WorldWideScience

Sample records for optical sensing technique

  1. Signal Processing for Fibre-optic Distributed Sensing Techniques Employing Brillouin Scattering

    Institute of Scientific and Technical Information of China (English)

    XIAO Shang-hui; LI Li

    2009-01-01

    As fibre optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures, Brillouin-based distributed scattering sensing techniques represent a new physical approach for structures health monitoring, which seems extremely promising and is receiving most attentions. This paper comprehensively presents some methods of signal interrogation for fibre optic Brillouin-based distributed scattering sensing technology, especially establishes an accurate Pseudo-Voigt model of Brillouin gain spectrum and gives some results on spectrum analysis and data processing.

  2. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-06-01

    Full Text Available Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI. This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented.

  3. Development of fiber-optic current sensing technique and its applications in electric power systems

    Science.gov (United States)

    Kurosawa, Kiyoshi

    2014-03-01

    This paper describes the development and applications of a fiber-optic electric current sensing technique with the stable properties and compact, simple, and flexible structure of the sensing device. The special characteristics of the sensors were achieved by use of the special low birefringence fiber as the Faraday-effect sensing element and were also achieved with creation of sensing schemes which matched with the features of the fiber. Making use of the excellent features of the sensing technique, various current monitoring devices and systems were developed and applied practically for the control and maintenance in the electric power facility. In this paper, the design and performance of the sensing devices are introduced first. After that, examples of the application systems practically applied are also introduced, including fault section/point location systems for power transmission cable lines.

  4. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    Science.gov (United States)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  5. Application of Distributed Optical Fiber Sensing Technique in Monitoring the Ground Deformation

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available The monitoring of ground deformation is important for the prevention and control of geological disaster including land subsidence, ground fissure, surface collapse, and landslides. In this study, a distributed optical fiber sensing technique based on Brillouin Optical Time-Domain Analysis (BOTDA was used to monitor the ground deformation. The principle behind the BOTDA is first introduced, and then laboratory calibration test and physical model test were carried out. Finally, BOTDA-based monitoring of ground fissure was carried out in a test site. Experimental results show that the distributed optical fiber can measure the soil strain during ground deformation process, and the strain curve responded to the soil compression and tension region clearly. During field test in Wuxi City, China, the ground fissures deformation area was monitored accurately and the trend of deformation can also be achieved to forecast and warn against the ground fissure hazards.

  6. Optical sensing of peroxide using ceria nanoparticles via fluorescence quenching technique

    Science.gov (United States)

    Shehata, Nader; Samir, Effat; Gaballah, Soha; Salah, Mohammed

    2016-07-01

    This study introduces the application of ceria nanoparticles (NPs) as an optical sensor for peroxide using fluorescence quenching technique. Our synthesized ceria NPs have the ability to adsorb peroxides via its oxygen vacancies. Ceria NPs solution with added variable concentrations of hydrogen peroxides is exposed through near-UV excitation and the detected visible fluorescent emission is found to be at ˜520 nm. The fluorescent intensity peak is found to be reduced with increasing the peroxide concentrations due to static fluorescence quenching technique. The relative intensity change of the visible fluorescent emission has been reduced to more than 50% at added peroxide concentrations up to 10 wt. %. In order to increase ceria peroxides sensing sensitivity, lanthanide elements such as samarium (Sm) are used as ceria NPs dopant. This research work could be applied further in optical sensors of radicals in biomedical engineering and environmental monitoring.

  7. Fabricate Optical Microfiber by Using Flame Brushing Technique and Coated with Polymer Polyaniline for Sensing Application

    Science.gov (United States)

    Razak, N. A.; Hamida, B. A.; Irawati, N.; Habaebi, M. H.

    2017-06-01

    Adiabaticity is one of the essential criteria in producing good fabricated tapered fibers. Good tapered fibers can be use in sensor application such as humidity sensor, temperature sensor and refractive index sensor. In this paper, good tapering silica fiber is produced by using flame brushing technique and then, the microfiber is coated with polymer Polyaniline (PAni) to sense different type of alcohols with different concentrations. The outcome of this experiment gives excellent repeatability in the detection of alcohol sensing with a sensitivity of 0.1332 μW/% and a resolution of 3.764%. In conclusion, conducting polymer coated optical microfiber sensor for alcohol detection with low cost, effective and simple set-up was successfully achieved in this study.

  8. Advances in estimation methods of vegetation water content based on optical remote sensing techniques

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Quantitative estimation of vegetation water content(VWC) using optical remote sensing techniques is helpful in forest fire as-sessment,agricultural drought monitoring and crop yield estimation.This paper reviews the research advances of VWC retrieval using spectral reflectance,spectral water index and radiative transfer model(RTM) methods.It also evaluates the reli-ability of VWC estimation using spectral water index from the observation data and the RTM.Focusing on two main definitions of VWC-the fuel moisture content(FMC) and the equivalent water thickness(EWT),the retrieval accuracies of FMC and EWT using vegetation water indices are analyzed.Moreover,the measured information and the dataset are used to estimate VWC,the results show there are significant correlations among three kinds of vegetation water indices(i.e.,WSI,NDⅡ,NDWI1640,WI/NDVI) and canopy FMC of winter wheat(n=45).Finally,the future development directions of VWC detection based on optical remote sensing techniques are also summarized.

  9. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique

    Science.gov (United States)

    Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan

    2015-10-01

    In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.

  10. Alignment signal extraction of the optically degenerate RSE interferometer using the wave front sensing technique

    Science.gov (United States)

    Sato, S.; Kawamura, S.

    2008-07-01

    The alignment sensing and control scheme of the resonant sideband extraction interferometer is still an unsettled issue for the next-generation gravitational wave antennas. The issue is that it is difficult to extract separate error signals for all 12 angular degrees of freedom, which is mainly arising from the complexity of the optical system and cavity 'degeneracy'. We have suggested a new sensing scheme giving reasonably separated signals which is fully compatible with the length sensing scheme. The key of this idea is to resolve the 'degeneracy' of the optical cavities. By choosing an appropriate Gouy phase for the degenerate cavities, alignment error signals with much less admixtures can be extracted.

  11. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  12. A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution

    Science.gov (United States)

    Smith, R. J.; Weber, T. E.

    2016-11-01

    The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a ˜mm interval given available fiber materials.

  13. A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution.

    Science.gov (United States)

    Smith, R J; Weber, T E

    2016-11-01

    The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a ∼mm interval given available fiber materials.

  14. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  15. Novel Technique and Technologies for Active Optical Remote Sensing of Greenhouse Gases

    Science.gov (United States)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  16. Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications.

    Science.gov (United States)

    Wang, Shuai; Fan, Xinyu; Wang, Bin; Yang, Guangyao; He, Zuyuan

    2017-05-01

    Pulse compression technique is a particularly competitive method that enables both high spatial resolution and dynamic range in coherent radar and distributed fiber sensing systems. Up to now, the frequency bandwidths of most pulse compression techniques are restricted to tens of GHz. In this paper, we propose an all-optic sub-THz-range linearly chirped optical source and a large-bandwidth detection system to characterize it. Taking advantage of the chromatic dispersion effect, ultrashort optical pulses are stretched to be ~10 ns linearly chirped pulses with sub-THz range, which yields a large time-bandwidth product of 4500, a high compression ratio of 4167 and a chirp rate of 45 GHz/ns. The generated waveform is characterized with high precision thanks to the large detection bandwidth of linear optical sampling technique. A spatial resolution of 120 μm and an extinction ratio of 20.4 dB is demonstrated by using this technique, which paves the way for ultra-high spatial resolution and long range sensing applications such as LIDAR and optical reflectometry.

  17. Nanostructured Substrates for Optical Sensing

    OpenAIRE

    Kemling, Jonathan W.; Qavi, Abraham J.; Bailey, Ryan C.; Suslick, Kenneth S

    2011-01-01

    Sensors that change color have the advantages of versatility, ease of use, high sensitivity, and low cost. The recent development of optically based chemical sensing platforms has increasingly employed substrates manufactured with advanced processing or fabrication techniques to provide precise control over shape and morphology of the sensor micro- and nano-structure. New sensors have resulted with improved capabilities for a number of sensing applications, including the detection of biomolec...

  18. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    Science.gov (United States)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  19. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  20. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    Science.gov (United States)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  1. Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study.

    Science.gov (United States)

    Larin, Kirill V; Motamedi, Massoud; Ashitkov, Taras V; Esenaliev, Rinat O

    2003-05-21

    Noninvasive monitoring of blood glucose concentration in diabetic patients would significantly reduce complications and mortality associated with this disease. In this paper, we experimentally and theoretically studied specificity of noninvasive blood glucose monitoring with the optical coherence tomography (OCT) technique. OCT images and signals were obtained from skin of Yucatan micropigs and New Zealand rabbits. Obtained results demonstrate that: (1) several body osmolytes may change the refractive index mismatch between the interstitial fluid (ISF) and scattering centres in tissue, however the effect of the glucose is approximately one to two orders of magnitude higher; (2) an increase of the ISF glucose concentration in the physiological range (3-30 mM) may decrease the scattering coefficient by 0.22% mM(-1) due to cell volume change; (3) stability of the OCT signal slope is dependent on tissue heterogeneity and motion artefacts; and (4) moderate skin temperature fluctuations (+/- 1 degree C) do not decrease accuracy and specificity of the OCT-based glucose sensor, however substantial skin heating or cooling (several degrees C) significantly change the OCT signal slope. These results suggest that the OCT technique may provide blood glucose concentration monitoring with sufficient specificity under normal physiological conditions.

  2. Monitoring of Emissions From a Refinery Tank Farm Using a Combination of Optical Remote Sensing Techniques

    Science.gov (United States)

    Polidori, A.; Tisopulos, L.; Pikelnaya, O.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Robinson, R. A.; Innocenti, F.; Finlayson, A.; Hashmonay, R.

    2016-12-01

    Despite great advances in reducing air pollution, the South Coast Air Basin (SCAB) still faces challenges to attain federal health standards for air quality. Refineries are large sources of ozone precursors and, hence contribute to the air quality problems of the region. Additionally, petrochemical facilities are also sources of other hazardous air pollutants (HAP) that adversely affect human health, for example aromatic hydrocarbons. In order to assure safe operation, decrease air pollution and minimize population exposure to HAP the South Coast Air Quality Management District (SCAQMD) has a number of regulations for petrochemical facilities. However, significant uncertainties still exist in emission estimates and traditional monitoring techniques often do not allow for real-time emission monitoring. In the fall of 2015 the SCAQMD, Fluxsense Inc., the National Physical Laboratory (NPL), and Atmosfir Optics Ltd. conducted a measurement study to characterize and quantify gaseous emissions from the tank farm of one of the largest oil refineries in the SCAB. Fluxsense used a vehicle equipped with Solar Occultation Flux (SOF), Differential Optical Absorption Spectroscopy (DOAS), and Extractive Fourier Transform Infrared (FTIR) spectroscopy instruments. Concurrently, NPL operated their Differential Absorption Lidar (DIAL) system. Both research groups quantified emissions from the entire tank farm and identified fugitive emission sources within the farm. At the same time, Atmosfir operated an Open Path FTIR (OP-FTIR) spectrometer along the fenceline of the tank farm. During this presentation we will discuss the results of the emission measurements from the tank farm of the petrochemical facility. Emission rates resulting from measurements by different ORS methods will be compared and discussed in detail.

  3. Quantum enhanced optical sensing

    DEFF Research Database (Denmark)

    Schäfermeier, Clemens

    The work in this thesis is embedded in the framework of quantum metrology and explores quantum effects in solid state emitters and optical sensing. Specifically, the thesis comprises studies on silicon vacancy centres in nanodiamonds, phase measurements and cavity optomechanics utilising optical...... squeezed states, and a theoretical study on quantum amplifiers. Due to its similarity to single atoms, colour centres in diamond are ideal objects for exploring and exploiting quantum effects, because they are comparably easy to produce, probe and maintain. While nitrogen vacancy centres are the most...... identified spectral diffusion as the main hindrance in extending spin coherence times. Overcoming this issue will provide a promising candidate as an emitter for quantum information. Next, the question of how squeezed states of light can improve optical sensing was addressed. For this purpose, a squeezed...

  4. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul

    1993-01-01

    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  5. Discriminative sensing techniques

    Science.gov (United States)

    Lewis, Keith

    2008-10-01

    The typical human vision system is able to discriminate between a million or so different colours, yet is able to do this with a chromatic sensor array that is fundamentally based on three different receptors, sensitive to light in the blue, green and red portions of the visible spectrum. Some biological organisms have extended capabilities, providing vision in the ultra-violet, whilst others, such as some species of mantis shrimp reportedly have sixteen different types of photo-receptors. In general the biological imaging sensor takes a minimalist approach to sensing its environment, whereas current optical engineering approaches follow a 'brute' force solution where the challenge of hyperspectral imaging is addressed by various schemes for spatial and spectral dispersion of radiation across existing detector arrays. This results in a problem for others to solve in the processing and communication of the generated hypercube of data. This paper explores the parallels between some of those biological systems and the various design concepts being developed for discriminative imaging, drawing on activity supported by the UK Electro-Magnetic Remote Sensing Defence Technology Centre (EMRS DTC).

  6. Feasibility of Using the Optical Sensing Techniques for Early Detection of Huanglongbing in Citrus Seedlings

    Directory of Open Access Journals (Sweden)

    Alireza Pourreza

    2017-04-01

    Full Text Available A vision sensor was introduced and tested for early detection of citrus Huanglongbing (HLB. This disease is caused by the bacterium Candidatus Liberibacter asiaticus (CLas and is transmitted by the Asian citrus psyllid. HLB is a devastating disease that has exerted a significant impact on citrus yield and quality in Florida. Unfortunately, no cure has been reported for HLB. Starch accumulates in HLB infected leaf chloroplasts, which causes the mottled blotchy green pattern. Starch rotates the polarization plane of light. A polarized imaging technique was used to detect the polarization-rotation caused by the hyper-accumulation of starch as a pre-symptomatic indication of HLB in young seedlings. Citrus seedlings were grown in a room with controlled conditions and exposed to intensive feeding by CLas-positive psyllids for eight weeks. A quantitative polymerase chain reaction was employed to confirm the HLB status of samples. Two datasets were acquired; the first created one month after the exposer to psyllids and the second two months later. The results showed that, with relatively unsophisticated imaging equipment, four levels of HLB infections could be detected with accuracies of 72%–81%. As expected, increasing the time interval between psyllid exposure and imaging increased the development of symptoms and, accordingly, improved the detection accuracy.

  7. Wavefront sensing reveals optical coherence.

    Science.gov (United States)

    Stoklasa, B; Motka, L; Rehacek, J; Hradil, Z; Sánchez-Soto, L L

    2014-01-01

    Wavefront sensing is a set of techniques providing efficient means to ascertain the shape of an optical wavefront or its deviation from an ideal reference. Owing to its wide dynamical range and high optical efficiency, the Shack-Hartmann wavefront sensor is nowadays the most widely used of these sensors. Here we show that it actually performs a simultaneous measurement of position and angular spectrum of the incident radiation and, therefore, when combined with tomographic techniques previously developed for quantum information processing, the Shack-Hartmann wavefront sensor can be instrumental in reconstructing the complete coherence properties of the signal. We confirm these predictions with an experimental characterization of partially coherent vortex beams, a case that cannot be treated with the standard tools. This seems to indicate that classical methods employed hitherto do not fully exploit the potential of the registered data.

  8. 光学遥感压缩成像技术%Compressive Imaging Techniques in Optical Remote Sensing

    Institute of Scientific and Technical Information of China (English)

    严奉霞; 朱炬波; 刘吉英; 王泽龙

    2014-01-01

    Compressive sampling provides a new way for increasing the capability of information acqui-sition. Compressive sampling asserts that it is possible to accurately reconstruct signals from sub-Nyquist sam-pling, provided we make some additional assumptions(sparse or compressible) about the signal in question. The compressive imaging technology, which is based on the compressive sampling theory, integrates the proc-esses of sampling, compression and processing perfectly, avoiding resource waste caused by a traditional“sam-ple-then-compress”mode, and is a potential imaging technique for optical remote sensing. This paper first re-views the basic theory of compressive sampling. Then, several optical compressive imaging systems are intro-duced. Finally three physical experiments are designed to validate the principle of compressive imaging and the experiment results can be used as reference for the future optical remote compressive imaging system.%基于Shannon采样定理的传统信息获取系统在高空间、时间和谱分辨率及系统其它性能上存在难以突破的瓶颈,压缩采样理论为提升航天遥感信息获取能力提供了新的思路。基于压缩采样理论的成像技术(压缩成像)将采样、压缩和数据处理3个过程完美的结合在一起,避免了传统遥感成像系统“先采样再压缩”方式带来的传感器和计算资源浪费,是未来光学遥感极具潜力的成像方式。文章在简要介绍压缩采样基本理论的基础上,总结和分析了国际上目前提出的光学压缩成像系统原型,设计开展了3组压缩成像物理实验,特别结合航天遥感需求设计了推扫式压缩成像方案,实验结果验证了压缩采样的基本原理,并为未来光学遥感压缩成像系统的设计提供了借鉴。

  9. Compressive Sensing with Optical Chaos

    Science.gov (United States)

    Rontani, D.; Choi, D.; Chang, C.-Y.; Locquet, A.; Citrin, D. S.

    2016-12-01

    Compressive sensing (CS) is a technique to sample a sparse signal below the Nyquist-Shannon limit, yet still enabling its reconstruction. As such, CS permits an extremely parsimonious way to store and transmit large and important classes of signals and images that would be far more data intensive should they be sampled following the prescription of the Nyquist-Shannon theorem. CS has found applications as diverse as seismology and biomedical imaging. In this work, we use actual optical signals generated from temporal intensity chaos from external-cavity semiconductor lasers (ECSL) to construct the sensing matrix that is employed to compress a sparse signal. The chaotic time series produced having their relevant dynamics on the 100 ps timescale, our results open the way to ultrahigh-speed compression of sparse signals.

  10. Sensing via optical interference

    Directory of Open Access Journals (Sweden)

    Ryan C. Bailey

    2005-04-01

    Full Text Available Chemical and biological sensing are problems of tremendous contemporary technological importance in multiple regulatory and human health contexts, including environmental monitoring, water quality assurance, workplace air quality assessment, food quality control, many aspects of biodiagnostics, and, of course, homeland security. Frequently, what is needed, or at least wanted, are sensors that are simultaneously cheap, fast, reliable, selective, sensitive, robust, and easy to use. Unfortunately, these are often conflicting requirements. Over the past few years, however, a number of promising ideas based on optical interference effects have emerged. Each is based to some extent on advances in the design and fabrication of functional materials. Generally, the advances are of two kinds: chemo- and bio-selective recognition and binding, and efficient methods for micropatterning or microstructuring.

  11. Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer.

    Science.gov (United States)

    Coda, Sergio; Siersema, Peter D; Stamp, Gordon W H; Thillainayagam, Andrew V

    2015-10-01

    Detection, characterization, and staging constitute the fundamental elements in the endoscopic diagnosis of gastrointestinal diseases, but histology still remains the diagnostic gold standard. New developments in endoscopic techniques may challenge histopathology in the near future. An ideal endoscopic technique should combine a wide-field, "red flag" screening technique with an optical contrast or microscopy method for characterization and staging, all simultaneously available during the procedure. In theory, biophotonic advances have the potential to unite these elements to allow in vivo "optical biopsy." These techniques may ultimately offer the potential to increase the rates of detection of high risk lesions and the ability to target biopsies and resections, and so reduce the need for biopsy, costs, and uncertainty for patients. However, their utility and sensitivity in clinical practice must be evaluated against those of conventional histopathology. This review describes some of the most recent applications of biophotonics in endoscopic optical imaging and metrology, along with their fundamental principles and the clinical experience that has been acquired in their deployment as tools for the endoscopist. Particular emphasis has been placed on translational label-free optical techniques, such as fluorescence spectroscopy, fluorescence lifetime imaging microscopy (FLIM), two-photon and multi-photon microscopy, second harmonic generation (SHG) and third harmonic generation (THG) imaging, optical coherence tomography (OCT), diffuse reflectance, Raman spectroscopy, and molecular imaging.

  12. Fiber optic sensing and imaging

    CERN Document Server

    2013-01-01

    This book is designed to highlight the basic principles of fiber optic imaging and sensing devices. The editor has organized the book to provide the reader with a solid foundation in fiber optic imaging and sensing devices. It begins with an introductory chapter that starts from Maxwell’s equations and ends with the derivation of the basic optical fiber characteristic equations and solutions (i.e. fiber modes). Chapter 2 reviews most common fiber optic interferometric devices and Chapter 3 discusses the basics of fiber optic imagers with emphasis on fiber optic confocal microscope. The fiber optic interferometric sensors are discussed in detail in chapter 4 and 5. Chapter 6 covers optical coherence tomography and goes into the details of signal processing and systems level approach of the real-time OCT implementation. Also useful forms of device characteristic equations are provided so that this book can be used as a reference for scientists and engineers in the optics and related fields.

  13. New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements

    Directory of Open Access Journals (Sweden)

    Yariv I

    2016-10-01

    Full Text Available Inbar Yariv,1 Menashe Haddad,2,3 Hamootal Duadi,1 Menachem Motiei,1 Dror Fixler1 1Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel; 2Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; 3Mayanei Hayeshua Medical Center, Benei Brak, Israel Abstract: Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD. Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography to low quantities of GNRs (<3 mg. Keywords: Gerchberg-Saxton, optical properties, gold nanorods, blood vessel, tissue viability

  14. Tapered optical fibres for sensing

    Science.gov (United States)

    Martan, Tomas; Kanka, Jiri; Kasik, Ivan; Matejec, Vlastimil

    2008-11-01

    Recently, optical fibre tapers have intensively been investigated for many applications e.g. in telecommunications, medicine and (bio-) chemical sensing. The paper deals with enhancement of evanescent-field sensitivity of the solid-core microstructured fibre with steering-wheel air-cladding. Enhancement of a performance of the microstructured fibre is based on reduction of fibre core diameter down to narrow filament by tapering thereby defined part of light power is guided by an evanescent wave traveling in axial cladding air holes. The original fibre structure with outer diameter of 125 µm was reduced 2×, 2.5×, 3.33×, and 4× for increasing relatively small intensity overlap of guided core mode at wavelength of 1.55 μm with axial air holes. The inner structures of tapered microstructured fibre with steering-wheel aircladding were numerically analyzed and mode intensity distributions were calculated using the FDTD technique. Analyzed fiber tapers were prepared by constructed fibre puller employing 'flame brush technique'.

  15. Emerging optical nanoscopy techniques

    Directory of Open Access Journals (Sweden)

    Montgomery PC

    2015-09-01

    Full Text Available Paul C Montgomery, Audrey Leong-Hoi Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie (ICube, Unistra-CNRS, Strasbourg, France Abstract: To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. Keywords: microscopy, imaging, superresolution, nanodetection, biophysics, medical imaging

  16. Emerging optical nanoscopy techniques

    Science.gov (United States)

    Montgomery, Paul C; Leong-Hoi, Audrey

    2015-01-01

    To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270

  17. Improving Crop Classification Techniques Using Optical Remote Sensing Imagery, High-Resolution Agriculture Resource Inventory Shapefiles and Decision Trees

    Science.gov (United States)

    Melnychuk, A. L.; Berg, A. A.; Sweeney, S.

    2010-12-01

    Recognition of anthropogenic effects of land use management practices on bodies of water is important for remediating and preventing eutrophication. In the case of Lake Simcoe, Ontario the main surrounding landuse is agriculture. To better manage the nutrient flow into the lake, knowledge of the management of the agricultural land is important. For this basin, a comprehensive agricultural resource inventory is required for assessment of policy and for input into water quality management and assessment tools. Supervised decision tree classification schemes, used in many previous applications, have yielded reliable classifications in agricultural land-use systems. However, when using these classification techniques the user is confronted with numerous data sources. In this study we use a large inventory of optical satellite image products (Landsat, AWiFS, SPOT and MODIS) and ancillary data sources (temporal MODIS-NDVI product signatures, digital elevation models and soil maps) at various spatial and temporal resolutions in a decision tree classification scheme. The sensitivity of the classification accuracy to various products is assessed to identify optimal data sources for classifying crop systems.

  18. A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    Science.gov (United States)

    Chatterjee, Abhishek; Michalak, Anna M.; Kahn, Ralph A.; Paradise, Susan R.; Braverman, Amy J.; Miller, Charles E.

    2010-01-01

    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling

  19. Optical Waveguide Sensing and Imaging

    CERN Document Server

    Bock, Wojtek J; Tanev, Stoyan

    2008-01-01

    The book explores various aspects of existing and emerging fiber and waveguide optics sensing and imaging technologies including recent advances in nanobiophotonics. The focus is both on fundamental and applied research as well as on applications in civil engineering, biomedical sciences, environment, security and defence. The main goal of the multi-disciplinarry team of Editors was to provide an useful reference of state-of-the-art overviews covering a variety of complementary topics on the interface of engineering and biomedical sciences.

  20. Effect of variation of precursor concentration on structural, microstructural, optical and gas sensing properties of nanocrystalline TiO2 thin films prepared by spray pyrolysis techniques

    Indian Academy of Sciences (India)

    Lalchand A Patil; Dinesh N Suryawanshi; Idris G Pathan; Dhanashri G Patil

    2013-12-01

    The objective of the present paper is to investigate the effect of variation of precursor concentration (0.01, 0.02 and 0.03 M) on the structural, microstructural, optical and gas sensing properties of TiO2 thin films. Titanium dioxide (TiO2) films were prepared from aqueous solution of titanium chloride (TiCl3.6H2O, 99.9%pure, Merckmade, Germany) onto the glass substrates heated at a temperature of 350 °C by the spray pyrolysis technique. Bandgap energy of the films vary from 3.28 to 3.29 eV. X-ray diffraction shows that films to be nanocrystalline with anatase phase having tetragonal crystal structure. The values calculated from electron diffraction patterns (TEM) were observed to be matching with values calculated from XRD. Transmission electron microscopy (TEM) reveled that grain sizes were observed to increase (10–29 nm) with an increase in the concentration of precursor solution. The gas sensing performance of the films was tested.

  1. Fiber-Optic Sensing for In-Space Inspection

    Science.gov (United States)

    Pena, Francisco; Richards, W. Lance; Piazza, Anthony; Parker, Allen R.; Hudson, Larry D.

    2014-01-01

    This presentation provides examples of fiber optic sensing technology development activities performed at NASA Armstrong. Examples of current and previous work that support in-space inspection techniques and methodologies are highlighted.

  2. Optical display for radar sensing

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Willey, Jefferson; Landa, Joseph; Hsieh, Minder; Larsen, Louis V.; Krzywicki, Alan T.; Tran, Binh Q.; Hoekstra, Philip; Dillard, John T.; Krapels, Keith A.; Wardlaw, Michael; Chu, Kai-Dee

    2015-05-01

    Boltzmann headstone S = kB Log W turns out to be the Rosette stone for Greek physics translation optical display of the microwave sensing hieroglyphics. The LHS is the molecular entropy S measuring the degree of uniformity scattering off the sensing cross sections. The RHS is the inverse relationship (equation) predicting the Planck radiation spectral distribution parameterized by the Kelvin temperature T. Use is made of the conservation energy law of the heat capacity of Reservoir (RV) change T Δ S = -ΔE equals to the internal energy change of black box (bb) subsystem. Moreover, an irreversible thermodynamics Δ S > 0 for collision mixing toward totally larger uniformity of heat death, asserted by Boltzmann, that derived the so-called Maxwell-Boltzmann canonical probability. Given the zero boundary condition black box, Planck solved a discrete standing wave eigenstates (equation). Together with the canonical partition function (equation) an average ensemble average of all possible internal energy yielded the celebrated Planck radiation spectral (equation) where the density of states (equation). In summary, given the multispectral sensing data (equation), we applied Lagrange Constraint Neural Network (LCNN) to solve the Blind Sources Separation (BSS) for a set of equivalent bb target temperatures. From the measurements of specific value, slopes and shapes we can fit a set of Kelvin temperatures T's for each bb targets. As a result, we could apply the analytical continuation for each entropy sources along the temperature-unique Planck spectral curves always toward the RGB color temperature display for any sensing probing frequency.

  3. Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer

    NARCIS (Netherlands)

    Coda, S.; Siersema, P.D.; Stamp, G.W.; Thillainayagam, A.V.

    2015-01-01

    Detection, characterization, and staging constitute the fundamental elements in the endoscopic diagnosis of gastrointestinal diseases, but histology still remains the diagnostic gold standard. New developments in endoscopic techniques may challenge histopathology in the near future. An ideal endosco

  4. Optical techniques in optogenetics

    Science.gov (United States)

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-07-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience, and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially controlled optogenetic stimulation and detection of cellular activities.

  5. SO2 emissions from Popocatépetl volcano: emission rates and plume imaging using optical remote sensing techniques

    Science.gov (United States)

    Grutter, M.; Basaldud, R.; Rivera, C.; Harig, R.; Junkerman, W.; Caetano, E.; Delgado-Granados, H.

    2008-11-01

    Sulfur dioxide emissions from the Popocatépetl volcano in central Mexico were measured during the MILAGRO field campaign in March 2006. A stationary scanning DOAS (Differential Optical Absorption Spectrometer) was used to monitor the SO2 emissions from the volcano and the results were compared with traverses done with a COSPEC from the ground and a DOAS instrument on board an ultra-light aircraft. Daytime evolutions as well as day-to-day variation of the SO2 emissions are reported. A value of 2.45±1.39 Gg/day of SO2 is reported from all the daily averages obtained during the month of March 2006, with large variation in maximum and minimum daily averages of 5.97 and 0.56 Gg/day, respectively. The large short-term fluctuations in the SO2 emissions obtained could be confirmed through 2-D visualizations of the SO2 plume measured with a scanning imaging infrared spectrometer. This instrument, based on the passive detection of thermal radiation from the volcanic gas and analysis with FTIR spectrometry, is used for the first time for plume visualization of a specific volcanic gas. A 48-h forward trajectory analysis indicates that the volcanic plume was predominantly directed towards the Puebla/Tlaxcala region (63%), followed by the Mexico City and Cuernavaca/Cuautla regions with 19 and 18% occurrences, respectively. 25% of the modeled trajectories going towards the Puebla region reached altitudes lower than 4000 m a.s.l. but all trajectories remained over this altitude for the other two regions.

  6. SO2 emissions from Popocatépetl volcano: emission rates and plume imaging using optical remote sensing techniques

    Directory of Open Access Journals (Sweden)

    H. Delgado-Granados

    2008-11-01

    Full Text Available Sulfur dioxide emissions from the Popocatépetl volcano in central Mexico were measured during the MILAGRO field campaign in March 2006. A stationary scanning DOAS (Differential Optical Absorption Spectrometer was used to monitor the SO2 emissions from the volcano and the results were compared with traverses done with a COSPEC from the ground and a DOAS instrument on board an ultra-light aircraft. Daytime evolutions as well as day-to-day variation of the SO2 emissions are reported. A value of 2.45±1.39 Gg/day of SO2 is reported from all the daily averages obtained during the month of March 2006, with large variation in maximum and minimum daily averages of 5.97 and 0.56 Gg/day, respectively. The large short-term fluctuations in the SO2 emissions obtained could be confirmed through 2-D visualizations of the SO2 plume measured with a scanning imaging infrared spectrometer. This instrument, based on the passive detection of thermal radiation from the volcanic gas and analysis with FTIR spectrometry, is used for the first time for plume visualization of a specific volcanic gas. A 48-h forward trajectory analysis indicates that the volcanic plume was predominantly directed towards the Puebla/Tlaxcala region (63%, followed by the Mexico City and Cuernavaca/Cuautla regions with 19 and 18% occurrences, respectively. 25% of the modeled trajectories going towards the Puebla region reached altitudes lower than 4000 m a.s.l. but all trajectories remained over this altitude for the other two regions.

  7. SO2 emissions from Popocatépetl volcano: emission rates and plume imaging using optical remote sensing techniques

    Directory of Open Access Journals (Sweden)

    E. Caetano

    2008-04-01

    Full Text Available Sulfur dioxide emissions from Popocatépetl volcano in central Mexico were measured during the MILAGRO field campaign in March 2006. A stationary scanning DOAS (Differential Optical Absorption Spectrometer was used to monitor the SO2 emissions from the volcano and the results were compared with traverses done with a COSPEC from the ground and a DOAS instrument on board an ultra-light aircraft. Daytime evolutions as well as day-to-day variation of the SO2 emissions are reported. A value of 2.45±1.39 Gg/day of SO2 is reported from all the daily averages obtained during the month of March 2006, with large variation in maximum and minimum daily averages of 5.97 and 0.56 Gg/day, respectively. The large short-term fluctuations in the SO2 emissions obtained could be confirmed through 2-D visualizations of the SO2 plume measured with a scanning imaging infrared spectrometer. This instrument, based on the passive detection of thermal radiation from the volcanic gas and analysis with FTIR spectrometry, is used for the first time for plume visualization of a specific volcanic gas. A 48-h forward trajectory analysis indicates that the volcanic plume was predominately directed towards the Puebla/Tlaxcala region (63%, followed by the Mexico City and Cuernavaca/Cuautla regions with 19 and 18% occurrences, respectively. 25% of the modeled trajectories going towards the Puebla region reached altitudes lower than 4000 m a.s.l. and all trajectories remained over this altitude for the other two regions.

  8. Advanced sensing techniques for cognitive radio

    CERN Document Server

    Zhao, Guodong; Li, Shaoqian

    2017-01-01

    This SpringerBrief investigates advanced sensing techniques to detect and estimate the primary receiver for cognitive radio systems. Along with a comprehensive overview of existing spectrum sensing techniques, this brief focuses on the design of new signal processing techniques, including the region-based sensing, jamming-based probing, and relay-based probing. The proposed sensing techniques aim to detect the nearby primary receiver and estimate the cross-channel gain between the cognitive transmitter and primary receiver. The performance of the proposed algorithms is evaluated by simulations in terms of several performance parameters, including detection probability, interference probability, and estimation error. The results show that the proposed sensing techniques can effectively sense the primary receiver and improve the cognitive transmission throughput. Researchers and postgraduate students in electrical engineering will find this an exceptional resource.

  9. Optical fiber gas sensing system based on FBG filtering

    Science.gov (United States)

    Wang, Shutao

    2008-10-01

    An optical fiber gas sensing system based on the law of Beer-Lambert is designed to determine the concentration of gas. This technique relies on the fact that the target gas has a unique, well-defined absorption characteristic within the infrared region of electromagnetic spectrum. The narrow-band filtering characteristic of optical fiber Bragg grating is used to produce the narrow spectrum light signal. An aspheric objective optical fiber collimator is used in the system as an optical fiber gas sensing detector to improve the sensitivity and stability. Experimental results show there is a high measuring sensitivity at 0.01%, and the measuring range goes beyond 5%.

  10. Combinatorial Chemistry for Optical Sensing Applications

    Science.gov (United States)

    Díaz-García, M. E.; Luis, G. Pina; Rivero-Espejel, I. A.

    The recent interest in combinatorial chemistry for the synthesis of selective recognition materials for optical sensing applications is presented. The preparation, screening, and applications of libraries of ligands and chemosensors against molecular species and metal ions are first considered. Included in this chapter are also the developments involving applications of combinatorial approaches to the discovery of sol-gel and acrylic-based imprinted materials for optical sensing of antibiotics and pesticides, as well as libraries of doped sol-gels for high-throughput optical sensing of oxygen. The potential of combinatorial chemistry applied to the discovery of new sensing materials is highlighted.

  11. Nanocomposite thin films for optical temperature sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ohodnicki, Jr., Paul R.; Brown, Thomas D.; Buric, Michael P.; Matranga, Christopher

    2017-02-14

    The disclosure relates to an optical method for temperature sensing utilizing a temperature sensing material. In an embodiment the gas stream, liquid, or solid has a temperature greater than about 500.degree. C. The temperature sensing material is comprised of metallic nanoparticles dispersed in a dielectric matrix. The metallic nanoparticles have an electronic conductivity greater than approximately 10.sup.-1 S/cm at the temperature of the temperature sensing material. The dielectric matrix has an electronic conductivity at least two orders of magnitude less than the dispersed metallic nanoparticles at the temperature of the temperature sensing material. In some embodiments, the chemical composition of a gas stream or liquid is simultaneously monitored by optical signal shifts through multiple or broadband wavelength interrogation approaches. In some embodiments, the dielectric matrix provides additional functionality due to a temperature dependent band-edge, an optimized chemical sensing response, or an optimized refractive index of the temperature sensing material for integration with optical waveguides.

  12. Polymeric Optical Fibres for Biomedical Sensing

    OpenAIRE

    Krehel, M P

    2014-01-01

    In this thesis we focus on the integration of optical fibres in textiles to create wearable sensing systems. In the introduction (Chapter 3) we describe the basics of light guiding in optical fibres and methods of lateral light coupling. Subsequently, a literature review and motivation are presented. Afterwards two main parts can be differentiated. In the first one (Chapters 4, 5) a new method of continuous extrusion of optical fibres and their medical sensing application using photoplethysmo...

  13. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    Science.gov (United States)

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  14. Optical techniques in regenerative medicine

    CERN Document Server

    Morgan, Stephen P

    2013-01-01

    In regenerative medicine, tissue engineers largely rely on destructive and time-consuming techniques that do not allow in situ and spatial monitoring of tissue growth. Furthermore, once the therapy is implanted in the patient, clinicians are often unable to monitor what is happening in the body. To tackle these barriers, optical techniques have been developed to image and characterize many tissue properties, fabricate tissue engineering scaffolds, and characterize the properties of the scaffolds. Optical Techniques in Regenerative Medicine illustrates how to use optical imaging techniques and

  15. Quantum limited particle sensing in optical tweezers

    CERN Document Server

    Tay, Jian Wei; Bowen, Warwick P

    2009-01-01

    Particle sensing in optical tweezers systems provides information on the position, velocity and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these parameters. In this paper we show that quadrant detection is non-optimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacy of both quadrant and spatial homodyne detection are shown. We demonstrate that an order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.

  16. Radiation distribution sensing with normal optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kawarabayashi, Jun; Mizuno, Ryoji; Naka, Ryotaro; Uritani, Akira; Watanabe, Ken-ichi; Iguchi, Tetsuo [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    2002-12-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ({sup 90}Sr{sup -90}Y), gamma rays ({sup 137}Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10{sup -5}% and 5.4x10{sup -4}%, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that the radiation distributions were calculated from the spectrum by mathematical deconvolution technique. (author)

  17. Offset Correction Techniques for Voltage Sense Amplifiers

    NARCIS (Netherlands)

    Groeneveld, S.

    2006-01-01

    This report deals with offset correction techniques for voltage sense amplifiers and is divided into two different parts: 1) mismatch and 2) offset correction techniques. First a literature study is done on the subject mismatch with specially focus on the future. Mismatch of a transistor is determin

  18. Optical cavity coupled surface plasmon resonance sensing for enhanced sensitivity

    Institute of Scientific and Technical Information of China (English)

    Zheng Zheng; Xin Zhao; Jinsong Zhu; Jim Diamond

    2008-01-01

    A surface plasmon resonance (SPR) sensing system based on the optical cavity enhanced detection tech-nique is experimentally demonstrated. A fiber-optic laser cavity is built with a SPR sensor inside. By measuring the laser output power when the cavity is biased near the threshold point, the sensitivity, defined as the dependence of the output optical intensity on the sample variations, can be increased by about one order of magnitude compared to that of the SPR sensor alone under the intensity interrogation scheme. This could facilitate ultra-high sensitivity SPR biosensing applications. Further system miniaturization is possible by using integrated optical components and waveguide SPR sensors.

  19. Radiation distribution sensing with normal optical fiber

    CERN Document Server

    Kawarabayashi, J; Naka, R; Uritani, A; Watanabe, K I; Iguchi, T; Tsujimura, N

    2002-01-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ( sup 9 sup 0 Sr sup - sup 9 sup 0 Y), gamma rays ( sup 1 sup 3 sup 7 Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10 sup - sup 5 % and 5.4x10 sup - sup 4 %, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that t...

  20. Enabling technologies for fiber optic sensing

    Science.gov (United States)

    Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-04-01

    In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.

  1. Optical frequency comb interference profilometry using compressive sensing.

    Science.gov (United States)

    Pham, Quang Duc; Hayasaki, Yoshio

    2013-08-12

    We describe a new optical system using an ultra-stable mode-locked frequency comb femtosecond laser and compressive sensing to measure an object's surface profile. The ultra-stable frequency comb laser was used to precisely measure an object with a large depth, over a wide dynamic range. The compressive sensing technique was able to obtain the spatial information of the object with two single-pixel fast photo-receivers, with no mechanical scanning and fewer measurements than the number of sampling points. An optical experiment was performed to verify the advantages of the proposed method.

  2. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  3. Fiber optic pressure sensing with conforming elastomers.

    Science.gov (United States)

    Shao, Li-Yang; Jiang, Qi; Albert, Jacques

    2010-12-10

    A novel pressure sensing scheme based on the effect of a conforming elastomer material on the transmission spectrum of tilted fiber Bragg gratings is presented. Lateral pressure on the elastomer increases its contact angle around the circumference of the fiber and strongly perturbs the optical transmission of the grating. Using an elastomer with a Young's modulus of 20 MPa, a Poisson ratio of 0.48, and a refractive index of 1.42, the sensor reacts monotonically to pressures from 0 to 50 kPa (and linearly from 0 to 15 kPa), with a standard deviation of 0.25 kPa and maximum error of 0.5 kPa. The data are extracted from the optical transmission spectrum using Fourier analysis and we show that this technique makes the response of the sensor independent of temperature, with a maximum error of 2% between 25°C and 75°C. Finally, other pressure ranges can be reached by using conforming materials with different modulii or applying the pressure at different orientations.

  4. Ammonia Optical Sensing by Microring Resonators

    Science.gov (United States)

    Passaro, Vittorio M. N.; Dell'Olio, Francesco; De Leonardis, Francesco

    2007-01-01

    A very compact (device area around 40 μm2) optical ammonia sensor based on a microring resonator is presented in this work. Silicon-on-insulator technology is used in sensor design and a dye doped polymer is adopted as sensing material. The sensor exhibits a very good linearity and a minimum detectable refractive index shift of sensing material as low as 8×10-5, with a detection limit around 4 ‰.

  5. Environmental monitoring using optical techniques

    Science.gov (United States)

    Svanberg, Sune

    2003-11-01

    An overview of optical techniques for environmental monitoring is presented. Range-resolved measurements of atmospheric pollutants can be performed using the differential absorption lidar technique. Fluorescence lidar allows assessment of vegetation status and also the conditions of the facades of historical buildings. Diode lasers provide particularly realistic schemes for atmospheric gas analysis, where certain wavelength ranges, which are not easily directly assessed, can be reached by sum- and difference frequency generation. Finally, the gas correlation principle can be used for real-time imaging of hydrocarbons. Several types of such optical environmental monitoring are illustrated with examples from research at the Lund Institute of Technology, Sweden.

  6. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.

  7. Compressive sensing in a photonic link with optical integration

    DEFF Research Database (Denmark)

    Chen, Ying; Yu, Xianbin; Chi, Hao

    2014-01-01

    In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal......, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique....

  8. Novel optical microresonators for sensing applications

    Science.gov (United States)

    Wang, Hanzheng

    Optical microresonators have been proven as an effective means for sensing applications. The high quality (Q) optical whispering gallery modes (WGMs) circulating around the rotationally symmetric structures can interact with the local environment through the evanescent field. The high sensitivity in detection was achieved by the long photon lifetime of the high-Q resonator (thus the long light-environment interaction path). The environmental variation near the resonator surface leads to the effective refractive index change and thus a shift at the resonance wavelength. In this dissertation, we present our recent research on the development of new optical microresonators for sensing applications. Different structures and materials are used to develop optical resonator for broad sensing applications. Specifically, a new coupling method is designed and demonstrated for efficient excitation of microsphere resonators. The new coupler is made by fusion splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. Operating in the reflection mode and providing a robust mechanical support to the microresonator, the integrated structure has been experimentally proven as a convenient probe for sensing applications. Microspheres made of different materials (e.g., PMMA, porous glass, hollow core porous, and glass solid borosilicate glass) were successfully demonstrated for different sensing purposes, including temperature, chemical vapor concentration, and glucose concentration in aqueous solutions. In addition, the alignment free, integrated microresonator structure may also find other applications such as optical filters and microcavity lasers.

  9. Optical Microresonators for Sensing and Transduction: A Materials Perspective.

    Science.gov (United States)

    Heylman, Kevin D; Knapper, Kassandra A; Horak, Erik H; Rea, Morgan T; Vanga, Sudheer K; Goldsmith, Randall H

    2017-08-01

    Optical microresonators confine light to a particular microscale trajectory, are exquisitely sensitive to their microenvironment, and offer convenient readout of their optical properties. Taken together, this is an immensely attractive combination that makes optical microresonators highly effective as sensors and transducers. Meanwhile, advances in material science, fabrication techniques, and photonic sensing strategies endow optical microresonators with new functionalities, unique transduction mechanisms, and in some cases, unparalleled sensitivities. In this progress report, the operating principles of these sensors are reviewed, and different methods of signal transduction are evaluated. Examples are shown of how choice of materials must be suited to the analyte, and how innovations in fabrication and sensing are coupled together in a mutually reinforcing cycle. A tremendously broad range of capabilities of microresonator sensors is described, from electric and magnetic field sensing to mechanical sensing, from single-molecule detection to imaging and spectroscopy, from operation at high vacuum to in live cells. Emerging sensing capabilities are highlighted and put into context in the field. Future directions are imagined, where the diverse capabilities laid out are combined and advances in scalability and integration are implemented, leading to the creation of a sensor unparalleled in sensitivity and information content. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optical fiber sensing based on reflection laser spectroscopy.

    Science.gov (United States)

    Gagliardi, Gianluca; Salza, Mario; Ferraro, Pietro; Chehura, Edmond; Tatam, Ralph P; Gangopadhyay, Tarun K; Ballard, Nicholas; Paz-Soldan, Daniel; Barnes, Jack A; Loock, Hans-Peter; Lam, Timothy T-Y; Chow, Jong H; De Natale, Paolo

    2010-01-01

    An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  11. Optical Fiber Sensing Based on Reflection Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gianluca Gagliardi

    2010-03-01

    Full Text Available An overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy. Various arrangements for signal recovery and noise reduction, as an extension of most typical spectroscopic techniques, are illustrated and results on detection performances are presented.

  12. Optical sensing in high voltage transmission lines using power over fiber and free space optics

    Science.gov (United States)

    Rosolem, João Batista; Bassan, Fabio Renato; Penze, Rivael Strobel; Leonardi, Ariovaldo Antonio; Fracarolli, João Paulo Vicentini; Floridia, Claudio

    2015-12-01

    In this work we propose the use of power over fiber (PoF) and free space optics (FSO) techniques to powering and receive signals from an electrical current sensor placed at high voltage potential using a pair of optical collimators. The technique evaluation was performed in a laboratorial prototype using 62.5/125 μm multimode fiber to study the sensitivity of the optical alignment and the influence of the collimation process in the sensing system wavelengths: data communication (1310 nm) and powering (830 nm). The collimators were installed in a rigid electric insulator in order to maintain the stability of transmission.

  13. Optical touch screen based on waveguide sensing

    DEFF Research Database (Denmark)

    Pedersen, Henrik Chresten; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2011-01-01

    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touchin...... finger is also demonstrated....

  14. Optical touch screen based on waveguide sensing

    Science.gov (United States)

    Pedersen, Henrik C.; Jakobsen, Michael L.; Hanson, Steen G.; Mosgaard, Morten; Iversen, Theis; Korsgaard, Jorgen

    2011-08-01

    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touching finger is also demonstrated.

  15. Ultra Small Integrated Optical Fiber Sensing System

    Directory of Open Access Journals (Sweden)

    Peter Van Daele

    2012-09-01

    Full Text Available This paper introduces a revolutionary way to interrogate optical fiber sensors based on fiber Bragg gratings (FBGs and to integrate the necessary driving optoelectronic components with the sensor elements. Low-cost optoelectronic chips are used to interrogate the optical fibers, creating a portable dynamic sensing system as an alternative for the traditionally bulky and expensive fiber sensor interrogation units. The possibility to embed these laser and detector chips is demonstrated resulting in an ultra thin flexible optoelectronic package of only 40 μm, provided with an integrated planar fiber pigtail. The result is a fully embedded flexible sensing system with a thickness of only 1 mm, based on a single Vertical-Cavity Surface-Emitting Laser (VCSEL, fiber sensor and photodetector chip. Temperature, strain and electrodynamic shaking tests have been performed on our system, not limited to static read-out measurements but dynamically reconstructing full spectral information datasets.

  16. Optical apparatus and method for sensing uranyl

    Science.gov (United States)

    Baylor, L.C.; Buchanan, B.R.

    1994-01-01

    An optical sensing device for uranyl and other substances, a method for making an optical sensing device and a method for chemically binding uranyl and other indicators to glass, quartz, cellulose and similar substrates. The indicator, such as arsenazo III, is immobilized on the substrate using a chemical binding process. The immobilized arsenazo III causes uranyl from a fluid sample to bind irreversibly to the substrate at its active sites, thus causing absorption of a portion of light transmitted through the substrate. Determination of the amount of light absorbed, using conventional means, yields the concentration of uranyl present in the sample fluid. The binding of uranyl on the substrate can be reversed by subsequent exposure of the substrate to a solution of 2,6-pyridinedicarboxylic acid. The chemical binding process is suitable for similarly binding other indicators, such as bromocresol green.

  17. Towards optical sensing with hyperbolic metamaterials

    CERN Document Server

    Mackay, Tom G

    2015-01-01

    A possible means of optical sensing, based on a porous hyperbolic material which is infiltrated by a fluid containing an analyte to be sensed, was investigated theoretically. The sensing mechanism relies on the observation that extraordinary plane waves propagate in the infiltrated hyperbolic material only in directions enclosed by a cone aligned with the optic axis of the infiltrated hyperbolic material. The angle this cone subtends to the plane perpendicular to the optic axis is $\\theta_c$. The sensitivity of $\\theta_c$ to changes in refractive index of the infiltrating fluid, namely $n_b$, was explored; also considered were the permittivity parameters and porosity of the hyperbolic material, as well as the shape and size of its pores. Sensitivity was gauged by the derivative $d \\theta_c / d n_b$. In parametric numerical studies, values of $d \\theta_c / d n_b$ in excess of 500 degrees per refractive index unit were computed, depending upon the constitutive parameters of the porous hyperbolic material and in...

  18. Toward optical sensing with hyperbolic metamaterials

    Science.gov (United States)

    Mackay, Tom G.

    2015-06-01

    A possible means of optical sensing, based on a porous hyperbolic material that is infiltrated by a fluid containing an analyte to be sensed, was theoretically investigated. The sensing mechanism relies on the observation that extraordinary plane waves propagate in the infiltrated hyperbolic material only in directions enclosed by a cone aligned with the optic axis of the infiltrated hyperbolic material. The angle this cone subtends to the plane perpendicular to the optic axis is θc. The sensitivity of θc to changes in the refractive index of the infiltrating fluid, namely nb, was explored; also considered were the permittivity parameters and porosity of the hyperbolic material, as well as the shape and size of its pores. Sensitivity was gauged by the derivative dθc/dnb. In parametric numerical studies, values of dθc/dnb in excess of 500 deg per refractive index unit were computed, depending upon the constitutive parameters of the porous hyperbolic material and infiltrating fluid and the nature of the porosity. In particular, it was observed that exceeding large values of dθc/dnb could be attained as the negative-valued eigenvalue of the infiltrated hyperbolic material approached zero.

  19. Multisensor image fusion techniques in remote sensing

    Science.gov (United States)

    Ehlers, Manfred

    Current and future remote sensing programs such as Landsat, SPOT, MOS, ERS, JERS, and the space platform's Earth Observing System (Eos) are based on a variety of imaging sensors that will provide timely and repetitive multisensor earth observation data on a global scale. Visible, infrared and microwave images of high spatial and spectral resolution will eventually be available for all parts of the earth. It is essential that efficient processing techniques be developed to cope with the large multisensor data volumes. This paper discusses data fusion techniques that have proved successful for synergistic merging of SPOT HRV, Landsat TM and SIR-B images. It is demonstrated that these techniques can be used to improve rectification accuracies, to depicit greater cartographic detail, and to enhance spatial resolution in multisensor image data sets.

  20. Industrial applications of fiber optic sensing

    Science.gov (United States)

    Desforges, Francois X.; Blocksidge, Robert

    1996-08-01

    Thanks to the growth of the fiber optics telecommunication industry, fiber optic components have become less expensive, more reliable and well known by potential fiber optic sensor users. LEDs, optical fibers, couplers and connectors are now widely distributed and are the building blocks for the fiber optic sensor manufacturer. Additionally, the huge demand in consumer electronics of the past 10 years has provided the manufacturer with cheap and powerful programmable logic components which reduce the development time as well as the cost of the associated instrumentation. This market trend has allowed Photonetics to develop, manufacture and sell fiber optic sensors for the last 10 years. The company contribution in the fields of fiber optic gyros (4 licenses sold world wide), white light interferometry and fiber optic sensor networks is widely recognized. Moreover, its 1992 acquisition of some of the assets of Metricor Inc., greatly reinforced its position and allowed it to pursue new markets. Over the past four years, Photonetics has done an important marketing effort to better understand the need of its customers. The result of this research has fed R&D efforts towards a new generation instrument, the Metricor 2000, better adapted to the expectations of fiber optic sensors users, thanks to its unique features: (1) universality -- the system can accept more than 20 different sensors (T, P, RI, . . .). (2) scalability -- depending on the customer needs, the system can be used with 1 to 64 sensors. (3) performance -- because of its improved design, overall accuracies of 0.01% FS can be reached. (4) versatility -- its modular design enables a fast and easy custom design for specific applications. This paper presents briefly the Metricor 2000 and its family of FO probes. Then, it describes two fiber optic sensing (FOS) applications/markets where FOS have proven to be very useful.

  1. Optical Microspherical Resonators for Biomedical Sensing

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2011-01-01

    Full Text Available Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field.

  2. Laser and Optical Remote Sensing: Instrumentation and Techniques Topical Meeting Held in North Falmoth Massachusetts on September 28 - October 1, 1987. Volume 18. Technical Digest Series

    Science.gov (United States)

    1987-10-01

    effect from a TM scene which was taken over the nuclear power plant at Chernobyl, USSR on April 29, 1986. An optimum aerosol optical thickness was...sease. The odd rotational levels we massng imshe. pon meas of C~h due to nuclear symmetry requirements so theorn. over Ar, in the lower uibrational...index optical fiber cable and collimated by an off-axis parabolic reflector. The fringe pattern from the wedge is incident on a Reticon photodiode array

  3. Conjugated amplifying polymers for optical sensing applications.

    Science.gov (United States)

    Rochat, Sébastien; Swager, Timothy M

    2013-06-12

    Thanks to their unique optical and electrochemical properties, conjugated polymers have attracted considerable attention over the last two decades and resulted in numerous technological innovations. In particular, their implementation in sensing schemes and devices was widely investigated and produced a multitude of sensory systems and transduction mechanisms. Conjugated polymers possess numerous attractive features that make them particularly suitable for a broad variety of sensing tasks. They display sensory signal amplification (compared to their small-molecule counterparts) and their structures can easily be tailored to adjust solubility, absorption/emission wavelengths, energy offsets for excited state electron transfer, and/or for use in solution or in the solid state. This versatility has made conjugated polymers a fluorescence sensory platform of choice in the recent years. In this review, we highlight a variety of conjugated polymer-based sensory mechanisms together with selected examples from the recent literature.

  4. Multiplexed refractive index-based sensing using optical fiber microcavities

    Science.gov (United States)

    Warren-Smith, Stephen C.; André, Ricardo M.; Dellith, Jan; Bartelt, Hartmut

    2016-04-01

    Optical fibers are promising tools for performing biological and biomedical sensing due to their small cross section and potential for multiplexing. In particular, fabricating ultra-small sensing devices is of increasing interest for measuring biological material such as cells. A promising direction is the use of interferometric techniques combined with optical fiber post-processing. In this work we present recent progress in the development of Fabry-Perot micro-cavities written into optical fiber tapers using focused ion beam (FIB) milling. We first demonstrate that FIB milled optical fiber microcavities are sensitive enough to measure polyelectrolyte layer deposition. We then present new results on the fabrication and optical characterization of serially-multiplexed dual cavity micro-sensors. Two cavities were written serially along the fiber with two different cavity lengths, producing a total of four reflecting surfaces and thus six possible interferometric pairs/cavities. By using fast Fourier transform it is possible to obtain de-multiplexed measurements for each cavity. This will be particularly important for bioassays where positive and negative controls are required to be measured within close spatial proximity.

  5. Mobile quantum sensing with spins in optically trapped nanodiamonds

    Science.gov (United States)

    Awschalom, David D.

    2013-03-01

    The nitrogen-vacancy (NV) color center in diamond has emerged as a powerful, optically addressable, spin-based probe of electromagnetic fields and temperature. For nanoscale sensing applications, the NV center's atom-like nature enables the close-range interactions necessary for both high spatial resolution and the detection of fields generated by proximal nuclei, electrons, or molecules. Using a custom-designed optical tweezers apparatus, we demonstrate three-dimensional position control of nanodiamonds in solution with simultaneous optical measurement of electron spin resonance (ESR)[3]. Despite the motion and random orientation of NV centers suspended in the optical trap, we observe distinct peaks in the ESR spectra from the ground-state spin transitions. Accounting for the random dynamics of the trapped nanodiamonds, we model the ESR spectra observed in an applied magnetic field and estimate the dc magnetic sensitivity based on the ESR line shapes to be 50 μT/√{ Hz }. We utilize the optically trapped nanodiamonds to characterize the magnetic field generated by current-carrying wires and ferromagnetic structures in microfluidic circuits. These measurements provide a pathway to spin-based sensing in fluidic environments and biophysical systems that are inaccessible to existing scanning probe techniques, such as the interiors of living cells. This work is supported by AFOSR and DARPA.

  6. Optical remote sensing of the earth

    Science.gov (United States)

    Goetz, A. F. H.; Wellman, J. B.; Barnes, W. L.

    1985-01-01

    In the present assessment of the contributions of optical earth resources remote sensing in the 0.4-15.0 micron region, attention is given to underlying principles, applications to scientific disciplines such as geology, hydrology and oceanography, the recent development history of the requisite sensors, and sensor development trends. Development status characterizations are given for thematic mapping, modular optoelectronic multispectral scanning, the telescope/CCD 'SPOT' program of France, the thermal IR multispectral scanner for mineral signature identification, airborne imaging spectrometry, and the Advanced Visible and IR Imaging Spectrometer that is nearing deployment. Technology development trends and the capabilities they portend are projected.

  7. Role of molar concentration in structural, optical and gas sensing performance of anatase phase TiO2 nanofilms: automated nebulizer spray pyrolysis (ANSP) technique

    Science.gov (United States)

    Gopala Krishnan, V.; Elango, P.; Ganesan, V.

    2017-07-01

    TiO2 nanofilms were deposited on a glass substrate at 500 °C using automated nebulizer spray pyrolysis. The anatase polycrystalline structure with increased grain size and variations of surfactant planes ( T c) were influenced by molar concentration on XRD study. AFM study shows the average roughness values were increased with increase in molar concentration. A granular domain like microstructure with crack and void-free particle was examined by FESEM. The maximum transmittance 95.5% (529.6 nm) for x = 0.05 M/L, further increment of molar concentration showed the decremented transmittance with red shift absorption edge and the calculated band gap values ( E g = 3.53-3.20 eV) also noted. The gas sensing performances of films were studied with respect to various gas sensing parameters and the ammonia (NH3) gas showed better sensing response ( S max = 89%) at 150 °C for 300 ppm gas concentration against other gases (C2H6O, CH4O, C3H8O and C3H6O).

  8. Compressed sensing imaging techniques for radio interferometry

    CERN Document Server

    Wiaux, Y; Puy, G; Scaife, A M M; Vandergheynst, P

    2009-01-01

    Radio interferometry probes astrophysical signals through incomplete and noisy Fourier measurements. The theory of compressed sensing demonstrates that such measurements may actually suffice for accurate reconstruction of sparse or compressible signals. We propose new generic imaging techniques based on convex optimization for global minimization problems defined in this context. The versatility of the framework notably allows introduction of specific prior information on the signals, which offers the possibility of significant improvements of reconstruction relative to the standard local matching pursuit algorithm CLEAN used in radio astronomy. We illustrate the potential of the approach by studying reconstruction performances on simulations of two different kinds of signals observed with very generic interferometric configurations. The first kind is an intensity field of compact astrophysical objects. The second kind is the imprint of cosmic strings in the temperature field of the cosmic microwave backgroun...

  9. Compressive sensing in a photonic link with optical integration.

    Science.gov (United States)

    Chen, Ying; Yu, Xianbin; Chi, Hao; Jin, Xiaofeng; Zhang, Xianmin; Zheng, Shilie; Galili, Michael

    2014-04-15

    In this Letter, we present a novel structure to realize photonics-assisted compressive sensing (CS) with optical integration. In the system, a spectrally sparse signal modulates a multiwavelength continuous-wave light and then is mixed with a random sequence in optical domain. The optical signal passes through a length of dispersive fiber, the dispersion amount of which is set to ensure that the group delay between the adjacent wavelength channels is equal to the bit duration of the applied random sequence. As a result, the detected signal is a delay-and-sum version of the randomly mixed signal, which is equivalent to the function of integration required in CS. A proof-of-concept experiment with four wavelengths, corresponding to a compression factor of 4, is demonstrated. More simulation results are also given to show the potential of the technique.

  10. Vapor Sensing Theoretical Study on Optical Microcavities

    Institute of Scientific and Technical Information of China (English)

    ZHANG Le-xin; ZHANG Ran; LI Zhi-quan

    2007-01-01

    When the organic vapors absorbed to the surface of porous silicon(PS), capillary condensation takes place due to the porous structure of the PS layer, accordingly resulting in the effective refractive index changing. For PS multi-layer microcavities, the different resonant peaks shift in the reflectivity spectrum of porous silicon microcavities(PSMs). The optical sensing model is set up by applying Bruggeman effective medium approximation theory, capillary condensation process and transfer matrix theoretically analytical method of one-dimensional photonic crystals. At the same time, comprehensively researched on are the sensing characteristics of PSMs which are exposed to give concentration organic vapors. At last, made is the theoretical simulation for sensing model of the PSMs in case of saturation by using computer numerical calculation, and found is the linearity relation between the refractive index of organic solvent and the peak-shift. At the same time deduced is the peak-shift as a function of the concentration of ethanol vapors.

  11. Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    Elmar Schmälzlin

    2013-05-01

    Full Text Available In many biological and environmental applications spatially resolved sensing of molecular oxygen is desirable. A powerful tool for distributed measurements is optical time domain reflectometry (OTDR which is often used in the field of telecommunications. We combine this technique with a novel optical oxygen sensor dye, triangular-[4] phenylene (TP, immobilized in a polymer matrix. The TP luminescence decay time is 86 ns. The short decay time of the sensor dye is suitable to achieve a spatial resolution of some meters. In this paper we present the development and characterization of a reflectometer in the UV range of the electromagnetic spectrum as well as optical oxygen sensing with different fiber arrangements.

  12. Topical Meeting on Laser and Optical Remote Sensing: Instrumentation and Techniques Technical Digest Held in North Falmoth, Massachusetts on September 28-October 1, 1987. Volume 18.

    Science.gov (United States)

    1988-08-01

    CISE Tecno /rgie Innovative S.p.A., Italy. An zenith measurements using eight transmitted laser beams. infrared optical parametric oscillator source has...laser beam into the center of the receiver FOV. This is usually done in an automated feedback loop, but also can be done manually from a control... manually from Spacelab. The control unit is rack-mounted and comprises a signal-scope, an indicator for the alignment detector signal and a joystick

  13. Cognitive optical networks: architectures and techniques

    Science.gov (United States)

    Grebeshkov, Alexander Y.

    2017-04-01

    This article analyzes architectures and techniques of the optical networks with taking into account the cognitive methodology based on continuous cycle "Observe-Orient-Plan-Decide-Act-Learn" and the ability of the cognitive systems adjust itself through an adaptive process by responding to new changes in the environment. Cognitive optical network architecture includes cognitive control layer with knowledge base for control of software-configurable devices as reconfigurable optical add-drop multiplexers, flexible optical transceivers, software-defined receivers. Some techniques for cognitive optical networks as flexible-grid technology, broker-oriented technique, machine learning are examined. Software defined optical network and integration of wireless and optical networks with radio over fiber technique and fiber-wireless technique in the context of cognitive technologies are discussed.

  14. Optically powered active sensing system for Internet Of Things

    Science.gov (United States)

    Gao, Chen; Wang, Jin; Yin, Long; Yang, Jing; Jiang, Jian; Wan, Hongdan

    2014-10-01

    Internet Of Things (IOT) drives a significant increase in the extent and type of sensing technology and equipment. Sensors, instrumentation, control electronics, data logging and transmission units comprising such sensing systems will all require to be powered. Conventionally, electrical powering is supplied by batteries or/and electric power cables. The power supply by batteries usually has a limited lifetime, while the electric power cables are susceptible to electromagnetic interference. In fact, the electromagnetic interference is the key issue limiting the power supply in the strong electromagnetic radiation area and other extreme environments. The novel alternative method of power supply is power over fiber (PoF) technique. As fibers are used as power supply lines instead, the delivery of the power is inherently immune to electromagnetic radiation, and avoids cumbersome shielding of power lines. Such a safer power supply mode would be a promising candidate for applications in IOT. In this work, we built up optically powered active sensing system, supplying uninterrupted power for the remote active sensors and communication modules. Also, we proposed a novel maximum power point tracking technique for photovoltaic power convertors. In our system, the actual output efficiency greater than 40% within 1W laser power. After 1km fiber transmission and opto-electric power conversion, a stable electric power of 210mW was obtained, which is sufficient for operating an active sensing system.

  15. Computational optical sensing and imaging: introduction to feature issue.

    Science.gov (United States)

    Gerwe, David R; Harvey, Andrew; Gehm, Michael E

    2013-04-01

    The 2012 Computational Optical Sensing and Imaging (COSI) conference of the Optical Society of America was one of six colocated meetings composing the Imaging and Applied Optics Congress held in Monterey, California, 24-28 June. COSI, together with the Imaging Systems and Applications, Optical Sensors, Applied Industrial Optics, and Optical Remote Sensing of the Environment conferences, brought together a diverse group of scientists and engineers sharing a common interest in measuring and processing of information carried by optical fields. This special feature includes several papers based on presentations given at the 2012 COSI conference as well as independent contributions, which together highlight several important trends.

  16. Distributed flow sensing using optical hot -wire grid.

    Science.gov (United States)

    Chen, Tong; Wang, Qingqing; Zhang, Botao; Chen, Rongzhang; Chen, Kevin P

    2012-04-09

    An optical hot-wire flow sensing grid is presented using a single piece of self-heated optical fiber to perform distributed flow measurement. The flow-induced temperature loss profiles along the fiber are interrogated by the in-fiber Rayleigh backscattering, and spatially resolved in millimeter resolution using optical frequency domain reflectometry (OFDR). The flow rate, position, and flow direction are retrieved simultaneously. Both electrical and optical on-fiber heating were demonstrated to suit different flow sensing applications.

  17. 物理模型试验光纤传感测试方法应用进展%APPLICATION ANALYSIS ON METHOD OF PHYSICAL MODEL TEST WITH OPTICAL FIBER SENSING TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    柴敬; 袁强; 李毅; 王帅; 孙亚运

    2015-01-01

    室内模拟试验是岩土力学与工程地质领域科学研究的重要手段之一。光纤传感测试是一种高精度、实时性、分布式和并行式的测试技术,构建物理模型试验光纤传感测试方法,推动了模拟试验技术的进步,为现场工程可以提供更可靠的指导。本文列举了常用模型试验光纤传感测试技术,综述了岩土力学与工程地质在5个方面应用模型试验光纤传感测试的进展,并对光纤传感器的结构形式、温度补偿、传感器标定、布设工艺等应用关键问题进行了总结,探讨了光纤与模型材料变形同步、协调和相容的关系。表明基于光纤传感技术的多尺度、多源信息模型试验研究将成为未来岩土力学与工程室内试验的热点。%Physical model test is one of the most important means for scientific researching of rock and soil mechanics and engineering geology.Optical fiber sensing (OFS ) is a testing technology which possesses the specialty of high accuracy,real-time,distributed and parallel.The establishment of physical model test with OFS method promotes the progress of experimental modelling technique,and provides a more precisely reliable and entirely meticulous scientific instruction for field practicing and construction.This paper lists the most commonly used techniques of physical model test with OFS.Its progress in five main engineering areas of rock mechanics and engineering is reviewed.The key application issues that structural forms and technologies of temperature compensation,optical fiber sensors calibration and layout are analyzed.The correlations among optical fiber, physical model,and different layouts techniques are discussed.The research of multiple sizes and multi-source information model test with OFS will be a hotspot of indoor experimental modelling in rock and soild mechanics and engineering geology.

  18. Optical frequency domain reflectometry: principles and applications in fiber optic sensing

    Science.gov (United States)

    Kreger, Stephen T.; Rahim, Nur Aida Abdul; Garg, Naman; Klute, Sandra M.; Metrey, Daniel R.; Beaty, Noah; Jeans, James W.; Gamber, Robert

    2016-05-01

    Optical Frequency Domain Reflectometry (OFDR) is the basis of an emerging high-definition distributed fiber optic sensing (HD-FOS) technique that provides an unprecedented combination of resolution and sensitivity. OFDR employs swept laser interferometry to produce strain or temperature vs. sensor length with fiber Bragg gratings (FBGs) or Rayleigh scatter as the source signal. We look at the influence of HD-FOS on design and test of new, lighter weight, stronger and more fuel efficient vehicles. Examples include defect detection, model verification and structural health monitoring of composites, and temperature distribution monitoring of battery packs and inverters in hybrid and electric powertrains.

  19. Optical temperature sensing on flexible polymer foils

    Science.gov (United States)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  20. Fibre optic distributed scattering sensing system: perspectives and challenges for high performance applications

    Institute of Scientific and Technical Information of China (English)

    Marc Niklès

    2007-01-01

    As fiber optic distributed scattering sensing systems are providing innovative solutions for the monitoring of large structures, the comparison of different techniques and solutions is difficult because of the lack of standardized specifications and the difficulty associated to the characterization of such systems. The article presents a tentative definition of performance specifications and qualification procedures applicable to fiber optic distributed sensing systems aiming at providing clear guidelines for their design, specifications, qualification, application and selection.

  1. Wavefront Sensing for WFIRST with a Linear Optical Model

    Science.gov (United States)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  2. Wavefront sensing for WFIRST with a linear optical model

    Science.gov (United States)

    Jurling, Alden S.; Content, David A.

    2012-09-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  3. Distributed optical fiber perturbation sensing system based on Mach-Zehnder interferometer

    Institute of Scientific and Technical Information of China (English)

    Wengang WANG; Deming LIU; Hairong LIU; Qizhen SUN; Zhifeng SUN; Xu ZHANG; Ziheng XU

    2009-01-01

    A novel distributed optical fiber vibration-sensing system based on Mach-Zehnder interferometer has been designed and experimentally demonstrated. Firstly, the principle of Mach-Zehnder optical path interferometer technique is clarified. The output of the Mach-Zehnder interferometer is proportional to the phase shift induced by the perturbation. Secondly, the system consists of the laser diode (LD) as the light source, fiber, Mach-Zehnder optical interferometers as the sensing units, a 1×N star fiber-optic coupler, an N×1 fiber-optic coupler, a photodiode (PD) detector, and a computer used in signal processing. The entire monitoring region of this system is divided into several small zones, and each small monitoring zone is independent from each other. All of the small monitoring zones have their own sensing unit, which is defined by Mach-Zehnder optical interferometer. A series of sensing units are connected by the star fiber-optic couplers to form a whole sensing net. Thirdly, signal-processing techniques are subsequently used to calculate the phase shift to estimate whether intruders appear. The sensing system is able to locate the vibration signal simultaneously, includ-ing multiple vibrations at different positions, by employing the time-division multiplexed (TDM) technique. Finally, the operation performance of the proposed system is tested in the experiment lab with the conditions as follows: the number of the sensing units is 3, the length of the sensing fiber is 50 m, and the wavelength of the light diode is 1550nm. Based on these investigations, the fiber surrounding alert system is achieved. We have experimen-tally demonstrated that the sensing system can measure both the frequency and position of the vibration in real time, with a spatial positional resolution better than 50 m in an area of 1 km2.

  4. Resolution enhancement techniques in optical lithography

    CERN Document Server

    Wong, Alfred K

    2001-01-01

    Ever-smaller IC devices are pushing the optical lithography envelope, increasing the importance of resolution enhancement techniques. This tutorial encompasses two decades of research. It discusses theoretical and practical aspects of commonly used techniques, including optical imaging and resolution, modified illumination, optical proximity correction, alternating and attenuating phase-shifting masks, selecting RETs, and second-generation RETs. Useful for students and practicing lithographers.

  5. Fluorescence decay time measurement - a new optical sensing scheme

    Science.gov (United States)

    Draxler, Sonja; Lippitsch, Max E.

    1994-02-01

    Optical sensors often suffer from poor long-term stability. This drawback can be overcome by using fluorescence decay-time measurement as the sensing principle. In this way calibration- free chemical sensors can be developed. The sensing scheme has been used so far mainly in connection with dynamic quenching, for example in oxygen sensors. We have succeeded in extending it to ground-state indicator-analyte reactions, thus obtaining stable optical sensors for decay-time sensing of various analytes.

  6. An integrated sensing technique for smart monitoring of water pipelines

    Science.gov (United States)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  7. Distributed Fiber Optic Gas Sensing for Harsh Environment

    Energy Technology Data Exchange (ETDEWEB)

    Juntao Wu

    2008-03-14

    This report summarizes work to develop a novel distributed fiber-optic micro-sensor that is capable of detecting common fossil fuel gases in harsh environments. During the 32-month research and development (R&D) program, GE Global Research successfully synthesized sensing materials using two techniques: sol-gel based fiber surface coating and magnetron sputtering based fiber micro-sensor integration. Palladium nanocrystalline embedded silica matrix material (nc-Pd/Silica), nanocrystalline palladium oxides (nc-PdO{sub x}) and palladium alloy (nc-PdAuN{sub 1}), and nanocrystalline tungsten (nc-WO{sub x}) sensing materials were identified to have high sensitivity and selectivity to hydrogen; while the palladium doped and un-doped nanocrystalline tin oxide (nc-PdSnO{sub 2} and nc-SnO{sub 2}) materials were verified to have high sensitivity and selectivity to carbon monoxide. The fiber micro-sensor comprises an apodized long-period grating in a single-mode fiber, and the fiber grating cladding surface was functionalized by above sensing materials with a typical thickness ranging from a few tens of nanometers to a few hundred nanometers. GE found that the morphologies of such sensing nanomaterials are either nanoparticle film or nanoporous film with a typical size distribution from 5-10 nanometers. nc-PdO{sub x} and alloy sensing materials were found to be highly sensitive to hydrogen gas within the temperature range from ambient to 150 C, while nc-Pd/Silica and nc-WO{sub x} sensing materials were found to be suitable to be operated from 150 C to 500 C for hydrogen gas detection. The palladium doped and un-doped nc-SnO{sub 2} materials also demonstrated sensitivity to carbon monoxide gas at approximately 500 C. The prototyped fiber gas sensing system developed in this R&D program is based on wavelength-division-multiplexing technology in which each fiber sensor is identified according to its transmission spectra features within the guiding mode and cladding modes. The

  8. Optical Remote Sensing Potentials for Looting Detection

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-10-01

    Full Text Available Looting of archaeological sites is illegal and considered a major anthropogenic threat for cultural heritage, entailing undesirable and irreversible damage at several levels, such as landscape disturbance, heritage destruction, and adverse social impact. In recent years, the employment of remote sensing technologies using ground-based and/or space-based sensors has assisted in dealing with this issue. Novel remote sensing techniques have tackled heritage destruction occurring in war-conflicted areas, as well as illicit archeological activity in vast areas of archaeological interest with limited surveillance. The damage performed by illegal activities, as well as the scarcity of reliable information are some of the major concerns that local stakeholders are facing today. This study discusses the potential use of remote sensing technologies based on the results obtained for the archaeological landscape of Ayios Mnason in Politiko village, located in Nicosia district, Cyprus. In this area, more than ten looted tombs have been recorded in the last decade, indicating small-scale, but still systematic, looting. The image analysis, including vegetation indices, fusion, automatic extraction after object-oriented classification, etc., was based on high-resolution WorldView-2 multispectral satellite imagery and RGB high-resolution aerial orthorectified images. Google Earth© images were also used to map and diachronically observe the site. The current research also discusses the potential for wider application of the presented methodology, acting as an early warning system, in an effort to establish a systematic monitoring tool for archaeological areas in Cyprus facing similar threats.

  9. Wind Predictability and Remote Sensing Techniques,

    Science.gov (United States)

    The report presents the unclassified findings from the Investigation of Airborne Wind Sensing Systems conducted under AIRTASK A30303/323/70F17311002. Included is a summary of the current accuracy of wind speed and direction forecasts, a list of possible methods for remote sensing meteorological data, a list of areas of application of the given methods and a list of contacts made for information relevant to this evaluation. (Author)

  10. Absolute distance sensing by two laser optical interferometry.

    Science.gov (United States)

    Thurner, Klaus; Braun, Pierre-François; Karrai, Khaled

    2013-11-01

    We have developed a method for absolute distance sensing by two laser optical interferometry. A particularity of this technique is that a target distance is determined in absolute and is no longer limited to within an ambiguity range affecting usually multiple wavelength interferometers. We implemented the technique in a low-finesse Fabry-Pérot miniature fiber based interferometer. We used two diode lasers, both operating in the 1550 nm wavelength range. The wavelength difference is chosen to create a 25 μm long periodic beating interferometric pattern allowing a nanometer precise position measurement but limited to within an ambiguity range of 25 μm. The ambiguity is then eliminated by scanning one of the wavelengths over a small range (3.4 nm). We measured absolute distances in the sub-meter range and this with just few nanometer repeatability.

  11. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    OpenAIRE

    2015-01-01

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT se...

  12. All-optical signal processing technique for secure optical communication

    Science.gov (United States)

    Qian, Feng-chen; Su, Bing; Ye, Ya-lin; Zhang, Qian; Lin, Shao-feng; Duan, Tao; Duan, Jie

    2015-10-01

    Secure optical communication technologies are important means to solve the physical layer security for optical network. We present a scheme of secure optical communication system by all-optical signal processing technique. The scheme consists of three parts, as all-optical signal processing unit, optical key sequence generator, and synchronous control unit. In the paper, all-optical signal processing method is key technology using all-optical exclusive disjunction (XOR) gate based on optical cross-gain modulation effect, has advantages of wide dynamic range of input optical signal, simple structure and so on. All-optical XOR gate composed of two semiconductor optical amplifiers (SOA) is a symmetrical structure. By controlling injection current, input signal power, delay and filter bandwidth, the extinction ratio of XOR can be greater than 8dB. Finally, some performance parameters are calculated and the results are analyzed. The simulation and experimental results show that the proposed method can be achieved over 10Gbps optical signal encryption and decryption, which is simple, easy to implement, and error-free diffusion.

  13. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  14. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  15. ESTIMATION OF INSULATOR CONTAMINATIONS BY MEANS OF REMOTE SENSING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    G. Han

    2016-06-01

    Full Text Available The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD, digital elevation model (DEM, land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data. Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

  16. Estimation of Insulator Contaminations by Means of Remote Sensing Technique

    Science.gov (United States)

    Han, Ge; Gong, Wei; Cui, Xiaohui; Zhang, Miao; Chen, Jun

    2016-06-01

    The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC) is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD), digital elevation model (DEM), land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data). Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM) and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

  17. Laser And Nonlinear Optical Materials For Laser Remote Sensing

    Science.gov (United States)

    Barnes, Norman P.

    2005-01-01

    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  18. Gully Erosion Mapping Using Remote Sensing Techniques in the ...

    African Journals Online (AJOL)

    NdifelaniM

    Gully Features Extraction Using Remote Sensing Techniques. Ndifelani .... catchment area and NDVI as threshold and the accuracy indicated a negligible over estimation. In SA, the use of ..... data and software used in this research. We also ...

  19. A novel optical sensor for mirror edge sensing

    Science.gov (United States)

    Buckley, D. A. H.; Buous, S.; Gajjar, H.; Menzies, J. W.; Schindler, F.; Sändig, K.; Lév"que, S.

    2010-07-01

    The Southern African Large Telescope (SALT) recently (2008) abandoned attempts at using capacitive mirror edge sensors, mainly due to poor performance at a relative humidity above ~60%, a not infrequent occurrence. Different technologies are now being explored for alternative sensors on SALT. In this paper we describe the design and development of a novel prototype optical edge sensor, based on the application of the interferential scanning principle, as used in optical encoders. These prototype sensors were subsequently tested at SAAO and ESO, for potential application on SALT and E-ELT. Environmental tests, conducted in climatic control chambers, looked at temperature and relative humidity sensitivity, long term stability and sensor noise. The temperature sensitivity for height and gap were, respectively, 10nm/°C and 44nm/°C, while for relative humidity they were 4nm/10% and 50nm/10%, respectively. These either met, or were close to, the SALT specification. While there were significant lags in response, this was due to the sensor's relatively large mass (~200 gm per sensor half), which was not optimized. This is likely to improve, should a revised design be developed in future. Impressively the sensor noise was <0.015 nm RMS, over three orders of magnitude better than the specification. Our conclusions are that optical edge sensing is a viable technique for use on segmented mirror telescopes.

  20. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  1. Optical microcavity: sensing down to single molecules and atoms.

    Science.gov (United States)

    Yoshie, Tomoyuki; Tang, Lingling; Su, Shu-Yu

    2011-01-01

    This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q) factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments), microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED) would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  2. Underwater Acoustic Sensing with Optical Fibres

    Directory of Open Access Journals (Sweden)

    V. V. Rampal

    1982-01-01

    Full Text Available The use of optical fibres for the detection of acoustic pressure underwater has been discussed with particular reference to the recent literature on the development of fibre optic hydrophones.

  3. MTF online compensation in space optical remote sensing camera

    Science.gov (United States)

    Qu, Youshan; Zhai, Bo; Han, Yameng; Zhou, Jiang

    2015-02-01

    An ordinary space optical remote sensing camera is an optical diffraction-limited system and a low-pass filter from the theory of Fourier Optics, and all the digital imaging sensors, whether the CCD or CMOS, are low-pass filters as well. Therefore, when the optical image with abundant high-frequency components passes through an optical imaging system, the profuse middle-frequency information is attenuated and the rich high-frequency information is lost, which will blur the remote sensing image. In order to overcome this shortcoming of the space optical remote sensing camera, an online compensating approach of the Modulation Transfer Function in the space cameras is designed. The designed method was realized by a hardware analog circuit placed before the A/D converter, which was composed of adjustable low-pass filters with a calculated value of quality factor Q. Through the adjustment of the quality factor Q of the filters, the MTF of the processed image is compensated. The experiment results display that the realized compensating circuit in a space optical camera is capable of improving the MTF of an optical remote sensing imaging system 30% higher than that of no compensation. This quantized principle can efficiently instruct the MTF compensating circuit design in practice.

  4. Relation between noise and resolution in integrated optical refractometric sensing

    NARCIS (Netherlands)

    Hoekstra, H.J.W.M.; Lambeck, P.V.; Uranus, H.P.; Koster, T.M.

    2008-01-01

    The paper presents a general theory for integrated optical (IO) sensing devices of the refractometric type, which relates noise and device parameters to the resolution of the measurand induced modal index changes. The theory is applied for length optimization of a number of integrated optical sensin

  5. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance... number of techniques have been suggested for restoration 37 of degraded images like inverse filter, wiener filter and constrained least square filter etc. The primary objective of scene analysis is to deduce from a single two dimensional image...

  6. Performance Monitoring Techniques Supporting Cognitive Optical Networking

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Borkowski, Robert; Zibar, Darko

    2013-01-01

    to solve this issue by realizing a network that can observe, act, learn and optimize its performance, taking into account end-to-end goals. In this letter we present the approach of cognition applied to heterogeneous optical networks developed in the framework of the EU project CHRON: Cognitive...... Heterogeneous Reconfigurable Optical Network. We focus on the approaches developed in the project for optical performance monitoring, which enable the feedback from the physical layer to the cognitive decision system by providing accurate description of the performance of the established lightpaths.......High degree of heterogeneity of future optical networks, such as services with different quality-of-transmission requirements, modulation formats and switching techniques, will pose a challenge for the control and optimization of different parameters. Incorporation of cognitive techniques can help...

  7. Optical polarimetry for noninvasive glucose sensing enabled by Sagnac interferometry.

    Science.gov (United States)

    Winkler, Amy M; Bonnema, Garret T; Barton, Jennifer K

    2011-06-10

    Optical polarimetry is used in pharmaceutical drug testing and quality control for saccharide-containing products (juice, honey). More recently, it has been proposed as a method for noninvasive glucose sensing for diabetic patients. Sagnac interferometry is commonly used in optical gyroscopes, measuring minute Doppler shifts resulting from mechanical rotation. In this work, we demonstrate that Sagnac interferometers are also sensitive to optical rotation, or the rotation of linearly polarized light, and are therefore useful in optical polarimetry. Results from simulation and experiment show that Sagnac interferometers are advantageous in optical polarimetry as they are insensitive to net linear birefringence and alignment of polarization components.

  8. Optical measurement techniques - A push for digitization

    Science.gov (United States)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2016-12-01

    Over the years, optical measurement techniques have been the problem-solving backbone of many engineering applications such as nondestructive testing of materials, measurement of various material properties, structural analysis and experimental mechanics [1-3]. Probably the most important advantage associated with any optical measurement system over other systems is its non-contact type of measurement capability. Apart from their non-contact nature, the optical measurement systems are capable of providing full-field measurements at scales ranging from milli-meters to nano-meters.

  9. Optical carrier-based microwave interferometers for sensing application

    Science.gov (United States)

    Huang, Jie; Lan, Xinwei; Wang, Hanzheng; Yuan, Lei; Xiao, Hai

    2014-06-01

    Optical fiber interferometers (OFIs) have been extensively utilized for precise measurements of various physical/chemical quantities (e.g., temperature, strain, pressure, rotation, refractive index, etc.). However, the random change of polarization states along the optical fibers and the strong dependence on the materials and geometries of the optical waveguides are problematic for acquiring high quality interference signal. Meanwhile, difficulty in multiplexing has always been a bottleneck on the application scopes of OFIs. Here, we present a sensing concept of optical carrier based microwave interferometry (OCMI) by reading optical interferometric sensors in microwave domain. It combines the advantages from both optics and microwave. The low oscillation frequency of the microwave can hardly distinguish the optical differences from both modal and polarization dispersion making it insensitive to the optical waveguides/materials. The phase information of the microwave can be unambiguitly resolved so that it has potential in fully distributed sensing. The OCMI concept has been implemented in different types of interferometers (i.e., Michelson, Mach-Zehnder, Fabry-Perot) among different optical waveguides (i.e., singlemode, multimode, and sapphire fibers) with excellent signal-to-noise ratio (SNR) and low polarization dependence. A spatially continuous distributed strain sensing has been demonstrated.

  10. Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    Science.gov (United States)

    Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance

    2015-01-01

    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.

  11. Distributed Long-Gauge Optical Fiber Sensors Based Self-Sensing FRP Bar for Concrete Structure.

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen

    2016-02-25

    Brillouin scattering-based distributed optical fiber (OF) sensing technique presents advantages for concrete structure monitoring. However, the existence of spatial resolution greatly decreases strain measurement accuracy especially around cracks. Meanwhile, the brittle feature of OF also hinders its further application. In this paper, the distributed OF sensor was firstly proposed as long-gauge sensor to improve strain measurement accuracy. Then, a new type of self-sensing fiber reinforced polymer (FRP) bar was developed by embedding the packaged long-gauge OF sensors into FRP bar, followed by experimental studies on strain sensing, temperature sensing and basic mechanical properties. The results confirmed the superior strain sensing properties, namely satisfied accuracy, repeatability and linearity, as well as excellent mechanical performance. At the same time, the temperature sensing property was not influenced by the long-gauge package, making temperature compensation easy. Furthermore, the bonding performance between self-sensing FRP bar and concrete was investigated to study its influence on the sensing. Lastly, the sensing performance was further verified with static experiments of concrete beam reinforced with the proposed self-sensing FRP bar. Therefore, the self-sensing FRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as reinforcing materials for concrete structures.

  12. The Delphi Technique: Making Sense of Consensus

    Directory of Open Access Journals (Sweden)

    Chia-Chien Hsu

    2007-08-01

    Full Text Available The Delphi technique is a widely used and accepted method for gathering data from respondents within their domain of expertise. The technique is designed as a group communication process which aims to achieve a convergence of opinion on a specific real-world issue. The Delphi process has been used in various fields of study such as program planning, needs assessment, policy determination, and resource utilization to develop a full range of alternatives, explore or expose underlying assumptions, as well as correlate judgments on a topic spanning a wide range of disciplines. The Delphi technique is well suited as a method for consensus-building by using a series of questionnaires delivered using multiple iterations to collect data from a panel of selected subjects. Subject selection, time frames for conducting and completing a study, the possibility of low response rates, and unintentionally guiding feedback from the respondent group are areas which should be considered when designing and implementing a Delphi study.

  13. Optical time-domain reflectometer based multiplexed sensing scheme for environmental sensing

    Science.gov (United States)

    Carvalho, J. P.; Gouveia, C.; Santos, J. L.; Jorge, P. A. S.; Baptista, J. M.

    2012-04-01

    In our study, remote environmental sensing is presented using a standard optical time domain reflectometer (OTDR). The measurement of environmental parameters using optical sensors is an expanding area of research with growing importance. Fiber optic sensors are an interesting solution for that due to their high sensitivity, small size, and capability for on-site, real-time, remote, and distributed sensing capabilities. Our multiplexing sensing scheme approach uses transmissive filters (long period gratings - LPGs) interrogated by the OTDR return pulses. The loss induced at the resonance wavelengths varies with changes in the environment refractive index, temperature or other physical parameters. Experimental results show that the insertion of an erbium amplifier improves the measurement resolution in certain situations. Further analysis show that a remote multiplexed sensing scheme allows us to perform simple and low cost real time measurement of refractive index and temperature over long distances.

  14. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  15. Non-iterative adaptive optical microscopy using wavefront sensing

    Science.gov (United States)

    Tao, X.; Azucena, O.; Kubby, J.

    2016-03-01

    This paper will review the development of wide-field and confocal microscopes with wavefront sensing and adaptive optics for correcting refractive aberrations and compensating scattering when imaging through thick tissues (Drosophila embryos and mouse brain tissue). To make wavefront measurements in biological specimens we have modified the laser guide-star techniques used in astronomy for measuring wavefront aberrations that occur as star light passes through Earth's turbulent atmosphere. Here sodium atoms in Earth's mesosphere, at an altitude of 95 km, are excited to fluoresce at resonance by a high-power sodium laser. The fluorescent light creates a guide-star reference beacon at the top of the atmosphere that can be used for measuring wavefront aberrations that occur as the light passes through the atmosphere. We have developed a related approach for making wavefront measurements in biological specimens using cellular structures labeled with fluorescent proteins as laser guide-stars. An example is a fluorescently labeled centrosome in a fruit fly embryo or neurons and dendrites in mouse brains. Using adaptive optical microscopy we show that the Strehl ratio, the ratio of the peak intensity of an aberrated point source relative to the diffraction limited image, can be improved by an order of magnitude when imaging deeply into live dynamic specimens, enabling near diffraction limited deep tissue imaging.

  16. Examination of charge transfer in Au/YSZ for high-temperature optical gas sensing

    Energy Technology Data Exchange (ETDEWEB)

    Baltrus, John P. [U.S. DOE; Ohodnicki, Paul R. [U.S. DOE

    2014-01-01

    Au-nanoparticle incorporated oxide thin film materials demonstrate significant promise as functionalsensor materials for high temperature optical gas sensing in severe environments relevant for fossil andnuclear based power generation. The Au/yttria-stabilized zirconia (YSZ) system has been extensivelystudied in the literature and serves as a model system for fundamental investigations that seek to betterunderstand the mechanistic origin of the plasmonic gas sensing response. In this work, X-ray photoelec-tron spectroscopy techniques are applied to Au/YSZ films in an attempt to provide further experimentalevidence for a proposed sensing mechanism involving a change in free carrier density of Au nanoparticles due to charge transfer.

  17. Optical Sensing and Trapping Based on Localized Surface Plasmons

    Science.gov (United States)

    Kang, Zhiwen

    This project involves the study of novel plasmonic nanodevices that provide unique functionality in optical sensing, surface-enhanced Raman scattering (SERS), and optical trapping. The first design is based on a coupling system involving double-layered metal nano-strips arrays. This system has the advantages of simple geometry and direct integration with microfluidic chips. The intense optical localization due to field coupling within the system can enhance detection sensitivity of target molecules, especially by virtue of the optical trapping of plasmonic nanoparticles. The optical resonant condition is obtained theoretically through analyzing the SPs modes. Numerical modeling based on two-dimensional (2D) finite-difference time-domain (FDTD) is consistent with the theoretical analysis and demonstrates the feasibility of using this system for optical sensing and trapping. In the second design, a gold nano-ring structure is demonstrated to be an effective approach for plasmonic nano-optical tweezers (PNOTs) for trapping metallic nanoparticles. In our demonstration example, we have optimized a device for SERS operation at the wavelength of 785 nm. Three-dimensional (3D) FDTD techniques have been employed to calculate the optical response, and the optical force distribution have been derived using the Maxwell stress tensor (MST) method. Simulation results indicate that the nano-ring produces a maximum trapping potential well of ~32 kBT on a 20 nm gold nanoparticle. The existence of multiple potential well results in a very large active trapping volume of ~106 nm3 for the target particles. Furthermore, the trapped gold nanoparticles further lead to the formation of nano-gaps that offer a near-field enhancement of ~160 times, resulting in an achievable EF of 108 for SERS. In the third design, we propose a concept of all-optical nano-manipulation. We show that target molecules, after being trapped, can be transferred between the trapping sites within a linear array of

  18. Combining calcium imaging with other optical techniques.

    Science.gov (United States)

    Canepari, Marco; Zecevic, Dejan; Vogt, Kaspar E; Ogden, David; De Waard, Michel

    2013-12-01

    Ca(2+) imaging is a commonly used approach for measuring Ca(2+) signals at high spatial resolution. The method is often combined with electrode recordings to correlate electrical and chemical signals or to investigate Ca(2+) signals following an electrical stimulation. To obtain information on electrical activity at the same spatial resolution, Ca(2+) imaging must be combined with membrane potential imaging. Similarly, stimulation of subcellular compartments requires photostimulation. Thus, combining Ca(2+) imaging with an additional optical technique facilitates the study of a number of physiological questions. The aim of this article is to introduce some basic principles regarding the combination of Ca(2+) imaging with other optical techniques. We discuss the design of the optics, the design of experimental protocols, the optical characteristics of Ca(2+) indicators used in combination with an optical probe, and the affinity of the Ca(2+) indicator in relation to the type of measurement. This information will enable the reader to devise an optimal strategy for combined optical experiments.

  19. Dental diagnostics using optical coherence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Nathel, H. [Lawrence Livermore National Lab., CA (United States); Colston, B. [Univ. of California, San Francisco, CA (United States); Armitage, G. [Univ. of California, Davis, CA (United States)] [and others

    1994-11-15

    Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.

  20. Electro-optical techniques for signal conditioning

    Science.gov (United States)

    Helfrich, R. W.

    1981-01-01

    Electro-optical (EO) processing is discussed as a potential alternative to the all-digital approach to signal processing. Nonuniformity compensation can be done by normalizing all the single element detectors outputs in a staring array for both gain and level. Distortion correction can be accomplished with blackbodies, scene statistics or defocused optics. An algorithm used in digital signal conditioning that can be closely approximated by EO techniques is Local Area Brightness Control (LABC). In a digital processor, LABC is performed on a pixel-by-pixel basis, resulting in an enormous amount of calculation. A partially defocused optical system can be used in an EO analog to the digital system. For both nonuniformity compensation and LABC, the EO technique can result in great simplification.

  1. Optical Management Techniques for Organic Solar Cells

    CERN Document Server

    Rajagopal, Adharsh

    2016-01-01

    In this thesis, two different optical management techniques for organics based solar cells are explored. The first part is focused on the development of a textured rear reflector for OPVs. The use of textured reflector (TR) facilitates an increase in the optical path length along with light trapping within the active layer. TR was fabricated through a relatively simpler technique by depositing metal films over a microlens array (MLA). Zinc oxide nanoparticles were used to minimize the shadowing effect. Using TR, enhancements in short-circuit current density and power conversion efficiencies up to 10-25% were demonstrated for a polymer based organic solar cell. The second part is focused on improving the effectiveness of MLA incorporation in OPVs. The increase in path length achieved using MLA can be improved by increasing the refractive index of MLA and incorporating MLA directly on the transparent electrode instead of glass substrate. This approach could avoid the optical losses occurring at the interface be...

  2. Perspective of remote optical measurement techniques

    OpenAIRE

    Gregorio, Eduard; Rocadenbosch Burillo, Francisco

    2007-01-01

    This article presents an intercomparison between four different ROMTs: differential optical absorption spectroscopy (DOAS), differential absorption LIDAR (DIAL), Fourier transform infrared spectroscopy (FTIR), and tunable diode laser absorption spectroscopy (TDLAS). The main focus is on the TDLAS technique, where the main laser-diode typologies and modulation schemes, namely, wavelength modulation spectroscopy (WMS) and frequency modulation spectroscopy (FMS), are reviewed. At present, new pr...

  3. Monolayer-functionalized microfluidics devices for optical sensing of acidity

    NARCIS (Netherlands)

    Mela, P.; Onclin, S.; Goedbloed, M.H.; Levi, S.; Garcia-Parajo, M.F.; Hulst, van N.F.; Ravoo, B.J.; Reinhoudt, D.N.; Berg, van den A.

    2005-01-01

    This paper describes the integration of opto-chemosensors in microfluidics networks. Our technique exploits the internal surface of the network as a platform to build a sensing system by coating the surface with a self-assembled monolayer and subsequently binding a fluorescent sensing molecule to th

  4. Scanning Techniques For Optical Data Storage

    Science.gov (United States)

    Towner, David K.

    1987-01-01

    It seems almost paradoxical that beams of light can be moved and steered at very high speeds using a variety of scanning methods, yet the optical disk drives now being designed and marketed for data storage applications have comparatively long access times. Knowing that optical data storage has unrealized potential is of interest, but of more immediate concern is the recognition that poor access performance is a serious design issue. Magnetic disk drives offer average seek times in the 15-25ms range, compared to about 80-500ms (or more, for CD ROMS) for current optical drives. This performance disparity exists, in part, because the relatively massive "optical heads" in use today cannot be transported across the radius of a disk as quickly as a stack of much lighter magnetic heads. Any potential distance advantage that the optical drive might have, due to its substantially higher track density, is offset by the magnetic drive's use of a multi-disk stack. As a result, the drive must achieve similar radial accelerations during seeks if it is to have similar average access times. The inability of current optical drives to approach the access speeds of comparable magnetic drives significantly reduces the competitiveness of optical products in major segments of the very large data storage market. This shortcoming is especially disturbing when we know that opto-mechanical scanners typically operate in the 1-10ms range and that non-mechanical scanning techniques can be substantially faster than that.

  5. New optical technique for bulk magnetostriction measurement

    CERN Document Server

    Samata, H; Uchida, T; Abe, S

    2000-01-01

    A new optical technique was applied to the measurement of magnetostriction in bulk samples. This technique utilizes an optical fiber bundle, AC-modulated light and lock-in detection. Deformation of the sample is determined from the ratio of the incident and reflected light intensities. Noise due to the instability of the light source is eliminated by obtaining the ratio of the incident and reflected light intensities, and the noise caused in the detector circuit can be reduced by lock-in detection. The performance of this method was characterized with a series of measurements using a gold film and crystal disks of pure iron and nickel. This technique offers a resolution of 0.5 nm and is sensitive enough to measure magnetostriction as small as 5x10 sup - sup 7 in 1 mm thick samples.

  6. Macrobend optical sensing for pose measurement in soft robot arms

    Science.gov (United States)

    Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar

    2015-12-01

    This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic

  7. Millimeter-wave/THz FMCW radar techniques for sensing applications

    Science.gov (United States)

    Mirando, D. Amal; Higgins, Michael D.; Wang, Fenggui; Petkie, Douglas T.

    2016-10-01

    Millimeter-wave and terahertz continuous-wave radar systems have been used to measure physiological signatures for biometric applications and for a variety of non-destructive evaluation applications, such as the detection of defects in materials. Sensing strategies for the simplest homodyne systems, such as a Michelson Interferometer, can be enhanced by using Frequency Modulated Continuous Wave (FMCW) techniques. This allows multiple objects or surfaces to be range resolved while monitoring the phase of the signal in a particular range bin. We will discuss the latest developments in several studies aimed at demonstrating how FMCW techniques can enhance mmW/THz sensing applications.

  8. Extruded single ring hollow core optical fibers for Raman sensing

    Science.gov (United States)

    Tsiminis, G.; Rowland, K. J.; Ebendorff-Heidepriem, H.; Spooner, N. A.; Monro, T. M.

    2014-05-01

    In this work we report the fabrication of the first extruded hollow core optical fiber with a single ring of cladding holes. A lead-silicate glass billet is used to produce a preform through glass extrusion to create a larger-scale version of the final structure that is subsequently drawn to an optical fiber. The simple single suspended ring structure allows antiresonance reflection guiding. The resulting fibers were used to perform Raman sensing of liquid samples filling the length of the fiber, demonstrating its potential for fiber sensing applications.

  9. Nanocomposite thin films for optical gas sensing

    Science.gov (United States)

    Ohodnicki, Paul R; Brown, Thomas D

    2014-06-03

    The disclosure relates to a plasmon resonance-based method for gas sensing in a gas stream utilizing a gas sensing material. In an embodiment the gas stream has a temperature greater than about 500.degree. C. The gas sensing material is comprised of gold nanoparticles having an average nanoparticle diameter of less than about 100 nanometers dispersed in an inert matrix having a bandgap greater than or equal to 5 eV, and an oxygen ion conductivity less than approximately 10.sup.-7 S/cm at a temperature of 700.degree. C. Exemplary inert matrix materials include SiO.sub.2, Al.sub.2O.sub.3, and Si.sub.3N.sub.4 as well as modifications to modify the effective refractive indices through combinations and/or doping of such materials. Changes in the chemical composition of the gas stream are detected by changes in the plasmon resonance peak. The method disclosed offers significant advantage over active and reducible matrix materials typically utilized, such as yttria-stabilized zirconia (YSZ) or TiO.sub.2.

  10. Dynamic response of tapered optical multimode fiber coated with carbon nanotubes for ethanol sensing application.

    Science.gov (United States)

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-05-04

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.

  11. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    Directory of Open Access Journals (Sweden)

    Arafat Shabaneh

    2015-05-01

    Full Text Available Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%, the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s towards ethanol.

  12. Compressive sensing holography based on optical heterodyne detection

    Science.gov (United States)

    Hu, Youjun; Zhou, Dingfu; Yuan, Sheng; Wei, Yayun; Wang, Mengting; Zhou, Xin

    2016-12-01

    In this paper, compressive sensing holography based on optical heterodyne detection is presented, which can photograph the hologram of an object. The complex hologram is composed of a sine-hologram and a cosine-hologram. A single pixel photoelectric conversion element is used to detect the time-varying optical field which contains the amplitude and phase information of the transmitted light, and a simulation result is demonstrated further by recording the Fresnel hologram of a complex amplitude object.

  13. Application of Sensing Techniques to Cellular Force Measurement

    Directory of Open Access Journals (Sweden)

    James H.-C. Wang

    2010-11-01

    Full Text Available Cell traction forces (CTFs are the forces produced by cells and exerted on extracellular matrix or an underlying substrate. CTFs function to maintain cell shape, enable cell migration, and generate and detect mechanical signals. As such, they play a vital role in many fundamental biological processes, including angiogenesis, inflammation, and wound healing. Therefore, a close examination of CTFs can enable better understanding of the cellular and molecular mechanisms of such processes. To this end, various force-sensing techniques for CTF measurement have been developed over the years. This article will provide a concise review of these sensing techniques and comment on the needs for improved force-sensing technologies for cell mechanics and biology research.

  14. Optical and digital techniques for information security

    CERN Document Server

    2005-01-01

    Optical and Digital Techniques for Information Security is the first book in a series focusing on Advanced Sciences and Technologies for Security Applications. This book encompases the results of research investigation and technologies used to secure, verify, recognize, track, and authenticate objects and information from theft, counterfeiting, and manipulation by unauthorized persons and agencies. This Information Security book will draw on the diverse expertise in optical sciences and engineering, digital image processing, imaging systems, information processing, computer based information systems, sensors, detectors, and biometrics to report innovative technologies that can be applied to information security issues. The Advanced Sciences and Technologies for Security Applications series focuses on research monographs in the areas of: -Recognition and identification (including optical imaging, biometrics, authentication, verification, and smart surveillance systems) -Biological and chemical threat detection...

  15. Hyperspectral remote sensing techniques for early detection of plant diseases

    Science.gov (United States)

    Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications in Earth observation. Nowadays spectral remote sensing techniques allow presymptomatic monitoring of changes in the physiological state of plants with high spectral resolution. Hyperspectral leaf reflectance and chlorophyll fluorescence proved to be highly suitable for identification of growth anomalies of cultural plants that result from the environmental changes and different stress factors. Hyperspectral technologies can find place in many scientific areas, as well as for monitoring of plants status and functioning to help in making timely management decisions. This research aimed to detect a presence of viral infection in young pepper plants (Capsicum annuum L.) caused by Cucumber Mosaic Virus (CMV) by using hyperspectral reflectance and fluorescence data and to assess the effect of some growth regulators on the development of the disease. In Bulgaria CMV is one of the widest spread pathogens, causing the biggest economical losses in crop vegetable production. Leaf spectral reflectance and fluorescence data were collected by a portable fibre-optics spectrometer in the spectral ranges 450÷850 nm and 600-900 nm. Greenhouse experiment with pepper plants of two cultivars, Sivria (sensitive to CMV) and Ostrion (resistant to CMV) were used. The plants were divided into six groups. The first group consisted of healthy (control) plants. At growth stage 4-6 expanded leaf, the second group was inoculated with CMV. The other four groups were treated with growth regulators: Spermine, MEIA (beta-monomethyl ester of itaconic acid), ВТН (benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester) and Phytoxin. On the next day, the pepper plants of these four groups were inoculated with CMV. The viral concentrations in the plants were determined by the serological method DAS-ELISA. Statistical, first derivative and cluster analysis were applied and several vegetation indices were

  16. Natural resource inventory for urban planning utilizing remote sensing techniques

    Science.gov (United States)

    Foster, K. E.; Mackey, P. F.; Bonham, C. D.

    1972-01-01

    Remote sensing techniques were applied to the lower Pantano Wash area to acquire data for planning an ecological balance between the expanding Tucson metropolitan area and its environment. The types and distribution of vegetation are discussed along with the hydrologic aspects of the Wash.

  17. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    Energy Technology Data Exchange (ETDEWEB)

    Asher, R.B.; Cameron, S.M.; Loubriel, G.M.; Robinett, R.D.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-25

    In many situations, stand-off remote-sensing and hazard-interdiction techniques over realistic operational areas are often impractical "and difficult to characterize. An alternative approach is to implement an adap- tively deployable array of sensitive agent-specific devices. Our group has been studying the collective be- havior of an autonomous, multi-agent system applied to chedbio detection and related emerging threat applications, The current physics-based models we are using coordinate a sensor array for mukivanate sig- nal optimization and coverage as re,alized by a swarm of robots or mobile vehicles. These intelligent control systems integrate'glob"ally operating decision-making systems and locally cooperative learning neural net- works to enhance re+-timp operational responses to dynarnical environments examples of which include obstacle avoidance, res~onding to prevailing wind patterns, and overcoming other natural obscurants or in- terferences. Collectively',tkensor nefirons with simple properties, interacting according to basic community rules, can accomplish complex interconnecting functions such as generalization, error correction, pattern recognition, sensor fusion, and localization. Neural nets provide a greater degree of robusmess and fault tolerance than conventional systems in that minor variations or imperfections do not impair performance. The robotic platforms would be equipped with sensor devices that perform opticaI detection of biologicais in combination with multivariate chemical analysis tools based on genetic and neural network algorithms, laser-diode LIDAR analysis, ultra-wideband short-pulsed transmitting and receiving antennas, thermal im- a:ing sensors, and optical Communication technology providing robust data throughput pathways. Mission scenarios under consideration include ground penetrating radar (GPR) for detection of underground struc- tures, airborne systems, and plume migration and mitigation. We will describe our

  18. RF switching network: a novel technique for IR sensing

    Science.gov (United States)

    Mechtel, Deborah M.; Jenkins, R. Brian; Joyce, Peter J.; Nelson, Charles L.

    2016-05-01

    Rapid sensing of near infrared (IR) energy on a composite structure would provide information that could mitigate damage to composite structures. This paper describes a novel technique that implements photoconductive sensors in a radio frequency (RF) switching network designed to locate in real time the position and intensity of IR radiation incident on a composite structure. In the implementation described here, photoconductive sensors act as rapid response switches in a two layer RF network embedded in an FR-4 laminate. To detect radiation, phosphorous doped silicon photoconductive sensors are inserted in GHz range RF transmission lines. Photoconductive sensors use semiconductor materials that are optically sensitive at material dependent wavelengths. Incident radiation at the appropriate wavelength produces hole-electron pairs, so that the semiconductor becomes a conductor. By permitting signal propagation only when a sensor is illuminated, the RF signals are selectively routed from the lower layer transmission lines to the upper layer lines, thereby pinpointing the location and strength of incident radiation on a structure. Simulations based on a high frequency 3D planar electromagnetics model are presented and compared to experimental results. Experimental results are described for GHz range RF signal control for 300 mW and 180 mW incident energy from 975 nm and 1060 nm wavelength lasers respectively, where upon illumination, RF transmission line signal output power doubled when compared to non-illuminated results. Experimental results are reported for 100 W incident energy from a 1060 nm laser. Test results illustrate that real-time signal processing would permit a structure or vehicle to be controlled in response to incident radiation

  19. Surface Wear Measurement Using Optical Correlation Technique

    Science.gov (United States)

    Acinger, Kresimir

    1983-12-01

    The coherent optical correlation technique was applied for measuring the surface wear of a tappet (part of car engine), worn by friction with the camshaft. It was found that maximum correlation intensity decays exponentially with the number of wear cycles (i.e. camshaft revolutions). Tappets of the same make have an identical rate of correlation decay. Tappets of different makes have different rates of correlation decay which are in agreement with observed long term wear.

  20. Computational Techniques for LED Optical Microcavities

    OpenAIRE

    García Santiago, Xavier

    2015-01-01

    The project consist on the development of numerical methods and computational techniques to model the processes of light extraction in power LED (Light-Emitting Diodes) devices. We aim at the use of complex corrugated microstructures to boost the efficiency of our current LUXEON LED products. In order to study extraction efficiency in these devices a 3D optics model of thin film micro-structures must be developed and tested. In this project we develop a numerical model for computing and st...

  1. Measurement and Mapping of Riverine Environments by Optical Remote Sensing

    Science.gov (United States)

    2011-09-30

    we also 4 conduted a high-resolution, intensive survey of a meander bend that we have monitired each year since 2005 and is now in the midst of a...optical and thermal remote sensing as part of their Riverine Dynamics Experiment 4. Beginning tomorrow (9-30-2011), we will be working with Arete at

  2. Experiment Study of Fiber Optic Sensing in Railway Security Monitoring

    Institute of Scientific and Technical Information of China (English)

    Dian Fan; De-Sheng Jiang; Wei-Lai Li

    2008-01-01

    Aiming at some security problems in railway running and the application condition of existing technology, this paper studies some issues of using fiber optic sensing technology in railway security monitoring. Through field experiment measuring the strain of the rail and analyzing the experiment data, the method of diagnosing the health condition of rail and wheel is investigated.

  3. Sensing characteristics of birefringent microstructured polymer optical fiber

    DEFF Research Database (Denmark)

    Szczurowski, Marcin K.; Frazao, Orlando; Baptista, J. M.;

    2011-01-01

    We experimentally studied several sensing characteristics of a birefringent microstructured polymer optical fiber. The fiber exhibits a birefringence of the order 2×10-5 at 1.3 μm because of two small holes adjacent to the core. In this fiber, we measured spectral dependence of phase and group mo...

  4. Fiber optic shape sensing for monitoring of flexible structures

    Science.gov (United States)

    Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.

    2012-04-01

    Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows

  5. Sensing characteristics of birefringent microstructured polymer optical fiber

    DEFF Research Database (Denmark)

    Szczurowski, Marcin K.; Frazao, Orlando; Baptista, J. M.

    2011-01-01

    We experimentally studied several sensing characteristics of a birefringent microstructured polymer optical fiber. The fiber exhibits a birefringence of the order 2×10-5 at 1.3 μm because of two small holes adjacent to the core. In this fiber, we measured spectral dependence of phase and group mo...

  6. Exploring Techniques for Improving Retrievals of Bio-optical Properties of Coastal Waters

    Science.gov (United States)

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Exploring Techniques for Improving Retrievals of Bio ...Exploring Techniques for Improving Retrievals of Bio -optical Properties of Coastal Waters 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...retrieval of bio -optical properties, benefits from the leveraging of funding by NOAA CREST in which remote sensing of coastal waters is an important

  7. Classically entangled optical beams for high-speed kinematic sensing

    CERN Document Server

    Berg-Johansen, Stefan; Stiller, Birgit; Banzer, Peter; Ornigotti, Marco; Giacobino, Elisabeth; Leuchs, Gerd; Aiello, Andrea; Marquardt, Christoph

    2015-01-01

    Tracking the kinematics of fast-moving objects is an important diagnostic tool for science and engineering. Existing optical methods include high-speed CCD/CMOS imaging, streak cameras, lidar, serial time-encoded imaging and sequentially timed all-optical mapping. Here, we demonstrate an entirely new approach to positional and directional sensing based on the concept of classical entanglement in vector beams of light. The measurement principle relies on the intrinsic correlations existing in such beams between transverse spatial modes and polarization. The latter can be determined from intensity measurements with only a few fast photodiodes, greatly outperforming the bandwidth of current CCD/CMOS devices. In this way, our setup enables two-dimensional real-time sensing with temporal resolution in the GHz range. We expect the concept to open up new directions in photonics-based metrology and sensing.

  8. Optical nanoprobes based on gold nanoparticles for sugar sensing.

    Science.gov (United States)

    Scampicchio, Matteo; Arecchi, Alessandra; Mannino, Saverio

    2009-04-01

    A novel optical nanoprobe for sugar sensing is reported. The assay used an electrospun polyamide mesh containing Au salts. The reaction of carbohydrates with these Au salts in alkaline media generates gold nanoparticles (AuNPs) at room temperature without the need for Au seeds. The optical properties of the resulting AuNPs relate to the total reducing sugar content of the samples analysed. The development of such inexpensive disposable optical nanoprobes could find applications in a host of industrial, biomedical and clinical fields.

  9. Spider silk: a novel optical fibre for biochemical sensing

    Science.gov (United States)

    Hey Tow, Kenny; Chow, Desmond M.; Vollrath, Fritz; Dicaire, Isabelle; Gheysens, Tom; Thévenaz, Luc

    2015-09-01

    Whilst being thoroughly used in the textile industry and biomedical sector, silk has not yet been exploited for fibre optics-based sensing although silk fibres directly obtained from spiders can guide light and have shown early promises to being sensitive to some solvents. In this communication, a pioneering optical fibre sensor based on spider silk is reported, demonstrating for the first time the use of spider silk as an optical fibre sensor to detect polar solvents such as water, ammonia and acetic acid.

  10. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  11. Low Cost Optical Sensing Device for Fuel Detection in Ships

    Directory of Open Access Journals (Sweden)

    P. Papadopoulou

    2016-05-01

    Full Text Available In the present work the development of a new, very low cost, simple to manufacture and use, optical sensing device for remote, on line detection of the type of fuels used in ships, is presented. The main goal of this optical sensing device is the on line detection of the fuel optical absorption that is used by the ship. The basic operating principle of the proposed sensor is based on different absorption in the range of visible spectrum between bunker diesel and fuel oil. Experimental measurements, using monochromatic laser light or white led light, have shown that the proposed sensor can distinguish very accurately the difference between the two types of oil, giving the advantage to detect the type of fuel.

  12. Monitoring of Thermal Protection Systems using Robust Self-Organizing Optical Fiber Sensing Networks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Objectives a) Development, evaluation and demonstration of a dynamically reconfigurable optical fiber sensing network that is interrogated using the optical...

  13. Novel technique for distributed fibre sensing based on coherent Rayleigh scattering measurements of birefringence

    Science.gov (United States)

    Lu, Xin; Soto, Marcelo A.; Thévenaz, Luc

    2016-05-01

    A novel distributed fibre sensing technique is described and experimentally validated, based on birefringence measurements using coherent Rayleigh scattering. It natively provides distributed measurements of temperature and strain with more than an order of magnitude higher sensitivity than Brillouin sensing, and requiring access to a single fibre-end. Unlike the traditional Rayleigh-based coherent optical time-domain reflectometry, this new method provides absolute measurements of the measurand and may lead to a robust discrimination between temperature and strain in combination with another technique. Since birefringence is purposely induced in the fibre by design, large degrees of freedom are offered to optimize and scale the sensitivity to a given quantity. The technique has been validated in 2 radically different types of birefringent fibres - elliptical-core and Panda polarization-maintaining fibres - with a good repeatability.

  14. Target Detection: Remote Sensing Techniques for Defence Applications

    Directory of Open Access Journals (Sweden)

    B. B. Chaudhuri

    1995-10-01

    Full Text Available The tremendous development in remote sensing technology in the recent past has opened up new challenges in defence applications. On important area of such applications is in target detection. This paper describes both classical and newly developed approaches to detect the targets by using remotely-sensed digital images. The classical approach includes statistical classification methods and image processing techniques. The new approach deals with a relatively new sensor technology, namely, synthetic aperture radar (SAR systems and fast developing tools, like neural networks and multisource data integration for analysis and interpretation. With SAR images, it is possible to detect targets or features of a target that is otherwise not possible. Neural networks and multisource data integration tools also have a great potential in analysing and interpreting remote sensing data for target detection.

  15. Polishing techniques for MEGARA pupil elements optics

    Science.gov (United States)

    Izazaga, R.; Carrasco, E.; Aguirre, D.; Salas, A.; Gil de Paz, A.; Gallego, J.; Iglesias, J.; Arroyo, J. M.; Hernández, M.; López, N.; López, V.; Quechol, J. T.; Salazar, M. F.; Carballo, C.; Cruz, E.; Arriaga, J.; De la Luz, J. A.; Huepa, A.; Jaimes, G. L.; Reyes, J.

    2016-07-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral-field and multi-object optical spectrograph for the 10.4m Gran Telescopio Canarias.. It will offer RFWHM 6,000, 12,000 and 18,700 for the low- , mid- and high-resolution, respectively in the wavelength range 3650-9700Å. .The dispersive elements are volume phase holographic (VPH) gratings, sandwiched between two flat Fused Silica windows of high optical precision in large apertures. The design, based in VPHs in combination with Ohara PBM2Y prisms allows to keep the collimator and camera angle fixed. Seventy three optical elements are being built in Mexico at INAOE and CIO. For the low resolution modes, the VPHs windows specifications in irregularity is 1 fringe in 210mm x 170mm and 0.5 fringe in 190mm x 160mm. for a window thickness of 25 mm. For the medium and high resolution modes the irregularity specification is 2 fringes in 220mm x 180mm and 1 fringe in 205mm x 160mm, for a window thickness of 20mm. In this work we present a description of the polishing techniques developed at INAOE optical workshop to fabricate the 36 Fused Silica windows and 24 PBM2Y prisms that allows us to achieve such demanding specifications. We include the processes of mounting, cutting, blocking, polishing and testing.

  16. Automatic Image Registration Technique of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    M. Wahed

    2013-03-01

    Full Text Available Image registration is a crucial step in most image processing tasks for which the final result is achieved from a combination of various resources. Automatic registration of remote-sensing images is a difficult task as it must deal with the intensity changes and variation of scale, rotation and illumination of the images. This paper proposes image registration technique of multi-view, multi- temporal and multi-spectral remote sensing images. Firstly, a preprocessing step is performed by applying median filtering to enhance the images. Secondly, the Steerable Pyramid Transform is adopted to produce multi-resolution levels of reference and sensed images; then, the Scale Invariant Feature Transform (SIFT is utilized for extracting feature points that can deal with the large variations of scale, rotation and illumination between images .Thirdly, matching the features points by using the Euclidian distance ratio; then removing the false matching pairs using the RANdom SAmple Consensus (RANSAC algorithm. Finally, the mapping function is obtained by the affine transformation. Quantitative comparisons of our technique with the related techniques show a significant improvement in the presence of large scale, rotation changes, and the intensity changes. The effectiveness of the proposed technique is demonstrated by the experimental results.

  17. Terrain-aided localization using electro-optical sensing (TALEOS)

    Science.gov (United States)

    Collins, Peter R. C.; Stephens, Arthur S.; Greenway, Phil; Deaves, Rob H.; Priestley, M. D. J.; Bullen, Mark

    1997-06-01

    The next generation of weapons systems will benefit from an array of new technologies which, when integrated, will provide the capability of accurately selecting the correct target. For example, target image features can be extracted from high resolution satellite data and this information can be fused with feature positions obtained from a weapon's imaging sensor. This will allow automatic target recognition to be performed. Terrain aided localization using electro-optical sensing (TALEOS) is a robust method of enhancing the performance of an imaging system through the exploitation of other sources of information. The primary image processing technique used in TALEOS is model-matching. The objective of model-matching is to discover the 3D position and orientation of an object (the model) with respect to the sensor reference frame by performing a match with corresponding features. In TALEOS, the model is derived from remotely sensed data and contains information about potentially observable features which might be extracted from the image. Embedded in this extended model is information about specific targets, including their known or estimated position, and features which characterize them. The Sowerby Research Center terrain model facility was used to gather realistic imagery. The terrain model is a 300:1 scale model of a 25 square kilometer area of real terrain. An overhead gantry system carries a video camera over the model enabling a wide variety of flight scenarios to be simulated experimentally. By a combination of special paint schemes and video inversion, pictures of the terrain model can provide a realistic simulation of infrared imagery. An image database was simulated using an overhead view of the model as if seen from a 'satellite' or reconnaissance aircraft. This imagery was utilized to evaluate the performance of the TALEOS technique for comparison with theoretical results. TALEOS integrates the data from the image processing subsystem with data from

  18. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  19. Molecular biology techniques and applications for ocean sensing

    Science.gov (United States)

    Zehr, J. P.; Hewson, I.; Moisander, P.

    2009-05-01

    The study of marine microorganisms using molecular biological techniques is now widespread in the ocean sciences. These techniques target nucleic acids which record the evolutionary history of microbes, and encode for processes which are active in the ocean today. Molecular techniques can form the basis of remote instrumentation sensing technologies for marine microbial diversity and ecological function. Here we review some of the most commonly used molecular biological techniques. These techniques include the polymerase chain reaction (PCR) and reverse-transcriptase PCR, quantitative PCR, whole assemblage "fingerprinting" approaches (based on nucleic acid sequence or length heterogeneity), oligonucleotide microarrays, and high-throughput shotgun sequencing of whole genomes and gene transcripts, which can be used to answer biological, ecological, evolutionary and biogeochemical questions in the ocean sciences. Moreover, molecular biological approaches may be deployed on ocean sensor platforms and hold promise for tracking of organisms or processes of interest in near-real time.

  20. Molecular biology techniques and applications for ocean sensing

    Directory of Open Access Journals (Sweden)

    J. P. Zehr

    2009-05-01

    Full Text Available The study of marine microorganisms using molecular biological techniques is now widespread in the ocean sciences. These techniques target nucleic acids which record the evolutionary history of microbes, and encode for processes which are active in the ocean today. Molecular techniques can form the basis of remote instrumentation sensing technologies for marine microbial diversity and ecological function. Here we review some of the most commonly used molecular biological techniques. These techniques include the polymerase chain reaction (PCR and reverse-transcriptase PCR, quantitative PCR, whole assemblage "fingerprinting" approaches (based on nucleic acid sequence or length heterogeneity, oligonucleotide microarrays, and high-throughput shotgun sequencing of whole genomes and gene transcripts, which can be used to answer biological, ecological, evolutionary and biogeochemical questions in the ocean sciences. Moreover, molecular biological approaches may be deployed on ocean sensor platforms and hold promise for tracking of organisms or processes of interest in near-real time.

  1. Diffuse optical tomography based on time-resolved compressive sensing

    Science.gov (United States)

    Farina, A.; Betcke, M.; Di Sieno, L.; Bassi, A.; Ducros, N.; Pifferi, A.; Valentini, G.; Arridge, S.; D'Andrea, C.

    2017-02-01

    Diffuse Optical Tomography (DOT) can be described as a highly multidimensional problem generating a huge data set with long acquisition/computational times. Biological tissue behaves as a low pass filter in the spatial frequency domain, hence compressive sensing approaches, based on both patterned illumination and detection, are useful to reduce the data set while preserving the information content. In this work, a multiple-view time-domain compressed sensing DOT system is presented and experimentally validated on non-planar tissue-mimicking phantoms containing absorbing inclusions.

  2. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing

    CERN Document Server

    Vallerga, John; Tremsina, Anton; Siegmund, Oswald; Mikulec, Bettina; Clark, Allan G; CERN. Geneva

    2005-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation adaptive optics (AO) wavefront sensors. The detector consists of a proximity focused microchannel plate (MCP) read out by multi-pixel application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2") with individual pixels that amplify, discriminate and count input events. The detector has 256 x 256 pixels, zero readout noise (photon counting), can be read out at 1 kHz frame rates and is abutable on 3 sides. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 ns. When used in a Shack-Hartmann style wavefront sensor, a detector with 4 Medipix chips should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest.

  3. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  4. Data acquisition and preprocessing techniques for remote sensing field research

    Science.gov (United States)

    Biehl, L. L.; Robinson, B. F.

    1983-01-01

    A crops and soils data base has been developed at Purdue University's Laboratory for Applications of Remote Sensing using spectral and agronomic measurements made by several government and university researchers. The data are being used to (1) quantitatively determine the relationships of spectral and agronomic characteristics of crops and soils, (2) define future sensor systems, and (3) develop advanced data analysis techniques. Researchers follow defined data acquisition and preprocessing techniques to provide fully annotated and calibrated sets of spectral, agronomic, and meteorological data. These procedures enable the researcher to combine his data with that acquired by other researchers for remote sensing research. The key elements or requirements for developing a field research data base of spectral data that can be transported across sites and years are appropriate experiment design, accurate spectral data calibration, defined field procedures, and through experiment documentation.

  5. Femtosecond laser induced refractive index structures in polymer optical fibre (POF) for sensing

    Science.gov (United States)

    Liang, S. J.; Scully, P. J.; Schille, J.; Vaughan, J.; Perrie, W.

    2009-10-01

    Techniques to directly write localised refractive index structures in polymer optical fibres (POF) are presented, using UV (400nm) ultrafast laser with pulse lengths of 100 fs to create in-fibre gratings for sensing. No doping is necessary for photosensitisation so commercially available POF is used. An in-fibre grating consisting of a 1.8 μm wide refractive index structure with a periodicity of 189 nm was demonstrated in single mode polymer fibre with optimised laser processing parameters.

  6. Improved FTIR open-path remote sensing data reduction technique

    Science.gov (United States)

    Phillips, Bill; Moyers, Rick; Lay, Lori T.

    1995-05-01

    Progress on the developement of a nonlinear curve fitting computer algorithm for data reduction of optical remote sensing Fourier transform spectrometer (FTS) data is presented. This new algorithm is an adaptation of an existing algorithm employed at the Arnold Engineering Development Center for the analysis of infrared plume signature and optical gas diagnostic data on rocket and turbine engine exhaust. Because it is a nonlinear model, the algorithm can be used to determine parameters not readily determined by linear methods such as classical least squares. Unlike linear methods this procedure can simultaneously determine atmospheric gas concetrations, spectral resolution, spectral shift, and the background or (Io(omega) spectrum. Additionally, species which possess spectra that are strongly masked by atmospheric absorption features such as BTX can also be incorporated into the procedure. The basic theory behind the algorithm is presented as well as test results on FTS data and synthetic data containing benzene and toluene spectral features.

  7. Optical Properties of Volcanic Ash: Improving Remote Sensing Observations

    Science.gov (United States)

    Whelley, P.; Colarco, P. R.; Aquila, V.; Krotkov, N. A.; Bleacher, J. E.; Garry, W. B.; Young, K. E.; Lima, A. R.; Martins, J. V.; Carn, S. A.

    2015-12-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation. Recent research has identified a wide range in volcanic ash optical properties among samples collected from the ground after different eruptions. The database of samples investigated remains relatively small, and measurements of optical properties at the relevant particle sizes and spectral channels are far from complete. Generalizing optical properties remains elusive, as does establishing relationships between ash composition and optical properties, which are essential for satellite retrievals. We are building a library of volcanic ash optical and microphysical properties. In this presentation we show

  8. Application of optical remote sensing in the Wenchuan earthquake assessment

    Science.gov (United States)

    Zhang, Bing; Lei, Liping; Zhang, Li; Liu, Liangyun; Zhu, Boqin; Zuo, Zhengli

    2009-06-01

    A mega-earthquake of magnitude 8 of Richter scale occurred in Wenchuan County, Sichuan Province, China on May 12, 2008. The earthquake inflicted heavy loss of human lives and properties. The Wenchuan earthquake induced geological disasters, house collapse, and road blockage. In this paper, we demonstrate an application of optical remote sensing images acquired from airborne and satellite platforms in assessing the earthquake damages. The high-resolution airborne images were acquired by the Chinese Academy of Sciences (CAS). The pre- and post-earthquake satellite images of QuickBird, IKONOS, Landsat TM, ALOS, and SPOT were collected by the Center for Earth Observation & Digital Earth (CEODE), CAS, and some of the satellite data were provided by the United States, Japan, and the European Space Agency. The pre- and post-earthquake remote sensing images integrated with DEM and GIS data were adopted to monitor and analyze various earthquake disasters, such as road blockage, house collapse, landslides, avalanches, rock debris flows, and barrier lakes. The results showed that airborne optical images provide a convenient tool for quick and timely monitoring and assessing of the distribution and dynamic changes of the disasters over the earthquake-struck regions. In addition, our study showed that the optical remote sensing data integrated with GIS data can be used to assess disaster conditions such as damaged farmlands, soil erosion, etc, which in turn provides useful information for the postdisaster reconstruction.

  9. A tactile sensing element based on a hetero-core optical fiber for force measurement and texture detection

    Science.gov (United States)

    Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro

    2014-05-01

    Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.

  10. Comprehensive long distance and real-time pipeline monitoring system based on fiber optic sensing

    Energy Technology Data Exchange (ETDEWEB)

    Nikles, Marc; Ravet, Fabien; Briffod, Fabien [Omnisens S.A., Morges (Switzerland)

    2009-07-01

    An increasing number of pipelines are constructed in remote regions affected by harsh environmental conditions. These pipeline routes often cross mountain areas which are characterized by unstable grounds and where soil texture changes between winter and summer increase the probability of hazards. Due to the long distances to be monitored and the linear nature of pipelines, distributed fiber optic sensing techniques offer significant advantages and the capability to detect and localize pipeline disturbance with great precision. Furthermore pipeline owner/operators lay fiber optic cable parallel to transmission pipelines for telecommunication purposes and at minimum additional cost monitoring capabilities can be added to the communication system. The Brillouin-based Omnisens DITEST monitoring system has been used in several long distance pipeline projects. The technique is capable of measuring strain and temperature over 100's kilometers with meter spatial resolution. Dedicated fiber optic cables have been developed for continuous strain and temperature monitoring and their deployment along the pipeline has enabled permanent and continuous pipeline ground movement, intrusion and leak detection. This paper presents a description of the fiber optic Brillouin-based DITEST sensing technique, its measurement performance and limits, while addressing future perspectives for pipeline monitoring. (author)

  11. Zeptonewton force sensing with nanospheres in an optical lattice

    CERN Document Server

    Ranjit, Gambhir; Casey, Kirsten; Geraci, Andrew A

    2016-01-01

    Optically trapped nanospheres in high-vaccum experience little friction and hence are promising for ultra-sensitive force detection. Here we demonstrate measurement times exceeding $10^5$ seconds and zeptonewton force sensitivity with laser-cooled silica nanospheres trapped in an optical lattice. The sensitivity achieved exceeds that of conventional room-temperature solid-state force sensors, and enables a variety of applications including electric field sensing, inertial sensing, and gravimetry. The optical potential allows the particle to be confined in a number of possible trapping sites, with precise localization at the anti-nodes of the optical standing wave. By studying the motion of a particle which has been moved to an adjacent trapping site, the known spacing of the lattice anti-nodes can be used to calibrate the displacement spectrum of the particle. Finally, we study the dependence of the trap stability and lifetime on the laser intensity and gas pressure, and examine the heating rate of the partic...

  12. Digital holography and wavefront sensing principles, techniques and applications

    CERN Document Server

    Schnars, Ulf; Watson, John; Jüptner, Werner

    2015-01-01

    This book presents a self-contained treatment of the principles and major applications of digital hologram recording and numerical reconstruction (Digital Holography). This second edition has been significantly revised and enlarged. The authors have extended the chapter on Digital Holographic Microscopy to incorporate new sections on particle sizing, particle image velocimetry and underwater holography. A new chapter now deals comprehensively and extensively with computational wave field sensing. These techniques represent a fascinating alternative to standard interferometry and Digital Holography. They enable wave field sensing without the requirement of a particular reference wave, thus allowing the use of low brilliance light sources and even liquid-crystal displays (LCD) for interferometric applications.              

  13. Multiple irradiation sensing of the optical effective attenuation coefficient for spectral correction in handheld OA imaging

    Directory of Open Access Journals (Sweden)

    K. Gerrit Held

    2016-06-01

    Full Text Available Spectral optoacoustic (OA imaging enables spatially-resolved measurement of blood oxygenation levels, based on the distinct optical absorption spectra of oxygenated and de-oxygenated blood. Wavelength-dependent optical attenuation in the bulk tissue, however, distorts the acquired OA spectrum and thus makes quantitative oxygenation measurements challenging. We demonstrate a correction for this spectral distortion without requiring a priori knowledge of the tissue optical properties, using the concept of multiple irradiation sensing: recording the OA signal amplitude of an absorbing structure (e.g. blood vessel, which serves as an intrinsic fluence detector, as function of irradiation position. This permits the reconstruction of the bulk effective optical attenuation coefficient μeff,λ. If performed at various irradiation wavelengths, a correction for the wavelength-dependent fluence attenuation is achieved, revealing accurate spectral information on the absorbing structures. Phantom studies were performed to show the potential of this technique for handheld clinical combined OA and ultrasound imaging.

  14. Application of Remote Sensing Techniques for Mapping Shifting Cultivation

    Directory of Open Access Journals (Sweden)

    N.Vijaya Kumari

    2017-01-01

    Full Text Available Shifting cultivation is an ancient and primitive method of cultivation, also referred to as ‘slash and burn’ or ‘rotational bush fallow agricultural system’. The practice mainly involves removal of the forests by primitive slash and burn technique followed by mixed cropping for short period before abandoning the site. Tribals all over India are known to follow the practice of shifting cultivation with some regional variations. The present study has been undertaken to estimate the spatial distribution of podu cultivation in Srikakulam district of Andhra Pradesh by using remote sensing techniques. Results of the present study indicate that an estimated area of 10,491.857 acres of the forest area is under shifting cultivation in Srikakulam district. Shifting cultivation has caused a great deal of environmental degradation. Remote sensing techniques with repetitive coverage and synoptic view provide database for assessing environment degrading practices. Mapping of shifting areas is important not only from ecological point of view but also for management purposes.

  15. A novel data adaptive detection scheme for distributed fiber optic acoustic sensing

    Science.gov (United States)

    Ölçer, Íbrahim; Öncü, Ahmet

    2016-05-01

    We introduce a new approach for distributed fiber optic sensing based on adaptive processing of phase sensitive optical time domain reflectometry (Φ-OTDR) signals. Instead of conventional methods which utilizes frame averaging of detected signal traces, our adaptive algorithm senses a set of noise parameters to enhance the signal-to-noise ratio (SNR) for improved detection performance. This data set is called the secondary data set from which a weight vector for the detection of a signal is computed. The signal presence is sought in the primary data set. This adaptive technique can be used for vibration detection of health monitoring of various civil structures as well as any other dynamic monitoring requirements such as pipeline and perimeter security applications.

  16. Research on the distributed optical remote sensing of methane employing single laser source

    Institute of Scientific and Technical Information of China (English)

    Wangbao Yin(尹王保); Weiguang Ma(马维光); Lirong Wang(汪丽蓉); Jianming Zhao(赵建明); Liantuan Xiao(肖连团); Suotang Jia(贾锁堂)

    2004-01-01

    @@ A design and testing of a cost-effective distributed optical remote sensing methane system,which will helpone to detect gas leaks from multi-coal face in mines simultaneously,is presented.The fundamentals ofthe remote detection are based on frequency-modulation spectroscopy(FMS)and harmonic detection.Byutilizing fiber-optic splitting technique and reference-signal restoring circuit,the remote sensing system isfeasible to employ single laser source to get multi-spot measurement in the near infrared region so thatthe system described here shows sufficient sensibility,considerably increased reliability and marketabilityover the presently available system.The minimum measurable path-integrated concentration is estimatedto be about 423 ppb-m by experimentation.

  17. Higher order Fano graphene metamaterials for nanoscale optical sensing.

    Science.gov (United States)

    Guo, Xiangdong; Hu, Hai; Zhu, Xing; Yang, Xiaoxia; Dai, Qing

    2017-09-28

    Plasmonic Fano metamaterials provide a unique platform for optical sensing applications due to their sharp spectral response and the ability to confine light to nanoscale regions that make them a strong prospect for refractive-index sensing. Higher order Fano resonance modes in noble metal plasmonic structures can further improve the sensitivity, but their applications are heavily limited by crosstalk between different modes due to the large damping rates and broadband spectral responses of the metal plasmon modes. Here, we create pure higher order Fano modes by designing asymmetric metamaterials comprised of a split-ring resonator and disk with a low-loss graphene plasmon. These higher order modes are highly sensitive to the nanoscale analyte (8 nm thick) both in refractive-index and in infrared vibrational fingerprint sensing, as demonstrated by the numerical calculation. The frequency sensitivity and figure-of-merit of the hexacontatetrapolar mode can reach 289 cm(-1) per RIU and 29, respectively, and it can probe the weak infrared vibrational modes of the analyte with more than 400 times enhancement. The enhanced sensitivity and tunability of higher order Fano graphene metamaterials promise a high-performance nanoscale optical sensor.

  18. Spectroelectrochemistry: The Combination of Optical and Electrochemical Techniques.

    Science.gov (United States)

    Heineman, William R.

    1983-01-01

    Two different techniques, electrochemistry and spectroscopy, can be combined for studying the redox chemistry of inorganic, organic, and biological molecules. Several commonly used spectroelectrochemical methods and their applications are described. Includes discussions of optically transparent electrodes, optical absorption/fluorescence…

  19. Comparative study of infrared wavefront sensing solutions for adaptive optics

    Science.gov (United States)

    Plantet, C.; Fusco, T.; Guerineau, N.; Derelle, S.; Robert, C.

    2016-07-01

    The development of new low-noise infrared detectors, such as RAPID (CEA LETI/Sofradir) or SAPHIRA (Selex), has given the possibility to consider infrared wavefront sensing at low ux. We propose here a comparative study of near infrared (J and H bands) wavefront sensing concepts for mid and high orders estimation on a 8m- class telescope, relying on three existing wavefront sensors: the Shack-Hartmann sensor, the pyramid sensor and the quadri-wave lateral shearing interferometer. We consider several conceptual designs using the RAPID camera, making a trade-off between background flux, optical thickness and compatibility with a compact cryostat integration. We then study their sensitivity to noise in order to compare them in different practical scenarios. The pyramid provides the best performance, with a gain up to 0.5 magnitude, and has an advantageous setup.

  20. Multiplexed optical operation of nanoelectromechanical systems (NEMS) arrays for sensing and signal-processing applications

    Science.gov (United States)

    Sampathkumar, Ashwin

    2014-06-01

    NEMS are rapidly being developed for a variety of sensing applications as well as for exploring interesting regimes in fundamental physics. In most of these endeavors, operation of a NEMS device involves actuating the device harmonically around its fundamental resonance and detecting subsequent motion while the device interacts with its environment. Even though a single NEMS resonator is exceptionally sensitive, a typical application, such as sensing or signal processing, requires the detection of signals from many resonators distributed over the surface of a chip. Therefore, one of the key technological challenges in the field of NEMS is development of multiplexed measurement techniques to detect the motion of a large number of NEMS resonators simultaneously. In this work, we address the important and difficult problem of interfacing with a large number of NEMS devices and facilitating the use of such arrays in, for example, sensing and signal processing applications. We report a versatile, all-optical technique to excite and read-out a distributed NEMS array. The NEMS array is driven by a distributed, intensity-modulated, optical pump through the photothermal effect. The ensuing vibrational response of the array is multiplexed onto a single, probe beam as a high-frequency phase modulation. The phase modulation is optically down converted to a low-frequency, intensity modulation using an adaptive full -field interferometer, and subsequently is detected using a charge-coupled device (CCD) array. Rapid and single-step mechanical characterization of approximately 60 nominally identical, high-frequency resonators is demonstrated. The technique may enable sensitivity improvements over single NEMS resonators by averaging signals coming from a multitude of devices in the array. In addition, the diffraction-limited spatial resolution may allow for position-dependent read-out of NEMS sensor chips for sensing multiple analytes or spatially inhomogeneous forces.

  1. Optical Sensing Method for Screening Disease in Melon Seeds by Using Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Jeehyun Kim

    2011-10-01

    Full Text Available We report a noble optical sensing method to diagnose seed abnormalities using optical coherence tomography (OCT. Melon seeds infected with Cucumber green mottle mosaic virus (CGMMV were scanned by OCT. The cross-sectional sensed area of the abnormal seeds showed an additional subsurface layer under the surface which is not found in normal seeds. The presence of CGMMV in the sample was examined by a blind test (n = 140 and compared by the reverse transcription-polymerase chain reaction. The abnormal layers (n = 40 were quantitatively investigated using A-scan sensing analysis and statistical method. By utilizing 3D OCT image reconstruction, we confirmed the distinctive layers on the whole seeds. These results show that OCT with the proposed data processing method can systemically pick up morphological modification induced by viral infection in seeds, and, furthermore, OCT can play an important role in automatic screening of viral infections in seeds.

  2. Integration of Field and Remote Sensing Techniques For Landslides Monitoring

    Science.gov (United States)

    Allievi, J.; Ambrosi, C.; Ceriani, M.; Colesanti, C.; Crosta, G. B.; Ferretti, A.; Fossati, D.; Menegaz, A.

    The definition of the state of activity of slope movements is of major interest both at local and at regional scale. The Geological Survey of the Regione Lombardia has re- cently started a series of projects aimed to the identification of areas subjected to slope instability and to the assessment of their state of activity. Field survey, aerial photo interpretation and advanced remote sensing techniques have been applied. Some ex- amples of large rock slope instabilities have been investigated in the Valtellina area (Lombardia, Northern Italy). In particular, we demonstrate the degree of integration of the adopted techniques for one of the largest rock slope movements actually recog- nised in the area. The remote sensing approach that has been adopted is the Perma- nent Scatterers (PS) Technique. This technique has been recently developed as a new methodology for surface deformation monitoring, using ESA ERS-SAR data. Its ap- plication to large slope movements in alpine and prealpine areas, with a relatively low urban development, has been tried for the first time in order to evaluate its potential in supporting studies for landslide hazard assessment. Previous results show that this ap- proach allows to reach an accuracy very close to the theoretical limit. This study shows the very good agreement reached for displacement velocities between historical trends and recent PS measurements. Scatterers have been identified by field surveying and some of them are located close to historically monitored benchmark for topographic measurements. Furthermore, the integration of these data with field observations al- lowed us to perform a preliminary reconstrucion of the landslide mechanism and to assess the activity of different landslide structures (scarps, etc.).

  3. Optical microcavity sensing: from reactive to dissipative interactions (Conference Presentation)

    Science.gov (United States)

    Zhi, Yanyan; Shen, Bo-Qiang; Yu, Xiao-Chong; Wang, Li; Kim, Donghyun; Gong, Qihuang; Xiao, Yun-Feng

    2017-02-01

    Ultrasensitive optical detection of nanoparticles is highly desirable for applications in early-stage diagnosis of human diseases, environmental monitoring and homeland security, but remains extremely difficult due to ultralow polarizabilities of small-sized, low-index particles. Optical whispering-gallery-mode (WGM) microcavities, with high Q factors up to 108, provide a promising platforms for label-free detection of nano-scaled objects, due to significantly enhanced light-matter interaction. The mechanisms of the conventional WGM sensors, based on the reactive (or dispersive) interaction, measure the mode shift induced by the environmental variations of refractive index, which may fail to detect low-index nanoparticles. In this work, we propose a different dissipative sensing scheme, reacting as linewidth change of WGMs, to detect single nanoparticle using a silica toroidal microcavity fabricated on a silicon substrate. In experiment, detection of single gold nanorods in aqueous environment is realized by monitoring simultaneously the linewidth change and shift of cavity mode. Besides a good consistent with the theoretical predictions, the experimental result shows that the dissipative sensing achieves a better signal-to-noise-ratio compared to the dispersive mechanism. Remarkably, by setting the probe wavelength on and off the surface plasmon resonance of the gold nanoparticles, the great potential of the dissipative sensing method to detect single lossy nanoparticles is demonstrated. This dissipative sensing method holds great potential in detecting lossy nanoparticles, and may become a promising lab-on-a-chip platform for detecting small-sized, low-index particles with ultralow polarizabilities.

  4. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    Science.gov (United States)

    Álvarez López, Yuri; Martínez Lorenzo, José Ángel

    2017-01-01

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated. PMID:28098841

  5. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers.

    Science.gov (United States)

    López, Yuri Álvarez; Lorenzo, José Ángel Martínez

    2017-01-15

    One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS) techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  6. Compressed Sensing Techniques Applied to Ultrasonic Imaging of Cargo Containers

    Directory of Open Access Journals (Sweden)

    Yuri Álvarez López

    2017-01-01

    Full Text Available One of the key issues in the fight against the smuggling of goods has been the development of scanners for cargo inspection. X-ray-based radiographic system scanners are the most developed sensing modality. However, they are costly and use bulky sources that emit hazardous, ionizing radiation. Aiming to improve the probability of threat detection, an ultrasonic-based technique, capable of detecting the footprint of metallic containers or compartments concealed within the metallic structure of the inspected cargo, has been proposed. The system consists of an array of acoustic transceivers that is attached to the metallic structure-under-inspection, creating a guided acoustic Lamb wave. Reflections due to discontinuities are detected in the images, provided by an imaging algorithm. Taking into consideration that the majority of those images are sparse, this contribution analyzes the application of Compressed Sensing (CS techniques in order to reduce the amount of measurements needed, thus achieving faster scanning, without compromising the detection capabilities of the system. A parametric study of the image quality, as a function of the samples needed in spatial and frequency domains, is presented, as well as the dependence on the sampling pattern. For this purpose, realistic cargo inspection scenarios have been simulated.

  7. Water quality assessment in Kelantan delta using remote sensing technique

    Science.gov (United States)

    Syahreza, S.; MatJafri, M. Z.; Lim, H. S.; Mustapha, M. R.

    2012-09-01

    This paper presents the utilities of remote sensing technique for water quality assessment in Kelantan Delta, Malaysia. Remote sensing is one of the effective methods for water quality monitoring through image analysis of study area. Spectral reflectance signatures of Kelantan Delta were measured from 20 stations using ASD Handheld spectroradiometer from regions with different turbidity level. Water samples collected from these stations were taken to the laboratory for measure turbidity in Nephelometric Turbidity Unit (NTU). The objective of this study is to examine the potential of ALOS on Japanese Earth Observing Satellite (JEOS) for assessing water quality in Kelantan Delta. There is a large correlation between NTU and the in-situ reflectance at 500 - 620 nm (maximum spectra band between 300 and 1100 nm) is shown by multiple linier regression model, resulting from increasing of turbidity levels, was developed and applied to ALOS band 2 and band 3 (0.42-069 nm). A simple atmospheric correction, based on darkest pixel technique was performed in this study. The ALOS data provides accurate estimates of the mean water quality (R2 = 0.95 and RMSE = 2.26 NTU). The result acquired is reliable to estimate of water quality values for the Kelantan Delta and its implication for future operation.

  8. Optimization of the polarization remote-sensing techniques of the ocean

    Science.gov (United States)

    Krotkov, Nickolay A.; Kondranin, Timofei V.; Vasilkov, Alexander P.

    1992-12-01

    A numerical code has been developed to calculate Stokes parameters of the visible solar radiation, scattered in the atmosphere-ocean system. Mathematical modeling is used to examine spectral and angular (azimuth and zenith angle) variations of degree of polarization at sea level and at different heights in the atmosphere above the sea surface. On the basis of a developed computer code the efficiency of the polarization measurements for different optical passive remote sensing techniques of the ocean has been investigated. For the passive spectral measurements of the water bio-productivity (chlorophyll-a, dissolved organic matter, concentration of suspended particles) the polarizer can improve signal-to-background ratio. The magnitude of this effect and optimum direction of the polarizer depend upon height, viewing direction, and solar zenith angle. Within the framework of polarization remote sensing technique the influence of the observation height and viewing direction on the results of water turbidity measurements is investigated. Optimal viewing directions in such polarization passive remote sensing technique are discussed.

  9. Modern fibre-optic coherent lidars for remote sensing

    Science.gov (United States)

    Hill, Chris

    2015-10-01

    This paper surveys some growth areas in optical sensing that exploit near-IR coherent laser sources and fibreoptic hardware from the telecoms industry. Advances in component availability and performance are promising benefits in several military and commercial applications. Previous work has emphasised Doppler wind speed measurements and wind / turbulence profiling for air safety, with recent sharp increases in numbers of lidar units sold and installed, and with wider recognition that different lidar / radar wavebands can and should complement each other. These advances are also enabling fields such as microDoppler measurement of sub-wavelength vibrations and acoustic waves, including non-lineof- sight acoustic sensing in challenging environments. To shed light on these different applications we review some fundamentals of coherent detection, measurement probe volume, and parameter estimation - starting with familiar similarities and differences between "radar" and "laser radar". The consequences of changing the operating wavelength by three or four orders of magnitude - from millimetric or centimetric radar to a typical fibre-optic lidar working near 1.5 μm - need regular review, partly because of continuing advances in telecoms technology and computing. Modern fibre-optic lidars tend to be less complicated, more reliable, and cheaper than their predecessors; and they more closely obey the textbook principles of easily adjusted and aligned Gaussian beams. The behaviours of noises and signals, and the appropriate processing strategies, are as expected different for the different wavelengths and applications. For example, the effective probe volumes are easily varied (e.g. by translating a fibre facet) through six or eight orders of magnitude; as the average number of contributing scatterers varies, from >1, we should review any assumptions about "many" scatterers and Gaussian statistics. Finally, some much older but still relevant scientific work (by A G Bell, E H

  10. Topological metrology and its application to optical position sensing

    CERN Document Server

    Tischler, Nora; Singh, Sukhwinder; Zambrana-Puyalto, Xavier; Vidal, Xavier; Brennen, Gavin; Molina-Terriza, Gabriel

    2015-01-01

    We motivate metrology schemes based on topological singularities as a way to build robustness against deformations of the system. In particular, we relate reference settings of metrological systems to topological singularities in the measurement outputs. As examples we discuss optical nano-position sensing (i) using a balanced photodetector and a quadrant photodetector, and (ii) a more general image based scheme. In both cases the reference setting is a scatterer position that corresponds to a topological singularity in an output space constructed from the scattered field intensity distributions.

  11. Plastic Optical Fiber Sensing of Alcohol Concentration in Liquors

    Directory of Open Access Journals (Sweden)

    Masayuki Morisawa

    2012-01-01

    Full Text Available A simple optical fiber sensing system of alcohol concentration in liquors has been studied. In this sensor head, a mixture polymer of novolac resin and polyvinylidenefluoride (PVDF with a ratio of 9 : 1 was coated as a sensitive cladding layer on the plastic fiber core made of polystyrene-(PS-coated polycarbonate (PC. Using this sensor head and a green LED light source, it was confirmed that alcohol concentration in several kinds of liquors from beer to whisky can easily be measured with a fast response time less than 1 minute.

  12. Incoherent Optical Frequency Domain Reflectometry for Distributed Thermal Sensing

    DEFF Research Database (Denmark)

    Karamehmedovic, Emir

    2006-01-01

    This thesis reports the main results from an investigation of a fibre-optic distributed temperature sensor based on spontaneous Raman scattering. The technique used for spatial resolving is the incoherent optical frequency domain reflectometry, where a pump laser is sine modulated with a stepwise...... increasing frequency, after which the inverse Fourier transform is applied to the signal from the backscattered light. This technique is compared with the more conventional optical time domain reflectometry, where a short pulse is sent through the fibre, and the location of the scattering section...... is determined by the time difference from the emission to the detection of light. A temperature sensor with a range of 2-4km comprising a step-index multi-mode fibre and a high-power 980nm pump laser existed prior to the start of the PhD study. In this study, a sensor range of approximately 10km, and a spatial...

  13. Optical microfiber mode interferometer for temperature-independent refractometric sensing.

    Science.gov (United States)

    Salceda-Delgado, G; Monzon-Hernandez, D; Martinez-Rios, A; Cardenas-Sevilla, G A; Villatoro, J

    2012-06-01

    We report on a functional optical microfiber mode interferometer and its applications for absolute, temperature-insensitive refractive index sensing. A standard optical fiber was tapered down to 10 μm. The central part of the taper, i.e., the microfiber, is connected to the untapered regions with two identical abrupt transitions. The transmission spectrum of our device exhibited a sinusoidal pattern due to the beating between modes. In our interferometer the period of the pattern-an absolute parameter-depends strongly on the surrounding refractive index but it is insensitive to temperature changes. The period, hence the external index, can be accurately measured by taking the fast Fourier transform (FFT) of the detected interference pattern. The measuring refractive index range of the device here proposed goes from 1.33 to 1.428 and the maximum resolution is on the order of 3.7×10(-6).

  14. Proposal of optical farming: development of several optical sensing instruments for agricultural use

    Science.gov (United States)

    Saito, Y.; Kobayashi, K.

    2013-05-01

    We propose the use of "Optical Farming," which is the leading application of all types of optical technologies, in agriculture and agriculture-related industries. This paper focuses on the optical sensing instruments named "Agriserver," "Agrigadget" and "LIFS Monitor" developed in our laboratory. They are considered major factors in utilizing Optical Farming. Agriserver is a sensor network system that uses the Internet to collect information on agricultural products growing in fields. Agrigadget contains several optical devices, such as a smartphone-based spectroscopic device and a hand framing camera. LIFS Monitor is an advanced monitoring instrument that makes it possible to obtain physiological information of living plants. They are strongly associated with information communication technology. Their field and data usage performance in agricultural industries are reported.

  15. New Optical Sensing Materials for Application in Marine Research

    Science.gov (United States)

    Borisov, S.; Klimant, I.

    2012-04-01

    Optical chemosensors are versatile analytical tools which find application in numerous fields of science and technology. They proved to be a promising alternative to electrochemical methods and are applied increasingly often in marine research. However, not all state-of-the- art optical chemosensors are suitable for these demanding applications since they do not fully fulfil the requirements of high luminescence brightness, high chemical- and photochemical stability or their spectral properties are not adequate. Therefore, development of new advanced sensing materials is still of utmost importance. Here we present a set of novel optical sensing materials recently developed in the Institute of Analytical Chemistry and Food Chemistry which are optimized for marine applications. Particularly, we present new NIR indicators and sensors for oxygen and pH which feature high brightness and low level of autofluorescence. The oxygen sensors rely on highly photostable metal complexes of benzoporphyrins and azabenzoporphyrins and enable several important applications such as simultaneous monitoring of oxygen and chlorophyll or ultra-fast oxygen monitoring (Eddy correlation). We also developed ulta-sensitive oxygen optodes which enable monitoring in nM range and are primary designed for investigation of oxygen minimum zones. The dynamic range of our new NIR pH indicators based on aza-BODIPY dyes is optimized for the marine environment. A highly sensitive NIR luminescent phosphor (chromium(III) doped yttrium aluminium borate) can be used for non-invasive temperature measurements. Notably, the oxygen, pH sensors and temperature sensors are fully compatible with the commercially available fiber-optic readers (Firesting from PyroScience). An optical CO2 sensor for marine applications employs novel diketopyrrolopyrrol indicators and enables ratiometric imaging using a CCD camera. Oxygen, pH and temperature sensors suitable for lifetime and ratiometric imaging of analytes

  16. Genetic optical design for a compressive sensing task

    Science.gov (United States)

    Horisaki, Ryoichi; Niihara, Takahiro; Tanida, Jun

    2016-07-01

    We present a sophisticated optical design method for reducing the number of photodetectors for a specific sensing task. The chosen design parameter is the point spread function, and the selected task is object recognition. The point spread function is optimized iteratively with a genetic algorithm for object recognition based on a neural network. In the experimental demonstration, binary classification of face and non-face datasets was performed with a single measurement using two photodetectors. A spatial light modulator operating in the amplitude modulation mode was provided in the imaging optics and was used to modulate the point spread function. In each generation of the genetic algorithm, the classification accuracy with a pattern displayed on the spatial light modulator was fed-back to the next generation to find better patterns. The proposed method increased the accuracy by about 30 % compared with a conventional imaging system in which the point spread function was the delta function. This approach is practically useful for compressing the cost, size, and observation time of optical sensors in specific applications, and robust for imperfections in optical elements.

  17. Genetic optical design for a compressive sensing task

    Science.gov (United States)

    Horisaki, Ryoichi; Niihara, Takahiro; Tanida, Jun

    2016-10-01

    We present a sophisticated optical design method for reducing the number of photodetectors for a specific sensing task. The chosen design parameter is the point spread function, and the selected task is object recognition. The point spread function is optimized iteratively with a genetic algorithm for object recognition based on a neural network. In the experimental demonstration, binary classification of face and non-face datasets was performed with a single measurement using two photodetectors. A spatial light modulator operating in the amplitude modulation mode was provided in the imaging optics and was used to modulate the point spread function. In each generation of the genetic algorithm, the classification accuracy with a pattern displayed on the spatial light modulator was fed-back to the next generation to find better patterns. The proposed method increased the accuracy by about 30 % compared with a conventional imaging system in which the point spread function was the delta function. This approach is practically useful for compressing the cost, size, and observation time of optical sensors in specific applications, and robust for imperfections in optical elements.

  18. Surface diffusion studies by optical diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, X.D.

    1992-11-01

    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect.

  19. Optical power transfer and communication methods for wireless implantable sensing platforms.

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Adalian, Dvin; Chang, Chieh-Feng; Scherer, Axel

    2015-09-01

    Ultrasmall scale implants have recently attracted focus as valuable tools for monitoring both acute and chronic diseases. Semiconductor optical technologies are the key to miniaturizing these devices to the long-sought sub-mm scale, which will enable long-term use of these devices for medical applications. This can also enable the use of multiple implantable devices concurrently to form a true body area network of sensors. We demonstrate optical power transfer techniques and methods to effectively harness this power for implantable devices. Furthermore, we also present methods for optical data transfer from such implants. Simultaneous use of these technologies can result in miniaturized sensing platforms that can allow for large-scale use of such systems in real world applications.

  20. Tunnel-Site Selection by Remote Sensing Techniques

    Science.gov (United States)

    A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave

  1. [Effects of aerosol optical thickness on the optical remote sensing imaging quality].

    Science.gov (United States)

    Hu, Xin-Li; Gu, Xing-Fa; Yu, Tao; Zhang, Zhou-Wei; Li, Juan; Luan, Hai-Jun

    2014-03-01

    In recent years, due to changes in atmospheric environment, atmospheric aerosol affection on optical sensor imaging quality is increasingly considered by the load developed departments. Space-based remote sensing system imaging process, atmospheric aerosol makes optical sensor imaging quality deterioration. Atmospheric medium causing image degradation is mainly forward light scattering effect caused by the aerosol turbid medium. Based on the turbid medium radiation transfer equation, the point spread function models were derived contained aerosol optical properties of atmosphere in order to analyze and evaluate the atmospheric blurring effect on optical sensor imaging system. It was found that atmospheric aerosol medium have effect on not only energy decay of atmospheric transmittance, but also the degradation of image quality due to the scattering effect. Increase of atmospheric aerosol optical thickness makes aerosol scattering intensity enhanced, variation of aerosol optical thickness is also strongly influences the point spread function of the spatial distribution. it is because the degradation of aerosol in spatial domain, which reduces the quality of remote sensing image, in particularly reduction of the sharpness of image. Meanwhile, it would provide a method to optimize and improve simulation of atmospheric chain.

  2. Hybrid micro-/nanogels for optical sensing and intracellular imaging

    Directory of Open Access Journals (Sweden)

    Shuiqin Zhou

    2010-12-01

    Full Text Available Hybrid micro-/nanogels are playing an increasing important part in a diverse range of applications, due to their tunable dimensions, large surface area, stable interior network structure, and a very short response time. We review recent advances and challenges in the developments of hybrid micro-/nanogels toward applications for optical sensing of pH, temperature, glucose, ions, and other species as well as for intracellular imaging. Due to their unique advantages, hybrid micro-/nanogels as optical probes are attracting substantial interests for continuous monitoring of chemical parameters in complex samples such as blood and bioreactor fluids, in chemical research and industry, and in food quality control. In particular, their intracellular probing ability enables the monitoring of the biochemistry and biophysics of live cells over time and space, thus contributing to the explanation of intricate biological processes and the development of novel diagnoses. Unlike most other probes, hybrid micro-/nanogels could also combine other multiple functions into a single probe. The rational design of hybrid micro-/nanogels will not only improve the probing applications as desirable, but also implement their applications in new arenas. With ongoing rapid advances in bionanotechnology, the well-designed hybrid micro-/nanogel probes will be able to provide simultaneous sensing, imaging diagnosis, and therapy toward clinical applications.

  3. Characterization of Flexible Copolymer Optical Fibers for Force Sensing Applications

    Directory of Open Access Journals (Sweden)

    Lukas J. Scherer

    2013-09-01

    Full Text Available In this paper, different polymer optical fibres for applications in force sensing systems in textile fabrics are reported. The proposed method is based on the deflection of the light in fibre waveguides. Applying a force on the fibre changes the geometry and affects the wave guiding properties and hence induces light loss in the optical fibre. Fibres out of three different elastic and transparent copolymer materials were successfully produced and tested. Moreover, the influence of the diameter on the sensing properties was studied. The detectable force ranges from 0.05 N to 40 N (applied on 3 cm of fibre length, which can be regulated with the material and the diameter of the fibre. The detected signal loss varied from 0.6% to 78.3%. The fibres have attenuation parameters between 0.16–0.25 dB/cm at 652 nm. We show that the cross-sensitivies to temperature, strain and bends are low. Moreover, the high yield strength (0.0039–0.0054 GPa and flexibility make these fibres very attractive candidates for integration into textiles to form wearable sensors, medical textiles or even computing systems.

  4. Optical Sensing of the Fatigue Damage State of CFRP under Realistic Aeronautical Load Sequences

    Directory of Open Access Journals (Sweden)

    Pablo Zuluaga-Ramírez

    2015-03-01

    Full Text Available We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP, by measuring variations on the surface roughness. Variable amplitude loads (VAL, which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others.

  5. Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements

    Science.gov (United States)

    Mechery, Shelly John; Singh, Jagdish P.

    2007-07-03

    A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

  6. Full-scale monitoring system for structural prestress loss based on distributed brillouin sensing technique

    Science.gov (United States)

    Chunguang, Lan; Liguang, Zhou; Zhiyu, Huo

    2017-08-01

    Prestress loss is critical to impact the safety of prestressed structures. Unfortunately, up to date, there are no qualified techniques to handle this issue due to the fact that it is too hard for sensors to survive the harsh construction environments and the time-dependent service life of the large-span prestressed structures. This paper proposes a novel technique to monitor prestress loss in prestressed beams using Brillouin optical fiber sensors. A novel smart steel strand based on the sensing technique of full-scale Brillouin optical fiber sensors was introduced. Two kinds of prestressed structure were used to verify the concept of monitoring prestress loss using smart steel strands. The prestress loss data have been taken by Brillouin optical fiber sensors. And the monitoring results agree well with those from the conventional sensors. The monitoring data can reveal both the full-scale distribution and the time history of prestress loss during the construction stage and also in-service phrase.

  7. Remote sensing techniques applied to seismic vulnerability assessment

    Science.gov (United States)

    Juan Arranz, Jose; Torres, Yolanda; Hahgi, Azade; Gaspar-Escribano, Jorge

    2016-04-01

    Advances in remote sensing and photogrammetry techniques have increased the degree of accuracy and resolution in the record of the earth's surface. This has expanded the range of possible applications of these data. In this research, we have used these data to document the construction characteristics of the urban environment of Lorca, Spain. An exposure database has been created with the gathered information to be used in seismic vulnerability assessment. To this end, we have used data from photogrammetric flights at different periods, using both orthorectified images in the visible and infrared spectrum. Furthermore, the analysis is completed using LiDAR data. From the combination of these data, it has been possible to delineate the building footprints and characterize the constructions with attributes such as the approximate date of construction, area, type of roof and even building materials. To carry out the calculation, we have developed different algorithms to compare images from different times, segment images, classify LiDAR data, and use the infrared data in order to remove vegetation or to compute roof surfaces with height value, tilt and spectral fingerprint. In addition, the accuracy of our results has been validated with ground truth data. Keywords: LiDAR, remote sensing, seismic vulnerability, Lorca

  8. Fibre optic system for biochemical and microbiological sensing

    Energy Technology Data Exchange (ETDEWEB)

    Penwill, L A; Slater, J H; Hayes, N W; Tremlett, C J [Evanes Co Ltd, 4 and 5 Forde Court, Newton Abbot, Devon, TQ12 4AD (United Kingdom)

    2007-07-15

    This poster will discuss state-of-the-art fibre optic sensors based on evanescent wave technology emphasising chemophotonic sensors for biochemical reactions and microbe detection. Devices based on antibody specificity and unique DNA sequences will be described. The development of simple sensor devices with disposable single use sensor probes will be illustrated with a view to providing cost effective field based or point of care analysis of major themes such as hospital acquired infections or bioterrorism events. This presentation will discuss the nature and detection thresholds required, the optical detection techniques investigated, results of sensor trials and the potential for wider commercial application.

  9. Radial Velocity Data Analysis with Compressed Sensing Techniques

    Science.gov (United States)

    Hara, Nathan C.; Boué, G.; Laskar, J.; Correia, A. C. M.

    2016-09-01

    We present a novel approach for analysing radial velocity data that combines two features: all the planets are searched at once and the algorithm is fast. This is achieved by utilizing compressed sensing techniques, which are modified to be compatible with the Gaussian processes framework. The resulting tool can be used like a Lomb-Scargle periodogram and has the same aspect but with much fewer peaks due to aliasing. The method is applied to five systems with published radial velocity data sets: HD 69830, HD 10180, 55 Cnc, GJ 876 and a simulated very active star. The results are fully compatible with previous analysis, though obtained more straightforwardly. We further show that 55 Cnc e and f could have been respectively detected and suspected in early measurements from the Lick observatory and Hobby-Eberly Telescope available in 2004, and that frequencies due to dynamical interactions in GJ 876 can be seen.

  10. Radial Velocity Data Analysis with Compressed Sensing Techniques

    CERN Document Server

    Hara, Nathan C; Laskar, Jacques; Correia, Alexandre C M

    2016-01-01

    We present a novel approach for analysing radial velocity data that combines two features: all the planets are searched at once and the algorithm is fast. This is achieved by utilizing compressed sensing techniques, which are modified to be compatible with the Gaussian processes framework. The resulting tool can be used like a Lomb-Scargle periodogram and has the same aspect but with much fewer peaks due to aliasing. The method is applied to five systems with published radial velocity data sets: HD 69830, HD 10180, 55 Cnc, GJ 876 and a simulated very active star. The results are fully compatible with previous analysis, though obtained more straightforwardly. We further show that 55 Cnc e and f could have been respectively detected and suspected in early measurements from the Lick observatory and Hobby-Eberly Telescope available in 2004, and that frequencies due to dynamical interactions in GJ 876 can be seen.

  11. Radial velocity data analysis with compressed sensing techniques

    Science.gov (United States)

    Hara, Nathan C.; Boué, G.; Laskar, J.; Correia, A. C. M.

    2017-01-01

    We present a novel approach for analysing radial velocity data that combines two features: all the planets are searched at once and the algorithm is fast. This is achieved by utilizing compressed sensing techniques, which are modified to be compatible with the Gaussian process framework. The resulting tool can be used like a Lomb-Scargle periodogram and has the same aspect but with much fewer peaks due to aliasing. The method is applied to five systems with published radial velocity data sets: HD 69830, HD 10180, 55 Cnc, GJ 876 and a simulated very active star. The results are fully compatible with previous analysis, though obtained more straightforwardly. We further show that 55 Cnc e and f could have been respectively detected and suspected in early measurements from the Lick Observatory and Hobby-Eberly Telescope available in 2004, and that frequencies due to dynamical interactions in GJ 876 can be seen.

  12. Advanced Doppler radar physiological sensing technique for drone detection

    Science.gov (United States)

    Yoon, Ji Hwan; Xu, Hao; Garcia Carrillo, Luis R.

    2017-05-01

    A 24 GHz medium-range human detecting sensor, using the Doppler Radar Physiological Sensing (DRPS) technique, which can also detect unmanned aerial vehicles (UAVs or drones), is currently under development for potential rescue and anti-drone applications. DRPS systems are specifically designed to remotely monitor small movements of non-metallic human tissues such as cardiopulmonary activity and respiration. Once optimized, the unique capabilities of DRPS could be used to detect UAVs. Initial measurements have shown that DRPS technology is able to detect moving and stationary humans, as well as largely non-metallic multi-rotor drone helicopters. Further data processing will incorporate pattern recognition to detect multiple signatures (motor vibration and hovering patterns) of UAVs.

  13. Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey.

    Science.gov (United States)

    Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Fukuda, Toshio; Ren, Hongliang

    2017-08-01

    Continuum robots provide inherent structural compliance with high dexterity to access the surgical target sites along tortuous anatomical paths under constrained environments and enable to perform complex and delicate operations through small incisions in minimally invasive surgery. These advantages enable their broad applications with minimal trauma and make challenging clinical procedures possible with miniaturized instrumentation and high curvilinear access capabilities. However, their inherent deformable designs make it difficult to realize 3-D intraoperative real-time shape sensing to accurately model their shape. Solutions to this limitation can lead themselves to further develop closely associated techniques of closed-loop control, path planning, human-robot interaction, and surgical manipulation safety concerns in minimally invasive surgery. Although extensive model-based research that relies on kinematics and mechanics has been performed, accurate shape sensing of continuum robots remains challenging, particularly in cases of unknown and dynamic payloads. This survey investigates the recent advances in alternative emerging techniques for 3-D shape sensing in this field and focuses on the following categories: fiber-optic-sensor-based, electromagnetic-tracking-based, and intraoperative imaging modality-based shape-reconstruction methods. The limitations of existing technologies and prospects of new technologies are also discussed.

  14. Cognitive Heterogeneous Reconfigurable Optical Networks (CHRON): Enabling Technologies and Techniques

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Zibar, Darko; Guerrero Gonzalez, Neil;

    2011-01-01

    We present the approach of cognition applied to heterogeneous optical networks developed in the framework of the EU project CHRON: Cognitive Heterogeneous Reconfigurable Optical Network. We introduce and discuss in particular the technologies and techniques that will enable a cognitive optical ne...

  15. Optical Measurement Techniques for Optical Fiber and Waveguide Devices

    Institute of Scientific and Technical Information of China (English)

    D.Y.; Kim; Y.; Park; N.H.; Seong; Y.C.Youk; J.Y.; Lee; S.; Moon; I.H.; Shin; H.S.; Ryu

    2003-01-01

    We describe three major optical characterization methods for fiber and fiber devices. A simple servo controlled scanning fiber-optic confocal microscope is proposed for determining the refractive index profile of an optical fiber. To measure the chromatic dispersion of a short length fiber a Mach-Zehnder fiber interferometer with a novel interferometric distance meter is introduced. At the end, a tomographic method is demonstrated for determining the 2-D stress profile of a fiber.

  16. Continuous monitoring of plant growth using fiber-optic interferrometric sensing

    Science.gov (United States)

    Chatterjee, Julius; Grossman, Barry G.

    2011-06-01

    Dendrometers, dendrographs and dry weight measurements have been successfully used for measurements of plant growth. These sensors have been used with Linear Variable Differential Transformer (LVDT) based data logging systems for continuous monitoring. In this paper the preliminary results for a prototype technique is presented as a proof of concept for the continuous monitoring of plant growth using an approach based on fiber-optic interferrometric sensing. The advantage of this sensing technique over the others is the ability to measure and analyze with very high sensitivities such as micron changes in dimensions allowing measurements over short time spans. The sensor was mounted on a Dracaena Sanderiana (Lucky Bamboo) shoot and the change in shoot length dimensions resulted in changes in the output signal display which is in the form of interferrometric fringes. The data acquisition is performed over a long duration using labVIEW based data logging. Filtered output of the data has been presented where an attempt has been made to relate the fringes to length changes. The sensing system is nondestructive and noninvasive and has been targeted to respond to changes in stem length due to changes in plant growth parameters. The objective is to provide a measurement system to do research in optimizing plant growth in greatly reduced time spans. This form of sensing application is also applicable for monitoring the growth of plants growing at much slower rates.

  17. Digital processing optical transmission and coherent receiving techniques

    CERN Document Server

    Binh, Le Nguyen

    2013-01-01

    With coherent mixing in the optical domain and processing in the digital domain, advanced receiving techniques employing ultra-high speed sampling rates have progressed tremendously over the last few years. These advances have brought coherent reception systems for lightwave-carried information to the next stage, resulting in ultra-high capacity global internetworking. Digital Processing: Optical Transmission and Coherent Receiving Techniques describes modern coherent receiving techniques for optical transmission and aspects of modern digital optical communications in the most basic lines. The

  18. Image fusion of microwave and optical remote sensing data for topographic map updating in the tropics

    Science.gov (United States)

    Pohl, Christine; van Genderen, John L.

    1995-11-01

    Temporal monitoring using remote sensing for topographic mapping requires continuous acquisition of image data. In many countries, but especially in the human Tropics, the heavy cloud cover is a major drawback for visible and infrared remote sensing. The research project presented in this paper uses the idea of integrating data from optical and microwave sensors using digital image fusion techniques to overcome the cloud cover problem. Additionally the combination of radar with optical data increases the interpretation capabilities and the reliability of the results due to the complementary nature of microwave and optical images. While optical data represents the reflectance of ground cover in visible and near-infrared, the radar is very sensitive to the shape, orientation, roughness and moisture content of the illuminated ground objects. This research investigates the geometric aspect of image fusion for topographic map updating. The paper describes experiences gained from an area in the north of The Netherlands (`Friesland') as calibration test site in comparison with first results from the research test site (`Bengkulu'), located on the south west coast of Sumatra in Indonesia. The data used for this investigated was acquired by SPOT, Landsat, ERS-1 and JERS-1.

  19. Cloud cover estimation optical package: New facility, algorithms and techniques

    Science.gov (United States)

    Krinitskiy, Mikhail

    2017-02-01

    Short- and long-wave radiation is an important component of surface heat budget over sea and land. For estimating them accurate observations of the cloud cover are needed. While massively observed visually, for building accurate parameterizations cloud cover needs also to be quantified using precise instrumental measurements. Major disadvantages of the most of existing cloud-cameras are associated with their complicated design and inaccuracy of post-processing algorithms which typically result in the uncertainties of 20% to 30% in the camera-based estimates of cloud cover. The accuracy of these types of algorithm in terms of true scoring compared to human-observed values is typically less than 10%. We developed new generation package for cloud cover estimating, which provides much more accurate results and also allows for measuring additional characteristics. New algorithm, namely SAIL GrIx, based on routine approach, also developed for this package. It uses the synthetic controlling index ("grayness rate index") which allows to suppress the background sunburn effect. This makes it possible to increase the reliability of the detection of the optically thin clouds. The accuracy of this algorithm in terms of true scoring became 30%. One more approach, namely SAIL GrIx ML, we have used to increase the cloud cover estimating accuracy is the algorithm that uses machine learning technique along with some other signal processing techniques. Sun disk condition appears to be a strong feature in this kind of models. Artificial Neural Networks type of model demonstrates the best quality. This model accuracy in terms of true scoring increases up to 95,5%. Application of a new algorithm lets us to modify the design of the optical sensing package and to avoid the use of the solar trackers. This made the design of the cloud camera much more compact. New cloud-camera has already been tested in several missions across Atlantic and Indian oceans on board of IORAS research vessels.

  20. Optical Imaging and Microscopy Techniques and Advanced Systems

    CERN Document Server

    Török, Peter

    2007-01-01

    This text on contemporary optical systems is intended for optical researchers and engineers, graduate students and optical microscopists in the biological and biomedical sciences. This second edition contains two completely new chapters. In addition most of the chapters from the first edition have been revised and updated. The book consists of three parts: The first discusses high-aperture optical systems, which form the backbone of optical microscopes. An example is a chapter new in the second edition on the emerging field of high numerical aperture diffractive lenses which seems to have particular promise in improving the correction of lenses. In this part particular attention is paid to optical data storage. The second part is on the use of non-linear optical techniques, including nonlinear optical excitation (total internal reflection fluorescence, second and third harmonic generation and two photon microscopy) and non-linear spectroscopy (CARS). The final part of the book presents miscellaneous technique...

  1. All Optical Signal-Processing Techniques Utilizing Four Wave Mixing

    Directory of Open Access Journals (Sweden)

    Refat Kibria

    2015-02-01

    Full Text Available Four Wave Mixing (FWM based optical signal-processing techniques are reviewed. The use of FWM in arithmetical operation like subtraction, wavelength conversion and pattern recognition are three key parts discussed in this paper after a brief introduction on FWM and its comparison with other nonlinear mixings. Two different approaches to achieve correlation are discussed, as well as a novel technique to realize all optical subtraction of two optical signals.

  2. Antifouling leaching technique for optical lenses

    Science.gov (United States)

    Strahle, William J.; Perez, C. L.; Martini, Marinna A.

    1994-01-01

    The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics

  3. Long Period Gratings in Random Hole Optical Fibers for Refractive Index Sensing

    Directory of Open Access Journals (Sweden)

    Gary Pickrell

    2011-01-01

    Full Text Available We have demonstrated the fabrication of long period gratings in random hole optical fibers. The long period gratings are fabricated by a point-by-point technique using a CO2 laser. The gratings with a periodicity of 450 µm are fabricated and a maximum coupling efficiency of −9.81 dB has been achieved. Sensing of different refractive indices in the surrounding mediums is demonstrated by applying standard liquids with refractive indices from 1.400 to 1.440 to the long period grating.

  4. Fabrication of large area homogeneous metallic nanostructures for optical sensing using colloidal lithography

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Pors, Anders; Dreier, Jes;

    2010-01-01

    We propose a simple and reproducible method for fabricating large area metal films with inter-connected nanostructures using a combination of colloidal lithography, metal deposition and a template stripping technique. The method is generic in the sense that it is possible to produce a variety...... to fabricate metal films with inter-connected nanostructures consisting of either partial spherical shells or the inverted structures: spherical cavities. The substrates are characterized by optical reflectance and transmittance spectroscopy. We demonstrate, in the case of partial spherical shells...

  5. Wavefront sensing with the differential optical transfer function

    Science.gov (United States)

    Hart, Michael; Codona, Johanan L.

    2012-10-01

    Recently a new technique for estimating the complex field in the pupil of a telescope from image-plane intensity measurements has been introduced by Codona.1, 2 The simplest form of the method uses two images of a point source, one with a small modification introduced in the pupil. The algorithm to recover the pupil field uses a functional derivative of the optical transfer function (OTF), and is simple and non-iterative. The derivative is approximated empirically by the difference between the Fourier transforms of the two PSFs: the differential OTF or dOTF. In keeping with the Hermitian symmetry of the OTF, the dOTF includes two conjugate copies of the pupil field overlapping at the point of modification. By placing the modification near the edge of the pupil, the overlap region can be kept small. It can be eliminated altogether by using a second modification and a third image. The technique can be used in broadband light, at the cost of blurring in the recovered phase that is proportional to the fractional bandwidth. Although the dOTF is unlikely to find application in high frame rate astronomical adaptive optics, it has many potential uses such as optical shop testing, non-common-path wavefront error estimation, segmented telescope phasing and general imaging system diagnostics. In this paper, we review the dOTF concept, theory, and initial experiments to demonstrate the technique.

  6. Remote sensing image denoising by using discrete multiwavelet transform techniques

    Science.gov (United States)

    Wang, Haihui; Wang, Jun; Zhang, Jian

    2006-01-01

    We present a new method by using GHM discrete multiwavelet transform in image denoising on this paper. The developments in wavelet theory have given rise to the wavelet thresholding method, for extracting a signal from noisy data. The method of signal denoising via wavelet thresholding was popularized. Multiwavelets have recently been introduced and they offer simultaneous orthogonality, symmetry and short support. This property makes multiwavelets more suitable for various image processing applications, especially denoising. It is based on thresholding of multiwavelet coefficients arising from the standard scalar orthogonal wavelet transform. It takes into account the covariance structure of the transform. Denoising of images via thresholding of the multiwavelet coefficients result from preprocessing and the discrete multiwavelet transform can be carried out by treating the output in this paper. The form of the threshold is carefully formulated and is the key to the excellent results obtained in the extensive numerical simulations of image denoising. We apply the multiwavelet-based to remote sensing image denoising. Multiwavelet transform technique is rather a new method, and it has a big advantage over the other techniques that it less distorts spectral characteristics of the image denoising. The experimental results show that multiwavelet based image denoising schemes outperform wavelet based method both subjectively and objectively.

  7. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Baida, Fadi I.; Grosjean, Thierry, E-mail: thierry.grosjean@univ-fcomte.fr [Institut FEMTO-ST, UMR CNRS 6174, Université de Franche-Comté, Département d' Optique P.M. Duffieux, 15B avenue des Montboucons, 25030 Besançon cedex (France); Nedeljkovic, Dusan [Lovalite s.a.s., 7 rue Xavier Marmier, 25000 Besançon (France); Tannous, Tony [Department of Physics, University of Balamand, P.O. Box 100 Tripoli (Lebanon)

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  8. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    Science.gov (United States)

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Nedeljkovic, Dusan; Tannous, Tony; Baida, Fadi I.; Grosjean, Thierry

    2015-04-01

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of "remote" (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  9. Close-Range Sensing Techniques in Alpine Terrain

    Science.gov (United States)

    Rutzinger, M.; Höfle, B.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Sailer, R.; Scaioni, M.; Stötter, J.; Wujanz, D.

    2016-06-01

    Early career researchers such as PhD students are a main driving force of scientific research and are for a large part responsible for research innovation. They work on specialized topics within focused research groups that have a limited number of members, but might also have limited capacity in terms of lab equipment. This poses a serious challenge for educating such students as it is difficult to group a sufficient number of them to enable efficient knowledge transfer. To overcome this problem, the Innsbruck Summer School of Alpine Research 2015 on close-range sensing techniques in Alpine terrain was organized in Obergurgl, Austria, by an international team from several universities and research centres. Of the applicants a group of 40 early career researchers were selected with interest in about ten types of specialized surveying tools, i.e. laser scanners, a remotely piloted aircraft system, a thermal camera, a backpack mobile mapping system and different grade photogrammetric equipment. During the one-week summer school, students were grouped according to their personal preference to work with one such type of equipment under guidance of an expert lecturer. All students were required to capture and process field data on a mountain-related theme like landslides or rock glaciers. The work on the assignments lasted the whole week but was interspersed with lectures on selected topics by invited experts. The final task of the summer school participants was to present and defend their results to their peers, lecturers and other colleagues in a symposium-like setting. Here we present the framework and content of this summer school which brought together scientists from close-range sensing and environmental and geosciences.

  10. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-11-01

    Full Text Available In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  11. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information

    Directory of Open Access Journals (Sweden)

    Mohammad H. Bitarafan

    2017-07-01

    Full Text Available For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  12. Modeling the land surface reflectance for optical remote sensing data in rugged terrain

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A model for topographic correction and land surface reflectance estimation for optical remote sensing data in rugged terrian is presented.Considering a directional-directional reflectance that is used for direct solar irradiance correction and a hemispheric-directional reflectance that is used for atmospheric diffuse irradiance and terrain background reflected irradiance correction respectively,the directional reflectance-based model for topographic effects removing and land surface reflectance calculation is developed by deducing the directional reflectance with topographic effects and using a radiative transfer model.A canopy reflectance simulated by GOMS model and Landsat/TM raw data covering Jiangxi rugged area were taken to validate the performance of the model presented in the paper.The validation results show that the model presented here has a remarkable ability to correct topography and estimate land surface reflectance and also provides a technique method for sequently quantitative remote sensing application in terrain area.

  13. Modeling the land surface reflectance for optical remote sensing data in rugged terrain

    Institute of Scientific and Technical Information of China (English)

    WEN JianGuang; LIU QinHuo; XIAO Qing; LIU Qiang; LI XiaoWen

    2008-01-01

    A model for topographic correction and land surface reflectance estimation for optical remote sensing data in rugged terrian is presented. Considering a directional-directional reflectance that is used for direct solar irradiance correction and a hemispheric-directional reflectance that is used for atmospheric diffuse irradiance and terrain background reflected irradiance correction respectively, the directional reflectance-based model for topographic effects removing and land surface reflectance calculation is developed by deducing the directional reflectance with topographic effects and using a radiative transfer model. A canopy reflectance simulated by GOMS model and Landsat/TM raw data covering Jiangxi rugged area were taken to validate the performance of the model presented in the paper. The validation results show that the model presented here has a remarkable ability to correct topography and estimate land surface reflectance and also provides a technique method for sequently quantitative remote sensing application in terrain area.

  14. Sensing of Tooth Microleakage Based on Dental Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Chia-Wei Sun

    2015-01-01

    Full Text Available This study describes microleakage sensing based on swept-source optical coherence tomography (SS-OCT. With a handheld scanning probe, the SS-OCT system can provide portable real-time imaging for clinical diagnosis. Radiography is the traditional clinical imaging instrument used for dentistry; however, it does not provide good contrast images between filling material and the enamel of treated teeth with microleakage. The results of this study show that microleakage can be detected with oral probing using SS-OCT in vivo. The calculated microleakage length was 401 μm and the width is 148 μm, which is consistent with the related histological biopsy measurements. The diagnosis of microleakage in teeth could be useful for prevention of secondary caries in the clinical treatment plans developed in the field of oral medicine.

  15. Volumetric (3D) compressive sensing spectral domain optical coherence tomography.

    Science.gov (United States)

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-11-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality.

  16. Fiber optic distributed temperature sensing for fire source localization

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  17. Extreme temperature sensing using brillouin scattering in optical fibers

    CERN Document Server

    Fellay, Alexandre

    Stimulated Brillouin scattering in silica-based optical fibers may be considered from two different and complementary standpoints. For a physicist, this interaction of light and pressure wave in a material, or equivalently in quantum theory terms between photons and phonons, gives some glimpses of the atomic structure of the solid and of its vibration modes. For an applied engineer, the same phenomenon may be put to good use as a sensing mechanism for distributed measurements, thanks to the dependence of the scattered light on external parameters such as the temperature, the pressure or the strain applied to the fiber. As far as temperature measurements are concerned, Brillouin-based distributed sensors have progressively gained wide recognition as efficient systems, even if their rather high cost still restricts the number of their applications. Yet they are generally used in a relatively narrow temperature range around the usual ambient temperature; in this domain, the frequency of the scattered light incre...

  18. Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles

    Science.gov (United States)

    Manigandan, R.; Suresh, R.; Giribabu, K.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

    2014-01-01

    Manganese oxide nanoparticles were prepared by thermal decomposition of manganese oxalate. Manganese oxalate was synthesized by reacting 1:1 mole ratio of manganese acetate and ammonium oxalate along with sodium dodecyl sulfate (SDS). The structural characterization of manganese oxalate and manganese oxide nanoparticles was analyzed by XRD. The XRD spectrum confirms the crystal structure of the manganese oxide and manganese oxalate. In addition, the average grain size, lattice parameter values were also calculated using XRD spectrum. Moreover, the diffraction peaks were broadened due to the smaller size of the particle. The band gap of manganese oxide was calculated from optical absorption, which was carried out by DRS UV-Visible spectroscopy. The morphology of manganese oxide nanoparticles was analyzed by SEM images. The FT-IR analysis confirms the formation of the manganese oxide from manganese oxalate nanoparticles. The electrochemical sensing behavior of manganese oxide nanoparticles were investigated using hydrogen peroxide by cyclic voltammetry.

  19. Optical coherence tomography: Technique and applications

    DEFF Research Database (Denmark)

    Thomsen, Jakob Borup; Sander, Birgit; Mogensen, Mette;

    2009-01-01

    Optical coherence tomography (OCT) is a noninvasive optical imaging modality providing real-time video rate images in two and three dimensions of biological tissues with micrometer resolution. OCT fills the gap between ultrasound and confocal microscopy, since it has a higher resolution than ultr...... of retinal diseases. The potential of OCT in many other applications is currently being explored, such as in developmental biology, skin cancer diagnostics, vulnerable plaque detection in cardiology, esophageal diagnostics and a number of other applications within oncology....

  20. Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics

    Science.gov (United States)

    Becker, M.; Allen, E. M.; Hutchinson, A.

    2014-12-01

    Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls

  1. Biomimetric sentinel reef structures for optical sensing and communications

    Science.gov (United States)

    Fries, David; Hutcheson, Tim; Josef, Noam; Millie, David; Tate, Connor

    2017-05-01

    Traditional artificial reef structures are designed with uniform cellular architectures and topologies and do not mimic natural reef forms. Strings and ropes are a proven, common fisheries and mariculture construction element throughout the world and using them as artificial reef scaffolding can enable a diversity of ocean sensing, communications systems including the goal of sentinel reefs. The architecture and packaging of electronics is key to enabling such structures and systems. The distributed sensor reef concept leads toward a demonstrable science-engineering-informed framework for 3D smart habitat designs critical to stock fish development and coastal monitoring and protection. These `nature-inspired' reef infrastructures, can enable novel instrumented `reef observatories' capable of collecting real-time ecosystem data. Embedding lighting and electronic elements into artificial reef systems are the first systems conceptualized. This approach of bringing spatial light to the underwater world for optical sensing, communication and even a new breed of underwater robotic vehicle is an interdisciplinary research activity which integrates principles of electronic packaging, and ocean technology with art/design.

  2. Remote sensing techniques for vegetation moisture and fire risk estimation

    Science.gov (United States)

    Dasgupta, Swarvanu

    This dissertation is aimed at evaluating and improving remote sensing techniques for vegetation moisture and fire risk estimation. Empirical retrievals of vegetation moisture using liquid water absorption based spectral indices such as the NDWI (Normalized Difference Water Index) and NDII (Normalized Difference Infrared Index) may have uncertainties, since these indices cannot fully normalize the reflectance variability due to other biophysical, biochemical, soil and illumination viewing geometry factors. Coupled leaf-canopy reflectance models, National Fire Danger Rating System data and the FARSITE fire behavior model were used to estimate the effect of Live Fuel Moisture Content (LFMC) retrieval uncertainties on fire spread rate predictions. The uncertainty estimation was focused on the Okefenokee National Wildlife Refuge where errors in LFMC retrievals using NDWI and NDII were shown to result in considerable fire spread rate prediction errors at lower LFMC levels. Soil reflectance contamination driven by soil moisture variability was identified as a problem causing errors in Vegetation Water Content (VWC) retrievals over low vegetation conditions. Analysis of canopy reflectance simulations from coupled soil-leaf-canopy reflectance models revealed that VWC isolines were curved and did not converge at the origin of the 1.64mum--0.86mum space. These were identified as causes for the soil moisture contamination of the spectral index NDII. As an improvement strategy an origin transformed NDII, called the SANDII (Soil Adjusted NDII) was designed to minimize soil contamination. Further separate regression models between VWC and the SANDII for different soil moisture classes were proposed to account for the curved nature of VWC isolines. The new technique which requires categorical soil moisture information was shown to reduce VWC estimation errors by about 20% over grassland conditions. The approach was supported using data collected over pastures during the Soil

  3. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing.

    Science.gov (United States)

    Seidel, Felix; Schläpfer, Daniel; Nieke, Jens; Itten, Klaus I

    2008-03-18

    This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD) by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτλ(aer) ) and compared to the available measuring sensitivity of the sensor (NE ΔLλ(sensor)). This is done for multiple signal-to-noise ratios (SNR) and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions.

  4. Analyzing Fourier Transforms for NASA DFRC's Fiber Optic Strain Sensing System

    Science.gov (United States)

    Fiechtner, Kaitlyn Leann

    2010-01-01

    This document provides a basic overview of the fiber optic technology used for sensing stress, strain, and temperature. Also, the document summarizes the research concerning speed and accuracy of the possible mathematical algorithms that can be used for NASA DFRC's Fiber Optic Strain Sensing (FOSS) system.

  5. Tilted fiber Bragg gratings in multicore optical fibers for optical sensing.

    Science.gov (United States)

    Barrera, David; Madrigal, Javier; Sales, Salvador

    2017-04-01

    We have inscribed a tilted fiber Bragg grating (TFBG) in selected cores of a multicore optical fiber. The presence of the TFBG permits to couple light from the incident-guided mode to the cladding modes and to the neighbor cores, and this interaction can be used for optical sensing. We measured different magnitudes: strain, curvature magnitude and direction, and external refractive index. The curvature results show a linear dependence of the maximum crosstalk with the curvature magnitude with a sensitivity of 2.5  dB/m-1 as the curvature magnitude increases and at the same time a wavelength shift of 70  pm/m-1. Changes in the external refractive index gradually vanish the cladding modes resonances and the crosstalk between the different cores, obtaining a reduction of the 90% of the optical spectra integral area for refractive indexes between 1.398 and 1.474.

  6. Optical differentiation wavefront sensing with binary pixelated transmission filters.

    Science.gov (United States)

    Qiao, J; Mulhollan, Z; Dorrer, C

    2016-05-02

    Sensors measuring the spatial phase of optical waves are widely used in optics. The optical differentiation wavefront sensor (ODWS) reconstructs the wavefront of an optical wave from wavefront slope measurements obtained by inducing linear field-transmission gradients in the far-field. Its dynamic range and sensitivity can be adjusted simply by changing the gradient slope. We numerically and experimentally demonstrate the possibility of implementing the spatially varying transmission gradient using distributions of small pixels that are either transparent or opaque. Binary pixelated filters are achromatic and can be fabricated with high accuracy at relatively low cost using commercial lithography techniques. We study the impact of the noise resulting from pixelation and binarization of the far-field filter for various test wavefronts and sensor parameters. The induced wavefront error is approximately inversely proportional to the pixel size. For an ODWS with dynamic range of 100 rad/mm over a 1-cm pupil, the error is smaller than λ/15 for a wide range of test wavefronts when using 2.5-μm pixels. We experimentally demonstrate the accuracy and consistency of a first-generation ODWS based on binary pixelated filters.

  7. Free space optical sensor network for fixed infrastructure sensing

    Science.gov (United States)

    Agrawal, Navik; Milner, Stuart D.; Davis, Christopher C.

    2009-08-01

    Free space optical (FSO) links for indoor sensor networks can provide data rates that can range from bits/s to hundreds of Mb/s. In addition, they offer physical security, and in contrast with omnidirectional RF networks, they avoid interference with other electronic systems. These features are advantageous for communication over short distances in fixed infrastructure sensor networks. In this paper the system architecture for a fixed infrastructure FSO sensor network is presented. The system includes a network of small, low power (mW), sensor systems, or "motes," that transmit data optically to a central "cluster head," which controls the network traffic of all the motes and can aggregate the sensor information. The cluster head is designed with multiple vertical cavity surface emitting lasers oriented in different directions and controlled to diverge at 12º in order to provide signal coverage over a wide field of view. Both the cluster head and motes form a local area network. Our system design focuses on low-power wireless motes that can maintain successful communication over distances up to a few meters without having to use stringent optical alignment techniques, and our network design focuses on controlling mote sleep cycles for energy efficiency. This paper presents the design as well as the experimental link and optical communications performance of a prototype FSO-based sensor network.

  8. Magnetic Sensing with Ferrofluid and Fiber Optic Connectors

    Directory of Open Access Journals (Sweden)

    Daniel Homa

    2014-02-01

    Full Text Available A simple, cost effective and sensitive fiber optic magnetic sensor fabricated with ferrofluid and commercially available fiber optic components is described in this paper. The system uses a ferrofluid infiltrated extrinsic Fabry-Perot interferometer (EFPI interrogated with an infrared wavelength spectrometer to measure magnetic flux density. The entire sensing system was developed with commercially available components so it can be easily and economically reproduced in large quantities. The device was tested with two different ferrofluid types over a range of magnetic flux densities to verify performance. The sensors readily detected magnetic flux densities in the range of 0.5 mT to 12.0 mT with measurement sensitivities in the range of 0.3 to 2.3 nm/mT depending on ferrofluid type. Assuming a conservative wavelength resolution of 0.1 nm for state of the art EFPI detection abilities, the estimated achievable measurement resolution is on the order 0.04 mT. The inherent small size and basic structure complimented with the fabrication ease make it well-suited for a wide array of research, industrial, educational and military applications.

  9. Evaluating mirror alignment systems using the optical sensing matrix

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, M [Universita di Siena, INFN Pisa (Italy); Freise, A [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)], E-mail: mantovan@ego-gw.it

    2008-07-15

    The most sensitive gravitational-wave detectors today are based on large-scale laser interferometers whose optics are suspended from pendulums to decouple the instrument from seismic motion. Complex control systems are required to set and maintain the microscopic position of each mirror at a precisely defined value. Such control systems use the interferometer signals as input signals, and ideally it is designed such that the degrees of freedom (mirror positions) are well decoupled in the interferometer signals. However, this is not always feasible, in particular the mirror alignment control signals in interferometric gravitational wave detectors often show strong couplings between the different degrees of freedom. In this paper we will describe a simple and powerful method to quantify in advance the performances of an alignment control system by analyzing the optical matrix of the proposed read-out system. We will motivate the method using a Fabry-Perot cavity as an example, and we will further present results for the Virgo alignment system where this method was used to characterize and improve the alignment sensing scheme.

  10. Optical properties and sensing applications of stellated and bimetallic nanoparticles

    Science.gov (United States)

    Smith, Alison F.

    This dissertation focuses on developing guidelines to aid in the design of new bimetallic platforms for sensing applications. Stellated metal nanostructures are a class of plasmonic colloids in which large electric field enhancements can occur at sharp features, making them excellent candidates for surface enhanced Raman spectroscopy (SERS) and surface enhanced infrared spectroscopy (SE-IRS) platforms. Shape-dependent rules for convex polyhedra such as cubes or octahedra exist, which describe far-field scattering and near-field enhancements. However, such rules are lacking for their concave (stellated) counterparts. This dissertation presents the optical response of stellated Au nanocrystals with Oh, D4h, D3h, C2v, and T d symmetry, which were modeled to systematically investigate the role of symmetry, branching, and particle orientation with respect to excitation source using finite difference time domain (FDTD) calculations. Expanding on stellated nanostructures, bimetallic compositions introduce an interplay between overall architecture and composition to provide tunable optical properties and the potential of new functionality. However, decoupling the complex compositional and structural contributions to the localized surface plasmon resonance (LSPR) remains a challenge, especially when the monometallic counterparts are not synthetically accessible for comparison and the theoretical tools for capturing gradient compositions are lacking. This dissertation explores a stellated Au-Pd nanocrystal model system with Oh symmetry to decouple structural and complex compositional effects on LSPR. (Abstract shortened by ProQuest.).

  11. Corrosion monitoring along infrastructures using distributed fiber optic sensing

    Science.gov (United States)

    Alhandawi, Khalil B.; Vahdati, Nader; Shiryayev, Oleg; Lawand, Lydia

    2016-04-01

    Pipeline Inspection Gauges (PIGs) are used for internal corrosion inspection of oil pipelines every 3-5 years. However, between inspection intervals, rapid corrosion may occur, potentially resulting in major accidents. The motivation behind this research project was to develop a safe distributed corrosion sensor placed inside oil pipelines continuously monitoring corrosion. The intrinsically safe nature of light provided motivation for researching fiber optic sensors as a solution. The sensing fiber's cladding features polymer plastic that is chemically sensitive to hydrocarbons within crude oil mixtures. A layer of metal, used in the oil pipeline's construction, is deposited on the polymer cladding, which upon corrosion, exposes the cladding to surrounding hydrocarbons. The hydrocarbon's interaction with the cladding locally increases the cladding's refractive index in the radial direction. Light intensity of a traveling pulse is reduced due to local reduction in the modal capacity which is interrogated by Optical Time Domain Reflectometery. Backscattered light is captured in real-time while using time delay to resolve location, allowing real-time spatial monitoring of environmental internal corrosion within pipelines spanning large distances. Step index theoretical solutions were used to calculate the power loss due changes in the intensity profile. The power loss is translated into an attenuation coefficient characterizing the expected OTDR trace which was verified against similar experimental results from the literature. A laboratory scale experiment is being developed to assess the validity of the model and the practicality of the solution.

  12. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs

    Science.gov (United States)

    Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-11-01

    Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture--a gold-coated highly tilted Bragg grating--that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10-8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas.

  13. Online technique for detecting state of onboard fiber optic gyroscope.

    Science.gov (United States)

    Miao, Zhiyong; Xu, Dingjie; He, Kunpeng; Pang, Shuwan; Tian, Chunmiao

    2015-02-01

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of "state of health" for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  14. Online technique for detecting state of onboard fiber optic gyroscope

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhiyong; He, Kunpeng, E-mail: pengkhe@126.com; Pang, Shuwan [Department of Automation, Harbin Engineering University, Harbin, Heilongjiang 150000 (China); Xu, Dingjie [School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, Heilongjiang 150000 (China); Tian, Chunmiao [Department of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang 150000 (China)

    2015-02-15

    Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation is painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.

  15. Novel Chromatic Technique Based on Optical Absorbance in Characterizing Mineral Hydraulic Oil Degradation

    OpenAIRE

    Ossia, C. V.; Kong, H

    2012-01-01

    A low cost, compact, real-time, and quick measurement optical device based on the absorbance of white light, which comprised of photodiodes in a 3-element color-sensor, feedback diodes, water and temperature sensing element, and so on, was developed and tested in low absorption mineral oil. The device, a deviation from conventional electrical, mechanical, and electrochemical techniques, uses color ratio (CR) and total contamination index (TCI) parameters based on transmitted light intensity i...

  16. A Study of Synchronization Techniques for Optical Communication Systems

    Science.gov (United States)

    Gagliardi, R. M.

    1975-01-01

    The study of synchronization techniques and related topics in the design of high data rate, deep space, optical communication systems was reported. Data cover: (1) effects of timing errors in narrow pulsed digital optical systems, (2) accuracy of microwave timing systems operating in low powered optical systems, (3) development of improved tracking systems for the optical channel and determination of their tracking performance, (4) development of usable photodetector mathematical models for application to analysis and performance design in communication receivers, and (5) study application of multi-level block encoding to optical transmission of digital data.

  17. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing

    Directory of Open Access Journals (Sweden)

    Elizaveta Klantsataya

    2015-09-01

    Full Text Available Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR configuration realized in an Exposed Core Microstructured Optical Fiber (ECF capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber. Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33–1.37 suitable for biosensing applications.

  18. Optical temperature sensing properties of Yb3+/Er3+ codoped LaF3 upconversion phosphor

    Science.gov (United States)

    Cheng, Xuerui; Ma, Xiaochun; Zhang, Huanjun; Ren, Yufen; Zhu, Kunkun

    2017-09-01

    The structural and optical properties of Er3+/Yb3+ codoped LaF3 phosphors are investigated using X-ray diffraction (XRD) and upconversion luminescence spectra. The result shows that the hexagonal phase of LaF3 keep stability at temperature lower than 800 °C in air condition and will be oxidized to be LaOF at higher temperature. Its upconversion emission intensity varies with the doping concentrations of Yb3+ ions and reaches a maximum at around 7 mol% Yb3+. The power-dependent luminescence reveals the possible emission mechanisms and the corresponding upconversion processes. Furthermore, the optical temperature sensing properties of LaF3: Er3+/Yb3+ are studied based on the fluorescence intensity ratio (FIR) technique for two thermally coupled levels (2H11/2 and 4S3/2) of Er3+. The maximum sensitivity is found to be about 0.00157 K-1 at 386 K, revealing this phosphor to be a promising prototype for applications in optical temperature sensing.

  19. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing

    Science.gov (United States)

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M.

    2015-01-01

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33–1.37) suitable for biosensing applications. PMID:26426022

  20. Study of Optical Humidity Sensing Properties of Sol-Gel Processed TiO2 and MgO Films

    Directory of Open Access Journals (Sweden)

    B. C. Yadav

    2007-04-01

    Full Text Available Paper reports a comparative study of humidity sensing properties of TiO2 and MgO films fabricated by Sol-gel technique using optical method. One sensing element of the optical humidity sensor presented here consists of rutile structured two-layered TiO2 thin film deposited on the base of an isosceles glass prism. The other sensing element consists of a film of MgO deposited by same technique on base of the prism. Light from He-Ne laser enters prism from one of refracting faces of the prism and gets reflected from the glass-film interface, before emerging out from its other isosceles face. This emergent beam is allowed to pass through an optical fiber. Light coming out from the optical fiber is measured with an optical power meter. Variations in the intensity of light caused by changes in humidity lying in the range 5%RH to 95%RH have been recorded. MgO film shows better sensitivity than TiO2 film.

  1. Optical Remote Sensing Measurements of Air Pollution in Mexico City During MCMA- 2006

    Science.gov (United States)

    Galle, B.; Mellqvist, J.; Johansson, M.; Rivera, C.; Samuelsson, J.; Zhang, Y.

    2007-05-01

    During March 2006 the Optical Remote sensing group at Chalmers University of Technology participated in the MCMA-2006 field campaign in Mexico City, performing measurements of air pollution using a set of different optical remote sensing instruments. This poster gives an overview of the techniques applied and results obtained. The techniques applied were: Solar Occultation FTIR and UV spectroscopy from fixed locations throughout the MCMA area, yielding total columns of CO, CH2O, SO2 and NO2. Long Path FTIR measurements from site T0 located in the north part of central Mexico City. With this instrument line-averaged concentration measurements of CO and CO2 was obtained in parallel with DOAS measurements performed by other partners. MAX-DOAS measurements from site T0, yielding total column and spatial distributions of SO2 and NO2. Mobile DOAS scattered Sunlight measurements of total columns of SO2 and NO2 in and around the MCMA area. Mobile and stationary DOAS measurements in the vicinity of Tula and Popocatépetl in order to quantify emissions from industry and volcano.

  2. Optically stimulated luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    2001-01-01

    Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear...

  3. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    Science.gov (United States)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  4. Research on the Design of an Optical Information Storage Sensing System Using a Diffractive Optical Element

    Directory of Open Access Journals (Sweden)

    Min Gu

    2013-11-01

    Full Text Available This paper introduces a compact optical information storage sensing system. Applications of this system include longitudinal surface plasmon resonance detection of gold nanorods with a single femtosecond laser in three-dimensional space as well as data storage. A diffractive optical element (DOE is applied in the system to separate the recording-reading beam from the servo beam. This allows us to apply a single laser and one objective lens in a single optical path for the servo beam and the recording-reading beam. The optical system has a linear region of 8 λ, which is compatible with current DVD servo modules. The wavefront error of the optical system is below 0.03 λrms. The minimum grating period of the DOE is 13.4 µm, and the depth of the DOE is 1.2 µm, which makes fabrication of it possible. The DOE is also designed to conveniently control the layer-selection process, as there is a linear correlation between the displacement of the DOE and the layer-selection distance. The displacement of DOE is in the range of 0–6.045 mm when the thickness of the layer-selection is 0.3 mm. Experiments were performed and the results have been verified.

  5. Hyperspectral remote sensing techniques for grass nutrient estimations in savannah ecosystems

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2010-03-01

    Full Text Available at various scales such as local, regional and global scale. Traditional field techniques to measure grass nutrient concentration have been reported to be laborious and time consuming. Remote sensing techniques provide opportunity to map grass nutrient...

  6. Optical remote sensing of sound in the ocean

    Science.gov (United States)

    Churnside, James H.; Naugolnykh, Konstantin; Marchbanks, Richard D.

    2014-05-01

    We are proposing a novel remote sensing technique to measure sound in the upper ocean. The objective is a system that can be flown on an aircraft. Conventional acoustic sensors are ineffective in this application, because almost none (~ 0.1 %) of the sound in the ocean is transmitted through the water/air interface. The technique is based on the acoustic modulation of bubbles near the sea surface. It is clear from the ideal gas law that the volume of a bubble will decrease if the pressure is increased, as long as the number of gas molecules and temperature remain constant. The pressure variations associated with the acoustic field will therefore induce proportional volume fluctuations of the insonified bubbles. The lidar return from a collection of bubbles has been shown to be proportional to the total void fraction, independent of the bubble size distribution. This implies that the lidar return from a collection of insonified bubbles will be modulated at the acoustic frequencies, independent of the bubble size distribution. Moreover, that modulation is linearly related to the sound pressure. The basic principles have been demonstrated in the laboratory, and these results will be presented. Estimates of signal-to-noise ratio suggest that the technique should work in the open ocean. Design considerations and signal-to-noise ratios will also be presented.

  7. Machine learning techniques in optical communication

    DEFF Research Database (Denmark)

    Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas

    2015-01-01

    Techniques from the machine learning community are reviewed and employed for laser characterization, signal detection in the presence of nonlinear phase noise, and nonlinearity mitigation. Bayesian filtering and expectation maximization are employed within nonlinear state-space framework...

  8. Machine learning techniques in optical communication

    DEFF Research Database (Denmark)

    Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas

    2016-01-01

    Machine learning techniques relevant for nonlinearity mitigation, carrier recovery, and nanoscale device characterization are reviewed and employed. Markov Chain Monte Carlo in combination with Bayesian filtering is employed within the nonlinear state-space framework and demonstrated for parameter...

  9. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-04-01

    This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume

  10. Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ codoped CaWO4 material

    Science.gov (United States)

    Cheng, Xuerui; Yang, Kun; Wang, Jiankun; Yang, Linfu; Cheng, Xiaoshuai

    2016-08-01

    Present article report on structural and optical properties of Er3+/Yb3+ codoped CaWO4 phosphors. Structural properties are explored using XRD and Raman technologies. The upconversion emission has been investigated with 980 nm excitation. The upconversion emission intensity is dependent on the concentrations of Yb3+ ions and reaches a maximum at 7%. Logarithmic plots of power dependencies reveal that the green and red emissions originate from a two-photon upconversion process. Based on the photon energy and the emission spectra, the possible upconversion processes and emission mechanisms are discussed. Finally, the optical temperature sensing properties has been performed using the fluorescence intensity ratio technique based on green upconversion emissions. Its temperature sensitivity is found to be above 0.0025 K-1 in the whole temperature range of 300-540 K, revealing this phosphor to be a promising optical temperature sensing material.

  11. Overview of compressive sensing techniques applied in holography [Invited].

    Science.gov (United States)

    Rivenson, Yair; Stern, Adrian; Javidi, Bahram

    2013-01-01

    In recent years compressive sensing (CS) has been successfully introduced in digital holography (DH). Depending on the ability to sparsely represent an object, the CS paradigm provides an accurate object reconstruction framework from a relatively small number of encoded signal samples. DH has proven to be an efficient and physically realizable sensing modality that can exploit the benefits of CS. In this paper, we provide an overview of the theoretical guidelines for application of CS in DH and demonstrate the benefits of compressive digital holographic sensing.

  12. Optical skin friction measurement technique in hypersonic wind tunnel

    Science.gov (United States)

    Chen, Xing; Yao, Dapeng; Wen, Shuai; Pan, Junjie

    2016-10-01

    Shear-sensitive liquid-crystal coatings (SSLCCs) have an optical characteristic that they are sensitive to the applied shear stress. Based on this, a novel technique is developed to measure the applied shear stress of the model surface regarding both its magnitude and direction in hypersonic flow. The system of optical skin friction measurement are built in China Academy of Aerospace Aerodynamics (CAAA). A series of experiments of hypersonic vehicle is performed in wind tunnel of CAAA. Global skin friction distribution of the model which shows complicated flow structures is discussed, and a brief mechanism analysis and an evaluation on optical measurement technique have been made.

  13. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    OpenAIRE

    R. Q. Shaddad; Mohammad, A. B.; S. A. Al-Gailani; Al-Hetar, A. M.

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the n...

  14. Integrating SAR with Optical and Thermal Remote Sensing for Operational Near Real-Time Volcano Monitoring

    Science.gov (United States)

    Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.

    2013-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of

  15. Optical correlator techniques applied to robotic vision

    Science.gov (United States)

    Hine, Butler P., III; Reid, Max B.; Downie, John D.

    1991-01-01

    Vision processing is one of the most computationally intensive tasks required of an autonomous robot. The data flow from a single typical imaging sensor is roughly 60 Mbits/sec, which can easily overload current on-board processors. Optical correlator-based processing can be used to perform many of the functions required of a general robotic vision system, such as object recognition, tracking, and orientation determination, and can perform these functions fast enough to keep pace with the incoming sensor data. We describe a hybrid digital electronic/analog optical robotic vision processing system developed at Ames Research Center to test concepts and algorithms for autonomous construction, inspection, and maintenance of space-based habitats. We discuss the system architecture design and implementation, its performance characteristics, and our future plans. In particular, we compare the performance of the system to a more conventional all digital electronic system developed concurrently. The hybrid system consistently outperforms the digital electronic one in both speed and robustness.

  16. Tear film measurement by optical reflectometry technique.

    Science.gov (United States)

    Lu, Hui; Wang, Michael R; Wang, Jianhua; Shen, Meixiao

    2014-02-01

    Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle.

  17. Remote sensing and geochemistry techniques for the assessment of ...

    African Journals Online (AJOL)

    Chiedza

    in winter because of thermal inversion. High levels of ... land characterised by vents which as conduit for oxygen and spontaneous combustion ... remote sensing data to map heavy metal enrichment and accumulation near the Emalahleni.

  18. Gabor-based fusion technique for Optical Coherence Microscopy.

    Science.gov (United States)

    Rolland, Jannick P; Meemon, Panomsak; Murali, Supraja; Thompson, Kevin P; Lee, Kye-sung

    2010-02-15

    We recently reported on an Optical Coherence Microscopy technique, whose innovation intrinsically builds on a recently reported - 2 microm invariant lateral resolution by design throughout a 2 mm cubic full-field of view - liquid-lens-based dynamic focusing optical probe [Murali et al., Optics Letters 34, 145-147, 2009]. We shall report in this paper on the image acquisition enabled by this optical probe when combined with an automatic data fusion method developed and described here to produce an in-focus high resolution image throughout the imaging depth of the sample. An African frog tadpole (Xenopus laevis) was imaged with the novel probe and the Gabor-based fusion technique, demonstrating subcellular resolution in a 0.5 mm (lateral) x 0.5 mm (axial) without the need, for the first time, for x-y translation stages, depth scanning, high-cost adaptive optics, or manual intervention. In vivo images of human skin are also presented.

  19. Influence of hemoglobin on non-invasive optical bilirubin sensing

    Science.gov (United States)

    Jiang, Jingying; Gong, Qiliang; Zou, Da; Xu, Kexin

    2012-03-01

    Since the abnormal metabolism of bilirubin could lead to diseases in the human body, especially the jaundice which is harmful to neonates. Traditional invasive measurements are difficult to be accepted by people because of pain and infection. Therefore, the real-time and non-invasive measurement of bilirubin is of great significance. However, the accuracy of currently transcutaneous bilirubinometry(TcB) is generally not high enough, and affected by many factors in the human skin, mostly by hemoglobin. In this talk, absorption spectra of hemoglobin and bilirubin have been collected and analyzed, then the Partial Least Squares (PLS) models have been built. By analyzing and comparing the Correlation and Root Mean Square Error of Prediction(RMSEP), the results show that the Correlation of bilirubin solution model is larger than that of the mixture solution added with hemoglobin, and its RMSEP value is smaller than that of mixture solution. Therefore, hemoglobin has influences on the non-invasive optical bilirubin sensing. In next step, it is necessary to investigate how to eliminate the influence.

  20. REMOTE SENSING OF WATER QUALITY IN OPTICALLY COMPLEX LAKES

    Directory of Open Access Journals (Sweden)

    T. Kutser

    2012-07-01

    Full Text Available Solving of several global and regional problems requires adequate data about lake water quality parameters like the amount and type of phytoplankton dominating in the lakes, the amount of dissolved and coloured dissolved organic matter and/or concentration of suspended sediment. Remote sensing is the only practical way to study many lakes provided it can produce sufficiently accurate estimates of the water characteristics. We studied optically very variable lakes in order to test both physics based methods and conventional band-ratio type algorithms in retrieval of water parameters. The modelled spectral library used in the physics based approach provided very good results for chlorophyll-a retrieval. The number of different concentrations of CDOM and suspended matter used in the simulations was too low to provide good estimates of these parameters. Extending the spectral library is currently in progress. Band-ratio type algorithms worked well in chlorophyll-a and CDOM retrieval. None of the algorithms tested for total suspended matter, organic suspended matter and inorganic suspended matter retrieval performed well enough and there is need in further testing.

  1. Understanding and applying open-path optical sensing data

    Science.gov (United States)

    Virag, Peter; Kricks, Robert J.

    1999-02-01

    During the last 10 years, open-path air monitors have evolved to yield reliable and effective measurements of single and multiple compounds on a real-time basis. To many individuals within the optical remote sensing community, the attributes of open-path and its the potential uses seem unlimited. Then why has the market has been stagnant for the last few years? The reason may center on how open-path information is applied and how well the end user understands that information. We constantly try to compare open-path data to risk/health or safety levels that are based for use at a single point and for a specific averaging period often far longer than a typical open-path data point. Often this approach is perceived as putting a square peg in a round hole. This perception may be well founded, as open-path data at times may need to go through extensive data manipulation and assumptions before it can be applied. This paper will review pervious open-path monitoring programs and their success in applying the data collected. We will also look at how open-path data is being currently used, some previous pitfalls in data use, alternate methods of data interpretation, and how open-path data can be best practically applied to fit current needs.

  2. Realistic Instrumentation Platform for Active and Passive Optical Remote Sensing.

    Science.gov (United States)

    Brydegaard, Mikkel; Merdasa, Aboma; Gebru, Alem; Jayaweera, Hiran; Svanberg, Sune

    2016-02-01

    We describe the development of a novel versatile optical platform for active and passive remote sensing of environmental parameters. Applications include assessment of vegetation status and water quality. The system is also adapted for ecological studies, such as identification of flying insects including agricultural pests. The system is based on two mid-size amateur astronomy telescopes, continuous-wave diode lasers at different wavelengths ranging from violet to the near infrared, and detector facilities including quadrant photodiodes, two-dimensional and line scan charge-coupled device cameras, and a compact digital spectrometer. Application examples include remote Ramanlaser-induced fluorescence monitoring of water quality at 120 m distance, and insect identification at kilometer ranges using the recorded wing beat frequency and its spectrum of overtones. Because of the low cost this developmental platform is very suitable for advanced research projects in developing countries and has, in fact, been multiplied during hands-on workshops and is now being used by a number of groups at African universities. © The Author(s) 2016.

  3. Binding Quantum Dots to Silk Biomaterials for Optical Sensing

    Directory of Open Access Journals (Sweden)

    Disi Lu

    2015-01-01

    Full Text Available Quantum dots (QDs, have great potential for fabricating optical sensing devices and imaging biomaterial degradation in vivo. In the present study, 2-mercaptoethylamine- (MEA- and mercaptopropionic acid- (MPA- capped CdTe-QDs were physically incorporated in silk films that contained a high content (>30% of crystalline beta-sheet structure. The beta-sheets were induced by the addition of glycerol, water annealing, glycerol/annealing, or treatment with methanol. Incorporation of QDs did not influence the formation of beta-sheets. When the films were extracted with water, most QDs remained associated with the silk, based on the retention of photoluminescence in the silk films and negligible photoluminescence in the extracts. Compared to the solution state, photoluminescence intensity significantly decreased for MEA-QDs but not for MPA-QDs in the silk films, while the emission maximum blue shifted (≈4 nm slightly for both. Further film digestion using protease XIV, alpha-chymotrypsin, and the combination of the two proteases suggested that QDs may be bound to the silk beta-sheet regions but not the amorphous regions. QDs photoluminescence in silk films was quenched when the concentration of hydrogen peroxide (H2O2 was above 0.2-0.3 mM, indicating the QDs-incorporated silk films can be used to report oxidation potential in solution.

  4. A survey on object detection in optical remote sensing images

    Science.gov (United States)

    Cheng, Gong; Han, Junwei

    2016-07-01

    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge-based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.

  5. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body.

    Science.gov (United States)

    Elfekey, Hatem; Bastawrous, Hany Ayad; Okamoto, Shogo

    2016-12-02

    Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF) electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body-because human tissues exhibit some conductivity at these frequencies-resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.

  6. A Touch Sensing Technique Using the Effects of Extremely Low Frequency Fields on the Human Body

    Directory of Open Access Journals (Sweden)

    Hatem Elfekey

    2016-12-01

    Full Text Available Touch sensing is a fundamental approach in human-to-machine interfaces, and is currently under widespread use. Many current applications use active touch sensing technologies. Passive touch sensing technologies are, however, more adequate to implement low power or energy harvesting touch sensing interfaces. This paper presents a passive touch sensing technique based on the fact that the human body is affected by the surrounding extremely low frequency (ELF electromagnetic fields, such as those of AC power lines. These external ELF fields induce electric potentials on the human body—because human tissues exhibit some conductivity at these frequencies—resulting in what is called AC hum. We therefore propose a passive touch sensing system that detects this hum noise when a human touch occurs, thus distinguishing between touch and non-touch events. The effectiveness of the proposed technique is validated by designing and implementing a flexible touch sensing keyboard.

  7. A low-cost large-aperture optical receiver for remote sensing and imaging applications

    Science.gov (United States)

    Hanes, Stephen A.

    2003-03-01

    An inexpensive large aperture (10 m class) receiver for optical wavelength imaging and remote sensing applications is discussed. The design was developed for active (laser illumination) imaging of remote objects using pupil plane measurement techniques, where relatively low optical quality collecting elements can be used. The approach is also well suited for conventional imaging at lower resolutions when light collection capability is of primary importance. The approach relies on a large aperture heliostat consisting of an array of flat mirror segments, like those used in solar collector systems, to collect light from the region of interest. The heliostat segments are tilted in a manner to concentrate the light, by making the light from all segments overlap at a common point, resulting in a region of higher intensity about the size of a segment at the heliostat "focus". A smaller secondary collector, consisting of a concave mirror located at the overlap point, further concentrates the light and forms a pupil image of the heliostat. Additional optics near the pupil image collimate the light for efficient transmission though a narrow band interference filter used to reduce sky background, and focus the light onto a PMT, or other sensor, for detection. Several design approaches for the collimating optics are discussed as well as system performance and limitations.

  8. Low voltage integrated optics electro-optical modulator applied to optical voltage transformer based on WLI technique

    Science.gov (United States)

    Santos, J. C.; Rubini, J.; Silva, L. P. C.; Caetano, R. E.

    2015-09-01

    The use of two electro-optical modulators linked in series, one for sensing and one for recovering signals, was formerly presented by some of the authors as a solution for interrogation of optical fiber sensor systems based on WLI method. A key feature required from such systems is that half-wave voltage (Vπ) of recovering modulator must be as small as possible. Aiming at meeting this requirement, in this paper it is presented the use of an unbalanced Michelson Interferometer implemented using an integrated optics component as recover interferometer in an optical voltage transformer intended for high voltage measurements.

  9. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings

    Science.gov (United States)

    Yang, Minghong; Bai, Wei; Guo, Huiyong; Wen, Hongqiao; Yu, Haihu; Jiang, Desheng

    2016-03-01

    This paper reviews the work on huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings developed at the National Engineering Laboratory for Fiber Optic Sensing Technology (NEL-FOST), Wuhan University of Technology, China. A versatile drawing tower grating sensor network based on ultra-weak fiber Bragg gratings (FBGs) is firstly proposed and demonstrated. The sensing network is interrogated with time- and wavelength-division multiplexing method, which is very promising for the large-scale sensing network.

  10. Phase retrieval techniques for adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Carrano, C. J., LLNL

    1998-03-01

    We have developed and tested a method for minimizing static aberrations in adaptive optics systems. In order to correct the static phase aberrations, we need to measure the aberrations through the entire system. We have employed various phase retrieval algorithms to detect these aberrations. We have performed simulations of our experimental setup demonstrating that phase retrieval can improve the static aberrations to below the 20 nm rms level, with the limiting factor being local turbulence in the A0 system. Experimentally thus far, we have improved the static aberrations down to the 50 nm level, with the limiting factor being the ability to adjust the deformable mirror. This should be improved with better control algorithms now being implemented.

  11. Optical image segmentation using wavelet filtering techniques

    Science.gov (United States)

    Veronin, Christopher P.

    1990-12-01

    This research effort successfully implemented an automatic, optically based image segmentation scheme for locating potential targets in a cluttered FLIR image. Such a design is critical to achieve real-time segmentation and classification for machine vision applications. The segmentation scheme used in this research was based on texture discrimination and employs orientation specific, bandpass spatial filters as its main component. The orientation specific, bandpass spatial filters designed during this research include symmetrically located circular apertures implemented on heavy, black aluminum foil; cosine and sine Gabor filters implemented with detour-phase computer generated holography photoreduced onto glass slides; and symmetrically located circular apertures implemented on a liquid crystal television (LCTV) for real-time filter selection. The most successful design was the circular aperture pairs implemented on the aluminum foil. Segmentation was illustrated for simple and complex texture slides, glass template slides, and static and real-time FLIR imagery displayed on an LCTV.

  12. Field results of antifouling techniques for optical instruments

    Science.gov (United States)

    Strahle, W.J.; Hotchkiss, F.S.; Martini, M.A.

    1998-01-01

    An anti-fouling technique is developed for the protection of optical instruments from biofouling which leaches a bromide compound into a sample chamber and pumps new water into the chamber prior to measurement. The primary advantage of using bromide is that it is less toxic than the metal-based antifoulants. The drawback of the bromide technique is also discussed.

  13. Ship Detection and Classification on Optical Remote Sensing Images Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Liu Ying

    2017-01-01

    Full Text Available Ship detection and classification is critical for national maritime security and national defense. Although some SAR (Synthetic Aperture Radar image-based ship detection approaches have been proposed and used, they are not able to satisfy the requirement of real-world applications as the number of SAR sensors is limited, the resolution is low, and the revisit cycle is long. As massive optical remote sensing images of high resolution are available, ship detection and classification on theses images is becoming a promising technique, and has attracted great attention on applications including maritime security and traffic control. Some digital image processing methods have been proposed to detect ships in optical remote sensing images, but most of them face difficulty in terms of accuracy, performance and complexity. Recently, an autoencoder-based deep neural network with extreme learning machine was proposed, but it cannot meet the requirement of real-world applications as it only works with simple and small-scaled data sets. Therefore, in this paper, we propose a novel ship detection and classification approach which utilizes deep convolutional neural network (CNN as the ship classifier. The performance of our proposed ship detection and classification approach was evaluated on a set of images downloaded from Google Earth at the resolution 0.5m. 99% detection accuracy and 95% classification accuracy were achieved. In model training, 75× speedup is achieved on 1 Nvidia Titanx GPU.

  14. Calibration and deployment of a fiber-optic sensing system for monitoring debris flows.

    Science.gov (United States)

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations.

  15. Removing sun glint from optical remote sensing images of shallow rivers

    Science.gov (United States)

    Overstreet, Brandon T.; Legleiter, Carl

    2017-01-01

    Sun glint is the specular reflection of light from the water surface, which often causes unusually bright pixel values that can dominate fluvial remote sensing imagery and obscure the water-leaving radiance signal of interest for mapping bathymetry, bottom type, or water column optical characteristics. Although sun glint is ubiquitous in fluvial remote sensing imagery, river-specific methods for removing sun glint are not yet available. We show that existing sun glint-removal methods developed for multispectral images of marine shallow water environments over-correct shallow portions of fluvial remote sensing imagery resulting in regions of unreliable data along channel margins. We build on existing marine glint-removal methods to develop a river-specific technique that removes sun glint from shallow areas of the channel without overcorrection by accounting for non-negligible water-leaving near-infrared radiance. This new sun glint-removal method can improve the accuracy of spectrally-based depth retrieval in cases where sun glint dominates the at-sensor radiance. For an example image of the gravel-bed Snake River, Wyoming, USA, observed-vs.-predicted R2 values for depth retrieval improved from 0.66 to 0.76 following sun glint removal. The methodology presented here is straightforward to implement and could be incorporated into image processing workflows for multispectral images that include a near-infrared band.

  16. Surface plasmon sensing of gas phase contaminants using optical fiber.

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, Steven Michael; White, Michael I.; Rumpf, Arthur Norman; Pfeifer, Kent Bryant

    2009-10-01

    Fiber-optic gas phase surface plasmon resonance (SPR) detection of several contaminant gases of interest to state-of-health monitoring in high-consequence sealed systems has been demonstrated. These contaminant gases include H{sub 2}, H{sub 2}S, and moisture using a single-ended optical fiber mode. Data demonstrate that results can be obtained and sensitivity is adequate in a dosimetric mode that allows periodic monitoring of system atmospheres. Modeling studies were performed to direct the design of the sensor probe for optimized dimensions and to allow simultaneous monitoring of several constituents with a single sensor fiber. Testing of the system demonstrates the ability to detect 70mTorr partial pressures of H{sub 2} using this technique and <280 {micro}Torr partial pressures of H{sub 2}S. In addition, a multiple sensor fiber has been demonstrated that allows a single fiber to measure H{sub 2}, H{sub 2}S, and H{sub 2}O without changing the fiber or the analytical system.

  17. Design of distributed Raman temperature sensing system based on single-mode optical fiber

    Institute of Scientific and Technical Information of China (English)

    Ziheng XU; Deming LIU; Hairong LIU; Qizhen SUN; Zhifeng SUN; Xu ZHANG; Wengang WANG

    2009-01-01

    The distributed optical fiber temperature sensor system based on Raman scattering has developed rapidly since it was invented in 1970s. The optical wavelengths used in most of the distributed temperature optical fiber sensor system based on the Raman scattering are around from 840 to 1330 nm, and the system operates with multimode optical fibers. However, this wavelength range is not suitable for long-distance transmission due to the high attenuation and dispersion of the transmission optical fiber. A novel distributed optical fiber Raman temperature sensor system based on standard single-mode optical fiber is proposed. The system employs the wavelength of 1550 nm as the probe light and the standard communication optical fiber as the sensing medium to increase the sensing distance. This system mainly includes three modules: the probe light transmitting module, the light magnifying and transmission module, and the signal acquisition module.

  18. UA wavefront control lab: design overview and implementation of new wavefront sensing techniques

    Science.gov (United States)

    Miller, Kelsey; Guyon, Olivier; Codona, Johanan; Knight, Justin; Rodack, Alexander

    2015-09-01

    We present an overview of the design of a new testbed for studying coronagraphic imaging and wavefront control using a variety of pupil and coronagraph architectures. The testbed is designed to explore optimal use of starlight (including starlight rejected by the coronagraph) for wavefront control, system self-calibration, and point spread function (PSF) calibration. It is also compatible with coronagraph designs for centrally obscured and segmented apertures, and includes shaped or apodized pupils, a range of focal plane masks and Lyot stops of multiple sizes, and an optional PIAA apodizing stage. Starlight is reflected and imaged from the focal plane mask and Lyot stop for low-order wavefront sensing. Both a segmented and a continuous sheet MEMS DM are included to simulate segmented telescope pupils, apply known test phase patterns, and implement a controllable phase apodization coronagraph. The testbed is adaptable and is currently being used to investigate three different techniques: (1) the differential optical transfer function (dOTF), (2) low-order wavefront sensing (LOWFS) with a hybrid-Lyot coronagraph, and (3) linear dark field control (LDFC).

  19. Evaluation of a fiber-optic technique for recording intramuscular pressure in the human leg.

    Science.gov (United States)

    Nilsson, Andreas; Zhang, Qiuxia; Styf, Jorma

    2016-10-01

    To evaluate a forward-sensing fiber-optic pressure technique for recording of intramuscular pressure (IMP) in the human leg and investigate factors that may influence IMP measurements used in diagnosing compartment syndromes. IMP in the tibialis anterior muscle was recorded simultaneously by a fiber-optic technique and needle-injection technique in 12 legs of 7 healthy subjects. Both measurement catheters were placed in parallel with the muscle fibers to the same depth, as verified by sonography. IMP recordings were performed at rest before, during and after applying a model of abnormally elevated IMP (simulated compartment syndrome). IMP was elevated by venous obstruction induced by a thigh tourniquet of a casted leg. IMP was also measured during injections of 0.1 ml of saline into the muscle through the catheters. IMP at baseline was 5.1 (SD = 2.6) mmHg measured with the fiber-optic technique and 7.1 (SD = 2.5) mmHg with the needle-injection technique (p syndrome. IMP increased significantly following injection of 0.1 ml of saline, measured by both techniques. It remained increased 1 min after injection. The fiber-optic technique was able to record pulse-synchronous IMP oscillations. The fiber-optic technique may be used for IMP measurements in a muscle with both normal and abnormally elevated IMP. It has good dynamic properties allowing for measurement of IMP oscillations. Saline injection used with needle-injection systems to ensure catheter patency compromises IMP readings at least one minute after injection.

  20. Examples of the application of optical process and quality sensing (OPQS) to beer brewing and polyurethane foaming processes.

    Science.gov (United States)

    Engelhard, Sonja; Kumke, Michael U; Löhmannsröben, Hans-Gerd

    2006-03-01

    Optical methods play an important role in process analytical technologies (PAT). Four examples of optical process and quality sensing (OPQS) are presented, which are based on three important experimental techniques: near-infrared absorption, luminescence quenching, and a novel method, photon density wave (PDW) spectroscopy. These are used to evaluate four process and quality parameters related to beer brewing and polyurethane (PU) foaming processes: the ethanol content and the oxygen (O2) content in beer, the biomass in a bioreactor, and the cellular structures of PU foam produced in a pilot production plant.

  1. Tumor margin detection using optical biopsy techniques

    Science.gov (United States)

    Zhou, Yan; Liu, Cheng-hui; Li, Jiyou; Li, Zhongwu; Zhou, Lixin; Chen, Ke; Pu, Yang; He, Yong; Zhu, Ke; Li, Qingbo; Alfano, Robert R.

    2014-03-01

    The aim of this study is to use the Resonance Raman (RR) and fluorescence spectroscopic technique for tumor margin detection with high accuracy based on native molecular fingerprints of breast and gastrointestinal (GI) tissues. This tumor margins detection method utilizes advantages of RR spectroscopic technique in situ and in real-time to diagnose tumor changes providing powerful tools for clinical guiding intraoperative margin assessments and postoperative treatments. The tumor margin detection procedures by RR spectroscopy were taken by scanning lesion from center or around tumor region in ex-vivo to find the changes in cancerous tissues with the rim of normal tissues using the native molecular fingerprints. The specimens used to analyze tumor margins include breast and GI carcinoma and normal tissues. The sharp margin of the tumor was found by the changes of RR spectral peaks within 2 mm distance. The result was verified using fluorescence spectra with 300 nm, 320 nm and 340 nm excitation, in a typical specimen of gastric cancerous tissue within a positive margin in comparison with normal gastric tissues. This study demonstrates the potential of RR and fluorescence spectroscopy as new approaches with labeling free to determine the intraoperative margin assessment.

  2. Novel Perturbation-Immune All-Fiber Optical Architecture for Current Sensing

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper describes a novel all-fiber optical architecture for electric current or magnetic field sensing which is immune against temperature and vibration perturbations in a hazardous environment. The architecture is structured by employing the fiber-optic wave plates (quarter, half or full) of the patented invention of the senior author. Experimental results on prototype fiber-optic specimen and on a variety of optical fiber networks confirm the respective theoretical predictions.

  3. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer many...

  4. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer...

  5. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  6. Theoretical analysis and experiment of micromechanics and mechanics-optics coupling of distributed optic-fiber crack sensing

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The micromechanical behaviors and mechanics-optics coupling effects of optic-fiber-concrete complex in the distributed optic-fiber sensing concrete-crack technology,which was used in health monitoring of Wu Gorge Bridge on Yangtze River and a large dam successfully,have been investigated.A micromechanical theoretical analysis method and micromechanical frictional contact bi-interface model,as well as a modified optical theoretical analysis method of the mechanics-optics coupling effects are presented.A series of verification experiments,including mechanical experiments and mechanics-optics coupling experiments,have been preformed.The results of micromechanical theoretical analysis and the analysis of the modified theory of mechanics-optics coupling along with mechanical and optical experimental data are shown to be in close agreement.Both the micromechanical theory and the modified theory of mechanics-optics coupling with their analysis methods can not only enhance credibility of this novel distributed sensing technology but also provide a way to understand its sensing mechanism and optimize its technical details and system.

  7. NASA Armstrong Flight Research Center (AFRC) Fiber Optic Sensing System (FOSS) Technology

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Chan, Patrick; Hamory, Phil; Pena, Frank

    2014-01-01

    Attached is a power point presentation created to assist the Tech Transfer Office and the FOSS project team members in responding to inquiries from the public about the capabilities of the Fiber Optic Sensing System.

  8. Consideration of smoothing techniques for hyperspectral remote sensing

    NARCIS (Netherlands)

    Vaiphasa, C.

    2006-01-01

    Spectral smoothing filters are popularly used in a large number of modern hyperspectral remote sensing studies for removing noise from the data. However, most of these studies subjectively apply ad hoc measures to select filter types and their parameters. We argue that this subjectively minded appro

  9. Consideration of smoothing techniques for hyperspectral remote sensing

    NARCIS (Netherlands)

    Vaiphasa, C.

    2006-01-01

    Spectral smoothing filters are popularly used in a large number of modern hyperspectral remote sensing studies for removing noise from the data. However, most of these studies subjectively apply ad hoc measures to select filter types and their parameters. We argue that this subjectively minded

  10. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing

    Directory of Open Access Journals (Sweden)

    Klaus I. Itten

    2008-03-01

    Full Text Available This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτλaer and compared to the available measuring sensitivity of the sensor (NE ΔLλsensor. This is done for multiple signal-to-noise ratios (SNR and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions.

  11. Passive optical sensing of atmospheric polarization for GPS denied operations

    Science.gov (United States)

    Aycock, Todd; Lompado, Art; Wolz, Troy; Chenault, David

    2016-05-01

    There is a rapidly growing need for position, navigation, and timing (PNT) capability that remains effective when GPS is degraded or denied. Naturally occurring sky polarization was used as long ago as the Vikings for navigation purposes. With current polarimetric sensors, the additional polarization information measured by these sensors can be used to increase the accuracy and the availability of this technique. The Sky Polarization Azimuth Sensing System (SkyPASS) sensor measures this naturally occurring sky polarization to give absolute heading information to less than 0.1° and offers significant performance enhancement over digital compasses and sun sensors. SkyPASS has been under development for some time for terrestrial applications, but use above the atmosphere may be possible and the performance specifications and SWAP are attractive for use as an additional pose sensor on a satellite. In this paper, we will describe the phenomenology, the sensor performance, and the latest test results of terrestrial SkyPASS; we will also discuss the potential for use above the atmosphere and the expected benefits and limitations.

  12. Study on application of optical clearing technique in skin diseases

    Science.gov (United States)

    Shan, Hao; Liang, Yanmei; Wang, Jingyi; Li, Yan

    2012-11-01

    So far, the study of the optical clearing is almost always about healthy tissue. However, the ultimate goal is to detect diseases for clinical application. Optical clearing on diseased skins is explored. The effect is evaluated by applying a combined liquid paraffin and glycerol mixed solution on several kinds of diseased skins in vitro. Scanning experiments from optical coherence tomography show that it has different effects among fibroma, pigmented nevus, and seborrheic keratosis. Based on the results, we conclude that different skin diseases have different compositions and structures, and their optical parameters and biological characteristics should be different, which implies that the optical clearing technique may have selectivity and may not be suitable for all kinds of skin diseases.

  13. Advanced Equalization Techniques for Digital Coherent Optical Receivers

    DEFF Research Database (Denmark)

    Arlunno, Valeria

    This PhD thesis addresses the design and performance evaluation of advanced Digital Signal Processing (DSP) algorithms for coherent optical fiber transmission systems. The research results presented in this thesis report on transmission of highly spectrally efficient optical communication systems...... employing multiplexing techniques with polarization multiplexing and multi-level modulations format. Advanced digital signal processing techniques offer robustness and flexibility for next generation high capacity optical fibre networks and are therefore considered as key building blocks in next generation...... format detection. Feedback equalization structure have been investigated in high order modulation formats transmission, when combined with coding techniques, and for closed spaced multiplexing scenario. Highlight results presented in this PhD thesis include evaluation and implementation of a novel...

  14. Tunable optical-path correlator for distributed strain or temperature-sensing application.

    Science.gov (United States)

    Yuan, Yonggui; Wu, Bing; Yang, Jun; Yuan, Libo

    2010-10-15

    Based on a cavity-length tunable fiber-loop resonator, a multibeam optical path difference is generated. It can be used to match and correlate the reflective signals from the partial reflective ends of each sensing fiber gauge. The correlation signals correspond to the sensing gauge lengths, and the shift of the correlation peak is related with the fiber sensing gauge elongation caused by strain or temperature. Therefore, it can be used to measure distributed strain or deformation for smart structural monitoring.

  15. Using Distributed Fiber-Optic Sensing Systems to Estimate Inflow and Reservoir Properties

    NARCIS (Netherlands)

    Farshbaf Zinati, F.

    2014-01-01

    Recent developments in the deployment of distributed fiber-optic sensing systems in horizontal wells carry the promise to lead to a new, cheap and reliable way of monitoring production and reservoir performance. Practical applicability of distributed pressure sensing for quantitative inflow detectio

  16. Congestion estimation technique in the optical network unit registration process.

    Science.gov (United States)

    Kim, Geunyong; Yoo, Hark; Lee, Dongsoo; Kim, Youngsun; Lim, Hyuk

    2016-07-01

    We present a congestion estimation technique (CET) to estimate the optical network unit (ONU) registration success ratio for the ONU registration process in passive optical networks. An optical line terminal (OLT) estimates the number of collided ONUs via the proposed scheme during the serial number state. The OLT can obtain congestion level among ONUs to be registered such that this information may be exploited to change the size of a quiet window to decrease the collision probability. We verified the efficiency of the proposed method through simulation and experimental results.

  17. Techniques for labeling of optical signals in bust switched networks

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Koonen, A. M. J.; Zhang, Jianfeng

    2003-01-01

    multiplexed (WDM) networks due to its single forwarding algorithm, thus yielding low latency, and it enables scaling to terabit rates. Moreover, LOBS is compatible with the general multiprotocol label switching (GMPLS) framework for a unified control plane. We present a review on techniques for labeling......We present a review of significant issues related to labeled optical burst switched (LOBS) networks and technologies enabling future optical internet networks. Labeled optical burst switching provides a quick and efficient forwarding mechanism of IP packets/bursts over wavelength division...

  18. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    Science.gov (United States)

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  19. A Method to Analyze the Potential of Optical Remote Sensing for Benthic Habitat Mapping

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Garcia

    2015-10-01

    Full Text Available Quantifying the number and type of benthic classes that are able to be spectrally identified in shallow water remote sensing is important in understanding its potential for habitat mapping. Factors that impact the effectiveness of shallow water habitat mapping include water column turbidity, depth, sensor and environmental noise, spectral resolution of the sensor and spectral variability of the benthic classes. In this paper, we present a simple hierarchical clustering method coupled with a shallow water forward model to generate water-column specific spectral libraries. This technique requires no prior decision on the number of classes to output: the resultant classes are optically separable above the spectral noise introduced by the sensor, image based radiometric corrections, the benthos’ natural spectral variability and the attenuating properties of a variable water column at depth. The modeling reveals the effect reducing the spectral resolution has on the number and type of classes that are optically distinct. We illustrate the potential of this clustering algorithm in an analysis of the conditions, including clustering accuracy, sensor spectral resolution and water column optical properties and depth that enabled the spectral distinction of the seagrass Amphibolis antartica from benthic algae.

  20. A distributed compressive sensing technique for data gathering in Wireless Sensor Networks

    NARCIS (Netherlands)

    Masoum, Alireza; Meratnia, Nirvana; Havinga, Paul J.M.

    2013-01-01

    Compressive sensing is a new technique utilized for energy efficient data gathering in wireless sensor networks. It is characterized by its simple encoding and complex decoding. The strength of compressive sensing is its ability to reconstruct sparse or compressible signals from small number of meas

  1. Bibliography of Remote Sensing Techniques Used in Wetland Research

    Science.gov (United States)

    1993-01-01

    wetland vege- tation in the Lesser Antilles ( Guadeloupe ). Proceedings of the seventh ISPRS Commission symposium; Enschede. Balkema. 499-504. Rousseau...wetland vege- tation in the Lesser Antilles ( Guadeloupe ). Proceedings of the seventh ISPRS Commission symposium; Enschede. Balkema. 499-504. A28 Appendix...Thompson, M. D., and Dams, R. V. 1986. Remote sensing as a tool for Alberta agricultural wetlands drainage inventory. M. D. Thompson, and R. J. Brown

  2. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    Science.gov (United States)

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber.

  3. Optical Frequency Upconversion Technique for Transmission of Wireless MIMO-Type Signals over Optical Fiber

    Directory of Open Access Journals (Sweden)

    R. Q. Shaddad

    2014-01-01

    Full Text Available The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO signals feeding multiple antennas in the fiber wireless (FiWi system. A novel optical frequency upconversion (OFU technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF. The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM. The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  4. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    Science.gov (United States)

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  5. Evaluation of Mechanical Modal Characteristics Using Optical Techniques

    Science.gov (United States)

    Lekki, John; Adamovsky, Grigory; Flanagan, Patrick; Weiland, Ken

    2002-01-01

    In this paper the sensitivity of embedded fiber optic sensors to changes in modal characteristics of plates is discussed. In order to determine the feasibility of embedded fiber Bragg gratings for the detection of modal shapes and modal frequencies, a comparison of holographically imaged modes and the detected dynamic strain from embedded fiber optic Bragg gratings is made. Time averaged optical holography is used for the detection of mechanical defects, or damage, in various aerospace components. The damage is detected by measuring an alteration in structural dynamics, which is visually apparent when using time-averaged holography. These shifts in the mode shapes, both in frequency of the resonance and spatial location of vibration nodes, are caused by changes in parameters that affect the structure's mechanical impedance, such as stiffness, mass and damping, resulting from cracks or holes. It is anticipated that embedded fiber optic sensor arrays may also be able to detect component damage by sensing these changes in modal characteristics. This work is designed to give an initial indication to the feasibility of damage detection through the monitoring of modal frequencies and mode shapes with fiber optic sensors.

  6. Red tide optical index: in situ optics and remote sensing models

    Science.gov (United States)

    Cetinic, I.; Karp-Boss, L.; Boss, E.; Ragan, M. A.; Jones, B. H.

    2007-05-01

    Harmful Algal Blooms (HABs) are recurring events in the coastal ocean, and local economies that depend on beach and coastal use are often adversely affected by these events. Inherent optical properties (absorption and backscattering) of the HAB dinoflagellate Lingulodinium polyedrum were measured in order to develop specific index that would enable easier detection of this HAB organism in the field. It has been noticed that red to blue and red to green ratio of absorption in this species is much lower then other measured species. A red tide ratio was tested in the field during a red tide episode in the San Pedro Channel, using a Wetlabs acS flow-through system. The red tide index gave a distinguishable signal in areas where L.polyedrum was present. Remote sensing reflectance was calculated from field and laboratory IOP measurements, using reverse Quasi-Analythical Alghoritm and Hydrolight to evaluate if the red tide index can be detected in the remote sensing ocean color measurements.

  7. Optical fiber sensing technology in the pipeline industry

    Energy Technology Data Exchange (ETDEWEB)

    Braga, A.M.B.; Llerena, R.W.A. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: abraga@mec.puc-rio.br; roberan@mec.puc-rio.br; Valente, L.C.G.; Regazzi, R.D. [Gavea Sensors, Rio de Janeiro, RJ (Brazil)]. E-mail: guedes@gaveasensors.com; regazzi@gaveasensors.com

    2003-07-01

    This paper is concerned with applications of optical fiber sensors to pipeline monitoring. The basic principles of optical fiber sensors are briefly reviewed, with particular attention to fiber Bragg grating technology. Different potential applications in the pipeline industry are discussed, and an example of a pipeline strain monitoring system based on optical fiber Bragg grating sensors is presented. (author)

  8. Physical and chemical sensing using monolithic semiconductor optical transducers

    Science.gov (United States)

    Zappe, Hans P.; Hofstetter, Daniel; Maisenhoelder, Bernd; Moser, Michael; Riel, Peter; Kunz, Rino E.

    1997-09-01

    We present two monolithically integrated optical sensor systems based on semiconductor photonic integrated circuits. These compact, robust and highly functional transducers perform all necessary optical and electro-optical functions on-chip; extension to multi-sensor arrays is easily envisaged. A monolithic Michelson interferometer for high-resolution displacement measurement and a monolithic Mach-Zehnder interferometer for refractometry are discussed.

  9. FOCAL PLANE WAVEFRONT SENSING USING RESIDUAL ADAPTIVE OPTICS SPECKLES

    Energy Technology Data Exchange (ETDEWEB)

    Codona, Johanan L.; Kenworthy, Matthew, E-mail: jlcodona@gmail.com [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2013-04-20

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance the Strehl ratio or suppress the residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly changing residual atmospheric speckles at the 6.5 m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor measurements are used to estimate the residual wavefront, allowing us to approximately compute the rapidly evolving phase and amplitude of speckle halo. When combined with relatively short, synchronized science camera images, the complex speckle estimates can be used to interferometrically analyze the images, leading to an estimate of the static diffraction halo with NCP effects included. In an operational system, this information could be collected continuously and used to iteratively correct quasi-static NCP errors or suppress imperfect coronagraphic halos.

  10. Focal Plane Wavefront Sensing using Residual Adaptive Optics Speckles

    CERN Document Server

    Codona, Johanan L

    2013-01-01

    Optical imperfections, misalignments, aberrations, and even dust can significantly limit sensitivity in high-contrast imaging systems such as coronagraphs. An upstream deformable mirror (DM) in the pupil can be used to correct or compensate for these flaws, either to enhance Strehl ratio or suppress residual coronagraphic halo. Measurement of the phase and amplitude of the starlight halo at the science camera is essential for determining the DM shape that compensates for any non-common-path (NCP) wavefront errors. Using DM displacement ripples to create a series of probe and anti-halo speckles in the focal plane has been proposed for space-based coronagraphs and successfully demonstrated in the lab. We present the theory and first on-sky demonstration of a technique to measure the complex halo using the rapidly-changing residual atmospheric speckles at the 6.5m MMT telescope using the Clio mid-IR camera. The AO system's wavefront sensor (WFS) measurements are used to estimate the residual wavefront, allowing ...

  11. Molecular biology techniques and applications for ocean sensing

    Directory of Open Access Journals (Sweden)

    J. P. Zehr

    2008-11-01

    Full Text Available The study of marine microorganisms using molecular biological techniques is now widespread in the ocean sciences. These techniques target nucleic acids which record the evolutionary history of microbes, and encode for processes which are active in the ocean today. Here we review some of the most commonly used molecular biological techniques. Molecular biological techniques permit study of the abundance, distribution, diversity, and physiology of microorganisms in situ. These techniques include the polymerase chain reaction (PCR and reverse-transcriptase PCR, quantitative PCR, whole assemblage "fingerprinting" approaches (based on nucleic acid sequence or length heterogeneity, oligonucleotide microarrays, and high-throughput shotgun sequencing of whole genomes and gene transcripts, which can be used to answer biological, ecological, evolutionary and biogeochemical questions in the ocean sciences. Moreover, molecular biological approaches may be deployed on ocean sensor platforms and hold promise for tracking of organisms or processes of interest in near-real time.

  12. Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques

    Science.gov (United States)

    Swann, D.; Klem, B.; McCoy, B.

    2010-09-01

    The current class of small satellite systems presents an analyst responsible for monitoring spacecraft operational status and early detection of detrimental anomalies with a broad variety of sensing and identification issues and challenges. Simple, small, cube-shaped satellites, without protruding solar panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors. This paper will describe spacecraft optical signature modeling and simulation techniques to develop sensing and identification algorithms for observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along with related observable features derived from multicolor and multiviewing aspect scenarios. This model and simulation analysis capability is used to support programs to monitor spacecraft performance status and identify anomalies associated with spacecraft damage/deterioration due to space debris or micrometeorite impact, thruster exhaust deposition or material aging. The development of state-of-the-art optical signature modeling tools to perform high-fidelity satellite models (such as the Air Force Academy FalconSat-5 or AFRL TacSat-3) simulations to characterize spectral radiant intensities apparent to passive, remote, nonresolved imaging sensors are described in detail. Simulations are performed for a comprehensive scenario range of natural (solar and earth) illumination and viewing conditions. Results are generated for comparing baseline, streamlined geometry models with the actual higher fidelity models that capture vehicle small-size hardware components and modifications. Output consisting of radiant intensity history apparent to ground-based sensor locations for vehicle trajectories that capture a comprehensive range of illumination conditions from the sun and underlying earth scene are presented for extensive spectral band

  13. Recent advances in M13 bacteriophage-based optical sensing applications

    Science.gov (United States)

    Kim, Inhong; Moon, Jong-Sik; Oh, Jin-Woo

    2016-10-01

    Recently, M13 bacteriophage has started to be widely used as a functional nanomaterial for various electrical, chemical, or optical applications, such as battery components, photovoltaic cells, sensors, and optics. In addition, the use of M13 bacteriophage has expanded into novel research, such as exciton transporting. In these applications, the versatility of M13 phage is a result of its nontoxic, self-assembling, and specific binding properties. For these reasons, M13 phage is the most powerful candidate as a receptor for transducing chemical or optical phenomena of various analytes into electrical or optical signal. In this review, we will overview the recent progress in optical sensing applications of M13 phage. The structural and functional characters of M13 phage will be described and the recent results in optical sensing application using fluorescence, surface plasmon resonance, Förster resonance energy transfer, and surface enhanced Raman scattering will be outlined.

  14. An Optical Fiber Displacement Sensor Using RF Interrogation Technique.

    Science.gov (United States)

    Kim, Hyeon-Ho; Choi, Sang-Jin; Jeon, Keum Soo; Pan, Jae-Kyung

    2016-02-24

    We propose a novel non-contact optical fiber displacement sensor. It uses a radio frequency (RF) interrogation technique which is based on bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The displacement is measured from the free spectral range (FSR) which is determined by the dip frequencies of the modulated MZ-EOM transfer function. In experiments, the proposed sensor showed a sensitivity of 456 kHz/mm or 1.043 kHz/V in a measurement range of 7 mm. The displacement resolution of the proposed sensor depends on the linewidth and the power of the optical source. Resolution better than 0.05 μm would be achieved if an optical source which has a linewidth narrower than 1.5 nm and a received power larger than -36 dBm is used. Also, the multiplexing characteristic of the proposed sensor was experimentally validated.

  15. Optical self-sensing of impact damage in composites using E-glass cloth

    Science.gov (United States)

    Rauf, A.; Hand, R. J.; Hayes, S. A.

    2012-04-01

    Self-sensing of damage in composites employs the reinforcing fibres as the sensing element, obviating the need for addition of sensing elements to the system. Optical self-sensing systems in the past have relied on the use of low refractive index resins in order to work, preventing the use of commercial laminating resins. In this study a commercial laminating resin (Araldite LY5052/Aradur HY5052) is modified with propylene carbonate, a commercial reactive diluent, to reduce the resin’s refractive index. It is shown that this system is capable of identifying and locating an impact and quantifying the extent of damage within a composite.

  16. Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques

    CERN Document Server

    Puy, Gilles; Gribonval, Rémi; Wiaux, Yves

    2011-01-01

    We advocate a compressed sensing strategy that consists of multiplying the signal of interest by a wide bandwidth modulation before projection onto randomly selected vectors of an orthonormal basis. Firstly, in a digital setting with random modulation, considering a whole class of sensing bases including the Fourier basis, we prove that the technique is universal in the sense that the required number of measurements for accurate recovery is optimal and independent of the sparsity basis. This universality stems from a drastic decrease of coherence between the sparsity and the sensing bases, which for a Fourier sensing basis relates to a spread of the original signal spectrum by the modulation (hence the name "spread spectrum"). The approach is also efficient as sensing matrices with fast matrix multiplication algorithms can be used, in particular in the case of Fourier measurements. Secondly, these results are confirmed by a numerical analysis of the phase transition of the l1- minimization problem. Finally, w...

  17. Statistical mechanics of sensing and communications: Insights and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, T; Davis, P [NTT Communication Science Laboratories, NIPPON TELEGRAPH AND TELEPHONE CORPORATION, 2-4, Hikaridai, Seika-cho, ' Keihanna Science City' , Kyoto 619-0237 (Japan)], E-mail: murayama@cslab.kecl.ntt.co.jp, E-mail: davis@cslab.kecl.ntt.co.jp

    2008-01-15

    In this article we review a basic model for analysis of large sensor networks from the point of view of collective estimation under bandwidth constraints. We compare different sensing aggregation levels as alternative 'strategies' for collective estimation: moderate aggregation from a moderate number of sensors for which communication bandwidth is enough that data encoding can be reversible, and large scale aggregation from very many sensors - in which case communication bandwidth constraints require the use of nonreversible encoding. We show the non-trivial trade-off between sensing quality, which can be increased by increasing the number of sensors, and communication quality under bandwidth constraints, which decreases if the number of sensors is too large. From a practical standpoint, we verify that such a trade-off exists in constructively defined communications schemes. We introduce a probabilistic encoding scheme and define rate distortion models that are suitable for analysis of the large network limit. Our description shows that the methods and ideas from statistical physics can play an important role in formulating effective models for such schemes.

  18. Transmission line resonance technique for eccentric core optical fibers

    Science.gov (United States)

    Georgantzos, E.; Boucouvalas, A. C.

    2016-12-01

    In several cases optical fibers in telecommunications have cores of non circular geometry. Fibre optic deformations appear in optical fibres for many reasons. Optical fibre core ellipticity for example where the fibre optic core is not perfectly circular due to fibre optic manufacturing tolerances, is measured and often is a problem. Optical fibre core eccentricity, where the fibre core is not on the axis of the fibre, but it is offset by a small length. This is another issue and very important for ensuring performance low loss splices and connector losses. Both of ellipticity and eccentricity are specified in accordance to international standards for fibre optic manufacturing telecommunications grade fibres. The present paper studies ellipticity and core eccentricity specifically and presents a new method for analysing their effect. We present an extension of the transmission line technique as a means of studying such fibers and deriving necessary parameters. Conformal mapping on the other hand is a simple mathematical tool by which we can generate sets of orthogonal two-dimensional coordinate systems. Shortly a conformal map of Cartesian two-dimensional space is defined by any analytical function W(z) where z, w, are: z = x + jy, W = θ + j φ The function deriving by the conformal mapping transformation h(θ ,φ )=| ∂w/∂z | = 1/|∂z/∂w|, can be used in order to define ∇A → and ∇×A → where A → is the magnetic or electric field in the derived orthogonal coordinate system. Useful conformal maps for fiber optics applications should have the property that the equation θ(x, y) = constant, is forming closed curves in a Cartesian two-dimensional space (x,y). If θ(x, y) = constant represents a set of co-eccentric circles, we obtain the normal case of conventional fibers with circular cores. If θ(x, y) = constant represents a set of eclipses, we are have the formation of elliptic core optical fibers. If θ(x, y) = constant represents a set of

  19. Novel sensing techniques for industrial scale bio-digesters

    Science.gov (United States)

    Rallis, Ilias; Deakin, Anthony; Spencer, J. W.; Jones, G. R.

    2005-05-01

    The monitoring of a complex industrial scale process is a challenging task, particularly when such a process is a large (100m3) industrial organic waste anaerobic digestion (AD) system. This paper describes the deployment of fibre optic based sensors for monitoring an AD process. To enable this complex process to proceed, a number of critical conditions must be set (e.g. temperature, pH etc.).Two novel fibre optic sensors have been developed for monitoring temperature and pH. These operate in a zone zero environment (highly explosive) and need to withstand vibrations and microbial activity and to operate over extended periods of time (months) with no or little servicing.

  20. Fiber Optic Shape Sensing for Tethered Marsupial Rovers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Building upon the successful proof of concept work in Phase I, Luna Innovations Incorporated is proposing to design, build, and test a sensing tether for marsupial...

  1. Fiber Optic Shape Sensing for Tethered Marsupial Rovers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated is proposing to design, build, and test a shape, length, and tension sensing tether for robotic exploration and sample-gathering...

  2. A fast auto-focusing technique for the long focal lens TDI CCD camera in remote sensing applications

    Science.gov (United States)

    Wang, Dejiang; Ding, Xu; Zhang, Tao; Kuang, Haipeng

    2013-02-01

    The key issue in automatic focus adjustment for long focal lens TDI CCD camera in remote sensing applications is to achieve the optimum focus position as fast as possible. Existing auto-focusing techniques consume too much time as the mechanical focusing parts of the camera move in steps during the searching procedure. In this paper, we demonstrate a fast auto-focusing technique, which employs the internal optical elements and the TDI CCD itself to directly sense the deviations in back focal distance of the lens and restore the imaging system to a best-available focus. It is particularly advantageous for determination of the focus, due to that the relative motion between the TDI CCD and the focusing element can proceed without interruption. Moreover, the theoretical formulas describing the effect of imaging motion on the focusing precision and the effective focusing range are also developed. Finally, an experimental setup is constructed to evaluate the performance of the proposed technique. The results of the experiment show a ±5 μm precision of auto-focusing in a range of ±500 μmdefocus, and the searching procedure could be accomplished within 0.125 s, which leads to remarkable improvement on the real-time imaging capability for high resolution TDI CCD camera in remote sensing applications.

  3. Optical scanning holography based on compressive sensing using a digital micro-mirror device

    Science.gov (United States)

    A-qian, Sun; Ding-fu, Zhou; Sheng, Yuan; You-jun, Hu; Peng, Zhang; Jian-ming, Yue; xin, Zhou

    2017-02-01

    Optical scanning holography (OSH) is a distinct digital holography technique, which uses a single two-dimensional (2D) scanning process to record the hologram of a three-dimensional (3D) object. Usually, these 2D scanning processes are in the form of mechanical scanning, and the quality of recorded hologram may be affected due to the limitation of mechanical scanning accuracy and unavoidable vibration of stepper motor's start-stop. In this paper, we propose a new framework, which replaces the 2D mechanical scanning mirrors with a Digital Micro-mirror Device (DMD) to modulate the scanning light field, and we call it OSH based on Compressive Sensing (CS) using a digital micro-mirror device (CS-OSH). CS-OSH can reconstruct the hologram of an object through the use of compressive sensing theory, and then restore the image of object itself. Numerical simulation results confirm this new type OSH can get a reconstructed image with favorable visual quality even under the condition of a low sample rate.

  4. Computed tomography and optical remote sensing: Development for the study of indoor air pollutant transport and dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Anushka Christina [Univ. of California, Berkeley, CA (United States)

    1995-06-01

    This thesis investigates the mixing and dispersion of indoor air pollutants under a variety of conditions using standard experimental methods. It also extensively tests and improves a novel technique for measuring contaminant concentrations that has the potential for more rapid, non-intrusive measurements with higher spatial resolution than previously possible. Experiments conducted in a sealed room support the hypothesis that the mixing time of an instantaneously released tracer gas is inversely proportional to the cube root of the mechanical power transferred to the room air. One table-top and several room-scale experiments are performed to test the concept of employing optical remote sensing (ORS) and computed tomography (CT) to measure steady-state gas concentrations in a horizontal plane. Various remote sensing instruments, scanning geometries and reconstruction algorithms are employed. Reconstructed concentration distributions based on existing iterative CT techniques contain a high degree of unrealistic spatial variability and do not agree well with simultaneously gathered point-sample data.

  5. Optical fibers with composite magnetic coating for magnetic field sensing

    Energy Technology Data Exchange (ETDEWEB)

    Radojevic, V.; Nedeljkovic, D.; Talijan, N. E-mail: ntalijan@elab.tmf.bg.ac.yu; Trifunovic, D.; Aleksic, R

    2004-05-01

    The investigated system for optical fiber sensor was multi-mode optical fiber with magnetic composite coating. Polymer component of composite coating was poly (ethylene-co-vinyl acetate)-EVA, and the magnetic component was powder of SmCo{sub 5} permanent magnet in form of single domain particles. The influence of the applied external magnetic field on the change of intensity of the light signal propagated through optical fiber was investigated.

  6. Optical fibers with composite magnetic coating for magnetic field sensing

    Science.gov (United States)

    Radojevic, V.; Nedeljkovic, D.; Talijan, N.; Trifunovic, D.; Aleksic, R.

    2004-05-01

    The investigated system for optical fiber sensor was multi-mode optical fiber with magnetic composite coating. Polymer component of composite coating was poly (ethylene-co-vinyl acetate)-EVA, and the magnetic component was powder of SmCo5 permanent magnet in form of single domain particles. The influence of the applied external magnetic field on the change of intensity of the light signal propagated through optical fiber was investigated.

  7. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  8. Efficient visualization techniques for high resolution remotely sensed data in a network environment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    There are three major research hotspots in efficient visualization techniques of high resolution remotely sensed data in network environment: the data organiza-tion and access in disk storage,the image data stitching and fitting methods,and the network transfers and access. In this paper a new method of "Big File" organi-zation for improving the storage access efficiency of high resolution remote data is presented; a "virtual data source" concept is introduced to solve the stitching problem of remotely sensed data from different sources with different resolutions; a remotely sensed data access engine design based on ATL technique is discussed to process the network transfers and access of remotely sensed data. All these techniques have been adopted in a prototype of digital China named "ChinaStar".

  9. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  10. Electro-optic techniques in electron beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    Electron accelerators such as laser wakefield accelerators, linear accelerators driving free electron lasers, or femto-sliced synchrotrons, are capable of producing femtosecond-long electron bunches. Single-shot characterization of the temporal charge profile is crucial for operation, optimization, and application of such accelerators. A variety of electro-optic sampling (EOS) techniques exists for the temporal analysis. In EOS, the field profile from the electron bunch (or the field profile from its coherent radiation) will be transferred onto a laser pulse co-propagating through an electro-optic crystal. This paper will address the most common EOS schemes and will list their advantages and limitations. Strong points that all techniques share are the ultra-short time resolution (tens of femtoseconds) and the single-shot capabilities. Besides introducing the theory behind EOS, data from various research groups is presented for each technique.

  11. Innovative, Inexpensive Etching Technique Developed for Polymer Electro- Optical Structures

    Science.gov (United States)

    Nguyen, Hung D.

    1999-01-01

    Electro-optic, polymer-based integrated optic devices for high-speed communication and computing applications offer potentially significant advantages over conventional inorganic electro-optic crystals. One key area of integrated optical technology--primary processing and fabrication--may particularly benefit from the use of polymer materials. However, as efforts concentrate on the miniaturization of electro-integrated circuit pattern geometries, the ability to etch fine features and smoothly sloped sidewalls is essential to make polymers useful for electro-integrated circuit applications. There are many existing processes available to etch polymer materials, but they all yield nearly vertical sidewalls. Vertical sidewalls are too difficult to reliably cover with a metal layer, and incomplete metalization degrades microwave performance, particularly at high frequency. However, obtaining a very sloped sidewall greatly improves the deposition of metal on the sidewall, leading to low-loss characteristics, which are essential to integrating these devices in highspeed electro-optic modulators. The NASA Lewis Research Center has developed in-house an inexpensive etching technique that uses a photolithography method followed by a simple, wet chemical etching process to etch through polymer layers. In addition to being simpler and inexpensive, this process can be used to fabricate smoothly sloped sidewalls by using a commercial none rodible mask: Spin-On-Glass. A commercial transparent material, Spin-On-Glass, uses processes and equipment similar to that for photoresist techniques.

  12. Optical and digital microscopic imaging techniques and applications in pathology.

    Science.gov (United States)

    Chen, Xiaodong; Zheng, Bin; Liu, Hong

    2011-01-01

    The conventional optical microscope has been the primary tool in assisting pathological examinations. The modern digital pathology combines the power of microscopy, electronic detection, and computerized analysis. It enables cellular-, molecular-, and genetic-imaging at high efficiency and accuracy to facilitate clinical screening and diagnosis. This paper first reviews the fundamental concepts of microscopic imaging and introduces the technical features and associated clinical applications of optical microscopes, electron microscopes, scanning tunnel microscopes, and fluorescence microscopes. The interface of microscopy with digital image acquisition methods is discussed. The recent developments and future perspectives of contemporary microscopic imaging techniques such as three-dimensional and in vivo imaging are analyzed for their clinical potentials.

  13. 3D printed disposable optics and lab-on-a-chip devices for chemical sensing with cell phones

    Science.gov (United States)

    Comina, G.; Suska, A.; Filippini, D.

    2017-02-01

    Digital manufacturing (DM) offers fast prototyping capabilities and great versatility to configure countless architectures at affordable development costs. Autonomous lab-on-a-chip (LOC) devices, conceived as only disposable accessory to interface chemical sensing to cell phones, require specific features that can be achieved using DM techniques. Here we describe stereo-lithography 3D printing (SLA) of optical components and unibody-LOC (ULOC) devices using consumer grade printers. ULOC devices integrate actuation in the form of check-valves and finger pumps, as well as the calibration range required for quantitative detection. Coupling to phone camera readout depends on the detection approach, and includes different types of optical components. Optical surfaces can be locally configured with a simple polishing-free post-processing step, and the representative costs are 0.5 US$/device, same as ULOC devices, both involving fabrication times of about 20 min.

  14. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    Energy Technology Data Exchange (ETDEWEB)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fiber optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second group of

  15. Classroom assessment techniques to assess Chinese students’ sense of division

    NARCIS (Netherlands)

    Zhao, X.; Van den Heuvel-Panhuizen, M.; Veldhuis, M.

    2015-01-01

    This paper is about an explorative study of the use of classroom assessment techniques (CATs) by primary school mathematics teachers in China. Six female teachers and 216 third-grade students from two schools in Nanjing were involved. The focus was on assessing whole number arithmetic. Teachers’ use

  16. Classroom assessment techniques to assess Chinese students’ sense of division

    NARCIS (Netherlands)

    Zhao, X.; Van den Heuvel-Panhuizen, M.|info:eu-repo/dai/nl/069266255; Veldhuis, M.|info:eu-repo/dai/nl/338041869

    2015-01-01

    This paper is about an explorative study of the use of classroom assessment techniques (CATs) by primary school mathematics teachers in China. Six female teachers and 216 third-grade students from two schools in Nanjing were involved. The focus was on assessing whole number arithmetic. Teachers’ use

  17. Performance of a Fiber Optic Spectrofluorometer with Applications for In Situ Sensing and Eddy Correlatio

    Science.gov (United States)

    Hu, I. H.; Hemond, H.

    2016-02-01

    A novel optical fiber spectrofluorometer has been created capable of high-speed, high-resolution in situ measurements of naturally fluorescing compounds. This low-power (acid and fluorescence concentration measurements. For example, in a 3 ppm humic acid solution, 1,900 photons were measured in 50 ms (20 Hz), with a stdev/avg error of 2.9%. This compares favorably to the theoretical counting statistics sqrt(N)/N error of 2.3%. The calibration curve for humic acid is highly linear at low to moderate concentrations (e.g. at environment. The use of optical fibers to interrogate a distal sensing volume allows great flexibility in physical setup, making the instrument suitable for a variety of marine applications. In particular, its adaptable geometry and fast response time render it particularly suitable for use in aquatic eddy correlation (EC) systems. EC is a relatively new technique for determining benthic fluxes that to date has mainly been used to determine dissolved oxygen fluxes. By coupling this spectrofluorometer to an Acoustic Doppler Velocimeter, it will be possible to determine benthic fluxes of naturally fluorescing compounds. Expanding the capabilities of EC in this way to a much wider range of biogeochemical fluxes is one exciting potential application of this new instrument.

  18. Optical remote sensing and correlation of office equipment functional state and stress levels via power quality disturbances inefficiencies

    Science.gov (United States)

    Sternberg, Oren; Bednarski, Valerie R.; Perez, Israel; Wheeland, Sara; Rockway, John D.

    2016-09-01

    Non-invasive optical techniques pertaining to the remote sensing of power quality disturbances (PQD) are part of an emerging technology field typically dominated by radio frequency (RF) and invasive-based techniques. Algorithms and methods to analyze and address PQD such as probabilistic neural networks and fully informed particle swarms have been explored in industry and academia. Such methods are tuned to work with RF equipment and electronics in existing power grids. As both commercial and defense assets are heavily power-dependent, understanding electrical transients and failure events using non-invasive detection techniques is crucial. In this paper we correlate power quality empirical models to the observed optical response. We also empirically demonstrate a first-order approach to map household, office and commercial equipment PQD to user functions and stress levels. We employ a physics-based image and signal processing approach, which demonstrates measured non-invasive (remote sensing) techniques to detect and map the base frequency associated with the power source to the various PQD on a calibrated source.

  19. Sensing system with Michelson-type fiber optical interferometer based on single FBG reflector

    Institute of Scientific and Technical Information of China (English)

    Xueliang Zhang; Zhou Meng; Zhengliang Hu

    2011-01-01

    A sensing system, with Michelson-type fiber optical interferometer based on single fiber Bragg grating (FBG) as the reflector, is demonstrated. The system used a frequency-matched ring fiber optical laser as the source. The closed Michelson-type fiber optical interferometer system will be helpful in simplifying the developed interferometric sensor by replacing the double reflectors with only one FBG reflecting the double-side light. The basic sensing properties of the system are demonstrated, with a fiber optic piezoelectric ceramic transducer embedded in the arm of the interferometer simulating the sensing signal.%As a simple fiber optic component,fiber Bragg grating (FBG) has been used frequently as a sensor,filter or reflector[1-4],etc.Meanwhile,the Michelson-type fiber optical interferometric sensor has achieved a high level of development in the acoustic,electric,and magnetic field sensors because of its simple and low-cost structure as well as multiplexing advantages.The Michelsontype interferometer has been widely applied with Faraday rotating mirrors (FRMs) or polarization maintaining fiber reflectors particularly in the fiber optic hydrophone system[5,6].At present,further research is aimed at simplifying fiber optical interferometric sensors.

  20. Detection of asphalt pavement cracks using remote sensing techniques

    Science.gov (United States)

    Mettas, Christodoulos; Agapiou, Athos; Themistocleous, Kyriacos; Neocleous, Kyriacos; Hadjimitsis, Diofantos G.

    2016-10-01

    Deterioration of asphalt road pavements is inevitable throughout its life cycle. There are several types of deterioration that take place on these surfaces, like surface defects and deformations. One of the most common asphalt defects is cracking. Fatigue, transverse, longitudinal, reflective, edge, block and slippage are types of cracking that can be observed anywhere in the world. Monitoring and preventative/periodic maintenance of these types of wears are two very important actions that have to take place to avoid "costly" solutions. This paper aims to introduce the spectral characteristics of uncracked (healthy) and cracked asphalt surfaces which can give a new asphalt crack index. This is performed through remote sensing applications in the area of asphalt pavements. Multispectral images can be elaborated using the index to enhance crack marks on asphalt surfaces. Ground spectral signatures were acquired from both uncracked and cracked asphalted areas of Cyprus (Limassol). Evaluation separability indices can be used to identify the optimum wavelength regions that can distinguish better the uncracked and cracked asphalt surfaces. The results revealed that the spectral sensitivity for the enhancement of cracked asphalt was detected using the Euclidean, Mahalanobis and Cosine Distance Indices in the Vis range (approximately at 450 nm) and in the SWIR 1 range (approximately at 1750 nm).

  1. The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales.

    Science.gov (United States)

    Strong, James Asa; Elliott, Michael

    2017-03-15

    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Noninvasive in vivo glucose sensing using an iris based technique

    Science.gov (United States)

    Webb, Anthony J.; Cameron, Brent D.

    2011-03-01

    Physiological glucose monitoring is important aspect in the treatment of individuals afflicted with diabetes mellitus. Although invasive techniques for glucose monitoring are widely available, it would be very beneficial to make such measurements in a noninvasive manner. In this study, a New Zealand White (NZW) rabbit animal model was utilized to evaluate a developed iris-based imaging technique for the in vivo measurement of physiological glucose concentration. The animals were anesthetized with isoflurane and an insulin/dextrose protocol was used to control blood glucose concentration. To further help restrict eye movement, a developed ocular fixation device was used. During the experimental time frame, near infrared illuminated iris images were acquired along with corresponding discrete blood glucose measurements taken with a handheld glucometer. Calibration was performed using an image based Partial Least Squares (PLS) technique. Independent validation was also performed to assess model performance along with Clarke Error Grid Analysis (CEGA). Initial validation results were promising and show that a high percentage of the predicted glucose concentrations are within 20% of the reference values.

  3. Sachse optical urethrotomy, a modified technique: 6 years of experience.

    Science.gov (United States)

    Sandozi, S; Ghazali, S

    1988-11-01

    Urethrotomy with the Sachse optical urethrotome has radically modified our management of strictures of the male urethra. A total of 143 patients underwent 210 procedures during 6 years. The strictures resolved in 85 per cent of the patients and they required no further treatment, including 52 patients followed for more than 6 years. A modified surgical technique using a pediatric cystoscope is described to inspect, traverse and cannulate the urethral stricture before optical urethrotomy, thus, enabling successful management of even the most difficult strictures. Our results confirm that the best prospects of cure were short and single urethral strictures, and that optical urethrotomy is the treatment of choice for strictures of the male urethra.

  4. Optical resilient packet ring (O-RPR) based on all-optical buffering techniques

    Science.gov (United States)

    Wu, Chongqing; Sheng, Xingzhi; Fu, Songnian; Wei, Bin; Li, Yajie; Liu, Aiming

    2006-01-01

    This paper reports the progress of the 863 high-technology project of China "Optical Resilient Packet Ring (O-RPR) Based on All-optical Buffering Techniques". In this ring network, for the packet through an intermediate node the conversion of O/E/O is not needed in order to overcome the bottleneck of O/E/O. In all-optical node a Dual Loop Optical Buffer (DLOB) is used to revolve the collision between the packet, which pass through the node, and add packet from local user to ring. The principle of DLOB is introduced. The bit-rate of head of optical frame is lower than the bit-rate of payload in a packet, in order to increase the efficiency of transmission link. This paper will introduce the network topology, layers and the structure of optical node. It includes an optical splitter, optical delay line as input buffer, a SOA as optical switch, which switch the packet dropping down form the ring or pass through the node, a DLOB and an electric buffer. An ARM is used for regulation of different buffers. The experiment results of a demonstrate network including 3 nodes are given.

  5. Micro‑cantilevers for optical sensing of biogenic amines

    DEFF Research Database (Denmark)

    Wang, Ying; Bravo Costa, Carlos André; Sobolewska, Elżbieta Karolina

    2017-01-01

    This paper discusses the functionalization of micro-cantilevers in order to bind and sense specific biogenic amines related to meat degradation (cadaverine). The micro-cantilevers were functionalized with the composite 1,4,8,11-tetraazacyclotetradecane (cyclam), which is binding to cadaverine mol...

  6. Lidar: range-resolved optical remote sensing of the atmosphere

    National Research Council Canada - National Science Library

    Weitkamp, Claus; Walther, Herbert

    2005-01-01

    "Written by leading experts in optical radar, or lidar, this book brings all the recent practices up-to-date and covers a multitude of applications, from atmospheric sciences to environmental protection...

  7. Design of microstructured waveguide devices for applications in optical sensing

    DEFF Research Database (Denmark)

    Town, G.E.; McCosker, R.; Yuan, Scott Wu;

    2010-01-01

    Microstructured waveguides provide a versatile platform for controlling interactions between light and their environment. We show how microstructured waveguides may be designed to improve the performance of optical sensors, and discuss their practical implementation.......Microstructured waveguides provide a versatile platform for controlling interactions between light and their environment. We show how microstructured waveguides may be designed to improve the performance of optical sensors, and discuss their practical implementation....

  8. Construction and Optical Testing of Inflatable Membrane Mirror Using Structured Light Technique

    Directory of Open Access Journals (Sweden)

    Felipe Patiño-Jiménez

    2015-01-01

    Full Text Available Construction and characterization of an inflatable mirror prototype made out of flexible polymeric membranes are being presented. Surfaces were curved by imposing a slight excess of air pressure. Lightweighted, lowcost, and commercially available materials were selected in order to produce solar concentration elements at competitive prices. In this sense, large-area, image-forming mirrors with low optical acuity were achieved by concentration purposes. Optical characterization of the mirror’s shape at a given pressure or curvature radius was done by means of a structuredlight technique with a resolution of 0.1 mm finding a conical shape acquired by the inflated mirror as the best approximation. Concentration ratio achieved for a focal length of 5068 mm was of 25.1 suns, making a promising approach for lowering initial investment costs in applications such as hot-water, parabolic dish with Stirling engines, or concentrated photovoltaic electricity generation.

  9. Optical, infrared and radio astronomy from techniques to observation

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents the established sciences of optical, infrared, and radio astronomy as distinct research areas, focusing on the science targets and the constraints that they place on instrumentation in the different domains. It aims to bridge the gap between specialized books and practical texts, presenting the state of the art in different techniques. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities that drive the building of instrumentation and the development of advanced techniques. The specific telescopes and detectors are then presented, together with the techniques used to measure fluxes and spectra. Finally, the instruments and their limits are discussed to assist readers in choice of setup, planning and execution of observations, and data reduction. The volume also includes worked examples and problem sets to improve student understanding; tables and figures in chapters summarize the state of the art of instrumentation and techniques.

  10. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  11. Optical Microstructures Fabricated with Direct Laser Writing Technique

    Directory of Open Access Journals (Sweden)

    Kowalczyk M.

    2014-12-01

    Full Text Available Three-dimensional photolitography, also known as Direct Laser Writing (DLW, is a powerful technique for fabrication of photonic microstructures. In this paper we present the basics of the relevant technology and discuss some features of the fabrication process. We also describe the experimental setup designed for making colour filters based on diffraction gratings, fibre-tip-integrated lens and anti-reflective coating designed for telecom wavelength (1550 nm. The results obtained demonstrate the DLW technique to be a promising fast prototyping fabrication method that may allow manipulating the properties of optical materials.

  12. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid......Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  13. Ultrabroadband Phased-Array Receivers Based on Optical Techniques

    Science.gov (United States)

    2016-02-26

    AFRL-AFOSR-VA-TR-2016-0121 Ultrabroadband Phased-array Receivers Based on Optical Techniques Christopher Schuetz UNIVERSITY OF DELAWARE Final Report...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Delaware 210 Hullihen Hall Newark, DE 19716 8. PERFORMING ORGANIZATION...Rev. 8/98) Prescribed by ANSI Std . Z39.18 Adobe Professional 7.0 Reset INSTRUCTIONS FOR COMPLETING SF 298 1. REPORT DATE. Full publication date

  14. Simulation Techniques and Prosthetic Approach Towards Biologically Efficient Artificial Sense Organs- An Overview

    CERN Document Server

    Neogi, Biswarup; Mukherjee, Soumyajit; Das, Achintya; Tibarewala, D N

    2011-01-01

    An overview of the applications of control theory to prosthetic sense organs including the senses of vision, taste and odor is being presented in this paper. Simulation aspect nowadays has been the centre of research in the field of prosthesis. There have been various successful applications of prosthetic organs, in case of natural biological organs dis-functioning patients. Simulation aspects and control modeling are indispensible for knowing system performance, and to generate an original approach of artificial organs. This overview focuses mainly on control techniques, by far a theoretical overview and fusion of artificial sense organs trying to mimic the efficacies of biologically active sensory organs. Keywords: virtual reality, prosthetic vision, artificial

  15. Aerial remote sensing hyperspectral techniques for rocky outcrops mapping

    Directory of Open Access Journals (Sweden)

    V. Tramutoli

    2002-06-01

    Full Text Available In this work the MIVIS (Multispectral Infrared and Visible Imaging Spectrometer hyperspectral data, acquired during aerial campaigns made in 1998 over the Pollino National Park in the framework of the «Progetto Pollino», have been used to set up a supervised technique devoted to identify the presence of selected rocky outcrops. Tests have been performed over an extended area characterised by a complex orography. Within this area, serpentinite was chosen as a test-rock because it is present in isolated outcrops, distributed all over the test-area, besides subtending important problems of environmental nature as it contains asbestos. Geological information, coming from field observations or geological maps, was used to trigger the algorithms and as ground truth for its validation. Two spectral analysis techniques, SAM (Spectral Angle Mapper and LSU (Linear Spectral Unmixing, have been applied and their results n combined to automatically identify serpentinite outcrops and, in some cases, to mark its boundaries. The approach used in this work is characterised by simplicity (no atmosphere and illumination corrections were performed on MIVIS data, robustness (material of interest is identified for certainty and intrinsic exportability (the method proposed can be applied on different geographic areas and, in theory, to identify any kind of material because no datum about atmospheric and illumination conditions is required.

  16. Extractive sampling and optical remote sensing of F100 aircraft engine emissions.

    Science.gov (United States)

    Cowen, Kenneth; Goodwin, Bradley; Joseph, Darrell; Tefend, Matthew; Satola, Jan; Kagann, Robert; Hashmonay, Ram; Spicer, Chester; Holdren, Michael; Mayfield, Howard

    2009-05-01

    The Strategic Environmental Research and Development Program (SERDP) has initiated several programs to develop and evaluate techniques to characterize emissions from military aircraft to meet increasingly stringent regulatory requirements. This paper describes the results of a recent field study using extractive and optical remote sensing (ORS) techniques to measure emissions from six F-15 fighter aircraft. Testing was performed between November 14 and 16, 2006 on the trim-pad facility at Tyndall Air Force Base in Panama City, FL. Measurements were made on eight different F100 engines, and the engines were tested on-wing of in-use aircraft. A total of 39 test runs were performed at engine power levels that ranged from idle to military power. The approach adopted for these tests involved extractive sampling with collocated ORS measurements at a distance of approximately 20-25 nozzle diameters downstream of the engine exit plane. The emission indices calculated for carbon dioxide, carbon monoxide, nitric oxide, and several volatile organic compounds showed very good agreement when comparing the extractive and ORS sampling methods.

  17. All-optical delay technique for supporting multiple antennas in a hybrid optical - wireless transmission system

    DEFF Research Database (Denmark)

    Prince, Kamau; Chiuchiarelli, A; Presi, M

    2008-01-01

    We introduce a novel continuously-variable optical delay technique to support beam-forming wireless communications systems using antenna arrays. We demonstrate delay with 64-QAM modulated signals at a rate of 15 Msymbol/sec with 2.5 GHz carrier frequency.......We introduce a novel continuously-variable optical delay technique to support beam-forming wireless communications systems using antenna arrays. We demonstrate delay with 64-QAM modulated signals at a rate of 15 Msymbol/sec with 2.5 GHz carrier frequency....

  18. Effect of Silver Addition on the Ethanol-Sensing Properties of Indium Oxide Nanoparticle Layers: Optical Absorption Study

    Directory of Open Access Journals (Sweden)

    Vidya Nand Singh

    2007-01-01

    Full Text Available In2O3 and In2O3:Ag nanoparticle layers have been deposited using a two-step method consisting of chemical capping and dip coating techniques. The result of optical absorption analysis of In2O3:Ag samples shows the presence of Ag2O and Ag in air-annealed and vacuum-annealed samples, respectively. These results have been correlated with the gas sensing properties of these layers towards ethanol and support the proposed mechanism that increase in sensor response on Ag addition is due to the conversion of Ag2O to Ag in the presence of ethanol.

  19. Application of remote sensing techniques to measurement of windblown dust over the Columbia Plateau

    Science.gov (United States)

    Vaughan, Joseph Kevin

    The Columbia Plateau PM10 Project (CP3) is a multidisciplinary program to investigate the effect of windblown dust upon air quality within the Columbia Plateau of eastern Washington, northeastern Oregon and northern Idaho. The research presented here involves three applications of spectral remote sensing technologies in support of CP3 objectives to characterize regional vegetative cover and to determine aerosol dust burdens in the atmosphere. In the first application, data from the Advanced Very-High Resolution Radiometer (AVHRR) were used to construct a detailed vegetation map for input to an air quality modeling system for windblown dust. Composite biweekly AVHRR data were used in conjunction with soils maps to develop vegetation classes (including conservation lands), defined by modeling requirements, through a spectral clustering technique. The vegetation map was validated using both ground-truth observations and NDVI (normalized difference vegetative index) results from the entire growing season, and at multiple locations. The result is a validated vegetation map meeting the requirements of the CP3 air quality modeling system. In the second application, ground-based Multi-filter Shadow-band Radiometer (MFRSR) measurements collected at two sites were used to determine the aerosol optical thickness (AOT) through the 1998 growing season and including an April, 1998 Asian dust influx. The AOT reached a maximum of ~0.45 at 500 nm during the Asian dust event. Finally, the third application employed a contrast method to obtain AOT from two pairs of AVHRR images; results were evaluated using MFRSR-derived AOT observations. The method yielded reasonable results in one case (~0.14 compared to MFRSR AOT of 0.07) and inconclusive results in the other. This experiment was the first application of the contrast method for AOT from AVHRR imagery to a mid-latitude continental region and represents progress toward an observationally based continental dust climatology. Taken

  20. Path radiance technique for retrieving aerosol optical thickness over land

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Guoyong [Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Catonsville (United States); Tsay, Si-Chee [NASA Goddard Space Flight Center, Greenbelt, Maryland (United States); Cahalan, Robert F. [Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Catonsville (United States); NASA Goddard Space Flight Center, Greenbelt, Maryland (United States); Oreopoulos, Lazaros [Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Catonsville (United States)

    1999-12-27

    The key issue in retrieving aerosol optical thickness over land from shortwave satellite radiances is to identify and separate the signal due to scattering by a largely transparent aerosol layer from the noise due to reflection by the background surface, where the signal is relatively uniform compared to the highly inhomogeneous surface contribution. Sensitivity studies in aerosol optical thickness retrievals reveal that the apparent reflectance at the top of the atmosphere is very susceptible to the surface reflectance, especially when aerosol optical thickness is small. Uncertainties associated with surface reflectance estimation can greatly amplify the error of the aerosol optical thickness retrieval. To reduce these uncertainties, we have developed a ''path radiance'' method to retrieve aerosol optical thickness over land by extending the traditional technique that uses the ''dark object'' approach to extract the aerosol signal. This method uses the signature of the correlation of visible and middle-IR reflectance at the surface and couples the correlation with the atmospheric effect. We have applied this method to a Landsat TM (Thematic Mapper) image acquired over the Oklahoma southern Great Plains site of the Department of Energy Atmospheric Radiation Measurement (ARM) program on September 27, 1997, a very clear day (aerosol optical thickness of 0.07 at 0.5 {mu}m) during the first Landsat Intensive Observation Period. The retrieved mean aerosol optical thickness for TM band 1 at 0.49 {mu}m and band 3 at 0.66 {mu}m agree very well with the ground-based Sun photometer measurements at the ARM site. The ability to retrieve small aerosol optical thickness makes this path radiance technique promising. More importantly, the path radiance is relatively insensitive to surface inhomogeneity. The retrieved mean path radiances in reflectance units have very small standard deviations for both TM blue and red bands. This small

  1. Integration of fiber optical shape sensing with medical visualization for minimal-invasive interventions

    Science.gov (United States)

    Paetz, Torben; Waltermann, Christian; Angelmahr, Martin; Ojdanic, Darko; Schade, Wolfgang; Witte, Michael; Hahn, Horst Karl

    2015-03-01

    We present a fiber optical shape sensing system that allows to track the shape of a standard telecom fiber with fiber Bragg grating. The shape sensing information is combined with a medical visualization platform to visualize the shape sensing information together with medical images and post-processing results like 3D models, vessel graphs, or segmentation results. The framework has a modular nature to use it for various medical applications like catheter or needle based interventions. The technology has potential in the medical area as it is MR-compatible and can easily be integrated in catheters and needles due to its small size.

  2. Tapered Optical Fiber Functionalized with Palladium Nanoparticles by Drop Casting and Laser Radiation for H2 and Volatile Organic Compounds Sensing Purposes

    Science.gov (United States)

    González-Sierra, Nancy Elizabeth; Gómez-Pavón, Luz del Carmen; Pérez-Sánchez, Gerardo Francisco; Luis-Ramos, Arnulfo; Zaca-Morán, Plácido; Chávez-Ramírez, Fernando

    2017-01-01

    A comparative study on the sensing properties of a tapered optical fiber pristine and functionalized with the palladium nanoparticles to hydrogen and volatile organic compounds (VOCs), is presented. The sensor response and, response/recovery times were extracted from the measurements of the transient response of the device. The tapered optical fiber sensor was fabricated using a single-mode optical fiber by the flame-brushing technique. Functionalization of the optical fiber was performed using an aqueous solution of palladium chloride by drop-casting technique assisted for laser radiation. The detection principle of the sensor is based on the changes in the optical properties of palladium nanoparticles when exposed to reducing gases, which causes a variation in the absorption of evanescent waves. A continuous wave laser diode operating at 1550 nm is used for the sensor characterization. The sensor functionalized with palladium nanoparticles by this technique is viable for the sensing of hydrogen and VOCs, since it shows an enhancement in sensor response and response time compared to the sensor based on the pristine optical microfiber. The results show that the fabricated sensor is competitive with other fiber optic sensors functionalized with palladium nanoparticles to the hydrogen. PMID:28878161

  3. Remote sensing techniques for conservation and management of natural vegetation ecosystems

    Science.gov (United States)

    Parada, N. D. J. (Principal Investigator); Verdesio, J. J.; Dossantos, J. R.

    1981-01-01

    The importance of using remote sensing techniques, in the visible and near-infrared ranges, for mapping, inventory, conservation and management of natural ecosystems is discussed. Some examples realized in Brazil or other countries are given to evaluate the products from orbital platform (MSS and RBV imagery of LANDSAT) and aerial level (photography) for ecosystems study. The maximum quantitative and qualitative information which can be obtained from each sensor, at different level, are discussed. Based on the developed experiments it is concluded that the remote sensing technique is a useful tool in mapping vegetation units, estimating biomass, forecasting and evaluation of fire damage, disease detection, deforestation mapping and change detection in land-use. In addition, remote sensing techniques can be used in controling implantation and planning natural/artificial regeneration.

  4. Optical sensing of a pulsating liquid in a brain-mimicking phantom

    Science.gov (United States)

    Myllylä, Teemu; Popov, Alexey; Korhonen, Vesa; Bykov, Alexander; Kinnunen, Matti

    2013-06-01

    In study of the brain, oxygenation changes in the cerebral cortex are increasingly monitored using optical methods based on near-infrared spectroscopy (NIRS). When monitoring blood oxygenation in the cerebral cortex, at depth of approximately 15 mm - 20 mm from the skin surface, separation distance between source and detector becomes significant. Many studies show that by increasing the source-detector distance, illuminating light penetrates deeper into tissue. In this work, we use optical phantoms to determine experimentally the minimum source-detector distance between that allows sensing of the cerebral cortex, particularly the grey matter of the brain. A multilayered forehead phantom was fabricated and a silicon tube was added inside the phantom at depths of 15 mm and 19 mm, measured from the surface of the skin mimicking layer. This depth corresponds to the grey matter layer of the brain. The phantom's optical properties were specifically designed to mimic the optical properties of tissue layers of the forehead and to facilitate near-infrared sensing. Optical sensing of liquid movement within the tube was measured by varying the distance between the near-infrared light source and the detector. Based on our measurements, we can conclude that it is possible to sense pulsations from a grey matter mimicking layer of the brain using near-infrared spectroscopy at a source-detector distance of 3 - 4 cm.

  5. Silicon Nitride Waveguides for Plasmon Optical Trapping and Sensing Applications

    CERN Document Server

    Zhao, Qiancheng; Huang, Yuewang; Capolino, Filippo; Boyraz, Ozdal

    2015-01-01

    We demonstrate a silicon nitride trench waveguide deposited with bowtie antennas for plasmonic enhanced optical trapping. The sub-micron silicon nitride trench waveguides were fabricated with conventional optical lithography in a low cost manner. The waveguides embrace not only low propagation loss and high nonlinearity, but also the inborn merits of combining micro-fluidic channel and waveguide together. Analyte contained in the trapezoidal trench channel can interact with the evanescent field from the waveguide beneath. The evanescent field can be further enhanced by plasmonic nanostructures. With the help of gold nano bowtie antennas, the studied waveguide shows outstanding trapping capability on 10 nm polystyrene nanoparticles. We show that the bowtie antennas can lead to 60-fold enhancement of electric field in the antenna gap. The optical trapping force on a nanoparticle is boosted by three orders of magnitude. A strong tendency shows the nanoparticle is likely to move to the high field strength region,...

  6. Probing the ultimate limit of fiber-optic strain sensing.

    Science.gov (United States)

    Gagliardi, G; Salza, M; Avino, S; Ferraro, P; De Natale, P

    2010-11-19

    The measurement of relative displacements and deformations is important in many fields such as structural engineering, aerospace, geophysics, and nanotechnology. Optical-fiber sensors have become key tools for strain measurements, with sensitivity limits ranging between 10(-9) and 10(-6)ε hertz (Hz)(-1/2) (where ε is the fractional length change). We report on strain measurements at the 10(-13)ε-Hz(-1/2) level using a fiber Bragg-grating resonator with a diode-laser source that is stabilized against a quartz-disciplined optical frequency comb, thus approaching detection limits set by thermodynamic phase fluctuations in the fiber. This scheme may provide a route to a new generation of strain sensors that is entirely based on fiber-optic systems, which are aimed at measuring fundamental physical quantities; for example, in gyroscopes, accelerometers, and gravity experiments.

  7. Nanostructured sapphire optical fiber for sensing in harsh environments

    Science.gov (United States)

    Chen, Hui; Liu, Kai; Ma, Yiwei; Tian, Fei; Du, Henry

    2017-05-01

    We describe an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an allalumina nanostructured sapphire optical fiber (NSOF) that overcomes decades-long challenges faced in the field of sapphire fiber optics. The strategy entails fiber coating with metal Al followed by subsequent anodization to form anodized alumina oxide (AAO) cladding of highly organized pore channel structure. We show that Ag nanoparticles entrapped in AAO show excellent structural and morphological stability and less susceptibility to oxidation for potential high-temperature surface-enhanced Raman Scattering (SERS). We reveal, with aid of numerical simulations, that the AAO cladding greatly increases the evanescent-field overlap both in power and extent and that lower porosity of AAO results in higher evanescent-field overlap. This work has opened the door to new sapphire fiber-based sensor design and sensor architecture.

  8. Enhanced sensing of molecular optical activity with plasmonic nanohole arrays

    CERN Document Server

    Gorkunov, Maxim V; Kondratov, Alexey V

    2016-01-01

    Prospects of using metal hole arrays for the enhanced optical detection of molecular chirality in nanosize volumes are investigated. Light transmission through the holes filled with an optically active material is modeled and the activity enhancement by more than an order of magnitude is demonstrated. The spatial resolution of the chirality detection is shown to be of a few tens of nanometers. From comparing the effect in arrays of cylindrical holes and holes of complex chiral shape, it is concluded that the detection sensitivity is determined by the plasmonic near field enhancement. The intrinsic chirality of the arrays due to their shape appears to be less important.

  9. Coupled optical microcavities: an enhanced refractometric sensing configuration.

    Science.gov (United States)

    Xiao, Yun-Feng; Gaddam, Venkat; Yang, Lan

    2008-08-18

    We theoretically investigate the application of coupled optical microcavities as refractive index sensors. Coupled microcavities support a very sharp asymmetrical Fano resonance, which gives rise to faster changes in output transmission than the changes from a single cavity. With the output transmission at a fixed wavelength that varies much faster than it does in a single-cavity resonance, the result is enhanced sensitivity of the device to the changes in refractive index. In addition, it is observed that both thermal and optical Kerr effects can be utilized to improve the sensitivity.

  10. Sensing CO gas with SnO{sub 2} thin films wetted with Cu prepared by sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S.; Cazares R, J. M. [Escuela Superior de Fisica y Matematicas, IPN, A. P. 75-544, 07300 Mexico D. F. (Mexico); Maldonado, A. [Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados, IPN, A. P. 14-740, 07000 Mexico D. F. (Mexico)

    2009-10-15

    Pure and Cu surface deposited SnO{sub 2} thin films have been prepared on soda-lime substrate using the sol-gel technique. The sensing CO gas properties were investigated in 230 nm in thickness thin films. Pure thin films were wetted with several layers of Cu. The sensors were fabricated and proved at 0, 1, 5, 50, 100 and 200 ppm concentration CO gas and at 23, 100, 200 and 300 C working temperatures. The structural, morphology, electrical and optical properties of such thin films are reported. The route of 2-methoxyethanol and monoethanolamine was used. The resistance was high for all the samples. As was proposed, all the samples resulted enough amorphous and so the X-ray diffraction spectra show such structural state. the surface morphology for the samples was characterized by SEM and also by AFM techniques. (Author)

  11. OptaSense distributed acoustic and seismic sensing using COTS fiber optic cables for infrastructure protection and counter terrorism

    Science.gov (United States)

    Duckworth, Gregory L.; Ku, Emery M.

    2013-06-01

    The OptaSense® Distributed Acoustic Sensing (DAS) technology can turn any cable with single-mode optical fiber into a very large and densely sampled acoustic/seismic sensor array—covering up to a 50 km aperture per system with "virtual" sensor separations as small as 1 meter on the unmodified cable. The system uses Rayleigh scattering from the imperfections in the fiber to return the optical signals measuring local fiber strain from seismic or air and water acoustic signals. The scalable system architecture can provide border monitoring and high-security perimeter and linear asset protection for a variety of industries—from nuclear facilities to oil and gas pipelines. This paper presents various application architectures and system performance examples for detection, localization, and classification of personnel footsteps, vehicles, digging and tunneling, gunshots, aircraft, and earthquakes. The DAS technology can provide a costeffective alternative to unattended ground sensors and geophone arrays, and a complement or alternative to imaging and radar sensors in many applications. The transduction, signal processing, and operator control and display technology will be described, and performance examples will be given from research and development testing and from operational systems on pipelines, critical infrastructure perimeters, railroads, and roadways. Potential new applications will be discussed that can take advantage of existing fiber-optic telecommunications infrastructure as "the sensor"—leading to low-cost and high-coverage systems.

  12. Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing

    Science.gov (United States)

    Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical

  13. Optical microresonator based on hollow sphere with porous wall for chemical sensing.

    Science.gov (United States)

    Wang, Hanzheng; Yuan, Lei; Kim, Cheol-Woon; Han, Qun; Wei, Tao; Lan, Xinwei; Xiao, Hai

    2012-01-01

    A porous-wall hollow glass microsphere (PW-HGM) was investigated as an optical resonator for chemical vapor sensing. A single mode optical fiber taper was used to interrogate the microresonator. Adsorption of chemical molecules into the nanosized pores induced a refractive index change of the thin wall and thus a shift in its resonance spectrum. The PW-HGM resonator had shown higher vapor detection sensitivity in comparison with a solid microsphere under similar test conditions.

  14. Optical Properties of Mineral Particles and Their Effect on Remote-Sensing Reflectance in Coastal Waters

    Science.gov (United States)

    2001-09-30

    1997. Photometric immersion refractometry : A method for determining the refractive index of marine microbial particles from beam attenuation...light is collected by the absorption meter due to geometry of instrument. In the previous report we described our effort to develop a method for...bulk optical properties in coastal waters, (2) develop reliable remote sensing algorithms for coastal waters, (3) develop improved methods for optical

  15. Bragg grating fiber optic sensing for bridges and other structures

    Science.gov (United States)

    Measures, Raymond M.; Alavie, A. Tino; Maaskant, Robert; Huang, Shang Yuan; LeBlanc, Michel

    1994-09-01

    We have demonstrated that fiber optic intracore Bragg grating sensors are able to measure the strain relief experienced over an extended period of time by both steel and carbon composite tendons within the concrete deck support girders of a recently constructed two span highway bridge. This is the first bridge in the world to test the prospects of using carbon fiber composite tendons to replace steel tendons. This unique set of measurements was accomplished with an array of 15 Bragg grating fiber optic sensors that were embedded within the precast concrete girders during their construction. We have also demonstrated that these same sensors can measure the change in the internal strain within the girders associated with both static and dynamic loading of the bridge with a truck. We are now studying the ability of Bragg grating fiber optic sensors to measure strong strain gradients and thereby provide a warning of debonding of any Bragg grating sensor from its host structure...one of the most important failure modes for any fiber optic strain sensor.

  16. Integrated Optical Interferometers with Micromachined Diaphragms for Pressure Sensing

    Science.gov (United States)

    DeBrabander, Gregory N.; Boyd, Joseph T.

    1996-01-01

    Optical pressure sensors have been fabricated which use an integrated optical channel waveguide that is part of an interferometer to measure the pressure-induced strain in a micromachined silicon diaphragm. A silicon substrate is etched from the back of the wafer leaving a rectangular diaphragm. On the opposite side of the wafer, ring resonator and Mach-Zehnder interferometers are formed with optical channel waveguides made from a low pressure chemical vapor deposited film of silicon oxynitride. The interferometer's phase is altered by pressure-induced stress in a channel segment positioned over the long edge of the diaphragm. The phase change in the ring resonator is monitored using a link-insensitive swept frequency laser diode, while in the Mach-Zehnder it is determined using a broad band super luminescent diode with subsequent wavelength separation. The ring resonator was found to be highly temperature sensitive, while the Mach-Zehnder, which had a smaller optical path length difference, was proportionally less so. The quasi-TM mode was more sensitive to pressure, in accord with calculations. Waveguide and sensor theory, sensitivity calculations, a fabrication sequence, and experimental results are presented.

  17. New optical tomographic & topographic techniques for biomedical applications

    Science.gov (United States)

    Buytaert, Jan

    The mammalian middle ear contains the eardrum and the three auditory ossicles, and forms an impedance match between sound in air and pressure waves in the fluid of the inner ear. Without this intermediate system, with its unsurpassed efficiency and dynamic range, we would be practically deaf. Physics-based modeling of this extremely complex mechanical system is necessary to help our basic understanding of the functioning of hearing. Highly realistic models will make it possible to predict the outcome of surgical interventions and to optimize design of ossicle prostheses and active middle ear implants. To obtain such models and with realistic output, basic input data is still missing. In this dissertation I developed and used two new optical techniques to obtain two essential sets of data: accurate three-dimensional morphology of the middle ear structures, and elasticity parameters of the eardrum. The first technique is a new method for optical tomography of macroscopic biomedical objects, which makes it possible to measure the three-dimensional geometry of the middle ear ossicles and soft tissues which are connecting and suspending them. I made a new and high-resolution version of this orthogonal-plane fluorescence optical sectioning method, to obtain micrometer resolution in macroscopic specimens. The result is thus a complete 3-D model of the middle (and inner) ear of gerbil in unprecedented quality. On top of high-resolution morphological models of the middle ear structures, I applied the technique in other fields of research as well. The second device works according to a new optical profilometry technique which allows to measure shape and deformations of the eardrum and other membranes or objects. The approach is called projection moire profilometry, and creates moire interference fringes which contain the height information. I developed a setup which uses liquid crystal panels for grid projection and optical demodulation. Hence no moving parts are present and

  18. Metrology Optical Power Budgeting in SIM Using Statistical Analysis Techniques

    Science.gov (United States)

    Kuan, Gary M

    2008-01-01

    The Space Interferometry Mission (SIM) is a space-based stellar interferometry instrument, consisting of up to three interferometers, which will be capable of micro-arc second resolution. Alignment knowledge of the three interferometer baselines requires a three-dimensional, 14-leg truss with each leg being monitored by an external metrology gauge. In addition, each of the three interferometers requires an internal metrology gauge to monitor the optical path length differences between the two sides. Both external and internal metrology gauges are interferometry based, operating at a wavelength of 1319 nanometers. Each gauge has fiber inputs delivering measurement and local oscillator (LO) power, split into probe-LO and reference-LO beam pairs. These beams experience power loss due to a variety of mechanisms including, but not restricted to, design efficiency, material attenuation, element misalignment, diffraction, and coupling efficiency. Since the attenuation due to these sources may degrade over time, an accounting of the range of expected attenuation is needed so an optical power margin can be book kept. A method of statistical optical power analysis and budgeting, based on a technique developed for deep space RF telecommunications, is described in this paper and provides a numerical confidence level for having sufficient optical power relative to mission metrology performance requirements.

  19. Rapid cost-effective silicon carbide optical component manufacturing technique

    Science.gov (United States)

    Casstevens, John M.; Plummer, Ronald; Jarocki, Jim

    1999-10-01

    Silicon carbide may well be the best known material for the manufacture of high performance optical components. A combination of extremely high specific stiffness (r/E), high thermal conductivity and outstanding dimensional stability make silicon carbide superior overall to beryllium and low- expansion glass ceramics. A major impediment to wide use of silicon carbide in optical systems has been the costs of preliminary pressing, casting, shaping and final finishing of silicon carbide. Diamond grinding of silicon carbide is a slow and expensive process even on machines specially designed for the task. The process described here begins by machining the component from a special type of graphite. This graphite is easily machined with multi-axis CNC machine tools to any level of complexity and lightweighting required. The graphite is then converted completely to silicon carbide with very small and very predictable dimensional change. After conversion to silicon carbide the optical surface is coated with very fine grain silicon carbide which is easily polished to extreme smoothness using conventional optical polishing techniques. The fabrication process and a 6 inch diameter development mirror is described.

  20. Development of facilities and methods for the metrological characterization of distributed temperature sensing systems based on optical fibres

    Science.gov (United States)

    Failleau, G.; Beaumont, O.; Delepine-Lesoille, S.; Plumeri, S.; Razouk, R.; Beck, Y. L.; Hénault, J. M.; Bertrand, J.; Hay, B.

    2017-01-01

    Raman distributed temperature sensing (DTS) technologies are currently under evaluation by the nuclear and hydraulic industries as it may bring promising alternatives to classical measurement techniques. The reliability of the DTS measurements, as well as the traceability to the temperature standards, must be ensured throughout the entire period of monitoring (typically over a few tens of years). In order to achieve this goal, one key task consists in the verification of the performances claimed by the DTS devices manufacturers. Thus, the metrological performances and characteristics of the DTS devices, such as their limitations and accuracies, as well as the practical aspects of systems implemented on site should be evaluated step by step. This paper describes the dedicated facilities which have been developed at LNE in order to evaluate and to qualify DTS devices for very demanding applications. A first case study performed on one specific DTS device is detailed. A systematic bias has been observed among others on the spatial resolution. The DTS response to a temperature variation step over 1 m (spatial resolution typically claimed by the manufacturers) of sensing optical fibre corresponds indeed to only 90% of the temperature step magnitude, whereas the full DTS response is obtained in fact for 10 m (the practical spatial resolution) of sensing optical fibre solicited by this temperature step variation.

  1. New fiber optic sensor: application to refractive index sensing

    Science.gov (United States)

    Meriaudeau, Fabrice; Wig, A. G.; Passian, A.; Ferrell, Trinidad L.

    2000-08-01

    Optical fibers are more and more used as chemical sensors. This is, mainly due to their low cost, and their high efficiency to work in harsh and remote environments. Many devices are based on thin film plasmon excitation where a metal coating is evaporated onto the core of an etched optical fiber. In this paper, a new sensor configuration is presented. Instead of exciting surface plasmon waves on a thin film, surface plasma waves are excited on metal islands. The fiber is coated with 3 layers of gold. Each layer is annealed before the next layer is evaporated onto it. this is done to avoid any light leakage, fact which was found on a prior version with only one gold coating. Different sets of fibers were tested and sensitive and reproducible results for liquid with refraction indices varying from 1.3 to 1.7 were obtained.

  2. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    Science.gov (United States)

    Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha

    2007-10-26

    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed.

  3. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    Directory of Open Access Journals (Sweden)

    Satya Kalluri

    2007-10-01

    Full Text Available Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed.

  4. Toward Aboveground Biomass Estimation with RADAR, Lidar and Optical Remote Sensing Data in Southern Mexico

    Science.gov (United States)

    Urbazaev, M.; Thiel, C. J.; Schmullius, C.

    2014-12-01

    Information on the spatial distribution of aboveground biomass (AGB) over large areas is needed (1) for understanding and managing the processes involved in the carbon cycle, and (2) supporting international policies for climate change mitigation and adaption. Using remote sensing techniques it is possible to provide spatially explicit information of AGB from local to global scales. In this work we present the first results on the use of multi-sensor remote sensing data to estimate AGB over three test sites in southern Mexico. In order to develop a set of AGB retrieval algorithms, we firstly compared different SAR parameters (e.g. multi-polarized backscatter intensities and interferometric coherence) obtained from ALOS PALSAR sensor and Landsat imagery with field-based AGB estimates using empirical regressions and analyzed the relationships between them. The next steps of the work will be development of a two-stage up-scaling approach: firstly, to enlarge the cal/val data, we propose to estimate AGB along airborne LiDAR (from G-LiHT sensor) transects using field-based AGB and LiDAR height metrics. With LiDAR-based AGB we will then calibrate SAR parameters in a non-parametric model (e.g., randomForest) to create AGB maps over the study areas. An overall aim of the study is the analysis of capabilities and limitations of SAR data for AGB mapping and the investigation of the potential synergistic use of SAR, LiDAR and optical systems.The proposed monitoring tool will facilitate quantitative estimations in loss of carbon storage and support the selection of terrestrial (e.g. tropical dry forests, shrublands) sites for conservation priorities with high value for the national carbon budget.

  5. Neurophotonics: non-invasive optical techniques for monitoring brain functions

    Science.gov (United States)

    Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo

    2014-01-01

    Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  6. Optical and Digital Microscopic Imaging Techniques and Applications in Pathology

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2011-01-01

    Full Text Available The conventional optical microscope has been the primary tool in assisting pathological examinations. The modern digital pathology combines the power of microscopy, electronic detection, and computerized analysis. It enables cellular-, molecular-, and genetic-imaging at high efficiency and accuracy to facilitate clinical screening and diagnosis. This paper first reviews the fundamental concepts of microscopic imaging and introduces the technical features and associated clinical applications of optical microscopes, electron microscopes, scanning tunnel microscopes, and fluorescence microscopes. The interface of microscopy with digital image acquisition methods is discussed. The recent developments and future perspectives of contemporary microscopic imaging techniques such as three-dimensional and in vivo imaging are analyzed for their clinical potentials.

  7. Lidar Range-Resolved Optical Remote Sensing of the Atmosphere

    CERN Document Server

    Weitkamp, Claus

    2005-01-01

    Written by leading experts in optical radar, or lidar, this book brings all the recent practices up-to-date and covers a multitude of applications, from atmospheric sciences to environmental protection. Its broad cross-disciplinary scope should appeal to both the experienced scientist and the novice in the field. The Foreword is by one of the early pioneers in the area, Herbert Walther.

  8. Optical Sensing with Simultaneous Electrochemical Control in Metal Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Janos Vörös

    2010-11-01

    Full Text Available This work explores the alternative use of noble metal nanowire systems in large-scale array configurations to exploit both the nanowires’ conductive nature and localized surface plasmon resonance (LSPR. The first known nanowire-based system has been constructed, with which optical signals are influenced by the simultaneous application of electrochemical potentials. Optical characterization of nanowire arrays was performed by measuring the bulk refractive index sensitivity and the limit of detection. The formation of an electrical double layer was controlled in NaCl solutions to study the effect of local refractive index changes on the spectral response. Resonance peak shifts of over 4 nm, a bulk refractive index sensitivity up to 115 nm/RIU and a limit of detection as low as 4.5 × 10−4 RIU were obtained for gold nanowire arrays. Simulations with the Multiple Multipole Program (MMP confirm such bulk refractive index sensitivities. Initial experiments demonstrated successful optical biosensing using a novel form of particle-based nanowire arrays. In addition, the formation of an ionic layer (Stern-layer upon applying an electrochemical potential was also monitored by the shift of the plasmon resonance.

  9. An optical sensing approach for the noninvasive transdermal monitoring of cortisol

    Science.gov (United States)

    Hwang, Yongsoon; Gupta, Niraj K.; Ojha, Yagya R.; Cameron, Brent D.

    2016-03-01

    Cortisol, a biomarker of stress, has recently been shown to have potential in evaluating the physiological state of individuals diagnosed with stress-related conditions including chronic fatigue syndrome. Noninvasive techniques to extract biomarkers from the body are a topic of considerable interest. One such technique to achieve this is known as reverse iontophoresis (RI) which is capable of extracting biomolecules through the skin. Unfortunately, however, the extracted levels are often considerably lower in concentration than those found in blood, thereby requiring a very sensitive analytical method with a low limit of detection. A promising sensing approach, which is well suited to handle such samples, is Surface Plasmon Resonance (SPR) spectroscopy. When coupled with aptamer modified surfaces, such sensors can achieve both selectivity and the required sensitivity. In this study, fabrication and characterization of a RIbased SPR biosensor for the measurement of cortisol has been developed. The optical mount and diffusion cell were both fabricated through the use of 3D printing techniques. The SPR sensor was configured to employ a prism couplerbased arrangement with a laser generation module and CCD line sensor. Cortisol-specific DNA aptamers were immobilized onto a gold surface to achieve the necessary selectivity. For demonstration purposes, cortisol was extracted by the RI system using a skin phantom flow system capable of generating time dependent concentration profiles. The captured sample was then transported using a micro-fluidic platform from the RI collection site to the SPR sensor for real-time monitoring. Analysis and system control was accomplished within a developed LabVIEW® program.

  10. 3-D printed sensing patches with embedded polymer optical fibre Bragg gratings

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.

    2016-01-01

    The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/mu epsilon. Its...

  11. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  12. Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Pedersen, Jens Kristian Mølgaard; Fasano, Andrea

    2017-01-01

    In this Letter, we report for the first time, to the best of our knowledge, the fabrication and characterization of a Zeonex/PMMA microstructured polymer optical fiber (mPOF) Bragg grating sensor for simultaneous monitoring of relative humidity (RH) and temperature. The sensing element (probe...

  13. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  14. 3-D printed sensing patches with embedded polymer optical fibre Bragg gratings

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.;

    2016-01-01

    The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/mu epsilon. Its temp...

  15. Refractive Index Sensing with D-Shaped Plastic Optical Fibers for Chemical and Biochemical Applications.

    Science.gov (United States)

    Sequeira, Filipa; Duarte, Daniel; Bilro, Lúcia; Rudnitskaya, Alisa; Pesavento, Maria; Zeni, Luigi; Cennamo, Nunzio

    2016-12-13

    We report the optimization of the length of a D-shaped plastic optical fiber (POF) sensor for refractive index (RI) sensing from a numerical and experimental point of view. The sensing principle is based on total internal reflection (TIR). POFs with 1 mm in diameter were embedded in grooves, realized in planar supports with different lengths, and polished to remove the cladding and part of the core. All D-shaped POF sensors were tested using aqueous medium with different refractive indices (from 1.332 to 1.471) through intensity-based configuration. Results showed two different responses. Considering the refractive index (RI) range (1.33-1.39), the sensitivity and the resolution of the sensor were strongly dependent on the sensing region length. The highest sensitivity (resolution of 6.48 × 10(-3) refractive index units, RIU) was obtained with 6 cm sensing length. In the RI range (1.41-1.47), the length of the sensing region was not a critical aspect to obtain the best resolution. These results enable the application of this optical platform for chemical and biochemical evanescent field sensing. The sensor production procedure is very simple, fast, and low-cost.

  16. Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology

    Science.gov (United States)

    Zhong, Dong; Tong, Xinglin

    2014-06-01

    With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.

  17. Recurrent potential pulse technique for improvement of glucose sensing ability of 3D polypyrrole

    Science.gov (United States)

    Cysewska, Karolina; Karczewski, Jakub; Jasiński, Piotr

    2017-07-01

    In this work, a new approach for using a 3D polypyrrole (PPy) conducting polymer as a sensing material for glucose detection is proposed. Polypyrrole is electrochemically polymerized on a platinum screen-printed electrode in an aqueous solution of lithium perchlorate and pyrrole. PPy exhibits a high electroactive surface area and high electrochemical stability, which results in it having excellent electrocatalytic properties. The studies show that using the recurrent potential pulse technique results in an increase in PPy sensing stability, compared to the amperometric approach. This is due to the fact that the technique, under certain parameters, allows the PPy redox properties to be fully utilized, whilst preventing its anodic degradation. Because of this, the 3D PPy presented here has become a very good candidate as a sensing material for glucose detection, and can work without any additional dopants, mediators or enzymes.

  18. On columnar thin films as platforms for surface-plasmonic-polaritonic optical sensing: higher-order considerations

    CERN Document Server

    Jamaian, Siti S

    2011-01-01

    The ability to tailor the porosity and optical properties of columnar thin films (CTFs) renders them promising platforms for optical sensing. In particular, surface-plasmon-polariton (SPP) waves, guided by the planar interface of an infiltrated CTF and a thin layer of metal, may be harnessed to detect substances that penetrate the void regions in between the columns of a CTF. This scenario was investigated theoretically using a higher-order homogenization technique, based on an extended version of the second-order strong-permittivity-fluctuation theory, which takes into account the size of the component particles which make up the infiltrated CTF and the statistical distribution of these particles. Our numerical studies revealed that as the size of the component particles increases and as the correlation length that characterizes their distribution increases: (i) the phase speed of the SPP wave decreases and the SPP wave's attenuation increases; (ii) the SPP wave's penetration into the CTF decreases; (iii) th...

  19. Blind Source Separation Model of Earth-Rock Junctions in Dike Engineering Based on Distributed Optical Fiber Sensing Technology

    Directory of Open Access Journals (Sweden)

    Huaizhi Su

    2015-01-01

    Full Text Available Distributed temperature sensing (DTS provides an important technology support for the earth-rock junctions of dike projects (ERJD, which are binding sites between culvert, gates, and pipes and dike body and dike foundation. In this study, a blind source separation model is used for the identification of leakages based on the temperature data of DTS in leakage monitoring of ERJD. First, a denoising method is established based on the temperature monitoring data of distributed optical fiber in ERJD by a wavelet packet signal decomposition technique. The temperature monitoring messages of fibers are combined response for leakages and other factors. Its character of unclear responding mechanism is very obvious. Thus, a blind source separation technology is finally selected. Then, the rule of temperature measurement data for optical fiber is analyzed and its temporal and spatial change process is also discussed. The realization method of the blind source separation model is explored by combining independent component analysis (ICA with principal component analysis (PCA. The practical test result in an example shows that the method could efficiently locate and identify the leakage location of ERJD. This paper is expected to be useful for further scientific research and efficient applications of distributed optical fiber sensing technology.

  20. Exploring multi-scale forest above ground biomass estimation with optical remote sensing imageries

    Science.gov (United States)

    Koju, U.; Zhang, J.; Gilani, H.

    2017-02-01

    Forest shares 80% of total exchange of carbon between the atmosphere and the terrestrial ecosystem. Due to this monitoring of forest above ground biomass (as carbon can be calculated as 0.47 part of total biomass) has become very important. Forest above ground biomass as being the major portion of total forest biomass should be given a very careful consideration in its estimation. It is hoped to be useful in addressing the ongoing problems of deforestation and degradation and to gain carbon mitigation benefits through mechanisms like Reducing Emissions from Deforestation and Forest Degradation (REDD+). Many methods of above ground biomass estimation are in used ranging from use of optical remote sensing imageries of very high to very low resolution to SAR data and LIDAR. This paper describes a multi-scale approach for assessing forest above ground biomass, and ultimately carbon stocks, using very high imageries, open source medium resolution and medium resolution satellite datasets with a very limited number of field plots. We found this method is one of the most promising method for forest above ground biomass estimation with higher accuracy and low cost budget. Pilot study was conducted in Chitwan district of Nepal on the estimation of biomass using this technique. The GeoEye-1 (0.5m), Landsat (30m) and Google Earth (GE) images were used remote sensing imageries. Object-based image analysis (OBIA) classification technique was done on Geo-eye imagery for the tree crown delineation at the watershed level. After then, crown projection area (CPA) vs. biomass model was developed and validated at the watershed level. Open source GE imageries were used to calculate the CPA and biomass from virtual plots at district level. Using data mining technique, different parameters from Landsat imageries along with the virtual sample biomass were used for upscaling biomass estimation at district level. We found, this approach can considerably reduce field data requirements for

  1. The application of remote sensing techniques to the study of ophiolites

    Science.gov (United States)

    Khan, Shuhab D.; Mahmood, Khalid

    2008-08-01

    Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.

  2. Optimizing integrated optical chips for label-free (bio-)chemical sensing.

    Science.gov (United States)

    Kunz, R E; Cottier, K

    2006-01-01

    Label-free sensing is an important method for many (bio-)chemical applications in fields such as biotechnology, medicine, pharma, ecology and food quality control. The broad range of applications includes liquid refractive index sensing, molecule detection, and the detection of particles or cells. Integrated optics based on the use of waveguide modes offers a great potential and flexibility to tailor the sensor properties to these applications. In this paper, the results of a numerical study are presented, showing that this flexibility is founded on the many degrees of freedom that can be used for the integrated optical chip design, in contrast to other technologies such as those based on surface plasmon resonance, for which the materials' properties limit the range of choices. The applications that are explicitly considered and discussed include (1) bulk refractometry, (2) thin-layer sensing, for example biosensors monitoring molecular adsorption processes occurring within some 10 nm of the chip's surface, (3) thick-layer sensing with processes involving molecules or ions to be monitored within a sensing matrix extending to some 100 nm from the chip's surface, for example hydrogel-based layers and chemo-optically sensitive membranes, and (4) particle sensing with particles or, for example, biological cells to be monitored within probe volumes extending to some 1,000 nm from the chip's surface. The peculiarities for the different types of applications will be discussed, and suitable modeling methods presented. Finally, the application-specific design guidelines supplied will enable the optimization of various types of integrated optical sensors, including interferometers and grating-based sensors.

  3. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review.

    Science.gov (United States)

    Zhang, Dianjun; Zhou, Guoqing

    2016-08-17

    As an important parameter in recent and numerous environmental studies, soil moisture (SM) influences the exchange of water and energy at the interface between the land surface and atmosphere. Accurate estimate of the spatio-temporal variations of SM is critical for numerous large-scale terrestrial studies. Although microwave remote sensing provides many algorithms to obtain SM at large scale, such as SMOS and SMAP etc., resulting in many data products, they are almost low resolution and not applicable in small catchment or field scale. Estimations of SM from optical and thermal remote sensing have been studied for many years and significant progress has been made. In contrast to previous reviews, this paper presents a new, comprehensive and systematic review of using optical and thermal remote sensing for estimating SM. The physical basis and status of the estimation methods are analyzed and summarized in detail. The most important and latest advances in soil moisture estimation using temporal information have been shown in this paper. SM estimation from optical and thermal remote sensing mainly depends on the relationship between SM and the surface reflectance or vegetation index. The thermal infrared remote sensing methods uses the relationship between SM and the surface temperature or variations of surface temperature/vegetation index. These approaches often have complex derivation processes and many approximations. Therefore, combinations of optical and thermal infrared remotely sensed data can provide more valuable information for SM estimation. Moreover, the advantages and weaknesses of different approaches are compared and applicable conditions as well as key issues in current soil moisture estimation algorithms are discussed. Finally, key problems and suggested solutions are proposed for future research.

  4. Optical modulation techniques for analog signal processing and CMOS compatible electro-optic modulation

    Science.gov (United States)

    Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2008-02-01

    Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.

  5. Body-monitoring and health supervision by means of optical fiber-based sensing systems in medical textiles.

    Science.gov (United States)

    Quandt, Brit M; Scherer, Lukas J; Boesel, Luciano F; Wolf, Martin; Bona, Gian-Luca; Rossi, René M

    2015-02-18

    Long-term monitoring with optical fibers has moved into the focus of attention due to the applicability for medical measurements. Within this Review, setups of flexible, unobtrusive body-monitoring systems based on optical fibers and the respective measured vital parameters are in focus. Optical principles are discussed as well as the interaction of light with tissue. Optical fiber-based sensors that are already used in first trials are primarily selected for the section on possible applications. These medical textiles include the supervision of respiration, cardiac output, blood pressure, blood flow and its saturation with hemoglobin as well as oxygen, pressure, shear stress, mobility, gait, temperature, and electrolyte balance. The implementation of these sensor concepts prompts the development of wearable smart textiles. Thus, current sensing techniques and possibilities within photonic textiles are reviewed leading to multiparameter designs. Evaluation of these designs should show the great potential of optical fibers for the introduction into textiles especially due to the benefit of immunity to electromagnetic radiation. Still, further improvement of the signal-to-noise ratio is often necessary to develop a commercial monitoring system.

  6. Compressed sensing techniques for receiver based post-compensation of transmitter's nonlinear distortions in OFDM systems

    KAUST Repository

    Owodunni, Damilola S.

    2014-04-01

    In this paper, compressed sensing techniques are proposed to linearize commercial power amplifiers driven by orthogonal frequency division multiplexing signals. The nonlinear distortion is considered as a sparse phenomenon in the time-domain, and three compressed sensing based algorithms are presented to estimate and compensate for these distortions at the receiver using a few and, at times, even no frequency-domain free carriers (i.e. pilot carriers). The first technique is a conventional compressed sensing approach, while the second incorporates a priori information about the distortions to enhance the estimation. Finally, the third technique involves an iterative data-aided algorithm that does not require any pilot carriers and hence allows the system to work at maximum bandwidth efficiency. The performances of all the proposed techniques are evaluated on a commercial power amplifier and compared. The error vector magnitude and symbol error rate results show the ability of compressed sensing to compensate for the amplifier\\'s nonlinear distortions. © 2013 Elsevier B.V.

  7. Tailoring alphabetical metamaterials in optical frequency: plasmonic coupling, dispersion, and sensing.

    Science.gov (United States)

    Zhang, Jun; Cao, Cuong; Xu, Xinlong; Liow, Chihao; Li, Shuzhou; Tan, Pingheng; Xiong, Qihua

    2014-04-22

    Tailoring optical properties of artificial metamaterials, whose optical properties go beyond the limitations of conventional and naturally occurring materials, is of importance in fundamental research and has led to many important applications such as security imaging, invisible cloak, negative refraction, ultrasensitive sensing, and transformable and switchable optics. Herein, by precisely controlling the size, symmetry, and topology of alphabetical metamaterials with U, S, Y, H, U-bar, and V shapes, we have obtained highly tunable optical response covering visible-to-infrared (vis-NIR) optical frequency. In addition, we show a detailed study on the physical origin of resonance modes, plasmonic coupling, the dispersion of resonance modes, and the possibility of negative refraction. We have found that all the electronic and magnetic modes follow the dispersion of surface plasmon polaritons; thus, essentially they are electronic- and magnetic-surface-plasmon-polaritons-like (ESPP-like and MSPP-like) modes resulted from diffraction coupling between localized surface plasmon and freely propagating light. On the basis of the fill factor and formula of magnetism permeability, we predict that the alphabetical metamaterials should show the negative refraction capability in visible optical frequency. Furthermore, we have demonstrated the specific ultrasensitive surface enhanced Raman spectroscopy (SERS) sensing of monolayer molecules and femtomolar food contaminants by tuning their resonance to match the laser wavelength, or by tuning the laser wavelength to match the plasmon resonance of metamaterials. Our tunable alphabetical metamaterials provide a generic platform to study the electromagnetic properties of metamaterials and explore the novel applications in optical frequency.

  8. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics

    Science.gov (United States)

    Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.

  9. Orthogonal trapping and sensing with long working distance optics [invited

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Tauro, Sandeep

    2010-01-01

    We are developing a next generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials. The workstation......Photonics Workstation that allows the user to directly control and simultaneously measure a portfolio of important chemical and biological processes. We arc currently able to generate up to 100 powerful optical traps using well-separated objectives, which eliminates the need for high numerical aperture oil or water...

  10. Microwave and optical remote sensing of forest vegetation

    Science.gov (United States)

    Hoffer, R. M.; Bauer, M. E.; Biehl, L. L.; Mroczynski, R. P.

    1984-01-01

    The objectives and anticipated results of a study to define the strengths and limitations of microwave (SIR-B) and optical (thematic Mapper) data, singly and in combination, for the purpose of characterizing forest cover types and condition classes are described. Other specific objectives include: (1) the assessment of the effectiveness of a contextual classification algorithm (SECHO); (2) evaluation of the utility of different look angles of SAR data in determining differences in stand density of commercial forests; and (3) the determination of the effectiveness of the L-band HH polarized SIR-B data in differentiating forest-stand densities.

  11. Integrity assessment under various conditions of embedded fiber optics based multi-sensing materials

    Science.gov (United States)

    Mekid, Samir; Butt, Asad Muhammad; Qureshi, Khurram

    2017-07-01

    The paper discusses new self-measurement and reacting materials with embedded sensors and actuators. New mechanical structures are made with a new integrated material that can almost inherently sense external effects e.g. temperature and deformation and react to them. Hence, the need to embed fiber Bragg grating (FBG) sensors that are inscribed in fiber optics inside materials for various applications e.g. structural health monitoring. The embedding technique can be part of the manufacturing process that can affect these delicate sensors. During this process, the sensors are subject to pressure, heat and deformation. The integrity of the sensors and the host material prior and after to embedding becomes very important. The paper discusses various characterization tests including strains, temperature, pressure and geometry effect on sensors placement while embedding within the host material subsurface. The results have shown that specific conditions are to be considered during the process of embedding to secure the integrity and good level of sensitivity of the sensors to deliver true measurements. The practice of these conditions has led to successful products.

  12. Blood pulse wave velocity and pressure sensing via fiber based and free space based optical sensors

    Science.gov (United States)

    Sirkis, Talia; Beiderman, Yevgeny; Agdarov, Sergey; Beiderman, Yafim; Zalevsky, Zeev

    2017-02-01

    Continuous noninvasive measurement of vital bio-signs, such as cardiopulmonary parameters, is an important tool in evaluation of the patient's physiological condition and health monitoring. On the demand of new enabling technologies, some works have been done in continuous monitoring of blood pressure and pulse wave velocity. In this paper, we introduce two techniques for non-contact sensing of vital bio signs. In the first approach the optical sensor is based on single mode in-fibers Mach-Zehnder interferometer (MZI) to detect heartbeat, respiration and pulse wave velocity (PWV). The introduced interferometer is based on a new implanted scheme. It replaces the conventional MZI realized by inserting of discontinuities in the fiber to break the total internal reflection and scatter/collect light. The proposed fiber sensor was successfully incorporated into shirt to produce smart clothing. The measurements obtained from the smart clothing could be obtained in comfortable manner and there is no need to have an initial calibration or a direct contact between the sensor and the skin of the tested individual. In the second concept we show a remote noncontact blood pulse wave velocity and pressure measurement based on tracking the temporal changes of reflected secondary speckle patterns produced in human skin when illuminated by a laser beams. In both concept experimental validation of the proposed schemes is shown and analyzed.

  13. Quantum lock-in force sensing using optical clock Doppler velocimetry

    Science.gov (United States)

    Shaniv, Ravid; Ozeri, Roee

    2017-01-01

    Force sensors are at the heart of different technologies such as atomic force microscopy or inertial sensing. These sensors often rely on the measurement of the displacement amplitude of mechanical oscillators under applied force. The best sensitivity is typically achieved when the force is alternating at the mechanical resonance frequency of the oscillator, thus increasing its response by the mechanical quality factor. The measurement of low-frequency forces, that are below resonance, is a more difficult task as the resulting oscillation amplitudes are significantly lower. Here we use a single-trapped 88Sr+ ion as a force sensor. The ion is electrically driven at a frequency much lower than the trap resonance frequency. We measure small amplitude of motion by measuring the periodic Doppler shift of an atomic optical clock transition, enhanced using the quantum lock-in technique. We report frequency force detection sensitivity as low as 2.8 × 10−20 NHz−1/2. PMID:28186103

  14. Fiber Optical Micro-detectors for Oxygen Sensing in Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Gregory L. Baker; Ruby N. Ghosh; D. J. Osborn; Po Zhang

    2006-09-30

    A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications has been developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. We report on a fiber optic technique for detection of gas phase oxygen up to 100 C based on the {sup 3}O{sub 2} quenching of the luminescence from molybdenum chloride clusters, K{sub 2}Mo{sub 6}Cl{sub 14}. The inorganic sensing film is a composite of sol-gel particles embedded in a thin, oxygen permeable sol-gel binder. The particles are comprised of thermally stable, luminescent K{sub 2}Mo{sub 6}Cl{sub 14} clusters dispersed in a fully equilibrated sol-gel matrix. From 40 to 100 C, the fiber sensor switches {approx}6x in intensity in response to alternating pulses of <0.001% O2 and 21% O{sub 2} between two well defined levels with a response time of 10 s. The sensor signal is a few nW for an input pump power of 250 {micro}W. The normalized sensor signal is linear with molar oxygen concentration and fits the theoretical Stern-Volmer relationship. Although the sensitivity decreases with temperature, sensitivity at 100 C is 160 [O{sub 2}]{sup -1}. These parameters are well suited for in-situ, real-time monitoring of oxygen for industrial process control applications.

  15. A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels.

    Science.gov (United States)

    Yang, Ying; Bagnaninchi, Pierre O; Ahearne, Mark; Wang, Ruikang K; Liu, Kuo-Kang

    2007-12-22

    Depth-sensing micro-indentation has been well recognized as a powerful tool for characterizing mechanical properties of solid materials due to its non-destructive approach. Based on the depth-sensing principle, we have developed a new indentation method combined with a high-resolution imaging technique, optical coherence tomography, which can accurately measure the deformation of hydrogels under a spherical indenter at constant force. The Hertz contact theory has been applied for quantitatively correlating the indentation force and the deformation with the mechanical properties of the materials. Young's moduli of hydrogels estimated by the new method are comparable with those measured by conventional depth-sensing micro-indentation. The advantages of this new method include its capability to characterize mechanical properties of bulk soft materials and amenability to perform creeping tests. More importantly, the measurement can be performed under sterile conditions allowing non-destructive, in situ and real-time investigations on the changes in mechanical properties of soft materials (e.g. hydrogel). This unique character can be applied for various biomechanical investigations such as monitoring reconstruction of engineered tissues.

  16. Rapid On-Site Formation of a Free-Standing Flexible Optical Link for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2016-10-01

    Full Text Available An optical link, based on a conventional Scotch tape waveguide, for sensing applications requiring rapid on-site assembly is proposed and demonstrated. The flexible waveguide contains an integrated aluminum one-dimensional grating coupler that, when stuck on the radiative surface of a light emitting device, allows light to be coupled in and transmitted through the tape, whose tip end is, in turn, adhered onto the photosensitive surface of a photodetector. The (decoupling approaches exhibit high alignment tolerances that permit the formation of a free-standing flexible optical connection between surface-normal optoelectronic devices without the need of specialized equipment. As the first demonstration of a sensing application, the proposed optical link is easily configured as a cost-effective intensity-based refractometric sensor for liquid detection, which can be applicable to on-site quality and process control of, for example, beverages.

  17. Rapid On-Site Formation of a Free-Standing Flexible Optical Link for Sensing Applications

    Science.gov (United States)

    Barrios, Carlos Angulo

    2016-01-01

    An optical link, based on a conventional Scotch tape waveguide, for sensing applications requiring rapid on-site assembly is proposed and demonstrated. The flexible waveguide contains an integrated aluminum one-dimensional grating coupler that, when stuck on the radiative surface of a light emitting device, allows light to be coupled in and transmitted through the tape, whose tip end is, in turn, adhered onto the photosensitive surface of a photodetector. The (de)coupling approaches exhibit high alignment tolerances that permit the formation of a free-standing flexible optical connection between surface-normal optoelectronic devices without the need of specialized equipment. As the first demonstration of a sensing application, the proposed optical link is easily configured as a cost-effective intensity-based refractometric sensor for liquid detection, which can be applicable to on-site quality and process control of, for example, beverages. PMID:27782049

  18. Philosophy and key features of 'Hodoyoshi' concept for optical remote sensing using 50kg class satellites

    Science.gov (United States)

    Enokuchi, A.; Takeyama, N.; Nakamura, Y.; Nojiri, Y.; Miyamura, N.; Iwasaki, A.; Nakasuka, S.

    2010-10-01

    Remote sensing missions have been conventionally performed by using satellite-onboard optical sensors with extraordinarily high reliability, on huge satellites. On the other hand, small satellites for remote-sensing missions have recently been developed intensely and operated all over the world. This paper gives a Japanese concept of the development of nano-satellites(10kg to 50kg) based on "Hodoyoshi" (Japanese word for "reasonable") reliability engineering aiming at cost-effective design of optical sensors, buses and satellites. The concept is named as "Hodoyoshi" concept. We focus on the philosophy and the key features of the concept. These are conveniently applicable to the development of optical sensors on nano-satellites. As major advantages, the optical sensors based on the "Hodoyoshi" concept are "flexible" in terms of selectability of wavelength bands, adaptability to the required ground sample distance, and optimal performance under a wide range of environmental temperatures. The first and second features mentioned above can be realized by dividing the functions of the optical sensor into modularized functional groups reasonably. The third feature becomes possible by adopting the athermal and apochromatic optics design. By utilizing these features, the development of the optical sensors become possible without exact information on the launcher or the orbit. Furthermore, this philosophy leads to truly quick delivery of nano-satellites for remote-sensing missions. On the basis of the concept, we are now developing nano-satellite technologies and five nano-satellites to realize the concept in a four-year-long governmentally funded project. In this paper, the specification of the optical sensor on the first satellite is also reported.

  19. High-Power Amplifier Compatible Internally Sensed Optical Phased Array for Space Debris Tracking and Maneuvering

    Science.gov (United States)

    Roberts, L.; Francis, S.; Sibley, P.; Ward, R.; Smith, C.; McClelland, D.; Shaddock, D.

    2016-09-01

    Optical phased arrays (OPAs) provide a way to scale optical power beyond the capabilities of conventional CW lasers via coherent beam combination. By stabilising the relative output phase of multiple spatially separate lasers, OPAs form a coherent optical wavefront in the far field. Since the phase of each laser can be controlled independently, OPAs also have the ability to manipulate the distribution of optical power in the far field, and therefore may provide the capability to compensate for atmospheric turbulence. Combined with their inherent scalability and high power handling capabilities, OPAs are a promising technology for CW space debris ranging and manoeuvring. The OPA presented here is unique in its ability to sense the phase of each laser internally, without requiring any external sampling optics between it and the telescope. This allows the internally sensed OPA to be constructed entirely within fibre, utilising high-power fiber amplifiers to scale optical power beyond the limits of any conventional single lasers. The total power that can be delivered by each emitter in the OPA is limited only by the onset of stimulated Brillouin scattering, a non-linear effect that clamps the amount of power that can be delivered through a fiber waveguide. A three element internally sensed OPA developed at the Australian National University has been demonstrated to coherently combine three commercial 15 Watt fiber amplifiers with an output phase stability of one 200th of a wavelength. We have also demonstrated the ability to dynamically manipulate the distribution of optical power in the far-field at a bandwidth of up to 10 kHz. Since the OPA's control system is implemented using field-programmable gate-array technology, the system may be scaled beyond 100 emitters, potentially reaching the kilowatt level optical powers required to perturb the orbit of space debris.

  20. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John A.; Bello, Job M.; Heineman, William R.; Bryan, Samuel A.

    2017-07-03

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.

  1. Differentiation of black gel inks using optical and chemical techniques.

    Science.gov (United States)

    Wilson, Jeffrey D; LaPorte, Gerald M; Cantu, Antonio A

    2004-03-01

    Gel ink pens have become a common writing instrument in the United States. Questioned document examiners often attempt to optically differentiate gel inks from each other and from other non-ballpoint ink writings (e.g., those from roller-ball pens). Since early formulations were primarily pigment-based, they do not elute when analyzed by thin-layer chromatography. However, recent gel ink formulations (i.e., within the past five years) include dye-based inks that can be easily separated. This study differentiates black gel inks using optical and chemical techniques. The techniques include: microscopy, visible and near infrared reflectance, near infrared luminescence, thin-layer chromatography (TLC), spot tests, and gas chromatography/mass spectrometry (GC/MS). As a result of this study a flow chart has been developed allowing for a systematic determination of a questioned ink. In addition, an analysis of volatile compounds found in gel inks revealed that there are some unique ingredients that may be found in gel inks that are not typically found in other non-ballpoint inks.

  2. Optical sensing systems based on biomolecular recognition of recombinant proteins

    Science.gov (United States)

    Salins, Lyndon L.; Schauer-Vukasinovic, Vesna; Daunert, Sylvia

    1998-05-01

    SIte-directed mutagenesis and the associated site-specific fluorescent labeling of proteins can be used to rationally design reagentless fluorescent molecular senors. The phosphate binding protein (PBP) and calmodulin (CaM) bind to phosphate and calcium in a highly specific manner. These ions induce a hinge motion in the proteins, and the resultant conformational change constitutes the basis of the sensor development. By labeling each protein at a specific site with environment-sensitive fluorescent probes, these conformational changes can be monitored and related to the amount of analyte ion present. In this study, the polymerase chain reaction was used to construct mutants of PBP and CaM that have a single cysteine at positions 197 and 109, respectively. Each protein was site-specifically labeled through the sulfhydryl group of the introduced cysteine residue at a single location with an environment-sensitive fluorescent probe. Characterization of the steady-state fluorescence indicated an enhancement of signal intensity upon binding of the analyte ion. Highly sensitive and selective and selective sensing systems for phosphate and calcium were obtained by using this approach.

  3. Quality assessment of packaged foods by optical oxygen sensing

    Science.gov (United States)

    Papkovsky, Dmitri B.; O'Mahony, Fiach C.; Kerry, Joe P.; Ogurtsov, Vladimir I.

    2005-11-01

    A phase-fluorometric oxygen sensor system has been developed, which allows non-destructive measurement of residual oxygen levels in sealed containers such as packaged foods. It operates with disposable solid-state sensors incorporated in each pack, and a portable detector which interrogates with the sensors through a (semi)transparent packaging material. The system has been optimized for packaging applications and validated in small and medium scale trials with different types of food, including MAP hams, cheese, convenience foods, smoked fish, bakery. It has demonstrated high efficiency in monitoring package integrity, oxygen profiles in packs, performance of packaging process and many other research and quality control tasks, allowing control of 100% of packs. The low-cost batch-calibrated sensors have demonstrated reliability, safety, stability including direct contact with food, high efficiency in the low oxygen range. Another system, which also employs the fluorescence-based oxygen sensing approach, provides rapid assessment of microbial contamination (total viable counts) in complex samples such as food homogenates, industrial waste, environmental samples, etc. It uses soluble oxygen-sensitive probes, standard microtitter plates and fluorescence measurements on conventional plate reader to monitor growth of aerobic bacteria in small test samples (e.g. food homogenates) via their oxygen respiration. The assay provides high sample through put, miniaturization, speed, and can serve as alternative to the established methods such as agar plate colony counts and turbidimetry.

  4. Chalcogenide optical fibers for mid-infrared sensing

    Science.gov (United States)

    Bureau, Bruno; Boussard, Catherine; Cui, Shuo; Chahal, Radwan; Anne, Marie Laure; Nazabal, Virginie; Sire, Olivier; Loréal, Olivier; Lucas, Pierre; Monbet, Valérie; Doualan, Jean-Louis; Camy, Patrice; Tariel, Hugues; Charpentier, Frédéric; Quetel, Lionel; Adam, Jean-Luc; Lucas, Jacques

    2014-02-01

    Chalcogenide glasses are a matchless material as far as mid-infrared (IR) applications are concerned. They transmit light typically from 2 to 12 μm and even as far as 20 μm depending on their composition, and numerous glass compositions can be designed for optical fibers. One of the most promising applications of these fibers consists in implementing fiber evanescent wave spectroscopy, which enables detection of the mid-IR signature of most biomolecules. The principles of fiber evanescent wave spectroscopy are recalled together with the benefit of using selenide glass to carry out this spectroscopy. Then, two large-scale studies in recent years in medicine and food safety are exposed. To conclude, the future strategy is presented. It focuses on the development of rare earth-doped fibers used as mid-IR sources on one hand and tellurium-based glasses to shift the limit of detection toward longer wavelength on the other hand.

  5. Application of optical spectroscopic techniques for disease diagnosis

    Science.gov (United States)

    Saha, Anushree

    Optical spectroscopy, a truly non-invasive tool for remote diagnostics, is capable of providing valuable information on the structure and function of molecules. However, most spectroscopic techniques suffer from drawbacks, which limit their application. As a part of my dissertation work, I have developed theoretical and experimental methods to address the above mentioned issues. I have successfully applied these methods for monitoring the physical, chemical and biochemical parameters of biomolecules involved in some specific life threatening diseases like lead poisoning and age-related macular degeneration (AMD). I presented optical studies of melanosomes, which are one of the vital organelles in the human eye, also known to be responsible for a disease called age-related macular degeneration (AMD), a condition of advanced degeneration which causes progressive blindness. I used Raman spectroscopy, to first chemically identify the composition of melanosome, and then monitor the changes in its functional and chemical behavior due to long term exposure to visible light. The above study, apart from explaining the role of melanosomes in AMD, also sets the threshold power for lasers used in surgeries and other clinical applications. In the second part of my dissertation, a battery of spectroscopic techniques was successfully applied to explore the different binding sites of lead ions with the most abundant carrier protein molecule in our circulatory system, human serum albumin. I applied optical spectroscopic tools for ultrasensitive detection of heavy metal ions in solution which can also be used for lead detection at a very early stage of lead poisoning. Apart from this, I used Raman microspectroscopy to study the chemical alteration occurring inside a prostate cancer cell as a result of a treatment with a low concentrated aqueous extract of a prospective drug, Nerium Oleander. The experimental methods used in this study has tremendous potential for clinical

  6. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    Science.gov (United States)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  7. An Energy Demodulation Based Fiber Optic Sensing System for Landslide Early-Warning

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2017-07-01

    Full Text Available To help reduce the impact of geo-hazards, an innovative landslide early-warning technology based on an energy demodulation-based fiber optic sensing (FOS-LW for short technology, is introduced in this paper. FOS-LW measures the energy change in a sensing fiber at the segment of micro-bending, which can be caused by landslide movements, and automatically raises an alarm as soon as the measured signal intensity in the fiber reaches a pre-set threshold. Based on the sensing of micro-bending losses in the fiber optics, a two-event sensing algorithm has been developed for the landslide early-warning. The feasibility of the FOS-LW technology is verified through laboratory simulation and field tests. The result shows that FOS-LW has some unique features—such as the graded alarm, real-time responses, remote monitoring, low cost and passive optical network—and can be applied in the early-warning of landslides.

  8. Optical feather and foil for shape and dynamic load sensing of critical flight surfaces

    Science.gov (United States)

    Black, Richard J.; Costa, Joannes M.; Faridian, Fereydoun; Moslehi, Behzad; Pakmehr, Mehrdad; Schlavin, Jon; Sotoudeh, Vahid; Zagrai, Andrei

    2014-04-01

    Future flight vehicles may comprise complex flight surfaces requiring coordinated in-situ sensing and actuation. Inspired by the complexity of the flight surfaces on the wings and tail of a bird, it is argued that increasing the number of interdependent flight surfaces from just a few, as is normal in an airplane, to many, as in the feathers of a bird, can significantly enlarge the flight envelope. To enable elements of an eco-inspired Dynamic Servo-Elastic (DSE) flight control system, IFOS is developing a multiple functionality-sensing element analogous to a feather, consisting of a very thin tube with optical fiber based strain sensors and algorithms for deducing the shape of the "feather" by measuring strain at multiple points. It is envisaged that the "feather" will act as a unit of sensing and/or actuation for establishing shape, position, static and dynamic loads on flight surfaces and in critical parts. Advanced sensing hardware and software control algorithms will enable the proposed DSE flight control concept. The hardware development involves an array of optical fiber based sensorized needle tubes for attachment to key parts for dynamic flight surface measurement. Once installed the optical fiber sensors, which can be interrogated over a wide frequency range, also allow damage detection and structural health monitoring.

  9. Remote sensing techniques for the detection of soil erosion and the identification of soil conservation practices

    Science.gov (United States)

    Pelletier, R. E.; Griffin, R. H.

    1985-01-01

    The following paper is a summary of a number of techniques initiated under the AgRISTARS (Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing) project for the detection of soil degradation caused by water erosion and the identification of soil conservation practices for resource inventories. Discussed are methods to utilize a geographic information system to determine potential soil erosion through a USLE (Universal Soil Loss Equation) model; application of the Kauth-Thomas Transform to detect present erosional status; and the identification of conservation practices through visual interpretation and a variety of enhancement procedures applied to digital remotely sensed data.

  10. Considerations and techniques for incorporating remotely sensed imagery into the land resource management process.

    Science.gov (United States)

    Brooner, W. G.; Nichols, D. A.

    1972-01-01

    Development of a scheme for utilizing remote sensing technology in an operational program for regional land use planning and land resource management program applications. The scheme utilizes remote sensing imagery as one of several potential inputs to derive desired and necessary data, and considers several alternative approaches to the expansion and/or reduction and analysis of data, using automated data handling techniques. Within this scheme is a five-stage program development which includes: (1) preliminary coordination, (2) interpretation and encoding, (3) creation of data base files, (4) data analysis and generation of desired products, and (5) applications.

  11. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, H.M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States)

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  12. Focal-plane wavefront sensing for active optics in the VST based on an analytical optical aberration model

    Science.gov (United States)

    Holzlöhner, R.; Taubenberger, S.; Rakich, A. P.; Noethe, L.; Schipani, P.; Kuijken, K.

    2016-08-01

    We study a novel focal plane wavefront sensing and active optics control scheme at the VST on Cerro Paranal, an f/5.5 survey telescope with a 1x1 degree field of view and a 2.6m primary mirror. This scheme analyzes the elongation pattern of stellar PSFs across the full science image (256 Mpixels) and compares their second moments with an analytical model based on 5th-order geometrical optics. We consider 11 scalar degrees of freedom in mirror misalignments and deformations (M2 piston, tip/tilt and lateral displacement, detector tip/tilt, plus M1 figure astigmatism and trefoil). Using a numerical optimization method, we extract up to 4000 stars and complete the fitting process in under one minute. We demonstrate successful closed-loop active optics control based on maximum likelihood filtering.

  13. Biological processes and optical measurements near the sea surface: Some issues relevant to remote sensing

    Science.gov (United States)

    Cullen, John J.; Lewis, Marlon R.

    1995-01-01

    The advent of remote sensing, the develpmemt of new optical instrumentation, and the associated advances in hydrological optics have transformed oceanography; it is now feasible to describe ocean-scale biogeochemical dynamcis from satellite observations, verified and complemented by measurements from optical sensors on profilers, moorings, and drifters. Only near-surface observations are common to both remote sensing and in situ observation, so it is critical to understand processes in the upper euphotic zone. Unfortunately, the biological principles that must be used to interpret optical variability near the sea surface are weaker than we would like, because relatively few experiments and analyses have examined bio-optical relationships under high irradiance characteristic of the upper optical depth. Special consideration of this stratum is justified, because there is good evidence that bio-optical relationships are altered near the surface; (1) the fluorescence yield from chlorophyll declines, leading to bias in the estimation of pigment from fluorometry; (2) the modeled relationship between solar-stimulated fluorecence and photosynthesis seems to deviate significantly from that presented for the lower euphotic zone; and (3) carbon-specific and cellular attenuation cross sections of phytoplankton change substantially during exposures to bright light. Even the measurement of primary productivity is problematic near the sea surface, because vertical mixing is not simulated and artifactual inhibition of photosynthesis can result. These problems can be addressed by focusing more sampling effort, experimental simulation, and analytical consideration on the upper optical depth, and by shortening timescales for the measurement of marine photosynthesis. Special efforts to study near-surface processes are justified, because new bio-optical algorithms will require quantitaitve descriptions of the responses of phytoplankton to bright light.

  14. Optical fibre multi-parameter sensing with secure cloud based signal capture and processing

    Science.gov (United States)

    Newe, Thomas; O'Connell, Eoin; Meere, Damien; Yuan, Hongwei; Leen, Gabriel; O'Keeffe, Sinead; Lewis, Elfed

    2016-05-01

    Recent advancements in cloud computing technologies in the context of optical and optical fibre based systems are reported. The proliferation of real time and multi-channel based sensor systems represents significant growth in data volume. This coupled with a growing need for security presents many challenges and presents a huge opportunity for an evolutionary step in the widespread application of these sensing technologies. A tiered infrastructural system approach is adopted that is designed to facilitate the delivery of Optical Fibre-based "SENsing as a Service- SENaaS". Within this infrastructure, novel optical sensing platforms, deployed within different environments, are interfaced with a Cloud-based backbone infrastructure which facilitates the secure collection, storage and analysis of real-time data. Feedback systems, which harness this data to affect a change within the monitored location/environment/condition, are also discussed. The cloud based system presented here can also be used with chemical and physical sensors that require real-time data analysis, processing and feedback.

  15. Rational design of an optical sensing system for multivalent proteins

    Energy Technology Data Exchange (ETDEWEB)

    Song, X.; Swanson, B.I. [Los Alamos National Lab., NM (United States). Chemical Science and Technology Div.

    1999-07-06

    A generic design principle for detection of multivalent interactions is described. A phospholipid bilayer consisting of natural and pyrene-derivatized phosphatidylcholines is used as both a supporting biomimetic surface and part of a signal transduction element. The pyrene excimer formed in the surface can act as fluorescence donor, and DABCY/BODIPY-FL covalently attached to receptor (GM1) can act as acceptors. Aggregation of the acceptor-tagged receptors resulting from multivalent binding of CT induces a decrease in efficiency of fluorescence quenching of the pyrene excimer by DABCY or energy transfer from pyrene excimer to BODIPY-FL. In the case using fluorescent acceptors that can undergo distance-dependent fluorescence self-quenching, combination of the lower energy transfer efficiency from the excimer and the acceptor`s self-quenching capability make acceptor fluorescence go down even further by the binding. This scheme can achieve signal amplification and high surface density of the optical transduction elements, which, in return, require relatively small surface area.

  16. A real-time technique for optical alignment of telescopes with segmented optics

    Science.gov (United States)

    DiVittorio, Michael; Gathright, John

    2003-02-01

    While telescopes with segmented optics (currently Keck and HET and in the future GTC, CELT, GSMT, NGST, etc) present extra challenges in terms of optical alignment, they also present the opportunity for using an alignment technique not available to telescopes with monolithic optics. We present a technique for aligning telescope secondary mirrors utilizing the segmented nature of the primary. The data required is gathered in direct image mode and can be collected from science instrument detectors (as compared to a wavefront sensor). From this data aberrations (focus and coma) are calculated from which secondary piston and tip/tilt (or decenter) corrections are determined. In addition, tip/tilt corrections for each of the primary mirror segments can also be calculated. Furthermore, other aberrations are available to determine other alignment or support issues including differentiating secondary tip/tilt from decenter, focal surface tilt, and instrument aberrations. This technique has been used nightly on the Keck I and II telescopes over the last 8 years and has made a significant improvement in image quality.

  17. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection

    Directory of Open Access Journals (Sweden)

    San-Shan Hung

    2016-12-01

    Full Text Available A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2′-bipyridyl dichlororuthenium(II hexahydrate and Tris(bipyridineruthenium(II chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  18. A Portable Array-Type Optical Fiber Sensing Instrument for Real-Time Gas Detection.

    Science.gov (United States)

    Hung, San-Shan; Chang, Hsing-Cheng; Chang, I-Nan

    2016-12-08

    A novel optical fiber array-type of sensing instrument with temperature compensation for real-time detection was developed to measure oxygen, carbon dioxide, and ammonia simultaneously. The proposed instrument is multi-sensing array integrated with real-time measurement module for portable applications. The sensing optical fibers were etched and polished before coating to increase sensitivities. The ammonia and temperature sensors were each composed of a dye-coated single-mode fiber with constructing a fiber Bragg grating and a long-period filter grating for detecting light intensity. Both carbon dioxide and oxygen sensing structures use multimode fibers where 1-hydroxy-3,6,8-pyrene trisulfonic acid trisodium salt is coated for carbon dioxide sensing and Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate and Tris(bipyridine)ruthenium(II) chloride are coated for oxygen sensing. Gas-induced fluorescent light intensity variation was applied to detect gas concentration. The portable gas sensing array was set up by integrating with photo-electronic measurement modules and a human-machine interface to detect gases in real time. The measured data have been processed using piecewise-linear method. The sensitivity of the oxygen sensor were 1.54%/V and 9.62%/V for concentrations less than 1.5% and for concentrations between 1.5% and 6%, respectively. The sensitivity of the carbon dioxide sensor were 8.33%/V and 9.62%/V for concentrations less than 2% and for concentrations between 2% and 5%, respectively. For the ammonia sensor, the sensitivity was 27.78%/V, while ammonia concentration was less than 2%.

  19. Regional glacier changes in the Ötztal Alps (Tyrol, Austria) - Results from different remote sensing techniques

    Science.gov (United States)

    Klug, Christoph; Rieg, Lorenzo; Sailer, Rudolf

    2017-04-01

    Climate change will pose a variety of challenges in the future, with global sea level rise among the most important ones. Out of all contributions to sea level rise, the contribution from glaciers is the one with the highest uncertainty. This is mainly because only very few and not necessarily representative glaciers are measured regularly. Among others, this limits the validation of extrapolation models. On a regional scale, remote sensing data offer several possibilities for the mapping and monitoring of glaciers. Especially with the advent of very high resolution data, new possibilities can be exploited. The monitoring of glacier area, the calculation of the geodetic glacier mass balances and the tracking of changes in the seasonal snow and firn bodies of glaciers on a regional scale can not only help to enhance the spatial, but also the temporal coverage of observations. The Ötztal Alps in Tyrol, Austria have been a research focus for the University of Innsbruck for several decades. Ongoing glaciological field measurements at two reference glaciers (Hintereisferner and Kesselwandferner) and data from different remote sensing techniques provide a valuable basis for a variety of research. The presented study analyses high-resolution airborne laser scanning (ALS) data, with more than 10 years of annual campaigns on Hintereisferner (2001-2013) and two campaigns covering all of the Ötztal Alps (2006 and 2010) in combination with orthoimages and optical satellite data. Furthermore Pléiades tri-stereo data (2015 and 2016) are available to calculate very high resolution and high quality digital terrain models (DTM). These DTM can be used to extend the time series in combination with the DTM based on ALS data and enable the calculation of the geodetic glacier mass balance for over 150 glaciers within the study area. Furthermore, the optical information (ALS intensity, orthoimages and optical satellite data) is used for surface classification in order to monitor the

  20. New metrology techniques improve the production of silicon diffractive optics

    Science.gov (United States)

    Brooks, Cynthia B.; Gully-Santiago, Michael; Grigas, Michelle; Jaffe, Daniel T.

    2014-07-01

    Silicon immersion gratings and grisms offer significant advantages in compactness and performance over frontsurface gratings and over grisms made from lower-index materials. At the same time, the high refractive index of Si (3.4) leads to very stringent constraints on the allowable groove position errors, typically rms error of errors and their origins, we could then implement process controls for each step. The plasma uniformity was improved for the silicon nitride mask etch process and the phase contribution of the plasma etch step was measured. We then used grayscale lithography, a technique in which the photoresist is deliberately underexposed, to measure large-scale nonuniformities in the UV exposure system to an accuracy of 3-5%, allowing us to make corrections to the optical alignment. Additionally, we used a new multiple-exposure technique combined with laser interferometry to measure the relationship between UV exposure dose and line edge shift. From these data we predict the contribution of the etching and photolithographic steps to phase error of the grating surface. These measurements indicate that the errors introduced during the exposure step dominate the contributions of all the other processing steps. This paper presents the techniques used to quantify individual process contributions to phase errors and steps that were taken to improve overall phase uniformity.

  1. Measurement of particle speed through optical reflective sensing

    Energy Technology Data Exchange (ETDEWEB)

    McCardle, J.

    1993-12-31

    Two methods determine the speed of 3 m glass spheres using optical reflective sensors embedded in a micro-processor system. The first method, which will be referred to as the one pulse method, is sensitive to particle size and shape. The pulse width of a detected particle is measured and normalized by a shape correction factor resulting in a speed estimate. Three models are developed to correct for effects due to particle shape and light scattering inhomogeneities. The second method, which will be referred to as the two pulse method, measures individual particle velocity components independent of size and shape with two detectors spaced a known distance apart. This distance is divided by the delay between the two detector output pulses to determine speed. A by-product of both methods is a localized particle flux. The microprocessor subsystem automates the pulse detection, timing, velocity calculation and display which are accomplished by the micro-processor subsystem. In the laboratory, a chute is used to generate particle flows with different characteristics. The detection system is tested in the chute for two different flows. A mechanical speed measurement is used for comparison to the one pulse method. The one pulse method is used for comparison to the two pulse method. A mechanical average mass flow rate is used for comparison to the flow rate measurements. Results obtained indicate that the one pulse method estimate is within 4% of the mechanically measured speed. The two pulse method gives erroneous results, in this application, due to detector separation distance greater than 3 particle diameters. The mass flow rate measurement gives erroneous results due to detector head placement. Solutions are proposed to correct discrepancies.

  2. Optical remote sensing of the thermosphere with HF pumped artificial airglow

    Science.gov (United States)

    Bernhardt, P. A.; Wong, M.; Huba, J. D.; Fejer, B. G.; Wagner, L. S.; Goldstein, J. A.; Selcher, C. A.; Frolov, V. L.; Sergeev, E. N.

    2000-05-01

    Optical emissions excited by high-power radio waves in the ionosphere can be used to measure a wide variety of parameters in the thermosphere. Powerful high-frequency (HF) radio waves produce energetic electrons in the region where the waves reflect in the F region. These hot or suprathermal electrons collide with atomic oxygen atoms to produce localized regions of metastable O(1D) and O(1S) atoms. These metastables subsequently radiate 630.0 and 557.7 nm, respectively, to produce clouds of HF pumped artificial airglow (HPAA). The shapes of the HPAA clouds are determined by the structure of large-scale (~10 km) plasma irregularities that occur naturally or that develop during ionospheric heating. When the HF wave is operated continuously, the motion of the airglow clouds follows the E×B drift of the plasma. When the HF wave is turned off, the airglow clouds decay by collisional quenching and radiation, expand by neutral diffusion, and drift in response to neutral winds. Images of HPAA clouds, obtained using both continuous and stepped radio wave transmissions, are processed to yield the electric fields, neutral wind vectors, and diffusion coefficients in the upper atmosphere. This technique is illustrated using data that were obtained in March 1993 and 1995 at the ionospheric modification facility near Nizhny Novgorod, Russia. Analysis of HPAA clouds yields zonal plasma drifts of 70 m s-1 eastward at night. On the basis of artificial airglow from energetic electrons generated at 260 km the zonal neutral wind speed was estimated to be 96 m s-1 and the O(1D) diffusion coefficient was determined to be between 0.8 and 1.4×1011cm2s-1. The quenched lifetime of the O(1D) was determined to be 29.4 s. The diffusion and quenching rates are directly related to the atomic and molecular concentrations in the thermosphere. Improvements in the remote-sensing technique may be obtained if the intensity of the artificial airglow emissions is increased. High-power radio

  3. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

    Science.gov (United States)

    Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio

    2008-01-01

    Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged.

  4. Experimental research of optical fiber hydrogen gas sensing system based on palladium-silver alloy

    Science.gov (United States)

    Cui, Lu-jun; Zhou, Gao-feng; Li, Zheng-feng; Cao, Yan-long

    2016-11-01

    A novel optical fiber hydrogen sensing system based on palladium (Pd) and sliver (Ag) is proposed. By direct current (DC) magnetron process, Pd/Ag alloy ultra-thin films were deposited on the substrate to eliminate the hydrogen embrittlement of sensor based on pure Pd. Several samples with different thin film thicknesses were fabricated at different substrate temperatures and tested in the optical fiber hydrogen sensor setup. We do a series of experiments for obtaining optimum sputtering parameters, such as optimum sputtering temperature and thickness of Pd/Ag alloy film. The humidity effect and reliability experiment for the optical fiber hydrogen gas sensor are reported in detail. The testing results demonstrate the Pd/Ag alloy is a promising material for optical fiber hydrogen gas sensor.

  5. Optical techniques for determination of the state of cure of epoxy resin based systems

    Science.gov (United States)

    Michie, W. C.; Thursby, G.; Johnstone, W.; Culshaw, B.

    1993-03-01

    Determination of the state of cure of epoxy resin based systems is of considerable interest to manufacturers of large carbon fiber reinforced plastic and glass reinforced plastic structures. Optical methods designed to indicate the cure state have been developed using a loss mechanism which is a function of the refractive index of the curing system. Such techniques are however subject to corruption from losses arising from other influences and consequently are limited in their measurement resolution. In this paper, two techniques which are able to provide a high degree of accuracy of measurement of refractive index are investigated as a means of performing cure measurements. The methods investigated involve the interaction of the evanescent field of a side polished optical fiber with an overlay waveguide or a surface plasmon. Coupling between the fiber and the overlay waveguide (or plasmon) is strongly influenced by the refractive index of the bulk superstrate above the overlay (in this case the curing resin system). Both sensing schemes are self referencing and are not influenced by loss.

  6. Development and Experimental Verification of Key Techniques to Validate Remote Sensing Products

    Science.gov (United States)

    Li, X.; Wang, S. G.; Ge, Y.; Jin, R.; Liu, S. M.; Ma, M. G.; Shi, W. Z.; Li, R. X.; Liu, Q. H.

    2013-05-01

    Validation of remote sensing land products is a fundamental issue for Earth observation. Ministry of Science and Technology of the People's Republic of China (MOST) has launched a high-tech R&D Program named `Development and experimental verification of key techniques to validate remote sensing products' in 2011. This paper introduces the background, scientific objectives, research contents of this project and research result already achieved. The objectives of this project include (1) to build a technical specification for the validation of remote sensing products; (2) to investigate the performance, we will carry out a comprehensive remote sensing experiment on satellite - aircraft - ground truth and then modify Step 1 until reach the predefined requirement; (3) to establish a validation network of China for remote sensing products. In summer 2012, with support of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER), field observations have been successfully conducted in the central stream of the Heihe River Basin, a typical inland river basin in northwest China. A flux observation matrix composed of eddy covariance (EC) and large aperture scintillometer (LAS), in addition to a densely distributed eco-hydrological wireless sensor network have been established to capture multi-scale heterogeneities of evapotranspiration (ET), leaf area index (LAI), soil moisture and temperature. Airborne missions have been flown with the payloads of imaging spectrometer, light detection and ranging (LiDAR), infrared thermal imager and microwave radiometer that provide various scales of aerial remote sensing observations. Satellite images with high resolution have been collected and pre-processed, e.g. PROBA-CHRIS and TerraSAR-X. Simultaneously, ground measurements have been conducted over specific sampling plots and transects to obtain validation data sets. With this setup complex problems are addressed, e.g. heterogeneity, scaling, uncertainty, and eventually to

  7. Gas detection techniques with fiber optical spectrum absorption at near-IR wavelength

    Science.gov (United States)

    Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Peng, Gangding; Wang, Yan; Jia, Dagong; Zhang, Hongxia; Jing, Wencai; Zhang, Yimo

    2010-04-01

    Detection of pollution gas is important in environmental and pollution monitoring, which can be used widely in mining and petrochemical industry. Fiber optical spectrum absorption (FOSA) at near-IR wavelength is widely used in gas detection due to its essential advantages. It has attracted considerable attention, and there are several types and methods in FOSA. Wavelength modulation technique (WMT) is one of them, which will improve the gas detection sensitivity dramatically. This technique can be realized by detecting the intensity of the second-harmonic component signal. Intra-cavity laser spectroscopy (ICLS) is another alternative technique for high sensitivity absorption measurement. With an absorber directly placed within the laser cavity, a short absorption cell can be transformed into a high sensitivity system. But the practical sensitivity is obviously less than the theoretical value. The authors did some works in these fields and have obtained some remarkable progress. With broad reflectors instead of FBG as mirror of the cavity and wavelength sweep technique (WST), several absorption spectra of detected gas can be collected. And the detection sensitivity can be enhanced sharply by averaging the results of each spectrum, with acetylene sensitivity less than 100 ppm . When ICLS is used combined with WST and WMT, the detection sensitivity of acetylene can be enhanced further. The sensitivity is less than 75 ppm. By using FBGs as wavelength references, the absorption wavelength of the detected gas is obtained, which can be used to realize gas recognition. The system is capable of accessing into fiber intelligent sensing network.

  8. Brillouin optical time domain reflectometry for fast detection of dynamic strain incorporating double-edge technique

    Science.gov (United States)

    Shangguan, Mingjia; Wang, Chong; Xia, Haiyun; Shentu, Guoliang; Dou, Xiankang; Zhang, Qiang; Pan, Jian-wei

    2017-09-01

    For the first time, to the best of our knowledge, a direct detection Brillouin optical time-domain reflectometry (BOTDR) is demonstrated for fast distributed dynamic strain sensing incorporating double-edge technique, time-division multiplexing technique and upconversion technique. In order to guarantee the robust stability of the system, the double-edge technique is implemented by using a convert single-channel FPI and a fiber-coupled upconversion single-photon detector, incorporating a time-division multiplexing method. The upconversion single-photon detector is adopted to upconvert the backscattering photons from 1548.1 nm to 863 nm, which is subsequently detected by a Silicon avalanche photodiode (Si-APD). In the experiment, dynamic strain disturbance up to 1.9 mε over 1.5 km of a polarization maintaining fiber is detected at a sampling rate of 30 Hz. An accuracy of ± 30 με and spatial resolution of 0.6 m are realized.

  9. From nano-plasmonic optics toward molecules bio-sensing

    Science.gov (United States)

    Su, Kai-Hung

    A systematic study on optical properties of nano-metallic particles was investigated. Nano metallic particle plasmon resonant peak wavelengths are significantly red-shifted from that of a single particle because of near-field coupling when two nano-particles are placed closer to each other. The shift decays approximately exponentially with increasing particle spacing and become negligible when the gap between the two particles exceeds about 2.5 times the particle short-axis length. While resonant peak of a finite 1D nano-particles chain is also significantly red-shifted, the peak wavelength is found to be non-monotonic and oscillating with the variation of the chain length. The results shown to occurs only for larger particles where phase retardation effects are important in plasmon coupling. Based on the coupling results from nano-particle interaction studies, we develop a new type of tunable plasmon resonance nano-particles, named tunable nano-plasmonic resonator (TNPR) which consists multi-layered Au/SiO2 nanodisks. Compared to single layered Au nanodisks, multilayered nanodisks TNPR exhibit several distinctive properties including significantly enhanced plasmon resonances and tunable resonance wavelengths which can be tailored to desired values by simply varying dielectric layer thickness while the particle diameter is kept constant. This tunable and augmented plasmon resonance holds a great potential in the applications of surface-enhanced Raman scattering (SERS). Characterized TNPR enhancement factor reaches as high as 4.7 x 10 10 for individual TNPRs, among the highest enhancement factor reported in single nanoparticle, indicating that our designed TNPR can serve as a great SERS active-substrate by matching the laser pumping frequency to maximize SERS enhancement. TNPR design was implemented for real bio-application. The sensitivity of non-optimized TNPR for in vitro proteolytic PSA assays reaches to 6pM. Compared to other cancer biomarker detection assays

  10. High-accuracy current sensing circuit with current compensation technique for buck-boost converter

    Science.gov (United States)

    Rao, Yuan; Deng, Wan-Ling; Huang, Jun-Kai

    2015-03-01

    A novel on-chip current sensing circuit with current compensation technique suitable for buck-boost converter is presented in this article. The proposed technique can sense the full-range inductor current with high accuracy and high speed. It is mainly based on matched current mirror and does not require a large proportion of aspect ratio between the powerFET and the senseFET, thus it reduces the complexity of circuit design and the layout mismatch issue without decreasing the power efficiency. The circuit is fabricated with TSMC 0.25 µm 2P5M mixed-signal process. Simulation results show that the buck-boost converter can be operated at 200 kHz to 4 MHz switching frequency with an input voltage from 2.8 to 4.7 V. The output voltage is 3.6 V, and the maximum accuracy for both high and low side sensing current reaches 99% within the load current ranging from 200 to 600 mA.

  11. Radio & Optical Interferometry: Basic Observing Techniques and Data Analysis

    CERN Document Server

    Monnier, John D

    2012-01-01

    Astronomers usually need the highest angular resolution possible, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely-separated telescopes to be combined in order to synthesize an aperture much larger than an individual telescope thereby improving angular resolution by orders of magnitude. Radio and millimeter wave astronomers depend on interferometry to achieve image quality on par with conventional visible and infrared telescopes. Interferometers at visible and infrared wavelengths extend angular resolution below the milli-arcsecond level to open up unique research areas in imaging stellar surfaces and circumstellar environments. In this chapter the basic principles of interferometry are reviewed with an emphasis on the common features for radio and optical observing. While many techniques are common to interferometers of all wavelengths, crucial differences are identified that will help new practi...

  12. Interferometric distributed sensing system with phase optical time-domain reflectometry

    Science.gov (United States)

    Wang, Chen; Shang, Ying; Liu, Xiaohui; Wang, Chang; Wang, Hongzhong; Peng, Gangding

    2016-11-01

    We demonstrate a distributed optical fiber sensing system based on the Michelson interferometer of the phase sensitive optical time domain reflectometer (φ-OTDR) for acoustic measurement. Phase, amplitude, frequency response, and location information can be directly obtained at the same time by using the passive 3×3 coupler demodulation. We also set an experiment and successfully restore the acoustic information. Meanwhile, our system has preliminary realized acoustic-phase sensitivity around -150 dB (re rad/μPa) in the experiment.

  13. Wavefront sensing based on phase contrast theory and coherent optical processing

    Science.gov (United States)

    Lei, Huang; Qi, Bian; Chenlu, Zhou; Tenghao, Li; Mali, Gong

    2016-07-01

    A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patterns, making high-density detection available. By applying the method, we have also designed a wavefront sensor. It consists of a classical coherent optical processing system, a CCD detector array, two pieces of orthogonal composite sinusoidal gratings, and a mechanical structure that can perform real-time linear positioning. The simulation results prove and demonstrate the validity of the method and the sensor in high-precision measurement of the wavefront gradient field.

  14. Empirical model of optical sensing via spectral shift of circular Bragg phenomenon

    CERN Document Server

    Mackay, Tom G

    2009-01-01

    Setting up an empirical model of optical sensing to exploit the circular Bragg phenomenon displayed by chiral sculptured thin films (CSTFs), we considered a CSTF with and without a central twist defect of $\\pi/2$ radians. The circular Bragg phenomenon of the defect-free CSTF, and the spectral hole in the co-polarized reflectance spectrum of the CSTF with the twist defect, were both found to be acutely sensitive to the refractive index of a fluid which infiltrates the void regions of the CSTF. These findings bode well for the deployment of CSTFs as optical sensors.

  15. Study of fiber-optic current sensing based on degree of polarization measurement

    Institute of Scientific and Technical Information of China (English)

    Feng Liu; Qing Ye; Jianxin Geng; Ronghui Qu; Zujie Fang

    2007-01-01

    A novel fiber-optic current sensing scheme is proposed by converting the Faraday rotation to the optical signal's degree of polarization (DOP) change. In this scheme, the lightwave passes through a fiber resonant cavity multiply and experiences Faraday rotation simultaneously. Its main merit is immunity from the environment disturbance to the fiber used in ordinary Faraday rotation sensor. Brief theoretical analysis and simulation are given to show its basic characteristics. Experimental results are demonstrated and the feasibility of the proposed method is also shown.

  16. Remote sensing reflectance model of optically active components of turbid waters

    Science.gov (United States)

    Kutser, Tiit; Arst, Helgi

    1994-12-01

    A mathematical model that simulates the spectral curves of remote sensing reflectance is developed. The model is compared to measurements obtained from research vessel or boat in the Baltic Sea and Estonian lakes. The model simulates the effects of light backscattering from water and suspended matter, and the effects of its absorption due to water, phytoplankton, suspended matter and yellow substance. Measured by remote sensing spectral curves are compared by multiple of spectra obtained from model calculations to find the theoretical spectrum which is closest to experimental. It is assumed that in case of coincidence of the spectral curves concentrations of optically active substances in the model correspond to real ones. Preliminary testing of the model demonstrates that this model is useful for estimation of concentration of optically active substances in the waters of the Baltic Sea and Estonian lakes.

  17. Zigzag GaN/Ga2O3 heterogeneous nanowires: Synthesis, optical and gas sensing properties

    Directory of Open Access Journals (Sweden)

    Li-Wei Chang

    2011-09-01

    Full Text Available Zigzag GaN/Ga2O3 heterogeneous nanowires (NWs were fabricated, and the optical properties and NO gas sensing ability of the NWs were investigated. We find that NWs are most effective at 850 °C at a switching process once every 10 min (on/off = 10 min per each with a mixture flow of NH3 and Ar. The red shift of the optical bandgap (0.66 eV is observed from the UV-vis spectrum as the GaN phase forms. The gas sensing characteristics of the developed sensor are significantly replaced to those of other types of NO sensors reported in literature.

  18. Joint Change Detection and Image Registration for Optical Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Wang Luo

    2012-03-01

    Full Text Available In this letter, a novel method is proposed for jointly unsupervised change detection and image registration over multi-temporal optical remote sensing images. An iterative energy minimization scheme is employed to extract the pixel opacity. Specifically, we extract the consistent points which provide the initial seed nodes and the feature nodes for random walker image segmentation and image registration, respectively. And the seed nodes will be updated according to the analysis of the changed and unchanged regions. Experimental results demonstrate that the proposed method can perform change detection as well as the state of the art methods. In particular, it can perform change detection rapidly and automatically over unregistered optical remote sensing images.

  19. Nondestructive sensing technologies using micro-optical elements for applications in the NIR-MIR spectral regions

    Science.gov (United States)

    Otto, Thomas; Saupe, Ray; Bruch, Reinhard F.; Fritzsch, Uwe; Stock, Volker; Gessner, Thomas; Afanasyeva, Natalia I.

    2001-11-01

    The field of microtechnology is an important industrial and scientific resource for the 21st century. There is a great interest in spectroscopic sensors in the near and middle infrared (NIR-MIR) wavelength regions (1 - 2.5 micrometers ; 2.5 - 4.5 micrometers ; 4 - 6 micrometers ). The potential for cheap and small devices for nondestructive, remote sensing techniques at a molecular level has stimulated the design and development of more compact analyzer systems. Therefore we will try to build analyzers using micro optical components such as micromirrors and embossed micro gratings optimized for the above mentioned spectral ranges. Potentially, infrared sensors can be used for rapid nondestructive diagnostics of surfaces, liquids, gases, polymers and complex biological systems including proteins, blood, cells and cellular debris as well as body tissue. Furthermore, NIR-MIR microsensing spectroscopy will be utilized to monitor the chemical composition of petrochemical products like gasoline and diesel. In addition, miniature analyzers will be used for rapid measuring of food, in particular oil, starch and meat. In this paper we will present an overview of several new approaches for subsurface and surface sensing technologies based on the integration of optical micro devices, the most promising sensors for biomedical, environmental and industrial applications, data processing and evaluation algorithms for classification of the results. Both scientific and industrial applications will be discussed.

  20. Non-contact Evaluation of Concrete Structures Using Air-coupled Sensing Technique

    Institute of Scientific and Technical Information of China (English)

    ZHU Jinying

    2011-01-01

    Elastic wave-based non-destructive testing (NDT) methods are effective for flaw detection in concrete structures and pavements. However, the test speed of elastic wave-based methods is severely limited by the physical coupling between sensors and concrete surface. The air-coupled sensing method is proposed as a solution to develop rapid NDT techniques for concrete infrastructure. This paper reviews the development of air-coupled sensing technique for concrete structures in civil engineering applications. It presents four stages of the research: 1 ) feasibility study through theoretical analysis; 2 ) air-coupled surface wave velocity measurement; 3) air-coupled surface wave transmission measurement to determine crack depth; 4) air-coupled impact-echo test to locate delaminations and voids in concrete.