons inside lithium niobate which allow single-mode light propagation. Efficient waveguides have been generated with CW light powers as high as few microwatts. According to the soliton formation, waveguides can be formed with different shapes. Due to the slow response time of the lithium niobate, both for soliton formation and relaxation, the soliton waveguide remains memorised for a long time, of the order of months

  20. Soliton interaction in quadratic and cubic bulk media

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Bang, Ole

    2000-01-01

    Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions...... in lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances...

  1. Bistable Helmholtz solitons in cubic-quintic materials

    International Nuclear Information System (INIS)

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2007-01-01

    We propose a nonlinear Helmholtz equation for modeling the evolution of broad optical beams in media with a cubic-quintic intensity-dependent refractive index. This type of nonlinearity is appropriate for some semiconductor materials, glasses, and polymers. Exact analytical soliton solutions are presented that describe self-trapped nonparaxial beams propagating at any angle with respect to the reference direction. These spatially symmetric solutions are, to the best of our knowledge, the first bistable Helmholtz solitons to be derived. Accompanying conservation laws (both integral and particular forms) are also reported. Numerical simulations investigate the stability of the solitons, which appear to be remarkably robust against perturbations

  2. Laser generated soliton waveguides in photorefractive crystals

    International Nuclear Information System (INIS)

    Vlad, V.I.; Fazio, E.; Bertolotti, M.; Bosco, A.; Petris, A.

    2005-01-01

    Non-linear photo-excited processes using the photorefractive effect are revisited with emphasis on spatial soliton generation in special laser beam propagation conditions. The soliton beams can create reversible or irreversible single-mode waveguides in the propagating materials. The important features are the 3D orientation and graded index profile matched to the laser fundamental mode. Bright spatial solitons are theoretically demonstrated and experimentally observed for the propagation of c.w. and pulsed femtosecond laser beams in photorefractive materials such as Bi 12 SiO 20 (BSO) and lithium niobate crystals. Applications in high coupling efficiency, adaptive optical interconnections and photonic crystal production are possible

  3. Coexistence of collapse and stable spatiotemporal solitons in multimode fibers

    Science.gov (United States)

    Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.

    2018-01-01

    We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.

  4. Widely tunable dispersive wave generation and soliton self-frequency shift in a tellurite microstructured optical fiber pumped near the zero dispersion wavelength

    International Nuclear Information System (INIS)

    Zhang, Lei; Tuan, Tong-Hoang; Liu, Lai; Gao, Wei-Qing; Kawamura, Harutaka; Suzuki, Takenobu; Ohishi, Yasutake

    2015-01-01

    Widely tunable dispersive waves (DW) and Raman solitons are generated in a tellurite microstructured optical fiber (TMOF) by pumping in the anomalous dispersion regime, close to the zero dispersion wavelength (ZDW). The DW can be generated from 1518.3 nm to 1315.5 nm, and the soliton can be shifted from the pump wavelength of 1570 nm to 1828.7 nm, by tuning the average pump power from 3 dBm to 17.5 dBm. After the average pump power is increased to 18.8 dBm, two DW peaks (centered at 1323 nm and 1260 nm) and three soliton peaks (centered at 1762 nm, 1825 nm, and 1896 nm) can be observed simultaneously. When the average pump power is greater than 23.4 dBm, a flat and broadband supercontinuum (SC) can be formed by the combined nonlinear effects of soliton self-frequency shift (SSFS), DW generation, and cross phase modulation (XPM). (paper)

  5. Tunable soliton-induced resonant radiation by three-wave mixing

    DEFF Research Database (Denmark)

    Zhou, B. B.; Liu, X.; Guo, H. R.

    2017-01-01

    A remarkable feature about the temporal optical soliton is that it can be phase-matched to new frequencies, emitting so-called resonant radiation (RR). This constitutes an efficient source of ultrafast pulses in emerging wavelength regimes, and plays a vital role in coherently extending the super......A remarkable feature about the temporal optical soliton is that it can be phase-matched to new frequencies, emitting so-called resonant radiation (RR). This constitutes an efficient source of ultrafast pulses in emerging wavelength regimes, and plays a vital role in coherently extending...

  6. Soliton interaction in the coupled mixed derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhang Haiqiang; Tian Bo; Lue Xing; Li He; Meng Xianghua

    2009-01-01

    The bright one- and two-soliton solutions of the coupled mixed derivative nonlinear Schroedinger equations in birefringent optical fibers are obtained by using the Hirota's bilinear method. The investigation on the collision dynamics of the bright vector solitons shows that there exists complete or partial energy switching in this coupled model. Such parametric energy exchanges can be effectively controlled and quantificationally measured by analyzing the collision dynamics of the bright vector solitons. The influence of two types of nonlinear coefficient parameters on the energy of each vector soliton, is also discussed. Based on the significant energy transfer between the two components of each vector soliton, it is feasible to exploit the future applications in the design of logical gates, fiber directional couplers and quantum information processors.

  7. Chaotic transport of a matter-wave soliton in a biperiodically driven optical superlattice

    International Nuclear Information System (INIS)

    Zhou Zheng; Hai Wenhua; Deng Yan; Xie Qiongtao

    2012-01-01

    Under the effective particle approximation, we study the temporal ratchet effect for chaotic transport of a matter-wave soliton consisting of an attractive Bose–Einstein condensate held in a quasi-one-dimensional symmetric optical superlattice with biperiodic driving. It is known that chaos can substitute for disorder in Anderson’s scenario [Wimberger S, Krug A, Buchleitner A. Phys Rev Lett 2002;89:263601] and only a higher level of disorder can induce Anderson localization for some special systems [Schwartz T, Bartal G, Fishman S, Segev M. Nature 2007;46:52], and a matter-wave soliton can transit to chaos with high or low probability in a high- or low-chaoticity region [Zhu Q, Hai W, Rong S. Phys Rev E 2009;80:016203]. Here we demonstrate that varying the driving phase to break the time reversal symmetry of the system can increase the size of the high-chaoticity region for low- and moderate-frequency regions. Consequently, the parameter region of the exponential spatial localization increases to the same size, and the low-chaoticity and delocalization region, which includes subregions of the ratchet effect and its inverse effect, correspondingly decreases. The positive dependence of the localization on the driving frequency is also revealed. The results indicate that a high-chaoticity region could replace higher disorder and assists in Anderson localization. From the results we suggest a method for controlling directed motion of a matter-wave soliton by adjusting the driving frequency and amplitude to strengthen or suppress, or even reverse, the temporal ratchet effect.

  8. Dark and bright vortex solitons in electromagnetically induced transparent media

    International Nuclear Information System (INIS)

    Wu Xuan; Xie Xiaotao; Yang Xiaoxue

    2006-01-01

    We show that dark and bright vortex solitons can exist in three-state electromagnetically induced transparent media under some appropriate conditions. We also analyse the stability of the dark and bright vortex solitons. This work may provide other research opportunities in nonlinear optical experiments and may result in a substantial impact on technology

  9. Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect.

    Science.gov (United States)

    Flayac, H; Solnyshkov, D D; Shelykh, I A; Malpuech, G

    2013-01-04

    We show that the spin domains, generated in the linear optical spin Hall effect by the analog of spin-orbit interaction for exciton polaritons, are associated with the formation of a Skyrmion lattice. In the nonlinear regime, the spin anisotropy of the polariton-polariton interactions results in a spatial compression of the domains and in a transmutation of the Skyrmions into oblique half-solitons. This phase transition is associated with both the focusing of the spin currents and the emergence of a strongly anisotropic emission pattern.

  10. Incoherently Coupled Grey-Grey Spatial Soliton Pairs in Biased Two-Photon Photovoltaic Photorefractive Crystals

    International Nuclear Information System (INIS)

    Su Yanli; Jiang Qichang; Ji Xuanmang

    2010-01-01

    The incoherently coupled grey-grey screening-photovoltaic spatial soliton pairs are predicted in biased two-photon photovoltaic photorefractive crystals under steady-state conditions. These grey-grey screening-photovoltaic soliton pairs can be established provided that the incident beams have the same polarization, wavelength, and are mutually incoherent. The grey-grey screening-photovoltaic soliton pairs can be considered as the united form of grey-grey screening soliton pairs and open or closed-circuit grey-grey photovoltaic soliton pairs. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Dynamics of bright solitons and soliton arrays in the nonlinear Schrödinger equation with a combination of random and harmonic potentials

    International Nuclear Information System (INIS)

    Chen Qianyong; Kevrekidis, Panayotis G; Malomed, Boris A

    2012-01-01

    We report results of systematic simulations of the dynamics of solitons in the framework of the one-dimensional nonlinear Schrödinger equation, which includes the harmonic oscillator potential and a random potential. The equation models experimentally relevant spatially disordered settings in Bose-Einstein condensates (BECs) and nonlinear optics. First, the generation of soliton arrays from a broad initial quasi-uniform state by the modulational instability (MI) is considered following a sudden switch of the nonlinearity from repulsive to attractive. Then, we study oscillations of a single soliton in this setting, which models a recently conducted experiment in a BEC. The basic characteristics of the MI-generated array, such as the number of solitons and their mobility, are reported as functions of the strength and correlation length of the disorder, and of the total norm. For the single oscillating soliton, its survival rate is found. The main features of these dependences are explained qualitatively. (paper)

  12. Scattering of a cross-polarized linear wave by a soliton at an optical event horizon in a birefringent nanophotonic waveguide.

    Science.gov (United States)

    Ciret, Charles; Gorza, Simon-Pierre

    2016-06-15

    The scattering of a linear wave on an optical event horizon, induced by a cross-polarized soliton, is experimentally and numerically investigated in integrated structures. The experiments are performed in a dispersion-engineered birefringent silicon nanophotonic waveguide. In stark contrast with copolarized waves, the large difference between the group velocity of the two cross-polarized waves enables a frequency conversion almost independent of the soliton wavelength. It is shown that the generated idler is only shifted by 10 nm around 1550 nm over a pump tuning range of 350 nm. Simulations using two coupled full vectorial nonlinear Schrödinger equations fully support the experimental results.

  13. Double symmetry breaking of solitons in one-dimensional virtual photonic crystals

    International Nuclear Information System (INIS)

    Li Yongyao; Malomed, Boris A.; Feng Mingneng; Zhou Jianying

    2011-01-01

    We demonstrate that spatial solitons undergo two consecutive spontaneous symmetry breakings (SSBs), with the increase of the total power, in nonlinear photonic crystals (PhCs) built as arrays of alternating linear and nonlinear stripes, in the case when the maxima of the effective refractive index coincide with the minima of the self-focusing coefficient and vice versa (i.e., the corresponding linear and nonlinear periodic potentials are in competition). This setting may be induced, as a virtual PhC, by means of the electromagnetically induced-transparency (EIT) technique, in a uniform optical medium. It may also be realized as a Bose-Einstein condensate (BEC) subject to the action of the combined periodic optical potential and periodically modulated Feshbach resonance. The first SSB happens at the center of a linear stripe, pushing a broad low-power soliton into an adjacent nonlinear stripe and gradually suppressing side peaks in the soliton's shape. Then the soliton restores its symmetry, being pinned to the midpoint of the nonlinear stripe. The second SSB occurs at higher powers, pushing the narrow soliton off the center of the nonlinear channel, while the soliton keeps its internal symmetry. The results are obtained by means of numerical and analytical methods. They may be employed to control switching of light beams by means of the varying power.

  14. Physical model for the incoherent writing/erasure of cavity solitons in semiconductor optical amplifiers.

    Science.gov (United States)

    Barbay, S; Kuszelewicz, R

    2007-09-17

    We present a physical mechanism that explains the recent observations of incoherent writing and erasure of Cavity Solitons in a semiconductor optical amplifier [S. Barbay et al, Opt. Lett. 31, 1504-1506 (2006)]. This mechanism allows to understand the main observations of the experiment. In particular it perfectly explains why writing and erasure are possible as a result of a local perturbation in the carrier density, and why a delay is observed along with the writing process. Numerical simulations in 1D are performed and show very good qualitative agreement with the experimental observations.

  15. Real-time visualization of soliton molecules with evolving behavior in an ultrafast fiber laser

    Science.gov (United States)

    Liu, Meng; Li, Heng; Luo, Ai-Ping; Cui, Hu; Xu, Wen-Cheng; Luo, Zhi-Chao

    2018-03-01

    Ultrafast fiber lasers have been demonstrated to be great platforms for the investigation of soliton dynamics. The soliton molecules, as one of the most fascinating nonlinear phenomena, have been a hot topic in the field of nonlinear optics in recent years. Herein, we experimentally observed the real-time evolving behavior of soliton molecule in an ultrafast fiber laser by using the dispersive Fourier transformation technology. Several types of evolving soliton molecules were obtained in our experiments, such as soliton molecules with monotonically or chaotically evolving phase, flipping and hopping phase. These results would be helpful to the communities interested in soliton nonlinear dynamics as well as ultrafast laser technologies.

  16. Solitons supported by localized nonlinearities in periodic media

    International Nuclear Information System (INIS)

    Dror, Nir; Malomed, Boris A.

    2011-01-01

    Nonlinear periodic systems, such as photonic crystals and Bose-Einstein condensates (BEC's) loaded into optical lattices, are often described by the nonlinear Schroedinger or Gross-Pitaevskii equation with a sinusoidal potential. Here, we consider a model based on such a periodic potential, with the nonlinearity (attractive or repulsive) concentrated either at a single point or at a symmetric set of two points, which are represented, respectively, by a single δ function or a combination of two δ functions. With the attractive or repulsive sign of the nonlinearity, this model gives rise to ordinary solitons or gap solitons (GS's), which reside, respectively, in the semi-infinite or finite gaps of the system's linear spectrum, being pinned to the δ functions. Physical realizations of these systems are possible in optics and BEC's, using diverse variants of the nonlinearity management. First, we demonstrate that the single δ function multiplying the nonlinear term supports families of stableregular solitons in the self-attractive case, while a family of solitons supported by the attractive δ function in the absence of the periodic potential is completely unstable. In addition, we show that the δ function can support stable GS's in the first finite band gap in both the self-attractive and repulsive models. The stability analysis for the GS's in the second finite band gap is reported too, for both signs of the nonlinearity. Alongside the numerical analysis, analytical approximations are developed for the solitons in the semi-infinite and first two finite gaps, with the single δ function positioned at a minimum or maximum of the periodic potential. In the model with the symmetric set of two δ functions, we study the effect of the spontaneous symmetry breaking of the pinned solitons. Two configurations are considered, with the δ functions set symmetrically with respect to the minimum or maximum of the underlying potential.

  17. Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber

    Science.gov (United States)

    Liu, Lei; Tian, Bo; Chai, Han-Peng; Yuan, Yu-Qiang

    2017-03-01

    Under investigation in this paper is the Sasa-Satsuma equation, which describes the propagation of ultrashort pulses in a monomode fiber with the third-order dispersion, self-steepening, and stimulated Raman scattering effects. Based on the known bilinear forms, through the modified expanded formulas and symbolic computation, we construct the bright two-soliton solutions. Through classifying the interactions under different parameter conditions, we reveal six cases of interactions between the two solitons via an asymptotic analysis. With the help of the analytic and graphic analysis, we find that such interactions are different from those of the nonlinear Schrödinger equation and Hirota equation. When those solitons interact with each other, the singular-I soliton is shape-preserving, while the singular-II and nonsingular solitons may be shape preserving or shape changing. Such elastic and inelastic interaction phenomena in a scalar equation might enrich the knowledge of soliton behavior, which could be expected to be experimentally observed.

  18. Spatiotemporal solitons in quadratic nonlinear media

    Indian Academy of Sciences (India)

    Optical solitons are localized electromagnetic waves that propagate stably in .... conversion generates a nonlinear phase shift ∆ΦNL at the FH frequency. ... to incidence on the SHG crystal (lithium iodate or barium borate, cut for type-I interac-.

  19. Nonautonomous discrete bright soliton solutions and interaction management for the Ablowitz-Ladik equation.

    Science.gov (United States)

    Yu, Fajun

    2015-03-01

    We present the nonautonomous discrete bright soliton solutions and their interactions in the discrete Ablowitz-Ladik (DAL) equation with variable coefficients, which possesses complicated wave propagation in time and differs from the usual bright soliton waves. The differential-difference similarity transformation allows us to relate the discrete bright soliton solutions of the inhomogeneous DAL equation to the solutions of the homogeneous DAL equation. Propagation and interaction behaviors of the nonautonomous discrete solitons are analyzed through the one- and two-soliton solutions. We study the discrete snaking behaviors, parabolic behaviors, and interaction behaviors of the discrete solitons. In addition, the interaction management with free functions and dynamic behaviors of these solutions is investigated analytically, which have certain applications in electrical and optical systems.

  20. Stable three-dimensional solitons in attractive Bose-Einstein condensates loaded in an optical lattice

    International Nuclear Information System (INIS)

    Mihalache, D.; Mazilu, D.; Lederer, F.; Malomed, B.A.; Crasovan, L.-C.; Kartashov, Y.V.; Torner, L.

    2005-01-01

    The existence and stability of solitons in Bose-Einstein condensates with attractive interatomic interactions, described by the Gross-Pitaevskii equation with a three-dimensional (3D) periodic potential, are investigated in a systematic form. We find a one-parameter family of stable 3D solitons in a certain interval of values of their norm, provided that the strength of the potential exceeds a threshold value. The minimum number of 7 Li atoms in the stable solitons is 60, and the energy of the soliton at the stability threshold is ≅6 recoil energies in the lattice. The respective energy versus norm diagram features two cuspidal points, resulting in a typical swallowtail pattern, which is a generic feature of 3D solitons supported by quasi-two-dimensional or fully dimensional lattice potentials

  1. Soliton solutions in a diatomic lattice system

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Satsuma, Junkichi.

    1979-04-01

    A continuum limit is considered for a diatomic lattice system with a cubic nonlinearity. A long wave equation describing the interaction of acoustic and optical modes is obtained. It reduces, in certain approximations, to equations having coupled wave solutions. The solutions exhibit trapping of an optical mode by an acoustic soliton. The form of the trapped optical wave depends on the mass ratio of adjacent particles in the diatomic lattice. (author)

  2. Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers.

    Science.gov (United States)

    Driben, Rodislav; Babushkin, Ihar

    2012-12-15

    Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between copropagating solitons with small temporal and wavelength separation. We show that the mechanism of acceleration of a trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic-crystal fibers. As a result of fusion, large-intensity robust light structures arise and propagate over significant distances. In the presence of small random noise the delicate condition for the effective fusion between solitons can easily be broken, making the fusion-induced giant waves a rare statistical event. Thus oblong-shaped giant accelerated waves become excellent candidates for optical rogue waves.

  3. Novel energy sharing collisions of multicomponent solitons

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... Abstract. In this paper, we discuss the fascinating energy sharing collisions of multicomponent solitons in certain incoherently coupled and coherently coupled nonlinear Schrödinger-type equations arising in the context of nonlinear optics.

  4. Stability of dark solitons in a Bose-Einstein condensate trapped in an optical lattice

    International Nuclear Information System (INIS)

    Kevrekidis, P. G.; Carretero-Gonzalez, R.; Theocharis, G.; Frantzeskakis, D. J.; Malomed, B. A.

    2003-01-01

    We investigate the stability of dark solitons (DSs) in an effectively one-dimensional Bose-Einstein condensate in the presence of the magnetic parabolic trap and an optical lattice (OL). The analysis is based on both the full Gross-Pitaevskii equation and its tight-binding approximation counterpart (discrete nonlinear Schroedinger equation). We find that DSs are subject to weak instabilities with an onset of instability mainly governed by the period and amplitude of the OL. The instability, if present, sets in at large times and it is characterized by quasiperiodic oscillations of the DS about the minimum of the parabolic trap

  5. Multiple soliton self-frequency shift cancellations in a temporally tailored photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lai; Kang, Zhe; Li, Qing; Gao, Xuejian; Qin, Guanshi, E-mail: qings@jlu.edu.cn, E-mail: wpqin@jlu.edu.cn; Qin, Weiping, E-mail: qings@jlu.edu.cn, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Liao, Meisong; Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Ohishi, Yasutake [Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2014-11-03

    We report the generation of multiple soliton self-frequency shift cancellations in a temporally tailored tellurite photonic crystal fiber (PCF). The temporally regulated group velocity dispersion (GVD) is generated in the fiber by soliton induced optical Kerr effect. Two red-shifted dispersive waves spring up when two Raman solitons meet their own second zero-dispersion-wavelengths in the PCF. These results show how, through temporally tailored GVD, nonlinearities can be harnessed to generate unexpected effects.

  6. Phase noise of dispersion-managed solitons

    International Nuclear Information System (INIS)

    Spiller, Elaine T.; Biondini, Gino

    2009-01-01

    We quantify noise-induced phase deviations of dispersion-managed solitons (DMS) in optical fiber communications and femtosecond lasers. We first develop a perturbation theory for the dispersion-managed nonlinear Schroedinger equation (DMNLSE) in order to compute the noise-induced mean and variance of the soliton parameters. We then use the analytical results to guide importance-sampled Monte Carlo simulations of the noise-driven DMNLSE. Comparison of these results with those from the original unaveraged governing equations confirms the validity of the DMNLSE as a model for many dispersion-managed systems and quantify the increased robustness of DMS with respect to noise-induced phase jitter.

  7. Stabilization of solitons under competing nonlinearities by external potentials

    Energy Technology Data Exchange (ETDEWEB)

    Zegadlo, Krzysztof B., E-mail: zegadlo@if.pw.edu.pl; Karpierz, Miroslaw A. [Faculty of Physics, Warsaw University of Technology, Warsaw, ul. Koszykowa 75, PL-00-662 Warszawa (Poland); Wasak, Tomasz; Trippenbach, Marek [Faculty of Physics, University of Warsaw, ul. Hoza 69, PL-00-681 Warszawa (Poland); Malomed, Boris A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-12-15

    We report results of the analysis for families of one-dimensional (1D) trapped solitons, created by competing self-focusing (SF) quintic and self-defocusing (SDF) cubic nonlinear terms. Two trapping potentials are considered, the harmonic-oscillator (HO) and delta-functional ones. The models apply to optical solitons in colloidal waveguides and other photonic media, and to matter-wave solitons in Bose-Einstein condensates loaded into a quasi-1D trap. For the HO potential, the results are obtained in an approximate form, using the variational and Thomas-Fermi approximations, and in a full numerical form, including the ground state and the first antisymmetric excited one. For the delta-functional attractive potential, the results are produced in a fully analytical form, and verified by means of numerical methods. Both exponentially localized solitons and weakly localized trapped modes are found for the delta-functional potential. The most essential conclusions concern the applicability of competing Vakhitov-Kolokolov (VK) and anti-VK criteria to the identification of the stability of solitons created under the action of the competing SF and SDF terms.

  8. Spiraling solitons and multipole localized modes in nonlocal nonlinear media

    International Nuclear Information System (INIS)

    Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.; Bang, Ole; Krolikowski, Wieslaw; Kivshar, Yuri S.

    2007-01-01

    We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form

  9. Spiralling solitons and multipole localized modes in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan

    2007-01-01

    We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form....

  10. Modulation stability and optical soliton solutions of nonlinear Schrödinger equation with higher order dispersion and nonlinear terms and its applications

    Science.gov (United States)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2017-12-01

    In optical fibers, the higher order non-linear Schrödinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.

  11. Optical solitons in nematic liquid crystals: model with saturation effects

    Science.gov (United States)

    Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.

    2018-04-01

    We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.

  12. Spontaneous soliton formation and modulational instability in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Carr, L.D.; Brand, J.

    2004-01-01

    The dynamics of an elongated attractive Bose-Einstein condensate in an axisymmetric harmonic trap is studied. It is shown that density fringes caused by self-interference of the condensate order parameter seed modulational instability. The latter has novel features in contradistinction to the usual homogeneous case known from nonlinear fiber optics. Several open questions in the interpretation of the recent creation of the first matter-wave bright soliton train [K. E. Strecker et al., Nature (London) 417, 150 (2002).] are addressed. It is shown that primary transverse collapse, followed by secondary collapse induced by soliton-soliton interactions, produces bursts of hot atoms at different time scales

  13. Soliton Trains Induced by Adaptive Shaping with Periodic Traps in Four-Level Ultracold Atom Systems

    International Nuclear Information System (INIS)

    Djouom Tchenkoue, M. L.; Welakuh Mbangheku, D.; Dikandé, Alain M.

    2017-01-01

    It is well known that an optical trap can be imprinted by a light field in an ultracold-atom system embedded in an optical cavity, and driven by three different coherent fields. Of the three fields coexisting in the optical cavity there is an intense control field that induces a giant Kerr nonlinearity via electromagnetically-induced transparency, and another field that creates a periodic optical grating of strength proportional to the square of the associated Rabi frequency. In this work elliptic-soliton solutions to the nonlinear equation governing the propagation of the probe field are considered, with emphasis on the possible generation of optical soliton trains forming a discrete spectrum with well defined quantum numbers. The problem is treated assuming two distinct types of periodic optical gratings and taking into account the negative and positive signs of detunings (detuning above or below resonance). Results predict that the competition between the self-phase and cross-phase modulation nonlinearities gives rise to a rich family of temporal soliton train modes characterized by distinct quantum numbers. (paper)

  14. Soliton Trains Induced by Adaptive Shaping with Periodic Traps in Four-Level Ultracold Atom Systems

    Science.gov (United States)

    Djouom Tchenkoue, M. L.; Welakuh Mbangheku, D.; Dikandé, Alain M.

    2017-06-01

    It is well known that an optical trap can be imprinted by a light field in an ultracold-atom system embedded in an optical cavity, and driven by three different coherent fields. Of the three fields coexisting in the optical cavity there is an intense control field that induces a giant Kerr nonlinearity via electromagnetically-induced transparency, and another field that creates a periodic optical grating of strength proportional to the square of the associated Rabi frequency. In this work elliptic-soliton solutions to the nonlinear equation governing the propagation of the probe field are considered, with emphasis on the possible generation of optical soliton trains forming a discrete spectrum with well defined quantum numbers. The problem is treated assuming two distinct types of periodic optical gratings and taking into account the negative and positive signs of detunings (detuning above or below resonance). Results predict that the competition between the self-phase and cross-phase modulation nonlinearities gives rise to a rich family of temporal soliton train modes characterized by distinct quantum numbers.

  15. Properties of bright solitons in averaged and unaveraged models for SDG fibres

    Science.gov (United States)

    Kumar, Ajit; Kumar, Atul

    1996-04-01

    Using the slowly varying envelope approximation and averaging over the fibre cross-section the evolution equation for optical pulses in semiconductor-doped glass (SDG) fibres is derived from the nonlinear wave equation. Bright soliton solutions of this equation are obtained numerically and their properties are studied and compared with those of the bright solitons in the unaveraged model.

  16. Multiloop soliton and multibreather solutions of the short pulse model equation

    International Nuclear Information System (INIS)

    Matsuno, Yoshimasa

    2007-01-01

    We develop a systematic procedure for constructing the multisoliton solutions of the short pulse (SP) model equation which describes the propagation of ultra-short pulses in nonlinear medica. We first introduce a novel hodograph transformation to convert the SP equation into the sine-Gordon (sG) equation. With the soliton solutions of the sG equation, the system of linear partial differential equations governing the inverse mapping can be integrated analytically to obtain the soliton solutions of the SP equation in the form of the parametric representation. By specifying the soliton parameters, we obtain the multiloop and multibreather solutions. We investigate the asymptotic behavior of both solutions and confirm their solitonic feature. The nonsingular breather solutions may play an important role in studying the propagation of ultra-short pulses in an optical fibre. (author)

  17. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    Science.gov (United States)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  18. Solitons, monopoles and bags

    International Nuclear Information System (INIS)

    Rajasekaran, G.

    1978-01-01

    Recent developments in the theory of solitons and related objects in the fields of high energy physics and nuclear physics are reviewed. The aim is to concentrate on the physical aspects and explain why these objects have awakened the interest of physicists. The physics of solitons is discussed with the help of a simple one-dimensional soliton. Then the physically more interesting monopole-soliton is considered and its connection with the original Dirac monopole is pointed out. The ''revolutionary'' possibility of making fermions as composites of bosons is indicated. Both the one-dimensional solitons and the monopole-soliton are examples of ''topological solitons'' and the role of topology in the physics of solitons is explained. The possible importance of topological quantum numbers in providing a fundamental understanding of the basic conservation laws of physics is pointed out. Two examples of non-topological solitons namely, the nucleon as a bag of almost-massless quarks and the abnormal nucleons as a bag of almost massless nucleons is discussed. (auth.)

  19. On-Demand Dark Soliton Train Manipulation in a Spinor Polariton Condensate

    KAUST Repository

    Pinsker, F.

    2014-04-10

    We theoretically demonstrate the generation of dark soliton trains in a one-dimensional exciton-polariton condensate within experimentally accessible schemes. In particular, we show that the frequency of the train can be finely tuned fully optically or electrically to provide a stable and efficient output signal modulation. Taking the polarization of the condensate into account, we elucidate the possibility of forming on-demand half-soliton trains. © 2014 American Physical Society.

  20. Bright solitons for a generalized nonautonomous nonlinear equation in a nonlinear inhomogeneous fiber

    Science.gov (United States)

    Xie, Xi-Yang; Tian, Bo; Liu, Lei; Guan, Yue-Yang; Jiang, Yan

    2017-06-01

    In this paper, we investigate a generalized nonautonomous nonlinear equation, which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. Under certain integrable constraints, bilinear forms, bright one- and two-soliton solutions are obtained. Via certain transformation, we investigate the properties of the solitons with the first-order dispersion parameter σ1(x, t), second-order dispersion parameter σ2(x, t), third-order dispersion parameter σ3(x, t), phase modulation and gain (loss) v(x, t). Soliton propagation and collision are graphically presented and analyzed: One soliton is shown to maintain its amplitude and width during the propagation. When we choose σ1(x, t), σ2(x, t) and σ3(x, t) differently, travelling direction of the soliton is found to alter. v(x, t) is observed to affect the amplitude of the soliton. Head-on collision between the two solitons is presented with σ1(x, t), σ2(x, t), σ3(x, t) and v(x, t) as the constants, and solitons' amplitudes are the same before and after the collision. When σ1(x, t), σ2(x, t) and σ3(x, t) are chosen as certain functions, the solitons' traveling directions change during the collision. v(x, t) can influence the amplitudes of the two solitons.

  1. Soliton Compton Mass from Auto-Parametric Wave-Soliton Coupling

    CERN Document Server

    Binder, B

    2002-01-01

    In this paper a self-excited Rayleigh-type system models the auto-parametric wave-soliton coupling via phase fluctuations. The parameter of dissipative terms determine not only the most likely quantum coupling between solitons and linear waves but also the most likely mass of the solitons. Phase fluctuations are mediated by virtual photons coupling at light-velocity in a permanent Compton scattering process. With a reference to the SI-units and proper scaling relations in length and velocity, the final result shows a highly interesting sequence: the likely soliton Compton mass is about 1.00138 times the neutron and 1.00276 times the proton mass.

  2. Novel energy sharing collisions of multicomponent solitons

    Indian Academy of Sciences (India)

    optical communication and in artificial metamaterials. ... multicomponent generalization of Manakov system have been obtained by Kanna et al .... The main objective of the present paper is to give a clear picture of various energy ... occur as a consequence of energy exchange between the two colliding solitons as well as.

  3. Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser

    Science.gov (United States)

    Wei, Yuan; Li, Bowen; Wei, Xiaoming; Yu, Ying; Wong, Kenneth K. Y.

    2018-02-01

    The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability.

  4. Electromagnetically induced transparency and ultraslow optical solitons in a coherent atomic gas filled in a slot waveguide.

    Science.gov (United States)

    Xu, Jin; Huang, Guoxiang

    2013-02-25

    We investigate the electromagnetically induced transparency (EIT) and nonlinear pulse propagation in a Λ-type three-level atomic gas filled in a slot waveguide, in which electric field is strongly confined inside the slot of the waveguide due to the discontinuity of dielectric constant. We find that EIT effect can be greatly enhanced due to the reduction of optical-field mode volume contributed by waveguide geometry. Comparing with the atomic gases in free space, the EIT transparency window in the slot waveguide system can be much wider and deeper, and the Kerr nonlinearity of probe laser field can be much stronger. We also prove that using slot waveguide ultraslow optical solitons can be produced efficiently with extremely low generation power.

  5. Bose-Einstein condensates with spatially inhomogeneous interaction and bright solitons

    International Nuclear Information System (INIS)

    Shin, H.J.; Radha, R.; Kumar, V. Ramesh

    2011-01-01

    In this Letter, we investigate the dynamics of Bose-Einstein Condensates (BECs) with spatially inhomogeneous interaction and generate bright solitons for the condensates by solving the associated mean field description governed by the Gross-Pitaevskii (GP) equation. We then investigate the properties of BECs in an optical lattice and periodic potential. We show that the GP equation in an optical lattice potential is integrable provided the interaction strength between the atoms varies periodically in space. The model discussed in the Letter offers the luxury of choosing the form of the lattice without destroying the integrability. Besides, we have also brought out the possible ramifications of the integrable model in the condensates of quasi-particles. -- Highlights: → We generate bright solitons for the collisionally inhomogeneous BECs. → We then study their properties in an optical lattice and periodic potential. → The model may have wider ramifications in the BECs of quasi-particles.

  6. Motion of a magnetic soliton about a lattice soliton in a Heisenberg chain

    International Nuclear Information System (INIS)

    Nayyar, A.H.; Murtaza, G.

    1981-08-01

    As an example of interaction between two solitons belonging to different species, a semiclassical study of the nonlinear dynamics of a coupled magnon-phonon system in a one-dimensional Heisenberg ferromagnet is made, where both the lattice and the spin systems are taken with their respective nonlinear interactions. The lattice soliton is shown to introduce spatial inhomogeneities into the propagation of the magnetic soliton resulting in (a) the trapping of the magnetic soliton in the harmonic field of the lattice soliton and (b) the amplitude and the width of the magnetic soliton becoming time-dependent. (author)

  7. Solitons in quasi-one-dimensional Bose-Einstein condensates with competing dipolar and local interactions

    International Nuclear Information System (INIS)

    Cuevas, J.; Malomed, Boris A.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2009-01-01

    We study families of one-dimensional matter-wave bright solitons supported by the competition of contact and dipole-dipole (DD) interactions of opposite signs. Soliton families are found, and their stability is investigated in the free space and in the presence of an optical lattice (OL). Free-space solitons may exist with an arbitrarily weak local attraction if the strength of the DD repulsion is fixed. In the case of the DD attraction, solitons do not exist beyond a maximum value of the local-repulsion strength. In the system which includes the OL, a stability region for subfundamental solitons is found in the second finite band gap. For the existence of gap solitons (GSs) under the attractive DD interaction, the contact repulsion must be strong enough. In the opposite case of the DD repulsion, GSs exist if the contact attraction is not too strong. Collisions between solitons in the free space are studied too. In the case of the local attraction, they merge or pass through each other at small and large velocities, respectively. In the presence of the local repulsion, slowly moving solitons bounce from each other.

  8. Free expansion of fermionic dark solitons in a boson-fermion mixture

    International Nuclear Information System (INIS)

    Adhikari, Sadhan K

    2005-01-01

    We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic dark solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a harmonic as well as a periodic optical-lattice potential. The dark soliton with a 'notch' in the probability density with a zero at the minimum is simulated numerically as a nonlinear continuation of the first vibrational excitation of the linear mean-field-hydrodynamic equations, as suggested recently for pure bosons. We study the free expansion of these dark solitons as well as the consequent increase in the size of their central notch and discuss the possibility of experimental observation of the notch after free expansion

  9. Glimpses of soliton theory the algebra and geometry of nonlinear PDEs

    CERN Document Server

    Kasman, Alex

    2010-01-01

    Solitons are explicit solutions to nonlinear partial differential equations exhibiting particle-like behavior. This is quite surprising, both mathematically and physically. Waves with these properties were once believed to be impossible by leading mathematical physicists, yet they are now not only accepted as a theoretical possibility but are regularly observed in nature and form the basis of modern fiber-optic communication networks. Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra as prerequisites, this book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstr...

  10. 55th electric science promotion prize (progress prize). Demonstration of optical soliton transmission on OPGW first in the world; Dai 55 kai denki gakujutsu shinkosho (shinposho) jusho. Seiaihatsu no OPGW ni okeru hikari soriton denso no jissho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-10

    Electric science promotion prize (progress prize) is given to `Person who newly proposed a new concept, theory, material, device, system and method on electrical science and technology, or demonstrated these proposals` by the commendation committee of Institute of Electrical Engineers of Japan every year. Eight promotion prizes including that for Kansai Electric Power`s `Demonstration of optical soliton transmission on OPGW first in the world` were given. This research succeeded in development of the transmission/ receiving device suitable for optical soliton transmission, and the prediction method of an optimum transmission condition by computer simulation. In addition, this research succeeded in 10Gbit transmission of 784km and 40Gbit transmission (4-wave multiplex) of 392km by applying the above research result to Okurobe trunk line OPGW (98.2km). This demonstration of optical soliton transmission on OPGW is first in the world. (NEDO)

  11. Widely tunable femtosecond solitonic radiation in photonic crystal fiber cladding

    DEFF Research Database (Denmark)

    Peng, J. H.; Sokolov, A. V.; Benabid, F.

    2010-01-01

    We report on a means to generate tunable ultrashort optical pulses. We demonstrate that dispersive waves generated by solitons within the small-core features of a photonic crystal fiber cladding can be used to obtain femtosecond pulses tunable over an octave-wide spectral range. The generation...... process is highly efficient and occurs at the relatively low laser powers available from a simple Ti:sapphire laser oscillator. The described phenomenon is general and will play an important role in other systems where solitons are known to exist....

  12. Full characterization of the photorefractive bright soliton formation process using a digital holographic technique

    International Nuclear Information System (INIS)

    Merola, F; Miccio, L; Paturzo, M; Ferraro, P; De Nicola, S

    2009-01-01

    An extensive characterization of the photorefractive bright soliton writing process in a lithium niobate crystal is presented. An interferometric approach based on a digital holographic technique has been used to reconstruct the complex wavefield at the exit face of the crystal. Temporal evolution of both intensity and phase profile of the writing beam has been analysed. The effective changes of the refractive index of the medium during the writing process and after the soliton formation are determined from the optical phase distribution. This method provides a reliable way to observe the process of soliton formation, whereas the determination of the intensity distribution of the output beam does not show clearly whether the soliton regime has been achieved or not. Furthermore, a detailed analysis of the soliton in a steady-state situation and under different writing conditions is presented and discussed

  13. Solitons

    CERN Document Server

    Guo, Boling; Wang, Yu-Feng; Liu, Nan

    2018-01-01

    This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics.

  14. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    In previous work solitons of N = 2 supergravity were described as test particles in an external supergravity field. In the present paper we derive the effective interaction of two solitons by inserting a classical soliton configuration for the background into the Lagrangian and apply a slow-motion and large-distance approximation. We obtain the interaction potential to lowest order that incorporates the effect of the supercharge. The resulting classical system is quantized and, as a final step, an effective quantum field theory is formulated. (Author)

  15. Integrability Aspects and Soliton Solutions for a System Describing Ultrashort Pulse Propagation in an Inhomogeneous Multi-Component Medium

    International Nuclear Information System (INIS)

    Guo Rui; Tian Bo; Lue Xing; Zhang Haiqiang; Xu Tao

    2010-01-01

    For the propagation of the ultrashort pulses in an inhomogeneous multi-component nonlinear medium, a system of coupled equations is analytically studied in this paper. Painleve analysis shows that this system admits the Painleve property under some constraints. By means of the Ablowitz-Kaup-Newell-Segur procedure, the Lax pair of this system is derived, and the Darboux transformation (DT) is constructed with the help of the obtained Lax pair. With symbolic computation, the soliton solutions are obtained by virtue of the DT algorithm. Figures are plotted to illustrate the dynamical features of the soliton solutions. Characteristics of the solitons propagating in an inhomogeneous multi-component nonlinear medium are discussed: (i) Propagation of one soliton and two-peak soliton; (ii) Elastic interactions of the parabolic two solitons; (iii) Overlap phenomenon between two solitons; (iv) Collision of two head-on solitons and two head-on two-peak solitons; (v) Two different types of interactions of the three solitons; (vi) Decomposition phenomenon of one soliton into two solitons. The results might be useful in the study on the ultrashort-pulse propagation in the inhomogeneous multi-component nonlinear media. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory

    Science.gov (United States)

    Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.

    2018-04-01

    We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.

  17. New Soliton-like Solutions and Multi-soliton Structures for Broer-Kaup System with Variable Coefficients

    International Nuclear Information System (INIS)

    Ji Mingjun; Lue Zhuosheng

    2005-01-01

    By using the further extended tanh method [Phys. Lett. A 307 (2003) 269; Chaos, Solitons and Fractals 17 (2003) 669] to the Broer-Kaup system with variable coefficients, abundant new soliton-like solutions and multi-soliton-like solutions are derived. Based on the derived multi-soliton-like solutions which contain arbitrary functions, some interesting multi-soliton structures are revealed.

  18. Optical computing with soliton trains in Bose–Einstein condensates

    KAUST Repository

    Pinsker, Florian

    2015-01-01

    that the frequency of soliton trains in BEC can be governed by changing interactions within the atom cloud [F. Pinsker, N. G. Berloff and V. M. Pérez-García, Phys. Rev. A87, 053624 (2013), arXiv:1305.4097]. We use this property to store numbers in terms of those

  19. Real and virtual multidimensional solitons

    International Nuclear Information System (INIS)

    Boiti, M.; Martina, L.; Pashaev, O.K.; Pempinelli, F.

    1993-01-01

    Recently it has been shown that in two spatial and one temporal dimensions (2+1) there exist localized solitons. These coherent structures display a richer phenomenology than the one dimensional solitons. Different effects have been reported successively in a series of papers. Some of them are due to the fact that the soliton solution is structurally unstable with respect to special choices of the parameters. Also some quantum-like effects as the non conservation of the number of solitons have been discovered by using direct methods. This report is dedicated to the study of the origin and generality of these new effects in the context of the Spectral Transform (ST) theory. By choosing more general boundaries than those used in previous papers we derive an N 2 -soliton solution, which is parameterized by a point in a space of 4N(N+1) real parameters. Of these parameters 2N(N+2) are determined by the choice of the boundaries and fix the velocity and the possible location of the solitons in the plane at large times, while the remaining 2N govern the dynamics of the solitons during the interaction. The total mass of solitons is conserved but, in general, the mass of the single soliton is not preserved by the interaction. The extreme cases in which the masses of one or more solitons are zero at t = -∞ or/and t = +∞ are also allowed. We call these solitons with asymptotic zero masses and, consequently, with asymptotic zero amplitudes virtual solitons. The total momentum of solitons is not conserved because the boundaries act as external forces. Solitons can simulate inelastic scattering processes of quantum particles including creation and annihilation of particles

  20. Two-soliton interaction as an elementary act of soliton turbulence in integrable systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelinovsky, E.N. [Department of Information Systems, National Research University – Higher School of Economics, Nizhny Novgorod (Russian Federation); Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Shurgalina, E.G.; Sergeeva, A.V.; Talipova, T.G. [Department of Nonlinear Geophysical Processes, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod (Russian Federation); El, G.A., E-mail: g.el@lboro.ac.uk [Department of Mathematical Sciences, Loughborough University (United Kingdom); Grimshaw, R.H.J. [Department of Mathematical Sciences, Loughborough University (United Kingdom)

    2013-01-03

    Two-soliton interactions play a definitive role in the formation of the structure of soliton turbulence in integrable systems. To quantify the contribution of these interactions to the dynamical and statistical characteristics of the nonlinear wave field of soliton turbulence we study properties of the spatial moments of the two-soliton solution of the Korteweg–de Vries (KdV) equation. While the first two moments are integrals of the KdV evolution, the 3rd and 4th moments undergo significant variations in the dominant interaction region, which could have strong effect on the values of the skewness and kurtosis in soliton turbulence.

  1. Propagation of dispersion-nonlinearity-managed solitons in an inhomogeneous erbium-doped fiber system

    International Nuclear Information System (INIS)

    Mahalingam, A; Porsezian, K; Mani Rajan, M S; Uthayakumar, A

    2009-01-01

    In this paper, a generalized nonlinear Schroedinger-Maxwell-Bloch model with variable dispersion and nonlinearity management functions, which describes the propagation of optical pulses in an inhomogeneous erbium-doped fiber system under certain restrictive conditions, is under investigation. We derive the Lax pair with a variable spectral parameter and the exact soliton solution is generated from the Baecklund transformation. It is observed that stable solitons are possible only under a very restrictive condition for the spectral parameter and other inhomogeneous functions. For various forms of the inhomogeneous dispersion, nonlinearity and gain/loss functions, construction of different types of solitary waves like classical solitons, breathers, etc is discussed

  2. Soliton excitation in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Mensah, N.G.; Twum, A.K.

    1995-10-01

    Excitation of soliton in superlattice has been investigated theoretically. It is noted that the soliton velocity u and the length L depend on the amplitude E 0 and that an increase in the amplitude causes soliton width L to approach zero and the velocity u to that of light V in homogeneous medium. The characteristic parameters of soliton u, L and E 0 are related by expression u/L E 0 = ed/2(h/2π) which is constant depending only on the SL period d. It is observed also that the soliton has both energy E = 8V 2 (1 - u 2 /V 2 ) -1/2 and momentum P = u/V 2 E which makes it behave as relativistic free particle with rest energy 8V 2 . Its interaction with electrons can cause the soliton electric effect in SL. (author). 27 refs

  3. Helmholtz bright and boundary solitons

    International Nuclear Information System (INIS)

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2007-01-01

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts

  4. Optical interrupter based in the internal total reflection of spatial solitons at nonlinear saturable interfaces; Interruptores opticos basados en reflexion interna total de solitones espaciales en interfaces no lineales saturables

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado-Mendez, E.; Torres-Cisneros, M.; Gutierrez-Hernandez, D. A.; Andrade-Lucio, J. A.; Rojas-Lagunas, R.; Pedraza-Ortega, J. C.; Torres Cisneros, G. E. [Universidad de Guanajuato, Guanajuato (Mexico); Sanchez Mondragon, J. J. [Universidad Autonoma del Estado de Morelos, Morelos (Mexico); Flores-Alvarado, G. [Preparatoria por Cooperacion Domingo Arenas, Tlaxcala (Mexico)

    2001-06-01

    We study the reflection of one-dimensional spatial soliton at the nonlinear interface between a saturable type medium and linear medium. Our study makes emphasis on determining the physical conditions under which the beam reflected by the interface is still a spatial soliton. Depended the incidence angle we find three critical regions for spatial solitons in the interface. We observed nonlinear Goos- Haechen shift is determined if reflection angle are conserved. Finally, we present preliminary experimental results in SBN61:Ce of the total internal reflection of one dimensional beam. [Spanish] Estudiamos la reflexion de un soliton espacial unidimensional en una interfase formada por un medio no lineal saturable y un medio lineal. Nuestros estudios hacen enfasis en determinar las condiciones fisicas bajo las cuales el haz reflejado por la interfase no lineal sigue siendo soliton. Encontramos tres regiones criticas para un soliton especial en la interfase, dependiendo del valor que tome el angulo de incidencia. Asi mismo observamos corrimiento Goos-Haechen no lineal que es determinante para la conservacion del angulo de reflexion. Finalmente, presentamos resultados preliminares experimentales en SBN61:Ce de la reflexion interna total de un haz unidimensional.

  5. Helmholtz bright and boundary solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2007-02-16

    We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.

  6. Plain and oscillatory solitons of the cubic complex Ginzburg-Landau equation with nonlinear gradient terms

    Science.gov (United States)

    Facão, M.; Carvalho, M. I.

    2017-10-01

    In this work, we present parameter regions for the existence of stable plain solitons of the cubic complex Ginzburg-Landau equation (CGLE) with higher-order terms associated with a fourth-order expansion. Using a perturbation approach around the nonlinear Schrödinger equation soliton and a full numerical analysis that solves an ordinary differential equation for the soliton profiles and using the Evans method in the search for unstable eigenvalues, we have found that the minimum equation allowing these stable solitons is the cubic CGLE plus a term known in optics as Raman-delayed response, which is responsible for the redshift of the spectrum. The other favorable term for the occurrence of stable solitons is a term that represents the increase of nonlinear gain with higher frequencies. At the stability boundary, a bifurcation occurs giving rise to stable oscillatory solitons for higher values of the nonlinear gain. These oscillations can have very high amplitudes, with the pulse energy changing more than two orders of magnitude in a period, and they can even exhibit more complex dynamics such as period-doubling.

  7. The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber

    Directory of Open Access Journals (Sweden)

    Feng-Tao He

    2013-01-01

    Full Text Available We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton’s dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1 if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton’s width increases, while its amplitude and wave velocity reduce. (2 If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton’s width increases, while its amplitude and the wave velocity reduce.

  8. Solitons in Granular Chains

    International Nuclear Information System (INIS)

    Manciu, M.; Sen, S.; Hurd, A.J.

    1999-01-01

    The authors consider a chain of elastic (Hertzian) grains that repel upon contact according to the potential V = adelta u , u > 2, where delta is the overlap between the grains. They present numerical and analytical results to show that an impulse initiated at an end of a chain of Hertzian grains in contact eventually propagates as a soliton for all n > 2 and that no solitons are possible for n le 2. Unlike continuous, they find that colliding solitons in discrete media initiative multiple weak solitons at the point of crossing

  9. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials.

    Science.gov (United States)

    Chen, Yong; Yan, Zhenya

    2016-03-22

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.

  10. Soliton turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.

  11. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser

    Science.gov (United States)

    Ryczkowski, P.; Närhi, M.; Billet, C.; Merolla, J.-M.; Genty, G.; Dudley, J. M.

    2018-04-01

    Dissipative solitons are remarkably localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist, and are seen in far-from-equilibrium systems in many fields, including chemistry, biology and physics. There has been particular interest in studying their properties in mode-locked lasers, but experiments have been limited by the inability to track the dynamical soliton evolution in real time. Here, we use simultaneous dispersive Fourier transform and time-lens measurements to completely characterize the spectral and temporal evolution of ultrashort dissipative solitons as their dynamics pass through a transient unstable regime with complex break-up and collisions before stabilization. Further insight is obtained from reconstruction of the soliton amplitude and phase and calculation of the corresponding complex-valued eigenvalue spectrum. These findings show how real-time measurements provide new insights into ultrafast transient dynamics in optics.

  12. Collisions and turbulence in optical rogue wave formation

    DEFF Research Database (Denmark)

    Genty, G.; de Sterke, C.M.; Bang, Ole

    2010-01-01

    We discuss optical rogue wave generation in terms of collisions and turbulence processes. Simulations of picosecond pulse propagation in optical fibres show rogue soliton generation from either third-order dispersion or Raman scattering independently. Simulations of rogue soliton emergence...

  13. Molecular transport network security using multi-wavelength optical spins.

    Science.gov (United States)

    Tunsiri, Surachai; Thammawongsa, Nopparat; Mitatha, Somsak; Yupapin, Preecha P

    2016-01-01

    Multi-wavelength generation system using an optical spin within the modified add-drop optical filter known as a PANDA ring resonator for molecular transport network security is proposed. By using the dark-bright soliton pair control, the optical capsules can be constructed and applied to securely transport the trapped molecules within the network. The advantage is that the dark and bright soliton pair (components) can securely propagate for long distance without electromagnetic interference. In operation, the optical intensity from PANDA ring resonator is fed into gold nano-antenna, where the surface plasmon oscillation between soliton pair and metallic waveguide is established.

  14. Soliton on thin vortex filament

    International Nuclear Information System (INIS)

    Konno, Kimiaki; Mituhashi, Masahiko; Ichikawa, Y.H.

    1990-12-01

    Showing that one of the equations found by Wadati, Konno and Ichikawa is equivalent to the equation of motion of a thin vortex filament, we investigate solitons on the vortex filament. N vortex soliton solution is given in terms of the inverse scattering method. We examine two soliton collision processes on the filament. Our analysis provides the theoretical foundation of two soliton collision processes observed numerically by Aref and Flinchem. (author)

  15. Dynamics of topological solitons, knotted streamlines, and transport of cargo in liquid crystals

    Science.gov (United States)

    Sohn, Hayley R. O.; Ackerman, Paul J.; Boyle, Timothy J.; Sheetah, Ghadah H.; Fornberg, Bengt; Smalyukh, Ivan I.

    2018-05-01

    Active colloids and liquid crystals are capable of locally converting the macroscopically supplied energy into directional motion and promise a host of new applications, ranging from drug delivery to cargo transport at the mesoscale. Here we uncover how topological solitons in liquid crystals can locally transform electric energy to translational motion and allow for the transport of cargo along directions dependent on frequency of the applied electric field. By combining polarized optical video microscopy and numerical modeling that reproduces both the equilibrium structures of solitons and their temporal evolution in applied fields, we uncover the physical underpinnings behind this reconfigurable motion and study how it depends on the structure and topology of solitons. We show that, unexpectedly, the directional motion of solitons with and without the cargo arises mainly from the asymmetry in rotational dynamics of molecular ordering in liquid crystal rather than from the asymmetry of fluid flows, as in conventional active soft matter systems.

  16. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  17. Helmholtz algebraic solitons

    International Nuclear Information System (INIS)

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2010-01-01

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  18. Rogue waves and W-shaped solitons in the multiple self-induced transparency system.

    Science.gov (United States)

    Wang, Xin; Liu, Chong; Wang, Lei

    2017-09-01

    We study localized nonlinear waves on a plane wave background in the multiple self-induced transparency (SIT) system, which describes an important enhancement of the amplification and control of optical waves compared to the single SIT system. A hierarchy of exact multiparametric rational solutions in a compact determinant representation is presented. We demonstrate that this family of solutions contain known rogue wave solutions and unusual W-shaped soliton solutions. State transitions between the fundamental rogue waves and W-shaped solitons as well as higher-order nonlinear superposition modes are revealed in the zero-frequency perturbation region by the suitable choice for the background wavenumber of the electric field component. Particularly, it is found that the multiple SIT system can admit both stationary and nonstationary W-shaped solitons in contrast to the stationary results in the single SIT system. Moreover, the W-shaped soliton complex which is formed by a certain number of fundamental W-shaped solitons with zero phase parameters and its decomposition mechanism in the case of the nonzero phase parameters are shown. Meanwhile, some important characteristics of the nonlinear waves including trajectories and spectrum are discussed through the numerical and analytical methods.

  19. Microresonator soliton dual-comb spectroscopy

    Science.gov (United States)

    Suh, Myoung-Gyun; Yang, Qi-Fan; Yang, Ki Youl; Yi, Xu; Vahala, Kerry J.

    2016-11-01

    Measurement of optical and vibrational spectra with high resolution provides a way to identify chemical species in cluttered environments and is of general importance in many fields. Dual-comb spectroscopy has emerged as a powerful approach for acquiring nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain, without the need for bulky mechanical spectrometers. We demonstrate a miniature soliton-based dual-comb system that can potentially transfer the approach to a chip platform. These devices achieve high-coherence pulsed mode locking. They also feature broad, reproducible spectral envelopes, an essential feature for dual-comb spectroscopy. Our work shows the potential for integrated spectroscopy with high signal-to-noise ratios and fast acquisition rates.

  20. Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2005-01-01

    A realistic, inhomogeneous fiber in the optical communication systems can be described by the perturbed nonlinear Schrodinger model (also named as the normalized nonlinear Schrodinger model with periodically varying coefficients, dispersion managed nonlinear Schrodinger model or nonlinear Schrodinger model with variable coefficients). Hereby, we extend to this model a direct method, perform symbolic computation and obtain two families of the exact, analytic bright-solitonic solutions, with or without the chirp respectively. The parameters addressed include the shape of the bright soliton, soliton amplitude, inverse width of the soliton, chirp, frequency, center of the soliton and center of the phase of the soliton. Of optical and physical interests, we discuss some previously-published special cases of our solutions. Those solutions could help the future studies on the optical communication systems. ms

  1. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....

  2. Soliton dynamics in periodic system with different nonlinear media

    International Nuclear Information System (INIS)

    Zabolotskij, A.A.

    2001-01-01

    To analyze pulse dynamics in the optical system consisting of periodic sequence of nonlinear media one uses a composition model covering a model of resonance interaction of light ultrashort pulse with energy transition of medium with regard to pumping of the upper level and quasi-integrable model describing propagation of light field in another medium with cubic nonlinearity and dispersion. One additionally takes account of losses and other types of interaction in the from of perturbation members. On the basis of the method of scattering back problem and perturbation theory one developed a simple method to study peculiarities of soliton evolution in such periodic system. Due to its application one managed to describe different modes of soliton evolution in such a system including chaotic dynamics [ru

  3. Two-Dimensional Spatial Solitons in Nematic Liquid Crystals

    International Nuclear Information System (INIS)

    Zhong Weiping; Xie Ruihua; Goong Chen; Belic, Milivoj; Yang Zhengping

    2009-01-01

    We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Gaussian solitons, radially symmetric solitons, multipole solitons, and soliton vortices.

  4. Geometric solitons of Hamiltonian flows on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  5. Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method

    Science.gov (United States)

    Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar

    2018-05-01

    The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.

  6. Transverse stability of Kawahara solitons

    DEFF Research Database (Denmark)

    Karpman, V.I.

    1993-01-01

    The transverse stability of the planar solitons described by the fifth-order Korteweg-de Vries equation (Kawahara solitons) is studied. It is shown that the planar solitons are unstable with respect to bending if the coefficient at the fifth-derivative term is positive and stable if it is negative...

  7. Two-dimensional discrete solitons in dipolar Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Gligoric, Goran; Stepic, Milutin; Hadzievski, Ljupco; Maluckov, Aleksandra; Malomed, Boris A.

    2010-01-01

    We analyze the formation and dynamics of bright unstaggered solitons in the disk-shaped dipolar Bose-Einstein condensate, which features the interplay of contact (collisional) and long-range dipole-dipole (DD) interactions between atoms. The condensate is assumed to be trapped in a strong optical-lattice potential in the disk's plane, hence it may be approximated by a two-dimensional (2D) discrete model, which includes the on-site nonlinearity and cubic long-range (DD) interactions between sites of the lattice. We consider two such models, which differ by the form of the on-site nonlinearity, represented by the usual cubic term, or more accurate nonpolynomial one, derived from the underlying three-dimensional Gross-Pitaevskii equation. Similar results are obtained for both models. The analysis is focused on the effects of the DD interaction on fundamental localized modes in the lattice (2D discrete solitons). The repulsive isotropic DD nonlinearity extends the existence and stability regions of the fundamental solitons. New families of on-site, inter-site, and hybrid solitons, built on top of a finite background, are found as a result of the interplay of the isotropic repulsive DD interaction and attractive contact nonlinearity. By themselves, these solutions are unstable, but they evolve into robust breathers which exist on an oscillating background. In the presence of the repulsive contact interactions, fundamental localized modes exist if the DD interaction (attractive isotropic or anisotropic) is strong enough. They are stable in narrow regions close to the anticontinuum limit, while unstable solitons evolve into breathers. In the latter case, the presence of the background is immaterial.

  8. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  9. Multicomponent long-wave-short-wave resonance interaction system: Bright solitons, energy-sharing collisions, and resonant solitons.

    Science.gov (United States)

    Sakkaravarthi, K; Kanna, T; Vijayajayanthi, M; Lakshmanan, M

    2014-11-01

    We consider a general multicomponent (2+1)-dimensional long-wave-short-wave resonance interaction (LSRI) system with arbitrary nonlinearity coefficients, which describes the nonlinear resonance interaction of multiple short waves with a long wave in two spatial dimensions. The general multicomponent LSRI system is shown to be integrable by performing the Painlevé analysis. Then we construct the exact bright multisoliton solutions by applying the Hirota's bilinearization method and study the propagation and collision dynamics of bright solitons in detail. Particularly, we investigate the head-on and overtaking collisions of bright solitons and explore two types of energy-sharing collisions as well as standard elastic collision. We have also corroborated the obtained analytical one-soliton solution by direct numerical simulation. Also, we discuss the formation and dynamics of resonant solitons. Interestingly, we demonstrate the formation of resonant solitons admitting breather-like (localized periodic pulse train) structure and also large amplitude localized structures akin to rogue waves coexisting with solitons. For completeness, we have also obtained dark one- and two-soliton solutions and studied their dynamics briefly.

  10. Ultrashort soliton switching based on coherent energy hiding.

    Science.gov (United States)

    Romagnoli, M; Wabnitz, S; Zoccolotti, L

    1991-08-15

    Coherent coupling between light and atoms may be exploited for conceiving a novel class of all-optical signalprocessing devices without a direct counterpart in the continuous-wave regime. We show that the self-switching of ultrashort soliton pulses on resonance with a transition of doping centers in a slab waveguide directional coupler is based on nonlinear group-velocity (instead of the usual phase-velocity) changes.

  11. Deceleration of solitons in molecular chains

    International Nuclear Information System (INIS)

    Davydov, A.S.; Eremko, A.A.

    1980-01-01

    Effects of external actions on solitons arising under local excitations in molecular quasi-one-dimensional chains are investigated. The main formulas describing free solitons are presented. The motion of solitons in the presence of the force of friction proportional to their velocity is studied. It is shown that in this case the soliton velocity decreases with time in an exponential manner. It is shown that if the forces of friction are proportional to the square of velocity, the velocity decreases with time according to a linear law. The motion of solitons is investigated an the presence of small local non-uniformities or external fields. It is shown that an this case the soliton centre moves according to the Newton law in which however the force is determined by the integral expression. The conclusion is made that it is impossible to describe correctly the dynamic properties of solitons without taking into account physical factors causing the nonlinearity

  12. Interaction of Langmuir solitons with sound

    International Nuclear Information System (INIS)

    Kurin, V.V.; Fraiman, G.M.

    1981-01-01

    The adiabatic approximation is used to study the interaction of Langmuir solitons with long ion-acoustic waves. The finite acoustic velocity gives rise to an effective mass for the soliton which is quite different from that in the approximation of a local nonlinearity. The force acting on a soliton, averaged over the period of the acoustic wave, is derived. The system of kinetic equations is analyzed in the approximation of random phases of the acoustic waves. The interaction of acoustic waves with solitons causes the acoustic spectrum to become more nearly isotropic, and the solitons are effectively damped

  13. Noise-induced perturbations of dispersion-managed solitons

    International Nuclear Information System (INIS)

    Li, Jinglai; Spiller, Elaine; Biondini, Gino

    2007-01-01

    We study noise-induced perturbations of dispersion-managed solitons. We do so by first developing soliton perturbation theory for the dispersion-managed nonlinear Schroedinger (DMNLS) equation, which governs the long-term behavior of optical fiber transmission systems and certain kinds of femtosecond lasers. We show that the eigenmodes and generalized eigenmodes of the linearized DMNLS equation around traveling-wave solutions can be generated from the invariances of the DMNLS equations, we quantify the perturbation-induced parameter changes of the solution in terms of the eigenmodes and the adjoint eigenmodes, and we obtain evolution equations for the solution parameters. We then apply these results to guide importance-sampled Monte Carlo (MC) simulations and reconstruct the probability density functions of the solution parameters under the effect of noise, and we compare with standard MC simulations of the unaveraged system. The comparison further validates the use of the DMNLS equation as a model for dispersion-managed systems

  14. Spatial solitons in nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  15. Nontopological solitons

    International Nuclear Information System (INIS)

    Friedberg, R.

    1977-01-01

    It is pointed out that the study of solitons offers a new departure for the problem of handling bound states in relativistic quantum field theory which has hampered development of a simple conventional model of hadrons. The principle is illustrated by the case of a quantum mechanical particle moving in two dimensions under the centrally symmetric and quasi-harmonic potential. Restriction is made to nontopological solitons. These ideas are applied to a model of hadrons. 10 references

  16. Pyroelectric photovoltaic spatial solitons in unbiased photorefractive crystals

    International Nuclear Information System (INIS)

    Jiang, Qichang; Su, Yanli; Ji, Xuanmang

    2012-01-01

    A new type of spatial solitons i.e. pyroelectric photovoltaic spatial solitons based on the combination of pyroelectric and photovoltaic effect is predicted theoretically. It shows that bright, dark and grey spatial solitons can exist in unbiased photovoltaic photorefractive crystals with appreciable pyroelectric effect. Especially, the bright soliton can form in self-defocusing photovoltaic crystals if it gives larger self-focusing pyroelectric effect. -- Highlights: ► A new type of spatial soliton i.e. pyroelectric photovoltaic spatial soliton is predicted. ► The bright, dark and grey pyroelectric photovoltaic spatial soliton can form. ► The bright soliton can also exist in self-defocusing photovoltaic crystals.

  17. Kinetic slow mode-type solitons

    Directory of Open Access Journals (Sweden)

    K. Baumgärtel

    2005-01-01

    Full Text Available One-dimensional hybrid code simulations are presented, carried out in order both to study solitary waves of the slow mode branch in an isotropic, collisionless, medium-β plasma (βi=0.25 and to test the fluid based soliton interpretation of Cluster observed strong magnetic depressions (Stasiewicz et al., 2003; Stasiewicz, 2004 against kinetic theory. In the simulations, a variety of strongly oblique, large amplitude, solitons are seen, including solitons with Alfvenic polarization, similar to those predicted by the Hall-MHD theory, and robust, almost non-propagating, solitary structures of slow magnetosonic type with strong magnetic field depressions and perpendicular ion heating, which have no counterpart in fluid theory. The results support the soliton-based interpretation of the Cluster observations, but reveal substantial deficiencies of Hall-MHD theory in describing slow mode-type solitons in a plasma of moderate beta.

  18. Quadratic solitons for negative effective second-harmonic diffraction as nonlocal solitons with periodic nonlocal response function

    DEFF Research Database (Denmark)

    Esbensen, B.K.; Bache, Morten; Krolikowski, W.

    2012-01-01

    We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....

  19. The volume of a soliton

    International Nuclear Information System (INIS)

    Adam, C.; Haberichter, M.; Wereszczynski, A.

    2016-01-01

    There exists, in general, no unique definition of the size (volume, area, etc., depending on dimension) of a soliton. Here we demonstrate that the geometric volume (area etc.) of a soliton is singled out in the sense that it exactly coincides with the thermodynamical or continuum-mechanical volume. In addition, this volume may be defined uniquely for rather arbitrary solitons in arbitrary dimensions.

  20. The volume of a soliton

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C., E-mail: adam@fpaxp1.usc.es [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Haberichter, M. [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF (United Kingdom); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków (Poland)

    2016-03-10

    There exists, in general, no unique definition of the size (volume, area, etc., depending on dimension) of a soliton. Here we demonstrate that the geometric volume (area etc.) of a soliton is singled out in the sense that it exactly coincides with the thermodynamical or continuum-mechanical volume. In addition, this volume may be defined uniquely for rather arbitrary solitons in arbitrary dimensions.

  1. Introduction to solitons

    Indian Academy of Sciences (India)

    The history leading to the discovery of soliton is interesting and impressive. The first documented observation of the solitary wave was made in 1834 by the .... Through the inverse scattering method, we are in a position to define the soliton in a rigorous manner. A transformation from the field variables to the scattering data is ...

  2. Dark solitons in erbium-doped fiber lasers based on indium tin oxide as saturable absorbers

    Science.gov (United States)

    Guo, Jia; Zhang, Huanian; Li, Zhen; Sheng, Yingqiang; Guo, Quanxin; Han, Xile; Liu, Yanjun; Man, Baoyuan; Ning, Tingyin; Jiang, Shouzhen

    2018-04-01

    Dark solitons, which have good stability, long transmission distance and strong anti-interference ability. By using a coprecipitation method, the high quality indium tin oxide (ITO) were prepared with an average diameter of 34.1 nm. We used a typical Z-scan scheme involving a balanced twin-detector measurement system to investigated nonlinear optical properties of the ITO nanoparticles. The saturation intensity and modulation depths are 13.21 MW/cm2 and 0.48%, respectively. In an erbium-doped fiber (EDF) lasers, we using the ITO nanoparticles as saturable absorber (SA), and the formation of dark soliton is experimentally demonstrated. The generated dark solitons are centered at the wavelength of 1561.1 nm with a repetition rate of 22.06 MHz. Besides, the pulse width and pulse-to-pulse interval of the dark solitons is ∼1.33ns and 45.11 ns, respectively. These results indicate that the ITO nanoparticles is a promising nanomaterial for ultrafast photonics.

  3. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    The motion of a soliton in a supergravity background configuration is studied. The dynamics of the soliton is desribed by a trajectory in curved N = 2 superspace. For the proposed Langrangian the moments, the constraints and the generators of local supertranslations are displayed. An additional local gauge symmetry is exhibited. Special emphasis is laid on the classical equations of motion. These turn out to be a supersymmetric generalization of Papapetrou's equation of motion for a spinning particle in a gravitational field. (Author)

  4. Analytical modeling of soliton interactions in a nonlocal nonlinear medium analogous to gravitational force

    Science.gov (United States)

    Zeng, Shihao; Chen, Manna; Zhang, Ting; Hu, Wei; Guo, Qi; Lu, Daquan

    2018-01-01

    We illuminate an analytical model of soliton interactions in lead glass by analogizing to a gravitational force system. The orbits of spiraling solitons under a long-range interaction are given explicitly and demonstrated to follow Newton's second law of motion and the Binet equation by numerical simulations. The condition for circular orbits is obtained and the oscillating orbits are proved not to be closed. We prove the analogy between the nonlocal nonlinear optical system and gravitational system and specify the quantitative relation of the quantity between the two models.

  5. The laboratory investigation of surface envelope solitons: reflection from a vertical wall and collisions of solitons

    Science.gov (United States)

    Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.

    2016-04-01

    Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105

  6. Temperature effects on the Davydov soliton

    DEFF Research Database (Denmark)

    Cruzeiro, L.; Halding, J.; Christiansen, Peter Leth

    1988-01-01

    As a possible mechanism for energy storage and transport in proteins, Davydov has proposed soliton formation and propagation. In this paper we investigate the stability of Davydov solitons at biological temperatures. From Davydov’s original theory evolution equations are derived quantum mechanica......As a possible mechanism for energy storage and transport in proteins, Davydov has proposed soliton formation and propagation. In this paper we investigate the stability of Davydov solitons at biological temperatures. From Davydov’s original theory evolution equations are derived quantum...

  7. Moving stable solitons in Galileon theory

    International Nuclear Information System (INIS)

    Masoumi, Ali; Xiao Xiao

    2012-01-01

    Despite the no-go theorem Endlich et al. (2011) which rules out static stable solitons in Galileon theory, we propose a family of solitons that evade the theorem by traveling at the speed of light. These domain-wall-like solitons are stable under small fluctuations-analysis of perturbation shows neither ghost-like nor tachyon-like instabilities, and perturbative collision of these solitons suggests that they pass through each other asymptotically, which maybe an indication of the integrability of the theory itself.

  8. Mean-field theory and solitonic matter

    International Nuclear Information System (INIS)

    Cohen, T.D.

    1989-01-01

    Finite density solitonic matter is considered in the context of quantum field theory. Mean-field theory, which provides a reasonable description for single-soliton properties gives rise to a crystalline description. A heuristic description of solitonic matter is given which shows that the low-density limit of solitonic matter (the limit which is presumably relevant for nuclear matter) does not commute with the mean-field theory limit and gives rise to a Fermi-gas description of the system. It is shown on the basis of a formal expansion of simple soliton models in terms of the coupling constant why one expects mean-field theory to fail at low densities and why the corrections to mean-field theory are nonperturbative. This heuristic description is tested against an exactly solvable 1+1 dimensional model (the sine-Gordon model) and found to give the correct behavior. The relevance of these results to the program of doing nuclear physics based on soliton models is discussed. (orig.)

  9. Generalized sine-Gordon solitons

    International Nuclear Information System (INIS)

    Santos, C dos; Rubiera-Garcia, D

    2011-01-01

    In this paper, we construct analytical self-dual soliton solutions in (1+1) dimensions for two families of models which can be seen as generalizations of the sine-Gordon system but where the kinetic term is non-canonical. For that purpose we use a projection method applied to the sine-Gordon soliton. We focus our attention on the wall and lump-like soliton solutions of these k-field models. These solutions and their potentials reduce to those of the Klein-Gordon kink and the standard lump for the case of a canonical kinetic term. As we increase the nonlinearity on the kinetic term the corresponding potentials get modified and the nature of the soliton may change, in particular, undergoing a topology modification. The procedure constructed here is shown to be a sort of generalization of the deformation method for a specific class of k-field models. (paper)

  10. Collision dynamics of gap solitons in Kerr media

    International Nuclear Information System (INIS)

    Royston Neill, D.; Atai, Javid

    2006-01-01

    The collision dynamics of counterpropagating gap solitons in a fiber Bragg grating are investigated. In the case of initially in-phase solitons, it is found that the dynamics are more complex and richer than previously reported. An important finding is that, in general, the outcome of the collisions is dependent upon gap soliton parameters (θ, V) and the initial separation of solitons. However, if the solitons are initially very far apart the dependence on the initial separation is negligible. In the case of π-out-of-phase solitons, we find that they generally bounce off each other with negligible radiation as long as the solitons are stable (i.e., 0 π/1.98) the collision strongly catalyzes the onset of instability and results in the destruction of solitons

  11. Statistics of 2D solitons

    International Nuclear Information System (INIS)

    Brekke, L.; Imbo, T.D.

    1992-01-01

    The authors study the inequivalent quantizations of (1 + 1)-dimensional nonlinear sigma models with space manifold S 1 and target manifold X. If x is multiply connected, these models possess topological solitons. After providing a definition of spin and statistics for these solitons and demonstrating a spin-statistics correlation, we give various examples where the solitons can have exotic statistics. In some of these models, the solitons may obey a generalized version of fractional statistics called ambistatistics. In this paper the relevance of these 2d models to the statistics of vortices in (2 + 1)-dimensional spontaneously broken gauge theories is discussed. The authors close with a discussion concerning the extension of our results to higher dimensions

  12. Gap states of charged soliton in polyacetylene

    International Nuclear Information System (INIS)

    Lu Dingwei; Liu Jie; Fu Rouli

    1988-10-01

    By considering the electron interaction in polyacetylene, it is found that two gap states in charged solitons of trans-polyacetylene exist: one is deep level, another is shallow level. The deep one shifts 0.23 ev down (for positive soliton) or up (for negative soliton) from the center of the gap; while the shallow one is 0.06 ev under the bottom of conduction band (positive soliton) or above the top of valence band (negative soliton). These results agree with the absorption spectra of trans-polyacetylene. (author). 5 refs, 4 figs

  13. Pulsed atomic soliton laser

    International Nuclear Information System (INIS)

    Carr, L.D.; Brand, J.

    2004-01-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments

  14. Propagation of vector solitons in a quasi-resonant medium with stark deformation of quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Sazonov, S. V., E-mail: sazonov.sergei@gmail.com [National Research Centre Kurchatov Institute (Russian Federation); Ustinov, N. V., E-mail: n_ustinov@mail.ru [Moscow State Railway University, Kaliningrad Branch (Russian Federation)

    2012-11-15

    The nonlinear dynamics of a vector two-component optical pulse propagating in quasi-resonance conditions in a medium of nonsymmetric quantum objects is investigated for Stark splitting of quantum energy levels by an external electric field. We consider the case when the ordinary component of the optical pulse induces {sigma} transitions, while the extraordinary component induces the {pi} transition and shifts the frequencies of the allowed transitions due to the dynamic Stark effect. It is found that under Zakharov-Benney resonance conditions, the propagation of the optical pulse is accompanied by generation of an electromagnetic pulse in the terahertz band and is described by the vector generalization of the nonlinear Yajima-Oikawa system. It is shown that this system (as well as its formal generalization with an arbitrary number of optical components) is integrable by the inverse scattering transformation method. The corresponding Darboux transformations are found for obtaining multisoliton solutions. The influence of transverse effects on the propagation of vector solitons is investigated. The conditions under which transverse dynamics leads to self-focusing (defocusing) of solitons are determined.

  15. Spinning solitons in cubic-quintic nonlinear media

    Indian Academy of Sciences (India)

    Spinning solitons in cubic-quintic nonlinear media ... features of families of bright vortex solitons (doughnuts, or 'spinning' solitons) in both conservative and dissipative cubic-quintic nonlinear media. ... Pramana – Journal of Physics | News.

  16. Modulational instability of short pulses in long optical fibers

    DEFF Research Database (Denmark)

    Shukla, P. K.; Juul Rasmussen, Jens

    1986-01-01

    The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed......The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed...

  17. Modification of ion-acoustic solitons on interaction with Langmuir waves

    International Nuclear Information System (INIS)

    Basovich, A.Ya.; Gromov, E.M.; Karpman, V.I.

    1981-01-01

    Variation of an ion-accoustic soliton under the effect of the Langmuir quasimonochromatic wave has been considered. Parameters of the soliton tail and variation of soliton velocity have been determined. It is shown that the soliton tail consists of two parts: averaged and oscillating. Density oscillations have a forced nature and are related to the modulation of striction force appearing during interference of waves incident and reflected from a soliton. Oscillations appear behind soliton when the wave runs after soliton and in front of soliton when soliton runs after wave [ru

  18. Evolution of envelope solitons of ionization waves

    International Nuclear Information System (INIS)

    Ohe, K.; Hashimoto, M.

    1985-01-01

    The time evolution of a particle-like envelope soliton of ionization waves in plasma was investigated theoretically. The hydrodynamic equations of one spatial dimension were solved and the nonlinear dispersion relation was derived. For the amplitude of the wave the nonlinear Schroedinger equation was derived. Its soliton solution was interpreted as the envelope soliton which was experimentally found. The damping rate of the envelope soliton was estimated. (D.Gy.)

  19. On the supersymmetric solitons and monopoles

    International Nuclear Information System (INIS)

    Hruby, J.

    1978-01-01

    The basic results in a new trend in supersymmetry and soliton theory are presented. It is shown that the soliton expectation value of the energy operator is mass of the soliton without the quantum corrections. A new supersymmetric monopole model in three dimensions is constructed by generalization of the supersymmetric sine-Gordon model in one space dimension

  20. Soliton resonance in bose-einstein condensate

    Science.gov (United States)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  1. Solitons in one-dimensional antiferromagnetic chains

    International Nuclear Information System (INIS)

    Pires, A.S.T.; Talim, S.L.; Costa, B.V.

    1989-01-01

    We study the quantum-statistical mechanics, at low temperatures, of a one-dimensional antiferromagnetic Heisenberg model with two anisotropies. In the weak-coupling limit we determine the temperature dependences of the soliton energy and the soliton density. We have found that the leading correction to the sine-Gordon (SG) expression for the soliton density and the quantum soliton energy comes from the out-of-plane magnon mode, not present in the pure SG model. We also show that when an external magnetic field is applied, the chain supports a new type of kink, where the sublattices rotate in opposite directions

  2. Solitons in Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Lopes, E.

    1985-01-01

    It is observed that, when the potential is integrable and repulsive, the Gross-Pitaevskii Equation, with non-vanishing boundary conditions, describes a family of planar solitons. A method is presented which provides an exact soliton field to the Dirac Delta potential and an approximation solution to any other kind of potential. As an example the method is then applied to the case of a repulsive Yukawa potential. A brief discuss the relation between these solitons and Anderson's superfluidity mechanism, is also presented. (author) [pt

  3. Cascaded nonlinearities for ultrafast nonlinear optical science and applications

    DEFF Research Database (Denmark)

    Bache, Morten

    the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...

  4. Optical spins and nano-antenna array for magnetic therapy.

    Science.gov (United States)

    Thammawongsa, N; Mitatha, S; Yupapin, P P

    2013-09-01

    Magnetic therapy is an alternative medicine practice involving the use of magnetic fields subjected to certain parts of the body and stimulates healing from a range of health problems. In this paper, an embedded nano-antenna system using the optical spins generated from a particular configuration of microrings (PANDA) is proposed. The orthogonal solitons pairs corresponding to the left-hand and right-hand optical solitons (photons) produced from dark-bright soliton conversion can be simultaneously detected within the system at the output ports. Two possible spin states which are assigned as angular momentum of either +ħ or -ħ will be absorbed by an object whenever this set of orthogonal solitons is imparted to the object. Magnetic moments could indeed arise from the intrinsic property of spins. By controlling some important parameters of the system such as soliton input power, coupling coefficients and sizes of rings, output signals from microring resonator system can be tuned and optimized to be used as magnetic therapy array.

  5. Hopf solitons in the AFZ model

    International Nuclear Information System (INIS)

    Gillard, Mike

    2011-01-01

    The Aratyn–Ferreira–Zimerman (AFZ) model is a conformal field theory in three-dimensional space. It has solutions that are topological solitons classified by an integer-valued Hopf index. There exist infinitely many axial solutions which have been found analytically. Static axial, knot and linked solitons are found numerically using a modified volume preserving flow for Hopf index one to eight, allowing for comparison with other Hopf soliton models. Solutions include a static trefoil knot at Hopf index five. A one-parameter family of conformal Skyrme–Faddeev models, consisting of linear combinations of the Nicole and AFZ models, are also investigated numerically. The transition of solutions for Hopf index four is mapped across these models. A topological change between linked and axial solutions occurs, with fewer models (or a limited range of parameter values) permitting axial solitons than linked solitons at Hopf index four

  6. Black and gray Helmholtz-Kerr soliton refraction

    International Nuclear Information System (INIS)

    Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.

    2011-01-01

    Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposal of positive or negative lensing operations on soliton arrays at planar boundaries.

  7. Solitons

    International Nuclear Information System (INIS)

    Ventura, J.

    1983-01-01

    An introductory and partial discussion on the conceptual news and the multiple consequences which originate from the existence of solitons is presented. Preliminary calculations related with the helium superfluid theory are discussed. (L.C.) [pt

  8. Brownian motion of solitons in a Bose-Einstein condensate.

    Science.gov (United States)

    Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B

    2017-03-07

    We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.

  9. Soliton concepts and protein structure

    Science.gov (United States)

    Krokhotin, Andrei; Niemi, Antti J.; Peng, Xubiao

    2012-03-01

    Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.

  10. Wakeless triple soliton accelerator

    International Nuclear Information System (INIS)

    Mima, K.; Ohsuga, T.; Takabe, H.; Nishihara, K.; Tajima, T.; Zaidman, E.; Horton, W.

    1986-09-01

    We introduce and analyze the concept of a wakeless triple soliton accelerator in a plasma fiber. Under appropriate conditions the triple soliton with two electromagnetic and one electrostatic waves in the beat-wave resonance propagates with velocity c leaving no plasma wake behind, while the phase velocity of the electrostatic wave is made also c in the fiber

  11. Solitons as Newtonian particles

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Marques, G.C.

    1982-07-01

    The effect of external electromagnetic fields on non relativistic solitons is studied. Although the solitons are distorted by external fields, they still exhibit a Newtonian behavior. Some explicit examples of such a phenomenon are given, presenting solutions which exhibit Newtonian behavior for simple external fields. Furthermore, general results like charge and flux quantization are shown. (Author) [pt

  12. Induced waveform transitions of dissipative solitons

    Science.gov (United States)

    Kochetov, Bogdan A.; Tuz, Vladimir R.

    2018-01-01

    The effect of an externally applied force upon the dynamics of dissipative solitons is analyzed in the framework of the one-dimensional cubic-quintic complex Ginzburg-Landau equation supplemented by a potential term with an explicit coordinate dependence. The potential accounts for the external force manipulations and consists of three symmetrically arranged potential wells whose depth varies along the longitudinal coordinate. It is found out that under an influence of such potential a transition between different soliton waveforms coexisting under the same physical conditions can be achieved. A low-dimensional phase-space analysis is applied in order to demonstrate that by only changing the potential profile, transitions between different soliton waveforms can be performed in a controllable way. In particular, it is shown that by means of a selected potential, stationary dissipative soliton can be transformed into another stationary soliton as well as into periodic, quasi-periodic, and chaotic spatiotemporal dissipative structures.

  13. Solitons in a random force field

    International Nuclear Information System (INIS)

    Bass, F.G.; Konotop, V.V.; Sinitsyn, Y.A.

    1985-01-01

    We study the dynamics of a soliton of the sine-Gordon equation in a random force field in the adiabatic approximation. We obtain an Einstein-Fokker equation and find the distribution function for the soliton parameters which we use to evaluate its statistical characteristics. We derive an equation for the averaged functions of the soliton parameters. We determine the limits of applicability of the delta-correlated in time random field approximation

  14. Averaging for solitons with nonlinearity management

    International Nuclear Information System (INIS)

    Pelinovsky, D.E.; Kevrekidis, P.G.; Frantzeskakis, D.J.

    2003-01-01

    We develop an averaging method for solitons of the nonlinear Schroedinger equation with a periodically varying nonlinearity coefficient, which is used to effectively describe solitons in Bose-Einstein condensates, in the context of the recently proposed technique of Feshbach resonance management. Using the derived local averaged equation, we study matter-wave bright and dark solitons and demonstrate a very good agreement between solutions of the averaged and full equations

  15. Experimental Investigation of Trapped Sine-Gordon Solitons

    DEFF Research Database (Denmark)

    Davidson, A.; Dueholm, B.; Kryger, B.

    1985-01-01

    We have observed for the first time a single sine-Gordon soliton trapped in an annular Josephson junction. This system offers a unique possibility to study undisturbed soliton motion. In the context of perturbation theory, the soliton may be viewed as a relativistic particle moving under a uniform...

  16. FD-TD modeling of 2-D dielectric waveguides for propagation and scattering of femtosecond optical solitons

    Science.gov (United States)

    Joseph, Rose; Goorjian, Peter; Taflove, Allen

    1993-01-01

    Experimentalists have produced all-optical switches capable of 100-fs responses. To adequately model such switches, nonlinear effects in optical materials (both instantaneous and dispersive) must be included. In principle, the behavior of electromagnetic fields in nonlinear dielectrics can be determined by solving Maxwell's equations subject to the assumption that the electric polarization has a nonlinear relation to the electric field. However, until our previous work, the resulting nonlinear Maxwell's equations have not been solved directly. Rather, approximations have been made that result in a class of generalized nonlinear Schrodinger equations (GNLSE) that solve only for the envelope of the optical pulses. In this paper, we present first-time calculations from the vector nonlinear Maxwell's equations of femtosecond soliton propagation and scattering, including carrier waves, in two-dimensional systems of dielectric waveguides exhibiting the Kerr and Raman quantum effects. We use the finite-difference time-domain (FD-TD) method in an extension of our 1-D work. There, in a fundamental innovation, we treated the linear and nonlinear convolutions for the electric polarization as new dependent variables. By differentiating these convolutions in the time domain, we derived an equivalent system of coupled, nonlinear second-order ODE's. These equations together with Maxwell's equations form the system that is solved to determine the electromagnetic fields in inhomogeneous nonlinear dispersive media. Backstorage in time is limited to only that needed by the time-integration algorithm for the ODE's, rather than that needed to store the time-history of the kernel functions of the convolutions (1000-10,000 time steps). Thus, a 2-D nonlinear optics model from Maxwell's equations is now feasible.

  17. Condensate bright solitons under transverse confinement

    International Nuclear Information System (INIS)

    Salasnich, L.; Reatto, L.; Parola, A.

    2002-01-01

    We investigate the dynamics of Bose-Einstein condensate bright solitons made of alkali-metal atoms with negative scattering length and under harmonic confinement in the transverse direction. Contrary to the one-dimensional (1D) case, the 3D bright soliton exists only below a critical attractive interaction that depends on the extent of confinement. Such a behavior is also found in multisoliton condensates with box boundary conditions. We obtain numerical and analytical estimates of the critical strength beyond which the solitons do not exist. By using an effective 1D nonpolynomial nonlinear Schroedinger equation, which accurately takes into account the transverse dynamics of cigarlike condensates, we numerically simulate the dynamics of the 'soliton train' reported in a recent experiment [Nature (London) 417, 150 (2002)]. Then, analyzing the macroscopic quantum tunneling of the bright soliton on a Gaussian barrier, we find that its interference in the tunneling region is strongly suppressed with respect to nonsolitonic case; moreover, the tunneling through a barrier breaks the shape invariance of the matter wave. Finally, we show that the collapse of the soliton is induced by the scattering on the barrier or by the collision with another matter wave when the density reaches a critical value, for which we derive an accurate analytical formula

  18. Splitting, linking, knotting, and solitonic escape of topological defects in nematic drops with handles.

    Science.gov (United States)

    Tasinkevych, Mykola; Campbell, Michael G; Smalyukh, Ivan I

    2014-11-18

    Topologically nontrivial field excitations, including solitonic, linked, and knotted structures, play important roles in physical systems ranging from classical fluids and liquid crystals, to electromagnetism, classic, and quantum field theories. These excitations can appear spontaneously during symmetry-breaking phase transitions. For example, in cosmological theories, cosmic strings may have formed knotted configurations influencing the Early Universe development, whereas in liquid crystals transient tangled defect lines were observed during isotropic-nematic transitions, eventually relaxing to defect-free states. Knotted and solitonic fields and defects were also obtained using optical manipulation, complex-shaped colloids, and frustrated cholesterics. Here we use confinement of nematic liquid crystal by closed surfaces with varied genus and perpendicular boundary conditions for a robust control of appearance and stability of such field excitations. Theoretical modeling and experiments reveal structure of defect lines as a function of the surface topology and material and geometric parameters, establishing a robust means of controlling solitonic, knotted, linked, and other field excitations.

  19. Walking solitons in quadratic nonlinear media

    OpenAIRE

    Torner Sabata, Lluís; Mazilu, D; Mihalache, Dumitru

    1996-01-01

    We study self-action of light in parametric wave interactions in nonlinear quadratic media. We show the existence of stationary solitons in the presence of Poynting vector beam walk-off or different group velocities between the waves. We discover that the new solitons constitute a two-parameter family, and they exist for different wave intensities and transverse velocities. We discuss the properties of the walking solitons and their experimental implications. Peer Reviewed

  20. Impurity solitons with quadratic nonlinearities

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis

    1998-01-01

    We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...

  1. Switching of bound vector solitons for the coupled nonlinear Schrödinger equations with nonhomogenously stochastic perturbations

    International Nuclear Information System (INIS)

    Sun Zhiyuan; Yu Xin; Liu Ying; Gao Yitian

    2012-01-01

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  2. Switching of bound vector solitons for the coupled nonlinear Schrödinger equations with nonhomogenously stochastic perturbations

    Science.gov (United States)

    Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying

    2012-12-01

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  3. Rogue waves, rational solitons and wave turbulence theory

    International Nuclear Information System (INIS)

    Kibler, Bertrand; Hammani, Kamal; Michel, Claire; Finot, Christophe; Picozzi, Antonio

    2011-01-01

    Considering a simple one-dimensional nonlinear Schroedinger optical model, we study the existence of rogue wave events in the highly incoherent state of the system and compare them with the recently identified hierarchy of rational soliton solutions. We show that rogue waves can emerge in the genuine turbulent regime and that their coherent deterministic description provided by the rational soliton solutions is compatible with an accurate statistical description of the random wave provided by the wave turbulence theory. Furthermore, the simulations reveal that even in the weakly nonlinear regime, the nonlinearity can play a key role in the emergence of an individual rogue wave event in a turbulent environment. -- Highlights: → Rogue wave events are studied in the highly incoherent regime of interaction. → We show that rogue waves can emerge in the genuine turbulent regime. → Their coherent deterministic description is provided by the rational solutions. → It coexists with a statistical description provided of the random wave. → The nonlinearity plays a key role even in a turbulent environment.

  4. Quark solitons as constituents of hadrons

    International Nuclear Information System (INIS)

    Ellis, J.; Frishman, Y.; Hanany, A.; Karlinev, M.

    1992-01-01

    We exhibit static solutions of multi-flavour QCD in two dimensions that have the quantum numbers of baryons and mesons, constructed out of quark and anti-quark solitons. In isolation the latter solitons have infinite energy, corresponding to the presence of a string carrying the non-singlet colour flux off to spatial infinity. When N c solitons of this type are combined, a static, finite-energy, colour singlet solution is formed, corresponding to a baryon. Similarly, static meson solutions are formed out of a soliton and an anti-soliton of different flavours. The stability of the mesons against annihilation is ensured by flavour conservation. The static solutions exist only when the fundamental fields of the bosonized lagrangian belong to U(N c xN f ) rather than to SU(N c )xU(N f ). Discussion of flavour-symmetry breaking requires a careful treatment of the normal-ordering ambiguity. Our results can be viewed as a derivation of the constituent quark model in QCD 2 , allowing a detailed study of constituent mass generation and of the heavy-quark symmetry. (orig.)

  5. An(1) Toda solitons and the dressing symmetry

    International Nuclear Information System (INIS)

    Belich, H.; Paunov, R.

    1996-12-01

    We present an elementary derivation of the soliton-like solutions in the A n (1) Toda models which is alternative to the previously used Hirota method. The solutions of the underlying linear problem corresponding to the N-solitons are calculated. This enables us to obtain explicit expression for the element which by dressing group action, produces a generic soliton solution. In the particular example of mono solitons we suggest a relation to vertex operator formalism, previously used by olive, Turok and Underwood. Our results can also be considered as generalization of the approach to the sine-Gordon solitons, proposed by Babelon and Bernard. (author)

  6. Nonlinear compression of optical solitons

    Indian Academy of Sciences (India)

    linear pulse propagation is the nonlinear Schrödinger (NLS) equation [1]. There are ... Optical pulse compression finds important applications in optical fibres. The pulse com ..... to thank CSIR, New Delhi for financial support in the form of SRF.

  7. A new class of nontopological solitons

    International Nuclear Information System (INIS)

    Li Xinzhou; Ni Zhixiang; Zhang Jianzu

    1992-09-01

    We construct a new class of nontopological solitons with scalar self-interaction term κφ 4 . Because of the scalar self-interaction, there is a maximum size for these objects. There exists a critical value κ crit for the coupling κ. For κ > κ crit there are no stable nontopological solitons. In thin-walled limit, we show the explicit solutions of NTS with scalar self-interaction and/or gauge interaction. In the case of gauged NTS, soliton becomes a superconductor. (author). 11 refs

  8. Hairy AdS solitons

    International Nuclear Information System (INIS)

    Anabalón, Andrés; Astefanesei, Dumitru; Choque, David

    2016-01-01

    We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.

  9. Hairy AdS solitons

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales and Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Astefanesei, Dumitru, E-mail: dumitru.astefanesei@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2016-11-10

    We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.

  10. Stability analysis solutions and optical solitons in extended nonlinear Schrödinger equation with higher-order odd and even terms

    Science.gov (United States)

    Peng, Wei-Qi; Tian, Shou-Fu; Zou, Li; Zhang, Tian-Tian

    2018-01-01

    In this paper, the extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms is investigated, whose particular cases are the Hirota equation, the Sasa-Satsuma equation and Lakshmanan-Porsezian-Daniel equation by selecting some specific values on the parameters of higher-order terms. We first study the stability analysis of the equation. Then, using the ansatz method, we derive its bright, dark solitons and some constraint conditions which can guarantee the existence of solitons. Moreover, the Ricatti equation extension method is employed to derive some exact singular solutions. The outstanding characteristics of these solitons are analyzed via several diverting graphics.

  11. Oscillatory solitons and time-resolved phase locking of two polariton condensates

    International Nuclear Information System (INIS)

    Christmann, Gabriel; Tosi, Guilherme; Baumberg, Jeremy J; Berloff, Natalia G; Tsotsis, Panagiotis; Eldridge, Peter S; Hatzopoulos, Zacharias; Savvidis, Pavlos G

    2014-01-01

    When pumped nonresonantly, semiconductor microcavity polaritons form Bose–Einstein condensates that can be manipulated optically. Using tightly-focused excitation spots, radially expanding condensates can be formed in close proximity. Using high time resolution streak camera measurements we study the time dependent properties of these macroscopic coherent states. By coupling this method with interferometry we observe directly the phase locking of two independent condensates in time, showing the effect of polariton–polariton interactions. We also directly observe fast spontaneous soliton-like oscillations of the polariton cloud trapped between the pump spots, which can be either dark or bright solitons. This transition from dark to bright is a consequence of the change of sign of the nonlinearity which we propose is due to the shape of the polariton dispersion leading to either positive or negative polariton effective mass. (paper)

  12. Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform.

    Science.gov (United States)

    Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A

    2014-09-22

    We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.

  13. The dark soliton on a cnoidal wave background

    International Nuclear Information System (INIS)

    Shin, H J

    2005-01-01

    We find a solution of the dark soliton lying on a cnoidal wave background in a defocusing medium. We use the method of Darboux transformation, which is applied to the cnoidal wave solution of the defocusing nonlinear Schroedinger equation. Interesting characteristics of the dark soliton, i.e., the velocity and greyness, are calculated and compared with those of the dark soliton lying on a continuous wave background. We also calculate the shift of the crest of the cnoidal wave along the soliton

  14. High-dimensional chaos from self-sustained collisions of solitons

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, O. Ozgur, E-mail: donhee@seas.harvard.edu, E-mail: oozgury@gmail.com [Cavium, Inc., 600 Nickerson Rd., Marlborough, Massachusetts 01752 (United States); Ham, Donhee, E-mail: donhee@seas.harvard.edu, E-mail: oozgury@gmail.com [Harvard University, 33 Oxford St., Cambridge, Massachusetts 02138 (United States)

    2014-06-16

    We experimentally demonstrate chaos generation based on collisions of electrical solitons on a nonlinear transmission line. The nonlinear line creates solitons, and an amplifier connected to it provides gain to these solitons for their self-excitation and self-sustenance. Critically, the amplifier also provides a mechanism to enable and intensify collisions among solitons. These collisional interactions are of intrinsically nonlinear nature, modulating the phase and amplitude of solitons, thus causing chaos. This chaos generated by the exploitation of the nonlinear wave phenomena is inherently high-dimensional, which we also demonstrate.

  15. Timing-jitter reduction in a dispersion-managed soliton system

    International Nuclear Information System (INIS)

    Mu, R.; Grigoryan, V.S.; Menyuk, C.R.; Golovchenko, E.A.; Pilipetskii, A.N.

    1998-01-01

    We found by using Monte Carlo simulations that the timing jitter in a dispersion-managed soliton system decreases as the strength of the dispersion management and hence the ratio of the pulse energy to the pulse bandwidth increases. The results are in qualitative but not quantitative agreement with earlier predictions that the decrease is inversely proportional to the square root of the pulse energy. Using an improved semi-analytical theory, we obtained quantitative agreement with the simulations. copyright 1998 Optical Society of America

  16. Interaction of ion-acoustic solitons in multi-dimensional space, 2

    International Nuclear Information System (INIS)

    Kako, Fujio; Yajima, Nobuo

    1981-08-01

    Numerical computations are made to study the collision process between two cylindrical or spherical solitons. The soliton resonance is found to play an important role in collision processes between two curved solitons as well as between two plane solitons. (author)

  17. Lattice solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Efremidis, Nikolaos K.; Christodoulides, Demetrios N.

    2003-01-01

    We systematically study the properties of lattice solitons in Bose-Einstein condensates with either attractive or repulsive atom interactions. This is done, by exactly solving the mean-field Gross-Pitaevskii equation in the presence of a periodic potential. We find new families of lattice soliton solutions that are characterized by the position of the energy eigenvalue within the associated band structure. These include lattice solitons in condensates with either attractive or repulsive atom interactions that exist in finite or semi-infinite gaps, as well as nonlinear modes that exhibit atomic population cutoffs

  18. Soliton and polaron generation in polyacetylene

    International Nuclear Information System (INIS)

    Su, Zhao-bin; Yu, Lu.

    1984-07-01

    The nonradiative decay of an e-h pair into soliton pair and that of an electron (hole) into polaron as well as the photoproduction of soliton pairs are considered using the lattice relaxation theory of multiphonon processes generalized to include the self-consistency of the multi-electron states with the lattice symmetry breaking. The selection rule which forbids the direct process of photogeneration for neutral pair is derived from the symmetry arguments. The branching ratio of the photogenerated neutral to charged soliton pairs is estimated. The recent related experiments are discussed. (author)

  19. Soliton pair creation at finite temperatures

    International Nuclear Information System (INIS)

    Grigoriev, D.Yu.; Rubakov, V.A.

    1988-01-01

    Creation of soliton-antisoliton pairs at finite temperature is considered within a (1+1)-dimensional model of a real scalar field. It is argued that at certain temperatures, the soliton pair creation in quantum theory can be investigated by studying classical field evolution in real time. The classical field equations are solved numerically, and the pair creation rate and average number of solitons are evaluated. No peculiar suppression of the rate is observed. Some results on the sphaleron transitions in (1+1)-dimensional abelian Higgs model are also presented. (orig.)

  20. Cubic-quintic solitons in the checkerboard potential

    International Nuclear Information System (INIS)

    Driben, Rodislav; Zyss, Joseph; Malomed, Boris A.; Gubeskys, Arthur

    2007-01-01

    We introduce a two-dimensional (2D) model which combines a checkerboard potential, alias the Kronig-Penney (KP) lattice, with the self-focusing cubic and self-defocusing quintic nonlinear terms. The beam-splitting mechanism and soliton multistability are explored in this setting, following the recently considered 1D version of the model. Families of single- and multi-peak solitons (in particular, five- and nine-peak species naturally emerge in the 2D setting) are found in the semi-infinite gap, with both branches of bistable families being robust against perturbations. For single-peak solitons, the variational approximation (VA) is developed, providing for a qualitatively correct description of the transition from monostability to the bistability. 2D solitons found in finite band gaps are unstable. Also constructed are two different species of stable vortex solitons, arranged as four-peak patterns ('oblique' and 'straight' ones). Unlike them, compact 'crater-shaped' vortices are unstable, transforming themselves into randomly walking fundamental beams

  1. Solitons and chaos in plasma

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.

    1990-09-01

    Plasma exhibits a full of variety of nonlinear phenomena. Active research in nonlinear plasma physics contributed to explore the concepts of soliton and chaos. Structure of soliton equations and dynamics of low dimensional Hamiltonian systems are discussed to emphasize the universality of these novel concepts in the wide branch of science and engineering. (author) 52 refs

  2. Large amplitude ion-acoustic solitons in dusty plasmas

    International Nuclear Information System (INIS)

    Tiwari, R. S.; Jain, S. L.; Mishra, M. K.

    2011-01-01

    Characteristics of ion-acoustic soliton in dusty plasma, including the dynamics of heavily charged massive dust grains, are investigated following the Sagdeev Potential formalism. Retaining fourth order nonlinearities of electric potential in the expansion of the Sagdeev Potential in the energy equation for a pseudo particle and integrating the resulting energy equation, large amplitude soliton solution is determined. Variation of amplitude (A), half width (W) at half maxima and the product P = AW 2 of the Korteweg-deVries (KdV), dressed and large amplitude soliton as a function of wide range of dust concentration are numerically studied for recently observed parameters of dusty plasmas. We have also presented the region of existence of large amplitude ion-acoustic soliton in the dusty plasma by analyzing the structure of the pseudo potential. It is found that in the presence of positively charged dust grains, system supports only compressive solitons, on the other hand, in the presence of negatively charged dust grains, the system supports compressive solitons up to certain critical concentration of dust grains and above this critical concentration, the system can support rarefactive solitons also. The effects of dust concentration, charge, and mass of the dust grains, on the characteristics of KdV, dressed and large amplitude the soliton, i.e., amplitude (A), half width at half maxima (W), and product of amplitude (A) and half width at half maxima (P = AW 2 ), are discussed in detail

  3. Soliton emission stimulated by sound wave or external field

    International Nuclear Information System (INIS)

    Malomed, B.A.

    1987-01-01

    Langmuir soliton interaction with ion-acoustic wave results in soliton radiative decay at the expence of emission by the soliton of linear langmuir waves. Intensity of this radiation in the ''subsonic'' regime as well as the rate of energy transfer from acoustic waves to langmuir ones and soliton decay rate are calculated. Three cases are considered: monochromatic acoustic wave, nonmonochromatic wave packet with a wide spectrum, random acoustic field, for which results appear to be qualitatively different. A related problem, concerning the radiation generation by soliton under external electromagnetic wave effect is also considered. Dissipation effect on radiation is investigated

  4. Bilinear forms, N-soliton solutions and soliton interactions for a fourth-order dispersive nonlinear Schrödinger equation in condensed-matter physics and biophysics

    International Nuclear Information System (INIS)

    Liu, Rong-Xiang; Tian, Bo; Liu, Li-Cai; Qin, Bo; Lü, Xing

    2013-01-01

    In this paper we investigate a fourth-order dispersive nonlinear Schrödinger equation, which governs the dynamics of a one-dimensional anisotropic Heisenberg ferromagnetic spin chain with the octuple–dipole interaction in condensed-matter physics as well as the alpha helical proteins with higher-order excitations and interactions in biophysics. Beyond the existing constraint, upon the introduction of an auxiliary function, bilinear forms and N-soliton solutions are constructed with the Hirota method. Asymptotic analysis on the two-soliton solutions indicates that the soliton interactions are elastic. Soliton velocity varies linearly with the coefficient of discreteness and higher-order magnetic interactions. Bound-state solitons can also exist under certain conditions. Period of a bound-state soliton is inversely correlated to the coefficient of discreteness and higher-order magnetic interactions. Interactions among the three solitons are all pairwise elastic

  5. Collisions of Two Spatial Solitons in Inhomogeneous Nonlinear Media

    International Nuclear Information System (INIS)

    Zhong Weiping; Yi Lin; Yang Zhengping; Xie Ruihua; Milivoj, Belic; Chen Goong

    2008-01-01

    Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through

  6. Solitons in plasma and other dispersive media

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Wadati, Miki.

    1977-03-01

    A review is given to recent development of extensive studies of nonlinear waves with purpose of showing methods of systematic analysis of nonlinear phenomena has been now established on the basis of new concept ''soliton''. Firstly, characteristic properties of various kinds of solitons are discussed with illustration of typical nonlinear evolution equations. Brief discussions are also given to basic mechanisms which ensure the remarkable stability and individuality of solitons. The reductive perturbation theory is a key method to reduce a given nonlinear system to a soliton system. Introductory survey is presented for an example of ionic mode in plasmas, although the method can be applied to any dispersive medium. Central subject of the present review is the analytical methods of solving nonlinear evolution equations. The inverse method, the Beacklund transformation and the conservation laws are discussed to emphasize that very firm analytical basis is now available to disentangle the nonlinear problems. Finally, a notion of ''dressed'' solitons is introduced on basis of the higher order analysis of the reductive perturbation theory. In spite of the fact that success is restricted so far only for the one dimensional system, the achievement of soliton physics encourages us to face dawn of nonlinear physics with a confident expectation for forthcoming break through in the field. (auth.)

  7. Singular solitons of generalized Camassa-Holm models

    International Nuclear Information System (INIS)

    Tian Lixin; Sun Lu

    2007-01-01

    Two generalizations of the Camassa-Holm system associated with the singular analysis are proposed for Painleve integrability properties and the extensions of already known analytic solitons. A remarkable feature of the physical model is that it has peakon solution which has peak form. An alternative WTC test which allowed the identifying of such models directly if formulated in terms of inserting a formed ansatz into these models. For the two models have Painleve property, Painleve-Baecklund systems can be constructed through the expansion of solitons about the singularity manifold. By the implementations of Maple, plentiful new type solitonic structures and some kink waves, which are affected by the variation of energy, are explored. If the energy is infinite in finite time, there will be a collapse in soliton systems by direct numerical simulations. Particularly, there are two collapses coexisting in our regular solitons, which occurred around its central regions. Simulation shows that in the bottom of periodic waves arises the non-zero parts of compactons and anti-compactons. We also get floating solitary waves whose amplitude is infinite. In contrary to which a finite-amplitude blow-up soliton is obtained. Periodic blow-ups are found too. Special kinks which have periodic cuspons are derived

  8. Observation of attraction between dark solitons

    DEFF Research Database (Denmark)

    Dreischuh, A.; Neshev, D.N.; Petersen, D.E.

    2006-01-01

    We demonstrate a dramatic change in the interaction forces between dark solitons in nonlocal nonlinear media. We present what we believe is the first experimental evidence of attraction of dark solitons. Our results indicate that attraction should be observable in other nonlocal systems...

  9. Reversible decay of ring dark solitons

    International Nuclear Information System (INIS)

    Toikka, L A; Suominen, K-A

    2014-01-01

    We show how boundary effects can cause a Bose–Einstein condensate to periodically oscillate between a (circular) array of quantized vortex–antivortex pairs and a (ring) dark soliton. If the boundary is restrictive enough, the ring dark soliton becomes long-lived. (paper)

  10. Existence and switching behavior of bright and dark Kerr solitons in whispering-gallery mode resonators with zero group-velocity dispersion

    Science.gov (United States)

    Talla Mbé, Jimmi H.; Milián, Carles; Chembo, Yanne K.

    2017-07-01

    We use the generalized Lugiato-Lefever model to investigate the phenomenon of Kerr optical frequency comb generation when group-velocity dispersion is null. In that case, the first dispersion term that plays a leading role is third-order dispersion. We show that this term is sufficient to allow for the existence of both bright and dark solitons. We identify the areas in the parameter space where both kind of solitons can be excited inside the resonator. We also unveil a phenomenon of hysteretic switching between these two types of solitons when the power of the pump laser is cyclically varied. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  11. Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide.

    Science.gov (United States)

    Ciret, Charles; Leo, François; Kuyken, Bart; Roelkens, Gunther; Gorza, Simon-Pierre

    2016-01-11

    We report on the first experimental observation of an optical analogue of an event horizon in integrated nanophotonic waveguides, through the reflection of a continuous wave on an intense pulse. The experiment is performed in a dispersion-engineered silicon-on-insulator waveguide. In this medium, solitons do not suffer from Raman induced self-frequency shift as in silica fibers, a feature that is interesting for potential applications of optical event horizons. As shown by simulations, this also allows the observation of multiple reflections at the same time on fundamental solitons ejected by soliton fission.

  12. Soliton structure in crystalline acetanilide

    International Nuclear Information System (INIS)

    Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.

    1984-01-01

    The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons

  13. Ion-sound emission by Langmuir soliton reflected at density barrier

    International Nuclear Information System (INIS)

    El-Ashry, M.Y.

    1989-07-01

    The emission of ion-sound waves by an accelerated Langmuir soliton is studied. The acceleration of the soliton is due to an inhomogeneous density barrier. On the assumption that the kinetic energy of the Langmuir soliton is smaller than the potential energy created by the barrier. The basic equations describing the dynamic behaviour of the soliton and the emission of the ion-sound waves are formulated. The qualitative spatial distributions of the perturbed concentration in the ion-sound waves are analyzed at different characteristic points of the soliton. The energy lost by the soliton, as a result of the emission, is estimated. (author). 6 refs, 4 figs

  14. Ion-acoustic dressed solitons in a dusty plasma

    International Nuclear Information System (INIS)

    Tiwari, R.S.; Mishra, M.K.

    2006-01-01

    Using the reductive perturbation method, equations for ion-acoustic waves governing the evolution of first- and second-order potentials in a dusty plasma including the dynamics of charged dust grains have been derived. The renormalization procedure of Kodama and Taniuti is used to obtain a steady state nonsecular solution of these equations. The variation of velocity and width of the Korteweg-de Vries (KdV) as well as dressed solitons with amplitude have been studied for different concentrations and charge multiplicity of dust grains. The higher-order perturbation corrections to the KdV soliton description significantly affect the characteristics of the solitons in dusty plasma. It is found that in the presence of positively charged dust grains the system supports only compressive solitons. However, the plasma with negatively charged dust grains can support compressive solitons only up to a certain concentration of dust. Above this critical concentration of negative charge, the dusty plasma can support rarefactive solitons. An expression for the critical concentration of negatively charged dust in terms of charge and mass ratio of dust grains with plasma ions is also derived

  15. Solitons in dusty plasmas with positive dust grains

    International Nuclear Information System (INIS)

    Baluku, T. K.; Hellberg, M. A.; Mace, R. L.

    2008-01-01

    Although ''typical'' micrometer-sized dust grains in a space or laboratory plasma are often negatively charged because of collisions with the mobile electrons, there are environments in which grains may take on a positive charge. We consider a dusty plasma composed of electrons, positive ions and positive dust grains, and use the fluid dynamic paradigm to identify existence domains in parameter space for both dust-acoustic (DA) and dust-modified ion-acoustic (DIA) solitons. Only positive potential DA solitons are found. This represents an expected antisymmetry with the case of negative dust, where previously only negative solitons were reported. However, whereas for negative dust DIA solitons of either sign of potential may exist, we find that for the case of positive dust, DIA solitons are restricted to positive potentials only. The results for both positive and negative dust are consistent with an hypothesis that, in the absence of flows, the sign(s) of the soliton potential coincide(s) with the sign(s) of the species whose inertia is included in the calculation; i.e., the cold, supersonic species present in the plasma

  16. Soliton solutions for Q3

    International Nuclear Information System (INIS)

    Atkinson, James; Nijhoff, Frank; Hietarinta, Jarmo

    2008-01-01

    We construct N-soliton solutions to the equation called Q3 in the recent Adler-Bobenko-Suris classification. An essential ingredient in the construction is the relationship of (Q3) δ=0 to the equation proposed by Nijhoff, Quispel and Capel in 1983 (the NQC equation). This latter equation has two extra parameters, and depending on their sign choices we get a 4-to-1 relationship from NQC to (Q3) δ=0 . This leads to a four-term background solution, and then to a 1-soliton solution using a Baecklund transformation. Using the 1SS as a guide allows us to get the N-soliton solution in terms of the τ-function of the Hirota-Miwa equation. (fast track communication)

  17. Peregrine soliton generation and breakup in standard telecommunications fiber.

    Science.gov (United States)

    Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Morin, Philippe; Fatome, Julien; Dudley, John M; Millot, Guy

    2011-01-15

    We present experimental and numerical results showing the generation and breakup of the Peregrine soliton in standard telecommunications fiber. The impact of nonideal initial conditions is studied through direct cutback measurements of the longitudinal evolution of the emerging soliton dynamics and is shown to be associated with the splitting of the Peregrine soliton into two subpulses, with each subpulse itself exhibiting Peregrine soliton characteristics. Experimental results are in good agreement with simulations.

  18. Spectral long-range interaction of temporal incoherent solitons.

    Science.gov (United States)

    Xu, Gang; Garnier, Josselin; Picozzi, Antonio

    2014-02-01

    We study the interaction of temporal incoherent solitons sustained by a highly noninstantaneous (Raman-like) nonlinear response. The incoherent solitons exhibit a nonmutual interaction, which can be either attractive or repulsive depending on their relative initial distance. The analysis reveals that incoherent solitons exhibit a long-range interaction in frequency space, which is in contrast with the expected spectral short-range interaction described by the usual approach based on the Raman-like spectral gain curve. Both phenomena of anomalous interaction and spectral long-range behavior of incoherent solitons are described in detail by a long-range Vlasov equation.

  19. Reflection of ion acoustic solitons in a plasma having negative ions

    International Nuclear Information System (INIS)

    Chauhan, S.S.; Malik, H.K.; Dahiya, R.P.

    1996-01-01

    Reflection of compressive and rarefactive ion acoustic solitons propagating in an inhomogeneous plasma in the presence of negative ions is investigated. Modified Korteweg endash deVries equations for incident and reflected solitons are derived and solved. The amplitude of incident and reflected solitons increases with negative to positive ion density ratio. With increasing density ratio, reflection of rarefactive solitons is reinforced whereas that of compressive solitons weakened. The rarefactive solitons are found to undergo stronger reflection than the compressive ones. copyright 1996 American Institute of Physics

  20. Multiple atomic dark solitons in cigar-shaped Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Theocharis, G.; Kevrekidis, P. G.; Weller, A.; Ronzheimer, J. P.; Gross, C.; Oberthaler, M. K.; Frantzeskakis, D. J.

    2010-01-01

    We consider the stability and dynamics of multiple dark solitons in cigar-shaped Bose-Einstein condensates. Our study is motivated by the fact that multiple matter-wave dark solitons may naturally form in such settings as per our recent work [Phys. Rev. Lett. 101, 130401 (2008)]. First, we study the dark soliton interactions and show that the dynamics of well-separated solitons (i.e., ones that undergo a collision with relatively low velocities) can be analyzed by means of particle-like equations of motion. The latter take into regard the repulsion between solitons (via an effective repulsive potential) and the confinement and dimensionality of the system (via an effective parabolic trap for each soliton). Next, based on the fact that stationary, well-separated dark multisoliton states emerge as a nonlinear continuation of the appropriate excited eigenstates of the quantum harmonic oscillator, we use a Bogoliubov-de Gennes analysis to systematically study the stability of such structures. We find that for a sufficiently large number of atoms, multiple soliton states are dynamically stable, while for a small number of atoms, we predict a dynamical instability emerging from resonance effects between the eigenfrequencies of the soliton modes and the intrinsic excitation frequencies of the condensate. Finally, we present experimental realizations of multisoliton states including a three-soliton state consisting of two solitons oscillating around a stationary one and compare the relevant results to the predictions of the theoretical mean-field model.

  1. Optimizing switching frequency of the soliton transistor by numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Izadyar, S., E-mail: S_izadyar@yahoo.co [Department of Electronics, Khaje Nasir Toosi University of Technology, Shariati Ave., Tehran (Iran, Islamic Republic of); Niazzadeh, M.; Raissi, F. [Department of Electronics, Khaje Nasir Toosi University of Technology, Shariati Ave., Tehran (Iran, Islamic Republic of)

    2009-10-15

    In this paper, by numerical simulations we have examined different ways to increase the soliton transistor's switching frequency. Speed of the solitons in a soliton transistor depends on various parameters such as the loss of the junction, the applied bias current, and the transmission line characteristics. Three different ways have been examined; (i) decreasing the size of the transistor without losing transistor effect. (ii) Decreasing the amount of loss of the junction to increase the soliton speed. (iii) Optimizing the bias current to obtain maximum possible speed. We have obtained the shortest possible length to have at least one working soliton inside the transistor. The dimension of the soliton can be decreased by changing the inductance of the transmission line, causing a further decrease in the size of the transistor, however, a trade off between the size and the inductance is needed to obtain the optimum switching speed. Decreasing the amount of loss can be accomplished by increasing the characteristic tunneling resistance of the device, however, a trade off is again needed to make soliton and antisoliton annihilation possible. By increasing the bias current, the forces acting the solitons increases and so does their speed. Due to nonuniform application of bias current a self induced magnetic field is created which can result in creation of unwanted solitons. Optimum bias current application can result in larger bias currents and larger soliton speed. Simulations have provided us with such an arrangement of bias current paths.

  2. Optimizing switching frequency of the soliton transistor by numerical simulation

    International Nuclear Information System (INIS)

    Izadyar, S.; Niazzadeh, M.; Raissi, F.

    2009-01-01

    In this paper, by numerical simulations we have examined different ways to increase the soliton transistor's switching frequency. Speed of the solitons in a soliton transistor depends on various parameters such as the loss of the junction, the applied bias current, and the transmission line characteristics. Three different ways have been examined; (i) decreasing the size of the transistor without losing transistor effect. (ii) Decreasing the amount of loss of the junction to increase the soliton speed. (iii) Optimizing the bias current to obtain maximum possible speed. We have obtained the shortest possible length to have at least one working soliton inside the transistor. The dimension of the soliton can be decreased by changing the inductance of the transmission line, causing a further decrease in the size of the transistor, however, a trade off between the size and the inductance is needed to obtain the optimum switching speed. Decreasing the amount of loss can be accomplished by increasing the characteristic tunneling resistance of the device, however, a trade off is again needed to make soliton and antisoliton annihilation possible. By increasing the bias current, the forces acting the solitons increases and so does their speed. Due to nonuniform application of bias current a self induced magnetic field is created which can result in creation of unwanted solitons. Optimum bias current application can result in larger bias currents and larger soliton speed. Simulations have provided us with such an arrangement of bias current paths.

  3. Travelling solitons in the parametrically driven nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Zemlyanaya, E.V.; Baer, M.

    2000-01-01

    We show that the parametrically driven nonlinear Schroedinger equation has wide classes of travelling soliton solutions, some of which are stable. For small driving strengths stable nonpropagating and moving solitons co-exist while strongly forced solitons can only be stable when moving sufficiently fast

  4. Ultrashort optical waveguide excitations in uniaxial silica fibers: elastic collision scenarios.

    Science.gov (United States)

    Kuetche, Victor K; Youssoufa, Saliou; Kofane, Timoleon C

    2014-12-01

    In this work, we investigate the dynamics of an uniaxial silica fiber under the viewpoint of propagation of ultimately ultrashort optical waveguide channels. As a result, we unveil the existence of three typical kinds of ultrabroadband excitations whose profiles strongly depend upon their angular momenta. Looking forward to surveying their scattering features, we unearth some underlying head-on scenarios of elastic collisions. Accordingly, we address some useful and straightforward applications in nonlinear optics through secured data transmission systems, as well as laser physics and soliton theory with optical soliton dynamics.

  5. Hopf solitons in the Nicole model

    International Nuclear Information System (INIS)

    Gillard, Mike; Sutcliffe, Paul

    2010-01-01

    The Nicole model is a conformal field theory in a three-dimensional space. It has topological soliton solutions classified by the integer-valued Hopf charge, and all currently known solitons are axially symmetric. A volume-preserving flow is used to construct soliton solutions numerically for all Hopf charges from 1 to 8. It is found that the known axially symmetric solutions are unstable for Hopf charges greater than 2 and new lower energy solutions are obtained that include knots and links. A comparison with the Skyrme-Faddeev model suggests many universal features, though there are some differences in the link types obtained in the two theories.

  6. Steering the motion of rotary solitons in radial lattices

    International Nuclear Information System (INIS)

    He, Y. J.; Malomed, Boris A.; Wang, H. Z.

    2007-01-01

    We demonstrate that rotary motion of a two-dimensional soliton trapped in a Bessel lattice can be precisely controlled by application of a finite-time push to the lattice, due to the transfer of the lattice's linear momentum to the orbital momentum of the soliton. A simple analytical consideration treating the soliton as a particle provides for an accurate explanation of numerical findings. Some effects beyond the quasi-particle approximation are explored too, such as destruction of the soliton by a hard push

  7. Dark Solitons in FPU Lattice Chain

    Science.gov (United States)

    Wang, Deng-Long; Yang, Ru-Shu; Yang, You-Tian

    2007-11-01

    Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton. Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.

  8. Dark Solitons in FPU Lattice Chain

    International Nuclear Information System (INIS)

    Wang Denglong; Yang Youtian; Yang Rushu

    2007-01-01

    Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton. Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.

  9. Dynamical creation of complex vector solitons in spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xiong Bo; Gong Jiangbin

    2010-01-01

    By numerical simulations of the Gross-Pitaevskii mean-field equations, we show that the dynamical creation of stable complex vector solitons in a homogeneous spin-1 Bose-Einstein condensate can be achieved by applying a localized magnetic field for a certain duration, with the initial uniform density prepared differently for the formation of different vector solitons. In particular, it is shown that stable dark-bright-dark vector solitons, dark-bright-bright vector solitons, and other analogous solutions can be dynamically created. It is also found that the peak intensity and the group velocity of the vector solitons thus generated can be tuned by adjusting the applied magnetic field. Extensions of our approach also allow for the creation of vector-soliton chains or the pumping of many vector solitons. The results can be useful for possible vector-soliton-based applications of dilute Bose-Einstein condensates.

  10. Electromagnetic solitons in degenerate relativistic electron–positron plasma

    International Nuclear Information System (INIS)

    Berezhiani, V I; Shatashvili, N L; Tsintsadze, N L

    2015-01-01

    The existence of soliton-like electromagnetic (EM) distributions in a fully degenerate electron–positron plasma is studied applying relativistic hydrodynamic and Maxwell equations. For a circularly polarized wave it is found that the soliton solutions exist both in relativistic as well as nonrelativistic degenerate plasmas. Plasma density in the region of soliton pulse localization is reduced considerably. The possibility of plasma cavitation is also shown. (invited comment)

  11. Nonlinear optics of fibre event horizons.

    Science.gov (United States)

    Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G

    2014-09-17

    The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.

  12. Phase-locked Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1991-01-01

    Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...

  13. Homotopy and solitons. 1

    International Nuclear Information System (INIS)

    Boya, L.J.; Carinena, J.F.; Mateos, J.

    1978-01-01

    Starting from classical field theory with a Lagrangian, solitons are identified with solutions of the field equations which satisfy peculiar boundary conditions. The symmetry group which causes the degenerate vacuum is taken generally internal, that is, not operating in space-time. Gauge symmetry plays a dominant role. A precise definition of solitons is given and it is shown how to study some continuous mappings of the ''distant'' parts of space on the set of degenerate vacua. A marvellous instrument, the exact homotopy sequence, is applied to calculate homotopy groups of some higher-dimensional manifolds

  14. Introduction to solitons and their applications in physics and biology

    International Nuclear Information System (INIS)

    Peyrard, M.

    1995-01-01

    The response of most of the physical systems to combined excitations is not a simple superposition of their response to individual stimuli. This is particularly true for biological systems in which the nonlinear effects are often the dominant ones. The intrinsic treatment of nonlinearities in mathematical models and physical systems has led to the emergence of the chaos and solitons concepts. The concept of soliton, relevant for systems with many degrees of freedom, provides a new tool in the studies of biomolecules because it has no equivalent in the world of linear excitations. The aim of this lecture is to present the main ideas that underline the soliton concept and to discuss some applications. Solitons are solitary waves, that propagate at constant speed without changing their shape. They are extremely stable to perturbations, in particular to collisions with small amplitude linear waves and with other solitons. Conditions to have solitons and equations of solitons propagation are analysed. Solitons can be divided into two main classes: topological and non-topological solitons which can be found at all scales and in various domains of physics and chemistry. Using simple examples, this paper shows how linear expansions can miss completely essential physical properties of a system. This is particularly characteristic for the pendulum chain example. Soliton theory offers alternative methods. Multiple scale approximations, or expansion on a soliton basis, can be very useful to provide a description of some physical phenomena. Nonlinear energy localization is also a very important concept valid for a large variety of systems. These concepts are probably even more relevant for biological molecules than for solid state physics, because these molecules are very deformable objects where large amplitude nonlinear motions or conformational changes are crucial for function. (J.S.). 14 refs., 9 figs

  15. Surface-wave solitons between linear media and nonlocal nonlinear media

    International Nuclear Information System (INIS)

    Shi Zhiwei; Li Huagang; Guo Qi

    2011-01-01

    We address surface solitons at the interface between linear media and nonlocal nonlinear media in the presence of a discontinuity in refractive index at the surface of these two materials. We investigated the influence of the degree of nonlocality on the stability, energy flow, and full width at half-maximum of the surface wave solitons. It is shown that surface solitons will be stable only if the degree of nonlocality exceeds a critical value. We find that the refractive index difference can affect the power distribution of the surface solitons in the two media. Also, different boundary values at the interface can lead to different relative peak positions of the surface solitons. However, neither the refractive index nor the boundary conditions can affect the stability of the solitons, for a given degree of nonlocality.

  16. Energy-exchange collisions of dark-bright-bright vector solitons.

    Science.gov (United States)

    Radhakrishnan, R; Manikandan, N; Aravinthan, K

    2015-12-01

    We find a dark component guiding the practically interesting bright-bright vector one-soliton to two different parametric domains giving rise to different physical situations by constructing a more general form of three-component dark-bright-bright mixed vector one-soliton solution of the generalized Manakov model with nine free real parameters. Moreover our main investigation of the collision dynamics of such mixed vector solitons by constructing the multisoliton solution of the generalized Manakov model with the help of Hirota technique reveals that the dark-bright-bright vector two-soliton supports energy-exchange collision dynamics. In particular the dark component preserves its initial form and the energy-exchange collision property of the bright-bright vector two-soliton solution of the Manakov model during collision. In addition the interactions between bound state dark-bright-bright vector solitons reveal oscillations in their amplitudes. A similar kind of breathing effect was also experimentally observed in the Bose-Einstein condensates. Some possible ways are theoretically suggested not only to control this breathing effect but also to manage the beating, bouncing, jumping, and attraction effects in the collision dynamics of dark-bright-bright vector solitons. The role of multiple free parameters in our solution is examined to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation of our solution. It is interesting to note that the polarization vector of our mixed vector one-soliton evolves in sphere or hyperboloid depending upon the initial parametric choices.

  17. Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber.

    Science.gov (United States)

    Serebryannikov, Evgenii E; von der Linde, Dietrich; Zheltikov, Aleksei M

    2008-05-01

    Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.

  18. Solitons: interactions, theoretical and experimental challenges and perspectives (physics research and technology)

    CERN Document Server

    2013-01-01

    In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet or pulse) that maintains its shape while it travels at constant speed. Solitons are caused by a cancellation of non-linear and dispersive effects in the medium. In this book, the authors discuss the interactions and theoretical and experimental challenges of solitons. Topics include soliton motion of electrons and its physical properties in coupled electron-phonon systems and ionic crystals; soliton excitations and its experimental evidence in molecular crystals; shapes and dynamics of semi-discrete solitons in arrayed and stacked waveguiding systems; ion-acoustic super solitons in plasma; diamond-controlled solitons and turbulence in extracellular matrix and lymphatic dynamics; and non-linear waves in strongly interacting relativistic fluids.

  19. Extension of noncommutative soliton hierarchies

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2004-01-01

    A linear system, which generates a Moyal-deformed two-dimensional soliton equation as an integrability condition, can be extended to a three-dimensional linear system, treating the deformation parameter as an additional coordinate. The supplementary integrability conditions result in a first-order differential equation with respect to the deformation parameter, the flow of which commutes with the flow of the deformed soliton equation. In this way, a deformed soliton hierarchy can be extended to a bigger hierarchy by including the corresponding deformation equations. We prove the extended hierarchy properties for the deformed AKNS hierarchy, and specialize to the cases of deformed NLS, KdV and mKdV hierarchies. Corresponding results are also obtained for the deformed KP hierarchy. A deformation equation determines a kind of Seiberg-Witten map from classical solutions to solutions of the respective 'noncommutative' deformed equation

  20. Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Katti, Aavishkar; Yadav, R.A., E-mail: rayadav@bhu.ac.in

    2017-01-23

    Spatial solitons in biased photorefractive media due to the photovoltaic effect and the pyroelectric effect are investigated. The pyroelectric field considered is induced due to the heating by the incident beam's energy. These solitons can be called screening photovoltaic pyroelectric solitons. It is shown that the solitons can exist in the bright and dark realizations. The conditions for formation of these solitons are discussed. Relevant example is considered to illustrate the self trapping of such solitons. The external electric field interacts with the photovoltaic field and the pyroelectric field to either support or oppose the self trapping. - Highlights: • Effect of pyroelectric field on screening photovoltaic solitons is studied. • Illumination induced pyroelectric field is considered for the first time. • Self trapping depends on external, pyroelectric and photovoltaic space charge field.

  1. Nonlinear analysis and simulation of soliton in the traffic flow; Kotsu jutai soliton no hassei kiko nikansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, M. [Shizuoka University, Shizuoka (Japan); Nagatani, T. [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1999-07-25

    Traffic jams are investigated numerically and analystically in the optimal velocity model on a single-line highway. The condition is found whether or not traffic jams occur when a car stops instantly. It is shown that traffic soliton appears at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability point. The soliton obtained from the nonlinear analysis is consistent with that of the numerical simulation. (author)

  2. Quantization in presence of external soliton fields

    International Nuclear Information System (INIS)

    Grosse, H.; Karner, G.

    1986-01-01

    Quantization of a fermi field interacting with an external soliton protential is considered. Classes of interactions leading to unitarily equivalent representations of the canonical anticommutation relations are determined. Soliton-like potentials compared to trivial ones yield inequivalent representations. (Author)

  3. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  4. Three-Dimensional Hermite—Bessel—Gaussian Soliton Clusters in Strongly Nonlocal Media

    International Nuclear Information System (INIS)

    Jin Hai-Qin; Yi Lin; Liang Jian-Chu; Cai Ze-Bin; Liu Fei

    2012-01-01

    We analytically and numerically demonstrate the existence of Hermite—Bessel—Gaussian spatial soliton clusters in three-dimensional strongly nonlocal media. It is found that the soliton clusters display the vortex, dipole azimuthon and quadrupole azimuthon in geometry, and the total number of solitons in the necklaces depends on the quantum number n and m of the Hermite functions and generalized Bessel polynomials. The numerical simulation is basically identical to the analytical solution, and white noise does not lead to collapse of the soliton, which confirms the stability of the soliton waves. The theoretical predictions may give new insights into low-energetic spatial soliton transmission with high fidelity

  5. Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Wang, Shun-Jin; Jia, Cheng-Long; An, Jun-Hong; Zhao, Dun; Luo, Hong-Gang

    2003-01-01

    The analytical dark and bright soliton solutions of the one-dimensional Gross-Pitaevskii equation with a confining potential are obtained. For the bright soliton, the recent experimental finding is studied, and the particle number of the soliton and the window of the particle numbers for the bright soliton to occur are estimated analytically and in good agreement with the experimental data. The existence of dark soliton for the attractive interaction and bright soliton for the repulsive interaction is predicted under proper conditions

  6. Dissipative Solitons that Cannot be Trapped

    International Nuclear Information System (INIS)

    Pardo, Rosa; Perez-Garcia, Victor M.

    2006-01-01

    We show that dissipative solitons in systems with high-order nonlinear dissipation cannot survive in the presence of trapping potentials of the rigid wall or asymptotically increasing type. Solitons in such systems can survive in the presence of a weak potential but only with energies out of the interval of existence of linear quantum mechanical stationary states

  7. Interaction of ring dark solitons with ring impurities in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xue Jukui

    2005-01-01

    The interaction of ring dark solitons/vortexes with the ring-shaped repulsive and attractive impurities in two-dimensional Bose-Einstein condensates is investigated numerically. Very rich interaction phenomena are obtained, i.e., not only the interaction between the ring soliton and the impurity, but also the interaction between vortexes and the impurity. The interaction characters, i.e., snaking of ring soliton, quasitrapping or reflection of ring soliton and vortexes by the impurity, strongly depend on initial ring soliton velocity, impurity strength, initial position of ring soliton and impurity. The numerical results also reveal that ring dark solitons/vortexes can be trapped and dragged by an adiabatically moving attractive ring impurity

  8. Controlling light by light with an optical event horizon.

    Science.gov (United States)

    Demircan, A; Amiranashvili, Sh; Steinmeyer, G

    2011-04-22

    A novel concept for an all-optical transistor is proposed and verified numerically. This concept relies on cross-phase modulation between a signal and a control pulse. Other than previous approaches, the interaction length is extended by temporally locking control and the signal pulse in an optical event horizon, enabling continuous modification of the central wavelength, energy, and duration of a signal pulse by an up to sevenfold weaker control pulse. Moreover, if the signal pulse is a soliton it may maintain its solitonic properties during the switching process. The proposed all-optical switching concept fulfills all criteria for a useful optical transistor in [Nat. Photon. 4, 3 (2010)], in particular, fan-out and cascadability, which have previously proven as the most difficult to meet.

  9. Dark-Bright Soliton Dynamics Beyond the Mean-Field Approximation

    Science.gov (United States)

    Katsimiga, Garyfallia; Koutentakis, Georgios; Mistakidis, Simeon; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2017-04-01

    The dynamics of dark bright solitons beyond the mean-field approximation is investigated. We first examine the case of a single dark-bright soliton and its oscillations within a parabolic trap. Subsequently, we move to the setting of collisions, comparing the mean-field approximation to that involving multiple orbitals in both the dark and the bright component. Fragmentation is present and significantly affects the dynamics, especially in the case of slower solitons and in that of lower atom numbers. It is shown that the presence of fragmentation allows for bipartite entanglement between the distinguishable species. Most importantly the interplay between fragmentation and entanglement leads to the decay of each of the initial mean-field dark-bright solitons into fast and slow fragmented dark-bright structures. A variety of excitations including dark-bright solitons in multiple (concurrently populated) orbitals is observed. Dark-antidark states and domain-wall-bright soliton complexes can also be observed to arise spontaneously in the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  10. A simple formula for the conserved charges of soliton theories

    International Nuclear Information System (INIS)

    Ferreira, Luiz Agostinho; Zakrzewski, Wojtek J.

    2007-01-01

    We present a simple formula for all the conserved charges of soliton theories, evaluated on the solutions belonging to the orbit of the vacuum under the group of dressing transformations. For pedagogical reasons we perform the explicit calculations for the case of the sine-Gordon model, taken as a prototype of soliton theories. We show that the energy and momentum are boundary terms for all the solutions on the orbit of the vacuum. That orbit includes practically all the solutions of physical interest, namely solitons, multi-solitons, breathers, and combinations of solitons and breathers. The example of the mKdV equation is also given explicitly

  11. Lossy effects in a nonlinear nematic optical fiber

    Science.gov (United States)

    Rodríguez, R. F.; Reyes, J. A.

    2001-09-01

    We use the multiple scales method to derive a generalized nonlinear Schrödinger equation that takes into account the dissipative effects in the reorientation of a nematic confined in a cylindrical waveguide. This equation has soliton-like solutions and predicts a decrease in the penetration length of the optical solitons for each propagating mode with respect to the dissipationless case.

  12. Creation and annihilation of solitons in the string nonlinear equation

    International Nuclear Information System (INIS)

    Aguero G, M.A.; Espinosa G, A.A.; Martinez O, J.

    1997-01-01

    Starting from the cubic-quintic Schroedinger equation it is obtained the nonlinear string equation. This system supports regular and singular solitons. It is shown that two singular solitons could be generated after the interaction of two regular solitons and viceversa. (Author)

  13. Generation of dark solitons and their instability dynamics in two-dimensional condensates

    Science.gov (United States)

    Verma, Gunjan; Rapol, Umakant D.; Nath, Rejish

    2017-04-01

    We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present.

  14. Fate of a gray soliton in a quenched Bose-Einstein condensate

    Science.gov (United States)

    Gamayun, O.; Bezvershenko, Yu. V.; Cheianov, V.

    2015-03-01

    We investigate the destiny of a gray soliton in a repulsive one-dimensional Bose-Einstein condensate undergoing a sudden quench of the nonlinearity parameter. The outcome of the quench is found to depend dramatically on the ratio η of the final and initial values of the speed of sound. For integer η the soliton splits into exactly 2 η -1 solitons. For noninteger η the soliton decays into multiple solitons and Bogoliubov modes. The case of integer η is analyzed in detail. The parameters of solitons in the out state are found explicitly. Our approach exploits the inverse scattering method and can be easily used for similar quenches in any classical integrable system.

  15. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers

    International Nuclear Information System (INIS)

    Tang, D.Y.; Zhao, L.M.; Zhao, B.; Liu, A.Q.

    2005-01-01

    We report results of numerical simulations on multiple-soliton generation and soliton energy quantization in a soliton fiber ring laser passively mode locked by using the nonlinear polarization rotation technique. We found numerically that the formation of multiple solitons in the laser is caused by a peak-power-limiting effect of the laser cavity. It is also the same effect that suppresses the soliton pulse collapse, an intrinsic feature of solitons propagating in gain media, and makes the solitons stable in the laser. Furthermore, we show that the soliton energy quantization observed in the lasers is a natural consequence of the gain competition between the multiple solitons. Enlightened by the numerical result we speculate that multisoliton formation and soliton energy quantization observed in other types of soliton fiber lasers could have a similar mechanism

  16. Spectroscopy of dark soliton states in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Bongs, K; Burger, S; Hellweg, D; Kottke, M; Dettmer, S; Rinkleff, T; Cacciapuoti, L; Arlt, J; Sengstock, K; Ertmer, W

    2003-01-01

    Experimental and numerical studies of the velocity field of dark solitons in Bose-Einstein condensates are presented. The formation process after phase imprinting as well as the propagation of the emerging soliton are investigated using spatially resolved Bragg spectroscopy of soliton states in Bose-Einstein condensates of 87 Rb. A comparison of experimental data to results from numerical simulations of the Gross-Pitaevskii equation clearly identifies the flux underlying a dark soliton propagating in a Bose-Einstein condensate. The results allow further optimization of the phase imprinting method for creating collective excitations of Bose-Einstein condensates

  17. Soliton on a cnoidal wave background in the coupled nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Shin, H J

    2004-01-01

    An application of the Darboux transformation on a cnoidal wave background in the coupled nonlinear Schroedinger equation gives a new solution which describes a soliton moving on a cnoidal wave. This is a generalized version of the previously known soliton solutions of dark-bright pair. Here a dark soliton resides on a cnoidal wave instead of on a constant background. It also exhibits a new type of soliton solution in a self-focusing medium, which describes a breakup of a generalized dark-bright pair into another generalized dark-bright pair and an 'oscillating' soliton. We calculate the shift of the crest of the cnoidal wave along a soliton and the moving direction of the soliton on a cnoidal wave

  18. Modification of Plasma Solitons by Resonant Particles

    DEFF Research Database (Denmark)

    Karpman, Vladimir; Lynov, Jens-Peter; Michelsen, Poul

    1979-01-01

    Experimental and numerical results are compared with new theoretical results describing soliton propagation and deformation in a strongly magnetized, plasma-loaded waveguide.......Experimental and numerical results are compared with new theoretical results describing soliton propagation and deformation in a strongly magnetized, plasma-loaded waveguide....

  19. Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Zhou, Binbin

    2010-01-01

    -matching point is located in the absorption region of the crystal, effectively absorbing the generated dispersive wave. By calculating the phase-matching curves for typically used frequency conversion crystals, we point out that the mid-IR absorption in the crystal in many cases automatically will filter away....... The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near......We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum...

  20. Form factors and excitations of topological solitons

    International Nuclear Information System (INIS)

    Weir, David J.; Rajantie, Arttu

    2011-01-01

    We show how the interaction properties of topological solitons in quantum field theory can be calculated with lattice Monte Carlo simulations. Topologically nontrivial field configurations are key to understanding the nature of the QCD vacuum through, for example, the dual superconductor picture. Techniques that we have developed to understand the excitations and form factors of topological solitons, such as kinks and 't Hooft-Polyakov monopoles, should be equally applicable to chromoelectric flux tubes. We review our results for simple topological solitons and their agreement with exact results, then discuss our progress towards studying objects of interest to high energy physics.

  1. Stationary walking solitons in bulk quadratic nonlinear media

    OpenAIRE

    Mihalache, Dumitru; Mazilu, D; Crasonavn, L C; Torner Sabata, Lluís

    1997-01-01

    We study the mutual trapping of fundamental and second-harmonic light beams propagating in bulk quadratic nonlinear media in the presence of Poynting vector beam walk-off. We show numerically the existence of a two-parameter family of (2 + 1)-dimensional stationary, spatial walking solitons. We have found that the solitons exist at various values of material parameters with different wave intensities and soliton velocities. We discuss the differences between (2 + 1) and (1 + 1)-dimensional wa...

  2. Properties of one-dimensional anharmonic lattice solitons

    Science.gov (United States)

    Szeftel, Jacob; Laurent-Gengoux, Pascal; Ilisca, Ernest; Hebbache, Mohamed

    2000-12-01

    The existence of bell- and kink-shaped solitons moving at constant velocity while keeping a permanent profile is studied in infinite periodic monoatomic chains of arbitrary anharmonicity by taking advantage of the equation of motion being integrable with respect to solitons. A second-order, non-linear differential equation involving advanced and retarded terms must be solved, which is done by implementing a scheme based on the finite element and Newton's methods. If the potential has a harmonic limit, the asymptotic time-decay behaves exponentially and there is a dispersion relation between propagation velocity and decay time. Inversely if the potential has no harmonic limit, the asymptotic regime shows up either as a power-law or faster than exponential. Excellent agreement is achieved with Toda's model. Illustrative examples are also given for the Fermi-Pasta-Ulam and sine-Gordon potentials. Owing to integrability an effective one-body potential is worked out in each case. Lattice and continuum solitons differ markedly from one another as regards the amplitude versus propagation velocity relationship and the asymptotic time behavior. The relevance of the linear stability analysis when applied to solitons propagating in an infinite crystal is questioned. The reasons preventing solitons from arising in a diatomic lattice are discussed.

  3. Polarization-dependent solitons in the strong coupling regime of semiconductor microcavities

    International Nuclear Information System (INIS)

    Fu, Y.; Zhang, W.L.; Wu, X.M.

    2015-01-01

    This paper studies the influence of polarization on formation of vectorial polariton soliton in semiconductor microcavities through numerical simulations. It is found that the polariton solution greatly depends on the polarization of both the pump and exciting fields. By properly choosing the pump and exciting field polarization, bright–bright or bright–dark vectorial polariton solitons can be formed. Especially, when the input conditions of pump or exciting field of the two opposite polarizations are slightly asymmetric, an interesting phenomenon that the dark solitons transform into bright solitons occurs in the branch of soliton solutions.

  4. Soliton Resolution for the Derivative Nonlinear Schrödinger Equation

    Science.gov (United States)

    Jenkins, Robert; Liu, Jiaqi; Perry, Peter; Sulem, Catherine

    2018-05-01

    We study the derivative nonlinear Schrödinger equation for generic initial data in a weighted Sobolev space that can support bright solitons (but exclude spectral singularities). Drawing on previous well-posedness results, we give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. At leading order and in space-time cones, the solution has the form of a multi-soliton whose parameters are slightly modified from their initial values by soliton-soliton and soliton-radiation interactions. Our analysis provides an explicit expression for the correction dispersive term. We use the nonlinear steepest descent method of Deift and Zhou (Commun Pure Appl Math 56:1029-1077, 2003) revisited by the {\\overline{partial}} -analysis of McLaughlin and Miller (IMRP Int Math Res Pap 48673:1-77, 2006) and Dieng and McLaughlin (Long-time asymptotics for the NLS equation via dbar methods. Preprint, arXiv:0805.2807, 2008), and complemented by the recent work of Borghese et al. (Ann Inst Henri Poincaré Anal Non Linéaire, https://doi.org/10.1016/j.anihpc.2017.08.006, 2017) on soliton resolution for the focusing nonlinear Schrödinger equation. Our results imply that N-soliton solutions of the derivative nonlinear Schrödinger equation are asymptotically stable.

  5. Baryons as solitons

    International Nuclear Information System (INIS)

    Walliser, Hans

    2000-01-01

    Chiral Lagrangians as effective field theories of QCD are successfully applied to meson physics in the framework of chiral perturbation theory. Because of their nonlinear structure these Lagrangians allow for static soliton solutions interpreted as baryons. Their semiclassical quantization, which provides the leading order in an 1/N C expansion with N C the number of colors, turned out to be insufficient to obtain satisfactory agreement with empirical baryon observables. However with N C =3, large corrections are expected in the next-to-leading order carried by mesonic fluctuations around the soliton background, which require renormalization to 1-loop. In contrast to chiral perturbation theory, the low-energy Lagrangian proves inapt and terms with an arbitrary number of gradients may in principle contribute. Assumptions about the a priori unknown higher chiral orders are tested by the scale-dependence of the results. For example, in the simple Sine-Gordon model with 1 scalar field in 1+1 dimensions, knowledge of the low-energy behavior together with the mere existence of an underlying 1-loop renormalizable scale-independent solitonic theory is sufficient to regain the full solution. Baryonic observables calculated within that framework generally lead to better agreement with experiment except for the axial quantities. For these quantities the 1/N C expansion does not converge sufficiently fast because the current algebra mixes different N C orders

  6. Two-photon cavity solitons in a laser: radiative profiles, interaction and control

    Energy Technology Data Exchange (ETDEWEB)

    Serrat, C [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 1, E-08222 Terrassa (Spain); Torrent, M C [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 1, E-08222 Terrassa (Spain); Vilaseca, R [Departament de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 1, E-08222 Terrassa (Spain); GarcIa-Ojalvo, J [Center for Applied Mathematics, Cornell University, Ithaca, NY 14853 (United States); Brambilla, M [Dipartimento di Fisica and INFM, Politecnico di Bari, Via E. Orabona 4, I-70126 Bari (Italy)

    2004-05-01

    We study the properties of two-photon cavity solitons that appear in a broad-area cascade laser. These vectorial solitons consist of islands of two-photon emission emerging over a background of single-photon emission. Analysis of their structural properties reveals singular features such as their short distance radiation of outgoing waves, which can be interpreted in terms of the soliton frequency profile. However, the phase of these solitons is not determined by any external factor, which influences the way in which the structures can be written and erased. We also examine ways of controlling the cavity-soliton position, and analyse the interaction between neighbouring cavity solitons. Finally, investigation of the parameter dependence of these structures shows a route from soliton-dominated to defect-mediated turbulence.

  7. On the theory of ultracold neutrons scattering by Davydov solitons

    International Nuclear Information System (INIS)

    Brizhik, L.S.

    1984-01-01

    Elastic coherent scattering of ultracold neutrons by Davydov solitons in one-dimensional periodic molecular chains without account of thermal oscillations of chain atoms is studied. It is shown that the expression for the differential cross section of the elastic neutron scattering by Davydov soliton breaks down into two components. One of them corresponds to scattering by a resting soliton, the other is proportional to the soliton velocity and has a sharp maximum in the direction of mirror reflection of neutrons from the chain

  8. Fractional Solitons in Excitonic Josephson Junctions

    Science.gov (United States)

    Su, Jung-Jung; Hsu, Ya-Fen

    The Josephson effect is especially appealing because it reveals macroscopically the quantum order and phase. Here we study this effect in an excitonic Josephson junction: a conjunct of two exciton condensates with a relative phase ϕ0 applied. Such a junction is proposed to take place in the quantum Hall bilayer (QHB) that makes it subtler than in superconductor because of the counterflow of excitonic supercurrent and the interlayer tunneling in QHB. We treat the system theoretically by first mapping it into a pseudospin ferromagnet then describing it by the Landau-Lifshitz-Gilbert equation. In the presence of interlayer tunneling, the excitonic Josephson junction can possess a family of fractional sine-Gordon solitons that resemble the static fractional Josephson vortices in the extended superconducting Josephson junctions. Interestingly, each fractional soliton carries a topological charge Q which is not necessarily a half/full integer but can vary continuously. The resultant current-phase relation (CPR) shows that solitons with Q =ϕ0 / 2 π are the lowest energy states for small ϕ0. When ϕ0 > π , solitons with Q =ϕ0 / 2 π - 1 take place - the polarity of CPR is then switched.

  9. Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium

    Science.gov (United States)

    Dasanayaka, Sahan; Atai, Javid

    2011-08-01

    Interactions between quiescent solitons in Bragg gratings with cubic-quintic nonlinearity and dispersive reflectivity are systematically investigated. In a previous work two disjoint families of solitons were identified in this model. One family can be viewed as the generalization of the Bragg grating solitons in Kerr nonlinearity with dispersive reflectivity (Type 1). On the other hand, the quintic nonlinearity is dominant in the other family (Type 2). For weak to moderate dispersive reflectivity, two in-phase solitons will attract and collide. Possible collision outcomes include merger to form a quiescent soliton, formation of three solitons including a quiescent one, separation after passing through each other once, asymmetric separation after several quasielastic collisions, and soliton destruction. Type 2 solitons are always destroyed by collisions. Solitons develop sidelobes when dispersive reflectivity is strong. In this case, it is found that the outcome of the interactions is strongly dependent on the initial separation of solitons. Solitons with sidelobes will collide only if they are in-phase and their initial separation is below a certain critical value. For larger separations, both in-phase and π-out-of-phase Type 1 and Type 2 solitons may either repel each other or form a temporary bound state that subsequently splits into two separating solitons. Additionally, in the case of Type 2 solitons, for certain initial separations, the bound state disintegrates into a single moving soliton.

  10. Gray solitons in a strongly interacting superfluid Fermi gas

    International Nuclear Information System (INIS)

    Spuntarelli, Andrea; Pieri, Pierbiagio; Strinati, Giancarlo C; Carr, Lincoln D

    2011-01-01

    The Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover problem is solved for stationary gray solitons via the Boguliubov-de Gennes equations at zero temperature. These crossover solitons exhibit a localized notch in the gap and a characteristic phase difference across the notch for all interaction strengths, from BEC to BCS regimes. However, they do not follow the well-known Josephson-like sinusoidal relationship between velocity and phase difference except in the far BEC limit: at unitarity, the velocity has a nearly linear dependence on phase difference over an extended range. For a fixed phase difference, the soliton is of nearly constant depth from the BEC limit to unitarity and then grows progressively shallower into the BCS limit, and on the BCS side, Friedel oscillations are apparent in both gap amplitude and phase. The crossover soliton appears fundamentally in the gap; we show, however, that the density closely follows the gap, and the soliton is therefore observable. We develop an approximate power-law relationship to express this fact: the density of gray crossover solitons varies as the square of the gap amplitude in the BEC limit and as a power of about 1.5 at unitarity.

  11. Soliton patterns and breakup thresholds in hydrogen-bonded chains

    International Nuclear Information System (INIS)

    Tchakoutio Nguetcho, A.S.; Kofane, T.C.

    2006-12-01

    We study the dynamics of protons in hydrogen-bonded quasi one-dimensional networks in terms of a diatomic lattice model of protons and heavy ions, with a phi-four on-site substrate potential. We show that the model with linear and nonlinear coupling between lattice sites of the quartic type for the protons admits a richer dynamics that cannot be found with linear coupling. Depending on the two types of physical boundary conditions namely, the drop and condensate types of boundary conditions, and on conditions that require the presence of linear and nonlinear dispersion terms, soliton patterns that are represented by soliton with compact support, peak, drop, bell, cusp, shock, kink, bubble and loop solitons, are derived within a continuum approximation. The phase trajectories, as well as an analytical analysis, provide information on an disintegration of soliton patterns upon reaching some critical values of the lattice parameters. The total energies of soliton patterns are exactly calculated in the displacive limit. We also show that when the phonon anharmonism is taken into account, the width and the energy of soliton patterns are in qualitative agreement with experimental data. (author)

  12. Generation and interaction of solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Burger, S.; Sengstock, K.; Carr, L.D.; Oehberg, P.; Sanpera, A.

    2002-01-01

    Generation, interaction, and detection of dark solitons in Bose-Einstein condensates are studied. In particular, we focus on the dynamics resulting from phase imprinting and density engineering. We show that solitons slow down significantly when the trap is opened and that soliton phase shifts after binary interactions cannot be observed with present experiments. Finally, motivated by the recent experimental results of Cornish et al. [Phys. Rev Lett. 85, 1795 (2000)], we analyze the stability of dark solitons under changes of the scattering length and thereby demonstrate a new way to detect them. Our theoretical and numerical results compare well with the existing experimental ones and provide guidance for future experiments

  13. Detection of fractional solitons in quantum spin Hall systems

    Science.gov (United States)

    Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B.

    2018-03-01

    We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.

  14. General N-Dark Soliton Solutions of the Multi-Component Mel'nikov System

    Science.gov (United States)

    Han, Zhong; Chen, Yong; Chen, Junchao

    2017-07-01

    A general form of N-dark soliton solutions of the multi-component Mel'nikov system are presented. Taking the coupled Mel'nikov system comprised of two-component short waves and one-component long wave as an example, its general N-dark-dark soliton solutions in Gram determinant form are constructed through the KP hierarchy reduction method. The dynamics of single dark-dark soliton and two dark-dark solitons are discussed in detail. It can be shown that the collisions of dark-dark solitons are elastic and energies of the solitons in different components completely transmit through. In addition, the dark-dark soliton bound states including both stationary and moving cases are also investigated. An interesting feature for the coupled Mel'nikov system is that the stationary dark-dark soliton bound states can exist for all possible combinations of nonlinearity coefficients including positive, negative and mixed types, while the moving case are possible when nonlinearity coefficients take opposite signs or they are both negative.

  15. Noncommutative solitons: moduli spaces, quantization, finite θ effects and stability

    Science.gov (United States)

    Hadasz, Leszek; Rocek, Martin; Lindström, Ulf; von Unge, Rikard

    2001-06-01

    We find the N-soliton solution at infinite θ, as well as the metric on the moduli space corresponding to spatial displacements of the solitons. We use a perturbative expansion to incorporate the leading θ-1 corrections, and find an effective short range attraction between solitons. We study the stability of various solutions. We discuss the finite θ corrections to scattering, and find metastable orbits. Upon quantization of the two-soliton moduli space, for any finite θ, we find an s-wave bound state.

  16. Magnetization Reversal through Soliton in a Site-Dependent Weak Ferromagnet

    International Nuclear Information System (INIS)

    Kavitha, L.; Sathishkumar, P.; Saravanan, M.; Gopi, D.

    2010-06-01

    Switching the magnetization of a magnetic bit through flipping of soliton offers the possibility of developing a new innovative approach for data storage technologies. The spin dynamics of a site-dependent ferromagnet with antisymmetric Dzyaloshinskii-Moriya interaction is governed by a generalized inhomogeneous higher order nonlinear Schroedinger equation. We demonstrate the magnetization reversal through flipping of soliton in the ferromagnetic medium by solving the two coupled evolution equations for the velocity and amplitude of the soliton using the fourth order Runge-Kutta method numerically. We propose a new approach to induce the flipping behaviour of soliton in the presence of inhomogeneity by tuning the parameter associated with Dzyaloshinskii-Moriya interaction which causes the soliton to move with constant velocity and amplitude along the spin lattice. (author)

  17. Phononless soliton waves as early forerunners of crystalline material fracture

    International Nuclear Information System (INIS)

    Dubovskij, O.A.; Orlov, A.V.

    2007-01-01

    Phononless soliton waves of compression are shown to generate at a critical tension of crystals featuring real Lennard-Jones potential of interatomic interaction just before their fracture. A new method of nonlinear micro dynamics was applied to define the initial atomic displacements at high excitation energies. A solution is found that corresponds to a soliton wave running before the front of fracture. In a bounded crystal, the soliton being reflected from the crystal boundary passes the front of fracture and deforms while moving in the opposite direction. The amplitude and spectral characteristics of that type of soliton waves in crystals with a modified Lennard-Jones potential have been investigated. An approximate analytical solution was found for the soliton waves [ru

  18. Ball solitons in kinetics of the first order magnetic phase transition

    International Nuclear Information System (INIS)

    Nietz, V.V.; Osipov, A.A.

    2007-01-01

    The theory of magnetic ball solitons (BS), arising as a result of the energy fluctuations at the spin-flop transition induced by a magnetic field in antiferromagnets with uniaxial anisotropy, is presented. Such solitons are possible in a wide range of amplitudes and energies, including the negative energy relative to an initial condition. When such an antiferromagnet is in a metastable condition, ball solitons are born with the greatest probability if the energy of solitons is close to zero. Evolution of these solitons, at which they develop into macroscopic domains of a new magnetic phase, is analyzed, thus carrying out full phase reorganization

  19. Soliton cellular automata associated with crystal bases

    International Nuclear Information System (INIS)

    Hatayama, Goro; Kuniba, Atsuo; Takagi, Taichiro

    2000-01-01

    We introduce a class of cellular automata associated with crystals of irreducible finite dimensional representations of quantum affine algebras U' q (g-circumflex n ). They have solitons labeled by crystals of the smaller algebra U' q (g-circumflex n-1 ). We prove stable propagation of one soliton for g-circumflex n =A (2) 2n-1 ,A (2) 2n ,B (1) n ,C (1) n ,D (1) n and D (2) n+1 . For g-circumflex n =C (1) n , we also prove that the scattering matrices of two solitons coincide with the combinatorial R matrices of U' q (C (1) n-1 )-crystals

  20. Solitons as candidates for energy carriers in Fermi-Pasta-Ulam lattices

    Science.gov (United States)

    Ming, Yi; Ye, Liu; Chen, Han-Shuang; Mao, Shi-Feng; Li, Hui-Min; Ding, Ze-Jun

    2018-01-01

    Currently, effective phonons (renormalized or interacting phonons) rather than solitary waves (for short, solitons) are regarded as the energy carriers in nonlinear lattices. In this work, by using the approximate soliton solutions of the corresponding equations of motion and adopting the Boltzmann distribution for these solitons, the average velocities of solitons are obtained and are compared with the sound velocities of energy transfer. Excellent agreements with the numerical results and the predictions of other existing theories are shown in both the symmetric Fermi-Pasta-Ulam-β lattices and the asymmetric Fermi-Pasta-Ulam-α β lattices. These clearly indicate that solitons are suitable candidates for energy carriers in Fermi-Pasta-Ulam lattices. In addition, the root-mean-square velocity of solitons can be obtained from the effective phonons theory.

  1. Negative mass solitons in gravity

    International Nuclear Information System (INIS)

    Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram

    2006-01-01

    We first reconstruct the conserved (Abbott-Deser) charges in the spin-connection formalism of gravity for asymptotically (Anti)-de Sitter spaces, and then compute the masses of the AdS soliton and the recently found Eguchi-Hanson solitons in generic odd dimensions, unlike the previous result obtained for only five dimensions. These solutions have negative masses compared to the global AdS or AdS/Z p spacetimes. As a separate note, we also compute the masses of the recent even dimensional Taub-NUT-Reissner-Nordstroem metrics

  2. Black holes will break up solitons and white holes may destroy them

    International Nuclear Information System (INIS)

    Akbar, Fiki T.; Gunara, Bobby E.; Susanto, Hadi

    2017-01-01

    Highlights: • What happens if a soliton collides with a black or white hole? • Solitons can pass through black hole horizons, but they will break up into several solitons after the collision. • In the interaction with a white hole horizon, solitons either pass through the horizon or will be destroyed by it. - Abstract: We consider a quantum analogue of black holes and white holes using Bose–Einstein condensates. The model is described by the nonlinear Schrödinger equation with a ‘stream flow’ potential, that induces a spatial translation to standing waves. We then mainly consider the dynamics of dark solitons in a black hole or white hole flow analogue and their interactions with the event horizon. A reduced equation describing the position of the dark solitons was obtained using variational method. Through numerical computations and comparisons with the analytical approximation we show that solitons can pass through black hole horizons even though they will break up into several solitons after the collision. In the interaction with a white hole horizon, we show that solitons either pass through the horizon or will be destroyed by it.

  3. Black holes will break up solitons and white holes may destroy them

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung, 40132 (Indonesia); Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung, 40132 (Indonesia); Susanto, Hadi, E-mail: hsusanto@essex.ac.uk [Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ (United Kingdom)

    2017-06-15

    Highlights: • What happens if a soliton collides with a black or white hole? • Solitons can pass through black hole horizons, but they will break up into several solitons after the collision. • In the interaction with a white hole horizon, solitons either pass through the horizon or will be destroyed by it. - Abstract: We consider a quantum analogue of black holes and white holes using Bose–Einstein condensates. The model is described by the nonlinear Schrödinger equation with a ‘stream flow’ potential, that induces a spatial translation to standing waves. We then mainly consider the dynamics of dark solitons in a black hole or white hole flow analogue and their interactions with the event horizon. A reduced equation describing the position of the dark solitons was obtained using variational method. Through numerical computations and comparisons with the analytical approximation we show that solitons can pass through black hole horizons even though they will break up into several solitons after the collision. In the interaction with a white hole horizon, we show that solitons either pass through the horizon or will be destroyed by it.

  4. Statistical mechanics for solitons in liquid Helium. I

    International Nuclear Information System (INIS)

    Evangelista, L.R.; Ventura, I.

    1988-06-01

    This paper presents a 4 He liquid microscopic theory, based on the existence of planar solitons, which move in equilibrium on fluid's condensate. Inside every soliton, there is a cloud of bound states thermal excitations. The normal fluid is made of unbound states excitations, and the action of solitons and thermal clouds over them, is approximated by a mean field, which depends on the system's number of solitons. The bound stat quasi-particles, that make up the thermal cloud, are in turn described through a self-consistent calculation. In thermal cloud dynamics, and owing to the motion of solitons, the lower energy state is an instantaneous wave packet, at rest in the laboratory frame. There is an energy gap between the instantaneous packet and the normal modes bound to the soliton. However, since the instantaneous packet is the ground state, then it condensates a second classical field, proportional to its wave function, that interacts with the condensate field, and is also a coherent envelope, which modulates the thermal cloud states, stabilizing it. In this paper, the thermal cloud is introduced through a self-consistent classical density ρ n.t. (x-vector,t). In the next paper we show the perfected approach of treating the thermal cloud by means of the second classifical field, which condensates in the lowest energy state. This field is the coherent envelope of the cloud bound states. (author) [pt

  5. On soliton solutions of the Wu-Zhang system

    Directory of Open Access Journals (Sweden)

    Inc Mustafa

    2016-01-01

    Full Text Available In this paper, the extended tanh and hirota methods are used to construct soliton solutions for the WuZhang (WZ system. Singular solitary wave, periodic and multi soliton solutions of the WZ system are obtained.

  6. Drift bifurcation detection for dissipative solitons

    International Nuclear Information System (INIS)

    Liehr, A W; Boedeker, H U; Roettger, M C; Frank, T D; Friedrich, R; Purwins, H-G

    2003-01-01

    We report on the experimental detection of a drift bifurcation for dissipative solitons, which we observe in the form of current filaments in a planar semiconductor-gas-discharge system. By introducing a new stochastic data analysis technique we find that due to a change of system parameters the dissipative solitons undergo a transition from purely noise-driven objects with Brownian motion to particles with a dynamically stabilized finite velocity

  7. Existence domains of dust-acoustic solitons and supersolitons

    International Nuclear Information System (INIS)

    Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2013-01-01

    Using the Sagdeev potential method, the existence of large amplitude dust-acoustic solitons and supersolitons is investigated in a plasma comprising cold negative dust, adiabatic positive dust, Boltzmann electrons, and non-thermal ions. This model supports the existence of positive potential supersolitons in a certain region in parameter space in addition to regular solitons having negative and positive potentials. The lower Mach number limit for supersolitons coincides with the occurrence of double layers whereas the upper limit is imposed by the constraint that the adiabatic positive dust number density must remain real valued. The upper Mach number limits for negative potential (positive potential) solitons coincide with limiting values of the negative (positive) potential for which the negative (positive) dust number density is real valued. Alternatively, the existence of positive potential solitons can terminate when positive potential double layers occur

  8. Quantum gates controlled by spin chain soliton excitations

    Energy Technology Data Exchange (ETDEWEB)

    Cuccoli, Alessandro, E-mail: cuccoli@fi.infn.it [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy); Nuzzi, Davide [Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (Italy); Vaia, Ruggero [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy); Verrucchi, Paola [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, I-50019 Sesto Fiorentino (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino (Italy)

    2014-05-07

    Propagation of soliton-like excitations along spin chains has been proposed as a possible way for transmitting both classical and quantum information between two distant parties with negligible dispersion and dissipation. In this work, a somewhat different use of solitons is considered. Solitons propagating along a spin chain realize an effective magnetic field, well localized in space and time, which can be exploited as a means to manipulate the state of an external spin (i.e., a qubit) that is weakly coupled to the chain. We have investigated different couplings between the qubit and the chain, as well as different soliton shapes, according to a Heisenberg chain model. It is found that symmetry properties strongly affect the effectiveness of the proposed scheme, and the most suitable setups for implementing single qubit quantum gates are singled out.

  9. The wrinkle-like N-solitons for the thermophoretic motion equation through graphene sheets

    Science.gov (United States)

    Ma, Yu-Lan; Li, Bang-Qing

    2018-03-01

    The main work is focused on the thermophoretic motion equation, which was derived from wrinkle wave motions in substrate-supported graphene sheets. Via the bilinear method, a class of wrinkle-like N-soliton solutions is constructed. The one-soliton, two-soliton and three-soliton are observed graphically. The shape, amplitude, open direction and width of the N-solitons are controllable through certain parameters.

  10. Ion- and electron-acoustic solitons in two-electron temperature space plasmas

    International Nuclear Information System (INIS)

    Lakhina, G. S.; Kakad, A. P.; Singh, S. V.; Verheest, F.

    2008-01-01

    Properties of ion- and electron-acoustic solitons are investigated in an unmagnetized multicomponent plasma system consisting of cold and hot electrons and hot ions using the Sagdeev pseudopotential technique. The analysis is based on fluid equations and the Poisson equation. Solitary wave solutions are found when the Mach numbers exceed some critical values. The critical Mach numbers for the ion-acoustic solitons are found to be smaller than those for electron-acoustic solitons for a given set of plasma parameters. The critical Mach numbers of ion-acoustic solitons increase with the increase of hot electron temperature and the decrease of cold electron density. On the other hand, the critical Mach numbers of electron-acoustic solitons increase with the increase of the cold electron density as well as the hot electron temperature. The ion-acoustic solitons have positive potentials for the parameters considered. However, the electron-acoustic solitons have positive or negative potentials depending whether the fractional cold electron density with respect to the ion density is greater or less than a certain critical value. Further, the amplitudes of both the ion- and electron-acoustic solitons increase with the increase of the hot electron temperature. Possible application of this model to electrostatic solitary waves observed on the auroral field lines by the Viking spacecraft is discussed

  11. Supergravity solitons

    International Nuclear Information System (INIS)

    Aichelburg, P.C.; Embacher, F.

    1987-01-01

    The Langrangian for a single free soliton in N = 2 supergravity as proposed in an earlier paper, is studied. We analyze the algebra of constraints and discuss the local gauge symmetry due to the existence of first class constraints. The classical motion as well as a Gupta-Bleuler type quantization are given. (Author)

  12. Topological solitons of the Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Reinhardt, H.; Wuensch, R.

    1989-06-01

    The baryon number one soliton solution of the Nambu-Jona-Lasinio model are found numerically in the mean-field approximation with full inclusion of the Dirac sea using the proper-time regularization for the underlying fermion determinant (quark loop). Explicit breaking of chiral symmetry is included by bare (current) quark masses. The obtained lowest-energy chiral soliton solutions with baryon number one carry winding number one. Fitting the parameters of the model from low-energy pion data the classical energies of these solitons are of the order of the nucleon mass. (orig.)

  13. Interactions of Soliton Waves for a Generalized Discrete KdV Equation

    International Nuclear Information System (INIS)

    Zhou Tong; Zhu Zuo-Nong

    2017-01-01

    It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons in a semidiscrete integrable system (the time variable is continuous and the space one is discrete) that the shorter solitary waves travel faster than the taller ones. Very recently, this kind of soliton was also observed in a full discrete generalized KdV system (the both of time and space variables are discrete) introduced by Kanki et al. In this paper, for the generalized discrete KdV (gdKdV) equation, we describe its richer structures of one-soliton solutions. The interactions of two-soliton waves to the gdKdV equation are studied. Some new features of the soliton interactions are proposed by rigorous theoretical analysis. (paper)

  14. The nonlinear evolution of ring dark solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xue Jukui

    2004-01-01

    The dynamics of the ring dark soliton in a Bose-Einstein condensate (BEC) with thin disc-shaped potential is investigated analytically and numerically. Analytical investigation shows that the ring dark soliton in the radial non-symmetric cylindrical BEC is governed by a cylindrical Kadomtsev-Petviashvili equation, while the ring dark soliton in the radial symmetric cylindrical BEC is governed by a cylindrical Korteweg-de Vries equation. The reduction to the cylindrical KP or KdV equation may be useful to understand the dynamics of a ring dark soliton. The numerical results show that the evolution properties and the snaking of a ring dark soliton are modified significantly by the trapping

  15. Bright Solitons in a PT-Symmetric Chain of Dimers

    Directory of Open Access Journals (Sweden)

    Omar B. Kirikchi

    2016-01-01

    Full Text Available We study the existence and stability of fundamental bright discrete solitons in a parity-time- (PT- symmetric coupler composed by a chain of dimers that is modelled by linearly coupled discrete nonlinear Schrödinger equations with gain and loss terms. We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anticontinuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, in contrast to the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is either in the form of travelling solitons or soliton blow-ups.

  16. Multi-hump bright solitons in a Schrödinger-mKdV system

    Science.gov (United States)

    Cisneros-Ake, Luis A.; Parra Prado, Hugo; López Villatoro, Diego Joselito; Carretero-González, R.

    2018-03-01

    We consider the problem of energy transport in a Davydov model along an anharmonic crystal medium obeying quartic longitudinal interactions corresponding to rigid interacting particles. The Zabusky and Kruskal unidirectional continuum limit of the original discrete equations reduces, in the long wave approximation, to a coupled system between the linear Schrödinger (LS) equation and the modified Korteweg-de Vries (mKdV) equation. Single- and two-hump bright soliton solutions for this LS-mKdV system are predicted to exist by variational means and numerically confirmed. The one-hump bright solitons are found to be the anharmonic supersonic analogue of the Davydov's solitons while the two-hump (in both components) bright solitons are found to be a novel type of soliton consisting of a two-soliton solution of mKdV trapped by the wave function associated to the LS equation. This two-hump soliton solution, as a two component solution, represents a new class of polaron solution to be contrasted with the two-soliton interaction phenomena from soliton theory, as revealed by a variational approach and direct numerical results for the two-soliton solution.

  17. A unified view of acoustic-electrostatic solitons in complex plasmas

    Science.gov (United States)

    McKenzie, J. F.; Doyle, T. B.

    2003-03-01

    A fluid dynamic approach is used in a unified fully nonlinear treatment of the properties of the dust-acoustic, ion-acoustic and Langmuir-acoustic solitons. The analysis, which is carried out in the wave frame of the soliton, is based on total momentum conservation and Bernoulli-like energy equations for each of the particle species in each wave type, and yields the structure equation for the `heavy' species flow speed in each case. The heavy (cold or supersonic) species is always compressed in the soliton, requiring concomitant contraints on the potential and on the flow speed of the electrons and protons in the wave. The treatment clearly elucidates the crucial role played by the heavy species sonic point in limiting the collective species Mach number, which determines the upper limit for the existence of the soliton and its amplitude, and also shows the essentially similar nature of each soliton type. An exact solution, which highlights these characteristic properties, shows that the three acoustic solitons are in fact the same mathematical entity in different physical disguises.

  18. A unified view of acoustic-electrostatic solitons in complex plasmas

    International Nuclear Information System (INIS)

    McKenzie, J F; Doyle, T B

    2003-01-01

    A fluid dynamic approach is used in a unified fully nonlinear treatment of the properties of the dust-acoustic, ion-acoustic and Langmuir-acoustic solitons. The analysis, which is carried out in the wave frame of the soliton, is based on total momentum conservation and Bernoulli-like energy equations for each of the particle species in each wave type, and yields the structure equation for the 'heavy' species flow speed in each case. The heavy (cold or supersonic) species is always compressed in the soliton, requiring concomitant constraints on the potential and on the flow speed of the electrons and protons in the wave. The treatment clearly elucidates the crucial role played by the heavy species sonic point in limiting the collective species Mach number, which determines the upper limit for the existence of the soliton and its amplitude, and also shows the essentially similar nature of each soliton type. An exact solution, which highlights these characteristic properties, shows that the three acoustic solitons are in fact the same mathematical entity in different physical disguises

  19. The fate of a gray soliton in a quenched Bose-Einstein condensate

    Science.gov (United States)

    Gamayun, Oleksandr; Bezvershenko, Yulia; Cheianov, Vadim

    2015-03-01

    We investigate the destiny of a gray soliton in a repulsive one-dimensional Bose-Einstein condensate undergoing a sudden quench of the non-linearity parameter. The outcome of the quench is found to depend dramatically on the ratio η of the final and initial values of the speed of sound. For integer η the soliton splits into exactly 2 η - 1 solitons. For non-integer η the soliton decays into multiple solitons and Bogoliubov modes. The case of integer η is analyzed in detail. The parameters of solitons in the out-state are found explicitly. Our approach exploits the inverse scattering method and can be easily used for the similar quenches in any classical integrable system.

  20. Perturbed soliton excitations in inhomogeneous DNA

    International Nuclear Information System (INIS)

    Daniel, M.; Vasumathi, V.

    2005-05-01

    We study nonlinear dynamics of inhomogeneous DNA double helical chain under dynamic plane-base rotator model by considering angular rotation of bases in a plane normal to the helical axis. The DNA dynamics in this case is found to be governed by a perturbed sine-Gordon equation when taking into account the interstrand hydrogen bonding energy and intrastrand inhomogeneous stacking energy and making an analogy with the Heisenberg model of the Hamiltonian for an inhomogeneous anisotropic spin ladder with ferromagnetic legs and antiferromagentic rung coupling. In the homogeneous limit the dynamics is governed by the kink-antikink soliton of the sine-Gordon equation which represents the formation of open state configuration in DNA double helix. The effect of inhomogeneity in stacking energy in the form of localized and periodic variations on the formation of open states in DNA is studied under perturbation. The perturbed soliton is obtained using a multiple scale soliton perturbation theory by solving the associated linear eigen value problem and constructing the complete set of eigen functions. The inhomogeneity in stacking energy is found to modulate the width and speed of the soliton depending on the nature of inhomogeneity. Also it introduces fluctuations in the form of train of pulses or periodic oscillation in the open state configuration (author)

  1. A Statistical Model for Soliton Particle Interaction in Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans; Truelsen, J.

    1986-01-01

    A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....

  2. Ion acoustic solitons/double layers in two-ion plasma revisited

    International Nuclear Information System (INIS)

    Lakhina, G. S.; Singh, S. V.; Kakad, A. P.

    2014-01-01

    Ion acoustic solitons and double layers are studied in a collisionless plasma consisting of cold heavier ion species, a warm lighter ion species, and hot electrons having Boltzmann distributions by Sagdeev pseudo-potential technique. In contrast to the previous results, no double layers and super-solitons are found when both the heavy and lighter ion species are treated as cold. Only the positive potential solitons are found in this case. When the thermal effects of the lighter ion species are included, in addition to the usual ion-acoustic solitons occurring at M > 1 (where the Mach number, M, is defined as the ratio of the speed of the solitary wave and the ion-acoustic speed considering temperature of hot electrons and mass of the heavier ion species), slow ion-acoustic solitons/double layers are found to occur at low Mach number (M < 1). The slow ion-acoustic mode is actually a new ion-ion hybrid acoustic mode which disappears when the normalized number density of lighter ion species tends to 1 (i.e., no heavier species). An interesting property of the new slow ion-acoustic mode is that at low number density of the lighter ion species, only negative potential solitons/double layers are found whereas for increasing densities there is a transition first to positive solitons/double layers, and then only positive solitons. The model can be easily applicable to the dusty plasmas having positively charged dust grains by replacing the heavier ion species by the dust mass and doing a simple normalization to take account of the dust charge

  3. Solitons and confinement

    International Nuclear Information System (INIS)

    Swieca, J.A.

    1976-01-01

    Some aspects of two recent developments in quantum field theory are discussed. First, related with 'extended particles' such as soliton, kink and the 't Hooft monopole. Second, with confinement of particles which are realized in the Schwinger model [pt

  4. Cavity-soliton laser with frequency-selective feedback

    International Nuclear Information System (INIS)

    Scroggie, A. J.; Firth, W. J.; Oppo, G.-L.

    2009-01-01

    We present a coupled-cavity model of a laser with frequency-selective feedback, and use it to analyze and explain the existence of stationary and dynamic spatial solitons in the device. Particular features of soliton addressing in this system are discussed. We demonstrate the advantages of our model with respect to the common Lang-Kobayashi approximation.

  5. Soliton wave-speed management: Slowing, stopping, or reversing a solitary wave

    Science.gov (United States)

    Baines, Luke W. S.; Van Gorder, Robert A.

    2018-06-01

    While dispersion management is a well-known tool to control soliton properties such as shape or amplitude, far less effort has been directed toward the theoretical control of the soliton wave speed. However, recent experiments concerning the stopping or slowing of light demonstrate that the control of the soliton wave speed is of experimental interest. Motivated by these and other studies, we propose a management approach for modifying the wave speed of a soliton (or of other nonlinear wave solutions, such as periodic cnoidal waves) under the nonlinear Schrödinger equation. Making use of this approach, we are able to slow, stop, or even reverse a solitary wave, and we give several examples to bright solitons, dark solitons, and periodic wave trains, to demonstrate the method. An extension of the approach to spatially heterogeneous media, for which the wave may propagate differently at different spatial locations, is also discussed.

  6. Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model

    International Nuclear Information System (INIS)

    Li Min; Xu Tao; Meng Dexin

    2016-01-01

    In this paper, via the generalized Darboux transformation, rational soliton solutions are derived for the parity-time-symmetric nonlocal nonlinear Schrödinger (NLS) model with the defocusing-type nonlinearity. We find that the first-order solution can exhibit the elastic interactions of rational antidark-antidark, dark-antidark, and antidark-dark soliton pairs on a continuous wave background, but there is no phase shift for the interacting solitons. Also, we discuss the degenerate case in which only one rational dark or antidark soliton survives. Moreover, we reveal that the second-order rational solution displays the interactions between two solitons with combined-peak-valley structures in the near-field regions, but each interacting soliton vanishes or evolves into a rational dark or antidark soliton as |z| → ∞. In addition, we numerically examine the stability of the first- and second-order rational soliton solutions. (author)

  7. Electron drag by solitons in superlattices in an external magnetic field

    International Nuclear Information System (INIS)

    Vyazovskii, M.V.; Syrodoev, G.A.

    1996-01-01

    The soliton-electric effect accompanying the propagation of an electromagnetic soliton along an axis of a superlattice in an external magnetic field directed along the magnetic field of the soliton is studied. It is assumed that the duration γ-1 of the soliton pulse is much shorter than the free flight time of an electron. It is shown that in the absence of a constant magnetic field the drag current varies as sin(αsech2γt) (α is a constant determined by the parameters of the superlattice). In the presence of a constant magnetic field of intensity H0>>Hs, where Hs is the amplitude of the soliton field, the drag current oscillates

  8. Detection of Moving Targets Using Soliton Resonance Effect

    Science.gov (United States)

    Kulikov, Igor K.; Zak, Michail

    2013-01-01

    The objective of this research was to develop a fundamentally new method for detecting hidden moving targets within noisy and cluttered data-streams using a novel "soliton resonance" effect in nonlinear dynamical systems. The technique uses an inhomogeneous Korteweg de Vries (KdV) equation containing moving-target information. Solution of the KdV equation will describe a soliton propagating with the same kinematic characteristics as the target. The approach uses the time-dependent data stream obtained with a sensor in form of the "forcing function," which is incorporated in an inhomogeneous KdV equation. When a hidden moving target (which in many ways resembles a soliton) encounters the natural "probe" soliton solution of the KdV equation, a strong resonance phenomenon results that makes the location and motion of the target apparent. Soliton resonance method will amplify the moving target signal, suppressing the noise. The method will be a very effective tool for locating and identifying diverse, highly dynamic targets with ill-defined characteristics in a noisy environment. The soliton resonance method for the detection of moving targets was developed in one and two dimensions. Computer simulations proved that the method could be used for detection of singe point-like targets moving with constant velocities and accelerations in 1D and along straight lines or curved trajectories in 2D. The method also allows estimation of the kinematic characteristics of moving targets, and reconstruction of target trajectories in 2D. The method could be very effective for target detection in the presence of clutter and for the case of target obscurations.

  9. Soliton matter as a model of dense nuclear matter

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1985-01-01

    We employ the hybrid soliton model of the nucleon consisting of a topological meson field and deeply bound quarks to investigate the behavior of the quarks in soliton matter as a function of density. To organize the calculation, we place the solitons on a spatial lattice. The model suggests the transition of matter from a color insulator to a color conductor above a critical density of a few times normal nuclear density. 9 references, 5 figures

  10. One- and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation

    Science.gov (United States)

    Chen, Yong; Yan, Zhenya; Li, Xin

    2018-02-01

    The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.

  11. Bäcklund transformation, analytic soliton solutions and numerical simulation for a (2+1)-dimensional complex Ginzburg-Landau equation in a nonlinear fiber

    Science.gov (United States)

    Yu, Ming-Xiao; Tian, Bo; Chai, Jun; Yin, Hui-Min; Du, Zhong

    2017-10-01

    In this paper, we investigate a nonlinear fiber described by a (2+1)-dimensional complex Ginzburg-Landau equation with the chromatic dispersion, optical filtering, nonlinear and linear gain. Bäcklund transformation in the bilinear form is constructed. With the modified bilinear method, analytic soliton solutions are obtained. For the soliton, the amplitude can decrease or increase when the absolute value of the nonlinear or linear gain is enlarged, and the width can be compressed or amplified when the absolute value of the chromatic dispersion or optical filtering is enhanced. We study the stability of the numerical solutions numerically by applying the increasing amplitude, embedding the white noise and adding the Gaussian pulse to the initial values based on the analytic solutions, which shows that the numerical solutions are stable, not influenced by the finite initial perturbations.

  12. Escape angles in bulk chi((2)) soliton interactions

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter

    2002-01-01

    We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called chi((2))) bulk, media. We predict quantitatively the outwards escape angle, below which the solitons turn around...

  13. Soliton formation in hollow-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2009-01-01

    of an approximate scaling relation is tested. It is concluded that compression of input pulses of several ps duration and sub-MW peak power can lead to a formation of solitons with ∼100 fs duration and multi-megawatt peak powers. The dispersion slope of realistic hollow-core fibers appears to be the main obstacle......The formation of solitons upon compression of linearly chirped pulses in hollow-core photonic bandgap fibers is investigated numerically. The dependence of soliton duration on the chirp and power of the input pulse and on the dispersion slope of the fiber is investigated, and the validity...

  14. Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Belić, Milivoj [Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade (Serbia)

    2014-12-15

    We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number, and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.

  15. The dynamics of short envelope solitons in media with controlled dispersion

    International Nuclear Information System (INIS)

    Aseeva, N.V.; Gromov, E.M.; Tyutin, V.V.

    2007-01-01

    The dynamics of short envelope solitons in media with controlled dispersion is investigated in the framework of the third-order nonlinear Schroedinger equation. Evolution of the solitons amplitude is analyzed in the adiabatic approximation. The existence of short envelope solitons independent from linear dispersion inhomogeneity is shown

  16. Break up of bound-N-spatial-soliton in a ramp waveguide

    NARCIS (Netherlands)

    Suryanto, A.; van Groesen, Embrecht W.C.

    2002-01-01

    We present an analytical and numerical investigation of the propagation of spatial solitons in a nonlinear waveguide with ramp linear refractive index profile (ramp waveguide). For the propagation of a single soliton beam in a ramp waveguide, the particle theory shows that the soliton beam follows a

  17. Decay of solitons in an isotropic collisionless quasineutral plasma with isothermal pressure

    International Nuclear Information System (INIS)

    Bakholdin, I.B.; Zharkov, A.A.; Il'ichev, A.T.

    2000-01-01

    Soliton-type solutions of the complete unreduced system of transport equations describing the plane-parallel motions of an isotropic collisionless quasineutral plasma in a magnetic field with constant ion and electron temperatures are studied. The regions of the physical parameters for fast and slow magnetosonic branches, where solitons and generalized solitary waves - nonlocal soliton structures in the form of a soliton 'core' with asymptotic behavior at infinity in the form of a periodic low-amplitude wave - exist, are determined. In the range of parameters where solitons are replaced by generalized solitary waves, soliton-like disturbances are subjected to decay whose mechanisms are qualitatively different for slow and fast magnetosonic waves. A specific feature of the decay of such disturbances for fast magnetosonic waves is that the energy of the disturbance decreases primarily as a result of the quasistationary emission of a resonant periodic wave of the same nature. Similar disturbances in the form of a soliton core of a slow magnetosonic generalized solitary wave essentially do not emit resonant modes on the Alfven branch but they lose energy quite rapidly because of continuous emission of a slow magnetosonic wave. Possible types of shocks which are formed by two types of existing soliton solutions (solitons and generalized solitary waves) are examined in the context of such solutions

  18. Laser propagation and soliton generation in strongly magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.; Li, J. Q.; Kishimoto, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-03-15

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Most interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.

  19. A collective variable approach and stabilization for dispersion-managed optical solitons in the quintic complex Ginzburg-Landau equation as perturbations of the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Fewo, S I; Kenfack-Jiotsa, A; Kofane, T C

    2006-01-01

    With the help of the one-dimensional quintic complex Ginzburg-Landau equation (CGLE) as perturbations of the nonlinear Schroedinger equation (NLSE), we derive the equations of motion of pulse parameters called collective variables (CVs), of a pulse propagating in dispersion-managed (DM) fibre optic links. The equations obtained are investigated numerically in order to view the evolution of pulse parameters along the propagation distance, and also to analyse effects of initial amplitude and width on the propagating pulse. Nonlinear gain is shown to be beneficial in stabilizing DM solitons. A fully numerical simulation of the one-dimensional quintic CGLE as perturbations of NLSE finally tests the results of the CV theory. A good agreement is observed between both methods

  20. Bright solitons in Bose-Fermi mixtures

    International Nuclear Information System (INIS)

    Karpiuk, Tomasz; Brewczyk, Miroslaw; RzaPewski, Kazimierz

    2006-01-01

    We consider the formation of bright solitons in a mixture of Bose and Fermi degenerate gases confined in a three-dimensional elongated harmonic trap. The Bose and Fermi atoms are assumed to effectively attract each other whereas bosonic atoms repel each other. Strong enough attraction between bosonic and fermionic components can change the character of the interaction within the bosonic cloud from repulsive to attractive making thus possible the generation of bright solitons in the mixture. On the other hand, such structures might be in danger due to the collapse phenomenon existing in attractive gases. We show, however, that under some conditions (defined by the strength of the Bose-Fermi components attraction) the structures which neither spread nor collapse can be generated. For elongated enough traps the formation of solitons is possible even at the 'natural' value of the mutual Bose-Fermi ( 87 Rb- 40 K in our case) scattering length

  1. Painlev\\'e analysis of the Bryant Soliton

    OpenAIRE

    de la Parra, Alejandro Betancourt

    2013-01-01

    We carry out a Painlev\\'e analysis of the systems of differential equations corresponding to the steady and the expanding, rotationally symmetric, gradient Ricci solitons on $\\mathbb{R}^n$. For the steady case, dimensions of the form $n=k^2+1$ are singled out, with dimensions 2, 5, and 10 being particularly distinguished. Only dimension 2 is singled out for the expanding soliton.

  2. Gravitational generation of mass in soliton theory

    International Nuclear Information System (INIS)

    Kozhevnikov, I.R.; Rybakov, Yu.P.

    1985-01-01

    It is shown that in the framework of a simple scalar field model, that admits soliton solutions, with gravitational field interactions being specially included, one succeeds in ensuring for a scalar field a correct spacial asymptotics that depends on the system mass. Theory, the quantum relation of a corpuscular-wave dualism is fulfilled for soliton solutions in such a model

  3. Bistable soliton states and switching in doubly inhomogeneously ...

    Indian Academy of Sciences (India)

    Dec. 2001 physics pp. 969–979. Bistable soliton states and switching in doubly inhomogeneously doped fiber couplers. AJIT KUMAR. Department of Physics, Indian Institute of Technology, Hauz Khas, New Delhi 110 016, India. Abstract. Switching between the bistable soliton states in a doubly and inhomogeneously doped.

  4. Semiclassical description of soliton-antisoliton pair production in particle collisions

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, S.V.; Levkov, D.G. [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation)

    2015-11-10

    We develop a consistent semiclassical method to calculate the probability of topological soliton-antisoliton pair production in collisions of elementary particles. In our method one adds an auxiliary external field pulling the soliton and antisoliton in the opposite directions. This transforms the original scattering process into a Schwinger pair creation of the solitons induced by the particle collision. One describes the Schwinger process semiclassically and recovers the original scattering probability in the limit of vanishing external field. We illustrate the method in (1+1)-dimensional scalar field model where the suppression exponents of soliton-antisoliton production in the multiparticle and two-particle collisions are computed numerically.

  5. Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics

    Science.gov (United States)

    Horikis, Theodoros P.; Frantzeskakis, Dimitrios J.

    2017-06-01

    Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2 +1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y -, X -, and H -shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.

  6. The ion-acoustic soliton: A gas-dynamic viewpoint

    International Nuclear Information System (INIS)

    McKenzie, J.F.

    2002-01-01

    The properties of fully nonlinear ion-acoustic solitons are investigated by interpreting conservation of total momentum as the structure equation for the proton flow in the wave. In most studies momentum conservation is regarded as the first integral of the Poisson equation for the electric potential and is interpreted as being analogous to a particle moving in a pseudo-potential well. By adopting an essentially gas-dynamic viewpoint, which emphasizes momentum conservation and the properties of the Bernoulli-type energy equations, the crucial role played by the proton sonic point becomes apparent. The relationship (implied by energy conservation) between the electron and proton speeds in the transition yields a locus--the hodograph of the system-which shows that, in the first half of the soliton, the electrons initially lag behind the protons until the charge neutral point is reached, after which they run ahead of the protons. The system reaches an equilibrium point (the center of the soliton) before the proton flow goes sonic. It follows that the critical ion-acoustic Mach number, M c , above which smooth, continuous solitons cannot be constructed, stems from the requirement that the two equilibrium points of the structure equation coalesce at the proton sonic point of the flow. In general the range of the ion-acoustic Mach numbers, M ep , in which solitons exist, is extended beyond the classical range 1 ep 2 shaped pulses characteristic of weakly nonlinear waves and shows that solitons exist only if 1 ep e and 10kT e depending upon the values of the adiabatic indices of the electrons and protons and the proton Mach number

  7. Soliton scatterings by impurities in a short-length sine-Gordon chain

    International Nuclear Information System (INIS)

    Dikande, A.M.; Kofane, T.C.

    1995-07-01

    The scattering of soliton by impurities at the frontiers of a finite-length region of an infinite sine-Gordon chain is analyzed. The impurities consist of two isotopic inhomogeneities installed at the boundaries of the finite-length region. The soliton solution in the region is found in term of snoidal sine-Gordon soliton which properly takes into account the effects of the boundaries. By contrast, the soliton solutions in the neighboring sides of the region are obtained in terms of the so-called large-amplitude, localized kinks with limiting spatial extensions at x → ± ∞, which is equal ±π. Using the continuity of these soliton solutions at the frontiers as well as appropriate boundary conditions, it is shown that the soliton may be either i) reflected by the incident impurity; ii) trapped (with oscillating motions) between the two impurities (i.e. inside the infinite region); or iii) transmitted by the second impurity into the third, infinitely extended region. The threshold velocities for the reflection and transmission into different regions are found and shown to vary exponentially as a function of the length of the bounded region. The frequency of soliton oscillations between the impurities has also been calculated in some acceptable limit. (author). 28 refs, 1 fig

  8. Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.

    Science.gov (United States)

    Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M

    2008-09-15

    Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.

  9. Soliton motion in a parametrically ac-driven damped Toda lattice

    International Nuclear Information System (INIS)

    Rasmussen, K.O.; Malomed, B.A.; Bishop, A.R.; Groenbech-Jensen, N.

    1998-01-01

    We demonstrate that a staggered parametric ac driving term can support stable progressive motion of a soliton in a Toda lattice with friction, while an unstaggered driving force cannot. A physical context of the model is that of a chain of anharmonically coupled particles adsorbed on a solid surface of a finite size. The ac driving force is generated by a standing acoustic wave excited on the surface. Simulations demonstrate that the state left behind the moving soliton, with the particles shifted from their equilibrium positions, gradually relaxes back to the equilibrium state that existed before the passage of the soliton. The perturbation theory predicts that the ac-driven soliton exists if the amplitude of the drive exceeds a certain threshold. The analytical prediction for the threshold is in reasonable agreement with that found numerically. Collisions between two counterpropagating solitons is also simulated, demonstrating that the collisions are, effectively, fully elastic. copyright 1998 The American Physical Society

  10. Soliton filtering from a supercontinuum: a tunable femtosecond pulse source

    Energy Technology Data Exchange (ETDEWEB)

    Licea-Rodriguez, Jacob; Rangel-Rojo, Raul [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada B.C., 22860 (Mexico); Garay-Palmett, Karina, E-mail: rrangel@cicese.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico DF. 04510 (Mexico)

    2011-01-01

    In this article we report experimental results related with the generation of a supercontinuum in a microstructured fiber, from which the soliton with the longest wavelength is filtered out of the continuum and is used to construct a tunable ultrashort pulses source by varying the pump power. Pulses of an 80 fs duration (FWHM) from a Ti:sapphire oscillator were input into a 2 m long fiber to generate the continuum. The duration of the solitons at the fiber output was preserved by using a zero dispersion filtering system, which selected the longest wavelength soliton, while avoiding temporal spreading of the solitons. We present a complete characterization of the filtered pulses that are continuously tunable in the 850-1100 nm range. We also show that the experimental results have a qualitative agreement with theory. An important property of the proposed near-infrared pulsed source is that the soliton pulse energies obtained after filtering are large enough for applications in nonlinear microscopy.

  11. Classification of the line-soliton solutions of KPII

    International Nuclear Information System (INIS)

    Chakravarty, Sarbarish; Kodama, Yuji

    2008-01-01

    In the previous papers (notably, Kodama Y 2004 J. Phys. A: Math. Gen. 37 11169-90, Biondini G and Chakravarty S 2006 J. Math. Phys. 47 033514), a large variety of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation was found. The line-soliton solutions are solitary waves which decay exponentially in the (x, y)-plane except along certain rays. In this paper, it is shown that those solutions are classified by asymptotic information of the solution as |y| → ∞. The present work then unravels some interesting relations between the line-soliton classification scheme and classical results in the theory of permutations

  12. Classification of the line-soliton solutions of KPII

    Science.gov (United States)

    Chakravarty, Sarbarish; Kodama, Yuji

    2008-07-01

    In the previous papers (notably, Kodama Y 2004 J. Phys. A: Math. Gen. 37 11169-90, Biondini G and Chakravarty S 2006 J. Math. Phys. 47 033514), a large variety of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation was found. The line-soliton solutions are solitary waves which decay exponentially in the (x, y)-plane except along certain rays. In this paper, it is shown that those solutions are classified by asymptotic information of the solution as |y| → ∞. The present work then unravels some interesting relations between the line-soliton classification scheme and classical results in the theory of permutations.

  13. Potential motion for Thomas-Fermi non-topological solitons

    International Nuclear Information System (INIS)

    Bahcall, S.

    1992-04-01

    In the Thomas-Fermi approximation to theories of coupled fermions and scalars, the equations for spherically-symmetric non-topological solitons have the form of potential motion. This gives a straightforward method for proving the existence of non-topological solitons in a given theory and for finding the constant-density, saturating solutions

  14. Bright-Dark Mixed N-Soliton Solutions of the Multi-Component Mel'nikov System

    Science.gov (United States)

    Han, Zhong; Chen, Yong; Chen, Junchao

    2017-10-01

    By virtue of the Kadomtsev-Petviashvili (KP) hierarchy reduction technique, we construct the general bright-dark mixed N-soliton solution to the multi-component Mel'nikov system. This multi-component system comprised of multiple (say M) short-wave components and one long-wave component with all possible combinations of nonlinearities including all-positive, all-negative and mixed types. Firstly, the two-bright-one-dark (2-b-1-d) and one-bright-two-dark (1-b-2-d) mixed N-soliton solutions in short-wave components of the three-component Mel'nikov system are derived in detail. Then we extend our analysis to the M-component Mel'nikov system to obtain its general mixed N-soliton solution. The formula obtained unifies the all-bright, all-dark and bright-dark mixed N-soliton solutions. For the collision of two solitons, an asymptotic analysis shows that for an M-component Mel'nikov system with M ≥ 3, inelastic collision takes place, resulting in energy exchange among the short-wave components supporting bright solitons only if the bright solitons appear in at least two short-wave components. In contrast, the dark solitons in the short-wave components and the bright solitons in the long-wave component always undergo elastic collision which is only accompanied by a position shift.

  15. Generation and dynamics of quadratic birefringent spatial gap solitons

    International Nuclear Information System (INIS)

    Anghel-Vasilescu, P.; Dorignac, J.; Geniet, F.; Leon, J.; Taki, A.

    2011-01-01

    A method is proposed to generate and study the dynamics of spatial light solitons in a birefringent medium with quadratic nonlinearity. Although no analytical expression for propagating solitons has been obtained, our numerical simulations show the existence of stable localized spatial solitons in the frequency forbidden band gap of the medium. The dynamics of these objects is quite rich and manifests for instance elastic reflections, or inelastic collisions where two solitons merge and propagate as a single solitary wave. We derive the dynamics of the slowly varying envelopes of the three fields (second harmonic pump and two-component signal) and study this new system theoretically. We show that it does present a threshold for nonlinear supratransmission that can be calculated from a series expansion approach with a very high accuracy. Specific physical implications of our theoretical predictions are illustrated on LiGaTe 2 (LGT) crystals. Once irradiated by a cw laser beam of 10 μm wavelength, at an incidence beyond the extinction angle, such crystals will transmit light, in the form of spatial solitons generated in the nonlinear regime above the nonlinear supratransmission threshold.

  16. Bistable dark solitons of a cubic-quintic Helmholtz equation

    International Nuclear Information System (INIS)

    Christian, J. M.; McDonald, G. S.; Chamorro-Posada, P.

    2010-01-01

    We provide a report on exact analytical bistable dark spatial solitons of a nonlinear Helmholtz equation with a cubic-quintic refractive-index model. Our analysis begins with an investigation of the modulational instability characteristics of Helmholtz plane waves. We then derive a dark soliton by mapping the desired asymptotic form onto a uniform background field and obtain a more general solution by deploying rotational invariance laws in the laboratory frame. The geometry of the new soliton is explored in detail, and a range of new physical predictions is uncovered. Particular attention is paid to the unified phenomena of arbitrary-angle off-axis propagation and nondegenerate bistability. Crucially, the corresponding solution of paraxial theory emerges in a simultaneous multiple limit. We conclude with a set of computer simulations that examine the role of Helmholtz dark solitons as robust attractors.

  17. Soliton ratchetlike dynamics by ac forces with harmonic mixing

    DEFF Research Database (Denmark)

    Salerno, Mario; Zolotaryuk, Yaroslav

    2002-01-01

    The possibility of unidirectional motion of a kink (topological soliton) of a dissipative sine-Gordon equation in the presence of ac forces with harmonic mixing (at least biharmonic) and of zero mean, is presented. The dependence of the kink mean velocity on system parameters is investigated...... numerically and the results are compared with a perturbation analysis based on a point-particle representation of the soliton. We find that first order perturbative calculations lead to incomplete descriptions, due to the important role played by the soliton-phonon interaction in establishing the phenomenon...... in the system. Effective soliton transport is achieved when the internal mode and the external force get phase locked. We find that for kinks driven by biharmonic drivers consisting of the superposition of a fundamental driver with its first odd harmonic, the transport arises only due to this internal mode...

  18. Solitons and the energy-momentum tensor for affine Toda theory

    Science.gov (United States)

    Olive, D. I.; Turok, N.; Underwood, J. W. R.

    1993-07-01

    Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moody algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy—momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g.

  19. Solitons and the energy-momentum tensor for affine Toda theory

    International Nuclear Information System (INIS)

    Olive, D.I.; Turok, N.; Underwood, J.W.R.

    1993-01-01

    Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moodyy algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy-momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g. (orig.)

  20. Soliton-type solutions for two models in mathematical physics

    Science.gov (United States)

    Al-Ghafri, K. S.

    2018-04-01

    In this paper, the generalised Klein-Gordon and Kadomtsov-Petviashvili Benjamin-Bona-Mahony equations with power law nonlinearity are investigated. Our study is based on reducing the form of both equations to a first-order ordinary differential equation having the travelling wave solutions. Subsequently, soliton-type solutions such as compacton and solitary pattern solutions are obtained analytically. Additionally, the peaked soliton has been derived where it exists under a specific restrictions. In addition to the soliton solutions, the mathematical method which is exploited in this work also creates a few amount of travelling wave solutions.

  1. Integrable coupling system of fractional soliton equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-10-05

    In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.

  2. Quantum solitons and their classical relatives: Bethe Ansatz states in soliton sectors of the Sine--Gordon System

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1982-01-01

    Previously we have found that the semiclassical sine--Gordon/Thirring spectrum can be received in the absence of quantum solitons via the spin 1/2 approximation of the quantized sine--Gordon system on a lattice. Later on, we have recovered the Hilbert space of quantum soliton states for the sine--Gordon system. In the present paper we present a derivation of the Bethe Ansatz eigenstates for the generalized ice model in this soliton Hilbert space. We demonstrate that via ''Wick rotation'' of a fundamental parameter of the ice model one arrives at the Bethe Ansatz eigenstates of the quantum sine--Gordon system. The latter is a ''local transition matrix'' ancestor of the coventional sine--Gordon/Thirring model, as derived by Faddeev et al. within the quantum inverse-scattering method. Our result is essentially based on the N< infinity,Δ = 1,m<<1 regime. Consequently, the spectrum received, though resembling the semiclassical one, does not coincide with it at all

  3. Solitons on H bonds in proteins

    DEFF Research Database (Denmark)

    d'Ovidio, F.; Bohr, H.G.; Lindgård, Per-Anker

    2003-01-01

    system shows that the solitons are spontaneously created and are stable and moving along the helix axis. A perturbation on one of the three H-bond lines forms solitons on the other H bonds as well. The robust solitary wave may explain very long-lived modes in the frequency range of 100 cm(-1) which...... are found in recent x-ray laser experiments. The dynamics parameters of the Toda lattice are in accordance with the usual Lennard-Jones parameters used for realistic H-bond potentials in proteins....

  4. Hyperon resonances in SU(3) soliton models

    International Nuclear Information System (INIS)

    Scoccola, N.N.

    1990-01-01

    Hyperon resonances excited in kaon-nucleon scattering are investigated in the framework of an SU(3) soliton model in which kaon degrees of freedom are treated as small fluctuations around an SU(2) soliton. For partial waves l≥2 the model predicts correctly the quantum numbers and average excitation energies of most of the experimentally observed Λ and Σ resonances. Some disagreements are found for lower partial waves. (orig.)

  5. Gradient-index optics fundamentals and applications

    CERN Document Server

    Gomez-Reino, Carlos; Bao, Carmen

    2010-01-01

    Gradient-Index (GRIN) optics provides a comprehensive and thorough treatment on fundamentals and applications of light propagation through inhomogeneous media. The book can be used both as a classroom text for students in physics and engineering and as a reference for specialists. A description of the phenomena, components and technology used in GRIN Optics are presented. The relationship to lenses, waveguides, optical connections, spatial solitons and vision is demonstrated. Applications of GRIN components and hybrid structures for optical connections, optical sensing and Talbot effect are analyzed.

  6. Soliton microcomb range measurement

    Science.gov (United States)

    Suh, Myoung-Gyun; Vahala, Kerry J.

    2018-02-01

    Laser-based range measurement systems are important in many application areas, including autonomous vehicles, robotics, manufacturing, formation flying of satellites, and basic science. Coherent laser ranging systems using dual-frequency combs provide an unprecedented combination of long range, high precision, and fast update rate. We report dual-comb distance measurement using chip-based soliton microcombs. A single pump laser was used to generate dual-frequency combs within a single microresonator as counterpropagating solitons. We demonstrated time-of-flight measurement with 200-nanometer precision at an averaging time of 500 milliseconds within a range ambiguity of 16 millimeters. Measurements at distances up to 25 meters with much lower precision were also performed. Our chip-based source is an important step toward miniature dual-comb laser ranging systems that are suitable for photonic integration.

  7. Inverse scattering transform method and soliton solutions for Davey-Stewartson II equation

    International Nuclear Information System (INIS)

    Arkadiev, V.A.; Pogrebkov, A.K.; Polivanov, M.C.

    1989-01-01

    The inverse scattering method for Davey-Stewartson II (DS-II) equation including both soliton and continuous spectrum solutions is developed. The explicit formulae for N-soliton solutions are given. Note that our solitons decrease as |z| -2 with z tending to infinity. (author). 8 refs

  8. Soliton Bag Model

    International Nuclear Information System (INIS)

    Wilets, L.; Bickeboeller, M.; Birse, M.C.

    1985-01-01

    A summary of recent and current research on the Soliton Bag Model is presented. The unique feature of the model, namely dynamics, is emphasized, since this permits calculation of reactions within the framework of a covariant effective Lagrangian. One gluon exchange effects are included. 17 refs., 3 figs

  9. KP solitons and the Grassmannians combinatorics and geometry of two-dimensional wave patterns

    CERN Document Server

    Kodama, Yuji

    2017-01-01

    This is the first book to treat combinatorial and geometric aspects of two-dimensional solitons. Based on recent research by the author and his collaborators, the book presents new developments focused on an interplay between the theory of solitons and the combinatorics of finite-dimensional Grassmannians, in particular, the totally nonnegative (TNN) parts of the Grassmannians. The book begins with a brief introduction to the theory of the Kadomtsev–Petviashvili (KP) equation and its soliton solutions, called the KP solitons. Owing to the nonlinearity in the KP equation, the KP solitons form very complex but interesting web-like patterns in two dimensions. These patterns are referred to as soliton graphs. The main aim of the book is to investigate the detailed structure of the soliton graphs and to classify these graphs. It turns out that the problem has an intimate connection with the study of the TNN part of the Grassmannians. The book also provides an elementary introduction to the recent development of ...

  10. Solitons in PT-symmetric potential with competing nonlinearity

    International Nuclear Information System (INIS)

    Khare, Avinash; Al-Marzoug, S.M.; Bahlouli, Hocine

    2012-01-01

    We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrödinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined. -- Highlights: ► Effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. ► Closed form solutions for localized states are. ► The transverse power flow associated with these complex solitons is also examined.

  11. Exact soliton-like solutions of perturbed phi4-equation

    International Nuclear Information System (INIS)

    Gonzalez, J.A.

    1986-05-01

    Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)

  12. Head-on collisions of electrostatic solitons in multi-ion plasmas

    International Nuclear Information System (INIS)

    Verheest, Frank; Hellberg, Manfred A.; Hereman, Willy A.

    2012-01-01

    Head-on collisions between two electrostatic solitons are dealt with by the Poincaré-Lighthill-Kuo method of strained coordinates, for a plasma composed of a number of cold (positive and negative) ion species and Boltzmann electrons. The nonlinear evolution equations for both solitons and their phase shift due to the collision, resulting in time delays, are established. A Korteweg-de Vries description is the generic conclusion, except when the plasma composition is special enough to replace the quadratic by a cubic nonlinearity in the evolution equations, with concomitant repercussions on the phase shifts. Applications include different two-ion plasmas, showing positive or negative polarity solitons in the generic case. At critical composition, a combination of a positive and a negative polarity soliton is possible.

  13. Solitons and nonlinear waves in space plasmas

    International Nuclear Information System (INIS)

    Stasiewicz, K.

    2005-01-01

    Recent measurements made on the ESA/NASA Cluster mission to the Earth's magnetosphere have provided first detailed measurements of magnetosonic solitons in space. The solitons represent localized enhancements of the magnetic field by a factor of 2-10, or depressions down to 10% of the ambient field. The magnetic field signatures are associated with density depressions/enhancements A two-fluid model of nonlinear electron and ion inertial waves in anisotropic plasmas explains the main properties of these structures. It is shown that warm plasmas support four types of nonlinear waves, which correspond to four linear modes: Alfvenic, magnetosonic, sound, and electron inertial waves. Each of these nonlinear modes has slow and fast versions. It is shown by direct integration that the exponential growth rate of nonlinear modes is balanced by the ion and electron dispersion leading to solutions in the form of trains of solitons or cnoidal waves. By using a novel technique of phase portraits it is shown how the dispersive properties of electron and ion inertial waves change at the transition between warm and hot plasmas, and how trains of solitons ('' mirror modes '') are produced in a hot, anisotropic plasma. The applicability of the model is illustrated with data from Cluster spacecraft. (author)

  14. The propagation property of ion-acoustic soliton in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Zhu Jiazhen; Wang Gengguo.

    1990-01-01

    The propagation property of ion-acoustic soliton in a weakly inhomogeneous plamsa caused by ionization is studied. Finite ion temperature and ion-neutral collisions are considered the self consistent stationary distribution N(x), v(x) and the corresponding soliton solution are obtained, numerical results of soliton amplitude, speed and width dependent on position are given, which are reasonable and consistent with experiments

  15. Gravitational solitons and the squashed 7-sphere

    International Nuclear Information System (INIS)

    Bizon, P; Chmaj, T; Gibbons, G W; Pope, C N

    2007-01-01

    We discuss some aspects of higher-dimensional gravitational solitons and kinks, including in particular their stability. We illustrate our discussion with the examples of (non-BPS) higher-dimensional Taub-NUT solutions as the spatial metrics in (6 + 1) and (8 + 1) dimensions. We find them to be stable against small but non-infinitesimal disturbances, but unstable against large ones, which can lead to black-hole formation. In (8 + 1) dimensions we find a continuous non-BPS family of asymptotically-conical solitons connecting a previously-known kink metric with the supersymmetric A 8 solution which has Spin(7) holonomy. All the solitonic spacetimes we consider are topologically, but not geometrically, trivial. In an appendix we use the techniques developed in the paper to establish the linear stability of five-dimensional Myers-Perry black holes with equal angular momenta against cohomogeneity-2 perturbations

  16. One-parameter family of solitons from minimal surfaces

    Indian Academy of Sciences (India)

    solitons arising from a one parameter family of minimal surfaces. The process enables us to generate a new solution of the B–I equation from a given complex solution of a special type (which are abundant). We illustrate this with many examples. We find that the action or the energy of this family of solitons remains invariant ...

  17. Arbitrary amplitude slow electron-acoustic solitons in three-electron temperature space plasmas

    International Nuclear Information System (INIS)

    Mbuli, L. N.; Maharaj, S. K.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2015-01-01

    We examine the characteristics of large amplitude slow electron-acoustic solitons supported in a four-component unmagnetised plasma composed of cool, warm, hot electrons, and cool ions. The inertia and pressure for all the species in this plasma system are retained by assuming that they are adiabatic fluids. Our findings reveal that both positive and negative potential slow electron-acoustic solitons are supported in the four-component plasma system. The polarity switch of the slow electron-acoustic solitons is determined by the number densities of the cool and warm electrons. Negative potential solitons, which are limited by the cool and warm electron number densities becoming unreal and the occurrence of negative potential double layers, are found for low values of the cool electron density, while the positive potential solitons occurring for large values of the cool electron density are only limited by positive potential double layers. Both the lower and upper Mach numbers for the slow electron-acoustic solitons are computed and discussed

  18. Self-similar optical pulses in competing cubic-quintic nonlinear media with distributed coefficients

    International Nuclear Information System (INIS)

    Zhang Jiefang; Tian Qing; Wang Yueyue; Dai Chaoqing; Wu Lei

    2010-01-01

    We present a systematic analysis of the self-similar propagation of optical pulses within the framework of the generalized cubic-quintic nonlinear Schroedinger equation with distributed coefficients. By appropriately choosing the relations between the distributed coefficients, we not only retrieve the exact self-similar solitonic solutions, but also find both the approximate self-similar Gaussian-Hermite solutions and compact solutions. Our analytical and numerical considerations reveal that proper choices of the distributed coefficients could make the unstable solitons stable and could restrict the nonlinear interaction between the neighboring solitons.

  19. Vortex solitons at the interface separating square and hexagonal lattices

    Energy Technology Data Exchange (ETDEWEB)

    Jović Savić, Dragana, E-mail: jovic@ipb.ac.rs; Piper, Aleksandra; Žikić, Radomir; Timotijević, Dejan

    2015-06-19

    Vortex solitons at the interface separating two different photonic lattices – square and hexagonal – are demonstrated numerically. We consider the conditions for the existence of discrete vortex states at such interfaces and develop a concise picture of different scenarios of the vortex solutions behavior. Various vortices with different size and topological charges are considered, as well as various lattice interfaces. A novel type of discrete vortex surface solitons in a form of five-lobe solution is observed. Besides stable three-lobe and six-lobe discrete surface modes propagating for long distances, we observe various oscillatory vortex surface solitons, as well as dynamical instabilities of different kinds of solutions and study their angular momentum. Dynamical instabilities occur for higher values of the propagation constant, or at higher beam powers. - Highlights: • We demonstrate vortex solitons at the square–hexagonal photonic lattice interface. • A novel type of five-lobe surface vortex solitons is observed. • Different phase structures of surface solutions are studied. • Orbital angular momentum transfer of such solutions is investigated.

  20. Dynamics of vector dark soliton induced by the Rabi coupling in one-dimensional trapped Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Liu, Chao-Fei; Lu, Min; Liu, Wei-Qing

    2012-01-01

    The Rabi coupling between two components of Bose–Einstein condensates is used to controllably change ordinary dark soliton into dynamic vector dark soliton or ordinary vector dark soliton. When all inter- and intraspecies interactions are equal, the dynamic vector dark soliton is exactly constructed by two sub-dark-solitons, which oscillate with the same velocity and periodically convert with each other. When the interspecies interactions deviate from the intraspecies ones, the whole soliton can maintain its essential shape, but the sub-dark-soliton becomes inexact or is broken. This study indicates that the Rabi coupling can be used to obtain various vector dark solitons. -- Highlights: ► We consider the Rabi coupling to affect the dark soliton in BECs. ► We examine the changes of the initial dark solitons. ► The structure of the soliton depends on the inter- and intraspecies interactions strength. ► The Rabi coupling can be used to obtain various vector dark solitons.

  1. Pattern formation in optical resonators

    International Nuclear Information System (INIS)

    Weiss, C O; Larionova, Ye

    2007-01-01

    We review pattern formation in optical resonators. The emphasis is on 'particle-like' structures such as vortices or spatial solitons. On the one hand, similarities impose themselves with other fields of physics (condensed matter, phase transitions, particle physics, fluds/super fluids). On the other hand the feedback is led by the resonator mirrors to bi- and multi-stability of the spatial field structure, which is the basic ingredient for optical information processing. The spatial dimension or the 'parallelism' is the strength of optics compared to electronics (and will have to be employed to fully use the advantages optics offers in information processing). But even in the 'serial' processing tasks of telecoms (e.g. information buffering) spatial resonator solitons can do better than the schemes proposed so far-including 'slow light'. Pattern formation in optical resonators will likely be the key to brain-like information processing like cognition, learning and association; to complement the precise but limited algorithmic capabilities of electronic processing. But even in the short term it will be useful for solving serial optical processing problems. The prospects for technical uses of pattern formation in resonators are one motivation for this research. The fundamental similarities with other fields of physics, on the other hand, inspire transfer of concepts between fields; something that has always proven fruitful for gaining deeper insights or for solving technical problems

  2. Travelling Solitons in the Damped Driven Nonlinear Schroedinger Equation

    CERN Document Server

    Barashenkov, I V

    2003-01-01

    The well-known effect of the linear damping on the moving nonlinear Schrodinger soliton (even when there is energy supply via the spatially homogeneous driving) is to quench its momentum to zero. Surprisingly, the zero momentum does not necessarily mean zero velocity. We show that two or more parametrically driven damped solitons can form a complex travelling with zero momentum at a nonzero constant speed. All travelling complexes we have found so far, turned out to be unstable. Thus, the parametric driving is capable of sustaining the uniform motion of damped solitons, but some additional agent is required to make this motion stable.

  3. Travelling solitons in the damped driven nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Zemlyanaya, E.V.

    2003-01-01

    The well known effect of the linear damping on the moving nonlinear Schroedinger soliton (even when there is energy supply via the spatially homogeneous driving) is to quench its momentum to zero. Surprisingly, the zero momentum does not necessarily mean zero velocity. We show that two or more parametrically driven damped solitons can form a complex travelling with zero momentum at a nonzero constant speed. All travelling complexes we have found so far, turned out to be unstable. Thus, the parametric driving is capable of sustaining the uniform motion of damped solitons, but some additional agent is required to make this motion stable

  4. Solitons

    CERN Document Server

    Trullinger, SE; Pokrovsky, VL

    1986-01-01

    In the twenty years since Zabusky and Kruskal coined the term ``soliton'', this concept changed the outlook on certain types of nonlinear phenomena and found its way into all branches of physics. The present volume deals with a great variety of applications of the new concept in condensed-matter physics, which is particularly reached in experimentally observable occurrences. The presentation is not centred around the mathematical aspects; the emphasis is on the physical nature of the nonlinear phenomena occurring in particular situations.With its emphasis on concrete, mostly experime

  5. The Baryon Number Two System in the Chiral Soliton Model

    International Nuclear Information System (INIS)

    Mantovani-Sarti, V.; Drago, A.; Vento, V.; Park, B.-Y.

    2013-01-01

    We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the inter soliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications. (author)

  6. Quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, P D [University of Queensland, St. Lucia, QLD (Australia).Physics Department

    1999-07-01

    Full text: Quantum optics in Australia has been an active research field for some years. I shall focus on recent developments in quantum and atom optics. Generally, the field as a whole is becoming more and more diverse, as technological developments drive experiments into new areas, and theorists either attempt to explain the new features, or else develop models for even more exotic ideas. The recent developments include quantum solitons, quantum computing, Bose-Einstein condensation, atom lasers, quantum cryptography, and novel tests of quantum mechanics. The talk will briefly cover current progress and outstanding problems in each of these areas. Copyright (1999) Australian Optical Society.

  7. Images of the dark soliton in a depleted condensate

    International Nuclear Information System (INIS)

    Dziarmaga, Jacek; Karkuszewski, Zbyszek P; Sacha, Krzysztof

    2003-01-01

    The dark soliton created in a Bose-Einstein condensate becomes grey in the course of time evolution because its notch fills up with depleted atoms. This is the result of quantum mechanical calculations which describe the output of many experimental repetitions of creation of the stationary soliton, and its time evolution terminated by a destructive density measurement. However, such a description is not suitable to predict the outcome of a single realization of the experiment where two extreme scenarios and many combinations thereof are possible: one will see either (1) a displaced dark soliton without any atoms in the notch, but with a randomly displaced position, or (2) a grey soliton with a fixed position, but a random number of atoms filling its notch. In either case the average over many realizations will reproduce the mentioned quantum mechanical result. In this paper we use N-particle wavefunctions, which follow from the number-conserving Bogoliubov theory, to settle this issue

  8. Interaction of charged 3D soliton with Coulomb center

    International Nuclear Information System (INIS)

    Rybakov, Yu.P.

    1996-03-01

    The Einstein - de Broglie particle-soliton concept is applied to simulate stationary states of an electron in a hydrogen atom. According to this concept, the electron is described by the localized regular solutions to some nonlinear equations. In the framework of Synge model for interacting scalar and electromagnetic fields a system of integral equations has been obtained, which describes the interaction between charged 3D soliton and Coulomb center. The asymptotic expressions for physical fields, describing soliton moving around the fixed Coulomb center, have been obtained with the help of integral equations. It is shown that the electron-soliton center travels along some stationary orbit around the Coulomb center. The electromagnetic radiation is absent as the Poynting vector has non-wave asymptote O(r -3 ) after averaging over angles, i.e. the existence of spherical surface corresponding to null Poynting vector stream, has been proved. Vector lines for Poynting vector are constructed in asymptotical area. (author). 22 refs, 2 figs

  9. Solitons and rogue waves for a higher-order nonlinear Schroedinger-Maxwell-Bloch system in an erbium-doped fiber

    International Nuclear Information System (INIS)

    Su, Chuan-Qi; Gao, Yi-Tian; Yu, Xin; Xue, Long; Aviation Univ. of Air Force, Liaoning

    2015-01-01

    Under investigation in this article is a higher-order nonlinear Schroedinger-Maxwell-Bloch (HNLS-MB) system for the optical pulse propagation in an erbium-doped fiber. Lax pair, Darboux transformation (DT), and generalised DT for the HNLS-MB system are constructed. Soliton solutions and rogue wave solutions are derived based on the DT and generalised DT, respectively. Properties of the solitons and rogue waves are graphically presented. The third-order dispersion parameter, fourth-order dispersion parameter, and frequency detuning all influence the characteristic lines and velocities of the solitons. The frequency detuning also affects the amplitudes of solitons. The separating function has no effect on the properties of the first-order rogue waves, except for the locations where the first-order rogue waves appear. The third-order dispersion parameter affects the propagation directions and shapes of the rogue waves. The frequency detuning influences the rogue-wave types of the module for the measure of polarization of resonant medium and the extant population inversion. The fourth-order dispersion parameter impacts the rogue-wave interaction range and also has an effect on the rogue-wave type of the extant population inversion. The value of separating function affects the spatial-temporal separation of constituting elementary rogue waves for the second-order and third-order rogue waves. The second-order and third-order rogue waves can exhibit the triangular and pentagon patterns under different choices of separating functions.

  10. Stability of line solitons for the KP-II equation in R2

    CERN Document Server

    Mizumachi, Tetsu

    2015-01-01

    The author proves nonlinear stability of line soliton solutions of the KP-II equation with respect to transverse perturbations that are exponentially localized as x\\to\\infty. He finds that the amplitude of the line soliton converges to that of the line soliton at initial time whereas jumps of the local phase shift of the crest propagate in a finite speed toward y=\\pm\\infty. The local amplitude and the phase shift of the crest of the line solitons are described by a system of 1D wave equations with diffraction terms.

  11. Topological soliton solutions for some nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Ahmet Bekir

    2014-03-01

    Full Text Available In this paper, the topological soliton solutions of nonlinear evolution equations are obtained by the solitary wave ansatz method. Under some parameter conditions, exact solitary wave solutions are obtained. Note that it is always useful and desirable to construct exact solutions especially soliton-type (dark, bright, kink, anti-kink, etc. envelope for the understanding of most nonlinear physical phenomena.

  12. Traveling solitons in Lorentz and CPT breaking systems

    International Nuclear Information System (INIS)

    Souza Dutra, A. de; Correa, R. A. C.

    2011-01-01

    In this work we present a class of traveling solitons in Lorentz and CPT breaking systems. In the case of Lorentz violating scenarios, as far as we know, only static solitonic configurations were analyzed up to now in the literature. Here it is shown that it is possible to construct some traveling solitons which cannot be mapped into static configurations by means of Lorentz boosts due to explicit breaking. In fact, the traveling solutions cannot be reached from the static ones by using something similar to a Lorentz boost in those cases. Furthermore, in the model studied, a complete set of exact solutions is obtained. The solutions present a critical behavior controlled by the choice of an arbitrary integration constant.

  13. Electron–soliton dynamics in chains with cubic nonlinearity

    International Nuclear Information System (INIS)

    Sales, M O; Moura, F A B F de

    2014-01-01

    In our work, we consider the problem of electronic transport mediated by coupling with solitonic elastic waves. We study the electronic transport in a 1D unharmonic lattice with a cubic interaction between nearest neighboring sites. The electron-lattice interaction was considered as a linear function of the distance between neighboring atoms in our study. We numerically solve the dynamics equations for the electron and lattice and compute the dynamics of an initially localized electronic wave-packet. Our results suggest that the solitonic waves that exist within this nonlinear lattice can control the electron dynamics along the chain. Moreover, we demonstrate that the existence of a mobile electron–soliton pair exhibits a counter-intuitive dependence with the value of the electron-lattice coupling. (paper)

  14. Stability analysis of embedded solitons in the generalized third-order nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pelinovsky, Dmitry E.; Yang Jianke

    2005-01-01

    We study the generalized third-order nonlinear Schroedinger (NLS) equation which admits a one-parameter family of single-hump embedded solitons. Analyzing the spectrum of the linearization operator near the embedded soliton, we show that there exists a resonance pole in the left half-plane of the spectral parameter, which explains linear stability, rather than nonlinear semistability, of embedded solitons. Using exponentially weighted spaces, we approximate the resonance pole both analytically and numerically. We confirm in a near-integrable asymptotic limit that the resonance pole gives precisely the linear decay rate of parameters of the embedded soliton. Using conserved quantities, we qualitatively characterize the stable dynamics of embedded solitons

  15. Zero-modes of non-Abelian solitons in three-dimensional gauge theories

    International Nuclear Information System (INIS)

    Eto, Minoru; Gudnason, Sven Bjarke

    2011-01-01

    We study non-Abelian solitons of the Bogomol'nyi type in N=2 (d = 2 + 1) supersymmetric Chern-Simons (CS) and Yang-Mills (YM) theory with a generic gauge group. In CS theory, we find topological, non-topological and semi-local (non-)topological vortices of non-Abelian kinds in unbroken, broken and partially broken vacua. We calculate the number of zero-modes using an index theorem and then we apply the moduli matrix formalism to realize the moduli parameters. For the topological solitons we exhaust all the moduli while we study several examples of the non-topological and semi-local solitons. We find that the zero-modes of the topological solitons are governed by the moduli matrix H 0 only and those of the non-topological solitons are governed by both H 0 and the gauge invariant field Ω. We prove local uniqueness of the master equation in the YM case and finally compare all results between the CS and YM theories.

  16. Interaction between counter-streaming ion-acoustic solitons and the Langmuir waves

    International Nuclear Information System (INIS)

    Basovich, A.Ya.; Gromov, E.M.; Talanov, V.I.

    1984-01-01

    The interaction between strong counter-streaming ion-acoustic solitons and the Langmuir waves is considered. At first the Langmuir waves spectrum transformation by counter-streaming ion-acoustic solutions of a preset amplitude e has been found. An increase in the frequency and number of the Langmuir waves due to the Doppler effect in the course of multiple reflection from the f front soliton slope has been determined and the wave number range in which the confinement of the Langmuir waves by counter-streaning solitons is possible has s been found. It is shown that the time of the Langmuir wave transformation into the short-wave region under the effect of the counter-streaming soliton may y be short as compared with the time of the Langmuir wave diffusion into the Landau damping region under the effect of random fields of ion-acoustic waves. In the adiabatic fpproximation changes in the counter-streaming ion acoustic parameters of solitons owing to the Langmuir waves have been

  17. Observations and predictability of internal solitons in the northern Andaman Sea

    Energy Technology Data Exchange (ETDEWEB)

    Hyder, P. [Fugro GEOS Ltd., Wallingford (United Kingdom); Met Office, National Centre for Ocean Forecasting, Exeter (United Kingdom); Jeans, D.R.G. [Fugro GEOS Ltd., Wallingford (United Kingdom); Cauquil, E. [Total, Paris la Defense Cedex, 92 (France); Nerzic, R. [Actimar, Brest, 29 (France)

    2005-04-15

    Internal solitons are potentially hazardous to sub-sea oil and gas drilling operations. The ability to predict these waves can therefore improve the cost effectiveness and safety of offshore drilling. Theory suggests that solitons are generated when strong tidal currents flow over a bathymetric feature, in a stratified water column. Therefore, with knowledge of the tidal currents, bathymetry and stratification these waves are potentially predictable. Observations were conducted between January and April 1998 at a proposed drilling location in water 440 m deep to the north-east of the Andaman Islands. These observations indicated the occurrence of internal solitons with thermocline depressions of up to 50 m and upper layer currents of up to 1.2 ms{sup -1}. The solitons only occurred on spring tides, when the tidal range exceeded 1.5 m and their probability of occurrence increased with tidal range. Thus, in this location, predictions of tidal range can be used to forecast soliton occurrence. (Author)

  18. Fractal scattering of Gaussian solitons in directional couplers with logarithmic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Rafael M.P.; Cardoso, Wesley B., E-mail: wesleybcardoso@gmail.com

    2016-08-12

    In this paper we study the interaction of Gaussian solitons in a dispersive and nonlinear media with log-law nonlinearity. The model is described by the coupled logarithmic nonlinear Schrödinger equations, which is a nonintegrable system that allows the observation of a very rich scenario in the collision patterns. By employing a variational approach and direct numerical simulations, we observe a fractal-scattering phenomenon from the exit velocities of each soliton as a function of the input velocities. Furthermore, we introduce a linearization model to identify the position of the reflection/transmission window that emerges within the chaotic region. This enables us the possibility of controlling the scattering of solitons as well as the lifetime of bound states. - Highlights: • We study the interaction of Gaussian solitons in a system with log-law nonlinearity. • The model is described by the coupled logarithmic nonlinear Schrödinger equations. • We observe a fractal-scattering phenomenon of the solitons.

  19. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.

    Directory of Open Access Journals (Sweden)

    R R Poznanski

    Full Text Available A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage' have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by

  20. Holomorphic Vector Bundles Corresponding to some Soliton Solutions of the Ward Equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiujuan, E-mail: yzzhuxiujuan@sina.com [Jiangsu Second Normal University, School of Mathematics and Information Technology (China)

    2015-12-15

    Holomorphic vector bundles corresponding to the static soliton solution of the Ward equation were explicitly presented by Ward in terms of a meromorphic framing. Bundles (for simplicity, “bundle” is to be taken throughout to mean “holomorphic vector bundle”) corresponding to all Ward k-soliton solutions whose extended solutions have only simple poles, and some Ward 2-soliton solutions whose extended solutions have only a second-order pole, were explicitly described by us in a previous paper. In this paper, we go on to present some bundles corresponding to soliton-antisoliton solutions of the Ward equation, and Ward 3-soliton solutions whose extended solutions have a simple pole and a double pole. To give some more interpretation of the bundles, we study the second Chern number of the corresponded bundles and find that it can be obtained directly from the patching matrices. We also point out some information about bundles corresponding to Ward soliton solutions whose extended solutions have general pole data at the end of the paper.

  1. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    Science.gov (United States)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  2. Experiments on ion-acoustic rarefactive solitons in a multi-component plasma with negative ions

    International Nuclear Information System (INIS)

    Nakamura, Y.; Ferreira, J.L.; Ludwig, G.O.

    1987-09-01

    Ion-acoustic solitons in a three-component plasma which consists of electrons, positive and negative ions have been investigated experimentally. When the concentration of negative ions is smaller than a certain value, positive or compressive solitons are observed. At the critical concentration, a broad pulse of small but finite amplitude propagates without changing its shape. When the concentration is larger than this value, negative or rarefactive solitons are excited. The velocity and the width of these solitons are measured and compared with predictions of the Korteweg- de Vries equation which takes the negative ions and the ion temperature into consideration. Head-ion and over-taking collisions of the rarefactive solitons have been observed to show that the solitons are not affected by these collisions. (author) [pt

  3. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.

    2003-01-01

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  4. Pure soliton solutions of some nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Fuchssteiner, B.

    1977-01-01

    A general approach is given to obtain the system of ordinary differential equations which determines the pure soliton solutions for the class of generalized Korteweg-de Vries equations. This approach also leads to a system of ordinary differential equations for the pure soliton solutions of the sine-Gordon equation. (orig.) [de

  5. Bragg solitons in systems with separated nonuniform Bragg grating and nonlinearity

    Science.gov (United States)

    Ahmed, Tanvir; Atai, Javid

    2017-09-01

    The existence and stability of quiescent Bragg grating solitons are systematically investigated in a dual-core fiber, where one of the cores is uniform and has Kerr nonlinearity while the other one is linear and incorporates a Bragg grating with dispersive reflectivity. Three spectral gaps are identified in the system, in which both lower and upper band gaps overlap with one branch of the continuous spectrum; therefore, these are not genuine band gaps. However, the central band gap is a genuine band gap. Soliton solutions are found in the lower and upper gaps only. It is found that in certain parameter ranges, the solitons develop side lobes. To analyze the side lobes, we have derived exact analytical expressions for the tails of solitons that are in excellent agreement with the numerical solutions. We have analyzed the stability of solitons in the system by means of systematic numerical simulations. We have found vast stable regions in the upper and lower gaps. The effect and interplay of dispersive reflectivity, the group velocity difference, and the grating-induced coupling on the stability of solitons are investigated. A key finding is that a stronger grating-induced coupling coefficient counteracts the stabilization effect of dispersive reflectivity.

  6. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  7. Fermion: field nontopological solitons. II. Models for hadrons

    International Nuclear Information System (INIS)

    Friedberg, R.; Lee, T.D.

    1977-01-01

    The possibility, and its consequences, are examined that in a relativistic local field theory, consisting of color quarks q, scalar gluon sigma, color gauge field V/sub mu/ and color Higgs field phi, the mass of the soliton solution may be much lower than any mass of the plane wave solutions; i.e., m/sub q/ the quark mass, m/sub sigma/ the gluon mass, etc. There appears a rather clean separation between the physics of these low mass solitons and that of the high energy excitations, in the range of m/sub q/ and m/sub sigma/, provided that the parameters xi identical with (μ/m/sub q/) 2 and eta identical with μ/m/sub sigma/ are both much less than 1, where μ is an overall low energy scale appropriate for the solitons (but the ratio eta/xi is assumed to be O(1), though otherwise arbitrary). Under very general assumptions, it is shown that independently of the number of parameters in the original Lagrangian, the mathematical problem of finding the quasiclassical soliton solutions reduces, through scaling, to that of a simple set of two coupled first-order differential equations, neither of which contains any explicit free parameters. The general properties and the numerical solutions of this reduced set of differential equations are given. The resulting solitons exhibit physical characteristics very similar to those of a ''gas bubble'' immersed in a ''medium'': there is a constant surface tension and a constant pressure exerted by the medium on the gas; in addition, there are the ''thermodynamical'' energy of the gas and the related gas pressure, which are determined by the solutions of the reduced equations. Both a SLAC-like bag and the Creutz-Soh version of the MIT bag may appear, but only as special limiting cases. These soliton solutions are applied to the physical hadrons; their static properties are calculated and, within a 10 to 15 percent accuracy, agree with observations

  8. The ion-acoustic soliton: A gas-dynamic viewpoint

    Science.gov (United States)

    McKenzie, J. F.

    2002-03-01

    The properties of fully nonlinear ion-acoustic solitons are investigated by interpreting conservation of total momentum as the structure equation for the proton flow in the wave. In most studies momentum conservation is regarded as the first integral of the Poisson equation for the electric potential and is interpreted as being analogous to a particle moving in a pseudo-potential well. By adopting an essentially gas-dynamic viewpoint, which emphasizes momentum conservation and the properties of the Bernoulli-type energy equations, the crucial role played by the proton sonic point becomes apparent. The relationship (implied by energy conservation) between the electron and proton speeds in the transition yields a locus—the hodograph of the system-which shows that, in the first half of the soliton, the electrons initially lag behind the protons until the charge neutral point is reached, after which they run ahead of the protons. The system reaches an equilibrium point (the center of the soliton) before the proton flow goes sonic. It follows that the critical ion-acoustic Mach number, Mc, above which smooth, continuous solitons cannot be constructed, stems from the requirement that the two equilibrium points of the structure equation coalesce at the proton sonic point of the flow. In general the range of the ion-acoustic Mach numbers, Mep, in which solitons exist, is extended beyond the classical range 1solitons exist only if 1

  9. Parametrically tunable soliton-induced resonant radiation by three-wave mixing

    DEFF Research Database (Denmark)

    Zhou, Binbin; Liu, Xing; Guo, Hairun

    2017-01-01

    We show that a temporal soliton can induce resonant radiation by three-wave mixing nonlinearities. This constitutes a new class of resonant radiation whose spectral positions are parametrically tunable. The experimental verification is done in a periodically poled lithium niobate crystal, where...... a femtosecond near-IR soliton is excited and resonant radiation waves are observed exactly at the calculated soliton phasematching wavelengths via the sum- and difference-frequency generation nonlinearities. This extends the supercontinuum bandwidth well into the mid IR to span 550–5000 nm, and the mid-IR edge...

  10. Waves and solitons in the continuum limit of the Calogero-Sutherland model

    CERN Document Server

    Polychronakos, A P

    1995-01-01

    We examine a collection of classical particles interacting with inverse-square two-body potentials in the thermodynamic limit of finite particle density. We find explicit large-amplitude density waves and soliton solutions for the motion of the system. Waves can be constructed as coherent states of either solitons or phonons (small-amplitude waves). Therefore, either solitons or phonons can be considered as the fundamental excitations. The generic wave is shown to correspond to a two-band state in the quantum description of the system, while the limiting cases of solitons and phonons correspond to particle and hole excitations.

  11. Mid-IR femtosecond frequency conversion by soliton-probe collision in phase-mismatched quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Liu, Xing; Zhou, Binbin; Guo, Hairun

    2015-01-01

    in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between. lambda = 2.2-2.4 mu m as a resonant dispersive wave. This process relies...... on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation. (C) 2015 Optical Society of America...

  12. Electromagnetic soliton production during interaction of relativistically strong laser pulses with plasma

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Zh.; Kamenets, F.F.; Naumova, N.M.

    1995-01-01

    The paper presents the results of a numeric modelling of the propagation of ultra short relativistically strong laser pulses in a rarefied plasma by the 'particle in cell'. Primary attention is paid to the process of the formation of electromagnetic solitons which can not be described in the approximation of envelopes. It is found that under certain conditions a significant portion of pulse energy can transform is solitons. The soliton excitation mechanism is related to a decrease of local frequency of electromagnetic radiation due to the generation of wave plasma waves. From one soliton to a stub of solitons can be generated in the wake of a relatively long pulse depending on the parameters of laser pulse in plasma. Particles are effectively accelerated forwards radiation propagation in the electric field of wake plasma waves. 22 refs., 7 figs

  13. CHARACTERIZATION AND MODELING OF SOLITON TRANSMISSION AT 2.5 GB/S OVER 200 KM

    Directory of Open Access Journals (Sweden)

    KHALID A. S. AL-KHATEEB

    2010-09-01

    Full Text Available Soliton characteristics and soliton transmission have been simulated using a VPI simulator. Simulation was also used to construct and study a soliton communication system. Near soliton pulses emitted by an actively mode-locked laser is then compressed in a dispersion-compensating fiber (DCF to produce solitons. The effects of non-linearity and active pre-chirping of mode-locked laser diode sources were also investigated. Assessment on a modeled system using real data shows that propagation over 250 km at 2.5 Gb/s in standard fibers with 20 ps pulse widths is possible in the 1550 nm wavelength range.

  14. Electron acoustic-Langmuir solitons in a two-component electron plasma

    Science.gov (United States)

    McKenzie, J. F.

    2003-04-01

    We investigate the conditions under which ‘high-frequency’ electron acoustic Langmuir solitons can be constructed in a plasma consisting of protons and two electron populations: one ‘cold’ and the other ‘hot’. Conservation of total momentum can be cast as a structure equation either for the ‘cold’ or ‘hot’ electron flow speed in a stationary wave using the Bernoulli energy equations for each species. The linearized version of the governing equations gives the dispersion equation for the stationary waves of the system, from which follows the necessary but not sufficient conditions for the existence of soliton structures; namely that the wave speed must be less than the acoustic speed of the ‘hot’ electron component and greater than the low-frequency compound acoustic speed of the two electron populations. In this wave speed regime linear waves are ‘evanescent’, giving rise to the exponential growth or decay, which readily can give rise to non-linear effects that may balance dispersion and allow soliton formation. In general the ‘hot’ component must be more abundant than the ‘cold’ one and the wave is characterized by a compression of the ‘cold’ component and an expansion in the ‘hot’ component necessitating a potential dip. Both components are driven towards their sonic points; the ‘cold’ from above and the ‘hot’ from below. It is this transonic feature which limits the amplitude of the soliton. If the ‘hot’ component is not sufficiently abundant the window for soliton formation shrinks to a narrow speed regime which is quasi-transonic relative to the ‘hot’ electron acoustic speed, and it is shown that smooth solitons cannot be constructed. In the special case of a very cold electron population (i.e. ‘highly supersonic’) and the other population being very hot (i.e. ‘highly subsonic’) with adiabatic index 2, the structure equation simplifies and can be integrated in terms of elementary

  15. Large amplitude collective nuclear motion and soliton concept

    International Nuclear Information System (INIS)

    Kartavenko, V.G.; Joint Inst. for Nuclear Research, Dubna

    1993-01-01

    An application of a soliton theory methods to some nonlinear problems in low and intermediate energies (E ∼ 10--100MeV/nucleon) nucleus - nucleus collisions are presented. Linear and nonlinear excitations of the nuclear density are investigated in the framework of nuclear hydrodynamics. The problem of dynamical instability and clusterization phenomena in a breakup of excited nuclear systems are considered from the points of view of a soliton concept

  16. Multiple periodic-soliton solutions of the (3+1)-dimensional generalised shallow water equation

    Science.gov (United States)

    Li, Ye-Zhou; Liu, Jian-Guo

    2018-06-01

    Based on the extended variable-coefficient homogeneous balance method and two new ansätz functions, we construct auto-Bäcklund transformation and multiple periodic-soliton solutions of (3 {+} 1)-dimensional generalised shallow water equations. Completely new periodic-soliton solutions including periodic cross-kink wave, periodic two-solitary wave and breather type of two-solitary wave are obtained. In addition, cross-kink three-soliton and cross-kink four-soliton solutions are derived. Furthermore, propagation characteristics and interactions of the obtained solutions are discussed and illustrated in figures.

  17. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  18. Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.

    Science.gov (United States)

    Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N

    2014-09-01

    We present the fifth-order equation of the nonlinear Schrödinger hierarchy. This integrable partial differential equation contains fifth-order dispersion and nonlinear terms related to it. We present the Lax pair and use Darboux transformations to derive exact expressions for the most representative soliton solutions. This set includes two-soliton collisions and the degenerate case of the two-soliton solution, as well as beating structures composed of two or three solitons. Ultimately, the new quintic operator and the terms it adds to the standard nonlinear Schrödinger equation (NLSE) are found to primarily affect the velocity of solutions, with complicated flow-on effects. Furthermore, we present a new structure, composed of coincident equal-amplitude solitons, which cannot exist for the standard NLSE.

  19. Exact multi-line soliton solutions of noncommutative KP equation

    International Nuclear Information System (INIS)

    Wang, Ning; Wadati, Miki

    2003-01-01

    A method of solving noncommutative linear algebraic equations plays a key role in the extension of the ∂-bar -dressing on the noncommutative space-time manifold. In this paper, a solution-generating method of noncommutative linear algebraic equations is proposed. By use of the proposed method, a class of multi-line soliton solutions of noncommutative KP (ncKP) equation is constructed explicitly. The method is expected to be of use for constructions of noncommutative soliton equations. The significance of the noncommutativity of coordinates is investigated. It is found that the noncommutativity of the space-time coordinate has a role to split the spatial waveform of the classical multi-line solitons and reform it to a new configuration. (author)

  20. Collective states of externally driven, damped nonlinear Schroedinger solitons

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Smirnov, Yu.S.

    1997-01-01

    We study bifurcations of localized stationary solitons of the externally driven, damped nonlinear Schroedinger equation iΨ t + Ψ xx + 2|Ψ| 2 Ψ=-iγΨ-h e iΩt , in the region of large γ (γ>1/2). For each pair of h and γ, there are two coexisting solitons, Ψ + and Ψ - . As the driver's strength h increases for the fixed γ, the Ψ + soliton merges with the flat background while the Ψ - forms a stationary collective state with two 'psi-pluses': Ψ - → Ψ (+ - +) . We obtain other stationary solutions and identify them as multisoliton complexes Ψ (++) , Ψ (--) , Ψ (-+) , Ψ (---) , Ψ (-+- ) etc. The corresponding intersoliton separations are compared to predictions of a variational approximation

  1. Decomposition of group-velocity-locked-vector-dissipative solitons and formation of the high-order soliton structure by the product of their recombination.

    Science.gov (United States)

    Wang, Xuan; Li, Lei; Geng, Ying; Wang, Hanxiao; Su, Lei; Zhao, Luming

    2018-02-01

    By using a polarization manipulation and projection system, we numerically decomposed the group-velocity-locked-vector-dissipative solitons (GVLVDSs) from a normal dispersion fiber laser and studied the combination of the projections of the phase-modulated components of the GVLVDS through a polarization beam splitter. Pulses with a structure similar to a high-order vector soliton could be obtained, which could be considered as a pseudo-high-order GVLVDS. It is found that, although GVLVDSs are intrinsically different from group-velocity-locked-vector solitons generated in fiber lasers operated in the anomalous dispersion regime, similar characteristics for the generation of pseudo-high-order GVLVDS are obtained. However, pulse chirp plays a significant role on the generation of pseudo-high-order GVLVDS.

  2. Ultrafast Optics: Vector Cavity Laser - Physics and Technology

    Science.gov (United States)

    2016-06-14

    with a quasi- vector cavity both numerically and experimentally. It is expected that through the study a deep and comprehensive understanding on the...799-801, Jun. 1997. 31. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen , "Noise-like pulse in a gain-guided soliton fiber laser," Opt...solitons in a ring fiber laser," Optics Communications 281 (22), 5614 (2008). 110. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen , "Noise-like

  3. Ultrafast Optics - Vector Cavity Lasers: Physics and Technology

    Science.gov (United States)

    2016-06-14

    with a quasi- vector cavity both numerically and experimentally. It is expected that through the study a deep and comprehensive understanding on the...799-801, Jun. 1997. 31. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen , "Noise-like pulse in a gain-guided soliton fiber laser," Opt...solitons in a ring fiber laser," Optics Communications 281 (22), 5614 (2008). 110. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen , "Noise-like

  4. Creation and revival of ring dark solitons in an annular Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Toikka, L A; Kärki, O; Suominen, K-A

    2014-01-01

    We propose a protocol for the simultaneous controlled creation of multiple concentric ring dark solitons in a toroidally trapped flat Bose–Einstein condensate. The decay of these solitons into a vortex–antivortex necklace shows revivals of the soliton structure, but eventually becomes an example of quantum turbulence. (fast track communications)

  5. Ion-acoustic solitons in a plasma with electron beam

    International Nuclear Information System (INIS)

    Esfandyari, A. R.; Khorram, S.

    2001-01-01

    Ion-acoustic solitons in a collisionless plasma consisting of warm ions, hot isothermal electrons and a electron beam are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries and modified Korteweg-de Vries temperature and electron beam on ion acoustic equations. The effect of ion solitons are investigated

  6. Translating solitons to symplectic and Lagrangian mean curvature flows

    International Nuclear Information System (INIS)

    Han Xiaoli; Li Jiayu

    2007-05-01

    In this paper, we construct finite blow-up examples for symplectic mean curvature flows and we study symplectic translating solitons. We prove that there is no translating solitons with vertical bar α vertical bar ≤ α 0 to the symplectic mean curvature flow or to the almost calibrated Lagrangian mean curvature flow for some α 0 . (author)

  7. Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers

    Directory of Open Access Journals (Sweden)

    A. Komarov

    2012-01-01

    Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.

  8. Chiral solitons in spinor polariton rings

    Science.gov (United States)

    Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.

    2018-04-01

    We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.

  9. Evaluation of the impact of higher-order energy enhancement characteristics of solitons in strongly dispersion-managed optical fibers

    International Nuclear Information System (INIS)

    Diaz-Otero, Francisco J.; Guillán-Lorenzo, Omar; Pedrosa-Rodríguez, Laura

    2017-01-01

    Highlights: • Empirical model describing the pulse energy enhancement required to obtain stable pulses to higher-order polynomial equations • An improvement in the accuracy is obtained through the addition of a new quartic addend dependent on the map strength. • This conclusion is validated through a comparison in a commercial DM soliton submarine network. • The error in the interaction distance for two adjacent pulses in the same channel is of the same order as the energy error - Abstract: We study the propagation properties of nonlinear pulses with periodic evolution in a dispersion-managed transmission link by means of a variational approach. We fit the energy enhancement required for stable propagation of a single soliton in a prototypical commercial link to a polynomial approximation that describes the dependence of the energy on the map strength of the normalized unit cell. We present an improvement of a relatively old and essential result, namely, the dependence of the energy-enhancement factor of dispersion-management solitons with the square of the map strength of the fiber link. We find that adding additional corrections to the conventional quadratic formula up to the fourth order results in an improvement in the accuracy of the description of the numerical results obtained with the variational approximation. Even a small error in the energy is found to introduce large deviations in the pulse parameters during its evolution. The error in the evaluation of the interaction distance between two adjacent time division multiplexed pulses propagating in the same channel in a prototypical submarine link is of the same order as the error in the energy.

  10. Oscillating electromagnetic soliton in an anisotropic ferromagnetic medium

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, P., E-mail: perumal_sathish@yahoo.co.in [Department of Physics, K.S.R. College of Engineering (Autonomous), Tiruchengode 637215, Tamilnadu (India); Senjudarvannan, R. [Department of Physics, Jansons Institute of Technology, Karumathampatty, Coimbatore 641659 (India)

    2017-05-01

    We investigate theoretically the propagation of electromagnetic oscillating soliton in the form of breather in an anisotropic ferromagnetic medium. The interaction of magnetization with the magnetic field component of the electromagnetic (EM) wave has been studied by solving Maxwell's equations coupled with a Landau–Lifshitz equation for the magnetization of the medium. We made a small perturbation on the magnetization and magnetic field along the direction of propagation of EM wave in the framework of reductive perturbation method and the associated nonlinear magnetization dynamics is governed by a generalized derivative nonlinear Schrödinger (DNLS) equation. In order to understand the dynamics of the concerned system, we employ the Jacobi elliptic function method to solve the DNLS equation and deduce breatherlike soliton modes for the EM wave in the medium. - Highlights: • The propagation of electromagnetic oscillating soliton in an anisotropic ferromagnetic medium is investigated in the presence of varying external magnetic field. • The magnetization and electromagnetic wave modulates in the form of breathing like oscillating solitons. • The governing nonlinear spin dynamical equation is studied through a reductive perturbation method. • The magnetization components of the ferromagnetic medium are derived using Jacobi elliptic functions method with the aid of symbolic computation.

  11. Chan-Paton soliton gauge states of the compactified open string

    International Nuclear Information System (INIS)

    Lee, J.-C.

    2000-01-01

    We study the mechanism of the enhanced gauge symmetry of the bosonic open string compactified on a torus by analyzing the zero-norm soliton (non-zero winding of the Wilson line) gauge states in the spectrum. Unlike the closed string case, we find that the soliton gauge state exists only at massive levels. These soliton gauge states correspond to the existence of enhanced massive gauge symmetries with transformation parameters containing both Einstein and Yang-Mills indices. In the T-dual picture, these symmetries exist only at some discrete values of compactified radii when N D-branes are coincident. (orig.)

  12. Exact, multiple soliton solutions of the double sine Gordon equation

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact, particular solutions of the double sine Gordon equation in n dimensional space are constructed. Under certain restrictions these solutions are N solitons, where N <= 2q - 1 and q is the dimensionality of space-time. The method of solution, known as the base equation technique, relates solutions of nonlinear partial differential equations to solutions of linear partial differential equations. This method is reviewed and its applicability to the double sine Gordon equation shown explicitly. The N soliton solutions have the remarkable property that they collapse to a single soliton when the wave vectors are parallel. (author)

  13. The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength: erratum

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch; Falk, Peter Andreas; Bang, Ole

    2007-01-01

    An erratum is presented explaining that the observation in the original paper (Optics Express, volume 13, issue 16, page 6181-6192, 2005), of a bright-bright soliton with one color in the anomalous dispersion region and the other color in the normal dispersion region was mistaken; both parts...

  14. Solitons in one-dimensional charge density wave systems

    International Nuclear Information System (INIS)

    Su, W.P.

    1981-01-01

    Theoretical research on one dimensional charge density wave systems is outlined. A simple coupled electron-photon Hamiltonian is studied including a Green's function approach, molecular dynamics, and Monte Carlo path integral method. As in superconductivity, the nonperturbative nature of the system makes the physical ground states and low energy excitations drastically different from the bare electrons and phonons. Solitons carry quantum numbers which are entirely different from those of the bare electrons and holes. The fractional charge character of the solitons is an example of this fact. Solitons are conveniently generated by doping material with donors or acceptors or by photon absorption. Most predictions of the theory are in qualitative agreement with experiments. The one dimensional charge density wave system has potential technological importance and a possible role in uncovering phenomena which might have implications in relativistic field theory and elementary particle physics

  15. Upper-hybrid solitons and oscillating-two-stream instabilities

    International Nuclear Information System (INIS)

    Porkolab, M.; Goldman, M.V.

    1976-01-01

    A warm two-fluid theory of soliton formation near the upper-hybrid frequency is developed. Several forms of the nonlinear Schrodinger equation are obtained, depending on whether the electric field is completely perpendicular to the dc magnetic field or whether it has an additional small component parallel to the magnetic field. For the perpendicular case, the character of the soliton depends on its scale length, L, and on β. For low β, when L c/ω/subp//subi/ the super-Alvenic solitons described magnetohydromagnetically by Kaufman and Stenflo are obtained. However, the case E/sub parallel/not-equal0 may be of more interest, since it couples the pump to the excited waves more efficiently. In the limit of linearization about an infinite wavelength pump, the nonlinear Schrodinger equations yield purely growing (oscillating-two-stream) instabilities in both cases

  16. The fluid-dynamic paradigm of the dust-acoustic soliton

    Science.gov (United States)

    McKenzie, J. F.

    2002-06-01

    In most studies, the properties of dust-acoustic solitons are derived from the first integral of the Poisson equation, in which the shape of the pseudopotential determines both the conditions in which a soliton may exist and its amplitude. Here this first integral is interpreted as conservation of total momentum, which, along with the Bernoulli-like energy equations for each species, may be cast as the structure equation for the dust (or heavy-ion) speed in the wave. In this fluid-dynamic picture, the significance of the sonic points of each species becomes apparent. In the wave, the heavy-ion (or dust) flow speed is supersonic (relative to its sound speed), whereas the protons and electrons are subsonic (relative to their sound speeds), and the dust flow is driven towards its sonic point. It is this last feature that limits the strength (amplitude) of the wave, since the equilibrium point (the centre of the wave) must be reached before the dust speed becomes sonic. The wave is characterized by a compression in the heavies and a compression (rarefaction) in the electrons and a rarefaction (compression) in the protons if the heavies have positive (negative) charge, and the corresponding potential is a hump (dip). These features are elucidated by an exact analytical soliton, in a special case, which provides the fully nonlinear counterpoint to the weakly nonlinear sech2-type solitons associated with the Korteweg de Vries equation, and indicates the parameter regimes in which solitons may exist.

  17. Periodic modulations controlling Kuznetsov–Ma soliton formation in nonlinear Schrödinger equations

    Energy Technology Data Exchange (ETDEWEB)

    Tiofack, C.G.L., E-mail: glatchio@yahoo.fr [Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules, F-59000 Lille (France); Coulibaly, S.; Taki, M. [Univ. Lille, CNRS, UMR 8523 – PhLAM – Physique des Lasers Atomes et Molécules, F-59000 Lille (France); De Bièvre, S.; Dujardin, G. [Univ. Lille, CNRS, UMR 8524 – Laboratoire Paul Painlevé, F-59000 Lille (France); Équipe-Projet Mephysto, INRIA Lille-Nord Europe (France)

    2017-06-28

    We analyze the exact Kuznetsov–Ma soliton solution of the one-dimensional nonlinear Schrödinger equation in the presence of periodic modulations satisfying an integrability condition. We show that, in contrast to the case without modulation, the Kuznetsov–Ma soliton develops multiple compression points whose number, shape and position are controlled both by the intensity of the modulation and by its frequency. In addition, when this modulation frequency is a rational multiple of the natural frequency of the Kuznetsov–Ma soliton, a scenario similar to a nonlinear resonance is obtained: in this case the spatial oscillations of the Kuznetsov–Ma soliton's intensity are periodic. When the ratio of the two frequencies is irrational, the soliton's intensity is a quasiperiodic function. A striking and important result of our analysis is the possibility to suppress any component of the output spectrum of the Kuznetsov–Ma soliton by a judicious choice of the amplitude and frequency of the modulation. - Highlights: • Exact Kuznetsov–Ma soliton solution in presence of periodic coefficients is obtained. • The multiple compression points of the solution are studied. • The quasi-periodicity of the solution is discussed. • The possibility to suppress any component of the spectrum is analyzed.

  18. Two-dimensional behavior of solitons in a low-β plasma with convective motion

    International Nuclear Information System (INIS)

    Makino, Mitsuhiro; Kamimura, Tetsuo; Sato, Tetsuya.

    1981-01-01

    The initial value problem of the Hasegawa-Mima (HM) equation, which describes the propagation of drift waves in a low beta magnetized plasma, is numerically studied. Solitons are formed from an initial sinusoidal wave. For a wide range of initial conditions, the number of solitons and the recurrence time agree well with those obtained from the KdV eq. reduced from the HM eq. by Nozaki et al. As a result of nonlinear interactions among different solitons, their peak positions shift in the direction normal to the zeroth order convective motion in a regular but different fashion. When we start from a sinusoidal wave, the peaks of the generated soliton train line up on a line at an angle with respect to the convective direction. Two-deimensional collisions of different solitons are examined. (author)

  19. Numerical study of properties of many-dimensional soliton-type objects

    International Nuclear Information System (INIS)

    Makhankov, V.G.; Shvachka, A.B.

    1980-01-01

    A brief review of the dynamical properties of many-dimensional quasi-solitons studied by means of the computer simulation in the framework of the nonlinear classical field theory models is presented. It is shown that the types of soliton interactions are model independent for studied models

  20. Polarization Properties of Laser Solitons

    Directory of Open Access Journals (Sweden)

    Pedro Rodriguez

    2017-04-01

    Full Text Available The objective of this paper is to summarize the results obtained for the state of polarization in the emission of a vertical-cavity surface-emitting laser with frequency-selective feedback added. We start our research with the single soliton; this situation presents two perpendicular main orientations, connected by a hysteresis loop. In addition, we also find the formation of a ring-shaped intensity distribution, the vortex state, that shows two homogeneous states of polarization with very close values to those found in the soliton. For both cases above, the study shows the spatially resolved value of the orientation angle. It is important to also remark the appearance of a non-negligible amount of circular light that gives vectorial character to all the different emissions investigated.