WorldWideScience

Sample records for optical shared memory

  1. One-way shared memory

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2018-01-01

    Standard multicore processors use the shared main memory via the on-chip caches for communication between cores. However, this form of communication has two limitations: (1) it is hardly time-predictable and therefore not a good solution for real-time systems and (2) this single shared memory...... is a bottleneck in the system. This paper presents a communication architecture for time-predictable multicore systems where core-local memories are distributed on the chip. A network-on-chip constantly copies data from a sender core-local memory to a receiver core-local memory. As this copying is performed...... in one direction we call this architecture a one-way shared memory. With the use of time-division multiplexing for the memory accesses and the network-on-chip routers we achieve a time-predictable solution where the communication latency and bandwidth can be bounded. An example architecture for a 3...

  2. Improvement of multiprocessing performance by using optical centralized shared bus

    Science.gov (United States)

    Han, Xuliang; Chen, Ray T.

    2004-06-01

    With the ever-increasing need to solve larger and more complex problems, multiprocessing is attracting more and more research efforts. One of the challenges facing the multiprocessor designers is to fulfill in an effective manner the communications among the processes running in parallel on multiple multiprocessors. The conventional electrical backplane bus provides narrow bandwidth as restricted by the physical limitations of electrical interconnects. In the electrical domain, in order to operate at high frequency, the backplane topology has been changed from the simple shared bus to the complicated switched medium. However, the switched medium is an indirect network. It cannot support multicast/broadcast as effectively as the shared bus. Besides the additional latency of going through the intermediate switching nodes, signal routing introduces substantial delay and considerable system complexity. Alternatively, optics has been well known for its interconnect capability. Therefore, it has become imperative to investigate how to improve multiprocessing performance by utilizing optical interconnects. From the implementation standpoint, the existing optical technologies still cannot fulfill the intelligent functions that a switch fabric should provide as effectively as their electronic counterparts. Thus, an innovative optical technology that can provide sufficient bandwidth capacity, while at the same time, retaining the essential merits of the shared bus topology, is highly desirable for the multiprocessing performance improvement. In this paper, the optical centralized shared bus is proposed for use in the multiprocessing systems. This novel optical interconnect architecture not only utilizes the beneficial characteristics of optics, but also retains the desirable properties of the shared bus topology. Meanwhile, from the architecture standpoint, it fits well in the centralized shared-memory multiprocessing scheme. Therefore, a smooth migration with substantial

  3. Performing an allreduce operation using shared memory

    Science.gov (United States)

    Archer, Charles J [Rochester, MN; Dozsa, Gabor [Ardsley, NY; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN

    2012-04-17

    Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.

  4. A Shared Scratchpad Memory with Synchronization Support

    DEFF Research Database (Denmark)

    Hansen, Henrik Enggaard; Maroun, Emad Jacob; Kristensen, Andreas Toftegaard

    2017-01-01

    Multicore processors usually communicate via shared memory, which is backed up by a shared level 2 cache and a cache coherence protocol. However, this solution is not a good fit for real-time systems, where we need to provide tight guarantees on execution and memory access times. In this paper, we...... propose a shared scratchpad memory as a time-predictable communication and synchronization structure, instead of the level 2 cache. The shared on-chip memory is accessed via a time division multiplexing arbiter, isolating the execution time of load and store instructions between processing cores....... Furthermore, the arbiter supports an extended time slot where an atomic load and store instruction can be executed to implement synchronization primitives. In the evaluation we show that a shared scratchpad memory is an efficient communication structure for a small number of processors; in our setup, 9 cores...

  5. Switch/router architectures shared-bus and shared-memory based systems

    CERN Document Server

    Aweya, James

    2018-01-01

    A practicing engineer's inclusive review of communication systems based on shared-bus and shared-memory switch/router architectures. This book delves into the inner workings of router and switch design in a comprehensive manner that is accessible to a broad audience. It begins by describing the role of switch/routers in a network, then moves on to the functional composition of a switch/router. A comparison of centralized versus distributed design of the architecture is also presented. The author discusses use of bus versus shared-memory for communication within a design, and also covers Quality of Service (QoS) mechanisms and configuration tools. Written in a simple style and language to allow readers to easily understand and appreciate the material presented, Switch/Router Architectures: Shared-Bus and Shared-Memory Based Systems discusses the design of multilayer switches—starting with the basic concepts and on to the basic architectures. It describes the evolution of multilayer switch designs and highli...

  6. Multiprocessor shared-memory information exchange

    International Nuclear Information System (INIS)

    Santoline, L.L.; Bowers, M.D.; Crew, A.W.; Roslund, C.J.; Ghrist, W.D. III

    1989-01-01

    In distributed microprocessor-based instrumentation and control systems, the inter-and intra-subsystem communication requirements ultimately form the basis for the overall system architecture. This paper describes a software protocol which addresses the intra-subsystem communications problem. Specifically the protocol allows for multiple processors to exchange information via a shared-memory interface. The authors primary goal is to provide a reliable means for information to be exchanged between central application processor boards (masters) and dedicated function processor boards (slaves) in a single computer chassis. The resultant Multiprocessor Shared-Memory Information Exchange (MSMIE) protocol, a standard master-slave shared-memory interface suitable for use in nuclear safety systems, is designed to pass unidirectional buffers of information between the processors while providing a minimum, deterministic cycle time for this data exchange

  7. Progress In Optical Memory Technology

    Science.gov (United States)

    Tsunoda, Yoshito

    1987-01-01

    More than 20 years have passed since the concept of optical memory was first proposed in 1966. Since then considerable progress has been made in this area together with the creation of completely new markets of optical memory in consumer and computer application areas. The first generation of optical memory was mainly developed with holographic recording technology in late 1960s and early 1970s. Considerable number of developments have been done in both analog and digital memory applications. Unfortunately, these technologies did not meet a chance to be a commercial product. The second generation of optical memory started at the beginning of 1970s with bit by bit recording technology. Read-only type optical memories such as video disks and compact audio disks have extensively investigated. Since laser diodes were first applied to optical video disk read out in 1976, there have been extensive developments of laser diode pick-ups for optical disk memory systems. The third generation of optical memory started in 1978 with bit by bit read/write technology using laser diodes. Developments of recording materials including both write-once and erasable have been actively pursued at several research institutes. These technologies are mainly focused on the optical memory systems for computer application. Such practical applications of optical memory technology has resulted in the creation of such new products as compact audio disks and computer file memories.

  8. Random photonic crystal optical memory

    International Nuclear Information System (INIS)

    Wirth Lima Jr, A; Sombra, A S B

    2012-01-01

    Currently, optical cross-connects working on wavelength division multiplexing systems are based on optical fiber delay lines buffering. We designed and analyzed a novel photonic crystal optical memory, which replaces the fiber delay lines of the current optical cross-connect buffer. Optical buffering systems based on random photonic crystal optical memory have similar behavior to the electronic buffering systems based on electronic RAM memory. In this paper, we show that OXCs working with optical buffering based on random photonic crystal optical memories provides better performance than the current optical cross-connects. (paper)

  9. Optical quantum memory

    Science.gov (United States)

    Lvovsky, Alexander I.; Sanders, Barry C.; Tittel, Wolfgang

    2009-12-01

    Quantum memory is essential for the development of many devices in quantum information processing, including a synchronization tool that matches various processes within a quantum computer, an identity quantum gate that leaves any state unchanged, and a mechanism to convert heralded photons to on-demand photons. In addition to quantum computing, quantum memory will be instrumental for implementing long-distance quantum communication using quantum repeaters. The importance of this basic quantum gate is exemplified by the multitude of optical quantum memory mechanisms being studied, such as optical delay lines, cavities and electromagnetically induced transparency, as well as schemes that rely on photon echoes and the off-resonant Faraday interaction. Here, we report on state-of-the-art developments in the field of optical quantum memory, establish criteria for successful quantum memory and detail current performance levels.

  10. Externalising the autobiographical self: sharing personal memories online facilitated memory retention.

    Science.gov (United States)

    Wang, Qi; Lee, Dasom; Hou, Yubo

    2017-07-01

    Internet technology provides a new means of recalling and sharing personal memories in the digital age. What is the mnemonic consequence of posting personal memories online? Theories of transactive memory and autobiographical memory would make contrasting predictions. In the present study, college students completed a daily diary for a week, listing at the end of each day all the events that happened to them on that day. They also reported whether they posted any of the events online. Participants received a surprise memory test after the completion of the diary recording and then another test a week later. At both tests, events posted online were significantly more likely than those not posted online to be recalled. It appears that sharing memories online may provide unique opportunities for rehearsal and meaning-making that facilitate memory retention.

  11. Direct access inter-process shared memory

    Science.gov (United States)

    Brightwell, Ronald B; Pedretti, Kevin; Hudson, Trammell B

    2013-10-22

    A technique for directly sharing physical memory between processes executing on processor cores is described. The technique includes loading a plurality of processes into the physical memory for execution on a corresponding plurality of processor cores sharing the physical memory. An address space is mapped to each of the processes by populating a first entry in a top level virtual address table for each of the processes. The address space of each of the processes is cross-mapped into each of the processes by populating one or more subsequent entries of the top level virtual address table with the first entry in the top level virtual address table from other processes.

  12. Shared memories reveal shared structure in neural activity across individuals

    Science.gov (United States)

    Chen, J.; Leong, Y.C.; Honey, C.J.; Yong, C.H.; Norman, K.A.; Hasson, U.

    2016-01-01

    Our lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? Participants viewed a fifty-minute movie, then verbally described the events during functional MRI, producing unguided detailed descriptions lasting up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated in default-network, medial-temporal, and high-level visual areas. Individual event patterns were both highly discriminable from one another and similar between people, suggesting consistent spatial organization. In many high-order areas, patterns were more similar between people recalling the same event than between recall and perception, indicating systematic reshaping of percept into memory. These results reveal the existence of a common spatial organization for memories in high-level cortical areas, where encoded information is largely abstracted beyond sensory constraints; and that neural patterns during perception are altered systematically across people into shared memory representations for real-life events. PMID:27918531

  13. A Comparison of Two Paradigms for Distributed Shared Memory

    NARCIS (Netherlands)

    Levelt, W.G.; Kaashoek, M.F.; Bal, H.E.; Tanenbaum, A.S.

    1992-01-01

    Two paradigms for distributed shared memory on loosely‐coupled computing systems are compared: the shared data‐object model as used in Orca, a programming language specially designed for loosely‐coupled computing systems, and the shared virtual memory model. For both paradigms two systems are

  14. Self-Stabilization of Wait-Free Shared Memory Objects

    NARCIS (Netherlands)

    Hoepman, J.H.; Papatriantafilou, Marina; Tsigas, Philippas

    2002-01-01

    This paper proposes a general definition of self-stabilizing wait-free shared memory objects. The definition ensures that, even in the face of processor failures, every execution after a transient memory failure is linearizable except for an a priori bounded number of actions. Shared registers have

  15. Is sharing specific autobiographical memories a distinct form of self-disclosure?

    Science.gov (United States)

    Beike, Denise R; Brandon, Nicole R; Cole, Holly E

    2016-04-01

    Theories of autobiographical memory posit a social function, meaning that recollecting and sharing memories of specific discrete events creates and maintains relationship intimacy. Eight studies with 1,271 participants tested whether sharing specific autobiographical memories in conversations increases feelings of closeness among conversation partners, relative to sharing other self-related information. The first 2 studies revealed that conversations in which specific autobiographical memories were shared were also accompanied by feelings of closeness among conversation partners. The next 5 studies experimentally introduced specific autobiographical memories versus general information about the self into conversations between mostly unacquainted pairs of participants. Discussing specific autobiographical memories led to greater closeness among conversation partners than discussing nonself-related topics, but no greater closeness than discussing other, more general self-related information. In the final study unacquainted pairs in whom feelings of closeness had been experimentally induced through shared humor were more likely to discuss specific autobiographical memories than unacquainted control participant pairs. We conclude that sharing specific autobiographical memories may express more than create relationship closeness, and discuss how relationship closeness may afford sharing of specific autobiographical memories by providing common ground, a social display, or a safety signal. (c) 2016 APA, all rights reserved).

  16. Scalable shared-memory multiprocessing

    CERN Document Server

    Lenoski, Daniel E

    1995-01-01

    Dr. Lenoski and Dr. Weber have experience with leading-edge research and practical issues involved in implementing large-scale parallel systems. They were key contributors to the architecture and design of the DASH multiprocessor. Currently, they are involved with commercializing scalable shared-memory technology.

  17. Working memory resources are shared across sensory modalities.

    Science.gov (United States)

    Salmela, V R; Moisala, M; Alho, K

    2014-10-01

    A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.

  18. Updating optical pseudoinverse associative memories.

    Science.gov (United States)

    Telfer, B; Casasent, D

    1989-07-01

    Selected algorithms for adding to and deleting from optical pseudoinverse associative memories are presented and compared. New realizations of pseudoinverse updating methods using vector inner product matrix bordering and reduced-dimensionality Karhunen-Loeve approximations (which have been used for updating optical filters) are described in the context of associative memories. Greville's theorem is reviewed and compared with the Widrow-Hoff algorithm. Kohonen's gradient projection method is expressed in a different form suitable for optical implementation. The data matrix memory is also discussed for comparison purposes. Memory size, speed and ease of updating, and key vector requirements are the comparison criteria used.

  19. Resonator memories and optical novelty filters

    Science.gov (United States)

    Anderson, Dana Z.; Erle, Marie C.

    Optical resonators having holographic elements are potential candidates for storing information that can be accessed through content addressable or associative recall. Closely related to the resonator memory is the optical novelty filter, which can detect the differences between a test object and a set of reference objects. We discuss implementations of these devices using continuous optical media such as photorefractive materials. The discussion is framed in the context of neural network models. There are both formal and qualitative similarities between the resonator memory and optical novelty filter and network models. Mode competition arises in the theory of the resonator memory, much as it does in some network models. We show that the role of the phenomena of "daydreaming" in the real-time programmable optical resonator is very much akin to the role of "unlearning" in neural network memories. The theory of programming the real-time memory for a single mode is given in detail. This leads to a discussion of the optical novelty filter. Experimental results for the resonator memory, the real-time programmable memory, and the optical tracking novelty filter are reviewed. We also point to several issues that need to be addressed in order to implement more formal models of neural networks.

  20. Monte Carlo photon transport on shared memory and distributed memory parallel processors

    International Nuclear Information System (INIS)

    Martin, W.R.; Wan, T.C.; Abdel-Rahman, T.S.; Mudge, T.N.; Miura, K.

    1987-01-01

    Parallelized Monte Carlo algorithms for analyzing photon transport in an inertially confined fusion (ICF) plasma are considered. Algorithms were developed for shared memory (vector and scalar) and distributed memory (scalar) parallel processors. The shared memory algorithm was implemented on the IBM 3090/400, and timing results are presented for dedicated runs with two, three, and four processors. Two alternative distributed memory algorithms (replication and dispatching) were implemented on a hypercube parallel processor (1 through 64 nodes). The replication algorithm yields essentially full efficiency for all cube sizes; with the 64-node configuration, the absolute performance is nearly the same as with the CRAY X-MP. The dispatching algorithm also yields efficiencies above 80% in a large simulation for the 64-processor configuration

  1. Distributed Shared Memory for the Cell Broadband Engine (DSMCBE)

    DEFF Research Database (Denmark)

    Larsen, Morten Nørgaard; Skovhede, Kenneth; Vinter, Brian

    2009-01-01

    in and out of non-coherent local storage blocks for each special processor element. In this paper we present a software library, namely the Distributed Shared Memory for the Cell Broadband Engine (DSMCBE). By using techniques known from distributed shared memory DSMCBE allows programmers to program the CELL...

  2. C-share: Optical circuits sharing for software-defined data-centers [arXiv

    DEFF Research Database (Denmark)

    Ben-Itzhak, Yaniv; Caba, Cosmin Marius; Schour, Liran

    2016-01-01

    Integrating optical circuit switches in data-centers is an ongoing research challenge. In recent years, state-of-the-art solutions introduce hybrid packet/circuit architectures for different optical circuit switch technologies, control techniques, and traffic rerouting methods. These solutions...... are based on separated packet and circuit planes which do not have the ability to utilize an optical circuit with flows that do not arrive from or delivered to switches directly connected to the circuit’s end-points. Moreover, current SDN-based elephant flow rerouting methods require a forwarding rule...... for each flow, which raise scalability issues. In this paper, we present C-Share - a practical, scalable SDN-based circuit sharing solution for data center networks. C-Share inherently enable elephant flows to share optical circuits by exploiting a flat upper tier network topology. C-Share is based...

  3. GOTHIC memory management : a multiprocessor shared single level store

    OpenAIRE

    Michel , Béatrice

    1990-01-01

    Gothic purpose is to build an object-oriented fault-tolerant distributed operating system for a local area network of multiprocessor workstations. This paper describes Gothic memory manager. It realizes the sharing of the secondary memory space between any process running on the Gothic system. Processes on different processors can communicate by sharing permanent information. The manager implements a shared single level storage with an invalidation protocol working on disk-pages to maintain s...

  4. A shared resource between declarative memory and motor memory.

    Science.gov (United States)

    Keisler, Aysha; Shadmehr, Reza

    2010-11-03

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.

  5. A shared resource between declarative memory and motor memory

    Science.gov (United States)

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140

  6. Fabry-Perot confocal resonator optical associative memory

    Science.gov (United States)

    Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.

    1993-03-01

    A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.

  7. Sharing specific "We" autobiographical memories in close relationships: the role of contact frequency.

    Science.gov (United States)

    Beike, Denise R; Cole, Holly E; Merrick, Carmen R

    2017-11-01

    Sharing memories in conversations with close others is posited to be part of the social function of autobiographical memory. The present research focused on the sharing of a particular type of memory: Specific memories about one-time co-experienced events, which we termed Specific We memories. Two studies with 595 total participants examined the factors that lead to and/or are influenced by the sharing of Specific We memories. In Study 1, participants reported on their most recent conversation. Specific We memories were reportedly discussed most often in conversations with others who were close and with whom the participant had frequent communication. In Study 2, participants were randomly assigned either to increase or to simply record the frequency of communication with a close other (parent). Increases in the frequency of reported sharing of Specific We memories as well as closeness to the parent resulted. Mediation analyses of both studies revealed causal relationships among reported sharing of Specific We memories and closeness. We discuss the relevance of these results for understanding the social function of autobiographical memory.

  8. Techniques for Reducing Consistency-Related Communication in Distributed Shared Memory System

    OpenAIRE

    Zwaenepoel, W; Bennett, J.K.; Carter, J.B.

    1995-01-01

    Distributed shared memory 8DSM) is an abstraction of shared memory on a distributed memory machine. Hardware DSM systems support this abstraction at the architecture level; software DSM systems support the abstraction within the runtime system. One of the key problems in building an efficient software DSM system is to reduce the amount of communication needed to keep the distributed memories consistent. In this paper we present four techniques for doing so: 1) software release consistency; 2)...

  9. Building a columnar database on shared main memory-based storage

    OpenAIRE

    Tinnefeld, Christian

    2014-01-01

    In the field of disk-based parallel database management systems exists a great variety of solutions based on a shared-storage or a shared-nothing architecture. In contrast, main memory-based parallel database management systems are dominated solely by the shared-nothing approach as it preserves the in-memory performance advantage by processing data locally on each server. We argue that this unilateral development is going to cease due to the combination of the following three trends: a) Nowad...

  10. Optical computing, optical memory, and SBIRs at Foster-Miller

    Science.gov (United States)

    Domash, Lawrence H.

    1994-03-01

    A desktop design and manufacturing system for binary diffractive elements, MacBEEP, was developed with the optical researcher in mind. Optical processing systems for specialized tasks such as cellular automation computation and fractal measurement were constructed. A new family of switchable holograms has enabled several applications for control of laser beams in optical memories. New spatial light modulators and optical logic elements have been demonstrated based on a more manufacturable semiconductor technology. Novel synthetic and polymeric nonlinear materials for optical storage are under development in an integrated memory architecture. SBIR programs enable creative contributions from smaller companies, both product oriented and technology oriented, and support advances that might not otherwise be developed.

  11. Shared Semantics and the Use of Organizational Memories for E-Mail Communications.

    Science.gov (United States)

    Schwartz, David G.

    1998-01-01

    Examines the use of shared semantics information to link concepts in an organizational memory to e-mail communications. Presents a framework for determining shared semantics based on organizational and personal user profiles. Illustrates how shared semantics are used by the HyperMail system to help link organizational memories (OM) content to…

  12. Optical memory

    Science.gov (United States)

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  13. Si-based optical I/O for optical memory interface

    Science.gov (United States)

    Ha, Kyoungho; Shin, Dongjae; Byun, Hyunil; Cho, Kwansik; Na, Kyoungwon; Ji, Hochul; Pyo, Junghyung; Hong, Seokyong; Lee, Kwanghyun; Lee, Beomseok; Shin, Yong-hwack; Kim, Junghye; Kim, Seong-gu; Joe, Insung; Suh, Sungdong; Choi, Sanghoon; Han, Sangdeok; Park, Yoondong; Choi, Hanmei; Kuh, Bongjin; Kim, Kichul; Choi, Jinwoo; Park, Sujin; Kim, Hyeunsu; Kim, Kiho; Choi, Jinyong; Lee, Hyunjoo; Yang, Sujin; Park, Sungho; Lee, Minwoo; Cho, Minchang; Kim, Saebyeol; Jeong, Taejin; Hyun, Seokhun; Cho, Cheongryong; Kim, Jeong-kyoum; Yoon, Hong-gu; Nam, Jeongsik; Kwon, Hyukjoon; Lee, Hocheol; Choi, Junghwan; Jang, Sungjin; Choi, Joosun; Chung, Chilhee

    2012-01-01

    Optical interconnects may provide solutions to the capacity-bandwidth trade-off of recent memory interface systems. For cost-effective optical memory interfaces, Samsung Electronics has been developing silicon photonics platforms on memory-compatible bulk-Si 300-mm wafers. The waveguide of 0.6 dB/mm propagation loss, vertical grating coupler of 2.7 dB coupling loss, modulator of 10 Gbps speed, and Ge/Si photodiode of 12.5 Gbps bandwidth have been achieved on the bulk-Si platform. 2x6.4 Gbps electrical driver circuits have been also fabricated using a CMOS process.

  14. Elastic pointer directory organization for scalable shared memory multiprocessors

    Institute of Scientific and Technical Information of China (English)

    Yuhang Liu; Mingfa Zhu; Limin Xiao

    2014-01-01

    In the field of supercomputing, one key issue for scal-able shared-memory multiprocessors is the design of the directory which denotes the sharing state for a cache block. A good direc-tory design intends to achieve three key attributes: reasonable memory overhead, sharer position precision and implementation complexity. However, researchers often face the problem that gain-ing one attribute may result in losing another. The paper proposes an elastic pointer directory (EPD) structure based on the analysis of shared-memory applications, taking the fact that the number of sharers for each directory entry is typical y smal . Analysis re-sults show that for 4 096 nodes, the ratio of memory overhead to the ful-map directory is 2.7%. Theoretical analysis and cycle-accurate execution-driven simulations on a 16 and 64-node cache coherence non uniform memory access (CC-NUMA) multiproces-sor show that the corresponding pointer overflow probability is reduced significantly. The performance is observed to be better than that of a limited pointers directory and almost identical to the ful-map directory, except for the slight implementation complex-ity. Using the directory cache to explore directory access locality is also studied. The experimental result shows that this is a promis-ing approach to be used in the state-of-the-art high performance computing domain.

  15. Noise reduction in optically controlled quantum memory

    Science.gov (United States)

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2018-05-01

    Quantum memory is an essential tool for quantum communications systems and quantum computers. An important category of quantum memory, called optically controlled quantum memory, uses a strong classical beam to control the storage and re-emission of a single-photon signal through an atomic ensemble. In this type of memory, the residual light from the strong classical control beam can cause severe noise and degrade the system performance significantly. Efficiently suppressing this noise is a requirement for the successful implementation of optically controlled quantum memories. In this paper, we briefly introduce the latest and most common approaches to quantum memory and review the various noise-reduction techniques used in implementing them.

  16. Computational cost estimates for parallel shared memory isogeometric multi-frontal solvers

    KAUST Repository

    Woźniak, Maciej; Kuźnik, Krzysztof M.; Paszyński, Maciej R.; Calo, Victor M.; Pardo, D.

    2014-01-01

    In this paper we present computational cost estimates for parallel shared memory isogeometric multi-frontal solvers. The estimates show that the ideal isogeometric shared memory parallel direct solver scales as O( p2log(N/p)) for one dimensional problems, O(Np2) for two dimensional problems, and O(N4/3p2) for three dimensional problems, where N is the number of degrees of freedom, and p is the polynomial order of approximation. The computational costs of the shared memory parallel isogeometric direct solver are compared with those corresponding to the sequential isogeometric direct solver, being the latest equal to O(N p2) for the one dimensional case, O(N1.5p3) for the two dimensional case, and O(N2p3) for the three dimensional case. The shared memory version significantly reduces both the scalability in terms of N and p. Theoretical estimates are compared with numerical experiments performed with linear, quadratic, cubic, quartic, and quintic B-splines, in one and two spatial dimensions. © 2014 Elsevier Ltd. All rights reserved.

  17. Computational cost estimates for parallel shared memory isogeometric multi-frontal solvers

    KAUST Repository

    Woźniak, Maciej

    2014-06-01

    In this paper we present computational cost estimates for parallel shared memory isogeometric multi-frontal solvers. The estimates show that the ideal isogeometric shared memory parallel direct solver scales as O( p2log(N/p)) for one dimensional problems, O(Np2) for two dimensional problems, and O(N4/3p2) for three dimensional problems, where N is the number of degrees of freedom, and p is the polynomial order of approximation. The computational costs of the shared memory parallel isogeometric direct solver are compared with those corresponding to the sequential isogeometric direct solver, being the latest equal to O(N p2) for the one dimensional case, O(N1.5p3) for the two dimensional case, and O(N2p3) for the three dimensional case. The shared memory version significantly reduces both the scalability in terms of N and p. Theoretical estimates are compared with numerical experiments performed with linear, quadratic, cubic, quartic, and quintic B-splines, in one and two spatial dimensions. © 2014 Elsevier Ltd. All rights reserved.

  18. Attention and Visuospatial Working Memory Share the Same Processing Resources

    Directory of Open Access Journals (Sweden)

    Jing eFeng

    2012-04-01

    Full Text Available Attention and visuospatial working memory (VWM share very similar characteristics; both have the same upper bound of about four items in capacity and they recruit overlapping brain regions. We examined whether both attention and visuospatial working memory share the same processing resources using a novel dual-task-costs approach based on a load-varying dual-task technique. With sufficiently large loads on attention and VWM, considerable interference between the two processes was observed. A further load increase on either process produced reciprocal increases in interference on both processes, indicating that attention and VWM share common resources. More critically, comparison among four experiments on the reciprocal interference effects, as measured by the dual-task costs, demonstrates no significant contribution from additional processing other than the shared processes. These results support the notion that attention and VWM share the same processing resources.

  19. Conditional load and store in a shared memory

    Science.gov (United States)

    Blumrich, Matthias A; Ohmacht, Martin

    2015-02-03

    A method, system and computer program product for implementing load-reserve and store-conditional instructions in a multi-processor computing system. The computing system includes a multitude of processor units and a shared memory cache, and each of the processor units has access to the memory cache. In one embodiment, the method comprises providing the memory cache with a series of reservation registers, and storing in these registers addresses reserved in the memory cache for the processor units as a result of issuing load-reserve requests. In this embodiment, when one of the processor units makes a request to store data in the memory cache using a store-conditional request, the reservation registers are checked to determine if an address in the memory cache is reserved for that processor unit. If an address in the memory cache is reserved for that processor, the data are stored at this address.

  20. Integrated Optical Content Addressable Memories (CAM and Optical Random Access Memories (RAM for Ultra-Fast Address Look-Up Operations

    Directory of Open Access Journals (Sweden)

    Christos Vagionas

    2017-07-01

    Full Text Available Electronic Content Addressable Memories (CAM implement Address Look-Up (AL table functionalities of network routers; however, they typically operate in the MHz regime, turning AL into a critical network bottleneck. In this communication, we demonstrate the first steps towards developing optical CAM alternatives to enable a re-engineering of AL memories. Firstly, we report on the photonic integration of Semiconductor Optical Amplifier-Mach Zehnder Interferometer (SOA-MZI-based optical Flip-Flop and Random Access Memories on a monolithic InP platform, capable of storing the binary prefix-address data-bits and the outgoing port information for next hop routing, respectively. Subsequently the first optical Binary CAM cell (B-CAM is experimentally demonstrated, comprising an InP Flip-Flop and a SOA-MZI Exclusive OR (XOR gate for fast search operations through an XOR-based bit comparison, yielding an error-free 10 Gb/s operation. This is later extended via physical layer simulations in an optical Ternary-CAM (T-CAM cell and a 4-bit Matchline (ML configuration, supporting a third state of the “logical X” value towards wildcard bits of network subnet masks. The proposed functional CAM and Random Access Memories (RAM sub-circuits may facilitate light-based Address Look-Up tables supporting search operations at 10 Gb/s and beyond, paving the way towards minimizing the disparity with the frantic optical transmission linerates, and fast re-configurability through multiple simultaneous Wavelength Division Multiplexed (WDM memory access requests.

  1. Shared Memory Parallelization of an Implicit ADI-type CFD Code

    Science.gov (United States)

    Hauser, Th.; Huang, P. G.

    1999-01-01

    A parallelization study designed for ADI-type algorithms is presented using the OpenMP specification for shared-memory multiprocessor programming. Details of optimizations specifically addressed to cache-based computer architectures are described and performance measurements for the single and multiprocessor implementation are summarized. The paper demonstrates that optimization of memory access on a cache-based computer architecture controls the performance of the computational algorithm. A hybrid MPI/OpenMP approach is proposed for clusters of shared memory machines to further enhance the parallel performance. The method is applied to develop a new LES/DNS code, named LESTool. A preliminary DNS calculation of a fully developed channel flow at a Reynolds number of 180, Re(sub tau) = 180, has shown good agreement with existing data.

  2. Scaling Non-Regular Shared-Memory Codes by Reusing Custom Loop Schedules

    Directory of Open Access Journals (Sweden)

    Dimitrios S. Nikolopoulos

    2003-01-01

    Full Text Available In this paper we explore the idea of customizing and reusing loop schedules to improve the scalability of non-regular numerical codes in shared-memory architectures with non-uniform memory access latency. The main objective is to implicitly setup affinity links between threads and data, by devising loop schedules that achieve balanced work distribution within irregular data spaces and reusing them as much as possible along the execution of the program for better memory access locality. This transformation provides a great deal of flexibility in optimizing locality, without compromising the simplicity of the shared-memory programming paradigm. In particular, the programmer does not need to explicitly distribute data between processors. The paper presents practical examples from real applications and experiments showing the efficiency of the approach.

  3. Parallel-vector algorithms for particle simulations on shared-memory multiprocessors

    International Nuclear Information System (INIS)

    Nishiura, Daisuke; Sakaguchi, Hide

    2011-01-01

    Over the last few decades, the computational demands of massive particle-based simulations for both scientific and industrial purposes have been continuously increasing. Hence, considerable efforts are being made to develop parallel computing techniques on various platforms. In such simulations, particles freely move within a given space, and so on a distributed-memory system, load balancing, i.e., assigning an equal number of particles to each processor, is not guaranteed. However, shared-memory systems achieve better load balancing for particle models, but suffer from the intrinsic drawback of memory access competition, particularly during (1) paring of contact candidates from among neighboring particles and (2) force summation for each particle. Here, novel algorithms are proposed to overcome these two problems. For the first problem, the key is a pre-conditioning process during which particle labels are sorted by a cell label in the domain to which the particles belong. Then, a list of contact candidates is constructed by pairing the sorted particle labels. For the latter problem, a table comprising the list indexes of the contact candidate pairs is created and used to sum the contact forces acting on each particle for all contacts according to Newton's third law. With just these methods, memory access competition is avoided without additional redundant procedures. The parallel efficiency and compatibility of these two algorithms were evaluated in discrete element method (DEM) simulations on four types of shared-memory parallel computers: a multicore multiprocessor computer, scalar supercomputer, vector supercomputer, and graphics processing unit. The computational efficiency of a DEM code was found to be drastically improved with our algorithms on all but the scalar supercomputer. Thus, the developed parallel algorithms are useful on shared-memory parallel computers with sufficient memory bandwidth.

  4. Dataflow models for shared memory access latency analysis

    NARCIS (Netherlands)

    Staschulat, Jan; Bekooij, Marco Jan Gerrit

    2009-01-01

    Performance analysis of applications in multi-core platforms is challenging because of temporal interference while accessing shared resources. Especially, memory arbiters introduce a non-constant delay which signicantly in uences the execution time of a task. In this paper, we selected a

  5. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    Science.gov (United States)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  6. Implementing Shared Memory Parallelism in MCBEND

    Directory of Open Access Journals (Sweden)

    Bird Adam

    2017-01-01

    Full Text Available MCBEND is a general purpose radiation transport Monte Carlo code from AMEC Foster Wheelers’s ANSWERS® Software Service. MCBEND is well established in the UK shielding community for radiation shielding and dosimetry assessments. The existing MCBEND parallel capability effectively involves running the same calculation on many processors. This works very well except when the memory requirements of a model restrict the number of instances of a calculation that will fit on a machine. To more effectively utilise parallel hardware OpenMP has been used to implement shared memory parallelism in MCBEND. This paper describes the reasoning behind the choice of OpenMP, notes some of the challenges of multi-threading an established code such as MCBEND and assesses the performance of the parallel method implemented in MCBEND.

  7. Efficient implementations of block sparse matrix operations on shared memory vector machines

    International Nuclear Information System (INIS)

    Washio, T.; Maruyama, K.; Osoda, T.; Doi, S.; Shimizu, F.

    2000-01-01

    In this paper, we propose vectorization and shared memory-parallelization techniques for block-type random sparse matrix operations in finite element (FEM) applications. Here, a block corresponds to unknowns on one node in the FEM mesh and we assume that the block size is constant over the mesh. First, we discuss some basic vectorization ideas (the jagged diagonal (JAD) format and the segmented scan algorithm) for the sparse matrix-vector product. Then, we extend these ideas to the shared memory parallelization. After that, we show that the techniques can be applied not only to the sparse matrix-vector product but also to the sparse matrix-matrix product, the incomplete or complete sparse LU factorization and preconditioning. Finally, we report the performance evaluation results obtained on an NEC SX-4 shared memory vector machine for linear systems in some FEM applications. (author)

  8. Vertex trigger implementation using shared memory technology

    CERN Document Server

    Müller, H

    1998-01-01

    The implementation of a 1 st level vertex trigger for LHC-B is particularly difficult due to the high ( 1 MHz ) input data rate. With ca. 350 silicon hits per event, both the R strips and Phi strips of the detectors produce a total of ca 2 Gbyte/s zero-suppressed da ta.1 note succeeds to the ideas to use R-phi coordinates for fast integer linefinding in programmable hardware, as described in LHB note 97-006. For an implementation we propose a FPGA preprocessing stage operating at 1 MHz with the benefit to substantially reduce the amount of data to be transmitted to the CPUs and to liberate a large fraction of CPU time. Interconnected via 4 Gbit/s SCI technol-ogy 2 , a shared memory system can be built which allows to perform data driven eventbuilding with, or without preprocessing. A fully data driven architecture between source modules and destination memories provides a highly reliable memory-to-memory transfer mechanism of very low latency. The eventbuilding is performed via associating events at the sourc...

  9. The performance of disk arrays in shared-memory database machines

    Science.gov (United States)

    Katz, Randy H.; Hong, Wei

    1993-01-01

    In this paper, we examine how disk arrays and shared memory multiprocessors lead to an effective method for constructing database machines for general-purpose complex query processing. We show that disk arrays can lead to cost-effective storage systems if they are configured from suitably small formfactor disk drives. We introduce the storage system metric data temperature as a way to evaluate how well a disk configuration can sustain its workload, and we show that disk arrays can sustain the same data temperature as a more expensive mirrored-disk configuration. We use the metric to evaluate the performance of disk arrays in XPRS, an operational shared-memory multiprocessor database system being developed at the University of California, Berkeley.

  10. Working Memory Span Development: A Time-Based Resource-Sharing Model Account

    Science.gov (United States)

    Barrouillet, Pierre; Gavens, Nathalie; Vergauwe, Evie; Gaillard, Vinciane; Camos, Valerie

    2009-01-01

    The time-based resource-sharing model (P. Barrouillet, S. Bernardin, & V. Camos, 2004) assumes that during complex working memory span tasks, attention is frequently and surreptitiously switched from processing to reactivate decaying memory traces before their complete loss. Three experiments involving children from 5 to 14 years of age…

  11. Contention Modeling for Multithreaded Distributed Shared Memory Machines: The Cray XMT

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Simone; Tumeo, Antonino; Villa, Oreste

    2011-07-27

    Distributed Shared Memory (DSM) machines are a wide class of multi-processor computing systems where a large virtually-shared address space is mapped on a network of physically distributed memories. High memory latency and network contention are two of the main factors that limit performance scaling of such architectures. Modern high-performance computing DSM systems have evolved toward exploitation of massive hardware multi-threading and fine-grained memory hashing to tolerate irregular latencies, avoid network hot-spots and enable high scaling. In order to model the performance of such large-scale machines, parallel simulation has been proved to be a promising approach to achieve good accuracy in reasonable times. One of the most critical factors in solving the simulation speed-accuracy trade-off is network modeling. The Cray XMT is a massively multi-threaded supercomputing architecture that belongs to the DSM class, since it implements a globally-shared address space abstraction on top of a physically distributed memory substrate. In this paper, we discuss the development of a contention-aware network model intended to be integrated in a full-system XMT simulator. We start by measuring the effects of network contention in a 128-processor XMT machine and then investigate the trade-off that exists between simulation accuracy and speed, by comparing three network models which operate at different levels of accuracy. The comparison and model validation is performed by executing a string-matching algorithm on the full-system simulator and on the XMT, using three datasets that generate noticeably different contention patterns.

  12. A silicon-nanowire memory driven by optical gradient force induced bistability

    Energy Technology Data Exchange (ETDEWEB)

    Dong, B. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); Cai, H., E-mail: caih@ime.a-star.edu.sg; Gu, Y. D.; Kwong, D. L. [Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); Chin, L. K.; Ng, G. I.; Ser, W. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, J. G. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, Z. C. [School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Liu, A. Q., E-mail: eaqliu@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  13. Brain Information Sharing During Visual Short-Term Memory Binding Yields a Memory Biomarker for Familial Alzheimer's Disease.

    Science.gov (United States)

    Parra, Mario A; Mikulan, Ezequiel; Trujillo, Natalia; Sala, Sergio Della; Lopera, Francisco; Manes, Facundo; Starr, John; Ibanez, Agustin

    2017-01-01

    Alzheimer's disease (AD) as a disconnection syndrome which disrupts both brain information sharing and memory binding functions. The extent to which these two phenotypic expressions share pathophysiological mechanisms remains unknown. To unveil the electrophysiological correlates of integrative memory impairments in AD towards new memory biomarkers for its prodromal stages. Patients with 100% risk of familial AD (FAD) and healthy controls underwent assessment with the Visual Short-Term Memory binding test (VSTMBT) while we recorded their EEG. We applied a novel brain connectivity method (Weighted Symbolic Mutual Information) to EEG data. Patients showed significant deficits during the VSTMBT. A reduction of brain connectivity was observed during resting as well as during correct VSTM binding, particularly over frontal and posterior regions. An increase of connectivity was found during VSTM binding performance over central regions. While decreased connectivity was found in cases in more advanced stages of FAD, increased brain connectivity appeared in cases in earlier stages. Such altered patterns of task-related connectivity were found in 89% of the assessed patients. VSTM binding in the prodromal stages of FAD are associated to altered patterns of brain connectivity thus confirming the link between integrative memory deficits and impaired brain information sharing in prodromal FAD. While significant loss of brain connectivity seems to be a feature of the advanced stages of FAD increased brain connectivity characterizes its earlier stages. These findings are discussed in the light of recent proposals about the earliest pathophysiological mechanisms of AD and their clinical expression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Graphical Visualization on Computational Simulation Using Shared Memory

    International Nuclear Information System (INIS)

    Lima, A B; Correa, Eberth

    2014-01-01

    The Shared Memory technique is a powerful tool for parallelizing computer codes. In particular it can be used to visualize the results ''on the fly'' without stop running the simulation. In this presentation we discuss and show how to use the technique conjugated with a visualization code using openGL

  15. The effect of the order in which episodic autobiographical memories versus autobiographical knowledge are shared on feelings of closeness.

    Science.gov (United States)

    Brandon, Nicole R; Beike, Denise R; Cole, Holly E

    2017-07-01

    Autobiographical memories (AMs) can be used to create and maintain closeness with others [Alea, N., & Bluck, S. (2003). Why are you telling me that? A conceptual model of the social function of autobiographical memory. Memory, 11(2), 165-178]. However, the differential effects of memory specificity are not well established. Two studies with 148 participants tested whether the order in which autobiographical knowledge (AK) and specific episodic AM (EAM) are shared affects feelings of closeness. Participants read two memories hypothetically shared by each of four strangers. The strangers first shared either AK or an EAM, and then shared either AK or an EAM. Participants were randomly assigned to read either positive or negative AMs from the strangers. Findings suggest that people feel closer to those who share positive AMs in the same way they construct memories: starting with general and moving to specific.

  16. Nanophotonic rare-earth quantum memory with optically controlled retrieval

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Bartholomew, John G.; Rochman, Jake; Craiciu, Ioana; Miyazono, Evan; Bettinelli, Marco; Cavalli, Enrico; Verma, Varun; Nam, Sae Woo; Marsili, Francesco; Shaw, Matthew D.; Beyer, Andrew D.; Faraon, Andrei

    2017-09-01

    Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanocavity enables >95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout through an enhanced optical Stark shift of the comb frequencies. Our solid-state memory is integrable with other chip-scale photon source and detector devices for multiplexed quantum and classical information processing at the network nodes.

  17. Auto- and hetero-associative memory using a 2-D optical logic gate

    Science.gov (United States)

    Chao, Tien-Hsin

    1989-06-01

    An optical associative memory system suitable for both auto- and hetero-associative recall is demonstrated. This system utilizes Hamming distance as the similarity measure between a binary input and a memory image with the aid of a two-dimensional optical EXCLUSIVE OR (XOR) gate and a parallel electronics comparator module. Based on the Hamming distance measurement, this optical associative memory performs a nearest neighbor search and the result is displayed in the output plane in real-time. This optical associative memory is fast and noniterative and produces no output spurious states as compared with that of the Hopfield neural network model.

  18. Time domain optical memories using rare earth ions

    International Nuclear Information System (INIS)

    Sellars, M.J.; Dyke, T.; Pryde, G.J.; Manson, N.B.

    1998-01-01

    Full text: Rare earth doped crystals are the chosen materials for the next generation of optical memories where the process of spectral holeburning can be employed to provide an extra dimension of frequency or time to spatial dimensions and with certain rare earth ions increases of the order of 10 7 in storage capacity can be achieved over conventional optical memories. Time domain techniques are preferred over frequency domain techniques and are now well developed. In these techniques arbitrary pulse sequences are stored in the material and read out at some later time with a single read pulse using a stimulated photon echo process. Long pulse sequences will enable more data to be stored but necessitates the use of materials with long dephasing times (corresponding to narrow spectral lines) and it is this characteristic of rare earth systems that makes them the preferred material for the new time domain optical memories. The storage time can range from hours to days but in a practical device will require refreshing or re-enforcing and this puts special requirements on the stability of the laser used for storing the information. The storage process itself can also be weak and more reliable storage can be achieved by recording the data several times with the same pulse sequence. For this to be successful the laser must be at held at a constant frequency and be stable in phase over the entire duration of the pulse sequence. The procedure of reinforcing the data sequence has been proposed before and attempted without attention to the laser frequency stability. However, if the laser is not stable although some data bits will be reinforced or increased in size others will be decreased or even erased. Indeed the reliability of the memory is degraded by the introducing the rewrite process. For our work we have developed a laser with the excellent stability and able to demonstrate reproducible reinforcement of the data sequence. Thus with the rewrite sequence we are able to

  19. High Performance Programming Using Explicit Shared Memory Model on Cray T3D1

    Science.gov (United States)

    Simon, Horst D.; Saini, Subhash; Grassi, Charles

    1994-01-01

    The Cray T3D system is the first-phase system in Cray Research, Inc.'s (CRI) three-phase massively parallel processing (MPP) program. This system features a heterogeneous architecture that closely couples DEC's Alpha microprocessors and CRI's parallel-vector technology, i.e., the Cray Y-MP and Cray C90. An overview of the Cray T3D hardware and available programming models is presented. Under Cray Research adaptive Fortran (CRAFT) model four programming methods (data parallel, work sharing, message-passing using PVM, and explicit shared memory model) are available to the users. However, at this time data parallel and work sharing programming models are not available to the user community. The differences between standard PVM and CRI's PVM are highlighted with performance measurements such as latencies and communication bandwidths. We have found that the performance of neither standard PVM nor CRI s PVM exploits the hardware capabilities of the T3D. The reasons for the bad performance of PVM as a native message-passing library are presented. This is illustrated by the performance of NAS Parallel Benchmarks (NPB) programmed in explicit shared memory model on Cray T3D. In general, the performance of standard PVM is about 4 to 5 times less than obtained by using explicit shared memory model. This degradation in performance is also seen on CM-5 where the performance of applications using native message-passing library CMMD on CM-5 is also about 4 to 5 times less than using data parallel methods. The issues involved (such as barriers, synchronization, invalidating data cache, aligning data cache etc.) while programming in explicit shared memory model are discussed. Comparative performance of NPB using explicit shared memory programming model on the Cray T3D and other highly parallel systems such as the TMC CM-5, Intel Paragon, Cray C90, IBM-SP1, etc. is presented.

  20. Optical RAM-enabled cache memory and optical routing for chip multiprocessors: technologies and architectures

    Science.gov (United States)

    Pleros, Nikos; Maniotis, Pavlos; Alexoudi, Theonitsa; Fitsios, Dimitris; Vagionas, Christos; Papaioannou, Sotiris; Vyrsokinos, K.; Kanellos, George T.

    2014-03-01

    The processor-memory performance gap, commonly referred to as "Memory Wall" problem, owes to the speed mismatch between processor and electronic RAM clock frequencies, forcing current Chip Multiprocessor (CMP) configurations to consume more than 50% of the chip real-estate for caching purposes. In this article, we present our recent work spanning from Si-based integrated optical RAM cell architectures up to complete optical cache memory architectures for Chip Multiprocessor configurations. Moreover, we discuss on e/o router subsystems with up to Tb/s routing capacity for cache interconnection purposes within CMP configurations, currently pursued within the FP7 PhoxTrot project.

  1. MulticoreBSP for C : A high-performance library for shared-memory parallel programming

    NARCIS (Netherlands)

    Yzelman, A. N.; Bisseling, R. H.; Roose, D.; Meerbergen, K.

    2014-01-01

    The bulk synchronous parallel (BSP) model, as well as parallel programming interfaces based on BSP, classically target distributed-memory parallel architectures. In earlier work, Yzelman and Bisseling designed a MulticoreBSP for Java library specifically for shared-memory architectures. In the

  2. Photo-induced optical activity in phase-change memory materials.

    Science.gov (United States)

    Borisenko, Konstantin B; Shanmugam, Janaki; Williams, Benjamin A O; Ewart, Paul; Gholipour, Behrad; Hewak, Daniel W; Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano; Kirkland, Angus I

    2015-03-05

    We demonstrate that optical activity in amorphous isotropic thin films of pure Ge2Sb2Te5 and N-doped Ge2Sb2Te5N phase-change memory materials can be induced using rapid photo crystallisation with circularly polarised laser light. The new anisotropic phase transition has been confirmed by circular dichroism measurements. This opens up the possibility of controlled induction of optical activity at the nanosecond time scale for exploitation in a new generation of high-density optical memory, fast chiroptical switches and chiral metamaterials.

  3. Assessing Programming Costs of Explicit Memory Localization on a Large Scale Shared Memory Multiprocessor

    Directory of Open Access Journals (Sweden)

    Silvio Picano

    1992-01-01

    Full Text Available We present detailed experimental work involving a commercially available large scale shared memory multiple instruction stream-multiple data stream (MIMD parallel computer having a software controlled cache coherence mechanism. To make effective use of such an architecture, the programmer is responsible for designing the program's structure to match the underlying multiprocessors capabilities. We describe the techniques used to exploit our multiprocessor (the BBN TC2000 on a network simulation program, showing the resulting performance gains and the associated programming costs. We show that an efficient implementation relies heavily on the user's ability to explicitly manage the memory system.

  4. Database Management Using Optical Associative Memory

    National Research Council Canada - National Science Library

    Ralston, Lynda

    1998-01-01

    A concept was developed for an optical based associative memory system that accepts a query request from a user, searches the disk for the location of the information and ensures maximum efficiency in data recovery...

  5. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di; Diao, Ruisheng; Huang, Zhenyu

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Message Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.

  6. A homotopy method for solving Riccati equations on a shared memory parallel computer

    International Nuclear Information System (INIS)

    Zigic, D.; Watson, L.T.; Collins, E.G. Jr.; Davis, L.D.

    1993-01-01

    Although there are numerous algorithms for solving Riccati equations, there still remains a need for algorithms which can operate efficiently on large problems and on parallel machines. This paper gives a new homotopy-based algorithm for solving Riccati equations on a shared memory parallel computer. The central part of the algorithm is the computation of the kernel of the Jacobian matrix, which is essential for the corrector iterations along the homotopy zero curve. Using a Schur decomposition the tensor product structure of various matrices can be efficiently exploited. The algorithm allows for efficient parallelization on shared memory machines

  7. The Optic Lobes Regulate Circadian Rhythms of Olfactory Learning and Memory in the Cockroach.

    Science.gov (United States)

    Lubinski, Alexander J; Page, Terry L

    2016-04-01

    The cockroach, Leucophaea maderae, can be trained in an associative olfactory memory task by either classical or operant conditioning. When trained by classical conditioning, memory formation is regulated by a circadian clock, but once the memory is formed, it can be recalled at any circadian time. In contrast, when trained via operant conditioning, animals can learn the task at any circadian phase, but the ability to recall the long-term memory is tied to the phase of training. The optic lobes of the cockroach contain a circadian clock that drives circadian rhythms of locomotor activity, mating behavior, sensitivity of the compound eye to light, and the sensitivity of olfactory receptors in the antennae. To evaluate the role of the optic lobes in regulating learning and memory processes, the authors examined the effects of surgical ablation of the optic lobes on memory formation in classical conditioning and memory recall following operant conditioning. The effect of optic lobe ablation was to "rescue" the deficit in memory acquisition at a time the animals normally cannot learn and "rescue" the animal's ability to recall a memory formed by operant conditioning at a phase where memory was not normally expressed. The results suggested that the optic lobe pacemaker regulates these processes through inhibition at "inappropriate" times of day. As a pharmacological test of this hypothesis, the authors showed that injections of fipronil, an antagonist of GABA and glutamate-activated chloride channels, had the same effects as optic lobe ablation on memory formation and recall. The data suggest that the optic lobes contain the circadian clock(s) that regulate learning and memory processes via inhibition of neural processes in the brain. © 2015 The Author(s).

  8. Specification and development of the sharing memory data management module for a nuclear processes simulator

    International Nuclear Information System (INIS)

    Telesforo R, D.

    2003-01-01

    Actually it is developed in the Engineering Faculty of UNAM a simulator of nuclear processes with research and teaching purposes. It consists of diverse modules, included the one that is described in the present work that is the shared memory module. It uses the IPC mechanisms of the UNIX System V operative system, and it was codified with C language. To model the diverse components of the simulator the RELAP code is used. The function of the module is to generate locations of shared memory for to deposit in these the necessary variables for the interaction among the diverse ones processes of the simulator. In its it will be able read and to write the information that generate the running of the simulation program, besides being able to interact with the internal variables of the code in execution time. The graphic unfolding (mimic, pictorials, tendency graphics, virtual instrumentation, etc.) they also obtain information of the shared memory. In turn, actions of the user in interactive unfolding, they modify the segments of shared memory, and the information is sent to the RELAP code to modify the simulation course. The program has two beginning modes: automatic and manual. In automatic mode taking an enter file of RELAP (indta) and it joins in shared memory, the control variables that in this appear. In manual mode the user joins, he reads and he writes the wanted control variables, whenever they exist in the enter file (indta). This is a dynamic mode of interacting with the simulator in a direct way and of even altering the values as when its don't exist in the board elements associated to the variables. (Author)

  9. Shared mushroom body circuits underlie visual and olfactory memories in Drosophila

    Science.gov (United States)

    Vogt, Katrin; Schnaitmann, Christopher; Dylla, Kristina V; Knapek, Stephan; Aso, Yoshinori; Rubin, Gerald M; Tanimoto, Hiromu

    2014-01-01

    In nature, animals form memories associating reward or punishment with stimuli from different sensory modalities, such as smells and colors. It is unclear, however, how distinct sensory memories are processed in the brain. We established appetitive and aversive visual learning assays for Drosophila that are comparable to the widely used olfactory learning assays. These assays share critical features, such as reinforcing stimuli (sugar reward and electric shock punishment), and allow direct comparison of the cellular requirements for visual and olfactory memories. We found that the same subsets of dopamine neurons drive formation of both sensory memories. Furthermore, distinct yet partially overlapping subsets of mushroom body intrinsic neurons are required for visual and olfactory memories. Thus, our results suggest that distinct sensory memories are processed in a common brain center. Such centralization of related brain functions is an economical design that avoids the repetition of similar circuit motifs. DOI: http://dx.doi.org/10.7554/eLife.02395.001 PMID:25139953

  10. A High-Performance Optical Memory Array Based on Inhomogeneity of Organic Semiconductors.

    Science.gov (United States)

    Pei, Ke; Ren, Xiaochen; Zhou, Zhiwen; Zhang, Zhichao; Ji, Xudong; Chan, Paddy Kwok Leung

    2018-03-01

    Organic optical memory devices keep attracting intensive interests for diverse optoelectronic applications including optical sensors and memories. Here, flexible nonvolatile optical memory devices are developed based on the bis[1]benzothieno[2,3-d;2',3'-d']naphtho[2,3-b;6,7-b']dithiophene (BBTNDT) organic field-effect transistors with charge trapping centers induced by the inhomogeneity (nanosprouts) of the organic thin film. The devices exhibit average mobility as high as 7.7 cm 2 V -1 s -1 , photoresponsivity of 433 A W -1 , and long retention time for more than 6 h with a current ratio larger than 10 6 . Compared with the standard floating gate memory transistors, the BBTNDT devices can reduce the fabrication complexity, cost, and time. Based on the reasonable performance of the single device on a rigid substrate, the optical memory transistor is further scaled up to a 16 × 16 active matrix array on a flexible substrate with operating voltage less than 3 V, and it is used to map out 2D optical images. The findings reveal the potentials of utilizing [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives as organic semiconductors for high-performance optical memory transistors with a facile structure. A detailed study on the charge trapping mechanism in the derivatives of BTBT materials is also provided, which is closely related to the nanosprouts formed inside the organic active layer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Shared random access memory resource for multiprocessor real-time systems

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Hardy, W.H. II

    1977-01-01

    A shared random-access memory resource is described which is used within real-time data acquisition and control systems with multiprocessor and multibus organizations. Hardware and software aspects are discussed in a specific example where interconnections are done via a UNIBUS. The general applicability of the approach is also discussed

  12. Sharing and Unsharing Memories of Jews of Moroccan Origin in Montréal and Paris Compared

    Directory of Open Access Journals (Sweden)

    Yolande Cohen

    2012-11-01

    Full Text Available This text 1 explores the memories of Moroccan Jews who left their country of origin to go to France and to Canada, through their life stories. By questioning the constitution of a shared memory and of a group memory, it stresses the interest to adopt a generational perspective to better understand the migration of this population. While some interviewees emphasize the rationalization of their departure, the younger ones, consider their leaving as a natural step in their many migrations. These distinctions are central to show how the memory of the departures and the depiction of the colonial society are shared by members of a group, and unshared with the larger Moroccan society.

  13. Embodied memory: effective and stable perception by combining optic flow and image structure.

    Science.gov (United States)

    Pan, Jing Samantha; Bingham, Ned; Bingham, Geoffrey P

    2013-12-01

    Visual perception studies typically focus either on optic flow structure or image structure, but not on the combination and interaction of these two sources of information. Each offers unique strengths in contrast to the other's weaknesses. Optic flow yields intrinsically powerful information about 3D structure, but is ephemeral. It ceases when motion stops. Image structure is less powerful in specifying 3D structure, but is stable. It remains when motion stops. Optic flow and image structure are intrinsically related in vision because the optic flow carries one image to the next. This relation is especially important in the context of progressive occlusion, in which optic flow provides information about the location of targets hidden in subsequent image structure. In four experiments, we investigated the role of image structure in "embodied memory" in contrast to memory that is only in the head. We found that either optic flow (Experiment 1) or image structure (Experiment 2) alone were relatively ineffective, whereas the combination was effective and, in contrast to conditions requiring reliance on memory-in-the-head, much more stable over extended time (Experiments 2 through 4). Limits well documented for visual short memory (that is, memory-in-the-head) were strongly exceeded by embodied memory. The findings support J. J. Gibson's (1979/1986, The Ecological Approach to Visual Perception, Boston, MA, Houghton Mifflin) insights about progressive occlusion and the embodied nature of perception and memory.

  14. High-speed noise-free optical quantum memory

    Science.gov (United States)

    Kaczmarek, K. T.; Ledingham, P. M.; Brecht, B.; Thomas, S. E.; Thekkadath, G. S.; Lazo-Arjona, O.; Munns, J. H. D.; Poem, E.; Feizpour, A.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.

    2018-04-01

    Optical quantum memories are devices that store and recall quantum light and are vital to the realization of future photonic quantum networks. To date, much effort has been put into improving storage times and efficiencies of such devices to enable long-distance communications. However, less attention has been devoted to building quantum memories which add zero noise to the output. Even small additional noise can render the memory classical by destroying the fragile quantum signatures of the stored light. Therefore, noise performance is a critical parameter for all quantum memories. Here we introduce an intrinsically noise-free quantum memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We demonstrate successful storage of GHz-bandwidth heralded single photons in a warm atomic vapor with no added noise, confirmed by the unaltered photon-number statistics upon recall. Our ORCA memory meets the stringent noise requirements for quantum memories while combining high-speed and room-temperature operation with technical simplicity, and therefore is immediately applicable to low-latency quantum networks.

  15. Deterministically entangling multiple remote quantum memories inside an optical cavity

    Science.gov (United States)

    Yan, Zhihui; Liu, Yanhong; Yan, Jieli; Jia, Xiaojun

    2018-01-01

    Quantum memory for the nonclassical state of light and entanglement among multiple remote quantum nodes hold promise for a large-scale quantum network, however, continuous-variable (CV) memory efficiency and entangled degree are limited due to imperfect implementation. Here we propose a scheme to deterministically entangle multiple distant atomic ensembles based on CV cavity-enhanced quantum memory. The memory efficiency can be improved with the help of cavity-enhanced electromagnetically induced transparency dynamics. A high degree of entanglement among multiple atomic ensembles can be obtained by mapping the quantum state from multiple entangled optical modes into a collection of atomic spin waves inside optical cavities. Besides being of interest in terms of unconditional entanglement among multiple macroscopic objects, our scheme paves the way towards the practical application of quantum networks.

  16. Parallel SN algorithms in shared- and distributed-memory environments

    International Nuclear Information System (INIS)

    Haghighat, Alireza; Hunter, Melissa A.; Mattis, Ronald E.

    1995-01-01

    Different 2-D spatial domain partitioning Sn transport theory algorithms have been developed on the basis of the Block-Jacobi iterative scheme. These algorithms have been incorporated into TWOTRAN-II, and tested on a shared-memory CRAY Y-MP C90 and a distributed-memory IBM SP1. For a series of fixed source r-z geometry homogeneous problems, parallel efficiencies in a range of 50-90% are achieved on the C90 with 6 processors, and lower values (20-60%) are obtained on the SP1. It is demonstrated that better performance is attainable if one addresses issues such as convergence rate, load-balancing, and granularity for both architectures, as well as message passing (network bandwidth and latency) for SP1. (author). 17 refs, 4 figs

  17. A new shared-memory programming paradigm for molecular dynamics simulations on the Intel Paragon

    International Nuclear Information System (INIS)

    D'Azevedo, E.F.; Romine, C.H.

    1994-12-01

    This report describes the use of shared memory emulation with DOLIB (Distributed Object Library) to simplify parallel programming on the Intel Paragon. A molecular dynamics application is used as an example to illustrate the use of the DOLIB shared memory library. SOTON-PAR, a parallel molecular dynamics code with explicit message-passing using a Lennard-Jones 6-12 potential, is rewritten using DOLIB primitives. The resulting code has no explicit message primitives and resembles a serial code. The new code can perform dynamic load balancing and achieves better performance than the original parallel code with explicit message-passing

  18. An Alternative Algorithm for Computing Watersheds on Shared Memory Parallel Computers

    NARCIS (Netherlands)

    Meijster, A.; Roerdink, J.B.T.M.

    1995-01-01

    In this paper a parallel implementation of a watershed algorithm is proposed. The algorithm can easily be implemented on shared memory parallel computers. The watershed transform is generally considered to be inherently sequential since the discrete watershed of an image is defined using recursion.

  19. Ideal quantum reading of optical memories

    International Nuclear Information System (INIS)

    Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro

    2013-01-01

    Quantum reading is the art of exploiting the quantum properties of light to retrieve classical information stored in an optical memory with low energy and high accuracy. Focusing on the ideal scenario where noise and loss are negligible, we review previous works on the optimal strategies for minimal-error retrieving of information (ambiguous quantum reading) and perfect but probabilistic retrieving of information (unambiguous quantum reading). The optimal strategies largely overcome the optimal coherent protocols (reminiscent of common CD readers), further allowing for perfect discrimination. Experimental proposals for optical implementations of optimal quantum reading are provided.

  20. Thin film shape memory alloys for optical sensing applications

    International Nuclear Information System (INIS)

    Fu, Y Q; Luo, J K; Huang, W M; Flewitt, A J; Milne, W I

    2007-01-01

    Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3 N 4 microcantilever mirror structures were fabricated

  1. Parallel discrete event simulation using shared memory

    Science.gov (United States)

    Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.

    1988-01-01

    With traditional event-list techniques, evaluating a detailed discrete-event simulation-model can often require hours or even days of computation time. By eliminating the event list and maintaining only sufficient synchronization to ensure causality, parallel simulation can potentially provide speedups that are linear in the numbers of processors. A set of shared-memory experiments, using the Chandy-Misra distributed-simulation algorithm, to simulate networks of queues is presented. Parameters of the study include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential-simulation of most queueing network models.

  2. Analytical derivation of traffic patterns in cache-coherent shared-memory systems

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Sparsø, Jens

    2011-01-01

    This paper presents an analytical method to derive the worst-case traffic pattern caused by a task graph mapped to a cache-coherent shared-memory system. Our analysis allows designers to rapidly evaluate the impact of different mappings of tasks to IP cores on the traffic pattern. The accuracy...

  3. High-Speed Non-Volatile Optical Memory: Achievements and Challenges

    Directory of Open Access Journals (Sweden)

    Vadym Zayets

    2017-01-01

    Full Text Available We have proposed, fabricated, and studied a new design of a high-speed optical non-volatile memory. The recoding mechanism of the proposed memory utilizes a magnetization reversal of a nanomagnet by a spin-polarized photocurrent. It was shown experimentally that the operational speed of this memory may be extremely fast above 1 TBit/s. The challenges to realize both a high-speed recording and a high-speed reading are discussed. The memory is compact, integratable, and compatible with present semiconductor technology. If realized, it will advance data processing and computing technology towards a faster operation speed.

  4. ZnO as dielectric for optically transparent non-volatile memory

    International Nuclear Information System (INIS)

    Salim, N. Tjitra; Aw, K.C.; Gao, W.; Wright, Bryon E.

    2009-01-01

    This paper discusses the application of a DC sputtered ZnO thin film as a dielectric in an optically transparent non-volatile memory. The main motivation for using ZnO as a dielectric is due to its optical transparency and mechanical flexibility. We have established the relationship between the electrical resistivity (ρ) and the activation energy (E a ) of the electron transport in the conduction band of the ZnO film. The ρ of 2 x 10 4 -5 x 10 7 Ω-cm corresponds to E a of 0.36-0.76 eV, respectively. The k-value and optical band-gap for films sputtered with Ar:O 2 ratio of 4:1 are 53 ± 3.6 and 3.23 eV, respectively. In this paper, the basic charge storage element for a non-volatile memory is a triple layer dielectric structure in which a 50 nm thick ZnO film is sandwiched between two layers of methyl silsesquioxane sol-gel dielectric of varying thickness. A pronounced clockwise capacitance-voltage (C-V) hysteresis was observed with a memory window of 6 V. The integration with a solution-processable pentacene, 13,6-N-Sulfinylacetamodipentacene resulted in an optically transparent organic field effect transistor non-volatile memory (OFET-NVM). We have demonstrated that this OFET-NVM can be electrically programmed and erased at low voltage (± 10 V) with a threshold voltage shift of 4.0 V.

  5. Design of all-optical memory cell using EIT and lasing without inversion phenomena in optical micro ring resonators

    Science.gov (United States)

    Pasyar, N.; Yadipour, R.; Baghban, H.

    2017-07-01

    The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.

  6. An optically transparent and flexible memory with embedded gold nanoparticles in a polymethylsilsesquioxane dielectric

    International Nuclear Information System (INIS)

    Ooi, P.C.; Aw, K.C.; Gao, W.; Razak, K.A.

    2013-01-01

    In this work, we demonstrated a simple fabrication route towards an optically transparent and flexible memory device. The device is simple and consists of a metal/insulator/semiconductor structure; namely MIS. The preliminary MIS study with gold nanoparticles embedded between the polymethylsilsesquioxane layers was fabricated on p-Si substrate and the capacitance versus voltage measurements confirmed the charge trapped capability of the fabricated MIS memory device. Subsequently, an optically transparent and flexible MIS memory device made from indium–tin-oxide coated polyethylene terephthalate substrate and pentacene was used to replace the opaque p-Si substrate as the active layer. Current versus voltage (I–V) plot of the transparent and flexible device shows the presence of hysteresis. In an I–V plot, three distinct regions have been identified and the transport mechanisms are explained. The fabricated optically transparent and mechanically flexible MIS memory device can be programmed and erased multiple times, similar to a flash memory. Mechanical characterization to determine the robustness of the flexible memory device was also conducted but failed to establish any relationship in this preliminary work as the effect was random. Hence, more work is needed to understand the reliability of this device, especially when they are subjected to mechanical stress. - Highlights: ► An optically transparent and mechanically flexible memory is presented. ► Electrical characteristics show reprogrammable memory similar to flash memory. ► Transport mechanisms are proposed and explained. ► Mechanical bending tests are conducted

  7. An optically transparent and flexible memory with embedded gold nanoparticles in a polymethylsilsesquioxane dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, P.C. [Mechanical Engineering, The University of Auckland (New Zealand); Aw, K.C., E-mail: k.aw@auckland.ac.nz [Mechanical Engineering, The University of Auckland (New Zealand); Gao, W. [Chemical and Materials Engineering, The University of Auckland (New Zealand); Razak, K.A. [School of Materials and Mineral Resources Engineering, Universiti Sains (Malaysia); NanoBiotechnology Research and Innovation, INFORMM, Universiti Sains (Malaysia)

    2013-10-01

    In this work, we demonstrated a simple fabrication route towards an optically transparent and flexible memory device. The device is simple and consists of a metal/insulator/semiconductor structure; namely MIS. The preliminary MIS study with gold nanoparticles embedded between the polymethylsilsesquioxane layers was fabricated on p-Si substrate and the capacitance versus voltage measurements confirmed the charge trapped capability of the fabricated MIS memory device. Subsequently, an optically transparent and flexible MIS memory device made from indium–tin-oxide coated polyethylene terephthalate substrate and pentacene was used to replace the opaque p-Si substrate as the active layer. Current versus voltage (I–V) plot of the transparent and flexible device shows the presence of hysteresis. In an I–V plot, three distinct regions have been identified and the transport mechanisms are explained. The fabricated optically transparent and mechanically flexible MIS memory device can be programmed and erased multiple times, similar to a flash memory. Mechanical characterization to determine the robustness of the flexible memory device was also conducted but failed to establish any relationship in this preliminary work as the effect was random. Hence, more work is needed to understand the reliability of this device, especially when they are subjected to mechanical stress. - Highlights: ► An optically transparent and mechanically flexible memory is presented. ► Electrical characteristics show reprogrammable memory similar to flash memory. ► Transport mechanisms are proposed and explained. ► Mechanical bending tests are conducted.

  8. Shared protection based virtual network mapping in space division multiplexing optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie

    2018-05-01

    Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.

  9. A Visual Approach to Investigating Shared and Global Memory Behavior of CUDA Kernels

    KAUST Repository

    Rosen, Paul

    2013-01-01

    We present an approach to investigate the memory behavior of a parallel kernel executing on thousands of threads simultaneously within the CUDA architecture. Our top-down approach allows for quickly identifying any significant differences between the execution of the many blocks and warps. As interesting warps are identified, we allow further investigation of memory behavior by visualizing the shared memory bank conflicts and global memory coalescence, first with an overview of a single warp with many operations and, subsequently, with a detailed view of a single warp and a single operation. We demonstrate the strength of our approach in the context of a parallel matrix transpose kernel and a parallel 1D Haar Wavelet transform kernel. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  10. A Visual Approach to Investigating Shared and Global Memory Behavior of CUDA Kernels

    KAUST Repository

    Rosen, Paul

    2013-06-01

    We present an approach to investigate the memory behavior of a parallel kernel executing on thousands of threads simultaneously within the CUDA architecture. Our top-down approach allows for quickly identifying any significant differences between the execution of the many blocks and warps. As interesting warps are identified, we allow further investigation of memory behavior by visualizing the shared memory bank conflicts and global memory coalescence, first with an overview of a single warp with many operations and, subsequently, with a detailed view of a single warp and a single operation. We demonstrate the strength of our approach in the context of a parallel matrix transpose kernel and a parallel 1D Haar Wavelet transform kernel. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  11. Optical Associative Memory Model With Threshold Modification Using Complementary Vector

    Science.gov (United States)

    Bian, Shaoping; Xu, Kebin; Hong, Jing

    1989-02-01

    A new criterion to evaluate the similarity between two vectors in associative memory is presented. According to it, an experimental research about optical associative memory model with threshold modification using complementary vector is carried out. This model is capable of eliminating the posibility to recall erroneously. Therefore the accuracy of reading out is improved.

  12. Auto and hetero-associative memory using a 2-D optical logic gate

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor)

    1992-01-01

    An optical system for auto-associative and hetero-associative recall utilizing Hamming distance as the similarity measure between a binary input image vector V(sup k) and a binary image vector V(sup m) in a first memory array using an optical Exclusive-OR gate for multiplication of each of a plurality of different binary image vectors in memory by the input image vector. After integrating the light of each product V(sup k) x V(sup m), a shortest Hamming distance detection electronics module determines which product has the lowest light intensity and emits a signal that activates a light emitting diode to illuminate a corresponding image vector in a second memory array for display. That corresponding image vector is identical to the memory image vector V(sup m) in the first memory array for auto-associative recall or related to it, such as by name, for hetero-associative recall.

  13. Parallel k-means++ for Multiple Shared-Memory Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, Patrick S.; Lewis, Robert R.

    2016-09-22

    In recent years k-means++ has become a popular initialization technique for improved k-means clustering. To date, most of the work done to improve its performance has involved parallelizing algorithms that are only approximations of k-means++. In this paper we present a parallelization of the exact k-means++ algorithm, with a proof of its correctness. We develop implementations for three distinct shared-memory architectures: multicore CPU, high performance GPU, and the massively multithreaded Cray XMT platform. We demonstrate the scalability of the algorithm on each platform. In addition we present a visual approach for showing which platform performed k-means++ the fastest for varying data sizes.

  14. Sharing Memories

    DEFF Research Database (Denmark)

    Rodil, Kasper; Nielsen, Emil Byskov; Nielsen, Jonathan Bernstorff

    2018-01-01

    in which it was to be contextualized and through a close partnership between aphasics and their caretakers. The underlying design methodology for the MemoryBook is Participatory Design manifested through the collaboration and creations by two aphasic residents and one member of the support staff. The idea...

  15. MULTI: a shared memory approach to cooperative molecular modeling.

    Science.gov (United States)

    Darden, T; Johnson, P; Smith, H

    1991-03-01

    A general purpose molecular modeling system, MULTI, based on the UNIX shared memory and semaphore facilities for interprocess communication is described. In addition to the normal querying or monitoring of geometric data, MULTI also provides processes for manipulating conformations, and for displaying peptide or nucleic acid ribbons, Connolly surfaces, close nonbonded contacts, crystal-symmetry related images, least-squares superpositions, and so forth. This paper outlines the basic techniques used in MULTI to ensure cooperation among these specialized processes, and then describes how they can work together to provide a flexible modeling environment.

  16. Optical waveguides with memory effect using photochromic material for neural network

    Science.gov (United States)

    Tanimoto, Keisuke; Amemiya, Yoshiteru; Yokoyama, Shin

    2018-04-01

    An optical neural network using a waveguide with a memory effect, a photodiode, CMOS circuits and LEDs was proposed. To realize the neural network, optical waveguides with a memory effect were fabricated using a cladding layer containing the photochromic material “diarylethene”. The transmittance of green light was decreased by UV light irradiation and recovered by the passage of green light through the waveguide. It was confirmed that the transmittance versus total energy of the green light that passed through the waveguide well fit the universal exponential curve.

  17. Breaking the Memory Bottleneck with an Optical Data Path

    National Research Council Canada - National Science Library

    Fritts, Jason E; Chamberlain, Roger D

    2005-01-01

    .... Through a simulation-based performance analysis of a 1 GHz processor model, we provide a preliminary evaluation of the benefits of an optical processor-to-memory bus in both eliminating the bandwidth...

  18. Smart photodetector arrays for error control in page-oriented optical memory

    Science.gov (United States)

    Schaffer, Maureen Elizabeth

    1998-12-01

    Page-oriented optical memories (POMs) have been proposed to meet high speed, high capacity storage requirements for input/output intensive computer applications. This technology offers the capability for storage and retrieval of optical data in two-dimensional pages resulting in high throughput data rates. Since currently measured raw bit error rates for these systems fall several orders of magnitude short of industry requirements for binary data storage, powerful error control codes must be adopted. These codes must be designed to take advantage of the two-dimensional memory output. In addition, POMs require an optoelectronic interface to transfer the optical data pages to one or more electronic host systems. Conventional charge coupled device (CCD) arrays can receive optical data in parallel, but the relatively slow serial electronic output of these devices creates a system bottleneck thereby eliminating the POM advantage of high transfer rates. Also, CCD arrays are "unintelligent" interfaces in that they offer little data processing capabilities. The optical data page can be received by two-dimensional arrays of "smart" photo-detector elements that replace conventional CCD arrays. These smart photodetector arrays (SPAs) can perform fast parallel data decoding and error control, thereby providing an efficient optoelectronic interface between the memory and the electronic computer. This approach optimizes the computer memory system by combining the massive parallelism and high speed of optics with the diverse functionality, low cost, and local interconnection efficiency of electronics. In this dissertation we examine the design of smart photodetector arrays for use as the optoelectronic interface for page-oriented optical memory. We review options and technologies for SPA fabrication, develop SPA requirements, and determine SPA scalability constraints with respect to pixel complexity, electrical power dissipation, and optical power limits. Next, we examine data

  19. To share and be shared

    DEFF Research Database (Denmark)

    Winther, Ida Wentzel

    2018-01-01

    to another. To a certain degree, they share their everyday lives, things, places, memories, and past/future, but as the ones who move back and forth, they belong a little less in each place. This article is about children who are shared between their parent, households and siblings. They are shared...

  20. Translation techniques for distributed-shared memory programming models

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Douglas James [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The high performance computing community has experienced an explosive improvement in distributed-shared memory hardware. Driven by increasing real-world problem complexity, this explosion has ushered in vast numbers of new systems. Each new system presents new challenges to programmers and application developers. Part of the challenge is adapting to new architectures with new performance characteristics. Different vendors release systems with widely varying architectures that perform differently in different situations. Furthermore, since vendors need only provide a single performance number (total MFLOPS, typically for a single benchmark), they only have strong incentive initially to optimize the API of their choice. Consequently, only a fraction of the available APIs are well optimized on most systems. This causes issues porting and writing maintainable software, let alone issues for programmers burdened with mastering each new API as it is released. Also, programmers wishing to use a certain machine must choose their API based on the underlying hardware instead of the application. This thesis argues that a flexible, extensible translator for distributed-shared memory APIs can help address some of these issues. For example, a translator might take as input code in one API and output an equivalent program in another. Such a translator could provide instant porting for applications to new systems that do not support the application's library or language natively. While open-source APIs are abundant, they do not perform optimally everywhere. A translator would also allow performance testing using a single base code translated to a number of different APIs. Most significantly, this type of translator frees programmers to select the most appropriate API for a given application based on the application (and developer) itself instead of the underlying hardware.

  1. Coupling Computer Codes for The Analysis of Severe Accident Using A Pseudo Shared Memory Based on MPI

    International Nuclear Information System (INIS)

    Cho, Young Chul; Park, Chang-Hwan; Kim, Dong-Min

    2016-01-01

    As there are four codes in-vessel analysis code (CSPACE), ex-vessel analysis code (SACAP), corium behavior analysis code (COMPASS), and fission product behavior analysis code, for the analysis of severe accident, it is complex to implement the coupling of codes with the similar methodologies for RELAP and CONTEMPT or SPACE and CAP. Because of that, an efficient coupling so called Pseudo shared memory architecture was introduced. In this paper, coupling methodologies will be compared and the methodology used for the analysis of severe accident will be discussed in detail. The barrier between in-vessel and ex-vessel has been removed for the analysis of severe accidents with the implementation of coupling computer codes with pseudo shared memory architecture based on MPI. The remaining are proper choice and checking of variables and values for the selected severe accident scenarios, e.g., TMI accident. Even though it is possible to couple more than two computer codes with pseudo shared memory architecture, the methodology should be revised to couple parallel codes especially when they are programmed using MPI

  2. Coupling Computer Codes for The Analysis of Severe Accident Using A Pseudo Shared Memory Based on MPI

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Chul; Park, Chang-Hwan; Kim, Dong-Min [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    As there are four codes in-vessel analysis code (CSPACE), ex-vessel analysis code (SACAP), corium behavior analysis code (COMPASS), and fission product behavior analysis code, for the analysis of severe accident, it is complex to implement the coupling of codes with the similar methodologies for RELAP and CONTEMPT or SPACE and CAP. Because of that, an efficient coupling so called Pseudo shared memory architecture was introduced. In this paper, coupling methodologies will be compared and the methodology used for the analysis of severe accident will be discussed in detail. The barrier between in-vessel and ex-vessel has been removed for the analysis of severe accidents with the implementation of coupling computer codes with pseudo shared memory architecture based on MPI. The remaining are proper choice and checking of variables and values for the selected severe accident scenarios, e.g., TMI accident. Even though it is possible to couple more than two computer codes with pseudo shared memory architecture, the methodology should be revised to couple parallel codes especially when they are programmed using MPI.

  3. Functions of Memory Sharing and Mother-Child Reminiscing Behaviors: Individual and Cultural Variations

    Science.gov (United States)

    Kulkofsky, Sarah; Wang, Qi; Koh, Jessie Bee Kim

    2009-01-01

    This study examined maternal beliefs about the functions of memory sharing and the relations between these beliefs and mother-child reminiscing behaviors in a cross-cultural context. Sixty-three European American and 47 Chinese mothers completed an open-ended questionnaire concerning their beliefs about the functions of parent-child memory…

  4. Parallel discrete event simulation: A shared memory approach

    Science.gov (United States)

    Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.

    1987-01-01

    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models.

  5. A Study of Shared-Memory Mutual Exclusion Protocols Using CADP

    Science.gov (United States)

    Mateescu, Radu; Serwe, Wendelin

    Mutual exclusion protocols are an essential building block of concurrent systems: indeed, such a protocol is required whenever a shared resource has to be protected against concurrent non-atomic accesses. Hence, many variants of mutual exclusion protocols exist in the shared-memory setting, such as Peterson's or Dekker's well-known protocols. Although the functional correctness of these protocols has been studied extensively, relatively little attention has been paid to their non-functional aspects, such as their performance in the long run. In this paper, we report on experiments with the performance evaluation of mutual exclusion protocols using Interactive Markov Chains. Steady-state analysis provides an additional criterion for comparing protocols, which complements the verification of their functional properties. We also carefully re-examined the functional properties, whose accurate formulation as temporal logic formulas in the action-based setting turns out to be quite involved.

  6. Optical interconnection network for parallel access to multi-rank memory in future computing systems.

    Science.gov (United States)

    Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun

    2015-08-10

    With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.

  7. Similar prefrontal cortical activities between general fluid intelligence and visuospatial working memory tasks in preschool children as revealed by optical topography.

    Science.gov (United States)

    Kuwajima, Mariko; Sawaguchi, Toshiyuki

    2010-10-01

    General fluid intelligence (gF) is a major component of intellect in both adults and children. Whereas its neural substrates have been studied relatively thoroughly in adults, those are poorly understood in children, particularly preschoolers. Here, we hypothesized that gF and visuospatial working memory share a common neural system within the lateral prefrontal cortex (LPFC) during the preschool years (4-6 years). At the behavioral level, we found that gF positively and significantly correlated with abilities (especially accuracy) in visuospatial working memory. Optical topography revealed that the LPFC of preschoolers was activated and deactivated during the visuospatial working memory task and the gF task. We found that the spatio-temporal features of neural activity in the LPFC were similar for both the visuospatial working memory task and the gF task. Further, 2 months of training for the visuospatial working memory task significantly increased gF in the preschoolers. These findings suggest that a common neural system in the LPFC is recruited to improve the visuospatial working memory and gF in preschoolers. Efficient recruitment of this neural system may be important for good performance in these functions in preschoolers, and behavioral training using this system would help to increase gF at these ages.

  8. Virtual memory support for distributed computing environments using a shared data object model

    Science.gov (United States)

    Huang, F.; Bacon, J.; Mapp, G.

    1995-12-01

    Conventional storage management systems provide one interface for accessing memory segments and another for accessing secondary storage objects. This hinders application programming and affects overall system performance due to mandatory data copying and user/kernel boundary crossings, which in the microkernel case may involve context switches. Memory-mapping techniques may be used to provide programmers with a unified view of the storage system. This paper extends such techniques to support a shared data object model for distributed computing environments in which good support for coherence and synchronization is essential. The approach is based on a microkernel, typed memory objects, and integrated coherence control. A microkernel architecture is used to support multiple coherence protocols and the addition of new protocols. Memory objects are typed and applications can choose the most suitable protocols for different types of object to avoid protocol mismatch. Low-level coherence control is integrated with high-level concurrency control so that the number of messages required to maintain memory coherence is reduced and system-wide synchronization is realized without severely impacting the system performance. These features together contribute a novel approach to the support for flexible coherence under application control.

  9. The Rainwater Memorial Calibration Facility for X-Ray Optics

    DEFF Research Database (Denmark)

    Brejnholt, Nicolai; Christensen, Finn Erland; Hailey, Charles J.

    2011-01-01

    The Nuclear Spectroscopic Telescope ARray (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (5–80 keV) telescope to orbit. The ground calibration of the optics posed a challenge as the need to suppress finite source distance effects over the full optic...... and the energy range of interest were unique requirements not met by any existing facility. In this paper we present the requirements for the NuSTAR optics ground calibration, and how the Rainwater Memorial Calibration Facility, RaMCaF, is designed to meet the calibration requirements. The nearly 175 m long...

  10. Precision spectral manipulation: A demonstration using a coherent optical memory

    Energy Technology Data Exchange (ETDEWEB)

    Sparkes, B. M.; Cairns, C.; Hosseini, M.; Higginbottom, D.; Campbell, G. T.; Lam, P. K.; Buchler, B. C. [Centre for Quantum Computation and Communication Technology, The Australian National University, Canberra (Australia)

    2014-12-04

    The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. Here we present experiments that use a multi-element solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  11. Investigation of shape memory of red blood cells using optical tweezers and quantitative phase microscopy

    Science.gov (United States)

    Cardenas, Nelson; Mohanty, Samarendra K.

    2012-03-01

    RBC has been shown to possess shape memory subsequent to shear-induced shape transformation. However, this property of RBC may not be generalized to all kinds of stresses. Here, we report our observation on the action of radiation pressure forces on RBC's shape memory using optical manipulation and quantitative phase microscopy (OMQPM). QPM, based on Mach-Zehnder interferrometry, allowed measurement of dynamic changes of shape of RBC in optical tweezers at different trapping laser powers. In high power near-infrared optical tweezers (>200mW), the RBC was found to deform significantly due to optical forces. Upon removal of the tweezers, hysteresis in recovering its original resting shape was observed. In very high power tweezers or long-term stretching events, shape memory was almost erased. This irreversibility of the deformation may be due to temperature rise or stress-induced phase transformation of lipids in RBC membrane.

  12. A Parallel Saturation Algorithm on Shared Memory Architectures

    Science.gov (United States)

    Ezekiel, Jonathan; Siminiceanu

    2007-01-01

    Symbolic state-space generators are notoriously hard to parallelize. However, the Saturation algorithm implemented in the SMART verification tool differs from other sequential symbolic state-space generators in that it exploits the locality of ring events in asynchronous system models. This paper explores whether event locality can be utilized to efficiently parallelize Saturation on shared-memory architectures. Conceptually, we propose to parallelize the ring of events within a decision diagram node, which is technically realized via a thread pool. We discuss the challenges involved in our parallel design and conduct experimental studies on its prototypical implementation. On a dual-processor dual core PC, our studies show speed-ups for several example models, e.g., of up to 50% for a Kanban model, when compared to running our algorithm only on a single core.

  13. Coupling of erbium dopants to yttrium orthosilicate photonic crystal cavities for on-chip optical quantum memories

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei, E-mail: faraon@caltech.edu [T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125 (United States)

    2016-01-04

    Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.

  14. Optical-electronic shape recognition system based on synergetic associative memory

    Science.gov (United States)

    Gao, Jun; Bao, Jie; Chen, Dingguo; Yang, Youqing; Yang, Xuedong

    2001-04-01

    This paper presents a novel optical-electronic shape recognition system based on synergetic associative memory. Our shape recognition system is composed of two parts: the first one is feature extraction system; the second is synergetic pattern recognition system. Hough transform is proposed for feature extraction of unrecognized object, with the effects of reducing dimensions and filtering for object distortion and noise, synergetic neural network is proposed for realizing associative memory in order to eliminate spurious states. Then we adopt an approach of optical- electronic realization to our system that can satisfy the demands of real time, high speed and parallelism. In order to realize fast algorithm, we replace the dynamic evolution circuit with adjudge circuit according to the relationship between attention parameters and order parameters, then implement the recognition of some simple images and its validity is proved.

  15. Shared filtering processes link attentional and visual short-term memory capacity limits.

    Science.gov (United States)

    Bettencourt, Katherine C; Michalka, Samantha W; Somers, David C

    2011-09-30

    Both visual attention and visual short-term memory (VSTM) have been shown to have capacity limits of 4 ± 1 objects, driving the hypothesis that they share a visual processing buffer. However, these capacity limitations also show strong individual differences, making the degree to which these capacities are related unclear. Moreover, other research has suggested a distinction between attention and VSTM buffers. To explore the degree to which capacity limitations reflect the use of a shared visual processing buffer, we compared individual subject's capacities on attentional and VSTM tasks completed in the same testing session. We used a multiple object tracking (MOT) and a VSTM change detection task, with varying levels of distractors, to measure capacity. Significant correlations in capacity were not observed between the MOT and VSTM tasks when distractor filtering demands differed between the tasks. Instead, significant correlations were seen when the tasks shared spatial filtering demands. Moreover, these filtering demands impacted capacity similarly in both attention and VSTM tasks. These observations fail to support the view that visual attention and VSTM capacity limits result from a shared buffer but instead highlight the role of the resource demands of underlying processes in limiting capacity.

  16. Shared neuroanatomical substrates of impaired phonological working memory across reading disability and autism

    OpenAIRE

    Lu, Chunming; Qi, Zhenghan; Harris, Adrianne; Weil, Lisa Wisman; Han, Michelle; Halverson, Kelly; Perrachione, Tyler K.; Kjelgaard, Margaret; Wexler, Kenneth; Tager-Flusberg, Helen; Gabrieli, John D. E.

    2016-01-01

    Background Individuals with reading disability and individuals with autism spectrum disorder (ASD) are characterized, respectively, by their difficulties in reading and social communication, but both groups often have impaired phonological working memory (PWM). It is not known whether the impaired PWM reflects distinct or shared neuroanatomical abnormalities in these two diagnostic groups. Methods White-matter structural connectivity via diffusion weighted imaging was examined in 64 children,...

  17. Domain-general involvement of the posterior frontolateral cortex in time-based resource-sharing in working memory: An fMRI study

    NARCIS (Netherlands)

    Vergauwe, E.; Hartstra, E.; Barrouillet, P.; Brass, M.

    2015-01-01

    Working memory is often defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. In line with the time-based resource-sharing model of working memory (TBRS; Barrouillet and Camos, 2015; Barrouillet et al., 2004), there is accumulating

  18. A shared memory based interface of MARTe with EPICS for real-time applications

    International Nuclear Information System (INIS)

    Yun, Sangwon; Neto, André C.; Park, Mikyung; Lee, Sangil; Park, Kaprai

    2014-01-01

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS

  19. A shared memory based interface of MARTe with EPICS for real-time applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sangwon, E-mail: yunsw@nfri.re.kr [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of); Neto, André C. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Park, Mikyung; Lee, Sangil; Park, Kaprai [National Fusion Research Institute (NFRI), Gwahangno 169-148, Yuseong-Gu, Daejeon 305-806 (Korea, Republic of)

    2014-05-15

    Highlights: • We implemented a shared memory based interface of MARTe with EPICS. • We implemented an EPICS module supporting device and driver support. • We implemented an example EPICS IOC and CSS OPI for evaluation. - Abstract: The Multithreaded Application Real-Time executor (MARTe) is a multi-platform C++ middleware designed for the implementation of real-time control systems. It currently supports the Linux, Linux + RTAI, VxWorks, Solaris and MS Windows platforms. In the fusion community MARTe is being used at JET, COMPASS, ISTTOK, FTU and RFX in fusion [1]. The Experimental Physics and Industrial Control System (EPICS), a standard framework for the control systems in KSTAR and ITER, is a set of software tools and applications which provide a software infrastructure for use in building distributed control systems to operate devices. For a MARTe based application to cooperate with an EPICS based application, an interface layer between MARTe and EPICS is required. To solve this issue, a number of interfacing solutions have been proposed and some of them have been implemented. Nevertheless, a new approach is required to mitigate the functional limitations of existing solutions and to improve their performance for real-time applications. This paper describes the design and implementation of a shared memory based interface between MARTe and EPICS.

  20. Generalized Load Sharing for Homogeneous Networks of Distributed Environment

    Directory of Open Access Journals (Sweden)

    A. Satheesh

    2008-01-01

    Full Text Available We propose a method for job migration policies by considering effective usage of global memory in addition to CPU load sharing in distributed systems. When a node is identified for lacking sufficient memory space to serve jobs, one or more jobs of the node will be migrated to remote nodes with low memory allocations. If the memory space is sufficiently large, the jobs will be scheduled by a CPU-based load sharing policy. Following the principle of sharing both CPU and memory resources, we present several load sharing alternatives. Our objective is to reduce the number of page faults caused by unbalanced memory allocations for jobs among distributed nodes, so that overall performance of a distributed system can be significantly improved. We have conducted trace-driven simulations to compare CPU-based load sharing policies with our policies. We show that our load sharing policies not only improve performance of memory bound jobs, but also maintain the same load sharing quality as the CPU-based policies for CPU-bound jobs. Regarding remote execution and preemptive migration strategies, our experiments indicate that a strategy selection in load sharing is dependent on the amount of memory demand of jobs, remote execution is more effective for memory-bound jobs, and preemptive migration is more effective for CPU-bound jobs. Our CPU-memory-based policy using either high performance or high throughput approach and using the remote execution strategy performs the best for both CPU-bound and memory-bound job in homogeneous networks of distributed environment.

  1. Evaluation of a Connectionless NoC for a Real-Time Distributed Shared Memory Many-Core System

    NARCIS (Netherlands)

    Rutgers, J.H.; Bekooij, Marco Jan Gerrit; Smit, Gerardus Johannes Maria

    2012-01-01

    Real-time embedded systems like smartphones tend to comprise an ever increasing number of processing cores. For scalability and the need for guaranteed performance, the use of a connection-oriented network-on-chip (NoC) is advocated. Furthermore, a distributed shared memory architecture is preferred

  2. Process-specific analysis in episodic memory retrieval using fast optical signals and hemodynamic signals in the right prefrontal cortex

    Science.gov (United States)

    Dong, Sunghee; Jeong, Jichai

    2018-02-01

    Objective. Memory is formed by the interaction of various brain functions at the item and task level. Revealing individual and combined effects of item- and task-related processes on retrieving episodic memory is an unsolved problem because of limitations in existing neuroimaging techniques. To investigate these issues, we analyze fast and slow optical signals measured from a custom-built continuous wave functional near-infrared spectroscopy (CW-fNIRS) system. Approach. In our work, we visually encode the words to the subjects and let them recall the words after a short rest. The hemodynamic responses evoked by the episodic memory are compared with those evoked by the semantic memory in retrieval blocks. In the fast optical signal, we compare the effects of old and new items (previously seen and not seen) to investigate the item-related process in episodic memory. The Kalman filter is simultaneously applied to slow and fast optical signals in different time windows. Main results. A significant task-related HbR decrease was observed in the episodic memory retrieval blocks. Mean amplitude and peak latency of a fast optical signal are dependent upon item types and reaction time, respectively. Moreover, task-related hemodynamic and item-related fast optical responses are correlated in the right prefrontal cortex. Significance. We demonstrate that episodic memory is retrieved from the right frontal area by a functional connectivity between the maintained mental state through retrieval and item-related transient activity. To the best of our knowledge, this demonstration of functional NIRS research is the first to examine the relationship between item- and task-related memory processes in the prefrontal area using single modality.

  3. Process-specific analysis in episodic memory retrieval using fast optical signals and hemodynamic signals in the right prefrontal cortex.

    Science.gov (United States)

    Dong, Sunghee; Jeong, Jichai

    2018-02-01

    Memory is formed by the interaction of various brain functions at the item and task level. Revealing individual and combined effects of item- and task-related processes on retrieving episodic memory is an unsolved problem because of limitations in existing neuroimaging techniques. To investigate these issues, we analyze fast and slow optical signals measured from a custom-built continuous wave functional near-infrared spectroscopy (CW-fNIRS) system. In our work, we visually encode the words to the subjects and let them recall the words after a short rest. The hemodynamic responses evoked by the episodic memory are compared with those evoked by the semantic memory in retrieval blocks. In the fast optical signal, we compare the effects of old and new items (previously seen and not seen) to investigate the item-related process in episodic memory. The Kalman filter is simultaneously applied to slow and fast optical signals in different time windows. A significant task-related HbR decrease was observed in the episodic memory retrieval blocks. Mean amplitude and peak latency of a fast optical signal are dependent upon item types and reaction time, respectively. Moreover, task-related hemodynamic and item-related fast optical responses are correlated in the right prefrontal cortex. We demonstrate that episodic memory is retrieved from the right frontal area by a functional connectivity between the maintained mental state through retrieval and item-related transient activity. To the best of our knowledge, this demonstration of functional NIRS research is the first to examine the relationship between item- and task-related memory processes in the prefrontal area using single modality.

  4. Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.

    Science.gov (United States)

    Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra

    2011-12-12

    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America

  5. Explicit time integration of finite element models on a vectorized, concurrent computer with shared memory

    Science.gov (United States)

    Gilbertsen, Noreen D.; Belytschko, Ted

    1990-01-01

    The implementation of a nonlinear explicit program on a vectorized, concurrent computer with shared memory is described and studied. The conflict between vectorization and concurrency is described and some guidelines are given for optimal block sizes. Several example problems are summarized to illustrate the types of speed-ups which can be achieved by reprogramming as compared to compiler optimization.

  6. Web Platform for Sharing Modeling Software in the Field of Nonlinear Optics

    Directory of Open Access Journals (Sweden)

    Dubenskaya Julia

    2018-01-01

    Full Text Available We describe the prototype of a Web platform intended for sharing software programs for computer modeling in the rapidly developing field of the nonlinear optics phenomena. The suggested platform is built on the top of the HUBZero open-source middleware. In addition to the basic HUBZero installation we added to our platform the capability to run Docker containers via an external application server and to send calculation programs to those containers for execution. The presented web platform provides a wide range of features and might be of benefit to nonlinear optics researchers.

  7. Web Platform for Sharing Modeling Software in the Field of Nonlinear Optics

    Science.gov (United States)

    Dubenskaya, Julia; Kryukov, Alexander; Demichev, Andrey

    2018-02-01

    We describe the prototype of a Web platform intended for sharing software programs for computer modeling in the rapidly developing field of the nonlinear optics phenomena. The suggested platform is built on the top of the HUBZero open-source middleware. In addition to the basic HUBZero installation we added to our platform the capability to run Docker containers via an external application server and to send calculation programs to those containers for execution. The presented web platform provides a wide range of features and might be of benefit to nonlinear optics researchers.

  8. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    Science.gov (United States)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  9. Associative-memory representations emerge as shared spatial patterns of theta activity spanning the primate temporal cortex.

    Science.gov (United States)

    Nakahara, Kiyoshi; Adachi, Ken; Kawasaki, Keisuke; Matsuo, Takeshi; Sawahata, Hirohito; Majima, Kei; Takeda, Masaki; Sugiyama, Sayaka; Nakata, Ryota; Iijima, Atsuhiko; Tanigawa, Hisashi; Suzuki, Takafumi; Kamitani, Yukiyasu; Hasegawa, Isao

    2016-06-10

    Highly localized neuronal spikes in primate temporal cortex can encode associative memory; however, whether memory formation involves area-wide reorganization of ensemble activity, which often accompanies rhythmicity, or just local microcircuit-level plasticity, remains elusive. Using high-density electrocorticography, we capture local-field potentials spanning the monkey temporal lobes, and show that the visual pair-association (PA) memory is encoded in spatial patterns of theta activity in areas TE, 36, and, partially, in the parahippocampal cortex, but not in the entorhinal cortex. The theta patterns elicited by learned paired associates are distinct between pairs, but similar within pairs. This pattern similarity, emerging through novel PA learning, allows a machine-learning decoder trained on theta patterns elicited by a particular visual item to correctly predict the identity of those elicited by its paired associate. Our results suggest that the formation and sharing of widespread cortical theta patterns via learning-induced reorganization are involved in the mechanisms of associative memory representation.

  10. An optical model for implementing Parrondo’s game and designing stochastic game with long-term memory

    International Nuclear Information System (INIS)

    Si Tieyan

    2012-01-01

    Highlights: ► Using a photon propagating through a designed array of beam splitters to simulate Parrondo’s game paradox. ► Design the optical flowchart for implementing Parrondo history-dependent game paradox. ► Design new game with long-term memory on a designed tree lattice and loop lattice. - Abstract: An optical model for a photon propagating through a designed array of beam splitters is developed to give a physical implementation of Parrondo’s game and Parrondo’s history-dependent game. The winner in this optical model is a photon passed the beam splitter. The loser is a photon being reflected by the beam splitter. The optical beam splitter is the coin-tosser. We designed new games with long-term memory by using this optical diagram method. The optical output of the combined game of two losing games could be a win, or a loss, or an oscillation between win and loss. The modern technology to implement this optical model is well developed. A circularly polarized photon is a possible candidate for this physical implementation in laboratory.

  11. Analogical reasoning in working memory: resources shared among relational integration, interference resolution, and maintenance.

    Science.gov (United States)

    Cho, Soohyun; Holyoak, Keith J; Cannon, Tyrone D

    2007-09-01

    We report a series of experiments using a pictorial analogy task designed to manipulate relational integration, interference resolution, and active maintenance simultaneously. The difficulty of the problems was varied in terms of the number of relations to be integrated, the need for interference resolution, and the duration of maintenance required to correctly solve the analogy. The participants showed decreases in performance when integrating multiple relations, as compared with a single relation, and when interference resolution was required in solving the analogy. When the participants were required to integrate multiple relations while simultaneously engaged in interference resolution, performance was worse, as compared with problems that incorporated either of these features alone. Maintenance of information across delays in the range of 1-4.5 sec led to greater decrements in visual memory, as compared with analogical reasoning. Misleading information caused interference when it had been necessarily attended to and maintained in working memory and, hence, had to be actively suppressed. However, sources of conflict within information that had not been attended to or encoded into working memory did not interfere with the ongoing controlled information processing required for relational integration. The findings provide evidence that relational integration and interference resolution depend on shared cognitive resources in working memory during analogical reasoning.

  12. Iterative schemes for parallel Sn algorithms in a shared-memory computing environment

    International Nuclear Information System (INIS)

    Haghighat, A.; Hunter, M.A.; Mattis, R.E.

    1995-01-01

    Several two-dimensional spatial domain partitioning S n transport theory algorithms are developed on the basis of different iterative schemes. These algorithms are incorporated into TWOTRAN-II and tested on the shared-memory CRAY Y-MP C90 computer. For a series of fixed-source r-z geometry homogeneous problems, it is demonstrated that the concurrent red-black algorithms may result in large parallel efficiencies (>60%) on C90. It is also demonstrated that for a realistic shielding problem, the use of the negative flux fixup causes high load imbalance, which results in a significant loss of parallel efficiency

  13. A real-time multichannel memory controller and optimal mapping of memory clients to memory channels

    NARCIS (Netherlands)

    Gomony, M.D.; Akesson, K.B.; Goossens, K.G.W.

    2015-01-01

    Ever-increasing demands for main memory bandwidth and memory speed/power tradeoff led to the introduction of memories with multiple memory channels, such as Wide IO DRAM. Efficient utilization of a multichannel memory as a shared resource in multiprocessor real-time systems depends on mapping of the

  14. Dynamic segment shared protection for multicast traffic in meshed wavelength-division-multiplexing optical networks

    Science.gov (United States)

    Liao, Luhua; Li, Lemin; Wang, Sheng

    2006-12-01

    We investigate the protection approach for dynamic multicast traffic under shared risk link group (SRLG) constraints in meshed wavelength-division-multiplexing optical networks. We present a shared protection algorithm called dynamic segment shared protection for multicast traffic (DSSPM), which can dynamically adjust the link cost according to the current network state and can establish a primary light-tree as well as corresponding SRLG-disjoint backup segments for a dependable multicast connection. A backup segment can efficiently share the wavelength capacity of its working tree and the common resources of other backup segments based on SRLG-disjoint constraints. The simulation results show that DSSPM not only can protect the multicast sessions against a single-SRLG breakdown, but can make better use of the wavelength resources and also lower the network blocking probability.

  15. Resource-sharing in multiple-component working memory

    OpenAIRE

    Doherty, Jason M.; Logie, Robert H.

    2016-01-01

    Working memory research often focuses on measuring the capacity of the system and how it relates to other cognitive abilities. However, research into the structure of working memory is less concerned with an overall capacity measure but rather with the intricacies of underlying components and their contribution to different tasks. A number of models of working memory structure have been proposed, each with different assumptions and predictions, but none of which adequately accounts for the fu...

  16. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip

    DEFF Research Database (Denmark)

    Liu, Liu; Kumar, R.; Huybrechts, K.

    2010-01-01

    Ultra-small, low-power, all-optical switching and memory elements, such as all-optical flip-flops, as well as photonic integrated circuits of many such elements, are in great demand for all-optical signal buffering, switching and processing. Silicon-on-insulator is considered to be a promising......-flop working in a continuous-wave regime with an electrical power consumption of a few milliwatts, allowing switching in 60 ps with 1.8 fJ optical energy. The total power consumption and the device size are, to the best of our knowledge, the smallest reported to date at telecom wavelengths. This is also...

  17. Precision Spectral Manipulation: A Demonstration Using a Coherent Optical Memory

    Directory of Open Access Journals (Sweden)

    B. M. Sparkes

    2012-06-01

    Full Text Available The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. In this paper, we present experiments that use a multielement solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. These operations include separate bandwidth and frequency manipulation with precision down to tens of kHz, spectral filtering of up to three separate frequency components, as well as time-delayed interference between pulses with both the same, and different, frequencies. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  18. Optical threshold secret sharing scheme based on basic vector operations and coherence superposition

    Science.gov (United States)

    Deng, Xiaopeng; Wen, Wei; Mi, Xianwu; Long, Xuewen

    2015-04-01

    We propose, to our knowledge for the first time, a simple optical algorithm for secret image sharing with the (2,n) threshold scheme based on basic vector operations and coherence superposition. The secret image to be shared is firstly divided into n shadow images by use of basic vector operations. In the reconstruction stage, the secret image can be retrieved by recording the intensity of the coherence superposition of any two shadow images. Compared with the published encryption techniques which focus narrowly on information encryption, the proposed method can realize information encryption as well as secret sharing, which further ensures the safety and integrality of the secret information and prevents power from being kept centralized and abused. The feasibility and effectiveness of the proposed method are demonstrated by numerical results.

  19. Coping with Memory Loss

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Coping With Memory Loss Share Tweet Linkedin Pin it More sharing ... be evaluated by a health professional. What Causes Memory Loss? Anything that affects cognition—the process of ...

  20. Local nondestructive data reading in three-dimensional memory systems based on the optical Kerr effect

    International Nuclear Information System (INIS)

    Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A

    1998-01-01

    An investigation was made of the characteristics of the optical Kerr effect in a spiropyran solution. It was found that this effect makes it possible to distinguish the coloured and uncoloured forms of spiropyran and that it represents a promising method for nondestructive data reading in three-dimensional optical memory systems based on photochromic materials. (letters to the editor)

  1. All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polarization-dependent semiconductor optical amplifiers

    Science.gov (United States)

    Wang, Yongjun; Liu, Xinyu; Tian, Qinghua; Wang, Lina; Xin, Xiangjun

    2018-03-01

    Basic configurations of various all-optical clocked flip-flops (FFs) and optical random access memory (RAM) based on the nonlinear polarization rotation (NPR) effect of low-polarization-dependent semiconductor optical amplifiers (SOA) are proposed. As the constituent elements, all-optical logic gates and all-optical SR latches are constructed by taking advantage of the SOA's NPR switch. Different all-optical FFs (AOFFs), including SR-, D-, T-, and JK-types as well as an optical RAM cell were obtained by the combination of the proposed all-optical SR latches and logic gates. The effectiveness of the proposed schemes were verified by simulation results and demonstrated by a D-FF and 1-bit RAM cell experimental system. The proposed all-optical clocked FFs and RAM cell are significant to all-optical signal processing.

  2. Domain-general involvement of the posterior frontolateral cortex in time-based resource-sharing in working memory: An fMRI study.

    Science.gov (United States)

    Vergauwe, Evie; Hartstra, Egbert; Barrouillet, Pierre; Brass, Marcel

    2015-07-15

    Working memory is often defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. In line with the time-based resource-sharing model of working memory (TBRS; Barrouillet and Camos, 2015; Barrouillet et al., 2004), there is accumulating evidence that, when memory items have to be maintained while performing a concurrent activity, memory performance depends on the cognitive load of this activity, independently of the domain involved. The present study used fMRI to identify regions in the brain that are sensitive to variations in cognitive load in a domain-general way. More precisely, we aimed at identifying brain areas that activate during maintenance of memory items as a direct function of the cognitive load induced by both verbal and spatial concurrent tasks. Results show that the right IFJ and bilateral SPL/IPS are the only areas showing an increased involvement as cognitive load increases and do so in a domain general manner. When correlating the fMRI signal with the approximated cognitive load as defined by the TBRS model, it was shown that the main focus of the cognitive load-related activation is located in the right IFJ. The present findings indicate that the IFJ makes domain-general contributions to time-based resource-sharing in working memory and allowed us to generate the novel hypothesis by which the IFJ might be the neural basis for the process of rapid switching. We argue that the IFJ might be a crucial part of a central attentional bottleneck in the brain because of its inability to upload more than one task rule at once. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Access to long-term optical memories using photon echoes retrieved from semiconductor spins

    Science.gov (United States)

    Langer, L.; Poltavtsev, S. V.; Yugova, I. A.; Salewski, M.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2014-11-01

    The ability to store optical information is important for both classical and quantum communication. Achieving this in a comprehensive manner (converting the optical field into material excitation, storing this excitation, and releasing it after a controllable time delay) is greatly complicated by the many, often conflicting, properties of the material. More specifically, optical resonances in semiconductor quantum structures with high oscillator strength are inevitably characterized by short excitation lifetimes (and, therefore, short optical memory). Here, we present a new experimental approach to stimulated photon echoes by transferring the information contained in the optical field into a spin system, where it is decoupled from the optical vacuum field and may persist much longer. We demonstrate this for an n-doped CdTe/(Cd,Mg)Te quantum well, the storage time of which could be increased by more than three orders of magnitude, from the picosecond range up to tens of nanoseconds.

  4. Two-Photon Absorbing Molecules as Potential Materials for 3D Optical Memory

    Directory of Open Access Journals (Sweden)

    Kazuya Ogawa

    2014-01-01

    Full Text Available In this review, recent advances in two-photon absorbing photochromic molecules, as potential materials for 3D optical memory, are presented. The investigations introduced in this review indicate that 3D data storage processing at the molecular level is possible. As 3D memory using two-photon absorption allows advantages over existing systems, the use of two-photon absorbing photochromic molecules is preferable. Although there are some photochromic molecules with good properties for memory, in most cases, the two-photon absorption efficiency is not high. Photochromic molecules with high two-photon absorption efficiency are desired. Recently, molecules having much larger two-photon absorption cross sections over 10,000 GM (GM= 10−50 cm4 s molecule−1 photon−1 have been discovered and are expected to open the way to realize two-photon absorption 3D data storage.

  5. Performance of Integrated Fiber Optic, Piezoelectric, and Shape Memory Alloy Actuators/Sensors in Thermoset Composites

    Science.gov (United States)

    Trottier, C. Michael

    1996-01-01

    Recently, scientists and engineers have investigated the advantages of smart materials and structures by including actuators in material systems for controlling and altering the response of structural environments. Applications of these materials systems include vibration suppression/isolation, precision positioning, damage detection and tunable devices. Some of the embedded materials being investigated for accomplishing these tasks include piezoelectric ceramics, shape memory alloys, and fiber optics. These materials have some benefits and some shortcomings; each is being studied for use in active material design in the SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) Consortium. The focus of this paper concerns the manufacturing aspects of smart structures by incorporating piezoelectric ceramics, shape memory alloys and fiber optics in a reinforced thermoset matrix via resin transfer molding (RTM).

  6. Exploring Shared-Memory Optimizations for an Unstructured Mesh CFD Application on Modern Parallel Systems

    KAUST Repository

    Mudigere, Dheevatsa

    2015-05-01

    In this work, we revisit the 1999 Gordon Bell Prize winning PETSc-FUN3D aerodynamics code, extending it with highly-tuned shared-memory parallelization and detailed performance analysis on modern highly parallel architectures. An unstructured-grid implicit flow solver, which forms the backbone of computational aerodynamics, poses particular challenges due to its large irregular working sets, unstructured memory accesses, and variable/limited amount of parallelism. This code, based on a domain decomposition approach, exposes tradeoffs between the number of threads assigned to each MPI-rank sub domain, and the total number of domains. By applying several algorithm- and architecture-aware optimization techniques for unstructured grids, we show a 6.9X speed-up in performance on a single-node Intel® XeonTM1 E5 2690 v2 processor relative to the out-of-the-box compilation. Our scaling studies on TACC Stampede supercomputer show that our optimizations continue to provide performance benefits over baseline implementation as we scale up to 256 nodes.

  7. Page Oriented Holographic Memories And Optical Pattern Recognition

    Science.gov (United States)

    Caulfield, H. J.

    1987-08-01

    In the twenty-two years since VanderLugt's introduction of holographic matched filtering, the intensive research carried out throughout the world has led to no applications in complex environment. This leads one to the suspicion that the VanderLugt filter technique is insufficiently complex to handle truly complex problems. Therefore, it is of great interest to increase the complexity of the VanderLugt filtering operation. We introduce here an approach to the real time filter assembly: use of page oriented holographic memories and optically addressed SLMs to achieve intelligent and fast reprogramming of the filters using a 10 4 to 10 6 stored pattern base.

  8. Resource-sharing between internal maintenance and external selection modulates attentional capture by working memory content

    Directory of Open Access Journals (Sweden)

    Anastasia eKiyonaga

    2014-08-01

    Full Text Available It is unclear why and under what circumstances working memory (WM and attention interact. Here, we apply the logic of the time-based resource-sharing (TBRS model of WM (e.g., Barrouillet, Bernardin, & Camos, 2004 to explore the mixed findings of a separate, but related, literature that studies the guidance of visual attention by WM contents. Specifically, we hypothesize that the linkage between WM representations and visual attention is governed by a time-shared cognitive resource that alternately refreshes internal (WM and selects external (visual attention information. If this were the case, WM content should guide visual attention (involuntarily, but only when there is time for it to be refreshed in an internal focus of attention. To provide an initial test for this hypothesis, we examined whether the amount of unoccupied time during a WM delay could impact the magnitude of attentional capture by WM contents. Participants were presented with a series of visual search trials while they maintained a WM cue for a delayed-recognition test. WM cues could coincide with the search target, a distracter, or neither. We varied both the number of searches to be performed, and the amount of available time to perform them. Slowing of visual search by a WM matching distracter—and facilitation by a matching target—were curtailed when the delay was filled with fast-paced (refreshing-preventing search trials, as was subsequent memory probe accuracy. WM content may, therefore, only capture visual attention when it can be refreshed, suggesting that internal (WM and external attention demands reciprocally impact one another because they share a limited resource. The TBRS rationale can thus be applied in a novel context to explain why WM contents capture attention, and under what conditions that effect should be observed.

  9. Distinct and shared cognitive functions mediate event- and time-based prospective memory impairment in normal ageing

    Science.gov (United States)

    Gonneaud, Julie; Kalpouzos, Grégoria; Bon, Laetitia; Viader, Fausto; Eustache, Francis; Desgranges, Béatrice

    2011-01-01

    Prospective memory (PM) is the ability to remember to perform an action at a specific point in the future. Regarded as multidimensional, PM involves several cognitive functions that are known to be impaired in normal aging. In the present study, we set out to investigate the cognitive correlates of PM impairment in normal aging. Manipulating cognitive load, we assessed event- and time-based PM, as well as several cognitive functions, including executive functions, working memory and retrospective episodic memory, in healthy subjects covering the entire adulthood. We found that normal aging was characterized by PM decline in all conditions and that event-based PM was more sensitive to the effects of aging than time-based PM. Whatever the conditions, PM was linked to inhibition and processing speed. However, while event-based PM was mainly mediated by binding and retrospective memory processes, time-based PM was mainly related to inhibition. The only distinction between high- and low-load PM cognitive correlates lays in an additional, but marginal, correlation between updating and the high-load PM condition. The association of distinct cognitive functions, as well as shared mechanisms with event- and time-based PM confirms that each type of PM relies on a different set of processes. PMID:21678154

  10. Content-addressable memory processing: Multilevel coding, logical minimization, and an optical implementation

    International Nuclear Information System (INIS)

    Mirsalehi, M.M.; Gaylord, T.K.

    1986-01-01

    This paper describes the effect of coding scheme on the number of reference patterns that need to be stored in a content-addressable memory. It is shown that residue number system in conjunction with multilevel coding and logical minimization significantly reduces the number of reference patterns required for implementation of an operation. The number of reference patterns and the total amount of information that needs to be stored are determined for practical cases of 16-bit and 32-bit fixed-point addition and multiplication. The storage requirements were found to be achievable with the state-of-the-art memory technologies. An optical holographical processor capable of parallel-input/parallel-output operation is described

  11. Artificial Association of Pre-stored Information to Generate a Qualitatively New Memory

    Directory of Open Access Journals (Sweden)

    Noriaki Ohkawa

    2015-04-01

    Full Text Available Memory is thought to be stored in the brain as an ensemble of cells activated during learning. Although optical stimulation of a cell ensemble triggers the retrieval of the corresponding memory, it is unclear how the association of information occurs at the cell ensemble level. Using optogenetic stimulation without any sensory input in mice, we found that an artificial association between stored, non-related contextual, and fear information was generated through the synchronous activation of distinct cell ensembles corresponding to the stored information. This artificial association shared characteristics with physiologically associated memories, such as N-methyl-D-aspartate receptor activity and protein synthesis dependence. These findings suggest that the association of information is achieved through the synchronous activity of distinct cell ensembles. This mechanism may underlie memory updating by incorporating novel information into pre-existing networks to form qualitatively new memories.

  12. Quantum memory on a charge qubit in an optical microresonator

    Science.gov (United States)

    Tsukanov, A. V.

    2017-10-01

    A quantum-memory unit scheme on the base of a semiconductor structure with quantum dots is proposed. The unit includes a microresonator with single and double quantum dots performing frequencyconverter and charge-qubit functions, respectively. The writing process is carried out in several stages and it is controlled by optical fields of the resonator and laser. It is shown that, to achieve high writing probability, it is necessary to use high-Q resonators and to be able to suppress relaxation processes in quantum dots.

  13. All-optical loadable and erasable memory cell design based on inversionless lasing and electromagnetically induced transparency effects

    International Nuclear Information System (INIS)

    Gholipour Verki, N; HajiBadali, A; Abbasian, K; Rostami, A

    2011-01-01

    A loadable and erasable all-optical memory cell is designed by using two coupled micro-ring resonators with electromagnetically induced transparency (EIT) and lasing without inversion (LWI). To read out stored data, an additional phase is introduced in the upper ring resonator due to EIT. To compensate the fibre loss, use is made of LWI. The EIT is induced by inserting Λ-type three level quantum dots in the right-hand half of the upper ring and LWI is implemented by inserted Y-type four level quantum dots in the left-hand half of both rings. This optical memory cell can operate at a low light power level corresponding to several photons.

  14. Benefit of adaptive FEC in shared backup path protected elastic optical network.

    Science.gov (United States)

    Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang

    2015-07-27

    We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.

  15. Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal.

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Kongtao; Su, Yikai

    2012-03-26

    We propose and experimentally demonstrate a scheme to improve the energy efficiency of wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). By using an N × M opto-mechanic switch in optical line terminal (OLT), an OFDM modulation module is shared by several channels to deliver data to multiple users with low traffic demands during non-peak hours of the day, thus greatly reducing the number of operating devices and minimizing the energy consumption of the OLT. An experiment utilizing one OFDM modulation module to serve three optical network units (ONUs) in a WDM-OFDM-PON is performed to verify the feasibility of our proposal. Theoretical analysis and numerical calculation show that the proposed scheme can achieve a saving of 23.6% in the energy consumption of the OFDM modulation modules compared to conventional WDM-OFDM-PON.

  16. A shared representation of order between encoding and recognition in visual short-term memory.

    Science.gov (United States)

    Kalm, Kristjan; Norris, Dennis

    2017-07-15

    Many complex tasks require people to bind individual events into a sequence that can be held in short term memory (STM). For this purpose information about the order of the individual events in the sequence needs to be maintained in an active and accessible form in STM over a period of few seconds. Here we investigated how the temporal order information is shared between the presentation and response phases of an STM task. We trained a classification algorithm on the fMRI activity patterns from the presentation phase of the STM task to predict the order of the items during the subsequent recognition phase. While voxels in a number of brain regions represented positional information during either presentation and recognition phases, only voxels in the lateral prefrontal cortex (PFC) and the anterior temporal lobe (ATL) represented position consistently across task phases. A shared positional code in the ATL might reflect verbal recoding of visual sequences to facilitate the maintenance of order information over several seconds. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Changes of optical, dielectric, and structural properties of Si15Sb85 phase change memory thin films under different initializing laser power

    International Nuclear Information System (INIS)

    Huang Huan; Zhang Lei; Wang Yang; Han Xiaodong; Wu Yiqun; Zhang Ze; Gan Fuxi

    2011-01-01

    Research highlights: → We study the optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization. → The optical and dielectric constants, absorption coefficient of Si 15 Sb 85 change regularly with the increasing laser power. → The optical band gaps of Si 15 Sb 85 irradiated upon different power lasers were calculated. → HRTEM images of the samples were observed and the changes of optical and dielectric constants are determined by crystalline structures changes of the films. - Abstract: The optical, dielectric, and structural characteristics of Si 15 Sb 85 phase change memory thin films under a moving continuous-wave laser initialization are studied by using spectroscopic ellipsometry and high-resolution transmission electron microscopy. The dependence of complex refractive index, dielectric functions, absorption coefficient, and optical band gap of the films on its crystallization extents formed by the different initialization laser power are analyzed in detail. The structural change from as-deposited amorphous phase to distorted rhombohedra-Sb-like crystalline structure with the increase of initialization laser power is clearly observed with sub-nanometer resolution. The optical and dielectric constants, the relationship between them, and the local atomic arrangements of this new phase change material can help explain the phase change mechanism and design the practical phase change memory devices.

  18. The Developmental Influence of Primary Memory Capacity on Working Memory and Academic Achievement

    Science.gov (United States)

    2015-01-01

    In this study, we investigate the development of primary memory capacity among children. Children between the ages of 5 and 8 completed 3 novel tasks (split span, interleaved lists, and a modified free-recall task) that measured primary memory by estimating the number of items in the focus of attention that could be spontaneously recalled in serial order. These tasks were calibrated against traditional measures of simple and complex span. Clear age-related changes in these primary memory estimates were observed. There were marked individual differences in primary memory capacity, but each novel measure was predictive of simple span performance. Among older children, each measure shared variance with reading and mathematics performance, whereas for younger children, the interleaved lists task was the strongest single predictor of academic ability. We argue that these novel tasks have considerable potential for the measurement of primary memory capacity and provide new, complementary ways of measuring the transient memory processes that predict academic performance. The interleaved lists task also shared features with interference control tasks, and our findings suggest that young children have a particular difficulty in resisting distraction and that variance in the ability to resist distraction is also shared with measures of educational attainment. PMID:26075630

  19. Fast all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell

    International Nuclear Information System (INIS)

    Wang, Zhuoran; Yuan, Guohui

    2013-01-01

    We investigate all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell based on a time-domain multi-mode nonlinear model. Each state is written by the corresponding 100 ps-width input non-return-to-zero (NRZ) pulse carrying the directional and wavelength information, and the cell remains in the written state until another trigger arrives. The effects of key parameters including the detuning frequency and injection power ratio on the injection locking and flipping regions of different modes in both directions of the micro-ring device are studied. By optimizing the operation conditions, we simulate the minimal switching speed for each mode. The fast switching speed of less than 20 ps and up to ten mode flip-flop operation indicate that this single optical memory cell can support ten states at a data rate of at least 10 Gbps, which is particularly valuable for the realization of future all-optical networking and functional sub-system technology. (letter)

  20. A fast method for optical simulation of flood maps of light-sharing detector modules

    International Nuclear Information System (INIS)

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu

    2015-01-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.

  1. Single electron-spin memory with a semiconductor quantum dot

    International Nuclear Information System (INIS)

    Young, Robert J; Dewhurst, Samuel J; Stevenson, R Mark; Atkinson, Paola; Bennett, Anthony J; Ward, Martin B; Cooper, Ken; Ritchie, David A; Shields, Andrew J

    2007-01-01

    We show storage of the circular polarization of an optical field, transferring it to the spin-state of an individual electron confined in a single semiconductor quantum dot. The state is subsequently read out through the electronically-triggered emission of a single photon. The emitted photon shares the same polarization as the initial pulse but has a different energy, making the transfer of quantum information between different physical systems possible. With an applied magnetic field of 2 T, spin memory is preserved for at least 1000 times more than the exciton's radiative lifetime

  2. Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    L. Dolgov

    2012-10-01

    Full Text Available A pronounced irreversible electro-optical response (memory effect has been recently observed for nematic liquid crystal (LC EBBA doped by multi-walled carbon nanotubes (MWCNTs near the percolation threshold of the MWCNTs (0.02÷0.05 wt. %. It is caused by irreversible homeotropic-to-planar reorientation of LC in an electric field. This feature is explained by electro-hydrodynamically stimulated dispergation of MWCNTs in LC and by the formation of a percolation MWCNT network which acts as a spatially distributed surface stabilizing the planar state of the LC. This mechanism is confirmed by the absence of memory in the EBBA/MWCNT composites, whose original structure is fixed by a polymer. The observed effect suggests new operation modes for the memory type and bistable LC devices, as well as a method for in situ dispergation of carbon nanotubes in LC cells.

  3. Optimization and parallelization of B-spline based orbital evaluations in QMC on multi/many-core shared memory processors

    OpenAIRE

    Mathuriya, Amrita; Luo, Ye; Benali, Anouar; Shulenburger, Luke; Kim, Jeongnim

    2016-01-01

    B-spline based orbital representations are widely used in Quantum Monte Carlo (QMC) simulations of solids, historically taking as much as 50% of the total run time. Random accesses to a large four-dimensional array make it challenging to efficiently utilize caches and wide vector units of modern CPUs. We present node-level optimizations of B-spline evaluations on multi/many-core shared memory processors. To increase SIMD efficiency and bandwidth utilization, we first apply data layout transfo...

  4. Artificial intelligence applications of fast optical memory access

    Science.gov (United States)

    Henshaw, P. D.; Todtenkopf, A. B.

    The operating principles and performance of rapid laser beam-steering (LBS) techniques are reviewed and illustrated with diagrams; their applicability to fast optical-memory (disk) access is evaluated; and the implications of fast access for the design of expert systems are discussed. LBS methods examined include analog deflection (source motion, wavefront tilt, and phased arrays), digital deflection (polarization modulation, reflectivity modulation, interferometric switching, and waveguide deflection), and photorefractive LBS. The disk-access problem is considered, and typical LBS requirements are listed as 38,000 beam positions, rotational latency 25 ms, one-sector rotation time 1.5 ms, and intersector space 87 microsec. The value of rapid access for increasing the power of expert systems (by permitting better organization of blocks of information) is illustrated by summarizing the learning process of the MVP-FORTH system (Park, 1983).

  5. Specification and development of the sharing memory data management module for a nuclear processes simulator; Especificacion y desarrollo del modulo de administracion de datos de memoria compartida para un simulador de procesos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Telesforo R, D. [UNAM, DEPFI, Campus Morelos, Jiutepec, Morelos (Mexico)]. e-mail: cchavez2@cableonline.com.mx

    2003-07-01

    Actually it is developed in the Engineering Faculty of UNAM a simulator of nuclear processes with research and teaching purposes. It consists of diverse modules, included the one that is described in the present work that is the shared memory module. It uses the IPC mechanisms of the UNIX System V operative system, and it was codified with C language. To model the diverse components of the simulator the RELAP code is used. The function of the module is to generate locations of shared memory for to deposit in these the necessary variables for the interaction among the diverse ones processes of the simulator. In its it will be able read and to write the information that generate the running of the simulation program, besides being able to interact with the internal variables of the code in execution time. The graphic unfolding (mimic, pictorials, tendency graphics, virtual instrumentation, etc.) they also obtain information of the shared memory. In turn, actions of the user in interactive unfolding, they modify the segments of shared memory, and the information is sent to the RELAP code to modify the simulation course. The program has two beginning modes: automatic and manual. In automatic mode taking an enter file of RELAP (indta) and it joins in shared memory, the control variables that in this appear. In manual mode the user joins, he reads and he writes the wanted control variables, whenever they exist in the enter file (indta). This is a dynamic mode of interacting with the simulator in a direct way and of even altering the values as when its don't exist in the board elements associated to the variables. (Author)

  6. Simulation of radiation effects on three-dimensional computer optical memories

    Science.gov (United States)

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.

  7. Compact holographic memory and its application to optical pattern recognition

    Science.gov (United States)

    Chao, Tien-Hsin; Reyes, George F.; Zhou, Hanying

    2001-03-01

    JPL is developing a high-density, nonvolatile Compact Holographic Data Storage (CHDS) system to enable large- capacity, high-speed, low power consumption, and read/write of data for commercial and space applications. This CHDS system consists of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high- speed. In this paper, recent technology progress in developing this CHDS at JPL will be presented. The recent applications of the CHDS to optical pattern recognition, as a high-density, high transfer rate memory bank will also be discussed.

  8. Assessing the effect of knowledge sharing on Employees\\' Psychological Empowerment by Clarifying Mediating Role of organizational memory and learning collaborative electronic in National Library and Archives of I.R of Iran

    Directory of Open Access Journals (Sweden)

    Davood Feiz

    2017-06-01

    Full Text Available Nowadays knowledge has been enumerated as a valuable and important source in libraries. Knowledge sharing among employees is necessary for libraries’ survive and goal achievement. On the other hand, empowerment people with high moral are an important factor in the libraries’ survival and life. In other words, the importance of human resources is far from the new technology and material and financial resources. As a result, this study aimed at evaluating the effect of knowledge sharing on psychological empowerment with regard to organizational memory and learning electronic participation the role of the mediator. The research data were gathered from four areas named at organizing; communicating; education and logistic by questioner. Construct validity and cronbach's alpha coefficient were used for assessing the validity and reliability respectively. To hypotheses test, structural equation modeling and Lisrel software were used. The results show that knowledge sharing has a directly significant impact on psychological empowerment. While knowledge sharing has an indirect impact on psychological empowerment, this impact via organizational memory and electronic participation learning is far greater than its direct impact. The results also show that organizational memory has not any effect on the psychological empowerment.

  9. A shared resource between declarative memory and motor memory

    OpenAIRE

    Keisler, Aysha; Shadmehr, Reza

    2010-01-01

    The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting....

  10. Shared neuroanatomical substrates of impaired phonological working memory across reading disability and autism.

    Science.gov (United States)

    Lu, Chunming; Qi, Zhenghan; Harris, Adrianne; Weil, Lisa Wisman; Han, Michelle; Halverson, Kelly; Perrachione, Tyler K; Kjelgaard, Margaret; Wexler, Kenneth; Tager-Flusberg, Helen; Gabrieli, John D E

    2016-03-01

    Individuals with reading disability or individuals with autism spectrum disorder (ASD) are characterized, respectively, by their difficulties in reading or social communication, but both groups often have impaired phonological working memory (PWM). It is not known whether the impaired PWM reflects distinct or shared neuroanatomical abnormalities in these two diagnostic groups. White-matter structural connectivity via diffusion weighted imaging was examined in sixty-four children, ages 5-17 years, with reading disability, ASD, or typical development (TD), who were matched in age, gender, intelligence, and diffusion data quality. Children with reading disability and children with ASD exhibited reduced PWM compared to children with TD. The two diagnostic groups showed altered white-matter microstructure in the temporo-parietal portion of the left arcuate fasciculus (AF) and in the temporo-occipital portion of the right inferior longitudinal fasciculus (ILF), as indexed by reduced fractional anisotropy and increased radial diffusivity. Moreover, the structural integrity of the right ILF was positively correlated with PWM ability in the two diagnostic groups, but not in the TD group. These findings suggest that impaired PWM is transdiagnostically associated with shared neuroanatomical abnormalities in ASD and reading disability. Microstructural characteristics in left AF and right ILF may play important roles in the development of PWM. The right ILF may support a compensatory mechanism for children with impaired PWM.

  11. Destination memory impairment in older people.

    Science.gov (United States)

    Gopie, Nigel; Craik, Fergus I M; Hasher, Lynn

    2010-12-01

    Older adults are assumed to have poor destination memory-knowing to whom they tell particular information-and anecdotes about them repeating stories to the same people are cited as informal evidence for this claim. Experiment 1 assessed young and older adults' destination memory by having participants tell facts (e.g., "A dime has 118 ridges around its edge") to pictures of famous people (e.g., Oprah Winfrey). Surprise recognition memory tests, which also assessed confidence, revealed that older adults, compared to young adults, were disproportionately impaired on destination memory relative to spared memory for the individual components (i.e., facts, faces) of the episode. Older adults also were more confident that they had not told a fact to a particular person when they actually had (i.e., a miss); this presumably causes them to repeat information more often than young adults. When the direction of information transfer was reversed in Experiment 2, such that the famous people shared information with the participants (i.e., a source memory experiment), age-related memory differences disappeared. In contrast to the destination memory experiment, older adults in the source memory experiment were more confident than young adults that someone had shared a fact with them when a different person actually had shared the fact (i.e., a false alarm). Overall, accuracy and confidence jointly influence age-related changes to destination memory, a fundamental component of successful communication. (c) 2010 APA, all rights reserved).

  12. Neutron detection and characterization for non-proliferation applications using 3D computer optical memories [Use of 3D optical computer memory for radiation detectors/dosimeters. Final progress report

    International Nuclear Information System (INIS)

    Phillips, Gary W.

    2000-01-01

    We have investigated 3-dimensional optical random access memory (3D-ORAM) materials for detection and characterization of charged particles of neutrons by detecting tracks left by the recoil charged particles produced by the neutrons. We have characterized the response of these materials to protons, alpha particles and carbon-12 nuclei as a functions of dose and energy. We have observed individual tracks using scanning electron microscopy and atomic force microscopy. We are investigating the use of neural net analysis to characterize energetic neutron fields from their track structure in these materials

  13. Shared memory parallelism for 3D cartesian discrete ordinates solver

    International Nuclear Information System (INIS)

    Moustafa, S.; Dutka-Malen, I.; Plagne, L.; Poncot, A.; Ramet, P.

    2013-01-01

    This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multi-core + SIMD - Single Instruction on Multiple Data) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46*10 6 spatial cells and 1*10 12 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40.74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool. (authors)

  14. Centrally managed unified shared virtual address space

    Science.gov (United States)

    Wilkes, John

    2018-02-13

    Systems, apparatuses, and methods for managing a unified shared virtual address space. A host may execute system software and manage a plurality of nodes coupled to the host. The host may send work tasks to the nodes, and for each node, the host may externally manage the node's view of the system's virtual address space. Each node may have a central processing unit (CPU) style memory management unit (MMU) with an internal translation lookaside buffer (TLB). In one embodiment, the host may be coupled to a given node via an input/output memory management unit (IOMMU) interface, where the IOMMU frontend interface shares the TLB with the given node's MMU. In another embodiment, the host may control the given node's view of virtual address space via memory-mapped control registers.

  15. Principles of Transactional Memory The Theory

    CERN Document Server

    Guerraoui, Rachid

    2010-01-01

    Transactional memory (TM) is an appealing paradigm for concurrent programming on shared memory architectures. With a TM, threads of an application communicate, and synchronize their actions, via in-memory transactions. Each transaction can perform any number of operations on shared data, and then either commit or abort. When the transaction commits, the effects of all its operations become immediately visible to other transactions; when it aborts, however, those effects are entirely discarded. Transactions are atomic: programmers get the illusion that every transaction executes all its operati

  16. Massive parallel optical pattern recognition and retrieval via a two-stage high-capacity multichannel holographic random access memory system

    International Nuclear Information System (INIS)

    Cai, Luzhong; Liu, Hua-Kuang

    2000-01-01

    The multistage holographic optical random access memory (HORAM) system reported recently by Liu et al. provides a new degree of freedom for improving storage capacity. We further present a theoretical and practical analysis of the HORAM system with experimental results. Our discussions include the system design and geometrical requirements, its applications for multichannel pattern recognition and associative memory, the 2-D and 3-D information storage capacity, and multichannel image storage and retrieval via VanderLugt correlator (VLC) filters and joint transform holograms. A series of experiments are performed to demonstrate the feasibility of the multichannel pattern recognition and image retrieval with both the VLC and joint transform correlator (JTC) architectures. The experimental results with as many as 2025 channels show good agreement with the theoretical analysis. (c) 2000 Society of Photo-Optical Instrumentation Engineers

  17. Centrally managed unified shared virtual address space

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, John

    2018-02-13

    Systems, apparatuses, and methods for managing a unified shared virtual address space. A host may execute system software and manage a plurality of nodes coupled to the host. The host may send work tasks to the nodes, and for each node, the host may externally manage the node's view of the system's virtual address space. Each node may have a central processing unit (CPU) style memory management unit (MMU) with an internal translation lookaside buffer (TLB). In one embodiment, the host may be coupled to a given node via an input/output memory management unit (IOMMU) interface, where the IOMMU frontend interface shares the TLB with the given node's MMU. In another embodiment, the host may control the given node's view of virtual address space via memory-mapped control registers.

  18. Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber

    Science.gov (United States)

    Tamura, Shuhei; Ikeda, Kohei; Okamura, Kotaro; Yoshii, Kazumichi; Hong, Feng-Lei; Horikiri, Tomoyuki; Kosaka, Hideo

    2018-06-01

    Long-distance quantum communication requires entanglement between distant quantum memories. For this purpose, photon transmission is necessary to connect the distant memories. Here, for the first time, we develop a two-step frequency conversion process (from a visible wavelength to a telecommunication wavelength and back) involving the use of independent two-frequency conversion media where the target quantum memories are nitrogen-vacancy centers in diamonds (with an emission/absorption wavelength of 637.2 nm), and experimentally characterize the performance of this process acting on light from an attenuated CW laser. A total conversion efficiency of approximately 7% is achieved. The noise generated in the frequency conversion processes is measured, and the signal-to-noise ratio is estimated for a single photon signal emitted by a nitrogen-vacancy (NV) center. The developed frequency conversion system has future applications via transmission through a long optical fiber channel at a telecommunication wavelength for a quantum repeater network.

  19. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Eiichi, E-mail: kuramochi.eiichi@lab.ntt.co.jp; Nozaki, Kengo; Shinya, Akihiko; Taniyama, Hideaki; Notomi, Masaya [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); Takeda, Koji; Matsuo, Shinji [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan); Sato, Tomonari [NTT Nanophotonics Center, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2015-11-30

    An InP photonic crystal nanocavity with an embedded InGaAsP active region is a unique technology that has realized an all-optical memory with a sub-micro-watt operating power and limitless storage time. In this study, we employed an L3 design with systematic multi-hole tuning, which realized a higher loaded Q factor (>40 000) and a lower mode volume (0.9 μm{sup 3}) than a line-defect-based buried-heterostructure nanocavity (16 000 and 2.2 μm{sup 3}). Excluding the active region realized a record loaded Q factor (210 000) in all for InP-based nanocavities. The minimum bias power for bistable memory operation was reduced to 2.3 ± 0.3 nW, which is about 1/10 of the previous record of 30 nW. This work further established the capability of a bistable nanocavity memory for use in future ultralow-power-consumption on-chip integrated photonics.

  20. Memory Management for Safety-Critical Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2011-01-01

    Safety-Critical Java (SCJ) is based on the Real-Time Specification for Java. To simplify the certification of Java programs, SCJ supports only a restricted scoped memory model. Individual threads share only immortal memory and the newly introduced mission memory. All other scoped memories...... implementation is evaluated on an embedded Java processor....

  1. The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-07-01

    Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.

  2. The twentieth century in European Memory

    DEFF Research Database (Denmark)

    The Twentieth Century in European Memory investigates contested and divisive memories of conflicts, world wars, dictatorship, genocide and mass killing. Focusing on the questions of transculturality and reception, the book looks at the ways in which such memories are being shared, debated...

  3. Quantum memories: emerging applications and recent advances

    Science.gov (United States)

    Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.

    2016-01-01

    Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories. PMID:27695198

  4. Targeted Memory Reactivation during Sleep Adaptively Promotes the Strengthening or Weakening of Overlapping Memories.

    Science.gov (United States)

    Oyarzún, Javiera P; Morís, Joaquín; Luque, David; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-08-09

    System memory consolidation is conceptualized as an active process whereby newly encoded memory representations are strengthened through selective memory reactivation during sleep. However, our learning experience is highly overlapping in content (i.e., shares common elements), and memories of these events are organized in an intricate network of overlapping associated events. It remains to be explored whether and how selective memory reactivation during sleep has an impact on these overlapping memories acquired during awake time. Here, we test in a group of adult women and men the prediction that selective memory reactivation during sleep entails the reactivation of associated events and that this may lead the brain to adaptively regulate whether these associated memories are strengthened or pruned from memory networks on the basis of their relative associative strength with the shared element. Our findings demonstrate the existence of efficient regulatory neural mechanisms governing how complex memory networks are shaped during sleep as a function of their associative memory strength. SIGNIFICANCE STATEMENT Numerous studies have demonstrated that system memory consolidation is an active, selective, and sleep-dependent process in which only subsets of new memories become stabilized through their reactivation. However, the learning experience is highly overlapping in content and thus events are encoded in an intricate network of related memories. It remains to be explored whether and how memory reactivation has an impact on overlapping memories acquired during awake time. Here, we show that sleep memory reactivation promotes strengthening and weakening of overlapping memories based on their associative memory strength. These results suggest the existence of an efficient regulatory neural mechanism that avoids the formation of cluttered memory representation of multiple events and promotes stabilization of complex memory networks. Copyright © 2017 the authors 0270-6474/17/377748-11$15.00/0.

  5. NUMA obliviousness through memory mapping

    NARCIS (Netherlands)

    M.M. Gawade (Mrunal); M.L. Kersten (Martin)

    2015-01-01

    htmlabstractWith the rise of multi-socket multi-core CPUs a lot of effort is being put into how to best exploit their abundant CPU power. In a shared memory setting the multi-socket CPUs are equipped with their own memory module, and access memory modules across sockets in a non-uniform

  6. Application of phase-change materials in memory taxonomy.

    Science.gov (United States)

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.

  7. Simulation of radiation effects on three-dimensional computer optical memories

    International Nuclear Information System (INIS)

    Moscovitch, M.; Emfietzoglou, D.

    1997-01-01

    A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle close-quote s track axis may be lost. The magnitude of the effect is dependent on the particle close-quote s track structure. copyright 1997 American Institute of Physics

  8. Grouping and binding in visual short-term memory.

    Science.gov (United States)

    Quinlan, Philip T; Cohen, Dale J

    2012-09-01

    Findings of 2 experiments are reported that challenge the current understanding of visual short-term memory (VSTM). In both experiments, a single study display, containing 6 colored shapes, was presented briefly and then probed with a single colored shape. At stake is how VSTM retains a record of different objects that share common features: In the 1st experiment, 2 study items sometimes shared a common feature (either a shape or a color). The data revealed a color sharing effect, in which memory was much better for items that shared a common color than for items that did not. The 2nd experiment showed that the size of the color sharing effect depended on whether a single pair of items shared a common color or whether 2 pairs of items were so defined-memory for all items improved when 2 color groups were presented. In explaining performance, an account is advanced in which items compete for a fixed number of slots, but then memory recall for any given stored item is prone to error. A critical assumption is that items that share a common color are stored together in a slot as a chunk. The evidence provides further support for the idea that principles of perceptual organization may determine the manner in which items are stored in VSTM. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  9. Cooperative Data Sharing: Simple Support for Clusters of SMP Nodes

    Science.gov (United States)

    DiNucci, David C.; Balley, David H. (Technical Monitor)

    1997-01-01

    Libraries like PVM and MPI send typed messages to allow for heterogeneous cluster computing. Lower-level libraries, such as GAM, provide more efficient access to communication by removing the need to copy messages between the interface and user space in some cases. still lower-level interfaces, such as UNET, get right down to the hardware level to provide maximum performance. However, these are all still interfaces for passing messages from one process to another, and have limited utility in a shared-memory environment, due primarily to the fact that message passing is just another term for copying. This drawback is made more pertinent by today's hybrid architectures (e.g. clusters of SMPs), where it is difficult to know beforehand whether two communicating processes will share memory. As a result, even portable language tools (like HPF compilers) must either map all interprocess communication, into message passing with the accompanying performance degradation in shared memory environments, or they must check each communication at run-time and implement the shared-memory case separately for efficiency. Cooperative Data Sharing (CDS) is a single user-level API which abstracts all communication between processes into the sharing and access coordination of memory regions, in a model which might be described as "distributed shared messages" or "large-grain distributed shared memory". As a result, the user programs to a simple latency-tolerant abstract communication specification which can be mapped efficiently to either a shared-memory or message-passing based run-time system, depending upon the available architecture. Unlike some distributed shared memory interfaces, the user still has complete control over the assignment of data to processors, the forwarding of data to its next likely destination, and the queuing of data until it is needed, so even the relatively high latency present in clusters can be accomodated. CDS does not require special use of an MMU, which

  10. A general model for memory interference in a multiprocessor system with memory hierarchy

    Science.gov (United States)

    Taha, Badie A.; Standley, Hilda M.

    1989-01-01

    The problem of memory interference in a multiprocessor system with a hierarchy of shared buses and memories is addressed. The behavior of the processors is represented by a sequence of memory requests with each followed by a determined amount of processing time. A statistical queuing network model for determining the extent of memory interference in multiprocessor systems with clusters of memory hierarchies is presented. The performance of the system is measured by the expected number of busy memory clusters. The results of the analytic model are compared with simulation results, and the correlation between them is found to be very high.

  11. Reliability analysis of load-sharing systems with memory.

    Science.gov (United States)

    Wang, Dewei; Jiang, Chendi; Park, Chanseok

    2018-02-22

    The load-sharing model has been studied since the early 1940s to account for the stochastic dependence of components in a parallel system. It assumes that, as components fail one by one, the total workload applied to the system is shared by the remaining components and thus affects their performance. Such dependent systems have been studied in many engineering applications which include but are not limited to fiber composites, manufacturing, power plants, workload analysis of computing, software and hardware reliability, etc. Many statistical models have been proposed to analyze the impact of each redistribution of the workload; i.e., the changes on the hazard rate of each remaining component. However, they do not consider how long a surviving component has worked for prior to the redistribution. We name such load-sharing models as memoryless. To remedy this potential limitation, we propose a general framework for load-sharing models that account for the work history. Through simulation studies, we show that an inappropriate use of the memoryless assumption could lead to inaccurate inference on the impact of redistribution. Further, a real-data example of plasma display devices is analyzed to illustrate our methods.

  12. NUMA obliviousness through memory mapping

    NARCIS (Netherlands)

    Gawade, M.; Kersten, M.; Pandis, I.; Kersten, M.

    2015-01-01

    With the rise of multi-socket multi-core CPUs a lot of effort is being put into how to best exploit their abundant CPU power. In a shared memory setting the multi-socket CPUs are equipped with their own memory module, and access memory modules across sockets in a non-uniform access pattern (NUMA).

  13. Configurable unitary transformations and linear logic gates using quantum memories.

    Science.gov (United States)

    Campbell, G T; Pinel, O; Hosseini, M; Ralph, T C; Buchler, B C; Lam, P K

    2014-08-08

    We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical information in atomic spins. In addition to the configurability, the protocol also offers favorable scaling with an increasing number of modes where N memories can be configured to implement arbitrary N-mode unitary operations during storage and readout. We demonstrate the versatility of this protocol by showing an example where cascaded memories are used to implement a conditional cz gate.

  14. Development of Ethernet emulation driver for reflective memory

    International Nuclear Information System (INIS)

    Seo, Seong-Heon

    2010-01-01

    Reflective memory (RFM) is adopted as a real time network in the KSTAR plasma control system (PCS). Since the data uploaded from any computer are automatically shared among all the computers on the RFM network, the design of a distributed control system based on RFM is easily implemented through the management of memory mapping. The data providers and consumers are logically well seperated so that, if memory mapping information is given, a new control unit can be added without any modification to the existing system except connecting a new RFM module through an optical cable. The KSTAR PCS is also connected with the Ethernet in addition to the RFM because the RFM does not support the Transmission Control Protocol/Internet Protocol (TCP/IP) and many network services of the operating system such as the Network File System (NFS) and the Secure Shell (SSH) are based on the TCP/IP. Therefore we developed an Ethernet emulation driver for the RFM to eliminate the need for a separate Ethernet network. The driver was tested on the Linux kernel 2.6.31. The algorithm of the emulation driver is explained and the experimental setup is presented.

  15. Wealth Share Analysis with “Fundamentalist/Chartist” Heterogeneous Agents

    Directory of Open Access Journals (Sweden)

    Hai-Chuan Xu

    2014-01-01

    Full Text Available We build a multiassets heterogeneous agents model with fundamentalists and chartists, who make investment decisions by maximizing the constant relative risk aversion utility function. We verify that the model can reproduce the main stylized facts in real markets, such as fat-tailed return distribution and long-term memory in volatility. Based on the calibrated model, we study the impacts of the key strategies’ parameters on investors’ wealth shares. We find that, as chartists’ exponential moving average periods increase, their wealth shares also show an increasing trend. This means that higher memory length can help to improve their wealth shares. This effect saturates when the exponential moving average periods are sufficiently long. On the other hand, the mean reversion parameter has no obvious impacts on wealth shares of either type of traders. It suggests that no matter whether fundamentalists take moderate strategy or aggressive strategy on the mistake of stock prices, it will have no different impact on their wealth shares in the long run.

  16. Radiation-hardened optically reconfigurable gate array exploiting holographic memory characteristics

    Science.gov (United States)

    Seto, Daisaku; Watanabe, Minoru

    2015-09-01

    In this paper, we present a proposal for a radiation-hardened optically reconfigurable gate array (ORGA). The ORGA is a type of field programmable gate array (FPGA). The ORGA configuration can be executed by the exploitation of holographic memory characteristics even if 20% of the configuration data are damaged. Moreover, the optoelectronic technology enables the high-speed reconfiguration of the programmable gate array. Such a high-speed reconfiguration can increase the radiation tolerance of its programmable gate array to 9.3 × 104 times higher than that of current FPGAs. Through experimentation, this study clarified the configuration dependability using the impulse-noise emulation and high-speed configuration capabilities of the ORGA with corrupt configuration contexts. Moreover, the radiation tolerance of the programmable gate array was confirmed theoretically through probabilistic calculation.

  17. Online to offline teaching model in optics education: resource sharing course and flipped class

    Science.gov (United States)

    Li, Xiaotong; Cen, Zhaofeng; Liu, Xiangdong; Zheng, Zhenrong

    2016-09-01

    Since the platform "Coursera" is created by the professors of Stanford University Andrew Ng and Daphne Koller, more and more universities have joined in it. From the very beginning, online education is not only about education itself, but also connected with social equality. This is especially significant for the economic transformation in China. In this paper the research and practice on informatization of optical education are described. Online to offline (O2O) education activities, such as online learning and offline meeting, online homework and online to offline discussion, online tests and online to offline evaluation, are combined into our teaching model in the course of Applied Optics. These various O2O strategies were implemented respectively in the autumn-winter small class and the spring-summer middle class according to the constructivism and the idea of open education. We have developed optical education resources such as videos of lectures, light transmission or ray trace animations, online tests, etc. We also divide the learning procedure into 4 steps: First, instead of being given a course offline, students will learn the course online; Second, once a week or two weeks, students will have a discussion in their study groups; Third, students will submit their homework and study reports; Fourth, they will do online and offline tests. The online optical education resources have been shared in some universities in China, together with new challenges to teachers and students when facing the revolution in the e-learning future.

  18. Enhanced memory architecture for massively parallel vision chip

    Science.gov (United States)

    Chen, Zhe; Yang, Jie; Liu, Liyuan; Wu, Nanjian

    2015-04-01

    Local memory architecture plays an important role in high performance massively parallel vision chip. In this paper, we propose an enhanced memory architecture with compact circuit area designed in a full-custom flow. The memory consists of separate master-stage static latches and shared slave-stage dynamic latches. We use split transmission transistors on the input data path to enhance tolerance for charge sharing and to achieve random read/write capabilities. The memory is designed in a 0.18 μm CMOS process. The area overhead of the memory achieves 16.6 μm2/bit. Simulation results show that the maximum operating frequency reaches 410 MHz and the corresponding peak dynamic power consumption for a 64-bit memory unit is 190 μW under 1.8 V supply voltage.

  19. Concurrent Operations of O2-Tree on Shared Memory Multicore Architectures

    OpenAIRE

    Daniel Ohene-Kwofie; E. J. Otoo1, Gideon Nimako

    2014-01-01

    Modern computer architectures provide high performance computing capability by having multiple CPU cores. Such systems are also typically associated with very large main-memory capacities, thereby allowing them to be used for fast processing of in-memory database applications. However, most of the concurrency control mechanism associated with the index structures of these memory resident databases do not scale well, under high transaction rates. This paper presents the O2-Tree, a fast main me...

  20. A Stream Tilling Approach to Surface Area Estimation for Large Scale Spatial Data in a Shared Memory System

    Directory of Open Access Journals (Sweden)

    Liu Jiping

    2017-12-01

    Full Text Available Surface area estimation is a widely used tool for resource evaluation in the physical world. When processing large scale spatial data, the input/output (I/O can easily become the bottleneck in parallelizing the algorithm due to the limited physical memory resources and the very slow disk transfer rate. In this paper, we proposed a stream tilling approach to surface area estimation that first decomposed a spatial data set into tiles with topological expansions. With these tiles, the one-to-one mapping relationship between the input and the computing process was broken. Then, we realized a streaming framework towards the scheduling of the I/O processes and computing units. Herein, each computing unit encapsulated a same copy of the estimation algorithm, and multiple asynchronous computing units could work individually in parallel. Finally, the performed experiment demonstrated that our stream tilling estimation can efficiently alleviate the heavy pressures from the I/O-bound work, and the measured speedup after being optimized have greatly outperformed the directly parallel versions in shared memory systems with multi-core processors.

  1. Shared reality in interpersonal relationships.

    Science.gov (United States)

    Andersen, Susan M; Przybylinski, Elizabeth

    2017-11-24

    Close relationships afford us opportunities to create and maintain meaning systems as shared perceptions of ourselves and the world. Establishing a sense of mutual understanding allows for creating and maintaining lasting social bonds, and as such, is important in human relations. In a related vein, it has long been known that knowledge of significant others in one's life is stored in memory and evoked with new persons-in the social-cognitive process of 'transference'-imbuing new encounters with significance and leading to predictable cognitive, evaluative, motivational, and behavioral consequences, as well as shifts in the self and self-regulation, depending on the particular significant other evoked. In these pages, we briefly review the literature on meaning as interpersonally defined and then selectively review research on transference in interpersonal perception. Based on this, we then highlight a recent series of studies focused on shared meaning systems in transference. The highlighted studies show that values and beliefs that develop in close relationships (as shared reality) are linked in memory to significant-other knowledge, and thus, are indirectly activated (made accessible) when cues in a new person implicitly activate that significant-other knowledge (in transference), with these shared beliefs then actively pursued with the new person and even protected against threat. This also confers a sense of mutual understanding, and all told, serves both relational and epistemic functions. In concluding, we consider as well the relevance of co-construction of shared reality n such processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Radiation Dosimetry Using Three-Dimensional Optical Random Access Memories

    International Nuclear Information System (INIS)

    Moscovitch, M.

    2001-01-01

    The ability to determine particle type and energy plays an important role in the dosimetry of heavy charged particles (HCP) and neutrons. A new approach to radiation dosimetry is presented, which is shown to be capable of particle type and energy discrimination. This method is based on utilizing radiation induced changes in the digital information stored on three-dimensional optical random access memories (3D ORAM). 3D ORAM is a small cube (a few mm 3 ) composed of poly(methyl methacrylate) doped with a photochromic dye, and it was originally proposed as a memory device in high speed parallel computers. A Nd:YAG laser system is used to write and read binary information (bits) on the ORAM, which functions as a charged particle detector. Both the read and the write processes use two laser beams that simultaneously strike the material to cause a color change at their intersection (similar to the darkening of light-sensitive sunglasses when exposed to sunlight.) The laser produces color changes in the ORAM, which then reverts to the original color (''bit-flips'') at sites where energy is deposited from interaction with incident HCP or neutron-recoil protons. The feasibility of this approach was demonstrated both theoretically and experimentally. Calculations based on track structure theory (TST) predict that when HCP interact with the ORAM material, the local energy deposition is capable of inducing measurable ''bit-flips''. These predictions were recently confirmed experimentally using two types of ORAM systems, one based on spirobenzopyran and the other on anthracene, as the photochromic dyes

  3. Radiation dosimetry using three-dimensional optical random access memories

    International Nuclear Information System (INIS)

    Moscovitch, M.; Phillips, G.W.; Cullum, B.M.; Mobley, J.; Bogard, J.S.; Emfietzoglou, D.; Vo-Dinh, T.

    2002-01-01

    The ability to determine particle type and energy plays an important role in the dosimetry of heavy charged particles (HCP) and neutrons. A new approach to radiation dosimetry is presented, which is shown to be capable of particle type and energy discrimination. This method is based on utilising radiation induced changes in the digital information stored on three-dimensional optical random access memories (3D ORAM). 3D ORAM is a small cube (a few mm 3 ) composed of poly(methyl methacrylate) doped with a photochromic dye, and it was originally proposed as a memory device in high speed parallel computers. A Nd:YAG laser system is used to write and read binary information (bits) on the ORAM, which functions as a charged particle detector. Both the read and the write processes use two laser beams that simultaneously strike the material to cause a colour change at their intersection (similar to the darkening of light-sensitive sunglasses when exposed to sunlight). The laser produces colour changes in the ORAM, which then reverts to the original colour ('bit-flips') at sites where energy is deposited from interaction with incident HCP or neutron-recoil protons. The feasibility of this approach was demonstrated both theoretically and experimentally. Calculations based on track structure theory predict that when HCP interact with the ORAM material, the local energy deposition is capable of inducing measurable 'bit-flips'. These predictions were recently confirmed experimentally using two types of ORAM systems, one based on spirobenzopyran and the other on anthracene, as the photochromic dyes. (author)

  4. Exploring Shared SRAM Tables in FPGAs for Larger LUTs and Higher Degree of Sharing

    Directory of Open Access Journals (Sweden)

    Ali Asghar

    2017-01-01

    Full Text Available In modern SRAM based Field Programmable Gate Arrays, a Look-Up Table (LUT is the principal constituent logic element which can realize every possible Boolean function. However, this flexibility of LUTs comes with a heavy area penalty. A part of this area overhead comes from the increased amount of configuration memory which rises exponentially as the LUT size increases. In this paper, we first present a detailed analysis of a previously proposed FPGA architecture which allows sharing of LUTs memory (SRAM tables among NPN-equivalent functions, to reduce the area as well as the number of configuration bits. We then propose several methods to improve the existing architecture. A new clustering technique has been proposed which packs NPN-equivalent functions together inside a Configurable Logic Block (CLB. We also make use of a recently proposed high performance Boolean matching algorithm to perform NPN classification. To enhance area savings further, we evaluate the feasibility of more than two LUTs sharing the same SRAM table. Consequently, this work explores the SRAM table sharing approach for a range of LUT sizes (4–7, while varying the cluster sizes (4–16. Experimental results on MCNC benchmark circuits set show an overall area reduction of ~7% while maintaining the same critical path delay.

  5. An optimal multi-channel memory controller for real-time systems

    NARCIS (Netherlands)

    Gomony, M.D.; Akesson, K.B.; Goossens, K.G.W.

    2013-01-01

    Optimal utilization of a multi-channel memory, such as Wide IO DRAM, as shared memory in multi-processor platforms depends on the mapping of memory clients to the memory channels, the granularity at which the memory requests are interleaved in each channel, and the bandwidth and memory capacity

  6. Insights on consciousness from taste memory research.

    Science.gov (United States)

    Gallo, Milagros

    2016-01-01

    Taste research in rodents supports the relevance of memory in order to determine the content of consciousness by modifying both taste perception and later action. Associated with this issue is the fact that taste and visual modalities share anatomical circuits traditionally related to conscious memory. This challenges the view of taste memory as a type of non-declarative unconscious memory.

  7. Decomposing the relationship between cognitive functioning and self-referent memory beliefs in older adulthood: what's memory got to do with it?

    Science.gov (United States)

    Payne, Brennan R; Gross, Alden L; Hill, Patrick L; Parisi, Jeanine M; Rebok, George W; Stine-Morrow, Elizabeth A L

    2017-07-01

    With advancing age, episodic memory performance shows marked declines along with concurrent reports of lower subjective memory beliefs. Given that normative age-related declines in episodic memory co-occur with declines in other cognitive domains, we examined the relationship between memory beliefs and multiple domains of cognitive functioning. Confirmatory bi-factor structural equation models were used to parse the shared and independent variance among factors representing episodic memory, psychomotor speed, and executive reasoning in one large cohort study (Senior Odyssey, N = 462), and replicated using another large cohort of healthy older adults (ACTIVE, N = 2802). Accounting for a general fluid cognitive functioning factor (comprised of the shared variance among measures of episodic memory, speed, and reasoning) attenuated the relationship between objective memory performance and subjective memory beliefs in both samples. Moreover, the general cognitive functioning factor was the strongest predictor of memory beliefs in both samples. These findings are consistent with the notion that dispositional memory beliefs may reflect perceptions of cognition more broadly. This may be one reason why memory beliefs have broad predictive validity for interventions that target fluid cognitive ability.

  8. Toward self-stabilizing wait-free shared memory objects

    NARCIS (Netherlands)

    J.H. Hoepman (Jaap-Henk); M. Papatriantafilou (Marina); P. Tsigas (Philippas)

    1995-01-01

    textabstractPast research on fault tolerant distributed systems has focussed on either processor failures, ranging from benign crash failures to the malicious byzantine failure types, or on transient memory failures, which can suddenly corrupt the state of the system. An interesting question in the

  9. System and method for programmable bank selection for banked memory subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Hoenicke, Dirk (Seebruck-Seeon, DE); Ohmacht, Martin (Yorktown Heights, NY); Salapura, Valentina (Chappaqua, NY); Sugavanam, Krishnan (Mahopac, NY)

    2010-09-07

    A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.

  10. The effect of listening to others remember on subsequent memory: The roles of expertise and trust in socially shared retrieval-induced forgetting and social contagion

    DEFF Research Database (Denmark)

    Koppel, Jonathan Mark; Wohl, Dana; Meksin, Robert

    2014-01-01

    Speakers reshape listeners’ memories through at least two discrete means: (1) social contagion and (2) socially shared retrieval-induced forgetting (SS-RIF). Three experiments explored how social relationships between speaker and listener moderate these conversational effects, focusing specifically......-RIF than untrustworthy speakers. These findings suggest that how speakers shape listeners’ memories depends on the social dynamic that exists between speaker and listener....... on two speaker characteristics, expertise and trustworthiness. We examined their effect on SS-RIF and contrasted, within-subjects, their effects on both SS-RIF and the previously studied social contagion. Experiments 1 and 2 explored the effects of perceived expertise; Experiment 3 explored trust. We...

  11. Efficient Numeric and Geometric Computations using Heterogeneous Shared Memory Architectures

    Science.gov (United States)

    2017-10-04

    to the memory architectures of CPUs and GPUs to obtain good performance and result in good memory performance using cache management. These methods ...Accomplishments: The PI and students has developed new methods for path and ray tracing and their Report Date: 14-Oct-2017 INVESTIGATOR(S): Phone...The efficiency of our method makes it a good candidate for forming hybrid schemes with wave-based models. One possibility is to couple the ray curve

  12. Fast transfer of shared data

    International Nuclear Information System (INIS)

    Timmer, C.; Abbott, D.J.; Heyes, W.G.; Jostizembski, E.; MacLeod, R.W.; Wolin, E.

    2000-01-01

    The Event Transfer system enables its users to produce events (data) and share them with other users by utilizing shared memory on either Solaris or Linux-based computers. Its design emphasizes speed, reliability, ease of use, and recoverability from crashes. In addition to fast local operation, the ET system allows network transfer of events. Using multi-threaded code based on POSIX threades and mutexes, a successful implementation was developed which allowed passing events over 500 kHz on a 4 cpu Sun workstation and 150 kHz on a dual cpu PC

  13. Spin and Optical Characterization of Defects in Group IV Semiconductors for Quantum Memory Applications

    Science.gov (United States)

    Rose, Brendon Charles

    This thesis is focused on the characterization of highly coherent defects in both silicon and diamond, particularly in the context of quantum memory applications. The results are organized into three parts based on the spin system: phosphorus donor electron spins in silicon, negatively charged nitrogen vacancy color centers in diamond (NV-), and neutrally charged silicon vacancy color centers in diamond (SiV0). The first part on phosphorus donor electron spins presents the first realization of strong coupling with spins in silicon. To achieve this, the silicon crystal was made highly pure and highly isotopically enriched so that the ensemble dephasing time, T2*, was long (10 micros). Additionally, the use of a 3D resonator aided in realizing uniform coupling, allowing for high fidelity spin ensemble manipulation. These two properties have eluded past implementations of strongly coupled spin ensembles and have been the limiting factor in storing and retrieving quantum information. Second, we characterize the spin properties of the NV- color center in diamond in a large magnetic field. We observe that the electron spin echo envelope modulation originating from the central 14N nuclear spin is much stronger at large fields and that the optically induced spin polarization exhibits a strong orientation dependence that cannot be explained by the existing model for the NV- optical cycle, we develop a modification of the existing model that reproduces the data in a large magnetic field. In the third part we perform characterization and stabilization of a new color center in diamond, SiV0, and find that it has attractive, highly sought-after properties for use as a quantum memory in a quantum repeater scheme. We demonstrate a new approach to the rational design of new color centers by engineering the Fermi level of the host material. The spin properties were characterized in electron spin resonance, revealing long spin relaxation and spin coherence times at cryogenic

  14. The distribution and the functions of autobiographical memories: Why do older adults remember autobiographical memories from their youth?

    Science.gov (United States)

    Wolf, Tabea; Zimprich, Daniel

    2016-09-01

    In the present study, the distribution of autobiographical memories was examined from a functional perspective: we examined whether the extent to which long-term autobiographical memories were rated as having a self-, a directive, or a social function affects the location (mean age) and scale (standard deviation) of the memory distribution. Analyses were based on a total of 5598 autobiographical memories generated by 149 adults aged between 50 and 81 years in response to 51 cue-words. Participants provided their age at the time when the recalled events had happened and rated how frequently they recall these events for self-, directive, and social purposes. While more frequently using autobiographical memories for self-functions was associated with an earlier mean age, memories frequently shared with others showed a narrower distribution around a later mean age. The directive function, by contrast, did not affect the memory distribution. The results strengthen the assumption that experiences from an individual's late adolescence serve to maintain a sense of self-continuity throughout the lifespan. Experiences that are frequently shared with others, in contrast, stem from a narrow age range located in young adulthood.

  15. Decomposing the relationship between cognitive functioning and self-referent memory beliefs in older adulthood: What’s memory got to do with it?

    Science.gov (United States)

    Payne, Brennan R.; Gross, Alden L.; Hill, Patrick L.; Parisi, Jeanine M.; Rebok, George W.; Stine-Morrow, Elizabeth A. L.

    2018-01-01

    With advancing age, episodic memory performance shows marked declines along with concurrent reports of lower subjective memory beliefs. Given that normative age-related declines in episodic memory co-occur with declines in other cognitive domains, we examined the relationship between memory beliefs and multiple domains of cognitive functioning. Confirmatory bi-factor structural equation models were used to parse the shared and independent variance among factors representing episodic memory, psychomotor speed, and executive reasoning in one large cohort study (Senior Odyssey, N = 462), and replicated using another large cohort of healthy older adults (ACTIVE, N = 2,802). Accounting for a general fluid cognitive functioning factor (comprised of the shared variance among measures of episodic memory, speed, and reasoning) attenuated the relationship between objective memory performance and subjective memory beliefs in both samples. Moreover, the general cognitive functioning factor was the strongest predictor of memory beliefs in both samples. These findings are consistent with the notion that dispositional memory beliefs may reflect perceptions of cognition more broadly. This may be one reason why memory beliefs have broad predictive validity for interventions that target fluid cognitive ability. PMID:27685541

  16. Concurrent Operations of O2-Tree on Shared Memory Multicore Architectures

    Directory of Open Access Journals (Sweden)

    Daniel Ohene-Kwofie

    2014-05-01

    Full Text Available Modern computer architectures provide high performance computing capability by having multiple CPU cores. Such systems are also typically associated with very large main-memory capacities, thereby allowing them to be used for fast processing of in-memory database applications. However, most of the concurrency control mechanism associated with the index structures of these memory resident databases do not scale well, under high transaction rates. This paper presents the O2-Tree, a fast main memory resident index, which is also highly scalable and tolerant of high transaction rates in a concurrent environment using the relaxed balancing tree algorithm. The O2-Tree is a modified Red-Black tree in which the leaf nodes are formed into blocks that hold key-value pairs, while each internal node stores a single key that results from splitting leaf nodes. Multi-threaded concurrent manipulation of the O2-Tree outperforms popular NoSQL based key-value stores considered in this paper.

  17. An efficient hybrid protection scheme with shared/dedicated backup paths on elastic optical networks

    Directory of Open Access Journals (Sweden)

    Nogbou G. Anoh

    2017-02-01

    Full Text Available Fast recovery and minimum utilization of resources are the two main criteria for determining the protection scheme quality. We address the problem of providing a hybrid protection approach on elastic optical networks under contiguity and continuity of available spectrum constraints. Two main hypotheses are used in this paper for backup paths computation. In the first case, it is assumed that backup paths resources are dedicated. In the second case, the assumption is that backup paths resources are available shared resources. The objective of the study is to minimize spectrum utilization to reduce blocking probability on a network. For this purpose, an efficient survivable Hybrid Protection Lightpath (HybPL algorithm is proposed for providing shared or dedicated backup path protection based on the efficient energy calculation and resource availability. Traditional First-Fit and Best-Fit schemes are employed to search and assign the available spectrum resources. The simulation results show that HybPL presents better performance in terms of blocking probability, compared with the Minimum Resources Utilization Dedicated Protection (MRU-DP algorithm which offers better performance than the Dedicated Protection (DP algorithm.

  18. Scientific developments of liquid crystal-based optical memory: a review

    Science.gov (United States)

    Prakash, Jai; Chandran, Achu; Biradar, Ashok M.

    2017-01-01

    The memory behavior in liquid crystals (LCs), although rarely observed, has made very significant headway over the past three decades since their discovery in nematic type LCs. It has gone from a mere scientific curiosity to application in variety of commodities. The memory element formed by numerous LCs have been protected by patents, and some commercialized, and used as compensation to non-volatile memory devices, and as memory in personal computers and digital cameras. They also have the low cost, large area, high speed, and high density memory needed for advanced computers and digital electronics. Short and long duration memory behavior for industrial applications have been obtained from several LC materials, and an LC memory with interesting features and applications has been demonstrated using numerous LCs. However, considerable challenges still exist in searching for highly efficient, stable, and long-lifespan materials and methods so that the development of useful memory devices is possible. This review focuses on the scientific and technological approach of fascinating applications of LC-based memory. We address the introduction, development status, novel design and engineering principles, and parameters of LC memory. We also address how the amalgamation of LCs could bring significant change/improvement in memory effects in the emerging field of nanotechnology, and the application of LC memory as the active component for futuristic and interesting memory devices.

  19. Use of non-volatile memories for SSC detector readout

    International Nuclear Information System (INIS)

    Fennelly, A.J.; Woosley, J.K.; Johnson, M.B.

    1990-01-01

    Use of non-volatile memory units at the end of each fiber optic bunch/strand would substantially increase information available from experiments by providing a complete event history, in addition to easing real time processing requirements. This may be an alternative to enhancing technology to optical computing techniques. Available and low-risk projected technologies will be surveyed, with costing addressed. Some discussion will be given to covnersion of optical signals, to electronic information, concepts for providing timing pulses to the memory units, and to the magnetoresistive (MRAM) and ferroelectric (FERAM) random access memory technologies that may be utilized in the prototype system

  20. Memory control with selective retention

    NARCIS (Netherlands)

    2012-01-01

    The present invention relates to a memory circuit and a method of controlling data retention in the memory circuit, wherein a supply signal is selectively switched to a respective one of at least two virtual supply lines (24) each shared by a respective one of a plurality of groups (30-1 to 30-n) of

  1. Memory control with selective retention

    NARCIS (Netherlands)

    2010-01-01

    The present invention relates to a memory circuit and a method of controlling data retention in the memory circuit, wherein a supply signal is selectively switched to a respective one of at least two virtual supply lines (24) each shared by a respective one of a plurality of groups (30-1 to 30-n) of

  2. A Time-predictable Memory Network-on-Chip

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Chong, David VH; Puffitsch, Wolfgang

    2014-01-01

    To derive safe bounds on worst-case execution times (WCETs), all components of a computer system need to be time-predictable: the processor pipeline, the caches, the memory controller, and memory arbitration on a multicore processor. This paper presents a solution for time-predictable memory...... arbitration and access for chip-multiprocessors. The memory network-on-chip is organized as a tree with time-division multiplexing (TDM) of accesses to the shared memory. The TDM based arbitration completely decouples processor cores and allows WCET analysis of the memory accesses on individual cores without...

  3. Creation of Long-Term Coherent Optical Memory via Controlled Nonlinear Interactions in Bose-Einstein Condensates

    International Nuclear Information System (INIS)

    Zhang Rui; Garner, Sean R.; Hau, Lene Vestergaard

    2009-01-01

    A Bose-Einstein condensate confined in an optical dipole trap is used to generate long-term coherent memory for light, and storage times of more than 1 s are observed. Phase coherence of the condensate as well as controlled manipulations of elastic and inelastic atomic scattering processes are utilized to increase the storage fidelity by several orders of magnitude over previous schemes. The results have important applications for creation of long-distance quantum networks and for generation of entangled states of light and matter.

  4. European Union of Memories?

    DEFF Research Database (Denmark)

    Wæhrens, Anne

    After a very brief introduction to history and memory in Europe after 1989, as seen by Aleida Assmann, I will give a short introduction to the EP and to their adoption of resolutions and declarations. Then I will define some concepts central to my study before I proceed to the analysis. Finally I...... these changes have come about. Moreover, I show that there seems to be a political memory split between Left and Right and I suggest that the time might not be ripe for a shared European memory....

  5. A highly efficient silole-containing dithienylethene with excellent thermal stability and fatigue resistance: a promising candidate for optical memory storage materials.

    Science.gov (United States)

    Chan, Jacky Chi-Hung; Lam, Wai Han; Yam, Vivian Wing-Wah

    2014-12-10

    Diarylethene compounds are potential candidates for applications in optical memory storage systems and photoswitchable molecular devices; however, they usually show low photocycloreversion quantum yields, which result in ineffective erasure processes. Here, we present the first highly efficient photochromic silole-containing dithienylethene with excellent thermal stability and fatigue resistance. The photochemical quantum yields for photocyclization and photocycloreversion of the compound are found to be high and comparable to each other; the latter of which is rarely found in diarylethene compounds. These would give rise to highly efficient photoswitchable material with effective writing and erasure processes. Incorporation of the silole moiety as a photochromic dithienylethene backbone also was demonstrated to enhance the thermal stability of the closed form, in which the thermal backward reaction to the open form was found to be negligible even at 100 °C, which leads to a promising candidate for use as photoswitchable materials and optical memory storage.

  6. Behavioral, Attitudinal, and Cultural Factors Influencing Interagency Information Sharing

    Science.gov (United States)

    2011-05-01

    Conflict ( Prosocial Behavior ) Cognitive Processes - Shared Team Mental Models, Transactive Memory Action Processes - Team Coordination...information sharing behaviors after the experiment unfolded. To explore this further, an independent sample t -test was conducted, where the difference in...U.S. Army Research Institute for the Behavioral and Social Sciences Research Report 1944 Behavioral , Attitudinal, and Cultural Factors

  7. DMZ Cultural Center: The Role of Shared Space in the Korean Peninsula Crisis

    Directory of Open Access Journals (Sweden)

    Jin Young Song

    2016-08-01

    Full Text Available If we view urban space as a framework of events and memory, conflict infrastructure is inevitably understood as a memorial practice – it either solidifies the conflict or promotes positive associations. Using the mechanism of memorialization, this article examines the function of shared space, namely the built environment that occupies space between the highly conflicted borders of the Korean peninsula. In order to overcome the limitations of two recent inter-Korean projects that focused on economic cooperation, we analyze the Demilitarized Zone (DMZ Cultural Center’s planning and design strategy, which is based on the role of shared space contributing to peace and reconciliation.

  8. Hierarchical Traces for Reduced NSM Memory Requirements

    Science.gov (United States)

    Dahl, Torbjørn S.

    This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.

  9. Shared visual attention and memory systems in the Drosophila brain.

    Directory of Open Access Journals (Sweden)

    Bruno van Swinderen

    Full Text Available BACKGROUND: Selective attention and memory seem to be related in human experience. This appears to be the case as well in simple model organisms such as the fly Drosophila melanogaster. Mutations affecting olfactory and visual memory formation in Drosophila, such as in dunce and rutabaga, also affect short-term visual processes relevant to selective attention. In particular, increased optomotor responsiveness appears to be predictive of visual attention defects in these mutants. METHODOLOGY/PRINCIPAL FINDINGS: To further explore the possible overlap between memory and visual attention systems in the fly brain, we screened a panel of 36 olfactory long term memory (LTM mutants for visual attention-like defects using an optomotor maze paradigm. Three of these mutants yielded high dunce-like optomotor responsiveness. We characterized these three strains by examining their visual distraction in the maze, their visual learning capabilities, and their brain activity responses to visual novelty. We found that one of these mutants, D0067, was almost completely identical to dunce(1 for all measures, while another, D0264, was more like wild type. Exploiting the fact that the LTM mutants are also Gal4 enhancer traps, we explored the sufficiency for the cells subserved by these elements to rescue dunce attention defects and found overlap at the level of the mushroom bodies. Finally, we demonstrate that control of synaptic function in these Gal4 expressing cells specifically modulates a 20-30 Hz local field potential associated with attention-like effects in the fly brain. CONCLUSIONS/SIGNIFICANCE: Our study uncovers genetic and neuroanatomical systems in the fly brain affecting both visual attention and odor memory phenotypes. A common component to these systems appears to be the mushroom bodies, brain structures which have been traditionally associated with odor learning but which we propose might be also involved in generating oscillatory brain activity

  10. A new approach for implementation of associative memory using volume holographic materials

    Science.gov (United States)

    Habibi, Mohammad; Pashaie, Ramin

    2012-02-01

    Associative memory, also known as fault tolerant or content-addressable memory, has gained considerable attention in last few decades. This memory possesses important advantages over the more common random access memories since it provides the capability to correct faults and/or partially missing information in a given input pattern. There is general consensus that optical implementation of connectionist models and parallel processors including associative memory has a better record of success compared to their electronic counterparts. In this article, we describe a novel optical implementation of associative memory which not only has the advantage of all optical learning and recalling capabilities, it can also be realized easily. We present a new approach, inspired by tomographic imaging techniques, for holographic implementation of associative memories. In this approach, a volume holographic material is sandwiched within a matrix of inputs (optical point sources) and outputs (photodetectors). The memory capacity is realized by the spatial modulation of refractive index of the holographic material. Constructing the spatial distribution of the refractive index from an array of known inputs and outputs is formulated as an inverse problem consisting a set of linear integral equations.

  11. Location-Unbound Color-Shape Binding Representations in Visual Working Memory.

    Science.gov (United States)

    Saiki, Jun

    2016-02-01

    The mechanism by which nonspatial features, such as color and shape, are bound in visual working memory, and the role of those features' location in their binding, remains unknown. In the current study, I modified a redundancy-gain paradigm to investigate these issues. A set of features was presented in a two-object memory display, followed by a single object probe. Participants judged whether the probe contained any features of the memory display, regardless of its location. Response time distributions revealed feature coactivation only when both features of a single object in the memory display appeared together in the probe, regardless of the response time benefit from the probe and memory objects sharing the same location. This finding suggests that a shared location is necessary in the formation of bound representations but unnecessary in their maintenance. Electroencephalography data showed that amplitude modulations reflecting location-unbound feature coactivation were different from those reflecting the location-sharing benefit, consistent with the behavioral finding that feature-location binding is unnecessary in the maintenance of color-shape binding. © The Author(s) 2015.

  12. Towards a psychology of collective memory.

    Science.gov (United States)

    Hirst, William; Manier, David

    2008-04-01

    This article discusses the place of psychology within the now voluminous social scientific literature on collective memory. Many social scientists locate collective memories in the social resources that shape them. For scholars adopting this perspective, collective memories are viewed as transcending individuals; that is, as being "in the world". Others recognise that, in the final analysis, individuals must remember collective as well as individual memories. These scholars treat collective memories as shared individual memories. We attempt to bridge these two approaches by distinguishing between the design of social resources and memory practices, on one hand, and on the other, the effectiveness of each in forming and transforming the memories held by individuals and the psychological mechanisms that guide this effectiveness.

  13. An Adaptive Insertion and Promotion Policy for Partitioned Shared Caches

    Science.gov (United States)

    Mahrom, Norfadila; Liebelt, Michael; Raof, Rafikha Aliana A.; Daud, Shuhaizar; Hafizah Ghazali, Nur

    2018-03-01

    Cache replacement policies in chip multiprocessors (CMP) have been investigated extensively and proven able to enhance shared cache management. However, competition among multiple processors executing different threads that require simultaneous access to a shared memory may cause cache contention and memory coherence problems on the chip. These issues also exist due to some drawbacks of the commonly used Least Recently Used (LRU) policy employed in multiprocessor systems, which are because of the cache lines residing in the cache longer than required. In image processing analysis of for example extra pulmonary tuberculosis (TB), an accurate diagnosis for tissue specimen is required. Therefore, a fast and reliable shared memory management system to execute algorithms for processing vast amount of specimen image is needed. In this paper, the effects of the cache replacement policy in a partitioned shared cache are investigated. The goal is to quantify whether better performance can be achieved by using less complex replacement strategies. This paper proposes a Middle Insertion 2 Positions Promotion (MI2PP) policy to eliminate cache misses that could adversely affect the access patterns and the throughput of the processors in the system. The policy employs a static predefined insertion point, near distance promotion, and the concept of ownership in the eviction policy to effectively improve cache thrashing and to avoid resource stealing among the processors.

  14. Regenerative memory in time-delayed neuromorphic photonic resonators

    Science.gov (United States)

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.

  15. Sleep Benefits Memory for Semantic Category Structure While Preserving Exemplar-Specific Information.

    Science.gov (United States)

    Schapiro, Anna C; McDevitt, Elizabeth A; Chen, Lang; Norman, Kenneth A; Mednick, Sara C; Rogers, Timothy T

    2017-11-01

    Semantic memory encompasses knowledge about both the properties that typify concepts (e.g. robins, like all birds, have wings) as well as the properties that individuate conceptually related items (e.g. robins, in particular, have red breasts). We investigate the impact of sleep on new semantic learning using a property inference task in which both kinds of information are initially acquired equally well. Participants learned about three categories of novel objects possessing some properties that were shared among category exemplars and others that were unique to an exemplar, with exposure frequency varying across categories. In Experiment 1, memory for shared properties improved and memory for unique properties was preserved across a night of sleep, while memory for both feature types declined over a day awake. In Experiment 2, memory for shared properties improved across a nap, but only for the lower-frequency category, suggesting a prioritization of weakly learned information early in a sleep period. The increase was significantly correlated with amount of REM, but was also observed in participants who did not enter REM, suggesting involvement of both REM and NREM sleep. The results provide the first evidence that sleep improves memory for the shared structure of object categories, while simultaneously preserving object-unique information.

  16. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism

    Science.gov (United States)

    Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno

    2010-01-01

    It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923

  17. Time-Frequency Domain Memory and Processing

    National Research Council Canada - National Science Library

    Huestis, David

    2002-01-01

    This report summarizes the results of a 3-year program of research on the physics and technology needed to develop high-performance optical memory and optical processing systems based on the concept...

  18. The CERN Host Interface and the optical interconnect

    International Nuclear Information System (INIS)

    McLaren, R.A.; Berners Lee, T.J.; Burckhart, D.

    1988-01-01

    Interfaces between Digital Equipment Corporation's VAX series computers and VMEbus and FASTBUS have been designed as part of the CERN Host Interface (CHI) project. Both the VMEbus and the FASTBUS interface share a common architecture which includes a powerful MC680x0 central processing unit, large data memories and a link port to connect to different members of the VAX family. Software support allows user software to be split between the VAX and the CHI processors whilst an enhanced VAX/VMS driver reduces operating system overheads. In addition an optical link allows the FASTBUS or VMEbus crate to be up to 1 kilometer from the host computer. (author). 12 refs, 3 diagrams

  19. Shared reality in intergroup communication: Increasing the epistemic authority of an out-group audience.

    Science.gov (United States)

    Echterhoff, Gerald; Kopietz, René; Higgins, E Tory

    2017-06-01

    Communicators typically tune messages to their audience's attitude. Such audience tuning biases communicators' memory for the topic toward the audience's attitude to the extent that they create a shared reality with the audience. To investigate shared reality in intergroup communication, we first established that a reduced memory bias after tuning messages to an out-group (vs. in-group) audience is a subtle index of communicators' denial of shared reality to that out-group audience (Experiments 1a and 1b). We then examined whether the audience-tuning memory bias might emerge when the out-group audience's epistemic authority is enhanced, either by increasing epistemic expertise concerning the communication topic or by creating epistemic consensus among members of a multiperson out-group audience. In Experiment 2, when Germans communicated to a Turkish audience with an attitude about a Turkish (vs. German) target, the audience-tuning memory bias appeared. In Experiment 3, when the audience of German communicators consisted of 3 Turks who all held the same attitude toward the target, the memory bias again appeared. The association between message valence and memory valence was consistently higher when the audience's epistemic authority was high (vs. low). An integrative analysis across all studies also suggested that the memory bias increases with increasing strength of epistemic inputs (epistemic expertise, epistemic consensus, and audience-tuned message production). The findings suggest novel ways of overcoming intergroup biases in intergroup relations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Investigating Solution Convergence in a Global Ocean Model Using a 2048-Processor Cluster of Distributed Shared Memory Machines

    Directory of Open Access Journals (Sweden)

    Chris Hill

    2007-01-01

    Full Text Available Up to 1920 processors of a cluster of distributed shared memory machines at the NASA Ames Research Center are being used to simulate ocean circulation globally at horizontal resolutions of 1/4, 1/8, and 1/16-degree with the Massachusetts Institute of Technology General Circulation Model, a finite volume code that can scale to large numbers of processors. The study aims to understand physical processes responsible for skill improvements as resolution is increased and to gain insight into what resolution is sufficient for particular purposes. This paper focuses on the computational aspects of reaching the technical objective of efficiently performing these global eddy-resolving ocean simulations. At 1/16-degree resolution the model grid contains 1.2 billion cells. At this resolution it is possible to simulate approximately one month of ocean dynamics in about 17 hours of wallclock time with a model timestep of two minutes on a cluster of four 512-way NUMA Altix systems. The Altix systems' large main memory and I/O subsystems allow computation and disk storage of rich sets of diagnostics during each integration, supporting the scientific objective to develop a better understanding of global ocean circulation model solution convergence as model resolution is increased.

  1. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites.

    Science.gov (United States)

    Zhang, Qiming; Xia, Zhilin; Cheng, Yi-Bing; Gu, Min

    2018-03-22

    Emerging as an inevitable outcome of the big data era, long data are the massive amount of data that captures changes in the real world over a long period of time. In this context, recording and reading the data of a few terabytes in a single storage device repeatedly with a century-long unchanged baseline is in high demand. Here, we demonstrate the concept of optical long data memory with nanoplasmonic hybrid glass composites. Through the sintering-free incorporation of nanorods into the earth abundant hybrid glass composite, Young's modulus is enhanced by one to two orders of magnitude. This discovery, enabling reshaping control of plasmonic nanoparticles of multiple-length allows for continuous multi-level recording and reading with a capacity over 10 terabytes with no appreciable change of the baseline over 600 years, which opens new opportunities for long data memory that affects the past and future.

  2. Photorefractive optics materials, properties, and applications

    CERN Document Server

    Yu, Francis T S

    1999-01-01

    The advances of photorefractive optics have demonstrated many useful and practical applications, which include the development of photorefractive optic devices for computer communication needs. To name a couple significant applications: the large capacity optical memory, which can greatly improve the accessible high-speed CD-ROM and the dynamic photorefractive gratings, which can be used for all-optic switches for high-speed fiber optic networks. This book is an important reference both for technical and non-technical staffs who are interested in this field. * Covers the recent development in materials, phenomena, and applications * Includes growth, characterization, dynamic gratings, and liquid crystal PR effect * Includes applications to photonic devices such as large capacity optical memory, 3-D interconnections, and dynamic holograms * Provides the recent overall picture of current trends in photorefractive optics * Includes optical and electronic properties of the materials as applied to dynamic photoref...

  3. Distributed terascale volume visualization using distributed shared virtual memory

    KAUST Repository

    Beyer, Johanna; Hadwiger, Markus; Schneider, Jens; Jeong, Wonki; Pfister, Hanspeter

    2011-01-01

    Table 1 illustrates the impact of different distribution unit sizes, different screen resolutions, and numbers of GPU nodes. We use two and four GPUs (NVIDIA Quadro 5000 with 2.5 GB memory) and a mouse cortex EM dataset (see Figure 2) of resolution

  4. 3D-LIN: A Configurable Low-Latency Interconnect for Multi-Core Clusters with 3D Stacked L1 Memory

    OpenAIRE

    Beanato, Giulia; Loi, Igor; De Micheli, Giovanni; Leblebici, Yusuf; Benini, Luca

    2012-01-01

    Shared L1 memories are of interest for tightly- coupled processor clusters in programmable accelerators as they provide a convenient shared memory abstraction while avoiding cache coherence overheads. The performance of a shared-L1 memory critically depends on the architecture of the low-latency interconnect between processors and memory banks, which needs to provide ultra-fast access to the largest possible L1 working set. The advent of 3D technology provides new opportunities to improve the...

  5. Application of phase-change materials in memory taxonomy

    OpenAIRE

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other...

  6. Multithreaded Asynchronous Graph Traversal for In-Memory and Semi-External Memory

    KAUST Repository

    Pearce, Roger

    2010-11-01

    Processing large graphs is becoming increasingly important for many domains such as social networks, bioinformatics, etc. Unfortunately, many algorithms and implementations do not scale with increasing graph sizes. As a result, researchers have attempted to meet the growing data demands using parallel and external memory techniques. We present a novel asynchronous approach to compute Breadth-First-Search (BFS), Single-Source-Shortest-Paths, and Connected Components for large graphs in shared memory. Our highly parallel asynchronous approach hides data latency due to both poor locality and delays in the underlying graph data storage. We present an experimental study applying our technique to both In-Memory and Semi-External Memory graphs utilizing multi-core processors and solid-state memory devices. Our experiments using synthetic and real-world datasets show that our asynchronous approach is able to overcome data latencies and provide significant speedup over alternative approaches. For example, on billion vertex graphs our asynchronous BFS scales up to 14x on 16-cores. © 2010 IEEE.

  7. Categorical and associative relations increase false memory relative to purely associative relations.

    Science.gov (United States)

    Coane, Jennifer H; McBride, Dawn M; Termonen, Miia-Liisa; Cutting, J Cooper

    2016-01-01

    The goal of the present study was to examine the contributions of associative strength and similarity in terms of shared features to the production of false memories in the Deese/Roediger-McDermott list-learning paradigm. Whereas the activation/monitoring account suggests that false memories are driven by automatic associative activation from list items to nonpresented lures, combined with errors in source monitoring, other accounts (e.g., fuzzy trace theory, global-matching models) emphasize the importance of semantic-level similarity, and thus predict that shared features between list and lure items will increase false memory. Participants studied lists of nine items related to a nonpresented lure. Half of the lists consisted of items that were associated but did not share features with the lure, and the other half included items that were equally associated but also shared features with the lure (in many cases, these were taxonomically related items). The two types of lists were carefully matched in terms of a variety of lexical and semantic factors, and the same lures were used across list types. In two experiments, false recognition of the critical lures was greater following the study of lists that shared features with the critical lure, suggesting that similarity at a categorical or taxonomic level contributes to false memory above and beyond associative strength. We refer to this phenomenon as a "feature boost" that reflects additive effects of shared meaning and association strength and is generally consistent with accounts of false memory that have emphasized thematic or feature-level similarity among studied and nonstudied representations.

  8. Optical Storage and Optical Information Held in Taipei, Taiwan on 26-27 July 2000

    National Research Council Canada - National Science Library

    Shieh, H.-P. D

    2000-01-01

    .... In the area of data storage, topics include devices to improve the performance of optical heads, measurement of optical media parameters, new superresolution techniques, three-dimensional memory, and near-field devices...

  9. Retrieving Against the Flow: Incoherence Between Optic Flow and Movement Direction Has Little Effect on Memory for Order

    Directory of Open Access Journals (Sweden)

    Emiliano Díez

    2018-03-01

    Full Text Available Research from multiple areas in neuroscience suggests a link between self-locomotion and memory. In two free recall experiments with adults, we looked for a link between (a memory, and (b the coherence of movement and optic flow. In both experiments, participants heard lists of words while on a treadmill and wearing a virtual reality (VR headset. In the first experiment, the VR scene and treadmill were stationary during encoding. During retrieval, all participants walked forward, but the VR scene was stationary, moved forward, or moved backwards. In the second experiment, during encoding all participants walked forward and viewed a forward-moving VR scene. During retrieval, all participants continued to walk forward but the VR scene was stationary, forward-moving, or backward-moving. In neither experiment was there a significant difference in the amount recalled, or output order strategies, attributable to differences in movement conditions. Thus, any effects of movement on memory are more limited than theories of hippocampal function and theories in cognitive psychology anticipate.

  10. Cross-layer shared protection strategy towards data plane in software defined optical networks

    Science.gov (United States)

    Xiong, Yu; Li, Zhiqiang; Zhou, Bin; Dong, Xiancun

    2018-04-01

    In order to ensure reliable data transmission on the data plane and minimize resource consumption, a novel protection strategy towards data plane is proposed in software defined optical networks (SDON). Firstly, we establish a SDON architecture with hierarchical structure of data plane, which divides the data plane into four layers for getting fine-grained bandwidth resource. Then, we design the cross-layer routing and resource allocation based on this network architecture. Through jointly considering the bandwidth resource on all the layers, the SDN controller could allocate bandwidth resource to working path and backup path in an economical manner. Next, we construct auxiliary graphs and transform the shared protection problem into the graph vertex coloring problem. Therefore, the resource consumption on backup paths can be reduced further. The simulation results demonstrate that the proposed protection strategy can achieve lower protection overhead and higher resource utilization ratio.

  11. Quantum reading of unitary optical devices

    International Nuclear Information System (INIS)

    Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro

    2014-01-01

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported

  12. Discrete-Slots Models of Visual Working-Memory Response Times

    Science.gov (United States)

    Donkin, Christopher; Nosofsky, Robert M.; Gold, Jason M.; Shiffrin, Richard M.

    2014-01-01

    Much recent research has aimed to establish whether visual working memory (WM) is better characterized by a limited number of discrete all-or-none slots or by a continuous sharing of memory resources. To date, however, researchers have not considered the response-time (RT) predictions of discrete-slots versus shared-resources models. To complement the past research in this field, we formalize a family of mixed-state, discrete-slots models for explaining choice and RTs in tasks of visual WM change detection. In the tasks under investigation, a small set of visual items is presented, followed by a test item in 1 of the studied positions for which a change judgment must be made. According to the models, if the studied item in that position is retained in 1 of the discrete slots, then a memory-based evidence-accumulation process determines the choice and the RT; if the studied item in that position is missing, then a guessing-based accumulation process operates. Observed RT distributions are therefore theorized to arise as probabilistic mixtures of the memory-based and guessing distributions. We formalize an analogous set of continuous shared-resources models. The model classes are tested on individual subjects with both qualitative contrasts and quantitative fits to RT-distribution data. The discrete-slots models provide much better qualitative and quantitative accounts of the RT and choice data than do the shared-resources models, although there is some evidence for “slots plus resources” when memory set size is very small. PMID:24015956

  13. Comparison of acrylic polymer adhesive tapes and silicone optical grease in light sharing detectors for positron emission tomography

    Science.gov (United States)

    Van Elburg, Devin J.; Noble, Scott D.; Hagey, Simone; Goertzen, Andrew L.

    2018-03-01

    Optical coupling is an important factor in detector design as it improves optical photon transmission by mitigating internal reflections at light-sharing boundaries. In this work we compare optical coupling materials, namely double-sided acrylic polymer tapes and silicone optical grease (SiG), in the context of positron emission tomography. Four double-sided tapes from 3 M of varying thicknesses (0.229 mm-1.016 mm) and adhesive materials (‘100MP’, ‘A100’, and ‘GPA’) were characterized with spectrophotometer measurements as well as photopeak amplitude and energy resolution measurements using lutetium-yttrium oxy-orthosilicate (LYSO) coupled to photomultiplier tubes (PMT) or silicon photomultipliers (SiPMs). Transmission spectra from the spectrophotometer showed over 80% transmission for all tapes at 420 nm and above, with 89.6% and 88.8% transmission for the 0.508 mm and 1.016 mm thick GPA tapes, respectively, at 420 nm. Measurements with single-pixel LYSO-PMT and 4  ×  4 array (one-to-one coupled) LYSO-SiPM setups determined that SiG had the greatest photopeak amplitude, with tapes showing 2.1%-14.8% reduction in photopeak amplitude with respect to SiG. Energy resolution changed by less than 4% on a relative basis between tapes and SiG with PMT measurements, however for the SiPM array measurements the energy resolution improved from 15.6%  ±  2.7% full-width at half-maximum to 11.4%  ±  1.2% for SiG and 1 mm GPA respectively. Data acquired with dual-layer offset LYSO arrays (light sharing detector designs) demonstrated that a detector coupled with 1 mm thick GPA tape produced equivalent detector flood histograms to those from a design coupled with SiG and a 1 mm thick glass lightguide. No significant degradation in photopeak amplitude and energy resolution was observed over five months of measurements, indicating the tapes maintain their coupling integrity over several months. Though minimal photopeak amplitude

  14. Comparison of acrylic polymer adhesive tapes and silicone optical grease in light sharing detectors for positron emission tomography.

    Science.gov (United States)

    Van Elburg, Devin J; Noble, Scott D; Hagey, Simone; Goertzen, Andrew L

    2018-02-26

    Optical coupling is an important factor in detector design as it improves optical photon transmission by mitigating internal reflections at light-sharing boundaries. In this work we compare optical coupling materials, namely double-sided acrylic polymer tapes and silicone optical grease (SiG), in the context of positron emission tomography. Four double-sided tapes from 3 M of varying thicknesses (0.229 mm-1.016 mm) and adhesive materials ('100MP', 'A100', and 'GPA') were characterized with spectrophotometer measurements as well as photopeak amplitude and energy resolution measurements using lutetium-yttrium oxy-orthosilicate (LYSO) coupled to photomultiplier tubes (PMT) or silicon photomultipliers (SiPMs). Transmission spectra from the spectrophotometer showed over 80% transmission for all tapes at 420 nm and above, with 89.6% and 88.8% transmission for the 0.508 mm and 1.016 mm thick GPA tapes, respectively, at 420 nm. Measurements with single-pixel LYSO-PMT and 4  ×  4 array (one-to-one coupled) LYSO-SiPM setups determined that SiG had the greatest photopeak amplitude, with tapes showing 2.1%-14.8% reduction in photopeak amplitude with respect to SiG. Energy resolution changed by less than 4% on a relative basis between tapes and SiG with PMT measurements, however for the SiPM array measurements the energy resolution improved from 15.6%  ±  2.7% full-width at half-maximum to 11.4%  ±  1.2% for SiG and 1 mm GPA respectively. Data acquired with dual-layer offset LYSO arrays (light sharing detector designs) demonstrated that a detector coupled with 1 mm thick GPA tape produced equivalent detector flood histograms to those from a design coupled with SiG and a 1 mm thick glass lightguide. No significant degradation in photopeak amplitude and energy resolution was observed over five months of measurements, indicating the tapes maintain their coupling integrity over several months. Though minimal photopeak amplitude degradation

  15. Symbiosis of Executive and Selective Attention in Working Memory

    Directory of Open Access Journals (Sweden)

    André eVandierendonck

    2014-08-01

    Full Text Available The notion of working memory was introduced to account for the usage of short-term memory resources by other cognitive tasks such as reasoning, mental arithmetic, language comprehension, and many others. This collaboration between memory and other cognitive tasks can only be achieved by a dedicated working memory system that controls task coordination. To that end, working memory models include executive control. Nevertheless, other attention control systems may be involved in coordination of memory and cognitive tasks calling on memory resources. The present paper briefly reviews the evidence concerning the role of selective attention in working memory activities. A model is proposed in which selective attention control is directly linked to the executive control part of the working memory system. The model assumes that apart from storage of declarative information, the system also includes an executive working memory module that represents the current task set. Control processes are automatically triggered when particular conditions in these modules are met.. As each task set represents the parameter settings and the actions needed to achieve the task goal, it will depend on the specific settings and actions whether selective attention control will have to be shared among the active tasks. Only when such sharing is required, task performance will be affected by the capacity limits of the control system involved.

  16. Sensory memory for ambiguous vision.

    Science.gov (United States)

    Pearson, Joel; Brascamp, Jan

    2008-09-01

    In recent years the overlap between visual perception and memory has shed light on our understanding of both. When ambiguous images that normally cause perception to waver unpredictably are presented briefly with intervening blank periods, perception tends to freeze, locking into one interpretation. This indicates that there is a form of memory storage across the blank interval. This memory trace codes low-level characteristics of the stored stimulus. Although a trace is evident after a single perceptual instance, the trace builds over many separate stimulus presentations, indicating a flexible, variable-length time-course. This memory shares important characteristics with priming by non-ambiguous stimuli. Computational models now provide a framework to interpret many empirical observations.

  17. Memory mass storage

    CERN Document Server

    Campardo, Giovanni; Iaculo, Massimo

    2011-01-01

    Covering all the fundamental storage technologies such as semiconductor, magnetic, optical and uncommon, this volume details their core characteristics. In addition, it includes an overview of the 'biological memory' of the human brain and its organization.

  18. Static Memory Deduplication for Performance Optimization in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Gangyong Jia

    2017-04-01

    Full Text Available In a cloud computing environment, the number of virtual machines (VMs on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.

  19. Static Memory Deduplication for Performance Optimization in Cloud Computing.

    Science.gov (United States)

    Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan

    2017-04-27

    In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.

  20. Visual memory and visual perception: when memory improves visual search.

    Science.gov (United States)

    Riou, Benoit; Lesourd, Mathieu; Brunel, Lionel; Versace, Rémy

    2011-08-01

    This study examined the relationship between memory and perception in order to identify the influence of a memory dimension in perceptual processing. Our aim was to determine whether the variation of typical size between items (i.e., the size in real life) affects visual search. In two experiments, the congruency between typical size difference and perceptual size difference was manipulated in a visual search task. We observed that congruency between the typical and perceptual size differences decreased reaction times in the visual search (Exp. 1), and noncongruency between these two differences increased reaction times in the visual search (Exp. 2). We argue that these results highlight that memory and perception share some resources and reveal the intervention of typical size difference on the computation of the perceptual size difference.

  1. Using memories to understand others: the role of episodic memory in theory of mind impairment in Alzheimer disease.

    Science.gov (United States)

    Moreau, Noémie; Viallet, François; Champagne-Lavau, Maud

    2013-09-01

    Theory of mind (TOM) refers to the ability to infer one's own and other's mental states. Growing evidence highlighted the presence of impairment on the most complex TOM tasks in Alzheimer disease (AD). However, how TOM deficit is related to other cognitive dysfunctions and more specifically to episodic memory impairment - the prominent feature of this disease - is still under debate. Recent neuroanatomical findings have shown that remembering past events and inferring others' states of mind share the same cerebral network suggesting the two abilities share a common process .This paper proposes to review emergent evidence of TOM impairment in AD patients and to discuss the evidence of a relationship between TOM and episodic memory. We will discuss about AD patients' deficit in TOM being possibly related to their difficulties in recollecting memories of past social interactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Feature-based memory-driven attentional capture: Visual working memory content affects visual attention.

    NARCIS (Netherlands)

    Olivers, C.N.L.; Meijer, F.; Theeuwes, J.

    2006-01-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly

  3. Memory-guided reaching in a patient with visual hemiagnosia.

    Science.gov (United States)

    Cornelsen, Sonja; Rennig, Johannes; Himmelbach, Marc

    2016-06-01

    The two-visual-systems hypothesis (TVSH) postulates that memory-guided movements rely on intact functions of the ventral stream. Its particular importance for memory-guided actions was initially inferred from behavioral dissociations in the well-known patient DF. Despite of rather accurate reaching and grasping movements to visible targets, she demonstrated grossly impaired memory-guided grasping as much as impaired memory-guided reaching. These dissociations were later complemented by apparently reversed dissociations in patients with dorsal damage and optic ataxia. However, grasping studies in DF and optic ataxia patients differed with respect to the retinotopic position of target objects, questioning the interpretation of the respective findings as a double dissociation. In contrast, the findings for reaching errors in both types of patients came from similar peripheral target presentations. However, new data on brain structural changes and visuomotor deficits in DF also questioned the validity of a double dissociation in reaching. A severe visuospatial short-term memory deficit in DF further questioned the specificity of her memory-guided reaching deficit. Therefore, we compared movement accuracy in visually-guided and memory-guided reaching in a new patient who suffered a confined unilateral damage to the ventral visual system due to stroke. Our results indeed support previous descriptions of memory-guided movements' inaccuracies in DF. Furthermore, our data suggest that recently discovered optic-ataxia like misreaching in DF is most likely caused by her parieto-occipital and not by her ventral stream damage. Finally, multiple visuospatial memory measurements in HWS suggest that inaccuracies in memory-guided reaching tasks in patients with ventral damage cannot be explained by visuospatial short-term memory or perceptual deficits, but by a specific deficit in visuomotor processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The evolution of episodic memory

    Science.gov (United States)

    Allen, Timothy A.; Fortin, Norbert J.

    2013-01-01

    One prominent view holds that episodic memory emerged recently in humans and lacks a “(neo)Darwinian evolution” [Tulving E (2002) Annu Rev Psychol 53:1–25]. Here, we review evidence supporting the alternative perspective that episodic memory has a long evolutionary history. We show that fundamental features of episodic memory capacity are present in mammals and birds and that the major brain regions responsible for episodic memory in humans have anatomical and functional homologs in other species. We propose that episodic memory capacity depends on a fundamental neural circuit that is similar across mammalian and avian species, suggesting that protoepisodic memory systems exist across amniotes and, possibly, all vertebrates. The implication is that episodic memory in diverse species may primarily be due to a shared underlying neural ancestry, rather than the result of evolutionary convergence. We also discuss potential advantages that episodic memory may offer, as well as species-specific divergences that have developed on top of the fundamental episodic memory architecture. We conclude by identifying possible time points for the emergence of episodic memory in evolution, to help guide further research in this area. PMID:23754432

  5. Quantum memory Quantum memory

    Science.gov (United States)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  6. Operational Semantics of a Weak Memory Model inspired by Go

    OpenAIRE

    Fava, Daniel Schnetzer; Stolz, Volker; Valle, Stian

    2017-01-01

    A memory model dictates which values may be returned when reading from memory. In a parallel computing setting, the memory model affects how processes communicate through shared memory. The design of a proper memory model is a balancing act. On one hand, memory models must be lax enough to allow common hardware and compiler optimizations. On the other, the more lax the model, the harder it is for developers to reason about their programs. In order to alleviate the burden on programmers, a wea...

  7. Episodic memory in nonhuman animals.

    Science.gov (United States)

    Templer, Victoria L; Hampton, Robert R

    2013-09-09

    Episodic memories differ from other types of memory because they represent aspects of the past not present in other memories, such as the time, place, or social context in which the memories were formed. Focus on phenomenal experience in human memory, such as the sense of 'having been there', has resulted in conceptualizations of episodic memory that are difficult or impossible to apply to nonhuman species. It is therefore a significant challenge for investigators to agree on objective behavioral criteria that can be applied in nonhuman animals and still capture features of memory thought to be critical in humans. Some investigators have attempted to use neurobiological parallels to bridge this gap; however, defining memory types on the basis of the brain structures involved rather than on identified cognitive mechanisms risks missing crucial functional aspects of episodic memory, which are ultimately behavioral. The most productive way forward is likely a combination of neurobiology and sophisticated cognitive testing that identifies the mental representations present in episodic memory. Investigators that have refined their approach from asking the naïve question "do nonhuman animals have episodic memory" to instead asking "what aspects of episodic memory are shared by humans and nonhumans" are making progress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A loss in the family: silence, memory, and narrative identity after bereavement.

    Science.gov (United States)

    Baddeley, Jenna; Singer, Jefferson A

    2010-02-01

    Grief theories have converged on the idea that the sharing of autobiographical memory narratives of loss and of the deceased person, especially within the family, is a major way to maintain and/or reconfigure a healthy sense of identity after a loss. In contrast, we examine unspoken memory-the withholding of socially sharing autobiographical memories about the loss and the departed family member-as a way to either conserve an existing narrative identity or assert a new narrative identity. Depending on its context and function, silence about memory can play either a positive or negative role in an individual griever's ongoing narrative identity, as well as in the larger family narrative in which the griever's identity is embedded.

  9. Carbon nanomaterials for non-volatile memories

    Science.gov (United States)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  10. Synapsin determines memory strength after punishment- and relief-learning.

    Science.gov (United States)

    Niewalda, Thomas; Michels, Birgit; Jungnickel, Roswitha; Diegelmann, Sören; Kleber, Jörg; Kähne, Thilo; Gerber, Bertram

    2015-05-13

    Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: "negative" memories for stimuli preceding them and "positive" memories for stimuli experienced at the moment of "relief." Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training ("forward conditioning" of the odor), whereas after shock-odor training ("backward conditioning" of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences. Copyright © 2015 Niewalda et al.

  11. Synapsin Determines Memory Strength after Punishment- and Relief-Learning

    Science.gov (United States)

    Niewalda, Thomas; Michels, Birgit; Jungnickel, Roswitha; Diegelmann, Sören; Kleber, Jörg; Kähne, Thilo

    2015-01-01

    Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: “negative” memories for stimuli preceding them and “positive” memories for stimuli experienced at the moment of “relief.” Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training (“forward conditioning” of the odor), whereas after shock-odor training (“backward conditioning” of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences. PMID:25972175

  12. Design issues for block-oriented reflective memory system

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, M; Tomasevic, M; Milutinovic, V

    1996-12-31

    The block-oriented reflective memory (BORM) system represents a modular bus-based system architecture that belongs to the class of distributed shared memory systems. The results of the evaluation study of the BORM implementation strategies and design decisions in regard to the different values of input parameters are presented. 5 refs.

  13. Optical resonators and neural networks

    Science.gov (United States)

    Anderson, Dana Z.

    1986-08-01

    It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.

  14. Socially shared mourning: construction and consumption of collective memory

    Science.gov (United States)

    Harju, Anu

    2015-04-01

    Social media, such as YouTube, is increasingly a site of collective remembering where personal tributes to celebrity figures become sites of public mourning. YouTube, especially, is rife with celebrity commemorations. Examining fans' online mourning practices on YouTube, this paper examines video tributes dedicated to the late Steve Jobs, with a focus on collective remembering and collective construction of memory. Combining netnography with critical discourse analysis, the analysis focuses on the user comments where the past unfolds in interaction and meanings are negotiated and contested. The paper argues that celebrity death may, for avid fans, be a source of disenfranchised grief, a type of grief characterised by inadequate social support, usually arising from lack of empathy for the loss. The paper sheds light on the functions digital memorials have for mourning fans (and fandom) and argues that social media sites have come to function as spaces of negotiation, legitimisation and alleviation of disenfranchised grief. It is also suggested that when it comes to disenfranchised grief, and grief work generally, the concept of community be widened to include communities of weak ties, a typical form of communal belonging on social media.

  15. [Neuroscience and collective memory: memory schemas linking brain, societies and cultures].

    Science.gov (United States)

    Legrand, Nicolas; Gagnepain, Pierre; Peschanski, Denis; Eustache, Francis

    2015-01-01

    During the last two decades, the effect of intersubjective relationships on cognition has been an emerging topic in cognitive neurosciences leading through a so-called "social turn" to the formation of new domains integrating society and cultures to this research area. Such inquiry has been recently extended to collective memory studies. Collective memory refers to shared representations that are constitutive of the identity of a group and distributed among all its members connected by a common history. After briefly describing those evolutions in the study of human brain and behaviors, we review recent researches that have brought together cognitive psychology, neuroscience and social sciences into collective memory studies. Using the reemerging concept of memory schema, we propose a theoretical framework allowing to account for collective memories formation with a specific focus on the encoding process of historical events. We suggest that (1) if the concept of schema has been mainly used to describe rather passive framework of knowledge, such structure may also be implied in more active fashions in the understanding of significant collective events. And, (2) if some schema researches have restricted themselves to the individual level of inquiry, we describe a strong coherence between memory and cultural frameworks. Integrating the neural basis and properties of memory schema to collective memory studies may pave the way toward a better understanding of the reciprocal interaction between individual memories and cultural resources such as media or education. © Société de Biologie, 2016.

  16. Fast, noise-free memory for photon synchronization at room temperature.

    Science.gov (United States)

    Finkelstein, Ran; Poem, Eilon; Michel, Ohad; Lahad, Ohr; Firstenberg, Ofer

    2018-01-01

    Future quantum photonic networks require coherent optical memories for synchronizing quantum sources and gates of probabilistic nature. We demonstrate a fast ladder memory (FLAME) mapping the optical field onto the superposition between electronic orbitals of rubidium vapor. Using a ladder-level system of orbital transitions with nearly degenerate frequencies simultaneously enables high bandwidth, low noise, and long memory lifetime. We store and retrieve 1.7-ns-long pulses, containing 0.5 photons on average, and observe short-time external efficiency of 25%, memory lifetime (1/ e ) of 86 ns, and below 10 -4 added noise photons. Consequently, coupling this memory to a probabilistic source would enhance the on-demand photon generation probability by a factor of 12, the highest number yet reported for a noise-free, room temperature memory. This paves the way toward the controlled production of large quantum states of light from probabilistic photon sources.

  17. Parallel statistical image reconstruction for cone-beam x-ray CT on a shared memory computation platform

    International Nuclear Information System (INIS)

    Kole, J S; Beekman, F J

    2005-01-01

    Statistical reconstruction methods offer possibilities of improving image quality as compared to analytical methods, but current reconstruction times prohibit routine clinical applications. To reduce reconstruction times we have parallelized a statistical reconstruction algorithm for cone-beam x-ray CT, the ordered subset convex algorithm (OSC), and evaluated it on a shared memory computer. Two different parallelization strategies were developed: one that employs parallelism by computing the work for all projections within a subset in parallel, and one that divides the total volume into parts and processes the work for each sub-volume in parallel. Both methods are used to reconstruct a three-dimensional mathematical phantom on two different grid densities. The reconstructed images are binary identical to the result of the serial (non-parallelized) algorithm. The speed-up factor equals approximately 30 when using 32 to 40 processors, and scales almost linearly with the number of cpus for both methods. The huge reduction in computation time allows us to apply statistical reconstruction to clinically relevant studies for the first time

  18. Contributions of Medial Temporal Lobe and Striatal Memory Systems to Learning and Retrieving Overlapping Spatial Memories

    Science.gov (United States)

    Brown, Thackery I.; Stern, Chantal E.

    2014-01-01

    Many life experiences share information with other memories. In order to make decisions based on overlapping memories, we need to distinguish between experiences to determine the appropriate behavior for the current situation. Previous work suggests that the medial temporal lobe (MTL) and medial caudate interact to support the retrieval of overlapping navigational memories in different contexts. The present study used functional magnetic resonance imaging (fMRI) in humans to test the prediction that the MTL and medial caudate play complementary roles in learning novel mazes that cross paths with, and must be distinguished from, previously learned routes. During fMRI scanning, participants navigated virtual routes that were well learned from prior training while also learning new mazes. Critically, some routes learned during scanning shared hallways with those learned during pre-scan training. Overlap between mazes required participants to use contextual cues to select between alternative behaviors. Results demonstrated parahippocampal cortex activity specific for novel spatial cues that distinguish between overlapping routes. The hippocampus and medial caudate were active for learning overlapping spatial memories, and increased their activity for previously learned routes when they became context dependent. Our findings provide novel evidence that the MTL and medial caudate play complementary roles in the learning, updating, and execution of context-dependent navigational behaviors. PMID:23448868

  19. Collective Empowerment through Local Memory Websites : balancing between group interest and common good

    NARCIS (Netherlands)

    M. de Kreek (Mike)

    2017-01-01

    markdownabstractThe research in this dissertation explores the social significance of local memory websites. Local memory websites offer local residents a platform where they collect and share memories about particular places or experiences in their neighbourhoods and districts. Following a

  20. Shared cognitive impairments and aetiology in ADHD symptoms and reading difficulties.

    Directory of Open Access Journals (Sweden)

    Celeste H M Cheung

    Full Text Available Twin studies indicate that the frequent co-occurrence of attention deficit hyperactivity disorder (ADHD symptoms and reading difficulties (RD is largely due to shared genetic influences. Both disorders are associated with multiple cognitive impairments, but it remains unclear which cognitive impairments share the aetiological pathway, underlying the co-occurrence of the symptoms. We address this question using a sample of twins aged 7-10 and a range of cognitive measures previously associated with ADHD symptoms or RD.We performed multivariate structural equation modelling analyses on parent and teacher ratings on the ADHD symptom domains of inattention and hyperactivity, parent ratings on RD, and cognitive data on response inhibition (commission errors, CE, reaction time variability (RTV, verbal short-term memory (STM, working memory (WM and choice impulsivity, from a population sample of 1312 twins aged 7-10 years.Three cognitive processes showed significant phenotypic and genetic associations with both inattention symptoms and RD: RTV, verbal WM and STM. While STM captured only 11% of the shared genetic risk between inattention and RD, the estimates increased somewhat for WM (21% and RTV (28%; yet most of the genetic sharing between inattention and RD remained unaccounted for in each case.While response inhibition and choice impulsivity did not emerge as important cognitive processes underlying the co-occurrence between ADHD symptoms and RD, RTV and verbal memory processes separately showed significant phenotypic and genetic associations with both inattention symptoms and RD. Future studies employing longitudinal designs will be required to investigate the developmental pathways and direction of causality further.

  1. Conglomerate memory and cosmopolitanism

    Directory of Open Access Journals (Sweden)

    Susannah Ryan

    2016-01-01

    Full Text Available Under what conditions do countries and cultures considered radically different find a basis for allegiance and kinship? What part does memory play in this process? This article responds to these questions in two ways: 1 Through Emmanuel Levinas and Hannah Arendt, I propose that when an other appears in empathetic discourses that both honor difference and cite shared human experiences, seemingly irreconcilable people can develop a sense of mutual responsibility and 2 Conglomerate memory, memories that fuse together others through common pains, contributes to such an appearance. To illustrate this point, I turn to Congolese voices as they are articulated in online American discourses; although currently, authors of online texts typically rely on traditional narrative forms that position Central Africa as incommensurate to Western civilizations, the Internet's worldwide accessibility and intertextual capacities render it a place primed for developing international collectives by connecting memories while maintaining difference.

  2. Unconditional polarization qubit quantum memory at room temperature

    Science.gov (United States)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  3. Mnemonic transmission, social contagion, and emergence of collective memory: Influence of emotional valence, group structure, and information distribution.

    Science.gov (United States)

    Choi, Hae-Yoon; Kensinger, Elizabeth A; Rajaram, Suparna

    2017-09-01

    Social transmission of memory and its consequence on collective memory have generated enduring interdisciplinary interest because of their widespread significance in interpersonal, sociocultural, and political arenas. We tested the influence of 3 key factors-emotional salience of information, group structure, and information distribution-on mnemonic transmission, social contagion, and collective memory. Participants individually studied emotionally salient (negative or positive) and nonemotional (neutral) picture-word pairs that were completely shared, partially shared, or unshared within participant triads, and then completed 3 consecutive recalls in 1 of 3 conditions: individual-individual-individual (control), collaborative-collaborative (identical group; insular structure)-individual, and collaborative-collaborative (reconfigured group; diverse structure)-individual. Collaboration enhanced negative memories especially in insular group structure and especially for shared information, and promoted collective forgetting of positive memories. Diverse group structure reduced this negativity effect. Unequally distributed information led to social contagion that creates false memories; diverse structure propagated a greater variety of false memories whereas insular structure promoted confidence in false recognition and false collective memory. A simultaneous assessment of network structure, information distribution, and emotional valence breaks new ground to specify how network structure shapes the spread of negative memories and false memories, and the emergence of collective memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Only visual impressions are almost always present in long-term memories, and reported completeness, accuracy, and verbalizability of recollections increase with age.

    Science.gov (United States)

    Westman, A S; Orellana, C

    1996-10-01

    In two studies, students answered questions about their earliest memories from childhood and either elementary school and high school or college and yesterday. Visual sensory impressions were present in all childhood and almost all later memories. Sound aspects were more frequent in memories from high school and college than in those from childhood. Earliest memories from yesterday almost always included internal sensations. Recollections were rated as more accurate, complete, and verbalizable as events occurred later in life. Memories from childhood, elementary, and high school were thought about, found useful, or shared equally frequently. Yesterday's events were less likely shared, but, if shared, enhanced social relationships.

  5. A light writable microfluidic "flash memory": optically addressed actuator array with latched operation for microfluidic applications.

    Science.gov (United States)

    Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan

    2008-03-01

    This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.

  6. Deaf Children Building Narrative Texts. Effect of Adult-Shared vs. Non-Shared Perception of a Picture Story

    Directory of Open Access Journals (Sweden)

    Tarwacka-Odolczyk Agata

    2014-08-01

    Full Text Available This paper discusses the communicative competence of deaf children. It illustrates the process in which such children build narrative texts in interaction with a deaf teacher, and presents the diversity of this process due to the shared vs. non-shared perception of a picture - the source of the topic. Detailed analyses focus on the formal and semantic aspect of the stories, including the length of the text in sign language, the content selected, information categories, and types of answers to the teacher’s questions. This text is our contribution in memory of Professor Grace Wales Shugar, whose idea of dual agentivity of child-adult interaction inspired the research presented here.

  7. Collective memory: a perspective from (experimental) clinical psychology.

    Science.gov (United States)

    Wessel, Ineke; Moulds, Michelle L

    2008-04-01

    This paper considers the concept of collective memory from an experimental clinical psychology perspective. Exploration of the term collective reveals a broad distinction between literatures that view collective memories as a property of groups (collectivistic memory) and those that regard these memories as a property of individuals who are, to a greater or lesser extent, an integral part of their social environment (social memory). First, we argue that the understanding of collectivistic memory phenomena may benefit from drawing parallels with current psychological models such as the self-memory system theory of individualistic autobiographical memory. Second, we suggest that the social memory literature may inform the study of trauma-related disorders. We argue that a factual focus induced by collaborative remembering may be beneficial to natural recovery in the immediate aftermath of trauma, and propose that shared remembering techniques may provide a useful addition to the treatment of post-traumatic stress disorder.

  8. Knowledge of memory functions in European and Asian American adults and children: the relation to autobiographical memory.

    Science.gov (United States)

    Wang, Qi; Koh, Jessie Bee Kim; Song, Qingfang; Hou, Yubo

    2015-01-01

    This study investigated explicit knowledge of autobiographical memory functions using a newly developed questionnaire. European and Asian American adults (N = 57) and school-aged children (N = 68) indicated their agreement with 13 statements about why people think about and share memories pertaining to four broad functions-self, social, directive and emotion regulation. Children were interviewed for personal memories concurrently with the memory function knowledge assessment and again 3 months later. It was found that adults agreed to the self, social and directive purposes of memory to a greater extent than did children, whereas European American children agreed to the emotion regulation purposes of memory to a greater extent than did European American adults. Furthermore, European American children endorsed more self and emotion regulation functions than did Asian American children, whereas Asian American adults endorsed more directive functions than did European American adults. Children's endorsement of memory functions, particularly social functions, was associated with more detailed and personally meaningful memories. These findings are informative for the understanding of developmental and cultural influences on memory function knowledge and of the relation of such knowledge to autobiographical memory development.

  9. Distributed-Memory Fast Maximal Independent Set

    Energy Technology Data Exchange (ETDEWEB)

    Kanewala Appuhamilage, Thejaka Amila J.; Zalewski, Marcin J.; Lumsdaine, Andrew

    2017-09-13

    The Maximal Independent Set (MIS) graph problem arises in many applications such as computer vision, information theory, molecular biology, and process scheduling. The growing scale of MIS problems suggests the use of distributed-memory hardware as a cost-effective approach to providing necessary compute and memory resources. Luby proposed four randomized algorithms to solve the MIS problem. All those algorithms are designed focusing on shared-memory machines and are analyzed using the PRAM model. These algorithms do not have direct efficient distributed-memory implementations. In this paper, we extend two of Luby’s seminal MIS algorithms, “Luby(A)” and “Luby(B),” to distributed-memory execution, and we evaluate their performance. We compare our results with the “Filtered MIS” implementation in the Combinatorial BLAS library for two types of synthetic graph inputs.

  10. Implementing Explicit and Finding Implicit Sharing in Embedded DSLs

    Directory of Open Access Journals (Sweden)

    Oleg Kiselyov

    2011-09-01

    Full Text Available Aliasing, or sharing, is prominent in many domains, denoting that two differently-named objects are in fact identical: a change in one object (memory cell, circuit terminal, disk block is instantly reflected in the other. Languages for modelling such domains should let the programmer explicitly define the sharing among objects or expressions. A DSL compiler may find other identical expressions and share them, implicitly. Such common subexpression elimination is crucial to the efficient implementation of DSLs. Sharing is tricky in embedded DSL, since host aliasing may correspond to copying of the underlying objects rather than their sharing. This tutorial summarizes discussions of implementing sharing in Haskell DSLs for automotive embedded systems and hardware description languages. The technique has since been used in a Haskell SAT solver and the DSL for music synthesis. We demonstrate the embedding in pure Haskell of a simple DSL with a language form for explicit sharing. The DSL also has implicit sharing, implemented via hash-consing. Explicit sharing greatly speeds up hash-consing. The seemingly imperative nature of hash-consing is hidden beneath a simple combinator language. The overall implementation remains pure functional and easy to reason about.

  11. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening

    International Nuclear Information System (INIS)

    Sangouard, Nicolas; Simon, Christoph; Afzelius, Mikael; Gisin, Nicolas

    2007-01-01

    We present a detailed analysis of a quantum memory for photons based on controlled and reversible inhomogeneous broadening. The explicit solution of the equations of motion is obtained in the weak excitation regime, making it possible to gain insight into the dependence of the memory efficiency on the optical depth, and on the width and shape of the atomic spectral distributions. We also study a simplified memory protocol which does not require any optical control fields

  12. Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples

    Directory of Open Access Journals (Sweden)

    Hyunok Oh

    2003-05-01

    Full Text Available In multimedia and graphics applications, data samples of nonprimitive type require significant amount of buffer memory. This paper addresses the problem of minimizing the buffer memory requirement for such applications in embedded software synthesis from graphical dataflow programs based on the synchronous dataflow (SDF model with the given execution order of nodes. We propose a memory minimization technique that separates global memory buffers from local pointer buffers: the global buffers store live data samples and the local buffers store the pointers to the global buffer entries. The proposed algorithm reduces 67% memory for a JPEG encoder, 40% for an H.263 encoder compared with unshared versions, and 22% compared with the previous sharing algorithm for the H.263 encoder. Through extensive buffer sharing optimization, we believe that automatic software synthesis from dataflow program graphs achieves the comparable code quality with the manually optimized code in terms of memory requirement.

  13. Memory by association: Integrating memories prolongs retention by two-year-olds.

    Science.gov (United States)

    Hayne, Harlene; Gross, Julien

    2017-02-01

    Recalling one memory often leads to the recollection of other memories that share overlapping features. This phenomenon, spreading activation, was originally documented in studies conducted with verbal adults, and more recently, it has been demonstrated with preverbal infants. Here, we examine the effect of spreading activation on long-term retention by 2-year-olds. Participants were tested in the Visual Recognition Memory (VRM) paradigm and the deferred imitation paradigm. Typically, infants of this age exhibit retention in the VRM paradigm for 24h, while they exhibit retention in the deferred imitation paradigm for at least 8 weeks. In the present experiment, we paired these tasks together during original encoding and tested infants after an 8-week delay. Two-year-olds exhibited retention in both tasks. That is, when these two tasks initially occurred together - one task that is extremely memorable and one that is not - retrieving the memory of the more memorable task cued retrieval of the less memorable task, extending its longevity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Memory, Conviviality and Coexistence

    DEFF Research Database (Denmark)

    Duru, Deniz Neriman

    2016-01-01

    that postulates cohesion and conflict as rooted in ethnic and religious differences. It suggests ‘conviviality’ as the production of space, by arguing that hard times, tensions as well as sensorial pleasures produce a sense of belonging in a place, through shared ways of living. While memories of ‘coexistence......The article explores the narratives and memories of past diversity and current practices of conviviality to investigate how class, lifestyle and tastes affect the daily interactions between people belonging to different ethno-religious backgrounds. This chapter critiques ‘coexistence’ as a concept......’ emphasize the fragmentation of people into ethnic and religious groups as a consequence of the homogenization process in the post-Ottoman Turkish context, bitter sweet memories of conviviality create a sense of belonging to Burgaz....

  15. The Precategorical Nature of Visual Short-Term Memory

    Science.gov (United States)

    Quinlan, Philip T.; Cohen, Dale J.

    2016-01-01

    We conducted a series of recognition experiments that assessed whether visual short-term memory (VSTM) is sensitive to shared category membership of to-be-remembered (tbr) images of common objects. In Experiment 1 some of the tbr items shared the same basic level category (e.g., hand axe): Such items were no better retained than others. In the…

  16. Feature-Based Memory-Driven Attentional Capture: Visual Working Memory Content Affects Visual Attention

    Science.gov (United States)

    Olivers, Christian N. L.; Meijer, Frank; Theeuwes, Jan

    2006-01-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by…

  17. Creating a false memory in the hippocampus.

    Science.gov (United States)

    Ramirez, Steve; Liu, Xu; Lin, Pei-Ann; Suh, Junghyup; Pignatelli, Michele; Redondo, Roger L; Ryan, Tomás J; Tonegawa, Susumu

    2013-07-26

    Memories can be unreliable. We created a false memory in mice by optogenetically manipulating memory engram-bearing cells in the hippocampus. Dentate gyrus (DG) or CA1 neurons activated by exposure to a particular context were labeled with channelrhodopsin-2. These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context, in which a foot shock was never delivered. The recall of this false memory was context-specific, activated similar downstream regions engaged during natural fear memory recall, and was also capable of driving an active fear response. Our data demonstrate that it is possible to generate an internally represented and behaviorally expressed fear memory via artificial means.

  18. Inception of a false memory by optogenetic manipulation of a hippocampal memory engram.

    Science.gov (United States)

    Liu, Xu; Ramirez, Steve; Tonegawa, Susumu

    2014-01-05

    Memories can be easily distorted, and a lack of relevant animal models has largely hindered our understanding of false-memory formation. Here, we first identified a population of cells in the dentate gyrus (DG) of the hippocampus that bear the engrams for a specific context; these cells were naturally activated during the encoding phase of fear conditioning and their artificial reactivation using optogenetics in an unrelated context was sufficient for inducing the fear memory specific to the conditioned context. In a further study, DG or CA1 neurons activated by exposure to a particular context were labelled with channelrhodopsin-2 (ChR2). These neurons were later optically reactivated during fear conditioning in a different context. The DG experimental group showed increased freezing in the original context in which a foot shock was never delivered. The recall of this false memory was context specific, activated similar downstream regions engaged during natural fear-memory recall, and was also capable of driving an active fear response. Together, our data demonstrate that by substituting a natural conditioned stimulus with optogenetically reactivated DG cells that bear contextual memory engrams, it is possible to incept an internally and behaviourally represented false fear memory.

  19. What drives memory-driven attentional capture? The effects of memory type, display type and search type

    NARCIS (Netherlands)

    Olivers, C.N.L.

    2009-01-01

    An important question is whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. Some past research has indicated that they do: Singleton distractors interfered

  20. Susceptibility of memory consolidation during lapses in recall

    Science.gov (United States)

    Marra, Vincenzo; O’Shea, Michael; Benjamin, Paul R.; Kemenes, Ildikó

    2013-01-01

    Memories that can be recalled several hours after learning may paradoxically become inaccessible for brief periods after their formation. This raises major questions about the function of these early memory lapses in the structure of memory consolidation. These questions are difficult to investigate because of the lack of information on the precise timing of lapses. However, the use of a single-trial conditioning paradigm in Lymnaea solves this problem. Here we use electrophysiological and behavioural experiments to reveal lapses in memory recall at 30 min and 2 h post conditioning. We show that only during these lapses is consolidation of long-term memory susceptible to interruption by external disturbance. These shared time points of memory lapse and susceptibility correspond to transitions between different phases of memory that have different molecular requirements. We propose that during periods of molecular transition memory recall is weakened, allowing novel sensory cues to block the consolidation of long-term memory. PMID:23481386

  1. Susceptibility of memory consolidation during lapses in recall.

    Science.gov (United States)

    Marra, Vincenzo; O'Shea, Michael; Benjamin, Paul R; Kemenes, Ildikó

    2013-01-01

    Memories that can be recalled several hours after learning may paradoxically become inaccessible for brief periods after their formation. This raises major questions about the function of these early memory lapses in the structure of memory consolidation. These questions are difficult to investigate because of the lack of information on the precise timing of lapses. However, the use of a single-trial conditioning paradigm in Lymnaea solves this problem. Here we use electrophysiological and behavioural experiments to reveal lapses in memory recall at 30 min and 2 h post conditioning. We show that only during these lapses is consolidation of long-term memory susceptible to interruption by external disturbance. These shared time points of memory lapse and susceptibility correspond to transitions between different phases of memory that have different molecular requirements. We propose that during periods of molecular transition memory recall is weakened, allowing novel sensory cues to block the consolidation of long-term memory.

  2. A highly efficient parallel algorithm for solving the neutron diffusion nodal equations on shared-memory computers

    International Nuclear Information System (INIS)

    Azmy, Y.Y.; Kirk, B.L.

    1990-01-01

    Modern parallel computer architectures offer an enormous potential for reducing CPU and wall-clock execution times of large-scale computations commonly performed in various applications in science and engineering. Recently, several authors have reported their efforts in developing and implementing parallel algorithms for solving the neutron diffusion equation on a variety of shared- and distributed-memory parallel computers. Testing of these algorithms for a variety of two- and three-dimensional meshes showed significant speedup of the computation. Even for very large problems (i.e., three-dimensional fine meshes) executed concurrently on a few nodes in serial (nonvector) mode, however, the measured computational efficiency is very low (40 to 86%). In this paper, the authors present a highly efficient (∼85 to 99.9%) algorithm for solving the two-dimensional nodal diffusion equations on the Sequent Balance 8000 parallel computer. Also presented is a model for the performance, represented by the efficiency, as a function of problem size and the number of participating processors. The model is validated through several tests and then extrapolated to larger problems and more processors to predict the performance of the algorithm in more computationally demanding situations

  3. Dedup Est Machina : Memory Deduplication as an Advanced Exploitation Vector

    NARCIS (Netherlands)

    Bosman, Erik; Razavi, Kaveh; Bos, Herbert; Giuffrida, Cristiano

    2016-01-01

    Memory deduplication, a well-known technique to reduce the memory footprint across virtual machines, is now also a default-on feature inside the Windows 8.1 and Windows 10 operating systems. Deduplication maps multiple identical copies of a physical page onto a single shared copy with copy-on-write

  4. Novel energy sharing collisions of multicomponent solitons

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... Abstract. In this paper, we discuss the fascinating energy sharing collisions of multicomponent solitons in certain incoherently coupled and coherently coupled nonlinear Schrödinger-type equations arising in the context of nonlinear optics.

  5. Higher iridescent-to-pigment optical effect in flowers facilitates learning, memory and generalization in foraging bumblebees.

    Science.gov (United States)

    de Premorel, Géraud; Giurfa, Martin; Andraud, Christine; Gomez, Doris

    2017-10-25

    Iridescence-change of colour with changes in the angle of view or of illumination-is widespread in the living world, but its functions remain poorly understood. The presence of iridescence has been suggested in flowers where diffraction gratings generate iridescent colours. Such colours have been suggested to serve plant-pollinator communication. Here we tested whether a higher iridescence relative to corolla pigmentation would facilitate discrimination, learning and retention of iridescent visual targets. We conditioned bumblebees ( Bombus terrestris ) to discriminate iridescent from non-iridescent artificial flowers and we varied iridescence detectability by varying target iridescent relative to pigment optical effect. We show that bees rewarded on targets with higher iridescent relative to pigment effect required fewer choices to complete learning, showed faster generalization to novel targets exhibiting the same iridescence-to-pigment level and had better long-term memory retention. Along with optical measurements, behavioural results thus demonstrate that bees can learn iridescence-related cues as bona fide signals for flower reward. They also suggest that floral advertising may be shaped by competition between iridescence and corolla pigmentation, a fact that has important evolutionary implications for pollinators. Optical measurements narrow down the type of cues that bees may have used for learning. Beyond pollinator-plant communication, our experiments help understanding how receivers influence the evolution of iridescence signals generated by gratings. © 2017 The Author(s).

  6. Short-term memory for tactile and temporal stimuli in a shared-attention recall task.

    Science.gov (United States)

    Bowers, R L; Mollenhauer, M S; Luxford, J

    1990-06-01

    The present study examined short-term memory for tactile and temporal stimuli. Subjects were required to touch three-dimensional sample objects of different shapes and textures, presented for three durations: short, medium, or long. After the sample duration elapsed, a retention interval (5 sec.-20 sec.) occurred followed by a recall test for one of the sample dimensions of shape, texture, or time, across trials. Analysis showed that accuracy for shape and texture was high throughout testing (95-99%), but memory for perceived duration was relatively poor (60%). Further analysis indicated that poor recall on the time dimension was isolated to the medium and long samples; accuracy for short durations was consistently high (90%). In addition, a reliable response bias emerged; subjects recalled durations shorter than the actual duration presented. The results were discussed in terms of two lines of research, one indicating that haptic short-term memory is strong relative to other memory systems, and the other suggesting that the choose-short bias occurs across species.

  7. Distributed Sharing of Functionalities and Resources in Survivable GMPLS-controlled WSONs

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Cerutti, I.; Muñoz, R.

    2012-01-01

    Sharing of functionalities and sharing of network resources are effective solutions for improving the cost-effectiveness of wavelength-switched optical networks (WSONs). Such cost-effectiveness should be pursued together with the objective of ensuring the requested level of performance at the phy...

  8. Memory bottlenecks and memory contention in multi-core Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Tramm, J.R.; Siegel, A.R.

    2013-01-01

    The simulation of whole nuclear cores through the use of Monte Carlo codes requires an impracticably long time-to-solution. We have extracted a kernel that executes only the most computationally expensive steps of the Monte Carlo particle transport algorithm - the calculation of macroscopic cross sections - in an effort to expose bottlenecks within multi-core, shared memory architectures. (authors)

  9. Social Transmission of False Memory in Small Groups and Large Networks.

    Science.gov (United States)

    Maswood, Raeya; Rajaram, Suparna

    2018-05-21

    Sharing information and memories is a key feature of social interactions, making social contexts important for developing and transmitting accurate memories and also false memories. False memory transmission can have wide-ranging effects, including shaping personal memories of individuals as well as collective memories of a network of people. This paper reviews a collection of key findings and explanations in cognitive research on the transmission of false memories in small groups. It also reviews the emerging experimental work on larger networks and collective false memories. Given the reconstructive nature of memory, the abundance of misinformation in everyday life, and the variety of social structures in which people interact, an understanding of transmission of false memories has both scientific and societal implications. © 2018 Cognitive Science Society, Inc.

  10. Raman scheme for adjustable-bandwidth quantum memory

    International Nuclear Information System (INIS)

    Le Goueet, J.-L.; Berman, P. R.

    2009-01-01

    We propose a scenario of quantum memory for light based on Raman scattering. The storage medium is a vapor and the different spectral components of the input pulse are stored in different atomic velocity classes. One uses appropriate pulses to reverse the resulting Doppler phase shift and to regenerate the input pulse, without distortion, in the backward direction. The different stages of the protocol are detailed and the recovery efficiency is calculated in the semiclassical picture. Since the memory bandwidth is determined by the Raman transition Doppler width, it can be adjusted by changing the angle between the input pulse wave vector and the control beams. The optical depth also depends on the beam angle. As a consequence the available optical depth can be optimized depending on the needed bandwidth. The predicted recovery efficiency is close to 100% for large optical depth.

  11. Parallel discrete ordinates algorithms on distributed and common memory systems

    International Nuclear Information System (INIS)

    Wienke, B.R.; Hiromoto, R.E.; Brickner, R.G.

    1987-01-01

    The S/sub n/ algorithm employs iterative techniques in solving the linear Boltzmann equation. These methods, both ordered and chaotic, were compared on both the Denelcor HEP and the Intel hypercube. Strategies are linked to the organization and accessibility of memory (common memory versus distributed memory architectures), with common concern for acquisition of global information. Apart from this, the inherent parallelism of the algorithm maps directly onto the two architectures. Results comparing execution times, speedup, and efficiency are based on a representative 16-group (full upscatter and downscatter) sample problem. Calculations were performed on both the Los Alamos National Laboratory (LANL) Denelcor HEP and the LANL Intel hypercube. The Denelcor HEP is a 64-bit multi-instruction, multidate MIMD machine consisting of up to 16 process execution modules (PEMs), each capable of executing 64 processes concurrently. Each PEM can cooperate on a job, or run several unrelated jobs, and share a common global memory through a crossbar switch. The Intel hypercube, on the other hand, is a distributed memory system composed of 128 processing elements, each with its own local memory. Processing elements are connected in a nearest-neighbor hypercube configuration and sharing of data among processors requires execution of explicit message-passing constructs

  12. Why are you telling me that? A conceptual model of the social function of autobiographical memory.

    Science.gov (United States)

    Alea, Nicole; Bluck, Susan

    2003-03-01

    In an effort to stimulate and guide empirical work within a functional framework, this paper provides a conceptual model of the social functions of autobiographical memory (AM) across the lifespan. The model delineates the processes and variables involved when AMs are shared to serve social functions. Components of the model include: lifespan contextual influences, the qualitative characteristics of memory (emotionality and level of detail recalled), the speaker's characteristics (age, gender, and personality), the familiarity and similarity of the listener to the speaker, the level of responsiveness during the memory-sharing process, and the nature of the social relationship in which the memory sharing occurs (valence and length of the relationship). These components are shown to influence the type of social function served and/or, the extent to which social functions are served. Directions for future empirical work to substantiate the model and hypotheses derived from the model are provided.

  13. Center for Adaptive Optics | Software

    Science.gov (United States)

    Optics Software The Center for Adaptive Optics acts as a clearing house for distributing Software to Institutes it gives specialists in Adaptive Optics a place to distribute their software. All software is shared on an "as-is" basis and the users should consult with the software authors with any

  14. Division of attention as a function of the number of steps, visual shifts, and memory load

    Science.gov (United States)

    Chechile, R. A.; Butler, K.; Gutowski, W.; Palmer, E. A.

    1986-01-01

    The effects on divided attention of visual shifts and long-term memory retrieval during a monitoring task are considered. A concurrent vigilance task was standardized under all experimental conditions. The results show that subjects can perform nearly perfectly on all of the time-shared tasks if long-term memory retrieval is not required for monitoring. With the requirement of memory retrieval, however, there was a large decrease in accuracy for all of the time-shared activities. It was concluded that the attentional demand of longterm memory retrieval is appreciable (even for a well-learned motor sequence), and thus memory retrieval results in a sizable reduction in the capability of subjects to divide their attention. A selected bibliography on the divided attention literature is provided.

  15. Can Web 2.0 shape meta-memory?

    OpenAIRE

    Sá, Alberto

    2009-01-01

    The social features of recent Web 2.0 technologies applications can bear a strong relationship to memory production and can help to shape personal identity through emotional connections by synchronizing people’s subjective experiences. When added to life, the proliferation of mechanical memory, experienced and produced by technology, makes for a new type of shared awareness. Therefore, we should look at these tools as instruments of reminiscence and as creative mnemonic aids. The input of ...

  16. Memory bias for negative emotional words in recognition memory is driven by effects of category membership.

    Science.gov (United States)

    White, Corey N; Kapucu, Aycan; Bruno, Davide; Rotello, Caren M; Ratcliff, Roger

    2014-01-01

    Recognition memory studies often find that emotional items are more likely than neutral items to be labelled as studied. Previous work suggests this bias is driven by increased memory strength/familiarity for emotional items. We explored strength and bias interpretations of this effect with the conjecture that emotional stimuli might seem more familiar because they share features with studied items from the same category. Categorical effects were manipulated in a recognition task by presenting lists with a small, medium or large proportion of emotional words. The liberal memory bias for emotional words was only observed when a medium or large proportion of categorised words were presented in the lists. Similar, though weaker, effects were observed with categorised words that were not emotional (animal names). These results suggest that liberal memory bias for emotional items may be largely driven by effects of category membership.

  17. Peak performance: remote memory revisited

    NARCIS (Netherlands)

    Mühleisen, H.; Gonçalves, R.; Kersten, M.; Johnson, R.; Kemper, A.

    2013-01-01

    Many database systems share a need for large amounts of fast storage. However, economies of scale limit the utility of extending a single machine with an arbitrary amount of memory. The recent broad availability of the zero-copy data transfer protocol RDMA over low-latency and high-throughput

  18. Developmental Differences in the Use of Recognition Memory Rejection Mechanisms

    Science.gov (United States)

    Odegard, Timothy N.; Jenkins, Kara M.; Koen, Joshua D.

    2010-01-01

    The current experiment examined the use of plausibility judgments by children to reject distractors presented on "yes/no" recognition memory tests. Participants studied two lists of word pairs that shared either a categorical or rhyme association, which constituted the global nature of the two study conditions. During the recognition memory tests,…

  19. Optically controlled multiple switching operations of DNA biopolymer devices

    International Nuclear Information System (INIS)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu; Fruk, Ljiljana; Hung, Yu-Chueh

    2015-01-01

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices

  20. Optically controlled multiple switching operations of DNA biopolymer devices

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Fruk, Ljiljana [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Hung, Yu-Chueh, E-mail: ychung@ee.nthu.edu.tw [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  1. Effects of motor congruence on visual working memory.

    Science.gov (United States)

    Quak, Michel; Pecher, Diane; Zeelenberg, Rene

    2014-10-01

    Grounded-cognition theories suggest that memory shares processing resources with perception and action. The motor system could be used to help memorize visual objects. In two experiments, we tested the hypothesis that people use motor affordances to maintain object representations in working memory. Participants performed a working memory task on photographs of manipulable and nonmanipulable objects. The manipulable objects were objects that required either a precision grip (i.e., small items) or a power grip (i.e., large items) to use. A concurrent motor task that could be congruent or incongruent with the manipulable objects caused no difference in working memory performance relative to nonmanipulable objects. Moreover, the precision- or power-grip motor task did not affect memory performance on small and large items differently. These findings suggest that the motor system plays no part in visual working memory.

  2. Transcranial magnetic stimulation of visual cortex in memory: cortical state, interference and reactivation of visual content in memory.

    Science.gov (United States)

    van de Ven, Vincent; Sack, Alexander T

    2013-01-01

    Memory for perceptual events includes the neural representation of the sensory information at short or longer time scales. Recent transcranial magnetic stimulation (TMS) studies of human visual cortex provided evidence that sensory cortex contributes to memory functions. In this review, we provide an exhaustive overview of these studies and ascertain how well the available evidence supports the idea of a causal role of sensory cortex in memory retention and retrieval. We discuss the validity and implications of the studies using a number of methodological and theoretical criteria that are relevant for brain stimulation of visual cortex. While most studies applied TMS to visual cortex to interfere with memory functions, a handful of pioneering studies used TMS to 'reactivate' memories in visual cortex. Interestingly, similar effects of TMS on memory were found in different memory tasks, which suggests that different memory systems share a neural mechanism of memory in visual cortex. At the same time, this neural mechanism likely interacts with higher order brain areas. Based on this overview and evaluation, we provide a first attempt to an integrative framework that describes how sensory processes contribute to memory in visual cortex, and how higher order areas contribute to this mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. KCNQ channels regulate age-related memory impairment.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans KCNQ2/3 heteromeric channels form an M-current that acts as a brake on neuronal excitability, with mutations causing a form of epilepsy. The M-current has been shown to be a key regulator of neuronal plasticity underlying associative memory and ethanol response in mammals. Previous work has shown that many of the molecules and plasticity mechanisms underlying changes in alcohol behaviour and addiction are shared with those of memory. We show that the single KCNQ channel in Drosophila (dKCNQ when mutated show decrements in associative short- and long-term memory, with KCNQ function in the mushroom body α/βneurons being required for short-term memory. Ethanol disrupts memory in wildtype flies, but not in a KCNQ null mutant background suggesting KCNQ maybe a direct target of ethanol, the blockade of which interferes with the plasticity machinery required for memory formation. We show that as in humans, Drosophila display age-related memory impairment with the KCNQ mutant memory defect mimicking the effect of age on memory. Expression of KCNQ normally decreases in aging brains and KCNQ overexpression in the mushroom body neurons of KCNQ mutants restores age-related memory impairment. Therefore KCNQ is a central plasticity molecule that regulates age dependent memory impairment.

  4. Three-dimensional theory of quantum memories based on Λ-type atomic ensembles

    International Nuclear Information System (INIS)

    Zeuthen, Emil; Grodecka-Grad, Anna; Soerensen, Anders S.

    2011-01-01

    We develop a three-dimensional theory for quantum memories based on light storage in ensembles of Λ-type atoms, where two long-lived atomic ground states are employed. We consider light storage in an ensemble of finite spatial extent and we show that within the paraxial approximation the Fresnel number of the atomic ensemble and the optical depth are the only important physical parameters determining the quality of the quantum memory. We analyze the influence of these parameters on the storage of light followed by either forward or backward read-out from the quantum memory. We show that for small Fresnel numbers the forward memory provides higher efficiencies, whereas for large Fresnel numbers the backward memory is advantageous. The optimal light modes to store in the memory are presented together with the corresponding spin waves and outcoming light modes. We show that for high optical depths such Λ-type atomic ensembles allow for highly efficient backward and forward memories even for small Fresnel numbers F(greater-or-similar sign)0.1.

  5. Distributed-memory matrix computations

    DEFF Research Database (Denmark)

    Balle, Susanne Mølleskov

    1995-01-01

    The main goal of this project is to investigate, develop, and implement algorithms for numerical linear algebra on parallel computers in order to acquire expertise in methods for parallel computations. An important motivation for analyzaing and investigating the potential for parallelism in these......The main goal of this project is to investigate, develop, and implement algorithms for numerical linear algebra on parallel computers in order to acquire expertise in methods for parallel computations. An important motivation for analyzaing and investigating the potential for parallelism...... in these algorithms is that many scientific applications rely heavily on the performance of the involved dense linear algebra building blocks. Even though we consider the distributed-memory as well as the shared-memory programming paradigm, the major part of the thesis is dedicated to distributed-memory architectures....... We emphasize distributed-memory massively parallel computers - such as the Connection Machines model CM-200 and model CM-5/CM-5E - available to us at UNI-C and at Thinking Machines Corporation. The CM-200 was at the time this project started one of the few existing massively parallel computers...

  6. Memory for Light as a Quantum Process

    International Nuclear Information System (INIS)

    Lobino, M.; Kupchak, C.; Lvovsky, A. I.; Figueroa, E.

    2009-01-01

    We report complete characterization of an optical memory based on electromagnetically induced transparency. We recover the superoperator associated with the memory, under two different working conditions, by means of a quantum process tomography technique that involves storage of coherent states and their characterization upon retrieval. In this way, we can predict the quantum state retrieved from the memory for any input, for example, the squeezed vacuum or the Fock state. We employ the acquired superoperator to verify the nonclassicality benchmark for the storage of a Gaussian distributed set of coherent states.

  7. Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations

    Science.gov (United States)

    Kim, Woo Young; Kim, Hyeon-Don; Kim, Teun-Teun; Park, Hyun-Sung; Lee, Kanghee; Choi, Hyun Joo; Lee, Seung Hoon; Son, Jaehyeon; Park, Namkyoo; Min, Bumki

    2016-01-01

    Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.

  8. A Hybrid Approach to Processing Big Data Graphs on Memory-Restricted Systems

    KAUST Repository

    Harshvardhan,; West, Brandon; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence

    2015-01-01

    that sacrifice performance. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into sub graphs that fit in RAM

  9. Ad Hoc Categories and False Memories: Memory Illusions for Categories Created On-The-Spot

    Science.gov (United States)

    Soro, Jerônimo C.; Ferreira, Mário B.; Semin, Gün R.; Mata, André; Carneiro, Paula

    2017-01-01

    Three experiments were designed to test whether experimentally created ad hoc associative networks evoke false memories. We used the DRM (Deese, Roediger, McDermott) paradigm with lists of ad hoc categories composed of exemplars aggregated toward specific goals (e.g., going for a picnic) that do not share any consistent set of features. Experiment…

  10. Universal algorithm of time sharing

    International Nuclear Information System (INIS)

    Silin, I.N.; Fedyun'kin, E.D.

    1979-01-01

    Timesharing system algorithm is proposed for the wide class of one- and multiprocessor computer configurations. Dynamical priority is the piece constant function of the channel characteristic and system time quantum. The interactive job quantum has variable length. Characteristic recurrent formula is received. The concept of the background job is introduced. Background job loads processor if high priority jobs are inactive. Background quality function is given on the base of the statistical data received in the timesharing process. Algorithm includes optimal trashing off procedure for the jobs replacements in the memory. Sharing of the system time in proportion to the external priorities is guaranteed for the all active enough computing channels (back-ground too). The fast answer is guaranteed for the interactive jobs, which use small time and memory. The external priority control is saved for the high level scheduler. The experience of the algorithm realization on the BESM-6 computer in JINR is discussed

  11. Personal semantics: at the crossroads of semantic and episodic memory.

    Science.gov (United States)

    Renoult, Louis; Davidson, Patrick S R; Palombo, Daniela J; Moscovitch, Morris; Levine, Brian

    2012-11-01

    Declarative memory is usually described as consisting of two systems: semantic and episodic memory. Between these two poles, however, may lie a third entity: personal semantics (PS). PS concerns knowledge of one's past. Although typically assumed to be an aspect of semantic memory, it is essentially absent from existing models of knowledge. Furthermore, like episodic memory (EM), PS is idiosyncratically personal (i.e., not culturally-shared). We show that, depending on how it is operationalized, the neural correlates of PS can look more similar to semantic memory, more similar to EM, or dissimilar to both. We consider three different perspectives to better integrate PS into existing models of declarative memory and suggest experimental strategies for disentangling PS from semantic and episodic memory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Unique and shared validity of the "Wechsler logical memory test", the "California verbal learning test", and the "verbal learning and memory test" in patients with epilepsy.

    Science.gov (United States)

    Helmstaedter, Christoph; Wietzke, Jennifer; Lutz, Martin T

    2009-12-01

    This study was set-up to evaluate the construct validity of three verbal memory tests in epilepsy patients. Sixty-one consecutively evaluated patients with temporal lobe epilepsy (TLE) or extra-temporal epilepsy (E-TLE) underwent testing with the verbal learning and memory test (VLMT, the German equivalent of the Rey auditory verbal learning test, RAVLT); the California verbal learning test (CVLT); the logical memory and digit span subtests of the Wechsler memory scale, revised (WMS-R); and testing of intelligence, attention, speech and executive functions. Factor analysis of the memory tests resulted in test-specific rather than test over-spanning factors. Parameters of the CVLT and WMS-R, and to a much lesser degree of the VLMT, were highly correlated with attention, language function and vocabulary. Delayed recall measures of logical memory and the VLMT differentiated TLE from E-TLE. Learning and memory scores off all three tests differentiated mesial temporal sclerosis from other pathologies. A lateralization of the epilepsy was possible only for a subsample of 15 patients with mesial TLE. Although the three tests provide overlapping indicators for a temporal lobe epilepsy or a mesial pathology, they can hardly be taken in exchange. The tests have different demands on semantic processing and memory organization, and they appear differentially sensitive to performance in non-memory domains. The tests capability to lateralize appears to be poor. The findings encourage the further discussion of the dependency of memory outcomes on test selection.

  13. Optical microscope study of the γ(FCC)ε(HC) martensitic transformation of a Fe-16%Mn-9%Cr-5%Si-4%Ni shape memory alloy

    International Nuclear Information System (INIS)

    Bergeon, N.; Guenin, G.

    1995-01-01

    The γ(FCC) ε(HC) transformation is studied by light optical microscopy and scanning electron microscopy in a polycrystalline Fe-Mn-Si-Cr-Ni shape memory alloy. Thermal and stress-induced martensites are both studied to point out differences. A color etching method permitted to clearly observe morphological evolutions during the transformation and its reversion. Deformations of a golden microgrid deposed on austenitic samples are observed by SEM during the transformation. This technic has led to point out microscopic differences concerning the two kinds of martensite. SEM results are used to explain light optical microscopy observations. (orig.)

  14. A compact PE memory for vision chips

    Science.gov (United States)

    Cong, Shi; Zhe, Chen; Jie, Yang; Nanjian, Wu; Zhihua, Wang

    2014-09-01

    This paper presents a novel compact memory in the processing element (PE) for single-instruction multiple-data (SIMD) vision chips. The PE memory is constructed with 8 × 8 register cells, where one latch in the slave stage is shared by eight latches in the master stage. The memory supports simultaneous read and write on the same address in one clock cycle. Its compact area of 14.33 μm2/bit promises a higher integration level of the processor. A prototype chip with a 64 × 64 PE array is fabricated in a UMC 0.18 μm CMOS technology. Five types of the PE memory cell structure are designed and compared. The testing results demonstrate that the proposed PE memory architecture well satisfies the requirement of the vision chip in high-speed real-time vision applications, such as 1000 fps edge extraction.

  15. A compact PE memory for vision chips

    International Nuclear Information System (INIS)

    Shi Cong; Chen Zhe; Yang Jie; Wu Nanjian; Wang Zhihua

    2014-01-01

    This paper presents a novel compact memory in the processing element (PE) for single-instruction multiple-data (SIMD) vision chips. The PE memory is constructed with 8 × 8 register cells, where one latch in the slave stage is shared by eight latches in the master stage. The memory supports simultaneous read and write on the same address in one clock cycle. Its compact area of 14.33 μm 2 /bit promises a higher integration level of the processor. A prototype chip with a 64 × 64 PE array is fabricated in a UMC 0.18 μm CMOS technology. Five types of the PE memory cell structure are designed and compared. The testing results demonstrate that the proposed PE memory architecture well satisfies the requirement of the vision chip in high-speed real-time vision applications, such as 1000 fps edge extraction. (semiconductor integrated circuits)

  16. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    Science.gov (United States)

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations. © 2015 Wiley Periodicals, Inc.

  17. Challenge in Sharing Tacit Knowledge: Academicians’ Behavior towards Developing A Web Portal for Sharing Research Ideas

    Directory of Open Access Journals (Sweden)

    Hafiza Adenan

    2013-08-01

    Full Text Available Academicians’ collective memories soft information, such as research ideas, expertise, experiences, academic skills, know-what, know-how and know-why which inevitability it is considered should made accessible. The Higher Education Institution needs to identify, collect, classify, verbalize and diffuse the academicians’ soft information specifically research ideas present in the university for knowledge enrichment. This can be implemented by the academicians actively sharing their research ideas with others. Actively sharing research ideas by academicians will have great impact on the enrichment of their intellectual capability as most of the valuable knowledge resides in one’s brain. However, as there is no specific medium to bring their research ideas into the surface and be visible to others, the precious research ideas still remain in the academicians’ brains. Therefore, the objective of the study is to explore academicians’ behavior toward the development of a sharing research ideas web portal at private university colleges in Malaysia. This study used the qualitative method that is a multiple cases study. The study refers to four private university colleges in Malaysia. In-depth interview, focus group discussion and document analysis were formed the data collection for this study. The theory of Planned Behavior by Ajzen (1991 was used to determine academicians’ behavior. This study showed that the academicians’ attitude, subjective norms, and perceived behavioral control towards developing a web portal for sharing research ideas all affect their intention to share their research ideas with others.

  18. Getting connected: Both associative and semantic links structure semantic memory for newly learned persons.

    Science.gov (United States)

    Wiese, Holger; Schweinberger, Stefan R

    2015-01-01

    The present study examined whether semantic memory for newly learned people is structured by visual co-occurrence, shared semantics, or both. Participants were trained with pairs of simultaneously presented (i.e., co-occurring) preexperimentally unfamiliar faces, which either did or did not share additionally provided semantic information (occupation, place of living, etc.). Semantic information could also be shared between faces that did not co-occur. A subsequent priming experiment revealed faster responses for both co-occurrence/no shared semantics and no co-occurrence/shared semantics conditions, than for an unrelated condition. Strikingly, priming was strongest in the co-occurrence/shared semantics condition, suggesting additive effects of these factors. Additional analysis of event-related brain potentials yielded priming in the N400 component only for combined effects of visual co-occurrence and shared semantics, with more positive amplitudes in this than in the unrelated condition. Overall, these findings suggest that both semantic relatedness and visual co-occurrence are important when novel information is integrated into person-related semantic memory.

  19. Comparative Evaluation and Case Studies of Shared-Memory and Data-Parallel Execution Patterns

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhang

    1999-01-01

    Full Text Available Shared‐memory and data‐parallel programming models are two important paradigms for scientific applications. Both models provide high‐level program abstractions, and simple and uniform views of network structures. The common features of the two models significantly simplify program coding and debugging for scientific applications. However, the underlining execution and overhead patterns are significantly different between the two models due to their programming constraints, and due to different and complex structures of interconnection networks and systems which support the two models. We performed this experimental study to present implications and comparisons of execution patterns on two commercial architectures. We implemented a standard electromagnetic simulation program (EM and a linear system solver using the shared‐memory model on the KSR‐1 and the data‐parallel model on the CM‐5. Our objectives are to examine the execution pattern changes required for an implementation transformation between the two models; to study memory access patterns; to address scalability issues; and to investigate relative costs and advantages/disadvantages of using the two models for scientific computations. Our results indicate that the EM program tends to become computation‐intensive in the KSR‐1 shared‐memory system, and memory‐demanding in the CM‐5 data‐parallel system when the systems and the problems are scaled. The EM program, a highly data‐parallel program performed extremely well, and the linear system solver, a highly control‐structured program suffered significantly in the data‐parallel model on the CM‐5. Our study provides further evidence that matching execution patterns of algorithms to parallel architectures would achieve better performance.

  20. Packaged and hybrid integrated all-optical flip-flop memory

    NARCIS (Netherlands)

    Liu, Y.; McDougall, R.; Hill, M.T.; Maxwell, G.D.; Zhang, S.; Harmon, R.; Huijskens, Frans; Rivers, L.; Dorren, H.J.S.; Poustie, A.

    2006-01-01

    A fully-packaged hybrid-integrated all-optical flip-flop, where InP-based semiconductor optical amplifiers are assembled onto a planar silica waveguide board, is demonstrated. It is shown experimentally that the flip-flop can dynamically toggle between its two states by injecting 150 ps optical

  1. Meeting Organizational Performance with Shared Knowledge Management Processes

    OpenAIRE

    Franco, Massimo; Mariano, Stefania

    2010-01-01

    Using empirical research data, this study investigated how knowledge is stored and retrieved in an American company and contributed to the growing body of literature on the use of knowledge, technology, and memory systems to improve organizational performance. It demonstrated the importance of individual motivation and efforts, managerial capabilities, and shared organizational technologies in the management of organizational processes and revealed factors influencing the processes of knowled...

  2. SODR Memory Control Buffer Control ASIC

    Science.gov (United States)

    Hodson, Robert F.

    1994-01-01

    The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.

  3. PGHPF – An Optimizing High Performance Fortran Compiler for Distributed Memory Machines

    Directory of Open Access Journals (Sweden)

    Zeki Bozkus

    1997-01-01

    Full Text Available High Performance Fortran (HPF is the first widely supported, efficient, and portable parallel programming language for shared and distributed memory systems. HPF is realized through a set of directive-based extensions to Fortran 90. It enables application developers and Fortran end-users to write compact, portable, and efficient software that will compile and execute on workstations, shared memory servers, clusters, traditional supercomputers, or massively parallel processors. This article describes a production-quality HPF compiler for a set of parallel machines. Compilation techniques such as data and computation distribution, communication generation, run-time support, and optimization issues are elaborated as the basis for an HPF compiler implementation on distributed memory machines. The performance of this compiler on benchmark programs demonstrates that high efficiency can be achieved executing HPF code on parallel architectures.

  4. A single-atom quantum memory.

    Science.gov (United States)

    Specht, Holger P; Nölleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard

    2011-05-12

    The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180  microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.

  5. Trinary Associative Memory Would Recognize Machine Parts

    Science.gov (United States)

    Liu, Hua-Kuang; Awwal, Abdul Ahad S.; Karim, Mohammad A.

    1991-01-01

    Trinary associative memory combines merits and overcomes major deficiencies of unipolar and bipolar logics by combining them in three-valued logic that reverts to unipolar or bipolar binary selectively, as needed to perform specific tasks. Advantage of associative memory: one obtains access to all parts of it simultaneously on basis of content, rather than address, of data. Consequently, used to exploit fully parallelism and speed of optical computing.

  6. What Drives Memory-Driven Attentional Capture? The Effects of Memory Type, Display Type, and Search Type

    Science.gov (United States)

    Olivers, Christian N. L.

    2009-01-01

    An important question is whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. Some past research has indicated that they do: Singleton distractors interfered more strongly with a visual search task when they…

  7. Optical modular arithmetic

    Science.gov (United States)

    Pavlichin, Dmitri S.; Mabuchi, Hideo

    2014-06-01

    Nanoscale integrated photonic devices and circuits offer a path to ultra-low power computation at the few-photon level. Here we propose an optical circuit that performs a ubiquitous operation: the controlled, random-access readout of a collection of stored memory phases or, equivalently, the computation of the inner product of a vector of phases with a binary selector" vector, where the arithmetic is done modulo 2pi and the result is encoded in the phase of a coherent field. This circuit, a collection of cascaded interferometers driven by a coherent input field, demonstrates the use of coherence as a computational resource, and of the use of recently-developed mathematical tools for modeling optical circuits with many coupled parts. The construction extends in a straightforward way to the computation of matrix-vector and matrix-matrix products, and, with the inclusion of an optical feedback loop, to the computation of a weighted" readout of stored memory phases. We note some applications of these circuits for error correction and for computing tasks requiring fast vector inner products, e.g. statistical classification and some machine learning algorithms.

  8. Bidirectional Modulation of Recognition Memory.

    Science.gov (United States)

    Ho, Jonathan W; Poeta, Devon L; Jacobson, Tara K; Zolnik, Timothy A; Neske, Garrett T; Connors, Barry W; Burwell, Rebecca D

    2015-09-30

    Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects. For example, animals and humans with perirhinal damage are unable to distinguish familiar from novel objects in recognition memory tasks. In the normal brain, perirhinal neurons respond to novelty and familiarity by increasing or decreasing firing rates. Recent work also implicates oscillatory activity in the low-beta and low-gamma frequency bands in sensory detection, perception, and recognition. Using optogenetic methods in a spontaneous object exploration (SOR) task, we altered recognition memory performance in rats. In the SOR task, normal rats preferentially explore novel images over familiar ones. We modulated exploratory behavior in this task by optically stimulating channelrhodopsin-expressing perirhinal neurons at various frequencies while rats looked at novel or familiar 2D images. Stimulation at 30-40 Hz during looking caused rats to treat a familiar image as if it were novel by increasing time looking at the image. Stimulation at 30-40 Hz was not effective in increasing exploration of novel images. Stimulation at 10-15 Hz caused animals to treat a novel image as familiar by decreasing time looking at the image, but did not affect looking times for images that were already familiar. We conclude that optical stimulation of PER at different frequencies can alter visual recognition memory bidirectionally. Significance statement: Recognition of novelty and familiarity are important for learning, memory, and decision making. Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects, but how novelty and familiarity are encoded and transmitted in the brain is not known. Perirhinal neurons respond to novelty and familiarity by changing firing rates, but recent work suggests that brain oscillations may also be important for recognition. In this study, we showed that stimulation of

  9. Shared Variable Oriented Parallel Precompiler for SPMD Model

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    For the moment,commercial parallel computer systems with distributed memory architecture are usually provided with parallel FORTRAN or parallel C compliers,which are just traditional sequential FORTRAN or C compilers expanded with communication statements.Programmers suffer from writing parallel programs with communication statements. The Shared Variable Oriented Parallel Precompiler (SVOPP) proposed in this paper can automatically generate appropriate communication statements based on shared variables for SPMD(Single Program Multiple Data) computation model and greatly ease the parallel programming with high communication efficiency.The core function of parallel C precompiler has been successfully verified on a transputer-based parallel computer.Its prominent performance shows that SVOPP is probably a break-through in parallel programming technique.

  10. Synthesis & Studies of New Non-Destructive Read-Out Materials for Optical Storage and Optical Switches

    National Research Council Canada - National Science Library

    Rentzepis, Peter M

    2005-01-01

    .... The optical, chemical and spectroscopic properties of this non-destructive write/read/erase computer memory material have been studied This organic storage system consists of two different molecular...

  11. From Nose to Memory: The Involuntary Nature of Odor-evoked Autobiographical Memories in Alzheimer's Disease.

    Science.gov (United States)

    El Haj, Mohamad; Gandolphe, Marie Charlotte; Gallouj, Karim; Kapogiannis, Dimitrios; Antoine, Pascal

    2017-12-25

    Research suggests that odors may serve as a potent cue for autobiographical retrieval. We tested this hypothesis in Alzheimer's disease (AD) and investigated whether odor-evoked autobiographical memory is an involuntary process that shares similarities with music-evoked autobiographical memory. Participants with mild AD and controls were asked to retrieve 2 personal memories after odor exposure, after music exposure, and in an odor-and music-free condition. AD participants showed better specificity, emotional experience, mental time travel, and retrieval time after odor and music exposure than in the control condition. Similar beneficial effects of odor and music exposure were observed for autobiographical characteristics (i.e., specificity, emotional experience, and mental time travel), except for retrieval time which was more improved after odor than after music exposure. Interestingly, regression analyses suggested executive involvement in memories evoked in the control condition but not in those evoked after music or odor exposure. These findings suggest the involuntary nature of odor-evoked autobiographical memory in AD. They also suggest that olfactory cuing could serve as a useful and ecologically valid tool to stimulate autobiographical memory, at least in the mild stage of the disease. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    Science.gov (United States)

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  13. Single-cell atomic quantum memory for light

    International Nuclear Information System (INIS)

    Opatrny, Tomas

    2006-01-01

    Recent experiments demonstrating atomic quantum memory for light [B. Julsgaard et al., Nature 432, 482 (2004)] involve two macroscopic samples of atoms, each with opposite spin polarization. It is shown here that a single atomic cell is enough for the memory function if the atoms are optically pumped with suitable linearly polarized light, and quadratic Zeeman shift and/or ac Stark shift are used to manipulate rotations of the quadratures. This should enhance the performance of our quantum memory devices since less resources are needed and losses of light in crossing different media boundaries are avoided

  14. Memory-assisted measurement-device-independent quantum key distribution

    Science.gov (United States)

    Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert

    2014-04-01

    A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations.

  15. Memory-assisted measurement-device-independent quantum key distribution

    International Nuclear Information System (INIS)

    Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert

    2014-01-01

    A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations. (paper)

  16. Memory transition between communicating agents

    Directory of Open Access Journals (Sweden)

    Elena FELL

    2012-01-01

    Full Text Available What happens to a memory when it has been externalised and embodied but has not reached its addressee yet? A letter that has been written but has not been read, a monument before it is unveiled or a Neolithic tool buried in the ground – all these objects harbour human memories engrained in their physicality; messages intended for those who will read the letter, admire the monument and hold the tool. According to Ilyenkov’s theory of objective idealism, the conscious and wilful input encoded in all manmade objects as the ‘ideal’ has an objective existence, independent from the author, but this existence lasts only while memories are shared between communicating parties. If all human minds were absent from the world for a period of time, the ‘ideal’, or memories, would cease to exist. They would spring back to existence, however, once humans re-entered the world. Ilyenkov’s analysis of memories existing outside an individual human consciousness is informative and thorough but, following his line of thought, we would have to accept an ontological gap in the process of memory acquisition, storage and transmission. If there is a period, following memory acquisition and preceding its transmission, when memories plainly do not exist, then each time a new reader, spectator or user perceives them, he or she must create the author’s memories ex nihilo. Bergson’s theory of duration and intuition can help us to resolve this paradox.This paper will explore the ontological characteristics of memory passage in communication taken at different stages of the process. There will be an indication of how the findings of this investigation could be applicable to concrete cases of memory transmission. In particular, this concerns intergenerational communication, technological memory, the use of digital devices and the Internet.

  17. Transactional Memory

    CERN Document Server

    Harris, Tim; Rajwar, Ravi

    2010-01-01

    The advent of multicore processors has renewed interest in the idea of incorporating transactions into the programming model used to write parallel programs.This approach, known as transactional memory, offers an alternative, and hopefully better, way to coordinate concurrent threads. The ACI(atomicity, consistency, isolation) properties of transactions provide a foundation to ensure that concurrent reads and writes of shared data do not produce inconsistent or incorrect results. At a higher level, a computation wrapped in a transaction executes atomically - either it completes successfullyand

  18. Information and processes underlying semantic and episodic memory across tasks, items, and individuals.

    Science.gov (United States)

    Cox, Gregory E; Hemmer, Pernille; Aue, William R; Criss, Amy H

    2018-04-01

    The development of memory theory has been constrained by a focus on isolated tasks rather than the processes and information that are common to situations in which memory is engaged. We present results from a study in which 453 participants took part in five different memory tasks: single-item recognition, associative recognition, cued recall, free recall, and lexical decision. Using hierarchical Bayesian techniques, we jointly analyzed the correlations between tasks within individuals-reflecting the degree to which tasks rely on shared cognitive processes-and within items-reflecting the degree to which tasks rely on the same information conveyed by the item. Among other things, we find that (a) the processes involved in lexical access and episodic memory are largely separate and rely on different kinds of information, (b) access to lexical memory is driven primarily by perceptual aspects of a word, (c) all episodic memory tasks rely to an extent on a set of shared processes which make use of semantic features to encode both single words and associations between words, and (d) recall involves additional processes likely related to contextual cuing and response production. These results provide a large-scale picture of memory across different tasks which can serve to drive the development of comprehensive theories of memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Colouring in the Blanks: Memory Drawings of the 1990 Kuwait Invasion

    Science.gov (United States)

    Pepin-Wakefield, Yvonne

    2009-01-01

    This study used drawing tasks to examine the similarities and differences between females and males who shared a collective traumatic event in early childhood. Could these childhood memories be recorded, measured, and compared for gender differences in drawings by young adults who had shared a similar experience as children? Exploration of this…

  20. The Contribution of Working Memory to Fluid Reasoning: Capacity, Control, or Both?

    Science.gov (United States)

    Chuderski, Adam; Necka, Edward

    2012-01-01

    Fluid reasoning shares a large part of its variance with working memory capacity (WMC). The literature on working memory (WM) suggests that the capacity of the focus of attention responsible for simultaneous maintenance and integration of information within WM, as well as the effectiveness of executive control exerted over WM, determines…

  1. Building a DBMS on top of the JuxMem Grid Data-Sharing Service

    OpenAIRE

    Almousa Almaksour , Abdullah; Antoniu , Gabriel; Bougé , Luc; Cudennec , Loïc; Gançarski , Stéphane

    2007-01-01

    Held in conjunction with Parallel Architectures and Compilation Techniques 2007 (PACT2007); International audience; We claim that building a distributed DBMS on top of a general-purpose grid data-sharing service is a natural extension of previous approaches based on the distributed shared memory paradigm. The approach we propose consists in providing the DBMS with a transparent, persistent and fault-tolerant access to the stored data, within a unstable, volatile and dynamic environment. The D...

  2. En-gendering Memory through Holocaust Alimentary Life Writing

    OpenAIRE

    Vasvári, Louise O.

    2015-01-01

    In her article "En-gendering Memory through Holocaust Alimentary Life Writing" Louise O. Vasvári aims to underline the cultural and gendered significance of the sharing of recipes as a survival tool by starving women in concentration camps during the Holocaust and the continuing role of food memories in the writing of Holocaust survivor women she considers a genealogy of intergenerational remembrance and transmission into the postmemory writing of their second generation daughters and occasio...

  3. Holographic memory for high-density data storage and high-speed pattern recognition

    Science.gov (United States)

    Gu, Claire

    2002-09-01

    As computers and the internet become faster and faster, more and more information is transmitted, received, and stored everyday. The demand for high density and fast access time data storage is pushing scientists and engineers to explore all possible approaches including magnetic, mechanical, optical, etc. Optical data storage has already demonstrated its potential in the competition against other storage technologies. CD and DVD are showing their advantages in the computer and entertainment market. What motivated the use of optical waves to store and access information is the same as the motivation for optical communication. Light or an optical wave has an enormous capacity (or bandwidth) to carry information because of its short wavelength and parallel nature. In optical storage, there are two types of mechanism, namely localized and holographic memories. What gives the holographic data storage an advantage over localized bit storage is the natural ability to read the stored information in parallel, therefore, meeting the demand for fast access. Another unique feature that makes the holographic data storage attractive is that it is capable of performing associative recall at an incomparable speed. Therefore, volume holographic memory is particularly suitable for high-density data storage and high-speed pattern recognition. In this paper, we review previous works on volume holographic memories and discuss the challenges for this technology to become a reality.

  4. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons

    Science.gov (United States)

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp

    2017-08-01

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.

  5. Autobiographical memory functions of nostalgia in comparison to rumination and counterfactual thinking: similarity and uniqueness.

    Science.gov (United States)

    Cheung, Wing-Yee; Wildschut, Tim; Sedikides, Constantine

    2018-02-01

    We compared and contrasted nostalgia with rumination and counterfactual thinking in terms of their autobiographical memory functions. Specifically, we assessed individual differences in nostalgia, rumination, and counterfactual thinking, which we then linked to self-reported functions or uses of autobiographical memory (Self-Regard, Boredom Reduction, Death Preparation, Intimacy Maintenance, Conversation, Teach/Inform, and Bitterness Revival). We tested which memory functions are shared and which are uniquely linked to nostalgia. The commonality among nostalgia, rumination, and counterfactual thinking resides in their shared positive associations with all memory functions: individuals who evinced a stronger propensity towards past-oriented thought (as manifested in nostalgia, rumination, and counterfactual thinking) reported greater overall recruitment of memories in the service of present functioning. The uniqueness of nostalgia resides in its comparatively strong positive associations with Intimacy Maintenance, Teach/Inform, and Self-Regard and weak association with Bitterness Revival. In all, nostalgia possesses a more positive functional signature than do rumination and counterfactual thinking.

  6. The dynamics of zero: on digital memories of Mars and the human foetus in the globital memory field

    Directory of Open Access Journals (Sweden)

    Anna READING

    2012-01-01

    Full Text Available The dynamics of digitisation and globalisation are synergetically and dialectically changing the ways in which human beings individually and collectively capture, document, share and preserve memories of the past. This paper develops further the concept of the “globital memory field” with a discursive overview of the development of “digital memory” and the significance of zero in the meaning and practice of digital memory. The paper then explains the key elements of this epistemology, with an emphasis on the significance of zero or nothing in relation to two contrasting examples of the medical imaging of the human fœtus to the capturing and sending back to Earth by NASA’s Curiosity robot images from the surface of Mars.

  7. Integration of optically active Neodymium ions in Niobium devices (Nd:Nb): quantum memory for hybrid quantum entangled systems

    Science.gov (United States)

    Nayfeh, O. M.; Chao, D.; Djapic, N.; Sims, P.; Liu, B.; Sharma, S.; Lerum, L.; Fahem, M.; Dinh, V.; Zlatanovic, S.; Lynn, B.; Torres, C.; Higa, B.; Moore, J.; Upchurch, A.; Cothern, J.; Tukeman, M.; Barua, R.; Davidson, B.; Ramirez, A. D.; Rees, C. D.; Anant, V.; Kanter, G. S.

    2017-08-01

    Optically active rare-earth Neodymium (Nd) ions are integrated in Niobium (Nb) thin films forming a new quantum memory device (Nd:Nb) targeting long-lived coherence times and multi-functionality enabled by both spin and photon storage properties. Nb is implanted with Nd spanning 10-60 keV energy and 1013-1014 cm-2 dose producing a 1- 3% Nd:Nb concentration as confirmed by energy-dispersive X-ray spectroscopy. Scanning confocal photoluminescence (PL) at 785 nm excitation are made and sharp emission peaks from the 4F3/2 -red shift and increased broadening to a 4.8 nm linewidth. Nd:Nb is photoconductive and responds strongly to applied fields. Furthermore, optically detected magnetic resonance (ODMR) measurements are presented spanning near-infrared telecom band. The modulation of the emission intensity with magnetic field and microwave power by integration of these magnetic Kramer type Nd ions is quantified along with spin echoes under pulsed microwave π-π/2 excitation. A hybrid system architecture is proposed using spin and photon quantum information storage with the nuclear and electron states of the Nd3+ and neighboring Nb atoms that can couple qubit states to hyperfine 7/2 spin states of Nd:Nb and onto NIR optical levels excitable with entangled single photons, thus enabling implementation of computing and networking/internet protocols in a single platform.

  8. Working memory training improves reading processes in typically developing children.

    Science.gov (United States)

    Loosli, Sandra V; Buschkuehl, Martin; Perrig, Walter J; Jaeggi, Susanne M

    2012-01-01

    The goal of this study was to investigate whether a brief cognitive training intervention results in a specific performance increase in the trained task, and whether there are transfer effects to other nontrained measures. A computerized, adaptive working memory intervention was conducted with 9- to 11-year-old typically developing children. The children considerably improved their performance in the trained working memory task. Additionally, compared to a matched control group, the experimental group significantly enhanced their reading performance after training, providing further evidence for shared processes between working memory and reading.

  9. Factor structure of overall autobiographical memory usage: the directive, self and social functions revisited.

    Science.gov (United States)

    Rasmussen, Anne S; Habermas, Tilmann

    2011-08-01

    According to theory, autobiographical memory serves three broad functions of overall usage: directive, self, and social. However, there is evidence to suggest that the tripartite model may be better conceptualised in terms of a four-factor model with two social functions. In the present study we examined the two models in Danish and German samples, using the Thinking About Life Experiences Questionnaire (TALE; Bluck, Alea, Habermas, & Rubin, 2005), which measures the overall usage of the three functions generalised across concrete memories. Confirmatory factor analysis supported the four-factor model and rejected the theoretical three-factor model in both samples. The results are discussed in relation to cultural differences in overall autobiographical memory usage as well as sharing versus non-sharing aspects of social remembering.

  10. A class Hierarchical, object-oriented approach to virtual memory management

    Science.gov (United States)

    Russo, Vincent F.; Campbell, Roy H.; Johnston, Gary M.

    1989-01-01

    The Choices family of operating systems exploits class hierarchies and object-oriented programming to facilitate the construction of customized operating systems for shared memory and networked multiprocessors. The software is being used in the Tapestry laboratory to study the performance of algorithms, mechanisms, and policies for parallel systems. Described here are the architectural design and class hierarchy of the Choices virtual memory management system. The software and hardware mechanisms and policies of a virtual memory system implement a memory hierarchy that exploits the trade-off between response times and storage capacities. In Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of those abstractions implement a virtual address space, segmentation, paging, physical memory management, secondary storage, and remote (that is, networked) storage. Captured in the notion of a memory hierarchy are classes that represent memory objects. These classes provide a storage mechanism that contains encapsulated data and have methods to read or write the memory object. Each of these classes provides specializations to represent the memory hierarchy.

  11. Optical backplane interconnect switch for data processors and computers

    Science.gov (United States)

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  12. PLZT light transmittance memory driven with an asymmetric voltage pulse

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Morita, Takeshi

    2010-01-01

    PLZT is a ferroelectric electro-optic material, which has been operated with a constant voltage supply to keep a certain optical property. In this study, we propose an optical transmittance memory effect by controlling the domain conditions. The keypoint is to use an asymmetric voltage pulse. In the positive direction, a sufficiently-large voltage is applied to align the polarization directions. After this operation, a relatively small light transmittance is memorized even after removing the electric field. On the other hand, in the negative direction, the amplitude of the voltage is adjusted to the coercive electric field. In this condition, the domain structure is almost the same as the depolarization state. With this voltage supply, the maximum light transmittance can be kept after removing the electric field. Using these voltage operations, the PLZT can obtain two light transmittance states depending on the domain structure. This memory effect should be useful for innovative optical scanners or shutters in the future.

  13. Forensic Memory Analysis for Apple OS X

    Science.gov (United States)

    2012-06-14

    those subscribing to the virtual node (vnode) interface. The excluded types mean POSIX semaphores and shared memory files, kernel event queue files...The set of non-vnode handles (sockets, pipes, semaphores , etc.) make up a significant portion of the lsof results (C2). This observation highlights

  14. Nonvolatile Rad-Hard Holographic Memory

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Han-Ying; Reyes, George; Dragoi, Danut; Hanna, Jay

    2001-01-01

    We are investigating a nonvolatile radiation-hardened (rad-hard) holographic memory technology. Recently, a compact holographic data storage (CHDS) breadboard utilizing an innovative electro-optic scanner has been built and demonstrated for high-speed holographic data storage and retrieval. The successful integration of this holographic memory breadboard has paved the way for follow-on radiation resistance test of the photorefractive (PR) crystal, Fe:LiNbO3. We have also started the investigation of using two-photon PR crystals that are doubly doped with atoms of iron group (Ti, Cr, Mn, Cu) and of rare-earth group (Nd, Tb) for nonvolatile holographic recordings.

  15. Towards Memory-Aware Services and Browsing through Lifelogging Sensing

    Directory of Open Access Journals (Sweden)

    Carlos Cetina

    2013-11-01

    Full Text Available Every day we receive lots of information through our senses that is lost forever, because it lacked the strength or the repetition needed to generate a lasting memory. Combining the emerging Internet of Things and lifelogging sensors, we believe it is possible to build up a Digital Memory (Dig-Mem in order to complement the fallible memory of people. This work shows how to realize the Dig-Mem in terms of interactions, affinities, activities, goals and protocols. We also complement this Dig-Mem with memory-aware services and a Dig-Mem browser. Furthermore, we propose a RFID Tag-Sharing technique to speed up the adoption of Dig-Mem. Experimentation reveals an improvement of the user understanding of Dig-Mem as time passes, compared to natural memories where the level of detail decreases over time.

  16. Optically intraconnected computer employing dynamically reconfigurable holographic optical element

    Science.gov (United States)

    Bergman, Larry A. (Inventor)

    1992-01-01

    An optically intraconnected computer and a reconfigurable holographic optical element employed therein. The basic computer comprises a memory for holding a sequence of instructions to be executed; logic for accessing the instructions in sequence; logic for determining for each the instruction the function to be performed and the effective address thereof; a plurality of individual elements on a common support substrate optimized to perform certain logical sequences employed in executing the instructions; and, element selection logic connected to the logic determining the function to be performed for each the instruction for determining the class of each function and for causing the instruction to be executed by those the elements which perform those associated the logical sequences affecting the instruction execution in an optimum manner. In the optically intraconnected version, the element selection logic is adapted for transmitting and switching signals to the elements optically.

  17. Information partnerships--shared data, shared scale.

    Science.gov (United States)

    Konsynski, B R; McFarlan, F W

    1990-01-01

    How can one company gain access to another's resources or customers without merging ownership, management, or plotting a takeover? The answer is found in new information partnerships, enabling diverse companies to develop strategic coalitions through the sharing of data. The key to cooperation is a quantum improvement in the hardware and software supporting relational databases: new computer speeds, cheaper mass-storage devices, the proliferation of fiber-optic networks, and networking architectures. Information partnerships mean that companies can distribute the technological and financial exposure that comes with huge investments. For the customer's part, partnerships inevitably lead to greater simplification on the desktop and more common standards around which vendors have to compete. The most common types of partnership are: joint marketing partnerships, such as American Airline's award of frequent flyer miles to customers who use Citibank's credit card; intraindustry partnerships, such as the insurance value-added network service (which links insurance and casualty companies to independent agents); customer-supplier partnerships, such as Baxter Healthcare's electronic channel to hospitals for medical and other equipment; and IT vendor-driven partnerships, exemplified by ESAB (a European welding supplies and equipment company), whose expansion strategy was premised on a technology platform offered by an IT vendor. Partnerships that succeed have shared vision at the top, reciprocal skills in information technology, concrete plans for an early success, persistence in the development of usable information for all partners, coordination on business policy, and a new and imaginative business architecture.

  18. Holographic associative memories in document retrieval systems

    International Nuclear Information System (INIS)

    Becker, P.J.; Bolle, H.; Keller, A.; Kistner, W.; Riecke, W.D.; Wagner, U.

    1979-03-01

    The objective of this work was the implementation of a holographic memory with associative readout for a document retrieval system. Taking advantage of the favourable properties of holography - associative readout of the memory, parallel processing in the response store - may give shorter response times than sequentially organized data memories. Such a system may also operate in the interactive mode including chain associations. In order to avoid technological difficulties, the experimental setup made use of commercially available components only. As a result an improved holographic structure is proposed which uses volume holograms in photorefractive crystals as storage device. In two chapters of appendix we give a review of the state of the art of electrooptic devices for coherent optical data processing and of competing technologies (semiconductor associative memories and associative program systems). (orig.) [de

  19. Benefits and Costs of Context Reinstatement in Episodic Memory: An ERP Study.

    Science.gov (United States)

    Bramão, Inês; Johansson, Mikael

    2017-01-01

    This study investigated context-dependent episodic memory retrieval. An influential idea in the memory literature is that performance benefits when the retrieval context overlaps with the original encoding context. However, such memory facilitation may not be driven by the encoding-retrieval overlap per se but by the presence of diagnostic features in the reinstated context that discriminate the target episode from competing episodes. To test this prediction, the encoding-retrieval overlap and the diagnostic value of the context were manipulated in a novel associative recognition memory task. Participants were asked to memorize word pairs presented together with diagnostic (unique) and nondiagnostic (shared) background scenes. At test, participants recognized the word pairs in the presence and absence of the previously encoded contexts. Behavioral data show facilitated memory performance in the presence of the original context but, importantly, only when the context was diagnostic of the target episode. The electrophysiological data reveal an early anterior ERP encoding-retrieval overlap effect that tracks the cost associated with having nondiagnostic contexts present at retrieval, that is, shared by multiple previous episodes, and a later posterior encoding-retrieval overlap effect that reflects facilitated access to the target episode during retrieval in diagnostic contexts. Taken together, our results underscore the importance of the diagnostic value of the context and suggest that context-dependent episodic memory effects are multiple determined.

  20. From smells to stories : The design and evaluation of the smell memory kit

    NARCIS (Netherlands)

    Leret, Susana Camara; Visch, V.T.

    2017-01-01

    The study presented is a research through design of the motivational, story sharing effects of smell, within the context of addiction care. This investigation led to the co-design of the Smell Memory Kit: a kit using eight selected smells as motivational elements to evoke and share

  1. Memory: Enduring Traces of Perceptual and Reflective Attention

    Science.gov (United States)

    Chun, Marvin M.; Johnson, Marcia K.

    2011-01-01

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: To what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. PMID:22099456

  2. Memory: enduring traces of perceptual and reflective attention.

    Science.gov (United States)

    Chun, Marvin M; Johnson, Marcia K

    2011-11-17

    Attention and memory are typically studied as separate topics, but they are highly intertwined. Here we discuss the relation between memory and two fundamental types of attention: perceptual and reflective. Memory is the persisting consequence of cognitive activities initiated by and/or focused on external information from the environment (perceptual attention) and initiated by and/or focused on internal mental representations (reflective attention). We consider three key questions for advancing a cognitive neuroscience of attention and memory: to what extent do perception and reflection share representational areas? To what extent are the control processes that select, maintain, and manipulate perceptual and reflective information subserved by common areas and networks? During perception and reflection, to what extent are common areas responsible for binding features together to create complex, episodic memories and for reviving them later? Considering similarities and differences in perceptual and reflective attention helps integrate a broad range of findings and raises important unresolved issues. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Efficient accesses of data structures using processing near memory

    Science.gov (United States)

    Jayasena, Nuwan S.; Zhang, Dong Ping; Diez, Paula Aguilera

    2018-05-22

    Systems, apparatuses, and methods for implementing efficient queues and other data structures. A queue may be shared among multiple processors and/or threads without using explicit software atomic instructions to coordinate access to the queue. System software may allocate an atomic queue and corresponding queue metadata in system memory and return, to the requesting thread, a handle referencing the queue metadata. Any number of threads may utilize the handle for accessing the atomic queue. The logic for ensuring the atomicity of accesses to the atomic queue may reside in a management unit in the memory controller coupled to the memory where the atomic queue is allocated.

  4. Synthetic vision and memory model for virtual human - biomed 2010.

    Science.gov (United States)

    Zhao, Yue; Kang, Jinsheng; Wright, David

    2010-01-01

    This paper describes the methods and case studies of a novel synthetic vision and memory model for virtual human. The synthetic vision module simulates the biological / optical abilities and limitations of the human vision. The module is based on a series of collision detection between the boundary of virtual humans field of vision (FOV) volume and the surface of objects in a recreated 3D environment. The memory module simulates a short-term memory capability by employing a simplified memory structure (first-in-first-out stack). The synthetic vision and memory model has been integrated into a virtual human modelling project, Intelligent Virtual Modelling. The project aimed to improve the realism and autonomy of virtual humans.

  5. Recollection of Emotional Memories in Schizophrenia: Autonoetic awareness and specificity deficits

    Directory of Open Access Journals (Sweden)

    Aurore Neumann

    2006-03-01

    Full Text Available Episodic memory impairments seem to play a crucial role in schizophrenia. Most of the studies that have demonstrated such a deficit have used neutral material, leaving the recollection of emotional memories in schizophrenia unexplored. An overview is presented of a series of studies investigating the influence of emotion on episodic and autobiographical memory in schizophrenia. These experiments share a common experimental approach in which states of awareness accompanying recollection are considered. Results show that schizophrenia impairs conscious recollection in episodic and autobiographical memory tasks using emotional material. Schizophrenia is also associated with a reduction of the specificity with which autobiographical memories are recalled. An hypothesis in terms of a fundamental executive deficit underlying these impairments is proposed.

  6. Modified signed-digit trinary arithmetic by using optical symbolic substitution

    Science.gov (United States)

    Awwal, A. A. S.; Islam, M. N.; Karim, M. A.

    1992-04-01

    Carry-free addition and borrow-free subtraction of modified signed-digit trinary numbers with optical symbolic substitution are presented. The proposed two-step and three-step algorithms can be easily implemented by using phase-only holograms, optical content-addressable memories, a multichannel correlator, or a polarization-encoded optical shadow-casting system.

  7. Regenerative memory in time-delayed neuromorphic photonic resonators

    OpenAIRE

    Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.

    2016-01-01

    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the...

  8. Reflector antenna analysis using physical optics on Graphics Processing Units

    DEFF Research Database (Denmark)

    Borries, Oscar Peter; Sørensen, Hans Henrik Brandenborg; Dammann, Bernd

    2014-01-01

    The Physical Optics approximation is a widely used asymptotic method for calculating the scattering from electrically large bodies. It requires significant computational work and little memory, and is thus well suited for application on a Graphics Processing Unit. Here, we investigate the perform......The Physical Optics approximation is a widely used asymptotic method for calculating the scattering from electrically large bodies. It requires significant computational work and little memory, and is thus well suited for application on a Graphics Processing Unit. Here, we investigate...

  9. Virtual Prototyping and Performance Analysis of Two Memory Architectures

    Directory of Open Access Journals (Sweden)

    Huda S. Muhammad

    2009-01-01

    Full Text Available The gap between CPU and memory speed has always been a critical concern that motivated researchers to study and analyze the performance of memory hierarchical architectures. In the early stages of the design cycle, performance evaluation methodologies can be used to leverage exploration at the architectural level and assist in making early design tradeoffs. In this paper, we use simulation platforms developed using the VisualSim tool to compare the performance of two memory architectures, namely, the Direct Connect architecture of the Opteron, and the Shared Bus of the Xeon multicore processors. Key variations exist between the two memory architectures and both design approaches provide rich platforms that call for the early use of virtual system prototyping and simulation techniques to assess performance at an early stage in the design cycle.

  10. Characteristics of color memory for natural scenes

    Science.gov (United States)

    Amano, Kinjiro; Uchikawa, Keiji; Kuriki, Ichiro

    2002-08-01

    To study the characteristics of color memory for natural images, a memory-identification task was performed with differing color contrasts; three of the contrasts were defined by chromatic and luminance components of the image, and the others were defined with respect to the categorical colors. After observing a series of pictures successively, subjects identified the pictures using a confidence rating. Detection of increased contrasts tended to be harder than detection of decreased contrasts, suggesting that the chromaticness of pictures is enhanced in memory. Detecting changes within each color category was more difficult than across the categories. A multiple mechanism that processes color differences and categorical colors is briefly considered. 2002 Optical Society of America

  11. OPTICAL DATA PROCESSING: Realization of associative memory with the aid of a nonlinear selective stimulated-Brillouin-scattering mirror

    Science.gov (United States)

    Matveyev, A. Z.; Pasmanik, G. A.

    1993-05-01

    An associative memory using only optical elements has been realized experimentally. The key element of the arrangement is a stimulated-Brillouin-scattering (SBS) selector consisting of a short SBS medium at the focus of a lens. The qualitative advantage of the selector over an SBS mirror is demonstrated experimentally. The response time of the arrangement is ~ 10-8 s and is determined by the duration of the SBS. Estimates show that the SBS selector is capable in practice of distinguishing a signal against background noise when the initial distortion level of the object beam is 10-3. Reliable operation of the SBS selector has been demonstrated for radiative and energy loads reaching 2 GW/cm2 and 2 J, respectively.

  12. Memory effects in single-molecule spectroscopy

    International Nuclear Information System (INIS)

    Schmitt, Daniel T.; Schulz, Michael; Reineker, Peter

    2007-01-01

    From the time series of LH2 optical single-molecule fluorescence excitation spectra of Rhodospirillum molischianum the memory function of the Mori-Zwanzig equation for the optical intensity is derived numerically. We show that the time dependence of the excited states is determined by at least three different non-Markovian stochastic processes with decay constants for the Mori-Zwanzig kernel on the order of 1-5min -1 . We suggest that this decay stems from the conformational motion of the protein scaffold of LH2

  13. Examining age-related shared variance between face cognition, vision, and self-reported physical health: a test of the common cause hypothesis for social cognition

    Science.gov (United States)

    Olderbak, Sally; Hildebrandt, Andrea; Wilhelm, Oliver

    2015-01-01

    The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing), and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain). We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities specifically face perception and face memory. Based on a sample of 443 adults (17–88 years old), we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC) models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident. PMID:26321998

  14. Examining Age-Related Shared Variance Between Face Cognition, Vision, and Self-Reported Physical Health: A Test of the Common Cause Hypothesis for Social Cognition

    Directory of Open Access Journals (Sweden)

    Sally eOlderbak

    2015-08-01

    Full Text Available The shared decline in cognitive abilities, sensory functions (e.g., vision and hearing, and physical health with increasing age is well documented with some research attributing this shared age-related decline to a single common cause (e.g., aging brain. We evaluate the extent to which the common cause hypothesis predicts associations between vision and physical health with social cognition abilities, specifically face perception and face memory. Based on a sample of 443 adults (17 to 88 years old, we test a series of structural equation models, including Multiple Indicator Multiple Cause (MIMIC models, and estimate the extent to which vision and self-reported physical health are related to face perception and face memory through a common factor, before and after controlling for their fluid cognitive component and the linear effects of age. Results suggest significant shared variance amongst these constructs, with a common factor explaining some, but not all, of the shared age-related variance. Also, we found that the relations of face perception, but not face memory, with vision and physical health could be completely explained by fluid cognition. Overall, results suggest that a single common cause explains most, but not all age-related shared variance with domain specific aging mechanisms evident.

  15. Effects of Aging on True and False Memory Formation: An fMRI Study

    Science.gov (United States)

    Dennis, Nancy A.; Kim, Hongkeun; Cabeza, Roberto

    2007-01-01

    Compared to young, older adults are more likely to forget events that occurred in the past as well as remember events that never happened. Previous studies examining false memories and aging have shown that these memories are more likely to occur when new items share perceptual or semantic similarities with those presented during encoding. It is…

  16. On-chip photonic memory elements employing phase-change materials.

    Science.gov (United States)

    Rios, Carlos; Hosseini, Peiman; Wright, C David; Bhaskaran, Harish; Pernice, Wolfram H P

    2014-03-05

    Phase-change materials integrated into nanophotonic circuits provide a flexible way to realize tunable optical components. Relying on the enormous refractive-index contrast between the amorphous and crystalline states, such materials are promising candidates for on-chip photonic memories. Nonvolatile memory operation employing arrays of microring resonators is demonstrated as a route toward all-photonic chipscale information processing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Construction and Application of an AMR Algorithm for Distributed Memory Computers

    OpenAIRE

    Deiterding, Ralf

    2003-01-01

    While the parallelization of blockstructured adaptive mesh refinement techniques is relatively straight-forward on shared memory architectures, appropriate distribution strategies for the emerging generation of distributed memory machines are a topic of on-going research. In this paper, a locality-preserving domain decomposition is proposed that partitions the entire AMR hierarchy from the base level on. It is shown that the approach reduces the communication costs and simplifies the im...

  18. Transactive memory in organizational groups: the effects of content, consensus, specialization, and accuracy on group performance.

    Science.gov (United States)

    Austin, John R

    2003-10-01

    Previous research on transactive memory has found a positive relationship between transactive memory system development and group performance in single project laboratory and ad hoc groups. Closely related research on shared mental models and expertise recognition supports these findings. In this study, the author examined the relationship between transactive memory systems and performance in mature, continuing groups. A group's transactive memory system, measured as a combination of knowledge stock, knowledge specialization, transactive memory consensus, and transactive memory accuracy, is positively related to group goal performance, external group evaluations, and internal group evaluations. The positive relationship with group performance was found to hold for both task and external relationship transactive memory systems.

  19. Cultural differences in categorical memory errors persist with age.

    Science.gov (United States)

    Gutchess, Angela; Boduroglu, Aysecan

    2018-01-02

    This cross-sectional experiment examined the influence of aging on cross-cultural differences in memory errors. Previous research revealed that Americans committed more categorical memory errors than Turks; we tested whether the cognitive constraints associated with aging impacted the pattern of memory errors across cultures. Furthermore, older adults are vulnerable to memory errors for semantically-related information, and we assessed whether this tendency occurs across cultures. Younger and older adults from the US and Turkey studied word pairs, with some pairs sharing a categorical relationship and some unrelated. Participants then completed a cued recall test, generating the word that was paired with the first. These responses were scored for correct responses or different types of errors, including categorical and semantic. The tendency for Americans to commit more categorical memory errors emerged for both younger and older adults. In addition, older adults across cultures committed more memory errors, and these were for semantically-related information (including both categorical and other types of semantic errors). Heightened vulnerability to memory errors with age extends across cultural groups, and Americans' proneness to commit categorical memory errors occurs across ages. The findings indicate some robustness in the ways that age and culture influence memory errors.

  20. Study of memory effects in polymer dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Han, Jinwoo

    2006-01-01

    In this work, we have studied the memory effects in polymer dispersed liquid crystal films. We found that optical responses, such as the memory effects, of the films depended strongly on the morphology. For example, memory effects were observed for films with polymer ball morphologies; however, only weak hysteresis effects were observed for films with droplet morphologies. In particular, a stronger memory effect was observed for films with more complicated polymer ball structures. Coincidentally, T TE , the temperature at which the memory state is thermally erased, was generally higher for the films exhibiting a stronger memory effect. In addition, studies of the temporal evolution of the films show that the memory effects become stronger after films have been kept on the shelf for a period of time. This change is likely to be associated with a modification of surface anchoring properties at the LC-polymer interface.

  1. Semantic graphs and associative memories

    Science.gov (United States)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  2. Close Associations and Memory in Brainwriting Groups

    Science.gov (United States)

    Coskun, Hamit

    2011-01-01

    The present experiment examined whether or not the type of associations (close (e.g. apple-pear) and distant (e.g. apple-fish) word associations) and memory instruction (paying attention to the ideas of others) had effects on the idea generation performances in the brainwriting paradigm in which all participants shared their ideas by using paper…

  3. Load and distinctness interact in working memory for lexical manual gestures

    Directory of Open Access Journals (Sweden)

    Mary eRudner

    2015-08-01

    Full Text Available The Ease of Language Understanding model (ELU, Rönnberg et al., 2013 predicts that decreasing the distinctness of language stimuli increases working memory load; in the speech domain this notion is supported by empirical evidence. Our aim was to determine whether such an over-additive interaction can be generalized to sign processing in sign-naïve individuals and whether it is modulated by experience of computer gaming. Twenty young adults with no knowledge of sign language performed an n-back working memory task based on manual gestures lexicalized in sign language; the visual resolution of the signs and working memory load were manipulated. Performance was poorer when load was high and resolution was low. These two effects interacted over-additively, demonstrating that reducing the resolution of signed stimuli increases working memory load when there is no pre-existing semantic representation. This suggests that load and distinctness are handled by a shared amodal mechanism which can be revealed empirically when stimuli are degraded and load is high, even without pre-existing semantic representation. There was some evidence that the mechanism is influenced by computer gaming experience. Future work should explore how the shared mechanism is influenced by pre-existing semantic representation and sensory factors together with computer gaming experience.

  4. Load and distinctness interact in working memory for lexical manual gestures.

    Science.gov (United States)

    Rudner, Mary; Toscano, Elena; Holmer, Emil

    2015-01-01

    The Ease of Language Understanding model (Rönnberg et al., 2013) predicts that decreasing the distinctness of language stimuli increases working memory load; in the speech domain this notion is supported by empirical evidence. Our aim was to determine whether such an over-additive interaction can be generalized to sign processing in sign-naïve individuals and whether it is modulated by experience of computer gaming. Twenty young adults with no knowledge of sign language performed an n-back working memory task based on manual gestures lexicalized in sign language; the visual resolution of the signs and working memory load were manipulated. Performance was poorer when load was high and resolution was low. These two effects interacted over-additively, demonstrating that reducing the resolution of signed stimuli increases working memory load when there is no pre-existing semantic representation. This suggests that load and distinctness are handled by a shared amodal mechanism which can be revealed empirically when stimuli are degraded and load is high, even without pre-existing semantic representation. There was some evidence that the mechanism is influenced by computer gaming experience. Future work should explore how the shared mechanism is influenced by pre-existing semantic representation and sensory factors together with computer gaming experience.

  5. A theory of working memory without consciousness or sustained activity

    Science.gov (United States)

    Trübutschek, Darinka; Marti, Sébastien; Ojeda, Andrés; King, Jean-Rémi; Mi, Yuanyuan; Tsodyks, Misha; Dehaene, Stanislas

    2017-01-01

    Working memory and conscious perception are thought to share similar brain mechanisms, yet recent reports of non-conscious working memory challenge this view. Combining visual masking with magnetoencephalography, we investigate the reality of non-conscious working memory and dissect its neural mechanisms. In a spatial delayed-response task, participants reported the location of a subjectively unseen target above chance-level after several seconds. Conscious perception and conscious working memory were characterized by similar signatures: a sustained desynchronization in the alpha/beta band over frontal cortex, and a decodable representation of target location in posterior sensors. During non-conscious working memory, such activity vanished. Our findings contradict models that identify working memory with sustained neural firing, but are compatible with recent proposals of ‘activity-silent’ working memory. We present a theoretical framework and simulations showing how slowly decaying synaptic changes allow cell assemblies to go dormant during the delay, yet be retrieved above chance-level after several seconds. DOI: http://dx.doi.org/10.7554/eLife.23871.001 PMID:28718763

  6. The prevalence and quality of silent, socially silent, and disclosed autobiographical memories across adulthood.

    Science.gov (United States)

    Alea, Nicole

    2010-02-01

    Two separate studies examined the prevalence and quality of silent (infrequently recalled), socially silent (i.e., recalled but not shared), and disclosed autobiographical memories. In Study 1 young and older men and women remembered positive events. Positive memories were more likely to be disclosed than to be kept socially silent or completely silent. However, socially silent and disclosed memories did not differ in memory quality: the memories were equally vivid, significant, and emotional. Silent memories were less qualitatively rich. This pattern of results was generally replicated in Study 2 with a lifespan sample for both positive and negative memories, and with additional qualitative variables. The exception was that negative memories were kept silent more often. Age differences were minimal. Women disclosed their autobiographical memories more, but men told a greater variety of people. Results are discussed in terms of the functions that memory telling and silences might serve for individuals.

  7. Interference from mere thinking: mental rehearsal temporarily disrupts recall of motor memory.

    Science.gov (United States)

    Yin, Cong; Wei, Kunlin

    2014-08-01

    Interference between successively learned tasks is widely investigated to study motor memory. However, how simultaneously learned motor memories interact with each other has been rarely studied despite its prevalence in daily life. Assuming that motor memory shares common neural mechanisms with declarative memory system, we made unintuitive predictions that mental rehearsal, as opposed to further practice, of one motor memory will temporarily impair the recall of another simultaneously learned memory. Subjects simultaneously learned two sensorimotor tasks, i.e., visuomotor rotation and gain. They retrieved one memory by either practice or mental rehearsal and then had their memory evaluated. We found that mental rehearsal, instead of execution, impaired the recall of unretrieved memory. This impairment was content-independent, i.e., retrieving either gain or rotation impaired the other memory. Hence, conscious recollection of one motor memory interferes with the recall of another memory. This is analogous to retrieval-induced forgetting in declarative memory, suggesting a common neural process across memory systems. Our findings indicate that motor imagery is sufficient to induce interference between motor memories. Mental rehearsal, currently widely regarded as beneficial for motor performance, negatively affects memory recall when it is exercised for a subset of memorized items. Copyright © 2014 the American Physiological Society.

  8. Would one rather store squeezing or entanglement in continuous variable quantum memories?

    International Nuclear Information System (INIS)

    Yadsan-Appleby, Hulya; Serafini, Alessio

    2011-01-01

    Given two quantum memories for continuous variables and the possibility to perform passive optical operations on the optical modes before or after the storage, two possible scenarios arise resulting in generally different degrees of final entanglement. Namely, one could either store an entangled state and retrieve it directly from the memory, or rather store two separate single-mode squeezed states and then combine them with a beam-splitter to generate the final entangled state. In this Letter, we analytically determine which of the two options yields more entanglement for several regions of the system's parameters, and quantify the advantage it entails. - Highlights: → We study the optimised storage of continuous variable entanglement. → Analytical conditions to determine optimal storage schemes. → Comprehensive numerical studies complementing the analytics. → Specific discussion concerning QND feedback memories included. → Results applicable to very general Gaussian channel.

  9. Bus Arbitration for FDUMA Shared Memory Architecture

    OpenAIRE

    森垣,利彦; 弘中,哲夫; 児島,彰; 藤野,清次

    1997-01-01

    近年, プロセッサとDRAMを1つのLSI上に混載することでメモリバンド幅を広げる研究が行われている. しかし, この方法ではベクトル処理的な用途以外では得られるメモリバンド幅を有効に活用できず, On Chip Multiprocessorなどの共有メモリとして利用しにくい. そこで我々はこの問題を解決するメモリ・アーキテクチャとして, FDUMAマルチポートメモリシステムを提案している. 本稿では, 現在開発中であるFDUMAメモリシステムの試作機で用いるバス・アービトレーションについて述べ, その後ソフトウェア・シミュレータによるFDUMAメモリシステムの特性評価を行う. / Many research are done on deriving high memory bandwidth by merging the DRAM and logic on one chip. This merged DRAM/logic chip is effective for vector-style processing. Although it is not suitable for ...

  10. Distributed terascale volume visualization using distributed shared virtual memory

    KAUST Repository

    Beyer, Johanna

    2011-10-01

    Table 1 illustrates the impact of different distribution unit sizes, different screen resolutions, and numbers of GPU nodes. We use two and four GPUs (NVIDIA Quadro 5000 with 2.5 GB memory) and a mouse cortex EM dataset (see Figure 2) of resolution 21,494 x 25,790 x 1,850 = 955GB. The size of the virtual distribution units significantly influences the data distribution between nodes. Small distribution units result in a high depth complexity for compositing. Large distribution units lead to a low utilization of GPUs, because in the worst case only a single distribution unit will be in view, which is rendered by only a single node. The choice of an optimal distribution unit size depends on three major factors: the output screen resolution, the block cache size on each node, and the number of nodes. Currently, we are working on optimizing the compositing step and network communication between nodes. © 2011 IEEE.

  11. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  12. Inductive reasoning and implicit memory: evidence from intact and impaired memory systems.

    Science.gov (United States)

    Girelli, Luisa; Semenza, Carlo; Delazer, Margarete

    2004-01-01

    In this study, we modified a classic problem solving task, number series completion, in order to explore the contribution of implicit memory to inductive reasoning. Participants were required to complete number series sharing the same underlying algorithm (e.g., +2), differing in both constituent elements (e.g., 2468 versus 57911) and correct answers (e.g., 10 versus 13). In Experiment 1, reliable priming effects emerged, whether primes and targets were separated by four or ten fillers. Experiment 2 provided direct evidence that the observed facilitation arises at central stages of problem solving, namely the identification of the algorithm and its subsequent extrapolation. The observation of analogous priming effects in a severely amnesic patient strongly supports the hypothesis that the facilitation in number series completion was largely determined by implicit memory processes. These findings demonstrate that the influence of implicit processes extends to higher level cognitive domain such as induction reasoning.

  13. Collectors practices and the preserving of their memories: Objects of the First World War in Nord Pas de Calais and west Flanders

    Directory of Open Access Journals (Sweden)

    Agnieszka SMOLCZEWSKA-TONA

    2012-01-01

    Full Text Available This article examines the preserving of the memory shared by collectors and mediators of objects from the Great War in the context of museum mediation. The notion of the memory is understood in this article as the body of knowledge acquired, held and shared by these collectors within the framework of their practice of collection and mediation. We look firstly at the informational and communicative dimension of these collectors’ memory. We show that the collector’s memory relating to the objects collected takes a variety of different forms and that it is primarily communicated in oral and gestural form. The results of our analysis lead us to the conclusion that, today, only audiovisual recording techniques allow preserving a precise copy of memories for the long term. The second part of our analysis presents an audiovisual protocol for preparing, recording and storage of these memory traces.

  14. Infectious Cognition: Risk Perception Affects Socially Shared Retrieval-Induced Forgetting of Medical Information.

    Science.gov (United States)

    Coman, Alin; Berry, Jessica N

    2015-12-01

    When speakers selectively retrieve previously learned information, listeners often concurrently, and covertly, retrieve their memories of that information. This concurrent retrieval typically enhances memory for mentioned information (the rehearsal effect) and impairs memory for unmentioned but related information (socially shared retrieval-induced forgetting, SSRIF), relative to memory for unmentioned and unrelated information. Building on research showing that anxiety leads to increased attention to threat-relevant information, we explored whether concurrent retrieval is facilitated in high-anxiety real-world contexts. Participants first learned category-exemplar facts about meningococcal disease. Following a manipulation of perceived risk of infection (low vs. high risk), they listened to a mock radio show in which some of the facts were selectively practiced. Final recall tests showed that the rehearsal effect was equivalent between the two risk conditions, but SSRIF was significantly larger in the high-risk than in the low-risk condition. Thus, the tendency to exaggerate consequences of news events was found to have deleterious consequences. © The Author(s) 2015.

  15. Control of Working Memory in Rhesus Monkeys (Macaca mulatta)

    Science.gov (United States)

    Tu, Hsiao-Wei; Hampton, Robert R.

    2014-01-01

    Cognitive control is critical for efficiently using the limited resources in working memory. It is well established that humans use rehearsal to increase the probability of remembering needed information, but little is known in nonhumans, with some studies reporting the absence of active control and others subject to alternative explanations. We trained monkeys in a visual matching-to-sample paradigm with a post-sample memory cue. Monkeys either saw a remember cue that predicted the occurrence of a matching test that required memory for the sample, or a forget cue that predicted a discrimination test that did not require memory of the sample. Infrequent probe trials on which monkeys were given tests of the type not cued on that trial were used to assess whether memory was under cognitive control. Our procedures controlled for reward expectation and for the surprising nature of the probes. Monkeys matched less accurately after forget cues, while discrimination accuracy was equivalent in the two cue conditions. We also tested monkeys with lists of two consecutive sample images that shared the same cue. Again, memory for expected memory tests was superior to that on unexpected tests. Together these results show that monkeys cognitively control their working memory. PMID:25436219

  16. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability.

    Science.gov (United States)

    Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2017-02-15

    Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.

  17. A Cognitive Assessment of Highly Superior Autobiographical Memory

    Science.gov (United States)

    LePort, Aurora K.R.; Stark, Shauna M.; McGaugh, James L.; Stark, Craig E.L.

    2017-01-01

    Highly Superior Autobiographical Memory (HSAM) is characterized as the ability to accurately recall an exceptional number of experiences and their associated dates from events occurring throughout much of one’s lifetime. The source of this ability has only begun to be explored. The present study explores whether other enhanced cognitive processes may be critical influences underlying HSAM abilities. We investigated whether enhanced abilities in the domains of verbal fluency, attention/inhibition, executive functioning, mnemonic discrimination, perception, visual working memory, or the processing of and memory for emotional details might contribute critically to HSAM. The results suggest that superior cognitive functioning is an unlikely basis of HSAM, as only modest advantages were found in only a few tests. In addition, we examined HSAM subjects’ memory of the testing episodes. Interestingly, HSAM participants recalled details of their own experiences far better than those experiences that the experimenter shared with them. These findings provide additional evidence that HSAM involves, relatively selectively, recollection of personal, autobiographical material. PMID:26982996

  18. A cognitive assessment of highly superior autobiographical memory.

    Science.gov (United States)

    LePort, Aurora K R; Stark, Shauna M; McGaugh, James L; Stark, Craig E L

    2017-02-01

    Highly Superior Autobiographical Memory (HSAM) is characterised as the ability to accurately recall an exceptional number of experiences and their associated dates from events occurring throughout much of one's lifetime. The source of this ability has only begun to be explored. The present study explores whether other enhanced cognitive processes may be critical influences underlying HSAM abilities. We investigated whether enhanced abilities in the domains of verbal fluency, attention/inhibition, executive functioning, mnemonic discrimination, perception, visual working memory, or the processing of and memory for emotional details might contribute critically to HSAM. The results suggest that superior cognitive functioning is an unlikely basis of HSAM, as only modest advantages were found in only a few tests. In addition, we examined HSAM subjects' memory of the testing episodes. Interestingly, HSAM participants recalled details of their own experiences far better than those experiences that the experimenter shared with them. These findings provide additional evidence that HSAM involves, relatively selectively, recollection of personal, autobiographical material.

  19. Optical network democratization.

    Science.gov (United States)

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  20. Duality between resource reservation and proportional share resource allocation

    Science.gov (United States)

    Stoica, Ion; Abdel-Wahab, Hussein; Jeffay, Kevin

    1997-01-01

    We describe anew framework for resource allocation that unifies the well-known proportional share and resource reservation policies. Each client is characterized by two parameters: a weight that represents the rate at which the client 'pays' for the resource, and a share that represents the fraction of the resource that the client should receive. A fixed rate corresponds to a proportional share allocation, while a fixed share corresponds to a reservation. Furthermore, rates and shares are duals of each other. Once one parameters is fixed the other becomes fixed as well. If a client asks for a fixed share then the level of competition for the resource determines the rate at which it has to pay, while if the rate is fixed, level of competition determines the service time the clients should receive. To implement this framework we use a new proportional share algorithm, called earliest eligible virtual deadline first, that achieves optical accuracy in the rates at which process execute. This makes it possible to provide support for highly predictable, real-time services. As a proof of concept we have implemented a prototype of a CPU scheduler under the FreeBSD operating system. The experimental results show that our scheduler achieves the goal of providing integrated support for batch and real-time applications.

  1. Entextualising mourning on Facebook: stories of grief as acts of sharing

    Science.gov (United States)

    Giaxoglou, Korina

    2015-04-01

    Web 2.0 mourning is said to afford increased opportunities for the deceased's and mourners' visibility as well as create in the bereaved an increased sense of social support through the participatory entextualisation of mourning. So far, however, there has been little systematic attention to the uses of narrative in social network sites. The present article addresses this gap by providing an analysis of entextualised moments of mourning as stories shared by a single author over a six-month period on a Facebook Rest in Peace memorial group. The article foregrounds heterogeneity in narrative activity across posts, linking diversity in ways of telling to different types of the online mourner's positioning at three interrelated levels of discourse construction: (1) the representation of the event of death, (2) the alignment (or disalignment) with the dead and the networked mourners and (3) the poster's self. It is argued that telling stories on Facebook memorial sites constitutes an act of sharing affording networked individuals resources for making meaning out of the meaninglessness of a loved one's death in ways that can help render the painful experience of loss tellable and also create a sense of ambient affiliation or affinity with networked mourners.

  2. Short-term plasticity as a neural mechanism supporting memory and attentional functions

    OpenAIRE

    Jääskeläinen, Iiro P.; Ahveninen, Jyrki; Andermann, Mark L.; Belliveau, John W.; Raij, Tommi; Sams, Mikko

    2011-01-01

    Based on behavioral studies, several relatively distinct perceptual and cognitive functions have been defined in cognitive psychology such as sensory memory, short-term memory, and selective attention. Here, we review evidence suggesting that some of these functions may be supported by shared underlying neuronal mechanisms. Specifically, we present, based on an integrative review of the literature, a hypothetical model wherein short-term plasticity, in the form of transient center-excitatory ...

  3. A case of radiation optic neuropathy after irradiation for pituitary adenoma

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, Masahiro; Sasaki, Ushio; Shinohara, Nobuya; Takeda, Tetsuji; Chaki, Takanori; Nishigakiuchi, Keiji; Kusunoki, Katsusuke (Ehime Prefectural Central Hospital, Matsuyama (Japan))

    1992-05-01

    A 60-year-old woman with radiation optic neuropathy 21 months after irradiation is reported. The patient received a total dose of 50 Gy in 25 fractions for 39 days for pituitary adenoma. She presented with bitemporal hemianopsia and loss of recent memory. Gadolinium-enhanced T1-weighted imaging was very useful for detecting lesions in the optic nerves and chiasm to the hypothalamus including mamillary bodies. Two-month steroid therapy was effective in preventing the disease progression, although visual loss and loss of recent memory were not improved. (N.K.).

  4. A case of radiation optic neuropathy after irradiation for pituitary adenoma

    International Nuclear Information System (INIS)

    Ohta, Masahiro; Sasaki, Ushio; Shinohara, Nobuya; Takeda, Tetsuji; Chaki, Takanori; Nishigakiuchi, Keiji; Kusunoki, Katsusuke

    1992-01-01

    A 60-year-old woman with radiation optic neuropathy 21 months after irradiation is reported. The patient received a total dose of 50 Gy in 25 fractions for 39 days for pituitary adenoma. She presented with bitemporal hemianopsia and loss of recent memory. Gadolinium-enhanced T1-weighted imaging was very useful for detecting lesions in the optic nerves and chiasm to the hypothalamus including mamillary bodies. Two-month steroid therapy was effective in preventing the disease progression, although visual loss and loss of recent memory were not improved. (N.K.)

  5. Chinese National Optical Education Small Private Online Course system

    Science.gov (United States)

    Zhang, XiaoJie; Lin, YuanFang; Liu, Xu; Liu, XiangDong; Cen, ZhaoFeng; Li, XiaoTong; Zheng, XiaoDong; Wang, XiaoPing

    2017-08-01

    In order to realize the sharing of high quality course resources and promote the deep integration of `Internet+' higher education and talent training, a new on-line to off-line specialized courses teaching mode was explored in Chinese colleges and universities, which emphasized different teaching places, being organized asynchronously and localized. The latest progress of the Chinese National Optical Education Small Private On-line Course (CNOESPOC) system set up by Zhejiang University and other colleges and universities having disciplines in the field of optics and photonics under the guidance of the Chinese National Steering Committee of Optics and Photonics (CNSCOP) was introduced in this paper. The On-line to Off-line (O2O) optical education teaching resource sharing practice offers a new good example for higher education in China under the background of Internet +.

  6. Memories and development imaginaries of the children in recent chilean fiction

    OpenAIRE

    María Angélica Franken Osorio

    2017-01-01

    The following paper explores the recent Chilean narrative which recalls childhood during the dictatorship, the so-called “literatura de los hijos” (literature of sons and daughters), establishing an aesthetic and discoursive link between shared memory and the development imaginaries of those who were children during the dictatorial past and that are writers in the post-dictatorial present. The affective continuity of a conflict, between a present state of memory and a past of childhood learn...

  7. On the law relating processing to storage in working memory.

    Science.gov (United States)

    Barrouillet, Pierre; Portrat, Sophie; Camos, Valérie

    2011-04-01

    Working memory is usually defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. However, although many models of working memory have been put forward during the last decades, they often leave underspecified the dynamic interplay between processing and storage. Moreover, the account of their interaction proposed by the most popular A. D. Baddeley and G. Hitch's (1974) multiple-component model is contradicted by facts, leaving unresolved one of the main issues of cognitive functioning. In this article, the author derive from the time-based resource-sharing model of working memory a mathematical function relating the cognitive load involved by concurrent processing to the amount of information that can be simultaneously maintained active in working memory. A meta-analysis from several experiments testing the effects of processing on storage corroborates the parameters of the predicted function, suggesting that it properly reflects the law relating the 2 functions of working memory. 2011 APA, all rights reserved

  8. The semantics of emotion in false memory.

    Science.gov (United States)

    Brainerd, C J; Bookbinder, S H

    2018-03-26

    The emotional valence of target information has been a centerpiece of recent false memory research, but in most experiments, it has been confounded with emotional arousal. We sought to clarify the results of such research by identifying a shared mathematical relation between valence and arousal ratings in commonly administered normed materials. That relation was then used to (a) decide whether arousal as well as valence influences false memory when they are confounded and to (b) determine whether semantic properties that are known to affect false memory covary with valence and arousal ratings. In Study 1, we identified a quadratic relation between valence and arousal ratings of words and pictures that has 2 key properties: Arousal increases more rapidly as function of negative valence than positive valence, and hence, a given level of negative valence is more arousing than the same level of positive valence. This quadratic function predicts that if arousal as well as valence affects false memory when they are confounded, false memory data must have certain fine-grained properties. In Study 2, those properties were absent from norming data for the Cornell-Cortland Emotional Word Lists, indicating that valence but not arousal affects false memory in those norms. In Study 3, we tested fuzzy-trace theory's explanation of that pattern: that valence ratings are positively related to semantic properties that are known to increase false memory, but arousal ratings are not. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Data Provenance for Agent-Based Models in a Distributed Memory

    Directory of Open Access Journals (Sweden)

    Delmar B. Davis

    2018-04-01

    Full Text Available Agent-Based Models (ABMs assist with studying emergent collective behavior of individual entities in social, biological, economic, network, and physical systems. Data provenance can support ABM by explaining individual agent behavior. However, there is no provenance support for ABMs in a distributed setting. The Multi-Agent Spatial Simulation (MASS library provides a framework for simulating ABMs at fine granularity, where agents and spatial data are shared application resources in a distributed memory. We introduce a novel approach to capture ABM provenance in a distributed memory, called ProvMASS. We evaluate our technique with traditional data provenance queries and performance measures. Our results indicate that a configurable approach can capture provenance that explains coordination of distributed shared resources, simulation logic, and agent behavior while limiting performance overhead. We also show the ability to support practical analyses (e.g., agent tracking and storage requirements for different capture configurations.

  10. Exploring Shared-Memory Optimizations for an Unstructured Mesh CFD Application on Modern Parallel Systems

    KAUST Repository

    Mudigere, Dheevatsa; Sridharan, Srinivas; Deshpande, Anand; Park, Jongsoo; Heinecke, Alexander; Smelyanskiy, Mikhail; Kaul, Bharat; Dubey, Pradeep; Kaushik, Dinesh; Keyes, David E.

    2015-01-01

    -grid implicit flow solver, which forms the backbone of computational aerodynamics, poses particular challenges due to its large irregular working sets, unstructured memory accesses, and variable/limited amount of parallelism. This code, based on a domain

  11. Two Maintenance Mechanisms of Verbal Information in Working Memory

    Science.gov (United States)

    Camos, V.; Lagner, P.; Barrouillet, P.

    2009-01-01

    The present study evaluated the interplay between two mechanisms of maintenance of verbal information in working memory, namely articulatory rehearsal as described in Baddeley's model, and attentional refreshing as postulated in Barrouillet and Camos's Time-Based Resource-Sharing (TBRS) model. In four experiments using complex span paradigm, we…

  12. Visual working memory is disrupted by covert verbal retrieval

    NARCIS (Netherlands)

    Ricker, Timothy J.; Cowan, Nelson; Morey, Candice C.

    If working memory (WM) depends on a central resource as is posited in some theories, but not in others it should be possible to observe interference between tasks that share few features with each other. We investigated whether interference with WM for visual arrays would occur, even if the

  13. A revised limbic system model for memory, emotion and behaviour.

    Science.gov (United States)

    Catani, Marco; Dell'acqua, Flavio; Thiebaut de Schotten, Michel

    2013-09-01

    Emotion, memories and behaviour emerge from the coordinated activities of regions connected by the limbic system. Here, we propose an update of the limbic model based on the seminal work of Papez, Yakovlev and MacLean. In the revised model we identify three distinct but partially overlapping networks: (i) the Hippocampal-diencephalic and parahippocampal-retrosplenial network dedicated to memory and spatial orientation; (ii) The temporo-amygdala-orbitofrontal network for the integration of visceral sensation and emotion with semantic memory and behaviour; (iii) the default-mode network involved in autobiographical memories and introspective self-directed thinking. The three networks share cortical nodes that are emerging as principal hubs in connectomic analysis. This revised network model of the limbic system reconciles recent functional imaging findings with anatomical accounts of clinical disorders commonly associated with limbic pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Pitch memory and exposure effects.

    OpenAIRE

    Ben-Haim, Moshe Shay; Eitan, Zohar; Chajut, Eran

    2014-01-01

    Recent studies indicate that the ability to represent absolute pitch values in long-term memory (LTM), long believed to be the possession of a small minority of trained musicians endowed with "absolute pitch" (AP), is in fact shared to some extent by a considerable proportion of the population. The current study examined whether this newly-discovered ability affects aspects of music and auditory cognition, particularly pitch learning and evaluation. Our starting points are two well establishe...

  15. Dynamic shared state maintenance in distributed virtual environments

    Science.gov (United States)

    Hamza-Lup, Felix George

    Advances in computer networks and rendering systems facilitate the creation of distributed collaborative environments in which the distribution of information at remote locations allows efficient communication. Particularly challenging are distributed interactive Virtual Environments (VE) that allow knowledge sharing through 3D information. The purpose of this work is to address the problem of latency in distributed interactive VE and to develop a conceptual model for consistency maintenance in these environments based on the participant interaction model. An area that needs to be explored is the relationship between the dynamic shared state and the interaction with the virtual entities present in the shared scene. Mixed Reality (MR) and VR environments must bring the human participant interaction into the loop through a wide range of electronic motion sensors, and haptic devices. Part of the work presented here defines a novel criterion for categorization of distributed interactive VE and introduces, as well as analyzes, an adaptive synchronization algorithm for consistency maintenance in such environments. As part of the work, a distributed interactive Augmented Reality (AR) testbed and the algorithm implementation details are presented. Currently the testbed is part of several research efforts at the Optical Diagnostics and Applications Laboratory including 3D visualization applications using custom built head-mounted displays (HMDs) with optical motion tracking and a medical training prototype for endotracheal intubation and medical prognostics. An objective method using quaternion calculus is applied for the algorithm assessment. In spite of significant network latency, results show that the dynamic shared state can be maintained consistent at multiple remotely located sites. In further consideration of the latency problems and in the light of the current trends in interactive distributed VE applications, we propose a hybrid distributed system architecture for

  16. Chimpanzees and bonobos exhibit divergent spatial memory development.

    Science.gov (United States)

    Rosati, Alexandra G; Hare, Brian

    2012-11-01

    Spatial cognition and memory are critical cognitive skills underlying foraging behaviors for all primates. While the emergence of these skills has been the focus of much research on human children, little is known about ontogenetic patterns shaping spatial cognition in other species. Comparative developmental studies of nonhuman apes can illuminate which aspects of human spatial development are shared with other primates, versus which aspects are unique to our lineage. Here we present three studies examining spatial memory development in our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (P. paniscus). We first compared memory in a naturalistic foraging task where apes had to recall the location of resources hidden in a large outdoor enclosure with a variety of landmarks (Studies 1 and 2). We then compared older apes using a matched memory choice paradigm (Study 3). We found that chimpanzees exhibited more accurate spatial memory than bonobos across contexts, supporting predictions from these species' different feeding ecologies. Furthermore, chimpanzees - but not bonobos - showed developmental improvements in spatial memory, indicating that bonobos exhibit cognitive paedomorphism (delays in developmental timing) in their spatial abilities relative to chimpanzees. Together, these results indicate that the development of spatial memory may differ even between closely related species. Moreover, changes in the spatial domain can emerge during nonhuman ape ontogeny, much like some changes seen in human children. © 2012 Blackwell Publishing Ltd.

  17. Representational momentum in memory for pitch.

    Science.gov (United States)

    Freyd, J J; Kelly, M H; DeKay, M L

    1990-11-01

    When a visual pattern is displayed at successively different orientations such that a rotation or translation is implied, an observer's memory for the final position is displaced forward. This phenomenon of representational momentum shares some similarities with physical momentum. For instance, the amount of memory shift is proportional to the implied velocity of the inducing display; representational momentum is specifically proportional to the final, not the average, velocity; representational momentum follows a continuous stopping function for the first 250 ms or so of the retention interval. In a previous paper (Kelly & Freyd, 1987) we demonstrated a forward memory asymmetry using implied changes in pitch, for subjects without formal musical training. In the current paper we replicate our earlier finding and show that the forward memory asymmetry occurs for subjects with formal musical training as well (Experiment 1). We then show the structural similarity between representational momentum in memory for pitch with previous reports of parametric effects using visual stimuli. We report a velocity effect for auditory momentum (Experiment 2), we demonstrate specifically that the velocity effect depends on the implied acceleration (Experiment 3), and we show that the stopping function for auditory momentum is qualitatively the same as that for visual momentum (Experiment 4). We consider the implications of these results for theories of mental representation.

  18. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    Science.gov (United States)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  19. Data Movement Dominates: Advanced Memory Technology to Address the Real Exascale Power Problem

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, Keren

    2014-08-28

    Energy is the fundamental barrier to Exascale supercomputing and is dominated by the cost of moving data from one point to another, not computation. Similarly, performance is dominated by data movement, not computation. The solution to this problem requires three critical technologies: 3D integration, optical chip-to-chip communication, and a new communication model. The central goal of the Sandia led "Data Movement Dominates" project aimed to develop memory systems and new architectures based on these technologies that have the potential to lower the cost of local memory accesses by orders of magnitude and provide substantially more bandwidth. Only through these transformational advances can future systems reach the goals of Exascale computing with a manageable power budgets. The Sandia led team included co-PIs from Columbia University, Lawrence Berkeley Lab, and the University of Maryland. The Columbia effort of Data Movement Dominates focused on developing a physically accurate simulation environment and experimental verification for optically-connected memory (OCM) systems that can enable continued performance scaling through high-bandwidth capacity, energy-efficient bit-rate transparency, and time-of-flight latency. With OCM, memory device parallelism and total capacity can scale to match future high-performance computing requirements without sacrificing data-movement efficiency. When we consider systems with integrated photonics, links to memory can be seamlessly integrated with the interconnection network-in a sense, memory becomes a primary aspect of the interconnection network. At the core of the Columbia effort, toward expanding our understanding of OCM enabled computing we have created an integrated modeling and simulation environment that uniquely integrates the physical behavior of the optical layer. The PhoenxSim suite of design and software tools developed under this effort has enabled the co-design of and performance evaluation photonics-enabled OCM

  20. Physical-layer network coding in coherent optical OFDM systems.

    Science.gov (United States)

    Guan, Xun; Chan, Chun-Kit

    2015-04-20

    We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.

  1. Memory phenomenon in a lanthanum based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ye [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Huang, Wei Min, E-mail: mwmhuang@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Zhao, Yong [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Ding, Zhen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Li, Yan [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Tor, Shu Beng; Liu, Erjia [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2016-07-05

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  2. Memory phenomenon in a lanthanum based bulk metallic glass

    International Nuclear Information System (INIS)

    Zhou, Ye; Huang, Wei Min; Zhao, Yong; Ding, Zhen; Li, Yan; Tor, Shu Beng; Liu, Erjia

    2016-01-01

    In this paper, we experimentally investigate two memory phenomena in a lanthanum based bulk metallic glass (BMG). While the temperature memory effect (TME) is not found by differential scanning calorimeter (DSC) test, shape recovery is observed in samples indented at both low and high temperatures. In terms of shape memory related characteristics, this BMG shares some features of shape memory alloys (SMAs) due to its metal nature, and some other features of shape memory polymers (SMPs) owing to its glassy–rubbery transition. The formation of protrusion in the polished sample after heating to super-cooled liquid region (SCLR) indicates that surface tension is not a necessarily positive contributor for shape recovery. Release of internal elastic stress is concluded as the major player. Although the amorphous nature of BMGs enables for storing appreciable amount of internal elastic stress upon deformation, without the presence of cross-linker as in typical SMPs, the shape recovery in BMGs is rather limited. - Highlights: • Experimental investigation of shape recovery in BMG. • Surface tension is not the major reason for shape recovery in BMG. • Release of internal stress is the major contributor for shape recovery. • Comparison of shape memory features of BMG with other shape memory materials.

  3. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    Science.gov (United States)

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  4. Memory effects in attenuation and amplification quantum processes

    International Nuclear Information System (INIS)

    Lupo, Cosmo; Giovannetti, Vittorio; Mancini, Stefano

    2010-01-01

    With increasing communication rates via quantum channels, memory effects become unavoidable whenever the use rate of the channel is comparable to the typical relaxation time of the channel environment. We introduce a model of a bosonic memory channel, describing correlated noise effects in quantum-optical processes via attenuating or amplifying media. To study such a channel model, we make use of a proper set of collective field variables, which allows us to unravel the memory effects, mapping the n-fold concatenation of the memory channel to a unitarily equivalent, direct product of n single-mode bosonic channels. We hence estimate the channel capacities by relying on known results for the memoryless setting. Our findings show that the model is characterized by two different regimes, in which the cross correlations induced by the noise among different channel uses are either exponentially enhanced or exponentially reduced.

  5. A Hybrid Approach to Processing Big Data Graphs on Memory-Restricted Systems

    KAUST Repository

    Harshvardhan,

    2015-05-01

    With the advent of big-data, processing large graphs quickly has become increasingly important. Most existing approaches either utilize in-memory processing techniques that can only process graphs that fit completely in RAM, or disk-based techniques that sacrifice performance. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into sub graphs that fit in RAM and uses a paging-like technique to load sub graphs. We show that without modifying the algorithms, this approach can scale from small memory-constrained systems (such as tablets) to large-scale distributed machines with 16, 000+ cores.

  6. Strategic design and fabrication of acrylic shape memory polymers

    Science.gov (United States)

    Park, Ju Hyuk; Kim, Hansu; Ryoun Youn, Jae; Song, Young Seok

    2017-08-01

    Modulation of thermomechanics nature is a critical issue for an optimized use of shape memory polymers (SMPs). In this study, a strategic approach was proposed to control the transition temperature of SMPs. Free radical vinyl polymerization was employed for tailoring and preparing acrylic SMPs. Transition temperatures of the shape memory tri-copolymers were tuned by changing the composition of monomers. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses were carried out to evaluate the chemical structures and compositions of the synthesized SMPs. The thermomechanical properties and shape memory performance of the SMPs were also examined by performing dynamic mechanical thermal analysis. Numerical simulation based on a finite element method provided consistent results with experimental cyclic shape memory tests of the specimens. Transient shape recovery tests were conducted and optical transparence of the samples was identified. We envision that the materials proposed in this study can help develop a new type of shape-memory devices in biomedical and aerospace engineering applications.

  7. Shared Processing of Language and Music.

    Science.gov (United States)

    Atherton, Ryan P; Chrobak, Quin M; Rauscher, Frances H; Karst, Aaron T; Hanson, Matt D; Steinert, Steven W; Bowe, Kyra L

    2018-01-01

    The present study sought to explore whether musical information is processed by the phonological loop component of the working memory model of immediate memory. Original instantiations of this model primarily focused on the processing of linguistic information. However, the model was less clear about how acoustic information lacking phonological qualities is actively processed. Although previous research has generally supported shared processing of phonological and musical information, these studies were limited as a result of a number of methodological concerns (e.g., the use of simple tones as musical stimuli). In order to further investigate this issue, an auditory interference task was employed. Specifically, participants heard an initial stimulus (musical or linguistic) followed by an intervening stimulus (musical, linguistic, or silence) and were then asked to indicate whether a final test stimulus was the same as or different from the initial stimulus. Results indicated that mismatched interference conditions (i.e., musical - linguistic; linguistic - musical) resulted in greater interference than silence conditions, with matched interference conditions producing the greatest interference. Overall, these results suggest that processing of linguistic and musical information draws on at least some of the same cognitive resources.

  8. Modeling spatial-temporal operations with context-dependent associative memories.

    Science.gov (United States)

    Mizraji, Eduardo; Lin, Juan

    2015-10-01

    We organize our behavior and store structured information with many procedures that require the coding of spatial and temporal order in specific neural modules. In the simplest cases, spatial and temporal relations are condensed in prepositions like "below" and "above", "behind" and "in front of", or "before" and "after", etc. Neural operators lie beneath these words, sharing some similarities with logical gates that compute spatial and temporal asymmetric relations. We show how these operators can be modeled by means of neural matrix memories acting on Kronecker tensor products of vectors. The complexity of these memories is further enhanced by their ability to store episodes unfolding in space and time. How does the brain scale up from the raw plasticity of contingent episodic memories to the apparent stable connectivity of large neural networks? We clarify this transition by analyzing a model that flexibly codes episodic spatial and temporal structures into contextual markers capable of linking different memory modules.

  9. Main-Memory Operation Buffering for Efficient R-Tree Update

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Saltenis, Simonas; Biveinis, Laurynas

    2007-01-01

    the buffering of update operations in main memory as well as the grouping of operations to reduce disk I/O. In particular, operations are performed in bulk so that multiple operations are able to share I/O. The paper presents an analytical cost model that is shown to be accurate by empirical studies...... the main memory that is indeed available, or do not support some of the standard index operations. Assuming a setting where the index updates need not be written to disk immediately, we propose an R-tree-based indexing technique that does not exhibit any of these drawbacks. This technique exploits...

  10. Sudden amnesia resulting in pain relief: the relationship between memory and pain.

    Science.gov (United States)

    Choi, Daniel S; Choi, Deborah Y; Whittington, Robert A; Nedeljković, Srdjan S

    2007-11-01

    Nociceptive pain and its emotional component can result in the development of a "chronic pain memory". This report describes two patients who had long histories of chronic pain and opioid dependence. Both patients experienced sudden memory loss that was followed by significant pain reduction and an eradication of their need for opioid management. Neural centers involved in sensory pain, its affective component, opioid dependence, and memory overlap in the brain and share common pathways. The anterior cingulate cortex, the insular cortex, and the amygdala are examples of regions implicated in both pain and memory. One of the patients in the report experienced multiple seizure episodes, which may have contributed to memory loss and pain relief. The role of electroconvulsive therapy as it relates to amnesia and pain is reviewed. Questions are raised regarding whether therapies that address the memory component of pain may have a role in the treatment of long-term chronic pain patients.

  11. Protein-Based Three-Dimensional Memories and Associative Processors

    Science.gov (United States)

    Birge, Robert

    2008-03-01

    The field of bioelectronics has benefited from the fact that nature has often solved problems of a similar nature to those which must be solved to create molecular electronic or photonic devices that operate with efficiency and reliability. Retinal proteins show great promise in bioelectronic devices because they operate with high efficiency (˜0.65%), high cyclicity (>10^7), operate over an extended wavelength range (360 -- 630 nm) and can convert light into changes in voltage, pH, absorption or refractive index. This talk will focus on a retinal protein called bacteriorhodopsin, the proton pump of the organism Halobacterium salinarum. Two memories based on this protein will be described. The first is an optical three-dimensional memory. This memory stores information using volume elements (voxels), and provides as much as a thousand-fold improvement in effective capacity over current technology. A unique branching reaction of a variant of bacteriorhodopsin is used to turn each protein into an optically addressed latched AND gate. Although three working prototypes have been developed, a number of cost/performance and architectural issues must be resolved prior to commercialization. The major issue is that the native protein provides a very inefficient branching reaction. Genetic engineering has improved performance by nearly 500-fold, but a further order of magnitude improvement is needed. Protein-based holographic associative memories will also be discussed. The human brain stores and retrieves information via association, and human intelligence is intimately connected to the nature and enormous capacity of this associative search and retrieval process. To a first order approximation, creativity can be viewed as the association of two seemingly disparate concepts to form a totally new construct. Thus, artificial intelligence requires large scale associative memories. Current computer hardware does not provide an optimal environment for creating artificial

  12. Self-defining memories, scripts, and the life story: narrative identity in personality and psychotherapy.

    Science.gov (United States)

    Singer, Jefferson A; Blagov, Pavel; Berry, Meredith; Oost, Kathryn M

    2013-12-01

    An integrative model of narrative identity builds on a dual memory system that draws on episodic memory and a long-term self to generate autobiographical memories. Autobiographical memories related to critical goals in a lifetime period lead to life-story memories, which in turn become self-defining memories when linked to an individual's enduring concerns. Self-defining memories that share repetitive emotion-outcome sequences yield narrative scripts, abstracted templates that filter cognitive-affective processing. The life story is the individual's overarching narrative that provides unity and purpose over the life course. Healthy narrative identity combines memory specificity with adaptive meaning-making to achieve insight and well-being, as demonstrated through a literature review of personality and clinical research, as well as new findings from our own research program. A clinical case study drawing on this narrative identity model is also presented with implications for treatment and research. © 2012 Wiley Periodicals, Inc.

  13. Intact implicit and reduced explicit memory for negative self-related information in repressive coping.

    Science.gov (United States)

    Fujiwara, Esther; Levine, Brian; Anderson, Adam K

    2008-09-01

    Voluntary emotional memory control has recently been shown to involve prefrontal down-regulation of medial temporal lobe activity during memory retrieval. However, little is known about instances of uninstructed, naturally occurring forgetting. In the present study, we examined whether memory suppression extends to involuntary, uninstructed down-regulation of memory in individuals thought to be experts in forgetting negative memories--those with a repressive coping style. We contrasted explicit and implicit memory for negative information in repressor and nonrepressor groups and examined whether self-relevance is a moderating variable. To delineate the specificity of repressors' selective memory reductions, we contrasted encoding and retrieval of emotional words as a function of self-reference, subjective self-relevance, and explicitness of the memory task in nonrepressors and repressors. Self-descriptiveness judgments, lexical decisions (implicit memory), and free recall (explicit memory) were investigated. Repressors had selectively lowered free recall only for negative, self-relevant information. Their implicit memory for the same information was unaffected. This pattern suggests that regulation of emotional memory in repressive individuals is a case of motivated forgetting, possibly sharing much of the neural underpinnings of voluntary memory suppression.

  14. Selective attention on representations in working memory: cognitive and neural mechanisms.

    Science.gov (United States)

    Ku, Yixuan

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  15. Adapting Memory Hierarchies for Emerging Datacenter Interconnects

    Institute of Scientific and Technical Information of China (English)

    江涛; 董建波; 侯锐; 柴琳; 张立新; 孙凝晖; 田斌

    2015-01-01

    Efficient resource utilization requires that emerging datacenter interconnects support both high performance communication and efficient remote resource sharing. These goals require that the network be more tightly coupled with the CPU chips. Designing a new interconnection technology thus requires considering not only the interconnection itself, but also the design of the processors that will rely on it. In this paper, we study memory hierarchy implications for the design of high-speed datacenter interconnects—particularly as they affect remote memory access—and we use PCIe as the vehicle for our investigations. To that end, we build three complementary platforms: a PCIe-interconnected prototype server with which we measure and analyze current bottlenecks; a software simulator that lets us model microarchitectural and cache hierarchy changes;and an FPGA prototype system with a streamlined switchless customized protocol Thunder with which we study hardware optimizations outside the processor. We highlight several architectural modifications to better support remote memory access and communication, and quantify their impact and limitations.

  16. Multiple-User, Multitasking, Virtual-Memory Computer System

    Science.gov (United States)

    Generazio, Edward R.; Roth, Don J.; Stang, David B.

    1993-01-01

    Computer system designed and programmed to serve multiple users in research laboratory. Provides for computer control and monitoring of laboratory instruments, acquisition and anlaysis of data from those instruments, and interaction with users via remote terminals. System provides fast access to shared central processing units and associated large (from megabytes to gigabytes) memories. Underlying concept of system also applicable to monitoring and control of industrial processes.

  17. Quantum memory for images: A quantum hologram

    International Nuclear Information System (INIS)

    Vasilyev, Denis V.; Sokolov, Ivan V.; Polzik, Eugene S.

    2008-01-01

    Matter-light quantum interface and quantum memory for light are important ingredients of quantum information protocols, such as quantum networks, distributed quantum computation, etc. [P. Zoller et al., Eur. Phys. J. D 36, 203 (2005)]. In this paper we present a spatially multimode scheme for quantum memory for light, which we call a quantum hologram. Our approach uses a multiatom ensemble which has been shown to be efficient for a single spatial mode quantum memory. Due to the multiatom nature of the ensemble and to the optical parallelism it is capable of storing many spatial modes, a feature critical for the present proposal. A quantum hologram with the fidelity exceeding that of classical hologram will be able to store quantum features of an image, such as multimode superposition and entangled quantum states, something that a standard hologram is unable to achieve

  18. ATLAS Global Shares Implementation in the PanDA Workload Management System

    CERN Document Server

    Barreiro Megino, Fernando Harald; The ATLAS collaboration

    2018-01-01

    PanDA (Production and Distributed Analysis) is the workload management system for ATLAS across the Worldwide LHC Computing Grid. While analysis tasks are submitted to PanDA by over a thousand users following personal schedules (e.g. PhD or conference deadlines), production campaigns are scheduled by a central Physics Coordination group based on the organization’s calendar. The Physics Coordination group needs to allocate the amount of Grid resources dedicated to each activity, in order to manage sharing of CPU resources among various parallel campaigns and to make sure that results can be achieved in time for important deadlines. While dynamic and static shares on batch systems have been around for a long time, we are trying to move away from local resource partitioning and manage shares at a global level in the PanDA system. The global solution is not straightforward, given different requirements of the activities (number of cores, memory, I/O and CPU intensity), the heterogeneity of Grid resources (site/H...

  19. The broadcast of shared attention and its impact on political persuasion.

    Science.gov (United States)

    Shteynberg, Garriy; Bramlett, James M; Fles, Elizabeth H; Cameron, Jaclyn

    2016-11-01

    In democracies where multitudes yield political influence, so does broadcast media that reaches those multitudes. However, broadcast media may not be powerful simply because it reaches a certain audience, but because each of the recipients is aware of that fact. That is, watching broadcast media can evoke a state of shared attention, or the perception of simultaneous coattention with others. Whereas past research has investigated the effects of shared attention with a few socially close others (i.e., friends, acquaintances, minimal ingroup members), we examine the impact of shared attention with a multitude of unfamiliar others in the context of televised broadcasting. In this paper, we explore whether shared attention increases the psychological impact of televised political speeches, and whether fewer numbers of coattending others diminishes this effect. Five studies investigate whether the perception of simultaneous coattention, or shared attention, on a mass broadcasted political speech leads to more extreme judgments. The results indicate that the perception of synchronous coattention (as compared with coattending asynchronously and attending alone) renders persuasive speeches more persuasive, and unpersuasive speeches more unpersuasive. We also find that recall memory for the content of the speech mediates the effect of shared attention on political persuasion. The results are consistent with the notion that shared attention on mass broadcasted information results in deeper processing of the content, rendering judgments more extreme. In all, our findings imply that shared attention is a cognitive capacity that supports large-scale social coordination, where multitudes of people can cognitively prioritize simultaneously coattended information. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Short-term memory in networks of dissociated cortical neurons.

    Science.gov (United States)

    Dranias, Mark R; Ju, Han; Rajaram, Ezhilarasan; VanDongen, Antonius M J

    2013-01-30

    Short-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent. We have used a novel computational and optogenetic approach to investigate whether these same memory processes hypothesized to support pattern recognition and short-term memory in vivo, exist in vitro. Electrophysiological activity was recorded from primary cultures of dissociated rat cortical neurons plated on multielectrode arrays. Cultures were transfected with ChannelRhodopsin-2 and optically stimulated using random dot stimuli. The pattern of neuronal activity resulting from this stimulation was analyzed using classification algorithms that enabled the identification of stimulus-specific memories. Fading memories for different stimuli, encoded in ongoing neural activity, persisted and could be distinguished from each other for as long as 1 s after stimulation was terminated. Hidden memories were detected by altered responses of neurons to additional stimulation, and this effect persisted longer than 1 s. Interestingly, network bursts seem to eliminate hidden memories. These results are similar to those that have been reported from similar experiments in vivo and demonstrate that mechanisms of information processing and short-term memory can be studied using cultured neuronal networks, thereby setting the stage for therapeutic applications using this platform.

  1. Natural Conversations as a Source of False Memories in Children: Implications for the Testimony of Young Witnesses

    Science.gov (United States)

    Principe, Gabrielle F.; Schindewolf, Erica

    2012-01-01

    Research on factors that can affect the accuracy of children’s autobiographical remembering has important implications for understanding the abilities of young witnesses to provide legal testimony. In this article, we review our own recent research on one factor that has much potential to induce errors in children’s event recall, namely natural memory sharing conversations with peers and parents. Our studies provide compelling evidence that not only can the content of conversations about the past intrude into later memory but that such exchanges can prompt the generation of entirely false narratives that are more detailed than true accounts of experienced events. Further, our work show that deeper and more creative participation in memory sharing dialogues can boost the damaging effects of conversationally conveyed misinformation. Implications of this collection of findings for children’s testimony are discussed. PMID:23129880

  2. In-Depth Analysis of Computer Memory Acquisition Software for Forensic Purposes.

    Science.gov (United States)

    McDown, Robert J; Varol, Cihan; Carvajal, Leonardo; Chen, Lei

    2016-01-01

    The comparison studies on random access memory (RAM) acquisition tools are either limited in metrics or the selected tools were designed to be executed in older operating systems. Therefore, this study evaluates widely used seven shareware or freeware/open source RAM acquisition forensic tools that are compatible to work with the latest 64-bit Windows operating systems. These tools' user interface capabilities, platform limitations, reporting capabilities, total execution time, shared and proprietary DLLs, modified registry keys, and invoked files during processing were compared. We observed that Windows Memory Reader and Belkasoft's Live Ram Capturer leaves the least fingerprints in memory when loaded. On the other hand, ProDiscover and FTK Imager perform poor in memory usage, processing time, DLL usage, and not-wanted artifacts introduced to the system. While Belkasoft's Live Ram Capturer is the fastest to obtain an image of the memory, Pro Discover takes the longest time to do the same job. © 2015 American Academy of Forensic Sciences.

  3. Fencing direct memory access data transfers in a parallel active messaging interface of a parallel computer

    Science.gov (United States)

    Blocksome, Michael A.; Mamidala, Amith R.

    2013-09-03

    Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.

  4. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention

    Science.gov (United States)

    Won, Bo-Yeong; Jiang, Yuhong V.

    2014-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460

  5. Modeling a space-based quantum link that includes an adaptive optics system

    Science.gov (United States)

    Duchane, Alexander W.; Hodson, Douglas D.; Mailloux, Logan O.

    2017-10-01

    Quantum Key Distribution uses optical pulses to generate shared random bit strings between two locations. If a high percentage of the optical pulses are comprised of single photons, then the statistical nature of light and information theory can be used to generate secure shared random bit strings which can then be converted to keys for encryption systems. When these keys are incorporated along with symmetric encryption techniques such as a one-time pad, then this method of key generation and encryption is resistant to future advances in quantum computing which will significantly degrade the effectiveness of current asymmetric key sharing techniques. This research first reviews the transition of Quantum Key Distribution free-space experiments from the laboratory environment to field experiments, and finally, ongoing space experiments. Next, a propagation model for an optical pulse from low-earth orbit to ground and the effects of turbulence on the transmitted optical pulse is described. An Adaptive Optics system is modeled to correct for the aberrations caused by the atmosphere. The long-term point spread function of the completed low-earth orbit to ground optical system is explored in the results section. Finally, the impact of this optical system and its point spread function on an overall quantum key distribution system as well as the future work necessary to show this impact is described.

  6. Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers.

    Science.gov (United States)

    Maza, Francisco Javier; Sztarker, Julieta; Shkedy, Avishag; Peszano, Valeria Natacha; Locatelli, Fernando Federico; Delorenzi, Alejandro

    2016-12-06

    The hypothesis of a common origin for the high-order memory centers in bilateral animals is based on the evidence that several key features, including gene expression and neuronal network patterns, are shared across several phyla. Central to this hypothesis is the assumption that the arthropods' higher order neuropils of the forebrain [the mushroom bodies (MBs) of insects and the hemiellipsoid bodies (HBs) of crustaceans] are homologous structures. However, even though involvement in memory processes has been repeatedly demonstrated for the MBs, direct proof of such a role in HBs is lacking. Here, through neuroanatomical and immunohistochemical analysis, we identified, in the crab Neohelice granulata, HBs that resemble the calyxless MBs found in several insects. Using in vivo calcium imaging, we revealed training-dependent changes in neuronal responses of vertical and medial lobes of the HBs. These changes were stimulus-specific, and, like in the hippocampus and MBs, the changes reflected the context attribute of the memory trace, which has been envisioned as an essential feature for the HBs. The present study constitutes functional evidence in favor of a role for the HBs in memory processes, and provides key physiological evidence supporting a common origin of the arthropods' high-order memory centers.

  7. When Reasoning Modifies Memory: Schematic Assimilation Triggered by Analogical Mapping

    Science.gov (United States)

    Vendetti, Michael S.; Wu, Aaron; Rowshanshad, Ebi; Knowlton, Barbara J.; Holyoak, Keith J.

    2014-01-01

    Analogical mapping highlights shared relations that link 2 situations, potentially at the expense of information that does not fit the dominant pattern of correspondences. To investigate whether analogical mapping can alter subsequent recognition memory for features of a source analog, we performed 2 experiments with 4-term proportional analogies…

  8. Context-dependent enhancement of declarative memory performance following acute psychosocial stress.

    Science.gov (United States)

    Smeets, T; Giesbrecht, T; Jelicic, M; Merckelbach, H

    2007-09-01

    Studies on how acute stress affects learning and memory have yielded inconsistent findings, with some studies reporting enhancing effects while others report impairing effects. Recently, Joëls et al. [Joëls, M., Pu, Z., Wiegert, O., Oitzl, M.S., Krugers, H.J., 2006. Learning under stress: how does it work? Trends in Cognitive Sciences, 10, 152-158] argued that stress will enhance memory only when the memory acquisition phase and stressor share the same spatiotemporal context (i.e., context-congruency). The current study tested this hypothesis by looking at whether context-congruent stress enhances declarative memory performance. Undergraduates were assigned to a personality stress group (n=16), a memory stress group (n=18), or a no-stress control group (n=18). While being exposed to the acute stressor or a control task, participants encoded personality- and memory-related words and were tested for free recall 24h later. Relative to controls, stress significantly enhanced recall of context-congruent words, but only for personality words. This suggests that acute stress may strengthen the consolidation of memory material when the stressor matches the to-be-remembered information in place and time.

  9. Neural networks in continuous optical media

    International Nuclear Information System (INIS)

    Anderson, D.Z.

    1987-01-01

    The authors' interest is to see to what extent neural models can be implemented using continuous optical elements. Thus these optical networks represent a continuous distribution of neuronlike processors rather than a discrete collection. Most neural models have three characteristic features: interconnections; adaptivity; and nonlinearity. In their optical representation the interconnections are implemented with linear one- and two-port optical elements such as lenses and holograms. Real-time holographic media allow these interconnections to become adaptive. The nonlinearity is achieved with gain, for example, from two-beam coupling in photorefractive media or a pumped dye medium. Using these basic optical elements one can in principle construct continuous representations of a number of neural network models. The authors demonstrated two devices based on continuous optical elements: an associative memory which recalls an entire object when addressed with a partial object and a tracking novelty filter which identifies time-dependent features in an optical scene. These devices demonstrate the potential of distributed optical elements to implement more formal models of neural networks

  10. Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting

    DEFF Research Database (Denmark)

    Kruse, Robinson; Leschinski, Christian; Will, Michael

    This paper extends the popular Diebold-Mariano test to situations when the forecast error loss differential exhibits long memory. It is shown that this situation can arise frequently, since long memory can be transmitted from forecasts and the forecast objective to forecast error loss differentials....... The nature of this transmission mainly depends on the (un)biasedness of the forecasts and whether the involved series share common long memory. Further results show that the conventional Diebold-Mariano test is invalidated under these circumstances. Robust statistics based on a memory and autocorrelation...... extensions of the heterogeneous autoregressive model. While we find that forecasts improve significantly if jumps in the log-price process are considered separately from continuous components, improvements achieved by the inclusion of implied volatility turn out to be insignificant in most situations....

  11. Forward Association, Backward Association, and the False-Memory Illusion

    Science.gov (United States)

    Brainerd, C. J.; Wright, Ron

    2005-01-01

    In the Deese-Roediger-McDermott false-memory illusion, forward associative strength (FAS) is unrelated to the strength of the illusion; this is puzzling, because high-FAS lists ought to share more semantic features with critical unpresented words than should low-FAS lists. The authors show that this null result is probably a truncated range…

  12. The organization of words and environmental sounds in memory.

    Science.gov (United States)

    Hendrickson, Kristi; Walenski, Matthew; Friend, Margaret; Love, Tracy

    2015-03-01

    In the present study we used event-related potentials to compare the organization of linguistic and meaningful nonlinguistic sounds in memory. We examined N400 amplitudes as adults viewed pictures presented with words or environmental sounds that matched the picture (Match), that shared semantic features with the expected match (Near Violation), and that shared relatively few semantic features with the expected match (Far Violation). Words demonstrated incremental N400 amplitudes based on featural similarity from 300-700ms, such that both Near and Far Violations exhibited significant N400 effects, however Far Violations exhibited greater N400 effects than Near Violations. For environmental sounds, Far Violations but not Near Violations elicited significant N400 effects, in both early (300-400ms) and late (500-700ms) time windows, though a graded pattern similar to that of words was seen in the mid-latency time window (400-500ms). These results indicate that the organization of words and environmental sounds in memory is differentially influenced by featural similarity, with a consistently fine-grained graded structure for words but not sounds. Published by Elsevier Ltd.

  13. Identity-related autobiographical memories and cultural life scripts in patients with Borderline Personality Disorder.

    Science.gov (United States)

    Jørgensen, Carsten René; Berntsen, Dorthe; Bech, Morten; Kjølbye, Morten; Bennedsen, Birgit E; Ramsgaard, Stine B

    2012-06-01

    Disturbed identity is one of the defining characteristics of Borderline Personality Disorder manifested in a broad spectrum of dysfunctions related to the self, including disturbances in meaning-generating self-narratives. Autobiographical memories are memories of personal events that provide crucial building-blocks in our construction of a life-story, self-concept, and a meaning-generating narrative identity. The cultural life script represents culturally shared expectations as to the order and timing of life events in a prototypical life course within a given culture. It is used to organize one's autobiographical memories. Here, 17 BPD-patients, 14 OCD-patients, and 23 non-clinical controls generated three important autobiographical memories and their conceptions of the cultural life script. BPD-patients reported substantially more negative memories, fewer of their memories were of prototypical life script events, their memory narratives were less coherent and more disoriented, and the overall typicality of their life scripts was lower as compared with the other two groups. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Data reading with the aid of one-photon and two-photon luminescence in three-dimensional optical memory devices based on photochromic materials

    International Nuclear Information System (INIS)

    Akimov, Denis A; Zheltikov, Aleksei M; Koroteev, Nikolai I; Naumov, A N; Fedotov, Andrei B; Magnitskiy, Sergey A; Sidorov-Biryukov, D A; Sokolyuk, N T

    1998-01-01

    The problem of nondestructive reading of the data stored in the interior of a photochromic sample was analysed. A comparison was made of the feasibility of reading based on one-photon and two-photon luminescence. A model was proposed for the processes of reading the data stored in photochromic molecules with the aid of one-photon and two-photon luminescence. In addition to photochromic transitions, account was taken of the transfer of populations between optically coupled transitions in molecules under the action of the exciting radiation. This model provided a satisfactory description of the kinetics of decay of the coloured form of bulk samples of spiropyran and made it possible to determine experimentally the quantum yield of the reverse photoreaction as well as the two-photon absorption cross section of the coloured form. Measurements were made of the characteristic erasure times of the data stored in a photochromic medium under one-photon and two-photon luminescence reading conditions. It was found that the use of two-photon luminescence made it possible to enhance considerably the contrast and localisation of the optical data reading scheme in three-dimensional optical memory devices. The experimental results were used to estimate the two-photon absorption cross section of the coloured form of a sample of indoline spiropyran in a polymethyl methacrylate matrix. (laser applications and other topics in quantum electronics)

  15. Why autobiographical memories for traumatic and emotional events might differ: theoretical arguments and empirical evidence.

    Science.gov (United States)

    Sotgiu, Igor; Rusconi, Maria Luisa

    2014-01-01

    The authors review five arguments supporting the hypothesis that memories for traumatic and nontraumatic emotional events should be considered as qualitatively different recollections. The first argument considers the objective features of traumatic and emotional events and their possible influence on the formation of memories for these events. The second argument assumes that traumatic memories distinguish from emotional ones as trauma exposure is often associated with the development of psychological disorders involving memory disturbances. The third argument is that traumatic experiences are more likely than emotional experiences to be forgotten and recovered. The fourth argument concerns the possibility that emotional memories are socially shared more frequently than traumatic memories. A fifth argument suggests that trauma exposure may impair selected brain systems implicated in memory functions. Theoretical and empirical evidence supporting these claims is reviewed. In the conclusions, the authors illustrate future research directions and discuss some conceptual issues related to the definitions of traumatic event currently employed by memory researchers.

  16. Time and cognitive load in working memory.

    OpenAIRE

    Barrouillet , Pierre; Bernardin , Sophie; Portrat , Sophie; Vergauwe , Evie; Camos , Valérie

    2007-01-01

    International audience; According to the time-based resource-sharing model (P. Barrouillet, S. Bernardin, & V. Camos, 2004), the cognitive load a given task involves is a function of the proportion of time during which it captures attention, thus impeding other attention-demanding processes. Accordingly, the present study demonstrates that the disruptive effect on concurrent maintenance of memory retrievals and response selections increases with their duration. Moreover, the effect on recall ...

  17. Optically Programmable Field Programmable Gate Arrays (FPGA) Systems

    National Research Council Canada - National Science Library

    Mumbru, Jose

    2004-01-01

    ... holograms for these modules. The first chapter makes the case that a direct interface between an optical memory and a chip integrating detectors and logic circuitry can better utilize the high parallelism inherent in holographic modules...

  18. Cultural differences in rated typicality and perceived causes of memory changes in adulthood.

    Science.gov (United States)

    Bottiroli, Sara; Cavallini, Elena; Fastame, Maria Chiara; Hertzog, Christopher

    2013-01-01

    This study examined cultural differences in stereotypes and attributions regarding aging and memory. Two subcultures belonging to the same country, Italy, were compared on general beliefs about memory. Sardinians live longer than other areas of Italy, which is a publically shared fact that informs stereotypes about that subculture. An innovative instrument evaluating simultaneously aging stereotypes and attributions about memory and memory change in adulthood was administered to 52 Sardinian participants and 52 Milanese individuals divided into three age groups: young (20-30), young-old (60-70), and old-old (71-85) adults. Both Milanese and Sardinians reported that memory decline across the life span is more typical than a pattern of stability or improvement. However, Sardinians viewed stability and improvement in memory as more typical than did the Milanese. Interestingly, cultural differences emerged in attributions about memory improvement. Although all Sardinian age groups rated nutrition and heredity as relevant causes in determining the memory decline, Sardinians' rated typicality of life-span memory improvement correlated strongly with causal attributions to a wide number of factors, including nutrition and heredity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Optical memory system technology. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    Approximately 213 citations from the international literature which concern the development of the optical data storage system technology are presented. Topics covered include holographic computer storage devices, crystal, magneto, and electro-optics, imaging techniques, in addition to optical data processing and storage.

  20. Negative polarity illusions and the format of hierarchical encodings in memory.

    Science.gov (United States)

    Parker, Dan; Phillips, Colin

    2016-12-01

    Linguistic illusions have provided valuable insights into how we mentally navigate complex representations in memory during language comprehension. Two notable cases involve illusory licensing of agreement and negative polarity items (NPIs), where comprehenders fleetingly accept sentences with unlicensed agreement or an unlicensed NPI, but judge those same sentences as unacceptable after more reflection. Existing accounts have argued that illusions are a consequence of faulty memory access processes, and make the additional assumption that the encoding of the sentence remains fixed over time. This paper challenges the predictions made by these accounts, which assume that illusions should generalize to a broader set of structural environments and a wider range of syntactic and semantic phenomena. We show across seven reading-time and acceptability judgment experiments that NPI illusions can be reliably switched "on" and "off", depending on the amount of time from when the potential licensor is processed until the NPI is encountered. But we also find that the same profile does not extend to agreement illusions. This contrast suggests that the mechanisms responsible for switching the NPI illusion on and off are not shared across all illusions. We argue that the contrast reflects changes over time in the encoding of the semantic/pragmatic representations that can license NPIs. Just as optical illusions have been informative about the visual system, selective linguistic illusions are informative not only about the nature of the access mechanisms, but also about the nature of the encoding mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Updated optical read/write memory system components

    Science.gov (United States)

    1974-01-01

    A survey of the building blocks of the electro-optic read/write system was made. Critical areas and alternate paths are discussed. The latest PLZT block data composer is analyzed. Stricter controls in the production and fabrication of PLZT are implied by the performance of the BDC. A reverse charge before erase has eliminated several problems observed in the parallel plane charging process for photoconductor-thermoplastic hologram storage.

  2. Selective attention on representations in working memory: cognitive and neural mechanisms

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2018-04-01

    Full Text Available Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  3. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues

    Science.gov (United States)

    Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves

    2018-01-01

    Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these

  4. [Involvement of aquaporin-4 in synaptic plasticity, learning and memory].

    Science.gov (United States)

    Wu, Xin; Gao, Jian-Feng

    2017-06-25

    Aquaporin-4 (AQP-4) is the predominant water channel in the central nervous system (CNS) and primarily expressed in astrocytes. Astrocytes have been generally believed to play important roles in regulating synaptic plasticity and information processing. However, the role of AQP-4 in regulating synaptic plasticity, learning and memory, cognitive function is only beginning to be investigated. It is well known that synaptic plasticity is the prime candidate for mediating of learning and memory. Long term potentiation (LTP) and long term depression (LTD) are two forms of synaptic plasticity, and they share some but not all the properties and mechanisms. Hippocampus is a part of limbic system that is particularly important in regulation of learning and memory. This article is to review some research progresses of the function of AQP-4 in synaptic plasticity, learning and memory, and propose the possible role of AQP-4 as a new target in the treatment of cognitive dysfunction.

  5. Comparisons of memory for nonverbal auditory and visual sequential stimuli.

    Science.gov (United States)

    McFarland, D J; Cacace, A T

    1995-01-01

    Properties of auditory and visual sensory memory were compared by examining subjects' recognition performance of randomly generated binary auditory sequential frequency patterns and binary visual sequential color patterns within a forced-choice paradigm. Experiment 1 demonstrated serial-position effects in auditory and visual modalities consisting of both primacy and recency effects. Experiment 2 found that retention of auditory and visual information was remarkably similar when assessed across a 10s interval. Experiments 3 and 4, taken together, showed that the recency effect in sensory memory is affected more by the type of response required (recognition vs. reproduction) than by the sensory modality employed. These studies suggest that auditory and visual sensory memory stores for nonverbal stimuli share similar properties with respect to serial-position effects and persistence over time.

  6. Transfer after process-based object-location memory training in healthy older adults.

    Science.gov (United States)

    Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne

    2016-11-01

    A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Context-dependent memory traces in the crab’s mushroom bodies: Functional support for a common origin of high-order memory centers

    Science.gov (United States)

    Maza, Francisco Javier; Sztarker, Julieta; Shkedy, Avishag; Peszano, Valeria Natacha; Locatelli, Fernando Federico; Delorenzi, Alejandro

    2016-01-01

    The hypothesis of a common origin for the high-order memory centers in bilateral animals is based on the evidence that several key features, including gene expression and neuronal network patterns, are shared across several phyla. Central to this hypothesis is the assumption that the arthropods’ higher order neuropils of the forebrain [the mushroom bodies (MBs) of insects and the hemiellipsoid bodies (HBs) of crustaceans] are homologous structures. However, even though involvement in memory processes has been repeatedly demonstrated for the MBs, direct proof of such a role in HBs is lacking. Here, through neuroanatomical and immunohistochemical analysis, we identified, in the crab Neohelice granulata, HBs that resemble the calyxless MBs found in several insects. Using in vivo calcium imaging, we revealed training-dependent changes in neuronal responses of vertical and medial lobes of the HBs. These changes were stimulus-specific, and, like in the hippocampus and MBs, the changes reflected the context attribute of the memory trace, which has been envisioned as an essential feature for the HBs. The present study constitutes functional evidence in favor of a role for the HBs in memory processes, and provides key physiological evidence supporting a common origin of the arthropods’ high-order memory centers. PMID:27856766

  8. Two-dimensional signal processing using a morphological filter for holographic memory

    Science.gov (United States)

    Kondo, Yo; Shigaki, Yusuke; Yamamoto, Manabu

    2012-03-01

    Today, along with the wider use of high-speed information networks and multimedia, it is increasingly necessary to have higher-density and higher-transfer-rate storage devices. Therefore, research and development into holographic memories with three-dimensional storage areas is being carried out to realize next-generation large-capacity memories. However, in holographic memories, interference between bits, which affect the detection characteristics, occurs as a result of aberrations such as the deviation of a wavefront in an optical system. In this study, we pay particular attention to the nonlinear factors that cause bit errors, where filters with a Volterra equalizer and the morphologies are investigated as a means of signal processing.

  9. The Effects of Collaboration and Competition on Pro-Social Prospective Memory

    Directory of Open Access Journals (Sweden)

    Guido D’Angelo

    2012-09-01

    Full Text Available The social underpinnings of remembering to perform an action in the future (i.e., prospective memory, PM have been recently shown to be an important feature of prospective memory functioning (Brandimonte, Ferrante, Bianco, & Villani, 2010. One emergent, though neglected, issue refers to the way people remember to do things 'with others' and 'for others'. In two experiments, participants were requested to collaborate or compete during an event-based PM task. In Experiment 1, they could also gain money for donation, while in Experiment 2 they could get personal earnings. Participants completed a parity judgment ongoing task and a PM task. Results revealed that a decrease in PM performance occurred with collaboration, as a result of responsibility sharing. In contrast, the pro-social nature of the PM task improved participants' performance. Interestingly, pro-sociality prevented the detrimental effect of collaboration (experiments 1 and 2, while a personal gain did not contrast responsibility sharing (experiment 2. Surprisingly, competition did not significantly affect PM performance. Finally, an increase of the monitoring costs during the ongoing task was associated with pro-social goals. This pattern of result suggests that PM is influenced by social drives and points to a pivotal role of motivation in regulating conscious mechanisms underlying memory for intentions.

  10. Silicon-based optical integrated circuits for terabit communication networks

    International Nuclear Information System (INIS)

    Svidzinsky, K K

    2003-01-01

    A brief review is presented of the development of silicon-based optical integrated circuits used as components in modern all-optical communication networks with the terabit-per-second transmission capacity. The designs and technologies for manufacturing these circuits are described and the problems related to their development and application in WDM communication systems are considered. (special issue devoted to the memory of academician a m prokhorov)

  11. Experiencing memory museums in Berlin. The Otto Weidt Workshop for the Blind Museum and the Jewish Museum Berlin

    OpenAIRE

    Ana Souto

    2018-01-01

    This article explores memory studies from the audience’s perspective, focusing on the perception of Holocaust narratives in two museums in Berlin. This research builds on and contributes to a number of emerging issues on memory studies, tourism perception and museum design: the debate on experiential authenticity, Dark Tourism, as well as the analysis of memory studies from the perspective of the user. The main data facilitating the analysis is based on responses shared on TripAdvisor; the ca...

  12. Optical RAM row access using WDM-enabled all-passive row/column decoders

    Science.gov (United States)

    Papaioannou, Sotirios; Alexoudi, Theoni; Kanellos, George T.; Miliou, Amalia; Pleros, Nikos

    2014-03-01

    Towards achieving a functional RAM organization that reaps the advantages offered by optical technology, a complete set of optical peripheral modules, namely the Row (RD) and Column Decoder (CD) units, is required. In this perspective, we demonstrate an all-passive 2×4 optical RAM RD with row access operation and subsequent all-passive column decoding to control the access of WDM-formatted words in optical RAM rows. The 2×4 RD exploits a WDM-formatted 2-bit-long memory WordLine address along with its complementary value, all of them encoded on four different wavelengths and broadcasted to all RAM rows. The RD relies on an all-passive wavelength-selective filtering matrix (λ-matrix) that ensures a logical `0' output only at the selected RAM row. Subsequently, the RD output of each row drives the respective SOA-MZI-based Row Access Gate (AG) to grant/block the entry of the incoming data words to the whole memory row. In case of a selected row, the data word exits the row AG and enters the respective CD that relies on an allpassive wavelength-selective Arrayed Waveguide Grating (AWG) for decoding the word bits into their individual columns. Both RD and CD procedures are carried out without requiring any active devices, assuming that the memory address and data word bits as well as their inverted values will be available in their optical form by the CPU interface. Proof-of-concept experimental verification exploiting cascaded pairs of AWGs as the λ-matrix is demonstrated at 10Gb/s, providing error-free operation with a peak power penalty lower than 0.2dB for all optical word channels.

  13. Compound Schisandra-Ginseng-Notoginseng-Lycium Extract Ameliorates Scopolamine-Induced Learning and Memory Disorders in Mice

    OpenAIRE

    Li, Ning; Liu, Cong; Jing, Shu; Wang, Mengyang; Wang, Han; Sun, Jinghui; Wang, Chunmei; Chen, Jianguang; Li, He

    2017-01-01

    Schisandra, Ginseng, Notoginseng, and Lycium barbarum are traditional Chinese medicinal plants sharing cognitive-enhancing properties. To design a functional food to improve memory, we prepared a compound Schisandra-Ginseng-Notoginseng-Lycium (CSGNL) extract and investigated its effect on scopolamine-induced learning and memory loss in mice. To optimize the dose ratios of the four herbal extracts in CSGNL, orthogonal experiments were performed. Mice were administered CSGNL by gavage once a da...

  14. Hybrid content addressable memory MSD arithmetic

    Science.gov (United States)

    Li, Yao; Kim, Dai Hyun; Kostrzewski, Andrew A.; Eichmann, George

    1990-07-01

    The modified signed-digit (MSD) number system, because of its inherent weak interdigit dependance, has been suggested as a useful means for a fast and parallel digital arithmetic. To maintain a fast processing speed, a single-stage holographic optical content-addressable memory (CAM) based MSD algorithm was suggested. In this paper, a novel non-holographic opto-electronic CAM based fast MSD addition processing architecture is proposed. The proposed concept has been verified with our first-order proof-of-principle experiments. A figure of merit comparison of this and other existing approaches is also presented. Based on this key opto-electronic CAM element, implementation of more sophisticated I'VISD arithmetic, such as optical MSD subtraction and multiplication operations, are proposed.

  15. Fast, Capacious Disk Memory Device

    Science.gov (United States)

    Muller, Ronald M.

    1990-01-01

    Device for recording digital data on, and playing back data from, memory disks has high recording or playback rate and utilizes available recording area more fully. Two disks, each with own reading/writing head, used to record data at same time. Head on disk A operates on one of tracks numbered from outside in; head on disk B operates on track of same number in sequence from inside out. Underlying concept of device applicable to magnetic or optical disks.

  16. Optical design methods, applications, and large optics; Proceedings of the Meeting, Hamburg, Federal Republic of Germany, Sept. 19-21, 1988

    Science.gov (United States)

    Masson, Andre; Schulte In den Baeumen, J.; Zuegge, Hannfried

    1989-04-01

    Recent advances in the design of large optical components are discussed in reviews and reports. Sections are devoted to calculation and optimization methods, optical-design software, IR optics, diagnosis and tolerancing, image formation, lens design, and large optics. Particular attention is given to the use of the pseudoeikonal in optimization, design with nonsequential ray tracing, aspherics and color-correcting elements in the thermal IR, on-line interferometric mirror-deforming measurement with an Ar-ion laser, and the effect of ametropia on laser-interferometric visual acuity. Also discussed are a holographic head-up display for air and ground applications, high-performance objectives for a digital CCD telecine, the optics of the ESO Very Large Telescope, static wavefront correction by Linnik interferometry, and memory-saving techniques in damped least-squares optimization of complex systems.

  17. Memory in Nonlinear Ionization of Transparent Solids

    International Nuclear Information System (INIS)

    Rajeev, P. P.; Simova, E.; Hnatovsky, C.; Taylor, R. S.; Rayner, D. M.; Corkum, P. B.; Gertsvolf, M.; Bhardwaj, V. R.

    2006-01-01

    We demonstrate a shot-to-shot reduction in the threshold laser intensity for ionization of bulk glasses illuminated by intense femtosecond pulses. For SiO 2 the threshold change serves as positive feedback reenforcing the process that produced it. This constitutes a memory in nonlinear ionization of the material. The threshold change saturates with the number of pulses incident at a given spot. Irrespective of the pulse energy, the magnitude of the saturated threshold change is constant (∼20%). However, the number of shots required to reach saturation does depend on the pulse energy. Recognition of a memory in ionization is vital to understand multishot optical or electrical breakdown phenomena in dielectrics

  18. Central and Peripheral Components of Working Memory Storage

    Science.gov (United States)

    Cowan, Nelson; Saults, J. Scott; Blume, Christopher L.

    2014-01-01

    This study re-examines the issue of how much of working memory storage is central, or shared across sensory modalities and verbal and nonverbal codes, and how much is peripheral, or specific to a modality or code. In addition to the exploration of many parameters in 9 new dual-task experiments and re-analysis of some prior evidence, the innovations of the present work compared to previous studies of memory for two stimulus sets include (1) use of a principled set of formulas to estimate the number of items in working memory, and (2) a model to dissociate central components, which are allocated to very different stimulus sets depending on the instructions, from peripheral components, which are used for only one kind of material. We consistently find that the central contribution is smaller than was suggested by Saults and Cowan (2007), and that the peripheral contribution is often much larger when the task does not require the binding of features within an object. Previous capacity estimates are consistent with the sum of central plus peripheral components observed here. We consider the implications of the data as constraints on theories of working memory storage and maintenance. PMID:24867488

  19. Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory

    International Nuclear Information System (INIS)

    Gündoğan, M; Mazzera, M; Ledingham, P M; Cristiani, M; De Riedmatten, H

    2013-01-01

    We report on the coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr 3+ :Y 2 SiO 5 to spin waves in hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of five temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light. (paper)

  20. The exhibition Namibia-Germany: a shared/divided history. Resistance, violence, memory

    Directory of Open Access Journals (Sweden)

    Clara Himmelheber

    2014-10-01

    Full Text Available The year 2004 was the centenary of the outbreak of a colonial war in former German South West Africa in which thousands of Africans were killed by the colonial power. Although of crucial importance for Namibia, the war had not entered public memory in Germany. The exhibition aimed at presenting colonial history, as well as the contemporary relationships between the two countries, showing a ‘shared’ and a ‘divided’ history. The exhibition created a public debate, which certainly supported the initiative of the German Minister of Economic Co-operation and Development to deliver an apology at the commemoration in August 2004 in Namibia. The article is a post-reflection of one of the co-curators on the exhibition putting it into a larger context and reviewing it concurrently.