Towards highly multimode optical quantum memory for quantum repeaters
Jobez, Pierre; Laplane, Cyril; Etesse, Jean; Ferrier, Alban; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael
2015-01-01
Long-distance quantum communication through optical fibers is currently limited to a few hundreds of kilometres due to fiber losses. Quantum repeaters could extend this limit to continental distances. Most approaches to quantum repeaters require highly multimode quantum memories in order to reach high communication rates. The atomic frequency comb memory scheme can in principle achieve high temporal multimode storage, without sacrificing memory efficiency. However, previous demonstrations have been hampered by the difficulty of creating high-resolution atomic combs, which reduces the efficiency for multimode storage. In this article we present a comb preparation method that allows one to increase the multimode capacity for a fixed memory bandwidth. We apply the method to a $^{151}$Eu$^{3+}$-doped Y$_2$SiO$_5$ crystal, in which we demonstrate storage of 100 modes for 51 $\\mu$s using the AFC echo scheme (a delay-line memory), and storage of 50 modes for 0.541 ms using the AFC spin-wave memory (an on-demand memo...
Optical quantum memory based on electromagnetically induced transparency
Ma, Lijun; Slattery, Oliver; Tang, Xiao
2017-04-01
Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems.
Optical quantum memory based on electromagnetically induced transparency.
Ma, Lijun; Slattery, Oliver; Tang, Xiao
2017-04-01
Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems.
Optically programmable electron spin memory using semiconductor quantum dots.
Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J
2004-11-04
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.
Continuous-variable quantum computing in optical time-frequency modes using quantum memories.
Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A
2014-09-26
We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.
A telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits
Jin, Jeongwan; Puigibert, Marcel li Grimau; Verma, Varun B; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2015-01-01
Photon-based quantum information processing promises new technologies including optical quantum computing, quantum cryptography, and distributed quantum networks. Polarization-encoded photons at telecommunication wavelengths provide a compelling platform for practical realization of these technologies. However, despite important success towards building elementary components compatible with this platform, including sources of entangled photons, efficient single photon detectors, and on-chip quantum circuits, a missing element has been atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of a telecom-wavelength photon. Here we demonstrate the quantum storage and retrieval of polarization states of heralded single-photons at telecom-wavelength by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber. Despite remaining limitations in our proof-of-principle demonstration such as small storage eff...
The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity
Veselkova, N. G.; Sokolov, I. V.
2017-07-01
Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.
Energy Technology Data Exchange (ETDEWEB)
Miyazono, Evan; Zhong, Tian; Craiciu, Ioana; Kindem, Jonathan M.; Faraon, Andrei, E-mail: faraon@caltech.edu [T. J. Watson Laboratory of Applied Physics, California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125 (United States)
2016-01-04
Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here, we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.
Miyazono, Evan; Craiciu, Ioana; Kindem, Jonathan M; Faraon, Andrei
2016-01-01
Erbium dopants in crystals exhibit highly coherent optical transitions well suited for solid-state optical quantum memories operating in the telecom band. Here we demonstrate coupling of erbium dopant ions in yttrium orthosilicate to a photonic crystal cavity fabricated directly in the host crystal using focused ion beam milling. The coupling leads to reduction of the photoluminescence lifetime and enhancement of the optical depth in microns-long devices, which will enable on-chip quantum memories.
Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits
Jin, Jeongwan; Saglamyurek, Erhan; Puigibert, Marcel. lí Grimau; Verma, Varun; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2015-10-01
Polarization-encoded photons at telecommunication wavelengths provide a compelling platform for practical realizations of photonic quantum information technologies due to the ease of performing single qubit manipulations, the availability of polarization-entangled photon-pair sources, and the possibility of leveraging existing fiber-optic links for distributing qubits over long distances. An optical quantum memory compatible with this platform could serve as a building block for these technologies. Here we present the first experimental demonstration of an atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of freedom of a telecom-wavelength photon. We show that heralded polarization qubits at a telecom wavelength are stored and retrieved with near-unity fidelity by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber. Despite remaining limitations in our proof-of-principle demonstration such as small storage efficiency and storage time, our broadband light-matter interface reveals the potential for use in future quantum information processing.
Quantum memories: emerging applications and recent advances
Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.
2016-01-01
Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories. PMID:27695198
Quantum memories: emerging applications and recent advances.
Heshami, Khabat; England, Duncan G; Humphreys, Peter C; Bustard, Philip J; Acosta, Victor M; Nunn, Joshua; Sussman, Benjamin J
2016-11-12
Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.
Quantum memories: emerging applications and recent advances
Heshami, Khabat; England, Duncan G.; Humphreys, Peter C.; Bustard, Philip J.; Acosta, Victor M.; Nunn, Joshua; Sussman, Benjamin J.
2016-11-01
Quantum light-matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.
Ventura, D; Ventura, Dan; Martinez, Tony
1998-01-01
This paper combines quantum computation with classical neural network theory to produce a quantum computational learning algorithm. Quantum computation uses microscopic quantum level effects to perform computational tasks and has produced results that in some cases are exponentially faster than their classical counterparts. The unique characteristics of quantum theory may also be used to create a quantum associative memory with a capacity exponential in the number of neurons. This paper combines two quantum computational algorithms to produce such a quantum associative memory. The result is an exponential increase in the capacity of the memory when compared to traditional associative memories such as the Hopfield network. The paper covers necessary high-level quantum mechanical and quantum computational ideas and introduces a quantum associative memory. Theoretical analysis proves the utility of the memory, and it is noted that a small version should be physically realizable in the near future.
Quantum memory in quantum cryptography
Mor, T
1999-01-01
[Shortened abstract:] This thesis investigates the importance of quantum memory in quantum cryptography, concentrating on quantum key distribution schemes. In the hands of an eavesdropper -- a quantum memory is a powerful tool, putting in question the security of quantum cryptography; Classical privacy amplification techniques, used to prove security against less powerful eavesdroppers, might not be effective when the eavesdropper can keep quantum states for a long time. In this work we suggest a possible direction for approaching this problem. We define strong attacks of this type, and show security against them, suggesting that quantum cryptography is secure. We start with a complete analysis regarding the information about a parity bit (since parity bits are used for privacy amplification). We use the results regarding the information on parity bits to prove security against very strong eavesdropping attacks, which uses quantum memories and all classical data (including error correction codes) to attack th...
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
DEFF Research Database (Denmark)
Andersen, Ulrik Lund
2013-01-01
Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....
Mao, Samuel S; Zhang, Yanfeng
2013-07-02
Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.
Garrison, J C
2008-01-01
Quantum optics, i.e. the interaction of individual photons with matter, began with the discoveries of Planck and Einstein, but in recent years it has expanded beyond pure physics to become an important driving force for technological innovation. This book serves the broader readership growing out of this development by starting with an elementary description of the underlying physics and then building up a more advanced treatment. The reader is led from the quantum theory of thesimple harmonic oscillator to the application of entangled states to quantum information processing. An equally impor
Sprague, Michael R.; England, Duncan G.; Abdolvand, Amir; Nunn, Joshua; Jin, Xian-Min; Kolthammer, W. Steven; Barbieri, Marco; Rigal, Bruno; Michelberger, Patrick S.; Champion, Tessa F. M.; Russell, Philip St. J.; Walmsley, Ian A.
2013-05-01
The generation of large multiphoton quantum states—for applications in computing, metrology and simulation—requires a network of high-efficiency quantum memories capable of storing broadband pulses. Integrating these memories into a fibre offers a number of advantages towards realizing this goal: strong light-matter coupling at low powers, simplified alignment and compatibility with existing photonic architectures. Here, we introduce a large-core kagome-structured hollow-core fibre as a suitable platform for an integrated fibre-based quantum memory with a warm atomic vapour. We demonstrate, for the first time, efficient optical pumping in such a system, where 90 ± 1% of atoms are prepared in the ground state. We measure high optical depths (3 × 104) and narrow homogeneous linewidths (6 ± 2 MHz) that do not exhibit significant transit-time broadening, showing that we can prepare a Λ-level system in a pure state. Our results establish that kagome fibres are suitable for implementing a broadband, room-temperature quantum memory, as well as a range of nonlinear optical effects.
Quantum teleportation between remote atomic-ensemble quantum memories
Bao, Xiao-Hui; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei
2012-01-01
Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel", quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of 100 million rubidium atoms and connected by a 150-meter optical fiber. The spinwave state of one atomic ensemble is mapped to a propagating photon, and subjected to Bell-state measurements with another single photon that is entangled with the spinwave state of the other ensemble. Two-photon detection events herald the succe...
Moiseev, S. A.; Gubaidullin, F. F.; Kirillov, R. S.; Latypov, R. R.; Perminov, N. S.; Petrovnin, K. V.; Sherstyukov, O. N.
2017-01-01
In this paper we present universal broadband multiresonator quantum memory based on the spatial-frequency combs of the microresonators coupled with a common waveguide. We find a Bragg-type impedance matching condition for the coupling of the microresonators with a waveguide field that provides an efficient broadband quantum storage. The analytical solution obtained for the microresonator fields enables sustainable parametric control of all the memory characteristics. We also construct an experimental prototype of the studied quantum memory in the microwave spectral range that demonstrates basic properties of the microwave microresonators, their coupling with a common waveguide, and independent control of the microresonator frequencies. Experimentally observed narrow lines of the microresonators confirm the possibility of multiresonator quantum memory implementation.
Institute of Scientific and Technical Information of China (English)
卞松保; 唐艳; 李桂荣; 李月霞; 杨富华; 郑厚植; 曾一平
2003-01-01
We report a new type of photonic memory cell based on a semiconductor quantum dot (QD)-quantum well (QW)hybrid structure, in which photo-generated excitons can be decomposed into separated electrons and holes, and stored in QW and QDs respectively. Storage and retrieval of photonic signals are verified by time-resolved photoluminescence experiments. A storage time in excess of 100ms has been obtained at a temperature of 10K while the switching speed reaches the order of ten megahertz.
Sprague, Michael R; Abdolvand, Amir; Nunn, Joshua; Jin, Xian-Min; Kolthammer, W Steven; Barbieri, Marco; Rigal, Bruno; Michelberger, Patrick S; Champion, Tessa F M; Russell, Philip St J; Walmsley, Ian A
2012-01-01
The generation of large multiphoton quantum states - for applications in computing, metrology, and simulation - requires a network of high-efficiency quantum memories capable of storing broadband pulses. Integrating these memories into a fibre offers a number of advantages towards realising this goal: strong light-matter coupling at low powers, simplified alignment, and compatibility with existing photonic architectures. Here, we introduce a large-core kagome-structured hollow-core fibre as a suitable platform for an integrated fibre-based quantum memory with a warm atomic vapour. We demonstrate, for the first time, efficient optical pumping in a hollow-core photonic-crystal fibre with a warm atomic vapour, where (90 $\\pm$ 1)% of atoms are prepared in the ground state. We measure high optical depths (3$\\times 10^{4}$) and, also, narrow homogeneous linewidths that do not exhibit significant transit-time broadening. Our results establish that kagome fibres are suitable for implementing a broadband, room-tempera...
Efficient entanglement distillation without quantum memory
Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman
2016-01-01
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946
Efficient entanglement distillation without quantum memory
Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman
2016-05-01
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.
Efficient entanglement distillation without quantum memory.
Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman
2016-05-31
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.
Quantum optics for experimentalists
Ou, Zhe-Yu Jeff
2017-01-01
This book on quantum optics is from the point of view of an experimentalist. It approaches the theory of quantum optics with the language of optical modes of classical wave theory, with which experimentalists are most familiar.
Uncertainty under quantum measures and quantum memory
Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing
2017-04-01
The uncertainty principle restricts potential information one gains about physical properties of the measured particle. However, if the particle is prepared in entanglement with a quantum memory, the corresponding entropic uncertainty relation will vary. Based on the knowledge of correlations between the measured particle and quantum memory, we have investigated the entropic uncertainty relations for two and multiple measurements and generalized the lower bounds on the sum of Shannon entropies without quantum side information to those that allow quantum memory. In particular, we have obtained generalization of Kaniewski-Tomamichel-Wehner's bound for effective measures and majorization bounds for noneffective measures to allow quantum side information. Furthermore, we have derived several strong bounds for the entropic uncertainty relations in the presence of quantum memory for two and multiple measurements. Finally, potential applications of our results to entanglement witnesses are discussed via the entropic uncertainty relation in the absence of quantum memory.
2016-09-01
University of Delaware , Newark, DE. 5f. WORK UNIT NUMBER REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-01-0188 The public reporting burden for...ANSI Std . Z39.18 September 2016 Final Rare-Earth Ions in Niobium-based Devices as a Quantum Memory Magneto-Optical Effects on Room Temperature
Quantum optical waveform conversion
Kielpinski, D; Wiseman, HM
2010-01-01
Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.
Photonic crystal optical memory
Lima, A. Wirth; Sombra, A. S. B.
2011-06-01
After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).
Stark echo modulation for quantum memories
Arcangeli, A.; Ferrier, A.; Goldner, Ph.
2016-06-01
Quantum memories for optical and microwave photons provide key functionalities in quantum processing and communications. Here we propose a protocol well adapted to solid-state ensemble-based memories coupled to cavities. It is called Stark echo modulation memory (SEMM) and allows large storage bandwidths and low noise. This is achieved in an echo-like sequence combined with phase shifts induced by small electric fields through the linear Stark effect. We investigated the protocol for rare-earth nuclear spins and found a high suppression of unwanted collective emissions that is compatible with single-photon-level operation. Broadband storage together with high fidelity for the Stark retrieval process is also demonstrated. SEMM could be used to store optical or microwave photons in ions and/or spins. This includes nitrogen-vacancy centers in diamond and rare-earth-doped crystals, which are among the most promising solid-state quantum memories.
National Research Council Canada - National Science Library
Jeremy L. O'Brien
2007-01-01
In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors...
Quantum Secure Direct Communication with Quantum Memory
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-01
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Quantum Secure Direct Communication with Quantum Memory.
Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can
2017-06-02
Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.
Latypov, I. Z.; Shkalikov, A. V.; Akat'ev, D. O.; Kalachev, A. A.
2017-06-01
We report on the realization of a tunable source of correlated photon pairs compatible with telecommunication networks and quantum memories involving dielectric crystals doped by Nd3+ ions. The source is based on spontaneous parametric down-conversion in a 25 mm periodically poled lithium niobate crystal pumped by 532 nm cw laser. Spectral and correlation characteristics of the corresponding heralded single-photon source compatible with quantum memories are presented.
Impedance-matched cavity quantum memory
Afzelius, Mikael
2010-01-01
We consider an atomic frequency comb based quantum memory inside an asymmetric optical cavity. In this configuration it is possible to absorb the input light completely in a system with an effective optical depth of one, provided that the absorption per cavity round trip exactly matches the transmission of the coupling mirror ("impedance matching"). We show that the impedance matching results in a readout efficiency only limited by irreversible atomic dephasing, whose effect can be made very small in systems with large inhomogeneous broadening. Our proposal opens up an attractive route towards quantum memories with close to unit efficiency.
Pu, Y.-F.; Jiang, N.; Chang, W.; Yang, H.-X.; Li, C.; Duan, L.-M.
2017-05-01
To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology.
Pu, Y-F; Jiang, N.; Chang, W.; Yang, H-X; Li, C.; Duan, L-M
2017-01-01
To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology. PMID:28480891
Surmacz, K; Nunn, J; Waldermann, F C; Walmsley, I; Wang, Z
2006-01-01
We introduce a figure of merit for a quantum memory which measures the preservation of entanglement between a qubit stored in and retrieved from the memory and an auxiliary qubit. We consider a general quantum memory system consisting of a medium of two level absorbers, with the qubit to be stored encoded in a single photon. We derive an analytic expression for our figure of merit taking into account Gaussian fluctuations in the Hamiltonian parameters, which for example model inhomogeneous broadening and storage time dephasing. Finally we specialize to the case of an atomic quantum memory where fluctuations arise predominantly from Doppler broadening and motional dephasing.
Meystre, Pierre
2007-01-01
Elements of Quantum Optics gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing. It also comprises discussions of cavity quantum electrodynamics and atom optics. The 4th edition includes a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light, and the input-output formalism needed to understand many problems in quantum optics. It also provides an expanded treatment of the minimum-coupling Hamiltonian and a simple derivation of the Gross-Pitaevskii equation, an important gateway to rese...
Memory cost of quantum contextuality
Kleinmann, Matthias; Portillo, José R; Larsson, Jan-Åke; Cabello, Adán
2010-01-01
The simulation of quantum effects requires certain classical resources, and quantifying them is an important step in order to understand the difference between quantum and classical physics. We investigate the minimum classical memory needed to simulate the phenomenon of state-independent quantum contextuality in sequential measurements. We derive optimal simulation strategies for several important cases and prove that two bits of classical memory do not suffice to reproduce the results of sequential measurements on a two-qubit system.
Quantum memories at finite temperature
Brown, Benjamin J.; Loss, Daniel; Pachos, Jiannis K.; Self, Chris N.; Wootton, James R.
2016-10-01
To use quantum systems for technological applications one first needs to preserve their coherence for macroscopic time scales, even at finite temperature. Quantum error correction has made it possible to actively correct errors that affect a quantum memory. An attractive scenario is the construction of passive storage of quantum information with minimal active support. Indeed, passive protection is the basis of robust and scalable classical technology, physically realized in the form of the transistor and the ferromagnetic hard disk. The discovery of an analogous quantum system is a challenging open problem, plagued with a variety of no-go theorems. Several approaches have been devised to overcome these theorems by taking advantage of their loopholes. The state-of-the-art developments in this field are reviewed in an informative and pedagogical way. The main principles of self-correcting quantum memories are given and several milestone examples from the literature of two-, three- and higher-dimensional quantum memories are analyzed.
Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits.
Rabl, P; DeMille, D; Doyle, J M; Lukin, M D; Schoelkopf, R J; Zoller, P
2006-07-21
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
Hybrid Quantum Processors: molecular ensembles as quantum memory for solid state circuits
Rabl, P; Doyle, J M; Lukin, M D; Schölkopf, R J; Zoller, P
2006-01-01
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that for convenient trap-surface distances of a few $\\mu$m, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
Duarte, FJ
2013-01-01
Quantum Optics for Engineers provides a transparent and methodical introduction to quantum optics via the Dirac's bra-ket notation with an emphasis on practical applications and basic aspects of quantum mechanics such as Heisenberg's uncertainty principle and Schrodinger's equation. Self-contained and using mainly first-year calculus and algebra tools, the book:Illustrates the interferometric quantum origin of fundamental optical principles such as diffraction, refraction, and reflectionProvides a transparent introduction, via Dirac's notation, to the probability amplitude of quantum entanglem
DEFF Research Database (Denmark)
Clausen, Christoph; Sangouard, N.; Drewsen, M.
2013-01-01
The ability to detect single photons with a high efficiency is a crucial requirement for various quantum information applications. By combining the storage process of a quantum memory for photons with fluorescence-based quantum state measurement, it is, in principle, possible to achieve high...... on an ion Coulomb crystal inside a moderately high-finesse optical cavity. The cavity enhancement leads to an effective optical depth of 15 for a finesse of 3000 with only about 1500 ions interacting with the light field. We show that these values allow for essentially noiseless detection with an efficiency......-efficiency photon counting in large ensembles of atoms. The large number of atoms can, however, pose significant problems in terms of noise stemming from imperfect initial state preparation and off-resonant fluorescence. We identify and analyse a concrete implementation of a photon number resolving detector based...
Coherent optical pulse sequencer for quantum applications.
Hosseini, Mahdi; Sparkes, Ben M; Hétet, Gabriel; Longdell, Jevon J; Lam, Ping Koy; Buchler, Ben C
2009-09-10
The bandwidth and versatility of optical devices have revolutionized information technology systems and communication networks. Precise and arbitrary control of an optical field that preserves optical coherence is an important requisite for many proposed photonic technologies. For quantum information applications, a device that allows storage and on-demand retrieval of arbitrary quantum states of light would form an ideal quantum optical memory. Recently, significant progress has been made in implementing atomic quantum memories using electromagnetically induced transparency, photon echo spectroscopy, off-resonance Raman spectroscopy and other atom-light interaction processes. Single-photon and bright-optical-field storage with quantum states have both been successfully demonstrated. Here we present a coherent optical memory based on photon echoes induced through controlled reversible inhomogeneous broadening. Our scheme allows storage of multiple pulses of light within a chosen frequency bandwidth, and stored pulses can be recalled in arbitrary order with any chosen delay between each recalled pulse. Furthermore, pulses can be time-compressed, time-stretched or split into multiple smaller pulses and recalled in several pieces at chosen times. Although our experimental results are so far limited to classical light pulses, our technique should enable the construction of an optical random-access memory for time-bin quantum information, and have potential applications in quantum information processing.
Quantum reading of a classical digital memory.
Pirandola, Stefano
2011-03-04
We consider a basic model of digital memory where each cell is composed of a reflecting medium with two possible reflectivities. By fixing the mean number of photons irradiated over each memory cell, we show that a nonclassical source of light can retrieve more information than any classical source. This improvement is shown in the regime of few photons and high reflectivities, where the gain of information can be surprising. As a result, the use of quantum light can have nontrivial applications in the technology of digital memories, such as optical disks and barcodes.
Specht, Holger P; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard
2011-01-01
The faithful storage of a quantum bit of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must, first, be able to receive and recreate the photonic qubit and, second, store an unknown quantum state of light better than any classical device. These two requirements have so far been met only by ensembles of material particles storing the information in collective excitations. Recent developments, however, have paved the way for a new approach in which the information exchange happens between single quanta of light and matter. This single-particle approach allows one to address the material qubit and thus has fundamental advantages for realistic implementations: First, to combat inevitable losses and finite efficiencies, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection. Second, it allows for individual qubit manipulations, opening up avenues for in situ p...
Memory-assisted measurement-device-independent quantum key distribution
Panayi, Christiana; Razavi, Mohsen; Ma, Xiongfeng; Lütkenhaus, Norbert
2014-04-01
A protocol with the potential of beating the existing distance records for conventional quantum key distribution (QKD) systems is proposed. It borrows ideas from quantum repeaters by using memories in the middle of the link, and that of measurement-device-independent QKD, which only requires optical source equipment at the user's end. For certain memories with short access times, our scheme allows a higher repetition rate than that of quantum repeaters with single-mode memories, thereby requiring lower coherence times. By accounting for various sources of nonideality, such as memory decoherence, dark counts, misalignment errors, and background noise, as well as timing issues with memories, we develop a mathematical framework within which we can compare QKD systems with and without memories. In particular, we show that with the state-of-the-art technology for quantum memories, it is potentially possible to devise memory-assisted QKD systems that, at certain distances of practical interest, outperform current QKD implementations.
Gerry, Christopher; Knight, Peter
2004-10-01
1. Introduction; 2. Field quantization; 3. Coherent states; 4. Emission and absorption of radiation by atoms; 5. Quantum coherence functions; 6. Beam splitters and interferometers; 7. Nonclassical light; 8. Dissipative interactions and decoherence; 9. Optical test of quantum mechanics; 10. Experiments in cavity QED and with trapped ions; 11. Applications of entanglement: Heisenberg-limited interferometry and quantum information processing; Appendix A. The density operator, entangled states, the Schmidt decomposition, and the von Neumann entropy; Appendix B. Quantum measurement theory in a (very small) nutshell; Appendix C. Derivation of the effective Hamiltonian for dispersive (far off-resonant) interactions; Appendix D. Nonlinear optics and spontaneous parametric down-conversion.
Memory imperfections in atomic-ensemble-based quantum repeaters
Brask, Jonatan Bohr; Sørensen, Anders Søndberg
2008-07-01
Quantum repeaters promise to deliver long-distance entanglement overcoming loss in realistic quantum channels. A promising class of repeaters, based on atomic ensemble quantum memories and linear optics, follows the proposal by L.-M. Duan , Nature (London) 414, 413 (2001). Here we analyze this protocol in terms of a very general model for the quantum memories employed. We derive analytical expressions for scaling of entanglement with memory imperfections, dark counts, loss, and distance, and we apply our results to two specific quantum memory protocols. Our methods apply to any quantum memory with an interaction Hamiltonian at most quadratic in the mode operators and are in principle extendible to more recent modifications of the original proposal of Duan, Lukin, Cirac, and Zoller.
Quantum enhanced optical sensing
DEFF Research Database (Denmark)
Schäfermeier, Clemens
The work in this thesis is embedded in the framework of quantum metrology and explores quantum effects in solid state emitters and optical sensing. Specifically, the thesis comprises studies on silicon vacancy centres in nanodiamonds, phase measurements and cavity optomechanics utilising optical...... squeezed states, and a theoretical study on quantum amplifiers. Due to its similarity to single atoms, colour centres in diamond are ideal objects for exploring and exploiting quantum effects, because they are comparably easy to produce, probe and maintain. While nitrogen vacancy centres are the most...... identified spectral diffusion as the main hindrance in extending spin coherence times. Overcoming this issue will provide a promising candidate as an emitter for quantum information. Next, the question of how squeezed states of light can improve optical sensing was addressed. For this purpose, a squeezed...
Quantum optical signal processing in diamond
Fisher, Kent A G; Maclean, Jean-Phillipe W; Bustard, Philip J; Resch, Kevin J; Sussman, Benjamin J
2015-01-01
Controlling the properties of single photons is essential for a wide array of emerging optical quantum technologies spanning quantum sensing, quantum computing, and quantum communications. Essential components for these technologies include single photon sources, quantum memories, waveguides, and detectors. The ideal spectral operating parameters (wavelength and bandwidth) of these components are rarely similar; thus, frequency conversion and spectral control are key enabling steps for component hybridization. Here we perform signal processing of single photons by coherently manipulating their spectra via a modified quantum memory. We store 723.5 nm photons, with 4.1 nm bandwidth, in a room-temperature diamond crystal; upon retrieval we demonstrate centre frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 to 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, to be an integrated platform for photon storage ...
Cirac, J. Ignacio; Kimble, H. Jeff
2017-01-01
Quantum optics is a well-established field that spans from fundamental physics to quantum information science. In the coming decade, areas including computation, communication and metrology are all likely to experience scientific and technological advances supported by this far-reaching research field.
Optimization of a Quantum Memory with Telecom-Wavelength Conversion
Stack, Daniel; Grissom, Ian; Tang, Priscilla; Lee, Patricia; Quraishi, Qudsia
2014-05-01
Quantum networks provide conduits capable of transmitting quantum information that connect to nodes at remote locations where the quantum information can be stored or processed. Fiber-based transmission of quantum information over long distances may be achieved using quantum memory elements and quantum repeater protocols. We report on progress towards a quantum memory based on the generation of off-axis, spontaneously emitted single photons by a 795 nm write-laser beam interacting with a cold 87Rb ensemble. The detection of a single photon heralds the creation of a spin wave in the atomic cloud. Single photons associated with undesirable optical transitions are filtered out by an 85Rb vapor cell filled with a buffer gas whose optical density is augmented with light induced atom desorption (LIAD) and heating. The photons are converted into the telecom band by difference frequency generation in a PPLN crystal and sent down a long optical fiber. The atomic state is read out via the interaction of a read-pulse with the quantum memory. With such a system, it will be possible to realize a long-lived quantum memory that will allow transmission of quantum information over many kilometers with high fidelity, essential for a scalable, long-distance quantum network.
Quantum Memory as Light Pulses Quantum States Transformer
Directory of Open Access Journals (Sweden)
Vetlugin A.N.
2015-01-01
Full Text Available Quantum memory can operate not only as a write-in/readout device [1] for quantum light pulses and non-classical states generation [2] device but also as a quantum states of light transformer. Here the addressable parallel quantum memory [3] possibilities for this type of transformation are researched. Quantum memory operates as a conventional N-port interferometer with N equals to the number of the involved spin waves. As example we consider the ability to transform quantum states of two light pulses – in this case the quantum memory works as a mirror with a controlled transmission factor.
Progress towards a quantum memory with telecom-frequency conversion
Stack, Daniel; Lee, Patricia J.; Quraishi, Qudsia
2014-05-01
Quantum networks provide conduits capable of transmitting quantum information that connect to nodes at remote locations where the quantum information can be stored or processed. Fiber-based transmission of quantum information over long distances may be achieved using quantum memory elements and quantum repeater protocols. However, atombased quantum memories typically involve interactions with light fields outside the telecom window needed to minimize absorption in transmission by optical fibers. We report on progress towards a quantum memory based on the generation of 795 nm spontaneously emitted single photons by a write-laser beam interacting with a cold 87Rb ensemble. The single photons are then frequency-converted into (out of) the telecomm band via difference (sum) frequency generation in a PPLN crystal. Finally, the atomic state is read out via the interaction of a read-pulse with the quantum memory. With such a system, it will be possible to realize a long-lived quantum memory that will allow transmission of quantum information over many kilometers with high fidelity, essential for a scalable, long-distance quantum network.
Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.
2016-10-01
We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.
O'Brien, Jeremy L
2007-12-07
In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically reduced this worrying resource overhead, making an all-optical architecture a serious contender for the ultimate goal of a large-scale quantum computer. Key challenges will be the realization of high-efficiency sources of indistinguishable single photons, low-loss, scalable optical circuits, high-efficiency single-photon detectors, and low-loss interfacing of these components.
Quantum memory with millisecond coherence in circuit QED
Reagor, Matthew; Pfaff, Wolfgang; Axline, Christopher; Heeres, Reinier W.; Ofek, Nissim; Sliwa, Katrina; Holland, Eric; Wang, Chen; Blumoff, Jacob; Chou, Kevin; Hatridge, Michael J.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.
2016-07-01
Significant advances in coherence render superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by Josephson-junction-based artificial atoms, while maintaining superior coherence. We demonstrate a superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for storage of quantum superpositions in a resonator on the millisecond scale, while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. This extends the maximum available coherence time attainable in superconducting circuits by almost an order of magnitude compared to earlier hardware. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing in Josephson-junction-based quantum circuits.
Realization of quantum digital signatures without the requirement of quantum memory.
Collins, Robert J; Donaldson, Ross J; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J; Andersson, Erika; Jeffers, John; Buller, Gerald S
2014-07-25
Digital signatures are widely used to provide security for electronic communications, for example, in financial transactions and electronic mail. Currently used classical digital signature schemes, however, only offer security relying on unproven computational assumptions. In contrast, quantum digital signatures offer information-theoretic security based on laws of quantum mechanics. Here, security against forging relies on the impossibility of perfectly distinguishing between nonorthogonal quantum states. A serious drawback of previous quantum digital signature schemes is that they require long-term quantum memory, making them impractical at present. We present the first realization of a scheme that does not need quantum memory and which also uses only standard linear optical components and photodetectors. In our realization, the recipients measure the distributed quantum signature states using a new type of quantum measurement, quantum state elimination. This significantly advances quantum digital signatures as a quantum technology with potential for real applications.
Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter
2017-01-25
Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.
Quantum memories. A review based on the European integrated project ``Qubit Applications (QAP)''
Simon, C.; Afzelius, M.; Appel, J.; Boyer de La Giroday, A.; Dewhurst, S. J.; Gisin, N.; Hu, C. Y.; Jelezko, F.; Kröll, S.; Müller, J. H.; Nunn, J.; Polzik, E. S.; Rarity, J. G.; de Riedmatten, H.; Rosenfeld, W.; Shields, A. J.; Sköld, N.; Stevenson, R. M.; Thew, R.; Walmsley, I. A.; Weber, M. C.; Weinfurter, H.; Wrachtrup, J.; Young, R. J.
2010-05-01
We perform a review of various approaches to the implementation of quantum memories, with an emphasis on activities within the quantum memory sub-project of the EU integrated project “Qubit Applications”. We begin with a brief overview over different applications for quantum memories and different types of quantum memories. We discuss the most important criteria for assessing quantum memory performance and the most important physical requirements. Then we review the different approaches represented in “Qubit Applications” in some detail. They include solid-state atomic ensembles, NV centers, quantum dots, single atoms, atomic gases and optical phonons in diamond. We compare the different approaches using the discussed criteria.
Quantum Memories. A Review based on the European Integrated Project "Qubit Applications (QAP)"
Simon, C; Appel, J; de la Giroday, A Boyer; Dewhurst, S J; Gisin, N; Hu, C Y; Jelezko, F; Kroll, S; Muller, J H; Nunn, J; Polzik, E; Rarity, J; de Riedmatten, H; Rosenfeld, W; Shields, A J; Skold, N; Stevenson, R M; Thew, R; Walmsley, I; Weber, M; Weinfurter, H; Wrachtrup, J; Young, R J
2010-01-01
We perform a review of various approaches to the implementation of quantum memories, with an emphasis on activities within the quantum memory sub-project of the EU Integrated Project "Qubit Applications". We begin with a brief overview over different applications for quantum memories and different types of quantum memories. We discuss the most important criteria for assessing quantum memory performance and the most important physical requirements. Then we review the different approaches represented in "Qubit Applications" in some detail. They include solid-state atomic ensembles, NV centers, quantum dots, single atoms, atomic gases and optical phonons in diamond. We compare the different approaches using the discussed criteria.
Knight, P L
1983-01-01
Concepts of Quantum Optics is a coherent and sequential coverage of some real insight into quantum physics. This book is divided into six chapters, and begins with an overview of the principles and concepts of radiation and quanta, with an emphasis on the significance of the Maxwell's electromagnetic theory of light. The next chapter describes first the properties of the radiation field in a bounded cavity, showing how each cavity field mode has the characteristics of a simple harmonic oscillator and how each can be quantized using known results for the quantum harmonic oscillator. This chapte
Dennis, E; Landahl, A; Preskill, J; Dennis, Eric; Kitaev, Alexei; Landahl, Andrew; Preskill, John
2002-01-01
We analyze surface codes, the topological quantum error-correcting codes introduced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on a surface of nontrivial topology, and encoded quantum operations are associated with nontrivial homology cycles of the surface. We formulate protocols for error recovery, and study the efficacy of these protocols. An order-disorder phase transition occurs in this system at a nonzero critical value of the error rate; if the error rate is below the critical value (the accuracy threshold), encoded information can be protected arbitrarily well in the limit of a large code block. This phase transition can be accurately modeled by a three-dimensional Z_2 lattice gauge theory with quenched disorder. We estimate the accuracy threshold, assuming that all quantum gates are local, that qubits can be measured rapidly, and that polynomial-size classical computations can be executed instantaneously. We also devise a robust recovery procedure that does not require m...
Dynamical memory effects in correlated quantum channels
Addis, Carole; Karpat, Göktuǧ; Macchiavello, Chiara; Maniscalco, Sabrina
2016-09-01
Memory effects play a fundamental role in the study of the dynamics of open quantum systems. There exist two conceptually distinct notions of memory discussed for quantum channels in the literature. In quantum information theory quantum channels with memory are characterized by the existence of correlations between successive applications of the channel on a sequence of quantum systems. In open quantum systems theory memory effects arise dynamically during the time evolution of quantum systems and define non-Markovian dynamics. Here we relate and combine these two different concepts of memory. In particular, we study the interplay between correlations between multiple uses of quantum channels and non-Markovianity as nondivisibility of the t -parametrized family of channels defining the dynamical map.
Quantum optics with semiconductor nanostructures
Jahnke, Frank
2012-01-01
A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...
Abbott, Derek; Shapiro, Jeffrey H.; Yamamoto, Yoshihisa
2004-08-01
This Special Issue of Journal of Optics B: Quantum and Semiclassical Optics brings together the contributions of various researchers working on theoretical and experimental aspects of fluctuational phenomena in photonics and quantum optics. The topics discussed in this issue extend from fundamental physics to applications of noise and fluctuational methods from quantum to classical systems, and include: bullet Quantum measurement bullet Quantum squeezing bullet Solitons and fibres bullet Gravitational wave inferometers bullet Fluorescence phenomena bullet Cavity QED bullet Photon statistics bullet Noise in lasers and laser systems bullet Quantum computing and information bullet Quantum lithography bullet Teleportation. This Special Issue is published in connection with the SPIE International Symposium on Fluctuations and Noise, held in Santa Fe, New Mexico, on 1-4 June 2003. The symposium contained six parallel conferences, and the papers in this Special Issue are connected to the conference entitled `Fluctuations and Noise in Photonics and Quantum Optics'. This was the first in a series of symposia organized with the support of the SPIE that have greatly contributed to progress in this area. The co-founders of the symposium series were Laszlo B Kish (Texas A&M University) and Derek Abbott (The University of Adelaide). The Chairs of the `Fluctuations and Noise in Photonics and Quantum Optics' conference were Derek Abbott, Jeffrey H Shapiro and Yoshihisa Yamamoto. The practical aspects of the organization were ably handled by Kristi Kelso and Marilyn Gorsuch of the SPIE, USA. Sadly, less than two weeks before the conference, Hermann A Haus passed away. Hermann Haus was a founding father of the field of noise in optics and quantum optics. He submitted three papers to the conference and was very excited to attend; as can be seen in the collection of papers, he was certainly present in spirit. In honour of his creativity and pioneering work in this field, we have
Progress Towards a Quantum Memory with Telecom-Wavelength Conversion
Stack, Daniel; Quraishi, Qudsia; Lee, Patricia; Grissom, Ian; Meyers, Ronald; Deacon, Keith; Tunick, Arnold
2013-05-01
Fiber-based transmission of quantum information over long distances may be achieved using quantum memory elements and quantum repeater protocols. However, atom-based quantum memories typically involve interactions with light fields outside the telecom window needed to minimize absorption in transmission by optical fibers. We report on progress towards a quantum memory based on the generation of 780 nm spontaneously emitted single photons by a write-laser beam interacting with a cold 87Rb ensemble. The single photons are then frequency-converted into (via four-wave mixing in a cold Rb sample) and out of (via sum frequency generation in a PPLN crystal) the telecomm band. Finally, the atomic state is read out via the interaction of a read-pulse with the quantum memory. With such a system, it will be possible to realize a long-lived quantum memory that will allow transmission of quantum information over many kilometers with high fidelity, essential for a scalable, long-distance quantum network. Duan et al., Nature 414, 413-418 (2001).
Optical Bidirectional Associative Memories
Kosko, Bart; Guest, Clark
1987-06-01
Four optical implementations of bidirectional associative memories (BAMs) are presented. BAMs are heteroassociative content addressable memories (CAMs). A BAM stores the m binary associations (A1, B1), ..., (Am, Bm) , where A is a point in the Boolean n-cube and B is a point in the Boolean p-cube. A is a neural network of n bivalent or continuous neurons ai; B is a network of p bivalent or continuous neurons bi. The fixed synaptic connections between the A and B networks are represented by some n-by-p real matrix M. Bidirectionality, forward and backward information flow, in neural nets produces two-way associative search for the nearest stored pair (Ai, Bi) to an input key. Every matrix is a bidirectionally stable hetero-associative CAM for boh bivalent and continuous networks. This generalizes the well-known unidirectional stability for autoassociative networks with square symmetric M. When the BAM neurons are activated, the network quickly evolves to a stable state of two-pattern reverberation, or pseudo-adaptive resonance. The stable reverberation corresponds to a system energy local minimum. Heteroassociative pairs (Ai, Bi) are encoded in a BAM M by summing bipolar correlation matrices, M = X1T Y1 + ... + XmT Ym , where Xi (Yi) is the bipolar version of Ai (Bi), with -1s replacing Os. the BAM storage capacity for reliable recall is roughly m reflection hologram, and a transmission hologram.
Simulation of an optomechanical quantum memory in the nonlinear regime
Teh, R. Y.; Kiesewetter, S.; Reid, M. D.; Drummond, P. D.
2017-07-01
Optomechanical systems cooled to the quantum level provide a promising mechanism for a high-fidelity quantum memory that is faithful to a given temporal mode structure, and can be recovered synchronously. We carry out full, probabilistic quantum simulation of a quantum optomechanical memory, including nonlinear effects that are usually ignored. This is achieved using both the approximate truncated Wigner and the exact positive P phase-space representations. By considering the nonlinear quantum optomechanical Hamiltonian, our simulations allow us to probe the regime where the linearization approximation fails to hold. We show evidence for large spectral overlap between the quantum signal and the transfer field in typical optomechanical quantum memory experiments. Methods for eliminating this overlap to accurately recover the quantum signal are discussed. This allows us to give a complete model for the quantum storage of a coherent state. We treat the mode matching that is necessary to accurately retrieve the stored quantum state, by including the internal dynamics of the mechanical system as well as the optical system. We also include the finite switching time of the control transfer field. The fidelity for the storage of a coherent state is computed numerically using currently realistic experimental parameters in the electromechanical case. We find the expected fidelity is lower than required to demonstrate true quantum state transfers. Significant improvements in the quality factor of the cavity and mechanical systems will, however, increase the fidelity beyond the quantum threshold.
Orszag, M.; Retamal, J. C.; Saavedra, C.; Wallentowitz, S.
2007-06-01
All the 50 years of conscious pondering did not bring me nearer to an answer to the question `what is light quanta?'. Nowadays, every rascal believes, he knows it, however, he is mistaken. (A Einstein, 1951 in a letter to M Besso) Quantum optics has played a key role in physics in the last several decades. On the other hand, in these early decades of the information age, the flow of information is becoming more and more central to our daily life. Thus, the related fields of quantum information theory as well as Bose-Einstein condensation have acquired tremendous importance in the last couple of decades. In Quantum Optics III, a fusion of these fields appears in a natural way. Quantum Optics III was held in Pucón, Chile, in 27-30 of November, 2006. This beautiful location in the south of Chile is near the lake Villarrica and below the snow covered volcano of the same name. This fantastic environment contributed to a relaxed atmosphere, suitable for informal discussion and for the students to have a chance to meet the key figures in the field. The previous Quantum Optics conferences took place in Santiago, Chile (Quantum Optics I, 2000) and Cozumel, Mexico (Quantum Optics II, 2004). About 115 participants from 19 countries attended and participated in the meeting to discuss a wide variety of topics such as quantum-information processing, experiments related to non-linear optics and squeezing, various aspects of entanglement including its sudden death, correlated twin-photon experiments, light storage, decoherence-free subspaces, Bose-Einstein condensation, discrete Wigner functions and many more. There was a strong Latin-American participation from Argentina, Brazil, Chile, Colombia, Peru, Uruguay, Venezuela and Mexico, as well as from Europe, USA, China, and Australia. New experimental and theoretical results were presented at the conference. In Latin-America a quiet revolution has taken place in the last twenty years. Several groups working in quantum optics and
Quantum channels with a finite memory
Bowen, G; Bowen, Garry; Mancini, Stefano
2004-01-01
In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no information is lost to the environment, the channel is asymptotically noiseless.
Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter
2016-01-01
At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...
Quantum optical rotatory dispersion
Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel
2016-01-01
The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements. PMID:27713928
Enhancing quantum sensing sensitivity by a quantum memory
Zaiser, Sebastian; Rendler, Torsten; Jakobi, Ingmar; Wolf, Thomas; Lee, Sang-Yun; Wagner, Samuel; Bergholm, Ville; Schulte-Herbrüggen, Thomas; Neumann, Philipp; Wrachtrup, Jörg
2016-08-01
In quantum sensing, precision is typically limited by the maximum time interval over which phase can be accumulated. Memories have been used to enhance this time interval beyond the coherence lifetime and thus gain precision. Here, we demonstrate that by using a quantum memory an increased sensitivity can also be achieved. To this end, we use entanglement in a hybrid spin system comprising a sensing and a memory qubit associated with a single nitrogen-vacancy centre in diamond. With the memory we retain the full quantum state even after coherence decay of the sensor, which enables coherent interaction with distinct weakly coupled nuclear spin qubits. We benchmark the performance of our hybrid quantum system against use of the sensing qubit alone by gradually increasing the entanglement of sensor and memory. We further apply this quantum sensor-memory pair for high-resolution NMR spectroscopy of single 13C nuclear spins.
Quantum channels and memory effects
Caruso, Filippo; Giovannetti, Vittorio; Lupo, Cosmo; Mancini, Stefano
2014-10-01
Any physical process can be represented as a quantum channel mapping an initial state to a final state. Hence it can be characterized from the point of view of communication theory, i.e., in terms of its ability to transfer information. Quantum information provides a theoretical framework and the proper mathematical tools to accomplish this. In this context the notion of codes and communication capacities have been introduced by generalizing them from the classical Shannon theory of information transmission and error correction. The underlying assumption of this approach is to consider the channel not as acting on a single system, but on sequences of systems, which, when properly initialized allow one to overcome the noisy effects induced by the physical process under consideration. While most of the work produced so far has been focused on the case in which a given channel transformation acts identically and independently on the various elements of the sequence (memoryless configuration in jargon), correlated error models appear to be a more realistic way to approach the problem. A slightly different, yet conceptually related, notion of correlated errors applies to a single quantum system which evolves continuously in time under the influence of an external disturbance which acts on it in a non-Markovian fashion. This leads to the study of memory effects in quantum channels: a fertile ground where interesting novel phenomena emerge at the intersection of quantum information theory and other branches of physics. A survey is taken of the field of quantum channels theory while also embracing these specific and complex settings.
Generation of a superposition of odd photon number states for quantum information networks
DEFF Research Database (Denmark)
Neergaard-Nielsen, Jonas Schou; Nielsen, B.; Hettich, C.
2006-01-01
Quantum information networks, quantum memories, quantum repeaters, linear optics quantum computers Udgivelsesdato: 25 August......Quantum information networks, quantum memories, quantum repeaters, linear optics quantum computers Udgivelsesdato: 25 August...
Security enhanced memory for quantum state.
Mukai, Tetsuya
2017-07-27
Security enhancement is important in terms of both classical and quantum information. The recent development of a quantum storage device is noteworthy, and a coherence time of one second or longer has been demonstrated. On the other hand, although the encryption of a quantum bit or quantum memory has been proposed theoretically, no experiment has yet been carried out. Here we report the demonstration of a quantum memory with an encryption function that is realized by scrambling and retrieving the recorded quantum phase. We developed two independent Ramsey interferometers on an atomic ensemble trapped below a persistent supercurrent atom chip. By operating the two interferometers with random phases, the quantum phase recorded by a pulse of the first interferometer was modulated by the second interferometer pulse. The scrambled quantum phase was restored by employing another pulse of the second interferometer with a specific time delay. This technique paves way for improving the security of quantum information technology.
Broadband waveguide quantum memory for entangled photons
Saglamyurek, Erhan; Jin, Jeongwan; Slater, Joshua A; Oblak, Daniel; Bussieres, Felix; George, Mathew; Ricken, Raimund; Sohler, Wolfgang; Tittel, Wolfgang
2010-01-01
The reversible transfer of quantum states of light in and out of matter constitutes an important building block for future applications of quantum communication: it allows synchronizing quantum information, and enables one to build quantum repeaters and quantum networks. Much effort has been devoted worldwide over the past years to develop memories suitable for the storage of quantum states. Of central importance to this task is the preservation of entanglement, a quantum mechanical phenomenon whose counter intuitive properties have occupied philosophers, physicists and computer scientists since the early days of quantum physics. Here we report, for the first time, the reversible transfer of photon-photon entanglement into entanglement between a photon and collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100 MHz t...
Models of optical quantum computing
Directory of Open Access Journals (Sweden)
Krovi Hari
2017-03-01
Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.
Quantum optics. Gravity meets quantum physics
Energy Technology Data Exchange (ETDEWEB)
Adams, Bernhard W. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-02-27
Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.
Multiphoton quantum optics and quantum state engineering
Energy Technology Data Exchange (ETDEWEB)
Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it
2006-05-15
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.
Introduction to modern quantum optics
Peng Jin Sheng
1998-01-01
This book discusses quantum optics and investigates the quantum properties of interactions between atoms and laser fields. It is divided into three parts. Part I introduces the elementary theory of the interaction between atoms and light. Part II provides a concentrated discussion on the quantum properties of light fields. Part III deals with the quantum dynamic properties of the atoms interacting with laser fields. This book can be used as a text for both graduate and undergraduate students; it will also benefit scientists who are interested in quantum optics and theoretical physics.
Linear optics and quantum maps
Aiello, A; Woerdman, J P
2006-01-01
We present a theoretical analysis of the connection between classical polarization optics and quantum mechanics of two-level systems. First, we review the matrix formalism of classical polarization optics from a quantum information perspective. In this manner the passage from the Stokes-Jones-Mueller description of classical optical processes to the representation of one- and two-qubit quantum operations, becomes straightforward. Second, as a practical application of our classical-\\emph{vs}-quantum formalism, we show how two-qubit maximally entangled mixed states (MEMS), can be generated by using polarization and spatial modes of photons generated via spontaneous parametric down conversion.
Quantum cryptography using optical fibers.
Franson, J D; Lives, H
1994-05-10
Quantum cryptography permits the transmission of secret information whose security is guaranteed by the uncertainty principle. An experimental system for quantum crytography is implemented based on the linear polarization of single photons transmitted by an optical fiber. Polarization-preserving optical fiber and a feedback loop are employed to maintain the state of polarization. Error rates of less than 0.5% are obtained.
Optical Conductivity of Anisotropic Quantum Dots in Magnetic Fields
Institute of Scientific and Technical Information of China (English)
GUO Kang-Xian; CHEN Chuan-Yu
2005-01-01
@@ Optical conductivity of anisotropic double-parabolic quantum dots is investigated with the memory-function approach, and the analytic expression for the optical conductivity is derived. With characteristic parameterspertaining to GaAs, the numerical results are presented. It is shown that: (1) the larger the optical phonon frequency ωLO, the stronger the peak intensity of the optical conductivity, and the more asymmetric the shape of the optical conductivity; (2) the magnetic field enhances the optical conductivity for levels l = 0 and l = 1, with or without electron-LO-phonon interactions; (3) the larger the quantum dot thickness lz, the smaller the optical conductivity σ(ω).
Semihierarchical quantum repeaters based on moderate lifetime quantum memories
Liu, Xiao; Zhou, Zong-Quan; Hua, Yi-Lin; Li, Chuan-Feng; Guo, Guang-Can
2017-01-01
The construction of large-scale quantum networks relies on the development of practical quantum repeaters. Many approaches have been proposed with the goal of outperforming the direct transmission of photons, but most of them are inefficient or difficult to implement with current technology. Here, we present a protocol that uses a semihierarchical structure to improve the entanglement distribution rate while reducing the requirement of memory time to a range of tens of milliseconds. This protocol can be implemented with a fixed distance of elementary links and fixed requirements on quantum memories, which are independent of the total distance. This configuration is especially suitable for scalable applications in large-scale quantum networks.
Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons
Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp
2017-08-01
Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.
Memory effects in attenuation and amplification quantum processes
Lupo, Cosmo; Giovannetti, Vittorio; Mancini, Stefano
2010-09-01
With increasing communication rates via quantum channels, memory effects become unavoidable whenever the use rate of the channel is comparable to the typical relaxation time of the channel environment. We introduce a model of a bosonic memory channel, describing correlated noise effects in quantum-optical processes via attenuating or amplifying media. To study such a channel model, we make use of a proper set of collective field variables, which allows us to unravel the memory effects, mapping the n-fold concatenation of the memory channel to a unitarily equivalent, direct product of n single-mode bosonic channels. We hence estimate the channel capacities by relying on known results for the memoryless setting. Our findings show that the model is characterized by two different regimes, in which the cross correlations induced by the noise among different channel uses are either exponentially enhanced or exponentially reduced.
Memory effects in attenuation and amplification quantum processes
Lupo, Cosmo; Mancini, Stefano
2010-01-01
With increasing communication rates via quantum channels, memory effects become unavoidable whenever the use rate of the channel is comparable with the typical relaxation time of the channel environment. We then introduce a model of bosonic memory channel, describing correlated noise effects in quantum optical processes via attenuating or amplifying media. To study such a channel model we make use of a proper set of collective field variables, which allows us to unravel the memory effects, mapping the n-fold concatenation of the memory channel to a, unitarily equivalent, direct product of n single-mode bosonic channels. We hence estimate the channel capacities by relying on known results for the memoryless setting. Our findings show that the model is characterized by two different regimes, in which the cross-correlations induced by the noise among different channel uses are either exponentially enhanced or exponentially reduced.
Adiabatic Quantum Optimization for Associative Memory Recall
Directory of Open Access Journals (Sweden)
Hadayat eSeddiqi
2014-12-01
Full Text Available Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO. Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Adiabatic Quantum Optimization for Associative Memory Recall
Seddiqi, Hadayat; Humble, Travis
2014-12-01
Hopfield networks are a variant of associative memory that recall patterns stored in the couplings of an Ising model. Stored memories are conventionally accessed as fixed points in the network dynamics that correspond to energetic minima of the spin state. We show that memories stored in a Hopfield network may also be recalled by energy minimization using adiabatic quantum optimization (AQO). Numerical simulations of the underlying quantum dynamics allow us to quantify AQO recall accuracy with respect to the number of stored memories and noise in the input key. We investigate AQO performance with respect to how memories are stored in the Ising model according to different learning rules. Our results demonstrate that AQO recall accuracy varies strongly with learning rule, a behavior that is attributed to differences in energy landscapes. Consequently, learning rules offer a family of methods for programming adiabatic quantum optimization that we expect to be useful for characterizing AQO performance.
Quantum channels with a finite memory
Bowen, Garry; Mancini, Stefano
2004-01-01
In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite-memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no information is lost to the environment, achieving the upper bound implies that the channel is asymptotically noiseless.
Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.
2015-10-01
The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.
Quantum Reading of a Classical Memory
Pirandola, Stefano
2009-01-01
We consider a digital memory where each memory cell is a mirror with two possible reflectivities (used to encode a bit of information). Adopting this model, we show that a non-classical source of light, possessing Einstein-Podolsky-Rosen correlations, can retrieve the stored information more efficiently than every classical source. The improvement brought by this quantum reading of the memory can be dramatic for high reflectivities and can be tested with current technology.
Serafini, Alessio
2012-01-01
We present a broad summary of research involving the application of quantum feedback control techniques to optical set-ups, from the early enhancement of optical amplitude squeezing to the recent stabilisation of photon number states in a microwave cavity, dwelling mostly on the latest experimental advances. Feedback control of quantum optical continuous variables, quantum non-demolition memories, feedback cooling, quantum state control, adaptive quantum measurements and coherent feedback strategies will all be touched upon in our discussion.
Alessio Serafini
2012-01-01
We present a broad summary of research involving the application of quantum feedback control techniques to optical set-ups, from the early enhancement of optical amplitude squeezing to the recent stabilisation of photon number states in a microwave cavity, dwelling mostly on the latest experimental advances. Feedback control of quantum optical continuous variables, quantum non-demolition memories, feedback cooling, quantum state control, adaptive quantum measurements and coherent feedback str...
Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory
Energy Technology Data Exchange (ETDEWEB)
Bussieres, Felix [Group of Applied Physics, University of Geneva (Switzerland)
2014-07-01
Quantum teleportation is a cornerstone of quantum information science due to its essential role in several important tasks such as the long-distance transmission of quantum information using quantum repeaters. In this context, a challenge of paramount importance is the distribution of entanglement between remote nodes, and to use this entanglement as a resource for long-distance light-to-matter quantum teleportation. In this talk I will report on the demonstration of quantum teleportation of the polarization state of a telecom-wavelength photon onto the state of a solid-state quantum memory. Entanglement is established between a rare-earth-ion doped crystal storing a single photon that is polarization-entangled with a flying telecom-wavelength photon. The latter is jointly measured with another flying qubit carrying the polarization state to be teleported, which heralds the teleportation. The fidelity of the polarization state of the photon retrieved from the memory is shown to be greater than the maximum fidelity achievable without entanglement, even when the combined distances travelled by the two flying qubits is 25 km of standard optical fibre. This light-to-matter teleportation channel paves the way towards long-distance implementations of quantum networks with solid-state quantum memories.
High-Capacity Quantum Associative Memories
Diamantini, M. Cristina; Trugenberger, Carlo A.
2015-01-01
We review our models of quantum associative memories that represent the "quantization" of fully coupled neural networks like the Hopfield model. The idea is to replace the classical irreversible attractor dynamics driven by an Ising model with pattern-dependent weights by the reversible rotation of an input quantum state onto an output quantum state consisting of a linear superposition with probability amplitudes peaked on the stored pattern closest to the input in Hamming distance, resulting...
Memory-based quantum repeater in quantum information communication
Institute of Scientific and Technical Information of China (English)
Wu Xiang-Sheng
2004-01-01
This paper studies the quantum repeater in quantum information communication. We propose to introduce the photon buffer mechanism for storing photons, which uses fibre delay loops as photon memories and a programmable 1 × N switcher for distributing photon delay time. Meanwhile, we also consider entanglement purification and entanglement swapping restoration at an entanglement purification or entanglement swapping failure and introduce a protection link mechanism that allows the photonic quantum repeater of a broken connection to initiate a connection restoration process.
Linear optics implementation for quantum game under quantum noise
Institute of Scientific and Technical Information of China (English)
Cao Shuai; Fang Mao-Fa
2006-01-01
It has recently been shown that linear optics alone would suffice to implement efficient quantum computation. Quantum computation circuits using coherent states as the logical qubits can be constructed from very simple linear networks, conditional measurements and coherent superposition resource states. We present the quantum game under quantum noise and a proposal for implementing the noisy quantum game using only linear optics.
Multiphoton Quantum Optics and Quantum State Engineering
Dell'Anno, F; Illuminati, F; 10.1016/j.physrep.2006.01.004
2009-01-01
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states...
Quantum information processing in nanostructures Quantum optics; Quantum computing
Reina-Estupinan, J H
2002-01-01
Since information has been regarded os a physical entity, the field of quantum information theory has blossomed. This brings novel applications, such as quantum computation. This field has attracted the attention of numerous researchers with backgrounds ranging from computer science, mathematics and engineering, to the physical sciences. Thus, we now have an interdisciplinary field where great efforts are being made in order to build devices that should allow for the processing of information at a quantum level, and also in the understanding of the complex structure of some physical processes at a more basic level. This thesis is devoted to the theoretical study of structures at the nanometer-scale, 'nanostructures', through physical processes that mainly involve the solid-state and quantum optics, in order to propose reliable schemes for the processing of quantum information. Initially, the main results of quantum information theory and quantum computation are briefly reviewed. Next, the state-of-the-art of ...
Optical Implementation of Quantum Orienteering
Jeffrey, Evan R.; Altepeter, Joseph B.; Colci, Madalina; Kwiat, Paul G.
2006-04-01
We present results from an optical implementation of quantum orienteering, a protocol for communicating directions in space using quantum bits. We show how different types of measurements and encodings can be used to increase the communication efficiency. In particular, if Alice and Bob use two spin-1/2 particles for communication and employ joint measurements, they do better than is possible with local operations and classical communication. Furthermore, by using oppositely oriented spins, the achievable communication efficiency is further increased. Finally, we discuss the limitations of an optical approach: our results highlight the usually overlooked nonequivalence of different physical encodings of quantum bits.
Optical Coherence and Quantum Optics
Mandel, Leonard
1995-01-01
This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi
Theory of noise suppression in Λ -type quantum memories by means of a cavity
Nunn, J.; Munns, J. H. D.; Thomas, S.; Kaczmarek, K. T.; Qiu, C.; Feizpour, A.; Poem, E.; Brecht, B.; Saunders, D. J.; Ledingham, P. M.; Reddy, Dileep V.; Raymer, M. G.; Walmsley, I. A.
2017-07-01
Quantum memories, capable of storing single photons or other quantum states of light, to be retrieved on demand, offer a route to large-scale quantum information processing with light. A promising class of memories is based on far-off-resonant Raman absorption in ensembles of Λ -type atoms. However, at room temperature these systems exhibit unwanted four-wave mixing, which is prohibitive for applications at the single-photon level. Here, we show how this noise can be suppressed by placing the storage medium inside a moderate-finesse optical cavity, thereby removing the main roadblock hindering this approach to quantum memory.
Fekete, Julia; Rieländer, Daniel; Cristiani, Matteo; de Riedmatten, Hugues
2013-05-31
We report on a source of ultranarrow-band photon pairs generated by widely nondegenerate cavity-enhanced spontaneous down-conversion. The source is designed to be compatible with Pr(3+) solid state quantum memories and telecommunication optical fibers, with signal and idler photons close to 606 nm and 1436 nm, respectively. Both photons have a spectral bandwidth around 2 MHz, matching the bandwidth of Pr(3+) doped quantum memories. This source is ideally suited for long distance quantum communication architectures involving solid state quantum memories.
Quantum-Memory Effects in the Emission of Quantum-Dot Microcavities
Berger, C.; Huttner, U.; Mootz, M.; Kira, M.; Koch, S. W.; Tempel, J.-S.; Aßmann, M.; Bayer, M.; Mintairov, A. M.; Merz, J. L.
2014-08-01
The experimentally measured input-output characteristics of optically pumped semiconductor microcavities exhibits unexpected oscillations modifying the fundamentally linear slope in the excitation power regime below lasing. A systematic microscopic analysis reproduces these oscillations, identifying them as a genuine quantum-memory effect, i.e., a photon-density correlation accumulated during the excitation. With the use of projected quantum measurements, it is shown that the input-output oscillations can be controlled and enhanced by an order of magnitude when the quantum fluctuations of the pump are adjusted.
Quantum optics with quantum dots in photonic nanowires
DEFF Research Database (Denmark)
We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We will review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....
Quantum Optics with Quantum Dots in Photonic Nanowires
DEFF Research Database (Denmark)
Gérard, J.-M.; Claudon, J.; Bleuse, J.;
2011-01-01
We review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices.......We review recent studies performed on InAs quantum dots embedded in GaAs photonic wires, which highlight the strong interest of the photonic wire geometry for quantum optics experiments and quantum optoelectronic devices....
Quantum Optics with Quantum Dots in Photonic Nanowires
DEFF Research Database (Denmark)
Gérard, J. M.; Claudon, J.; Bleuse, J.;
2012-01-01
We review recent experimental and theoretical results, which highlight the strong interest of the photonic wire geometry for solid-state quantum optics and quantum optoelectronic devices.......We review recent experimental and theoretical results, which highlight the strong interest of the photonic wire geometry for solid-state quantum optics and quantum optoelectronic devices....
Quantum memory in an orthogonal geometry of silenced echo retrieval
Gerasimov, K. I.; Minnegaliev, M. M.; Moiseev, S. A.; Urmancheev, R. V.; Chanelière, T.; Louchet-Chauvet, A.
2017-08-01
We experimentally realize a quantum-memory protocol based on retrieval of silenced echo (ROSE) in Tm3+:Y3Al5O12 crystal in an orthogonal geometry of the signal and control light fields. The silenced echo signal revival efficiency of 13% with 36 μs storage time is demonstrated. To achieve that we implemented a high-precision atomic coherence control via amplitude- and phase-modulated laser pulses. We also discuss capabilities of this configuration, ways to increase quantum efficiency and to combine it with a single-mode optical cavity.
Algorithmic quantum simulation of memory effects
Alvarez-Rodriguez, U.; Di Candia, R.; Casanova, J.; Sanz, M.; Solano, E.
2017-02-01
We propose a method for the algorithmic quantum simulation of memory effects described by integrodifferential evolution equations. It consists in the systematic use of perturbation theory techniques and a Markovian quantum simulator. Our method aims to efficiently simulate both completely positive and nonpositive dynamics without the requirement of engineering non-Markovian environments. Finally, we find that small error bounds can be reached with polynomially scaling resources, evaluated as the time required for the simulation.
Memory assisted free space quantum communication
Jordaan, Bertus; Namazi, Mehdi; Goham, Connor; Shahrokhshahi, Reihaneh; Vallone, Giuseppe; Villoresi, Paolo; Figueroa, Eden
2016-05-01
A quantum memory assisted node between different quantum channels has the capability to modify and synchronize its output, allowing for easy connectivity, and advanced cryptography protocols. We present the experimental progress towards the storage of single photon level pulses carrying random polarization qubits into a dual rail room temperature quantum memory (RTQM) after ~ 20m of free space propagation. The RTQM coherently stores the input pulses through electromagnetically induced transparency (EIT) of a warm 87 Rb vapor and filters the output by polarization elements and temperature-controlled etalon resonators. This allows the characterization of error rates for each polarization basis and the testing of the synchronization ability of the quantum memory. This work presents a steppingstone towards quantum key distribution and quantum repeater networks. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180.B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.
Parameters estimation in quantum optics
D'Ariano, G M; Sacchi, M F; Paris, Matteo G. A.; Sacchi, Massimiliano F.
2000-01-01
We address several estimation problems in quantum optics by means of the maximum-likelihood principle. We consider Gaussian state estimation and the determination of the coupling parameters of quadratic Hamiltonians. Moreover, we analyze different schemes of phase-shift estimation. Finally, the absolute estimation of the quantum efficiency of both linear and avalanche photodetectors is studied. In all the considered applications, the Gaussian bound on statistical errors is attained with a few thousand data.
Photonic Astronomy and Quantum Optics
Dravins, Dainis
2015-01-01
Quantum optics potentially offers an information channel from the Universe beyond the established ones of imaging and spectroscopy. All existing cameras and all spectrometers measure aspects of the first-order spatial and/or temporal coherence of light. However, light has additional degrees of freedom, manifest in the statistics of photon arrival times, or in the amount of photon orbital angular momentum. Such quantum-optical measures may carry information on how the light was created at the source, and whether it reached the observer directly or via some intermediate process. Astronomical quantum optics may help to clarify emission processes in natural laser sources and in the environments of compact objects, while high-speed photon-counting with digital signal handling enables multi-element and long-baseline versions of the intensity interferometer. Time resolutions of nanoseconds are required, as are large photon fluxes, making photonic astronomy very timely in an era of large telescopes.
Quantum repeaters based on atomic ensembles and linear optics
Sangouard, Nicolas; Simon, Christoph; de Riedmatten, Hugues; Gisin, Nicolas
2011-01-01
The distribution of quantum states over long distances is limited by photon loss. Straightforward amplification as in classical telecommunications is not an option in quantum communication because of the no-cloning theorem. This problem could be overcome by implementing quantum repeater protocols, which create long-distance entanglement from shorter-distance entanglement via entanglement swapping. Such protocols require the capacity to create entanglement in a heralded fashion, to store it in quantum memories, and to swap it. One attractive general strategy for realizing quantum repeaters is based on the use of atomic ensembles as quantum memories, in combination with linear optical techniques and photon counting to perform all required operations. Here the theoretical and experimental status quo of this very active field are reviewed. The potentials of different approaches are compared quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons.
Quantum repeaters based on atomic ensembles and linear optics
Sangouard, Nicolas; de Riedmatten, Hugues; Gisin, Nicolas
2009-01-01
The distribution of quantum states over long distances is limited by photon loss. Straightforward amplification as in classical telecommunications is not an option in quantum communication because of the no-cloning theorem. This problem could be overcome by implementing quantum repeater protocols, which create long-distance entanglement from shorter-distance entanglement via entanglement swapping. Such protocols require the capacity to create entanglement in a heralded fashion, to store it in quantum memories, and to swap it. One attractive general strategy for realizing quantum repeaters is based on the use of atomic ensembles as quantum memories, in combination with linear optical techniques and photon counting to perform all required operations. Here we review the theoretical and experimental status quo of this very active field. We compare the potential of different approaches quantitatively, with a focus on the most immediate goal of outperforming the direct transmission of photons.
Towards self-correcting quantum memories
Michnicki, Kamil
This thesis presents a model of self-correcting quantum memories where quantum states are encoded using topological stabilizer codes and error correction is done using local measurements and local dynamics. Quantum noise poses a practical barrier to developing quantum memories. This thesis explores two types of models for suppressing noise. One model suppresses thermalizing noise energetically by engineering a Hamiltonian with a high energy barrier between code states. Thermalizing dynamics are modeled phenomenologically as a Markovian quantum master equation with only local generators. The second model suppresses stochastic noise with a cellular automaton that performs error correction using syndrome measurements and a local update rule. Several ways of visualizing and thinking about stabilizer codes are presented in order to design ones that have a high energy barrier: the non-local Ising model, the quasi-particle graph and the theory of welded stabilizer codes. I develop the theory of welded stabilizer codes and use it to construct a code with the highest known energy barrier in 3-d for spin Hamiltonians: the welded solid code. Although the welded solid code is not fully self correcting, it has some self correcting properties. It has an increased memory lifetime for an increased system size up to a temperature dependent maximum. One strategy for increasing the energy barrier is by mediating an interaction with an external system. I prove a no-go theorem for a class of Hamiltonians where the interaction terms are local, of bounded strength and commute with the stabilizer group. Under these conditions the energy barrier can only be increased by a multiplicative constant. I develop cellular automaton to do error correction on a state encoded using the toric code. The numerical evidence indicates that while there is no threshold, the model can extend the memory lifetime significantly. While of less theoretical importance, this could be practical for real
Information Erasure and Recovery in Quantum Memory
Institute of Scientific and Technical Information of China (English)
CAI Qing-Yu
2004-01-01
We show that information in quantum memory can be erased and recovered perfectly if it is necessary. The fact that the final states of environment are completely determined by the initial states of the system allows an erasure operation to be realized by a swap operation between the system and an ancilla. Therefore, the erased information can be recovered. When there is an irreversible process, e.g. an irreversible operation or a decoherence process, in the erasure process, the information would be erased perpetually. We present that quantum erasure will also give heat dissipation in the environment. A classical limit of quantum erasure is given to coincide with Landauer's erasure principle.
Exponential lifetime improvement in topological quantum memories
Bardyn, Charles-Edouard; Karzig, Torsten
2016-09-01
We propose a simple yet efficient mechanism for passive error correction in topological quantum memories. Our scheme relies on driven-dissipative ancilla systems which couple to local excitations (anyons) and make them "sink" in energy, with no required interaction among ancillae or anyons. Through this process, anyons created by some thermal environment end up trapped in potential "trenches" that they themselves generate, which can be interpreted as a "memory foam" for anyons. This self-trapping mechanism provides an energy barrier for anyon propagation and removes entropy from the memory by favoring anyon recombination over anyon separation (responsible for memory errors). We demonstrate that our scheme leads to an exponential increase of the memory-coherence time with system size L , up to an upper bound Lmax, which can increase exponentially with Δ /T , where T is the temperature and Δ is some energy scale defined by potential trenches. This results in a double exponential increase of the memory time with Δ /T , which greatly improves over the Arrhenius (single-exponential) scaling found in typical quantum memories.
Quantum memory for entangled two-mode squeezed states
Jensen, K; Krauter, H; Fernholz, T; Nielsen, B M; Serafini, A; Owari, M; Plenio, M B; Wolf, M M; Polzik, E S
2010-01-01
A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum information). Here we demonstrate such a quantum memory for states possessing Einstein-Podolsky-Rosen (EPR) entanglement. These multi-photon states are two-mode squeezed by 6.0 dB with a variable orientation of squeezing and displaced by a few vacuum units. This range encompasses typical input alphabets for a continuous variable quantum information protocol. The memory consists of two cells, one for each mode, filled with cesium atoms at room temperature with a memory time of about 1msec. The preservation of quantum coherence is rigorously proven by showing that the experimental memory fidelity 0.52(2) significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.
Robust dynamical decoupling for quantum computing and quantum memory.
Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter
2011-06-17
Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.
Transitional behavior of quantum Gaussian memory channels
Lupo, C.; Mancini, S.
2010-05-01
We address the question of optimality of entangled input states in quantum Gaussian memory channels. For a class of such channels, which can be traced back to the memoryless setting, we state a criterion which relates the optimality of entangled inputs to the symmetry properties of the channels’ action. Several examples of channel models belonging to this class are discussed.
Optically simulated universal quantum computation
Francisco, D.; Ledesma, S.
2008-04-01
Recently, classical optics based systems to emulate quantum information processing have been proposed. The analogy is based on the possibility of encoding a quantum state of a system with a 2N-dimensional Hilbert space as an image in the input of an optical system. The probability amplitude of each state of a certain basis is associated with the complex amplitude of the electromagnetic field in a given slice of the laser wavefront. Temporal evolution is represented as the change of the complex amplitude of the field when the wavefront pass through a certain optical arrangement. Different modules that represent universal gates for quantum computation have been implemented. For instance, unitary operations acting on the qbits space (or U(2) gates) are represented by means of two phase plates, two spherical lenses and a phase grating in a typical image processing set up. In this work, we present CNOT gates which are emulated by means of a cube prism that splits a pair of adjacent rays incoming from the input image. As an example of application, we present an optical module that can be used to simulate the quantum teleportation process. We also show experimental results that illustrate the validity of the analogy. Although the experimental results obtained are promising and show the capability of the system for simulate the real quantum process, we must take into account that any classical simulation of quantum phenomena, has as fundamental limitation the impossibility of representing non local entanglement. In this classical context, quantum teleportation has only an illustrative interpretation.
Quantum Computation with Nonlinear Optics
Liu, Yang; Zhang, Wen-Hong; Zhang, Cun-Lin; Long, Gui-Lu
2008-01-01
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the course of the computation; (3) It is resource efficient and conceptually simple.
Quantum Computation with Nonlinear Optics
Institute of Scientific and Technical Information of China (English)
LU Ke; LIU Yang; LIN Zhen-Quan; ZHANG Wen-Hong; SUN Yun-Fei; ZHANG Cun-Lin; LONG Gui-Lu
2008-01-01
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the courseof the computation; (3) It is resource efficient and conceptually simple.
Quantum Optical Multiple Scattering
DEFF Research Database (Denmark)
Ott, Johan Raunkjær
interference survives even after disorder averaging. The quantum interference manifests itself through increased photon correlations. Furthermore, the theoretical description of a measurement procedure is presented. In this work we relate the noise power spectrum of the total transmitted or reflected light......-state population and fluorescence spectrum, where we find cooperative effects in both the elastic and the inelastic spectra....
Efficient and long-lived quantum memory with cold atoms inside a ring cavity
Bao, Xiao-Hui; Dietrich, Peter; Rui, Jun; Dück, Alexander; Strassel, Thorsten; Li, Li; Liu, Nai-Le; Zhao, Bo; Pan, Jian-Wei; 10.1038/nphys2324
2012-01-01
Quantum memories are regarded as one of the fundamental building blocks of linear-optical quantum computation and long-distance quantum communication. A long standing goal to realize scalable quantum information processing is to build a long-lived and efficient quantum memory. There have been significant efforts distributed towards this goal. However, either efficient but short-lived or long-lived but inefficient quantum memories have been demonstrated so far. Here we report a high-performance quantum memory in which long lifetime and high retrieval efficiency meet for the first time. By placing a ring cavity around an atomic ensemble, employing a pair of clock states, creating a long-wavelength spin wave, and arranging the setup in the gravitational direction, we realize a quantum memory with an intrinsic spin wave to photon conversion efficiency of 73(2)% together with a storage lifetime of 3.2(1) ms. This realization provides an essential tool towards scalable linear-optical quantum information processing.
Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory
Bussières, Félix; Clausen, Christoph; Tiranov, Alexey; Korzh, Boris; Verma, Varun B.; Nam, Sae Woo; Marsili, Francesco; Ferrier, Alban; Goldner, Philippe; Herrmann, Harald; Silberhorn, Christine; Sohler, Wolfgang; Afzelius, Mikael; Gisin, Nicolas
2014-10-01
Quantum teleportation is a cornerstone of quantum information science due to its essential role in important tasks such as the long-distance transmission of quantum information using quantum repeaters. This requires the efficient distribution of entanglement between remote nodes of a network. Here, we demonstrate quantum teleportation of the polarization state of a telecom-wavelength photon onto the state of a solid-state quantum memory. Entanglement is established between a rare-earth-ion-doped crystal storing a single photon that is polarization-entangled with a flying telecom-wavelength photon. The latter is jointly measured with another flying polarization qubit to be teleported, which heralds the teleportation. The fidelity of the qubit retrieved from the memory is shown to be greater than the maximum fidelity achievable without entanglement, even when the combined distances travelled by the two flying qubits is 25 km of standard optical fibre. Our results demonstrate the possibility of long-distance quantum networks with solid-state resources.
Optical realization of the dissipative quantum oscillator
Longhi, Stefano
2016-01-01
An optical realization of the damped quantum oscillator, based on transverse light dynamics in an optical resonator with slowly-moving mirrors, is theoretically suggested. The optical resonator setting provides a simple implementation of the time-dependent Caldirola-Kanai Hamiltonian of the dissipative quantum oscillator, and enables to visualize the effects of damped oscillations in the classical (ray optics) limit and wave packet collapse in the quantum (wave optics) regime.
Precision Spectral Manipulation: A Demonstration Using a Coherent Optical Memory
Directory of Open Access Journals (Sweden)
B. M. Sparkes
2012-06-01
Full Text Available The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. In this paper, we present experiments that use a multielement solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. These operations include separate bandwidth and frequency manipulation with precision down to tens of kHz, spectral filtering of up to three separate frequency components, as well as time-delayed interference between pulses with both the same, and different, frequencies. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.
Bianucci, Pablo
Modern communications technology has encouraged an intimate connection between Semiconductor Physics and Optics, and this connection shows best in the combination of electron-confining structures with light-confining structures. Semiconductor quantum dots are systems engineered to trap electrons in a mesoscopic scale (the are composed of ≈ 10000 atoms), resulting in a behavior resembling that of atoms, but much richer. Optical microresonators are engineered to confine light, increasing its intensity and enabling a much stronger interaction with matter. Their combination opens a myriad of new directions, both in fundamental Physics and in possible applications. This dissertation explores both semiconductor quantum dots and microresonators, through experimental work done with semiconductor quantum dots and microsphere resonators spanning the fields of Quantum Optics, Quantum Information and Photonics; from quantum algorithms to polarization converters. Quantum Optics leads the way, allowing us to understand how to manipulate and measure quantum dots with light and to elucidate the interactions between them and microresonators. In the Quantum Information area, we present a detailed study of the feasibility of excitons in quantum dots to perform quantum computations, including an experimental demonstration of the single-qubit Deutsch-Jozsa algorithm performedin a single semiconductor quantum dot. Our studies in Photonics involve applications of microsphere resonators, which we have learned to fabricate and characterize. We present an elaborate description of the experimental techniques needed to study microspheres, including studies and proof of concept experiments on both ultra-sensitive microsphere sensors and whispering gallery mode polarization converters.
An Integrated Optical Memory based on Laser Written Waveguides
Corrielli, Giacomo; Mazzera, Margherita; Osellame, Roberto; de Riedmatten, Hugues
2016-01-01
We report on the first realization of an integrated optical memory for light based on a laser written waveguide in a doped crystal. Using femto-second laser micromachining, we fabricate waveguides in Pr$^{3+}$:Y$_2$SiO$_5$ crystal. We demonstrate that the waveguide inscription does not affect the coherence properties of the material and that the light confinement in the waveguide increases the interaction with the active ions by a factor 6. We also demonstrate that, analogously to the bulk crystals, we can operate the optical pumping protocols necessary to prepare the population in atomic frequency combs, that we use to demonstrate light storage in excited and spin states of the Praseodymium ions. Our results represent the first realization of laser written waveguides in a Pr$^{3+}$:Y$_2$SiO$_5$ crystal and the first implementation of an integrated on-demand spin wave optical memory. They open new perspectives for integrated quantum memories.
Applications of quantum stochastic processes in quantum optics
Bouten, Luc
2008-01-01
These lecture notes provide an introduction to quantum filtering and its applications in quantum optics. We start with a brief introduction to quantum probability, focusing on the spectral theorem. Then we introduce the conditional expectation and quantum stochastic calculus. In the last part of the notes we discuss the filtering problem.
Using supermodels in quantum optics
Directory of Open Access Journals (Sweden)
Garbers Nicole
2006-01-01
Full Text Available Starting from supersymmetric quantum mechanics and related supermodels within Schrödinger theory, we review the meaning of self-similar superpotentials which exhibit the spectrum of a geometric series. We construct special types of discretizations of the Schrödinger equation on time scales with particular symmetries. This discretization leads to the same type of point spectrum for the referred Schrödinger difference operator than in the self-similar superpotential case, hence exploiting an isospectrality situation. A discussion is opened on the question of how the considered energy sequence and its generalizations serve the understanding of coherent states in quantum optics.
Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout.
Reim, K F; Nunn, J; Jin, X-M; Michelberger, P S; Champion, T F M; England, D G; Lee, K C; Kolthammer, W S; Langford, N K; Walmsley, I A
2012-06-29
Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand, the key element of all PQIP architectures is the beam splitter, which allows us to coherently couple optical modes. Here, we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long distance quantum communications and quantum metrology.
Quantum entanglement between an optical photon and a solid-state spin qubit.
Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D
2010-08-01
Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.
Optimal control for perfect state transfer in linear quantum memory
Nakao, Hideaki; Yamamoto, Naoki
2017-03-01
A quantum memory is a system that enables transfer, storage, and retrieval of optical quantum states by ON/OFF switching of the control signal in each stage of the memory. In particular, it is known that, for perfect transfer of a single-photon state, appropriate shaping of the input pulse is required. However, in general, such a desirable pulse shape has a complicated form, which would be hard to generate in practice. In this paper, for a wide class of linear quantum memory systems, we develop a method that reduces the complexity of the input pulse shape of a single photon while maintaining the perfect state transfer. The key idea is twofold; (i) the control signal is allowed to vary continuously in time to introduce an additional degree of freedom, and then (ii) an optimal control problem is formulated to design a simple-formed input pulse and the corresponding control signal. Numerical simulations are conducted for Λ-type atomic media and networked atomic ensembles, to show the effectiveness of the proposed method.
Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre
Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2015-02-01
The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.
Entanglement of spin waves among four quantum memories
Choi, K S; Papp, S B; van Enk, S J; Kimble, H J
2010-01-01
Quantum networks are composed of quantum nodes that interact coherently by way of quantum channels and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a `web' for connecting quantum processors for computation and communication, as well as a `simulator' for enabling investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and of efficiently transferring stored entanglement into quantum channels for distribution across the network. While such capabilities have been demonstrated for diverse bipartite systems (i.e., N=2 quantum systems), entangled states with N > 2 have heretofore not been achieved for quantum interconnects that coherently `clock' multipartite entanglement stored in quantum memories to quantum channels. Here, we demonstrate high-f...
The quantum theory of nonlinear optics
Drummond, Peter D
2014-01-01
Playing a prominent role in communications, quantum science and laser physics, quantum nonlinear optics is an increasingly important field. This book presents a self-contained treatment of field quantization and covers topics such as the canonical formalism for fields, phase-space representations and the encompassing problem of quantization of electrodynamics in linear and nonlinear media. Starting with a summary of classical nonlinear optics, it then explains in detail the calculation techniques for quantum nonlinear optical systems and their applications, quantum and classical noise sources in optical fibers and applications of nonlinear optics to quantum information science. Supplemented by end-of-chapter exercises and detailed examples of calculation techniques in different systems, this book is a valuable resource for graduate students and researchers in nonlinear optics, condensed matter physics, quantum information and atomic physics. A solid foundation in quantum mechanics and classical electrodynamic...
A silicon-nanowire memory driven by optical gradient force induced bistability
Energy Technology Data Exchange (ETDEWEB)
Dong, B. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); Cai, H., E-mail: caih@ime.a-star.edu.sg; Gu, Y. D.; Kwong, D. L. [Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); Chin, L. K.; Ng, G. I.; Ser, W. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, J. G. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), Singapore 117685 (Singapore); School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yang, Z. C. [School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China); Liu, A. Q., E-mail: eaqliu@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); School of Electronics Engineering and Computer Science, Peking University, Beijing 100871 (China)
2015-12-28
In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.
Seri, Alessandro; Lenhard, Andreas; Rieländer, Daniel; Gündoǧan, Mustafa; Ledingham, Patrick M.; Mazzera, Margherita; de Riedmatten, Hugues
2017-04-01
Quantum correlations between long-lived quantum memories and telecom photons that can propagate with low loss in optical fibers are an essential resource for the realization of large-scale quantum information networks. Significant progress has been realized in this direction with atomic and solid-state systems. Here, we demonstrate quantum correlations between a telecom photon and a multimode on-demand solid state quantum memory. This is achieved by mapping a correlated single photon onto a spin collective excitation in a Pr3 +:Y2SiO5 crystal for a controllable time. The stored single photons are generated by cavity-enhanced spontaneous parametric down-conversion and heralded by their partner photons at telecom wavelength. These results represent the first demonstration of a multimode on-demand solid state quantum memory for external quantum states of light. They provide an important resource for quantum repeaters and pave the way for the implementation of quantum information networks with distant solid state quantum nodes.
Quantum Computing: Linear Optics Implementations
Sundsøy, Pål
2016-01-01
One of the main problems that optical quantum computing has to overcome is the efficient construction of two-photon gates. Theoretically these gates can be realized using Kerr-nonlinearities, but the techniques involved are experimentally very difficult. We therefore employ linear optics with projective measurements to generate these non-linearities. The downside is that the measurement-induced nonlinearities achieved with linear optics are less versatile and the success rate can be quite low. This project is mainly the result of a literature study but also a theoretical work on the physics behind quantum optical multiports which is essential for realizing two-photon gates. By applying different postcorrection techniques we increase the probability of success in a modifed non-linear sign shift gate which is foundational for the two photon controlled-NOT gate. We prove that it's not possible to correct the states by only using a single beam splitter. We show that it might be possible to increase the probabilit...
BANDWIDTH OF QUANTUM OPTICAL COMMUNICATION SYSTEM
Directory of Open Access Journals (Sweden)
I. R. Gulakov
2012-01-01
Full Text Available Impact of registered optical radiation intensity, overvoltage, dimensions of photosensitive surface, structure of p-n junction and avalanche photodetectors dead time operating in the photon counting mode on quantum optical system capacity has been carried out in this investigation. As a result, the quantum optical system maximum capacity of 81 kbit/s has been obtained.
A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band
Albrecht, Boris; Farrera, Pau; Fernandez-Gonzalvo, Xavier; Cristiani, Matteo; de Riedmatten, Hugues
2014-02-01
Coherently converting the frequency and temporal waveform of single and entangled photons will be crucial to interconnect the various elements of future quantum information networks. Of particular importance is the quantum frequency conversion of photons emitted by material systems able to store quantum information, so-called quantum memories. There have been significant efforts to implement quantum frequency conversion using nonlinear crystals, with non-classical light from broadband photon-pair sources and solid-state emitters. However, solid state quantum frequency conversion has not yet been achieved with long-lived optical quantum memories. Here we demonstrate an ultra-low-noise solid state photonic quantum interface suitable for connecting quantum memories based on atomic ensembles to the telecommunication fibre network. The interface is based on an integrated-waveguide nonlinear device. We convert heralded single photons at 780 nm from a rubidium-based quantum memory to the telecommunication wavelength of 1,552 nm, showing significant non-classical correlations between the converted photon and the heralding signal.
Optically transparent high temperature shape memory polymers.
Xiao, Xinli; Qiu, Xueying; Kong, Deyan; Zhang, Wenbo; Liu, Yanju; Leng, Jinsong
2016-03-21
Optically transparent shape memory polymers (SMPs) have potential in advanced optoelectronic and other common shape memory applications, and here optically transparent shape memory polyimide is reported for the first time. The polyimide possesses a glass transition temperature (Tg) of 171 °C, higher than the Tg of other transparent SMPs reported, and the influence of molecular structure on Tg is discussed. The 120 μm thick polyimide film exhibits transmittance higher than 81% in 450-800 nm, and the possible mechanism of its high transparency is analyzed, which will benefit further research on other transparent high temperature SMPs. The transparent polyimide showed excellent thermomechanical properties and shape memory performances, and retained high optical transparency after many shape memory cycles.
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Experimental quantum forgery of quantum optical money
Bartkiewicz, Karol; Černoch, Antonín; Chimczak, Grzegorz; Lemr, Karel; Miranowicz, Adam; Nori, Franco
2017-03-01
Unknown quantum information cannot be perfectly copied (cloned). This statement is the bedrock of quantum technologies and quantum cryptography, including the seminal scheme of Wiesner's quantum money, which was the first quantum-cryptographic proposal. Surprisingly, to our knowledge, quantum money has not been tested experimentally yet. Here, we experimentally revisit the Wiesner idea, assuming a banknote to be an image encoded in the polarization states of single photons. We demonstrate that it is possible to use quantum states to prepare a banknote that cannot be ideally copied without making the owner aware of only unauthorized actions. We provide the security conditions for quantum money by investigating the physically-achievable limits on the fidelity of 1-to-2 copying of arbitrary sequences of qubits. These results can be applied as a security measure in quantum digital right management.
Quantum nonlinear optics without photons
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
Strongly Correlated Quantum Walks in Optical Lattices
Preiss, Philipp M.; Ma, Ruichao; Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Zupancic, Philip; Lahini, Yoav; Islam, Rajibul; Greiner, Markus
2014-01-01
Full control over the dynamics of interacting, indistinguishable quantum particles is an important prerequisite for the experimental study of strongly correlated quantum matter and the implementation of high-fidelity quantum information processing. Here we demonstrate such control over the quantum walk - the quantum mechanical analogue of the classical random walk - in the strong interaction regime. Using interacting bosonic atoms in an optical lattice, we directly observe fundamental effects...
Capacities of linear quantum optical systems
Lupo, Cosmo; Giovannetti, Vittorio; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth
2012-06-01
A wide variety of communication channels employ the quantized electromagnetic field to convey information. Their communication capacity crucially depends on losses associated to spatial characteristics of the channel such as diffraction and antenna design. Here we focus on the communication via a finite pupil, showing that diffraction is formally described as a memory channel. By exploiting this equivalence we then compute the communication capacity of an optical refocusing system, modeled as a converging lens. Even though loss of information originates from the finite pupil of the lens, we show that the presence of the refocusing system can substantially enhance the communication capacity. We mainly concentrate on communication of classical information, the extension to quantum information being straightforward.
Capacities of linear quantum optical systems
Lupo, Cosmo; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth
2012-01-01
A wide variety of communication channels employ the quantized electromagnetic field to convey information. Their communication capacity crucially depends on losses associated to spatial characteristics of the channel such as diffraction and antenna design. Here we focus on the communication via a finite pupil, showing that diffraction is formally described as a memory channel. By exploiting this equivalence we then compute the communication capacity of an optical refocusing system, modeled as a converging lens. Even though loss of information originates from the finite pupil of the lens, we show that the presence of the refocusing system can substantially enhance the communication capacity. We mainly concentrate on communication of classical information, the extension to quantum information being straightforward.
Quantum memory receiver for superadditive communication using binary coherent states
Klimek, Aleksandra; Wasilewski, Wojciech; Banaszek, Konrad
2015-01-01
We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. {\\em Phys. Rev. Lett.}\\ {\\bf 2011}, {\\em 106}, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.
Quantum memory receiver for superadditive communication using binary coherent states.
Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad
2016-11-12
We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett.2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.
Dynamics of a pulsed continuous-variable quantum memory
DEFF Research Database (Denmark)
Dantan, Aurelien Romain; Cviklinski, Jean; Pinard, Michel
2006-01-01
We study the transfer dynamics of nonclassical fluctuations of light to the ground-state collective spin components of an atomic ensemble during a pulsed quantum memory sequence, and evaluate the relevant physical quantities to be measured in order to characterize such a quantum memory. We show i...
A Decoherence-Free Quantum Memory Using Trapped Ions
2016-09-22
storage of qubits with near-perfect fidelity. Our results suggest applications in quan- tum communication and large-scale quantum computing . Single photons...superpo- sitions. Robust quantum memories are there- fore essential to realizing the potential gains of quantum computing (3). However, inter- action of a...tolerant quantum logic (13, 14). These properties suggest that DFSs will be intrinsic to future quantum computing architectures. Logic gates on DFS
Quantum associative memory for the diagnosis of some tropical diseases
Njafa, J -P Tchapet; Woafo, P
2013-01-01
In this paper we present a model of Quantum Associative Memory which can be a helpful tool for physicians without experience or laboratory facilities, for the diagnosis of four tropical diseases (malaria, typhoid fever, yellow fever and dengue) which have similar symptoms. The memory can distinguish single infection from multi-infection. The algorithm used for Quantum Associative Memory is an improve model of original algorithm made by Ventura for Quantum Associative Memory. From the simulation results given, it appears that the efficiency of recognition is good when a particular symptom of a disease with a similar symptoms are inserted.
Quantum computation architecture using optical tweezers
DEFF Research Database (Denmark)
Weitenberg, Christof; Kuhr, Stefan; Mølmer, Klaus;
2011-01-01
We present a complete architecture for scalable quantum computation with ultracold atoms in optical lattices using optical tweezers focused to the size of a lattice spacing. We discuss three different two-qubit gates based on local collisional interactions. The gates between arbitrary qubits...... quantum computing....
Coherent analysis of quantum optical sideband modes
Huntington, E H; Robilliard, C; Ralph, T C
2005-01-01
We demonstrate a device that allows for the coherent analysis of a pair of optical frequency sidebands in an arbitrary basis. We show that our device is quantum noise limited and hence applications for this scheme may be found in discrete and continuous variable optical quantum information experiments.
Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay
Chen, Yi-Hsin; Wang, I-Chung; Du, Shengwang; Chen, Yong-Fan; Chen, Ying-Cheng; Yu, Ite A
2012-01-01
A high-storage efficiency and long-live quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency (EIT). At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result can be readily applied to single photon wave packets. Our work significantly advances the technology of EIT-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.
Steady-state solution methods for open quantum optical systems
Nation, P D
2015-01-01
We discuss the numerical solution methods available when solving for the steady-state density matrix of a time-independent open quantum optical system, where the system operators are expressed in a suitable basis representation as sparse matrices. In particular, we focus on the difficulties posed by the non-Hermitian structure of the Lindblad super operator, and the numerical techniques designed to mitigate these pitfalls. In addition, we introduce a doubly iterative inverse-power method that can give reduced memory and runtime requirements in situations where other iterative methods are limited due to poor bandwidth and profile reduction. The relevant methods are demonstrated on several prototypical quantum optical systems where it is found that iterative methods based on iLU factorization using reverse Cuthill-Mckee ordering tend to outperform other solution techniques in terms of both memory consumption and runtime as the size of the underlying Hilbert space increases. For eigenvalue solving, Krylov iterat...
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
Tang, Jian-Shun; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-01-01
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by Duan-Lukin-Cirac-Zoller protocol, many improved quantum-repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multi-photons (multi-photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with $1$, $20$ and $100$ narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scal...
Quantum memory for entangled continuous-variable states
Jensen, K.; Wasilewski, W.; Krauter, H.; Fernholz, T.; Nielsen, B. M.; Owari, M.; Plenio, M. B.; Serafini, A.; Wolf, M. M.; Polzik, E. S.
2011-01-01
A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are versatility (allowing a wide range of inputs) and preservation of quantum information in a way unattainable with any classical memory device. Here we demonstrate such a quantum memory for continuous-variable entangled states, which play a fundamental role in quantum information processing. We store an extensive alphabet of two-mode 6.0dB squeezed states obtained by varying the orientation of squeezing and the displacement of the states. The two components of the entangled state are stored in two room-temperature cells separated by 0.5m, one for each mode, with a memory time of 1ms. The true quantum character of the memory is rigorously proved by showing that the experimental memory fidelity 0.52+/-0.02 significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.
Fresnel-Transform's Quantum Correspondence and Quantum Optical ABCD Law
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; HU Li-Yun
2007-01-01
@@ Corresponding to the Fresnel transform there exists a unitary operator in quantum optics theory, which could be known the Fresnel operator (FO). We show that the multiplication rule of the FO naturally leads to the quantum optical ABCD law. The canonical operator methods as mapping of ray-transfer ABCD matrix is explicitly shown by the normally ordered expansion of the FO through the coherent state representation and the technique of integration within an ordered product of operators. We show that time evolution of the damping oscillator embodies the quantum optical ABCD law.
Dynamics of Quantum Entanglement in Reservoir with Memory Effects
Institute of Scientific and Technical Information of China (English)
郝翔; 沙金巧; 孙坚; 朱士群
2012-01-01
The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects. The completely positive reduced dynamical map can be constructed in the Kraus representation. Quantum entanglement decays more slowly in the non-Markovian environment. The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel. It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants.
Quantum error correcting codes and one-way quantum computing: Towards a quantum memory
Schlingemann, D
2003-01-01
For realizing a quantum memory we suggest to first encode quantum information via a quantum error correcting code and then concatenate combined decoding and re-encoding operations. This requires that the encoding and the decoding operation can be performed faster than the typical decoherence time of the underlying system. The computational model underlying the one-way quantum computer, which has been introduced by Hans Briegel and Robert Raussendorf, provides a suitable concept for a fast implementation of quantum error correcting codes. It is shown explicitly in this article is how encoding and decoding operations for stabilizer codes can be realized on a one-way quantum computer. This is based on the graph code representation for stabilizer codes, on the one hand, and the relation between cluster states and graph codes, on the other hand.
Quantum optical dipole radiation fields
Stokes, Adam
2016-01-01
We introduce quantum optical dipole radiation fields defined in terms of photon creation and annihilation operators. These fields are identified through their spatial dependence, as the components of the total fields that survive infinitely far from the dipole source. We use these radiation fields to perturbatively evaluate the electromagnetic radiated energy-flux of the excited dipole. Our results indicate that the standard interpretation of a bare atom surrounded by a localised virtual photon cloud, is difficult to sustain, because the radiated energy-flux surviving infinitely far from the source contains virtual contributions. It follows that there is a clear distinction to be made between a radiative photon defined in terms of the radiation fields, and a real photon, whose identification depends on whether or not a given process conserves the free energy. This free energy is represented by the difference between the total dipole-field Hamiltonian and its interaction component.
Entanglement of spin waves among four quantum memories.
Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J
2010-11-18
Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.
Dual-rail optical gradient echo memory
Higginbottom, Daniel B; Campbell, Geoff T; Hosseini, Mahdi; Cao, Ming Tao; Sparkes, Ben M; Bernu, Julian; Robins, Nick P; Lam, Ping Koy; Buchler, Ben C
2016-01-01
We introduce a scheme for the parallel storage of frequency separated signals in an optical memory and demonstrate that this dual-rail storage is a suitable memory for high fidelity frequency qubits. The two signals are stored simultaneously in the Zeeman-split Raman absorption lines of a cold atom ensemble using gradient echo memory techniques. Analysis of the split-Zeeman storage shows that the memory can be configured to preserve the relative amplitude and phase of the frequency separated signals. In an experimental demonstration dual-frequency pulses are recalled with 35% efficiency, 82% interference fringe visibility, and 6 degrees phase stability. The fidelity of the frequency-qubit memory is limited by frequency-dependent polarisation rotation and ambient magnetic field fluctuations, our analysis describes how these can be addressed in an alternative configuration.
Scattering Induced Quantum Interference of Multiple Quantum Optical States
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Wubs, Martijn; Mortensen, N. Asger;
2011-01-01
Using a discrete mode theory for propagation of quantum optical states, we investigate the consequences of multiple scattering on the degree of quadrature entanglement and quantum interference. We report that entangled states can be created by multiple-scattering. We furthermore show that quantum...... interference induced by the transmission of quantized light through a multiple-scattering medium will persist even after averaging over an ensemble of scattering samples....
Single-photon-level quantum memory at room temperature
Reim, K F; Lee, K C; Nunn, J; Langford, N K; Walmsley, I A
2010-01-01
Quantum memories capable of storing single photons are essential building blocks for quantum information processing, enabling the storage and transfer of quantum information over long distances. Devices operating at room temperature can be deployed on a large scale and integrated into existing photonic networks, but so far warm quantum memories have been susceptible to noise at the single photon level. This problem is circumvented in cold atomic ensembles, but these are bulky and technically complex. Here we demonstrate controllable, broadband and efficient storage and retrieval of weak coherent light pulses at the single-photon level in warm atomic caesium vapour using the far off-resonant Raman memory scheme. The unconditional noise floor is found to be low enough to operate the memory in the quantum regime at room temperature.
Quantum Modelling of Electro-Optic Modulators
Capmany, Jose
2011-01-01
Many components that are employed in quantum information and communication systems are well known photonic devices encountered in standard optical fiber communication systems, such as optical beamsplitters, waveguide couplers and junctions, electro-optic modulators and optical fiber links. The use of these photonic devices is becoming increasingly important especially in the context of their possible integration either in a specifically designed system or in an already deployed end-to-end fiber link. Whereas the behavior of these devices is well known under the classical regime, in some cases their operation under quantum conditions is less well understood. This paper reviews the salient features of the quantum scattering theory describing both the operation of the electro-optic phase and amplitude modulators in discrete and continuous-mode formalisms. This subject is timely and of importance in light of the increasing utilization of these devices in a variety of systems, including quantum key distribution an...
A reversible optical to microwave quantum interface
Barzanjeh, Sh; Milburn, G J; Tombesi, P; Vitali, D
2011-01-01
Quantum technology, like many mature classical technologies, will ultimately integrate distinct modules to achieve a function that transcends the capability of any one of them. We describe a reversible quantum interface between an optical and a microwave photon using a hybrid device based on the common interaction of microwave and optical fields with a nano-mechanical resonator in a superconducting circuit, which is one of the major challenges in the field. The scheme provides a path for generating a traveling microwave field strongly entangled with an optical mode, thus bridging the gap between quantum optical and solid state implementations of quantum information. This is an effective source of (bright) two-mode squeezing with an optical idler (signal) and a microwave signal (idler) and as such enables a continuous variable teleportation protocol.
Dynamics of a pulsed continuous variable quantum memory
Dantan, A; Grangier, P; Pinard, M; Cviklinski, Jean; Dantan, Aurelien; Grangier, Philippe; Pinard, Michel
2005-01-01
We study the transfer dynamics of non-classical fluctuations of light to the ground-state collective spin components of an atomic ensemble during a pulsed quantum memory sequence, and evaluate the relevant physical quantities to be measured in order to characterize such a quantum memory. We show in particular that the fluctuations stored into the atoms are emitted in temporal modes which are always different than those of the readout pulse, but which can nevertheless be retrieved efficiently using a suitable temporal mode-matching technique. We give a simple toy model - a cavity with variable transmission - which accounts for the behavior of the atomic quantum memory.
Quantum mechanics of charged particle beam optics
Khan, Sameen Ahmed
2018-01-01
Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.
Optically active quantum-dot molecules.
Shlykov, Alexander I; Baimuratov, Anvar S; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D
2017-02-20
Chiral molecules made of coupled achiral semiconductor nanocrystals, also known as quantum dots, show great promise for photonic applications owing to their prospective uses as configurable building blocks for optically active structures, materials, and devices. Here we present a simple model of optically active quantum-dot molecules, in which each of the quantum dots is assigned a dipole moment associated with the fundamental interband transition between the size-quantized states of its confined charge carriers. This model is used to analytically calculate the rotatory strengths of optical transitions occurring upon the excitation of chiral dimers, trimers, and tetramers of general configurations. The rotatory strengths of such quantum-dot molecules are found to exceed the typical rotatory strengths of chiral molecules by five to six orders of magnitude. We also study how the optical activity of quantum-dot molecules shows up in their circular dichroism spectra when the energy gap between the molecular states is much smaller than the states' lifetime, and maximize the strengths of the circular dichroism peaks by optimizing orientations of the quantum dots in the molecules. Our analytical results provide clear design guidelines for quantum-dot molecules and can prove useful in engineering optically active quantum-dot supercrystals and photonic devices.
Quantum Sensors: Improved Optical Measurement via Specialized Quantum States
Directory of Open Access Journals (Sweden)
David S. Simon
2016-01-01
Full Text Available Classical measurement strategies in many areas are approaching their maximum resolution and sensitivity levels, but these levels often still fall far short of the ultimate limits allowed by the laws of physics. To go further, strategies must be adopted that take into account the quantum nature of the probe particles and that optimize their quantum states for the desired application. Here, we review some of these approaches, in which quantum entanglement, the orbital angular momentum of single photons, and quantum interferometry are used to produce optical measurements beyond the classical limit.
Quantum optics and frontiers of physics: the third quantum revolution
Celi, Alessio; Sanpera, Anna; Ahufinger, Veronica; Lewenstein, Maciej
2017-01-01
The year 2015 was the International Year of Light. However, it also marked, the 20th anniversary of the first observation of Bose-Einstein condensation in atomic vapors by Eric Cornell, Carl Wieman and Wolfgang Ketterle. This discovery could be considered as one of the greatest achievements of quantum optics that has triggered an avalanche of further seminal discoveries and achievements. For this reason we devote this essay for the focus issue on ‘Quantum Optics in the International Year of Light’ to the recent revolutionary developments in quantum optics at the frontiers of all physics: atomic physics, molecular physics, condensed matter physics, high energy physics and quantum information science. We follow here the lines of the introduction to our book ‘Ultracold atoms in optical lattices: Simulating quantum many-body systems’ (Lewenstein et al 2012 Ultracold Atoms in Optical Lattices: Simulating Quantum Many-body Systems (Oxford: University Press)), and to a lesser extent the review article M Lewenstein et al (2007 Adv. Phys. 56 243). The book, however, was published in 2012, and many things has happened since then—the present essay is therefore upgraded to include the latest developments.
Quantum cryptography over underground optical fibers
Energy Technology Data Exchange (ETDEWEB)
Hughes, R.J.; Luther, G.G.; Morgan, G.L.; Peterson, C.G.; Simmons, C.
1996-05-01
Quantum cryptography is an emerging technology in which two parties may simultaneously generated shared, secret cryptographic key material using the transmission of quantum states of light whose security is based on the inviolability of the laws of quantum mechanics. An adversary can neither successfully tap the key transmissions, nor evade detection, owing to Heisenberg`s uncertainty principle. In this paper the authors describe the theory of quantum cryptography, and the most recent results from their experimental system with which they are generating key material over 14-km of underground optical fiber. These results show that optical-fiber based quantum cryptography could allow secure, real-time key generation over ``open`` multi-km node-to-node optical fiber communications links between secure ``islands.``
Quantum optics in multiple scattering random media
DEFF Research Database (Denmark)
Lodahl, Peter
Quantum Optics in Multiple Scattering Random Media Peter Lodahl Research Center COM, Technical University of Denmark, Dk-2800 Lyngby, Denmark. Coherent transport of light in a disordered random medium has attracted enormous attention both from a fundamental and application point of view. Coherent...... quantum optics in multiple scattering media and novel fundamental phenomena have been predicted when examining quantum fluctuations instead of merely the intensity of the light [1]. Here I will present the first experimental study of the propagation of quantum noise through an elastic, multiple scattering...... medium [2]. Two different types of quantum noise measurements have been carried out: total transmission and short-range frequency correlations. When comparing shot noise (quantum) to technical noise (classical) we observed markedly different behavior, c.f. Fig. 1. The experimental results are found...
Shift-invariant optical associative memories
Energy Technology Data Exchange (ETDEWEB)
Psaltis, D.; Hong, J.
1987-01-01
Shift invariance in the context of associative memories is discussed. Two optical systems that exhibit shift invariance are described in detail with attention given to the analysis of storage capacities. It is shown that full shift invariance cannot be achieved with systems that employ only linear interconnections to store the associations.
Optical levitation of microdroplet containing a single quantum dot
Minowa, Yosuke; Ashida, Masaaki
2014-01-01
Semiconductor nanocrystals, also known as quantum dots (QDs), are key ingredients in current quantum optics experiments. They serve as quantum emitters and memories and have tunable energy levels that depend not only on the material but also, through the quantum confinement effect, on the size. The resulting strongly confined electron and hole wave functions lead to large transition dipole moments, which opens a path to ultra strong coupling and even deep strong coupling between light and matter. Such efficient coupling requires the precise positioning of the QD in an optical cavity with a high quality factor and small mode volume, such as micro-Fabry--Perot cavity, whispering-gallery-mode microcavity, or photonic-crystal cavity. However, the absence of a technique for free-space positioning has limited the further research on QD-based cavity quantum electrodynamics. In this paper, we present a technique to overcome this challenge by demonstrating the optical levitation or trapping in helium gas of a single Q...
Quantum stream cipher based on optical communications
Hirota, Osamu; Kato, Kentaro; Sohma, Masaki; Usuda, Tsuyoshi S.; HARASAWA, Katsuyoshi
2004-01-01
In 2000, an attractive new quantum cryptography was discovered by H.P.Yuen based on quantum communication theory. It is applicable to direct encryption, for example quantum stream cipher based on Yuen protocol(Y-00), with high speeds and for long distance by sophisticated optical devices which can work under the average photon number per signal light pulse:$ = 1000 \\sim 10000$. In addition, it may provide information-theoretic security against known/chosen plaintext attack, which has no class...
Multiple Scattering of Quantum Optical States
DEFF Research Database (Denmark)
Ott, Johan Raunkjær; Mortensen, N. Asger; Lodahl, Peter
2011-01-01
fluctuations [3]. Only recently focus has reached the combination of quantum optics and multiple scattering, see e.g. references [4–7] and references therein. The experimental realization of strongly enhanced light-matter interaction in disordered photonic crystal waveguides, enabling cavity quantum...
Optical Properties of Semiconductor Quantum Dots
Perinetti, U.
2011-01-01
This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots
Optical Properties of Semiconductor Quantum Dots
Perinetti, U.
2011-01-01
This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots mad
Pasyar, N.; Yadipour, R.; Baghban, H.
2017-07-01
The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.
Would one rather store squeezing or entanglement in continuous variable quantum memories?
Yadsan-Appleby, Hulya; Serafini, Alessio
2011-05-01
Given two quantum memories for continuous variables and the possibility to perform passive optical operations on the optical modes before or after the storage, two possible scenarios arise resulting in generally different degrees of final entanglement. Namely, one could either store an entangled state and retrieve it directly from the memory, or rather store two separate single-mode squeezed states and then combine them with a beam-splitter to generate the final entangled state. In this Letter, we analytically determine which of the two options yields more entanglement for several regions of the system's parameters, and quantify the advantage it entails.
Scalable time reversal of Raman echo quantum memory and quantum waveform conversion of light pulse
Moiseev, E S
2013-01-01
We have found the new hidden symmetry of time reversal light-atom interaction in the photon echo quantum memory with Raman atomic transition. The time-reversed quantum memory provides generalized condition for ideal compression/decompression of time duration and wavelength conversion of the input light pulse. Based on a general analytical approach to this scheme, we have studied the optimal conditions of the light field compression/decompression in resonant atomic systems characterized by realistic spectral properties. The demonstrated effective quantum conversion of the light waveform and wavelength are also discussed for various possible realizations of the quantum memory scheme. The performed study promises new capabilities for fundamental study of the light-atom interaction and for deterministic quantum manipulation of the light field interested for quantum communication and quantum computing.
Quantum noise memory effect of multiple scattered light
Lodahl, P
2005-01-01
We investigate frequency correlations in multiple scattered light that are present in the quantum fluctuations. The memory effect for quantum and classical noise is compared, and found to have markedly different frequency scaling, which was confirmed in a recent experiment. Furthermore, novel mesoscopic correlations are predicted that depend on the photon statistics of the incoming light.
Uncertainty relations based on skew information with quantum memory
Ma, ZhiHao; Chen, ZhiHua; Fei, Shao-Ming
2017-01-01
We present a new uncertainty relation by defining a measure of uncertainty based on skew information. For bipartite systems, we establish uncertainty relations with the existence of a quantum memory. A general relation between quantum correlations and tight bounds of uncertainty has been presented.
Quantum dot devices for optical communications
DEFF Research Database (Denmark)
Mørk, Jesper
2005-01-01
. The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record......-low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties...
Optical neural computing for associative memories
Energy Technology Data Exchange (ETDEWEB)
Hsu, Ken Yuh.
1990-01-01
Optical techniques for implementing neural computers are presented. In particular, holographic associative memories with feedback are investigated. Characteristics of optical neurons and optical interconnections are discussed. An LCLV is used for simulating a 2-D array of approximately 160,000 optical neurons. Thermoplastic plates are used for providing holographic interconnections among these neurons. The problem of degenerate readout in holographic interconnections and the method of sampling grids to solve this problem are presented. Two optical neural networks for associative memories are implemented and demonstrated. The first one is an optical implementation of the Hopfield network. It performs the function of auto-association that recognizes 2-D images from a distorted or partially blocked input. The trade-off between distortion tolerance and discrimination capability against new images is discussed. The second optical loop is a 2-layer network with feedback. It performs the function of hetero-association, which locks the recognized input and its associated image as a stable state in the loop. In both optical loops, it is shown that the neural gain and the similarity between the input and the stored images are the main factors that determine the dynamics of the network. Neural network models for the optical loops are presented. Equations of motion for describing the dynamical behavior of the systems are derived. The reciprocal vector basis corresponding to stored images is derived. A geometrical method is then introduced which allows us to inspect the convergence property of the system. It is also shown that the main factors that determine the system dynamics are the neural gain and the initial conditions. Photorefractive holography for optical interconnections and sampling grids for volume holographic interconnections are presented.
Dynamic optical hysteresis in the quantum regime
Rodriguez, S R K; Storme, F; Sagnes, I; Gratiet, L Le; Galopin, E; Lemaitre, A; Amo, A; Ciuti, C; Bloch, J
2016-01-01
For more than 40 years, optical bistability --- the existence of two stable states with different photon numbers for the same driving conditions --- has been experimentally reported. Surprisingly, the quantum theory of a single-mode nonlinear cavity always predicts a unique steady state, i.e. no bistability. To reconcile this apparent contradiction, a tunneling time for bistability has been introduced. This is a timescale over which quantum fluctuations trigger transitions between classically stable states, and which can be astronomically longer than the measurement. While quantum fluctuations ultimately forbid the static hysteresis associated with bistability, it was recently predicted that optical hysteresis should emerge dynamically for finite sweep rates of the driving intensity. This dynamic hysteresis is expected to exhibit a double power-law behavior defining a classical-to-quantum crossover. Here, by measuring the dynamic optical hysteresis of a semiconductor microcavity for various sweep rates of the...
High sensitivity optically pumped quantum magnetometer.
Tiporlini, Valentina; Alameh, Kamal
2013-01-01
Quantum magnetometers based on optical pumping can achieve sensitivity as high as what SQUID-based devices can attain. In this paper, we discuss the principle of operation and the optimal design of an optically pumped quantum magnetometer. The ultimate intrinsic sensitivity is calculated showing that optimal performance of the magnetometer is attained with an optical pump power of 20 μW and an operation temperature of 48°C. Results show that the ultimate intrinsic sensitivity of the quantum magnetometer that can be achieved is 327 fT/Hz(½) over a bandwidth of 26 Hz and that this sensitivity drops to 130 pT/Hz(½) in the presence of environmental noise. The quantum magnetometer is shown to be capable of detecting a sinusoidal magnetic field of amplitude as low as 15 pT oscillating at 25 Hz.
Semiconductor quantum optics with tailored photonic nanostructures
Energy Technology Data Exchange (ETDEWEB)
Laucht, Arne
2011-06-15
This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings ({delta}E<{proportional_to}5 meV) and a multi-exciton-based, Auger-like process for larger detunings ({delta}E >{proportional_to}5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of
8th Rochester Conference on Coherence and Quantum Optics
2001-01-01
The Eighth Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the period June 13-16,2001. This volume contains the proceedings of the meeting. The meeting was preceded by an affiliated conference, the International Conference on Quantum Information, with some overlapping sessions on June 13. The proceedings of the affiliated conference will be published separately by the Optical Society of America. A few papers that were presented in common plenary sessions of the two conferences will be published in both proceedings volumes. More than 268 scientists from 28 countries participated in the week long discussions and presentations. This Conference differed from the previous seven in the CQO series in several ways, the most important of which was the absence of Leonard Mandel. Professor Mandel died a few months before the conference. A special memorial symposium in his honor was held at the end of the conference. The presentations from that sym...
Dynamical Suppression of Decoherence in Two-Qubit Quantum Memory
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In this paper, we have detailedly studied the dynamical suppression of the phase damping for the two-qubit quantum memory of Ising model by the quantum "bang-bang" technique. We find the sequence of periodic radiofrequency pulses repetitively to flip the state of the two-qubit system and quantitatively find that these pulses can be used to effectively suppress the phase damping decoherence of the quantum memory and freeze the system state into its initial state. The general sequence of periodic radio-frequency pulses to suppress the phase damping of multi-qubit of Ising model is also given.
Quantum optics with quantum dots in photonic nanowires
DEFF Research Database (Denmark)
Claudon, Julien; Munsch, Matthieu; Bleuse, Joel;
2012-01-01
Besides microcavities and photonic crystals, photonic nanowires have recently emerged as a novel resource for solidstate quantum optics. We will review recent studies which demonstrate an excellent control over the spontaneous emission of InAs quantum dots (QDs) embedded in single-mode Ga...... quantum optoelectronic devices. Quite amazingly, this approach has for instance permitted (unlike microcavity-based approaches) to combine for the first time a record-high efficiency (72%) and a negligible g(2) in a QD single photon source....
Quantum Computation Using Optically Coupled Quantum Dot Arrays
Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)
1998-01-01
A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.
Quantum Entanglement in Optical Lattice Systems
2015-02-18
SECURITY CLASSIFICATION OF: Optical lattice systems provide an ideal platform for investigating entanglement because of their unprecedented level of...ABSTRACT Final report for ARO grant entitled "Quantum Entanglement in Optical Lattice Systems" Report Title Optical lattice systems provide an ideal ...2010): 0. doi: 10.1103/PhysRevA.82.063612 D. Blume, K. Daily. Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length
Chien, Chihchun; Metcalf, Mekena; Lai, Chenyen
2016-05-01
Memory effects are observable in magnetization, rechargeable batteries, and many systems exhibiting history-dependent states. Quantum memory effects are observable, for instance, in atomic superfluids. A counter-intuitive question is whether quantum memory effects can exist in noninteracting systems. Here we present two examples of cold-atom systems demonstrating memory effects in noninteracting systems. The first example is a ring-shaped potential loaded with noninteracting fermions. An artificial vector potential drives a current and with a tunable dissipative background, the current lags behind the driving and exhibits hysteresis loops. The dissipative energy can be controlled by the coupling between the fermions and the background. In the second example, cold atoms loaded in a tunable optical lattice transformed from the triangular to the kagome geometry. The kagome lattice supports a flat-band consisting of degenerate localized states. Quantum memory effects are observable after a lattice transformation as the steady-state density depends on the rate of the transformation. The versatility of memory effects in cold-atom systems promises novel applications in atomtronics.
Optical Conductivity of Impurity-Doped Parabolic Quantum Wells in an Applied Electric Field
Institute of Scientific and Technical Information of China (English)
GUO Kang-Xian; CHEN Chuan-Yu
2005-01-01
The optical conductivity of impurity-doped parabolic quantum wells in an applied electric field is investigated with the memory-function approach, and the analytic expression for the optical conductivity is derived. With characteristic parameters pertaining to GaAs/Ga1-xAlxAs parabolic quantum wells, the numerical results are presented.It is shown that, the smaller the well width, the larger the peak intensity of the optical conductivity, and the more asymmetric the shape of the optical conductivity; the optical conductivity is more sensitive to the electric field, the electric field enhances the optical conductivity; when the dimension of the quantum well increases, the optical conductivity increases until it reaches a maximum value, and then decreases.
Quantum optical properties in plasmonic systems
Ooi, C. H. Raymond
2015-04-01
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Quantum metrology. Optically measuring force near the standard quantum limit.
Schreppler, Sydney; Spethmann, Nicolas; Brahms, Nathan; Botter, Thierry; Barrios, Maryrose; Stamper-Kurn, Dan M
2014-06-27
The Heisenberg uncertainty principle sets a lower bound on the noise in a force measurement based on continuously detecting a mechanical oscillator's position. This bound, the standard quantum limit, can be reached when the oscillator subjected to the force is unperturbed by its environment and when measurement imprecision from photon shot noise is balanced against disturbance from measurement back-action. We applied an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity and measured the resulting motion optically. When the driving force is resonant with the cloud's oscillation frequency, we achieve a sensitivity that is a factor of 4 above the standard quantum limit and consistent with theoretical predictions given the atoms' residual thermal disturbance and the photodetection quantum efficiency.
Resonant Optical Absorption in Semiconductor Quantum Wells
Institute of Scientific and Technical Information of China (English)
YU Li-Yuan; CAO Jun-Cheng
2004-01-01
@@ We have calculated the intraband photon absorption coefficients of hot two-dimensional electrons interacting with polar-optical phonon modes in quantum wells. The dependence of the photon absorption coefficients on the photon wavelength λ is obtained both by using the quantum mechanical theory and by the balance-equation theory. It is found that the photon absorption spectrum displays a local resonant maximum, corresponding to LO energy, and the absorption peak vanishes with increasing the electronic temperature.
Quantum Phases of Matter in Optical Lattices
2015-06-30
findings contained in this report are those of the author(s) and should not contrued as an official Department of the Army position , policy or...phases in beyond-standard optical lattices”, Oct 25, 2013 Nikhil Monga, John Shumway, Kaden Hazzard, Erich Mueller, Steven Desch, " Renormalization of...Ho, “Cold Atoms in Curved Space ”, Quantum Materials-Perspectives and Opportunities, The Rice Center for Quantum Materials, December 15, 2014
Enhanced quantum communication via optical refocusing
Energy Technology Data Exchange (ETDEWEB)
Lupo, Cosmo [School of Science and Technology, University of Camerino, I-62032 Camerino (Italy); Giovannetti, Vittorio [National Enterprise for Nanoscience and Nanotechnology (NEST), Scuola Normale Superiore and Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR), I-56126 Pisa (Italy); Pirandola, Stefano [Department of Computer Science, University of York, York YO10 5GH (United Kingdom); Mancini, Stefano [School of Science and Technology, University of Camerino, I-62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Perugia, I-06123 Perugia (Italy); Lloyd, Seth [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2011-07-15
We consider the problem of quantum communication mediated by a passive optical refocusing system. The model captures the basic features of all those situations in which a signal is either refocused by a repeater for long-distance communication, or it is focused on a detector prior to the information decoding process. Introducing a general method for linear passive optical systems, we determine the conditions under which optical refocusing implies information transmission gain. Although the finite aperture of the repeater may cause loss of information, we show that the presence of the refocusing system can substantially enhance the rate of reliable communication with respect to the free-space propagation. We explicitly address the transferring of classical messages over the quantum channel, but the results can be easily extended to include the case of transferring quantum messages as well.
Enhanced quantum communication via optical refocusing
Lupo, Cosmo; Giovannetti, Vittorio; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth
2011-07-01
We consider the problem of quantum communication mediated by a passive optical refocusing system. The model captures the basic features of all those situations in which a signal is either refocused by a repeater for long-distance communication, or it is focused on a detector prior to the information decoding process. Introducing a general method for linear passive optical systems, we determine the conditions under which optical refocusing implies information transmission gain. Although the finite aperture of the repeater may cause loss of information, we show that the presence of the refocusing system can substantially enhance the rate of reliable communication with respect to the free-space propagation. We explicitly address the transferring of classical messages over the quantum channel, but the results can be easily extended to include the case of transferring quantum messages as well.
Quantum vacuum radiation in optical glass
Liberati, Stefano; Visser, Matt
2011-01-01
A recent experimental claim of the detection of analogue Hawking radiation in an optical system [PRL 105 (2010) 203901] has led to some controversy [PRL 107 (2011) 149401, 149402]. While this experiment strongly suggests some form of particle creation from the quantum vacuum (and hence it is per se very interesting), it is also true that it seems difficult to completely explain all features of the observations by adopting the perspective of a Hawking-like mechanism for the radiation. For instance, the observed photons are emitted parallel to the optical horizon, and the relevant optical horizon is itself defined in an unusual manner by combining group and phase velocities. This raises the question: Is this really Hawking radiation, or some other form of quantum vacuum radiation? Naive estimates of the amount of quantum vacuum radiation generated due to the rapidly changing refractive index --- sometimes called the dynamical Casimir effect --- are not encouraging. However we feel that naive estimates could be ...
Quantum dot devices for optical communications
DEFF Research Database (Denmark)
Mørk, Jesper
2005-01-01
Semiconductor quantum dots are often described as "artificial atoms": They are small nanometre-sized structures in which electrons only are allowed to exist at certain discrete levels due to size quantization, thus allowing the engineering of fundamental properties such as the coupling to light....... The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record......-low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties...
Quantum Communication Experiments Over Optical Fiber
Takesue, Hiroki
Quantum key distribution (QKD) is expected to be the first application of quantum information to be realized as a practical system. In the last decade, research on QKD made significant progress both in concept and technology. In this chapter, we review the progress of technologies designed to realize high-speed and long-distance quantum communication over optical fiber, focusing on the results obtained by NTT. The first section describes a roadmap towards scalable quantum communications, which is composed of three phases. The second section reviews our effort to realize phase 1 quantum communication systems, namely point-to-point QKD systems based on the differential phase shift QKD (DPS-QKD) protocol. The third section describes entanglement generation and application in the telecom band, which are the key technologies for realizing phase 2 and 3 systems. The final section provides a summary and describes the future outlook.
Quantum optics of lossy asymmetric beam splitters
Uppu, Ravitej; Wolterink, Tom A. W.; Tentrup, Tristan B. H.; Pinkse, Pepijn W. H.
2016-07-01
We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2$\\times$2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.
Quantum optics of lossy asymmetric beam splitters
Uppu, Ravitej; Tentrup, Tristan B H; Pinkse, Pepijn W H
2016-01-01
We theoretically investigate quantum interference of two single photons at a lossy asymmetric beam splitter, the most general passive 2$\\times$2 optical circuit. The losses in the circuit result in a non-unitary scattering matrix with a non-trivial set of constraints on the elements of the scattering matrix. Our analysis using the noise operator formalism shows that the loss allows tunability of quantum interference to an extent not possible with a lossless beam splitter. Our theoretical studies support the experimental demonstrations of programmable quantum interference in highly multimodal systems such as opaque scattering media and multimode fibers.
Quantum optical effective-medium theory and transformation quantum optics for metamaterials
DEFF Research Database (Denmark)
Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing
2016-01-01
While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial...... directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum...
Quantum Private Comparison Protocol with Linear Optics
Luo, Qing-bin; Yang, Guo-wu; She, Kun; Li, Xiaoyu
2016-12-01
In this paper, we propose an innovative quantum private comparison(QPC) protocol based on partial Bell-state measurement from the view of linear optics, which enabling two parties to compare the equality of their private information with the help of a semi-honest third party. Partial Bell-state measurement has been realized by using only linear optical elements in experimental measurement-device-independent quantum key distribution(MDI-QKD) schemes, which makes us believe that our protocol can be realized in the near future. The security analysis shows that the participants will not leak their private information.
Resource-efficient linear optical quantum computation.
Browne, Daniel E; Rudolph, Terry
2005-07-01
We introduce a scheme for linear optics quantum computation, that makes no use of teleported gates, and requires stable interferometry over only the coherence length of the photons. We achieve a much greater degree of efficiency and a simpler implementation than previous proposals. We follow the "cluster state" measurement based quantum computational approach, and show how cluster states may be efficiently generated from pairs of maximally polarization entangled photons using linear optical elements. We demonstrate the universality and usefulness of generic parity measurements, as well as introducing the use of redundant encoding of qubits to enable utilization of destructive measurements--both features of use in a more general context.
Quantum nonlinear optics: nonlinear optics meets the quantum world (Conference Presentation)
Boyd, Robert W.
2016-02-01
This presentation first reviews the historical development of the field of nonlinear optics, starting from its inception in 1961. It then reviews some of its more recent developments, including especially how nonlinear optics has become a crucial tool for the developing field of quantum technologies. Fundamental quantum processes enabled by nonlinear optics, such as the creation of squeezed and entangled light states, are reviewed. We then illustrate these concepts by means of specific applications, such as the development of secure communication systems based on the quantum states of light.
On the role of memory errors in quantum repeaters
Hartmann, L; Dür, W; Kraus, B
2006-01-01
We investigate the influence of memory errors in the quantum repeater scheme for long-range quantum communication. We show that the communication distance is limited in standard operation mode due to memory errors resulting from unavoidable waiting times for classical signals. We show how to overcome these limitations by (i) improving local memory, and (ii) introducing two new operational modes of the quantum repeater. In both operational modes, the repeater is run blindly, i.e. without waiting for classical signals to arrive. In the first scheme, entanglement purification protocols based on one-way classical communication are used allowing to communicate over arbitrary distances. However, the error thresholds for noise in local control operations are very stringent. The second scheme makes use of entanglement purification protocols with two-way classical communication and inherits the favorable error thresholds of the repeater run in standard mode. One can increase the possible communication distance by an o...
Saito, Shiro; Zhu, Xiaobo; Amsüss, Robert; Matsuzaki, Yuichiro; Kakuyanagi, Kosuke; Shimo-Oka, Takaaki; Mizuochi, Norikazu; Nemoto, Kae; Munro, William J; Semba, Kouichi
2013-09-06
We have built a hybrid system composed of a superconducting flux qubit (the processor) and an ensemble of nitrogen-vacancy centers in diamond (the memory) that can be directly coupled to one another, and demonstrated how information can be transferred from the flux qubit to the memory, stored, and subsequently retrieved. We have established the coherence properties of the memory and succeeded in creating an entangled state between the processor and memory, demonstrating how the entangled state's coherence is preserved. Our results are a significant step towards using an electron spin ensemble as a quantum memory for superconducting qubits.
Tamper-indicating quantum optical seals
Energy Technology Data Exchange (ETDEWEB)
Humble, Travis S [ORNL; Williams, Brian P [ORNL
2015-01-01
Confidence in the means for identifying when tampering occurs is critical for containment and surveillance technologies. Fiber-optic seals have proven especially useful for actively surveying large areas or inventories due to the extended transmission range and flexible layout of fiber. However, it is reasonable to suspect that an intruder could tamper with a fiber-optic sensor by accurately replicating the light transmitted through the fiber. In this contribution, we demonstrate a novel approach to using fiber-optic seals for safeguarding large-scale inventories with increased confidence in the state of the seal. Our approach is based on the use of quantum mechanical phenomena to offer unprecedented surety in the authentication of the seal state. In particular, we show how quantum entangled photons can be used to monitor the integrity of a fiber-optic cable - the entangled photons serve as active sensing elements whose non-local correlations indicate normal seal operation. Moreover, we prove using the quantum no-cloning theorem that attacks against the quantum seal necessarily disturb its state and that these disturbances are immediately detected. Our quantum approach to seal authentication is based on physical principles alone and does not require the use of secret or proprietary information to ensure proper operation. We demonstrate an implementation of the quantum seal using a pair of entangled photons and we summarize our experimental results including the probability of detecting intrusions and the overall stability of the system design. We conclude by discussing the use of both free-space and fiber-based quantum seals for surveying large areas and inventories.
NV-based quantum memories coupled to photonic integrated circuits
Mouradian, Sara; Schröder, Tim; Zheng, Jiabao; Lu, Tsung-Ju; Choi, Hyeongrak; Wan, Noel; Walsh, Michael; Bersin, Eric; Englund, Dirk
2016-09-01
The negatively charged nitrogen vacancy (NV) center in diamond is a promising solid-state quantum memory. However, developing networks comprising such quantum memories is limited by the fabrication yield of the quantum nodes and the collection efficiency of indistinguishable photons. In this letter, we report on advances on a hybrid quantum system that allows for scalable production of networks, even with low-yield node fabrication. Moreover, an NV center in a simple single mode diamond waveguide is shown in simulation and experiment to couple well to a single mode SiN waveguide with a simple adiabatic taper for optimal mode transfer. In addition, cavity enhancement of the zero phonon line of the NV center with a resonance coupled to the waveguide mode allows a simulated <1800 fold increase in the collection of photon states coherent with the state of the NV center into a single frequency and spatial mode.
Quantum memory, entanglement and sensing with room temperature atoms
Energy Technology Data Exchange (ETDEWEB)
Jensen, K; Wasilewski, W; Krauter, H; Fernholz, T; Nielsen, B M; Petersen, J M; Renema, J J; Balabas, M V; Wolf, M M; Mueller, J H; Polzik, E S [Niels Bohr Institute, Danish Quantum Optics Center QUANTOP, Copenhagen University, Blegdamsvej 17, 2100 Copenhagen (Denmark); Owari, M; Plenio, M B [Institut fuer Theoretische Physik, Universitaet Ulm, Albert-Einstein Allee 11, D-89069 Ulm (Germany); Serafini, A [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom); Muschik, C A; Cirac, J I, E-mail: polzik@nbi.d [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)
2011-01-10
Room temperature atomic ensembles in a spin-protected environment are useful systems both for quantum information science and metrology. Here we utilize a setup consisting of two atomic ensembles as a memory for quantum information initially encoded in the polarization state of two entangled light modes. We also use the ensembles as a radio frequency entanglement-assisted magnetometer with projection noise limited sensitivity below femtoTesla/{radical}Hz. The performance of the quantum memory as well as the magnetometer was improved by spin-squeezed or entangled atomic states generated by quantum non demolition measurements. Finally, we present preliminary results of long lived entangled atomic states generated by dissipation. With the method presented, one should be able to generate an entangled steady state.
Storage of polarization-entangled THz-bandwidth photons in a diamond quantum memory
Fisher, Kent A. G.; England, Duncan G.; MacLean, Jean-Philippe W.; Bustard, Philip J.; Heshami, Khabat; Resch, Kevin J.; Sussman, Benjamin J.
2017-07-01
Bulk diamond phonons have been shown to be a versatile platform for the generation, storage, and manipulation of high-bandwidth quantum states of light. Here we demonstrate a diamond quantum memory that stores, and releases on demand, an arbitrarily polarized ˜250 fs duration photonic qubit. The single-mode nature of the memory is overcome by mapping the two degrees of polarization of the qubit, via Raman transitions, onto two spatially distinct optical phonon modes located in the same diamond crystal. The two modes are coherently recombined upon retrieval and quantum process tomography confirms that the memory faithfully reproduces the input state with average fidelity 0.784 ±0.004 with a total memory efficiency of (0.76 ±0.03 )% . In an additional demonstration, one photon of a polarization-entangled pair is stored in the memory. We report that entanglement persists in the retrieved state for up to 1.3 ps of storage time. These results demonstrate that the diamond phonon platform can be used in concert with polarization qubits, a key requirement for polarization-encoded photonic processing.
Would one rather store squeezing or entanglement in continuous variable quantum memories?
Energy Technology Data Exchange (ETDEWEB)
Yadsan-Appleby, Hulya [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Serafini, Alessio, E-mail: serale@theory.phys.ucl.ac.u [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2011-05-02
Given two quantum memories for continuous variables and the possibility to perform passive optical operations on the optical modes before or after the storage, two possible scenarios arise resulting in generally different degrees of final entanglement. Namely, one could either store an entangled state and retrieve it directly from the memory, or rather store two separate single-mode squeezed states and then combine them with a beam-splitter to generate the final entangled state. In this Letter, we analytically determine which of the two options yields more entanglement for several regions of the system's parameters, and quantify the advantage it entails. - Highlights: We study the optimised storage of continuous variable entanglement. Analytical conditions to determine optimal storage schemes. Comprehensive numerical studies complementing the analytics. Specific discussion concerning QND feedback memories included. Results applicable to very general Gaussian channel.
Quantum-memory-assisted entropic uncertainty relations under weak measurements
Li, Lei; Wang, Qing-Wen; Shen, Shu-Qian; Li, Ming
2017-08-01
We investigate quantum-memory-assisted entropic uncertainty relations (EURs) based on weak measurements. It is shown that the lower bound of EUR revealed by weak measurements is always larger than that revealed by the corresponding projective measurements. A series of lower bounds of EUR under both weak measurements and projective measurements are presented. Interestingly, the quantum-memory-assisted EUR based on weak measurements is a monotonically decreasing function of the strength parameter. Furthermore, some information-theoretic inequalities associated with weak measurements are also derived.
High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation
Yang, W L; Hu, Y; Feng, M; Du, J F
2011-01-01
We study a hybrid quantum computing system using nitrogen-vacancy center ensemble (NVE) as quantum memory, current-biased Josephson junction (CBJJ) superconducting qubit fabricated in a transmission line resonator (TLR) as quantum computing processor and the microwave photons in TLR as quantum data bus. The storage process is seriously treated by considering all kinds of decoherence mechanisms. Such a hybrid quantum device can also be used to create multi-qubit W states of NVEs through a common CBJJ. The experimental feasibility and challenge are justified using currently available technology.
Quantum phases in optical lattices
Dickerscheid, Dennis Brian Martin
2006-01-01
An important new development in the field of ultracold atomic gases is the study of the properties of these gases in a so-called optical lattice. An optical lattice is a periodic trapping potential for the atoms that is formed by the interference pattern of a few laser beams. A reason for the
A quantum computer on the basis of an atomic quantum transistor with built-in quantum memory
Moiseev, S. A.; Andrianov, S. N.
2016-12-01
A quantum transistor based quantum computer where the multiqubit quantum memory is a component of the quantum transistor and, correspondingly, takes part in the performance of quantum logical operations is considered. Proceeding from the generalized Jaynes-Cummings model, equations for coefficients of the wave function of the quantum system under consideration have been obtained for different stages of its evolution in processes of performing logical operations. The solution of the system of equations allows one to establish requirements that are imposed on the parameters of the initial Hamiltonian and must be satisfied for the effective operation of the computer; it also demonstrates the possibility of a universal set of quantum operations. Thus, based on the proposed approach, the possibility of constructing a compact multiatomic ensemble based on quantum computer using a quantum transistor for the implementation of two-qubit gates has been demonstrated.
Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre
Saglamyurek, Erhan; Verma, Varun B; Shaw, Matthew D; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2014-01-01
The realization of a future quantum Internet requires processing and storing quantum information at local nodes, and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory has been reported. Here we demonstrate the storage and faithful recall of the state of a 1532 nm wavelength photon, entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20 meter-long silicate fibre using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality. Furthermore, it facilitates novel tests of light-matter interaction and collective atomic effects in u...
Topics in linear optical quantum computation
Glancy, Scott Charles
This thesis covers several topics in optical quantum computation. A quantum computer is a computational device which is able to manipulate information by performing unitary operations on some physical system whose state can be described as a vector (or mixture of vectors) in a Hilbert space. The basic unit of information, called the qubit, is considered to be a system with two orthogonal states, which are assigned logical values of 0 and 1. Photons make excellent candidates to serve as qubits. They have little interactions with the environment. Many operations can be performed using very simple linear optical devices such as beam splitters and phase shifters. Photons can easily be processed through circuit-like networks. Operations can be performed in very short times. Photons are ideally suited for the long-distance communication of quantum information. The great difficulty in constructing an optical quantum computer is that photons naturally interact weakly with one another. This thesis first gives a brief review of two early approaches to optical quantum computation. It will describe how any discrete unitary operation can be performed using a single photon and a network of beam splitters, and how the Kerr effect can be used to construct a two photon logic gate. Second, this work provides a thorough introduction to the linear optical quantum computer developed by Knill, Laflamme, and Milburn. It then presents this author's results on the reliability of this scheme when implemented using imperfect photon detectors. This author finds that quantum computers of this sort cannot be built using current technology. Third, this dissertation describes a method for constructing a linear optical quantum computer using nearly orthogonal coherent states of light as the qubits. It shows how a universal set of logic operations can be performed, including calculations of the fidelity with which these operations may be accomplished. It discusses methods for reducing and
Quantum optics shines in the photon's centenary
Cho, Adrian
2005-01-01
Hundred years after Einstein's hypothesis, the 2005 Nobel Prize in physics honors three researchers who have pioneered the frontier between the wave and particle views of light and laid the foundation for the field of "quantum optics" (1/2 page)
Saturating optical resonances in quantum dots
Nair, Selvakumar V.; Rustagi, K. C.
Optical bistability in quantum dots, recently proposed by Chemla and Miller, is studied in a two-resonance model. We show that for such classical electromagnetic resonances the applicability of a two-resonance model is far more restrictive than for those in atoms.
Quantum information processing with optical vortices
Energy Technology Data Exchange (ETDEWEB)
Khoury, Antonio Z. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)
2012-07-01
Full text: In this work we discuss several proposals for quantum information processing using the transverse structure of paraxial beams. Different techniques for production and manipulation of optical vortices have been employed and combined with polarization transformations in order to investigate fundamental properties of quantum entanglement as well as to propose new tools for quantum information processing. As an example, we have recently proposed and demonstrated a controlled NOT (CNOT) gate based on a Michelson interferometer in which the photon polarization is the control bit and the first order transverse mode is the target. The device is based on a single lens design for an astigmatic mode converter that transforms the transverse mode of paraxial optical beams. In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the non-separability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and non-separable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 2007. As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for non-separable modes. The inequality is discussed both in the classical and quantum domains. We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell-states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories. (author)
Faithful solid state optical memory with dynamically decoupled spin wave storage.
Lovrić, Marko; Suter, Dieter; Ferrier, Alban; Goldner, Philippe
2013-07-12
We report a high fidelity optical memory in which dynamical decoupling is used to extend the storage time. This is demonstrated in a rare-earth doped crystal in which optical coherences were transferred to nuclear spin coherences and then protected against environmental noise by dynamical decoupling, leading to storage times of up to 4.2 ms. An interference experiment shows that relative phases of input pulses are preserved through the whole storage and retrieval process with a visibility ≈1, demonstrating the usefulness of dynamical decoupling for extending the storage time of quantum memories. We also show that dynamical decoupling sequences insensitive to initial spin coherence increase retrieval efficiency.
Design of All-Optical Loadable and Erasable Memory Cell by LWI and EIT Effects
Abbasian, K.; Verki, N. G.; Rostami, A.
2011-12-01
We have designed a loadable and erasable all optical memory unit cell by using two coupled micro-ring resonators structure. To read out stored data we have created additional phase in the upper ring by electromagnetically induced transparency (EIT) phenomenon induced by inserted Λ-type three level quantum dots in the right hand half of the upper ring. Also, for compensating the fiber loss, we have used lasing without inversion (LWI) by inserted Y-type four level QDs in the left hand half of the both rings. This optical memory unit cell can work in only one photon-scale energy.
Generation and protection of steady-state quantum correlations due to quantum channels with memory
Guo, You-neng; Fang, Mao-fa; Wang, Guo-you; Zeng, Ke
2016-12-01
We have proposed a scheme of the generation and preservation of two-qubit steady-state quantum correlations through quantum channels where successive uses of the channels are correlated. Different types of noisy channels with memory, such as amplitude damping, phase damping, and depolarizing channels, have been taken into account. Some analytical or numerical results are presented. The effect of channels with memory on dynamics of quantum correlations has been discussed in detail. The results show that steady-state entanglement between two initial qubits whose initial states are prepared in a specific family states without entanglement subject to amplitude damping channel with memory can be generated. The entanglement creation is related to the memory coefficient of channel μ . The stronger the memory coefficient of channel μ is, the more the entanglement creation is, and the earlier the separable state becomes the entangled state. Besides, we compare the dynamics of entanglement with that of quantum discord when a two-qubit system is initially prepared in an entangled state. We show that entanglement dynamics suddenly disappears, while quantum discord dynamics displays only in the asymptotic limit. Furthermore, two-qubit quantum correlations can be preserved at a long time in the limit of μ → 1.
Generation and protection of steady-state quantum correlations due to quantum channels with memory
Guo, You-neng; Fang, Mao-fa; Wang, Guo-you; Zeng, Ke
2016-09-01
We have proposed a scheme of the generation and preservation of two-qubit steady-state quantum correlations through quantum channels where successive uses of the channels are correlated. Different types of noisy channels with memory, such as amplitude damping, phase damping, and depolarizing channels, have been taken into account. Some analytical or numerical results are presented. The effect of channels with memory on dynamics of quantum correlations has been discussed in detail. The results show that steady-state entanglement between two initial qubits whose initial states are prepared in a specific family states without entanglement subject to amplitude damping channel with memory can be generated. The entanglement creation is related to the memory coefficient of channel μ . The stronger the memory coefficient of channel μ is, the more the entanglement creation is, and the earlier the separable state becomes the entangled state. Besides, we compare the dynamics of entanglement with that of quantum discord when a two-qubit system is initially prepared in an entangled state. We show that entanglement dynamics suddenly disappears, while quantum discord dynamics displays only in the asymptotic limit. Furthermore, two-qubit quantum correlations can be preserved at a long time in the limit of μ → 1.
Quantum metamaterials in the microwave and optical ranges
Zagoskin, A M; Rousseau, Emmanuel
2016-01-01
Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent 'artificial atoms' with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing.
Quantum and Nonlinear Optical Imaging
2007-11-02
comment in Physical Review Letters , and more detailed versions of the theory have been written for publication. In addition, we have demonstrated...past funding cycle that was published in Physical Review Letters . This result pertains to the role of the quantum features of light in enabling the...in Physical Review Letters ) a purported theoretical demonstration of this speculation. In our work, we showed that we could reproduce this earlier
Electrically and Optically Readable Light Emitting Memories
Chang, Che-Wei; Tan, Wei-Chun; Lu, Meng-Lin; Pan, Tai-Chun; Yang, Ying-Jay; Chen, Yang-Fang
2014-06-01
Electrochemical metallization memories based on redox-induced resistance switching have been considered as the next-generation electronic storage devices. However, the electronic signals suffer from the interconnect delay and the limited reading speed, which are the major obstacles for memory performance. To solve this problem, here we demonstrate the first attempt of light-emitting memory (LEM) that uses SiO2 as the resistive switching material in tandem with graphene-insulator-semiconductor (GIS) light-emitting diode (LED). By utilizing the excellent properties of graphene, such as high conductivity, high robustness and high transparency, our proposed LEM enables data communication via electronic and optical signals simultaneously. Both the bistable light-emission state and the resistance switching properties can be attributed to the conducting filament mechanism. Moreover, on the analysis of current-voltage characteristics, we further confirm that the electroluminescence signal originates from the carrier tunneling, which is quite different from the standard p-n junction model. We stress here that the newly developed LEM device possesses a simple structure with mature fabrication processes, which integrates advantages of all composed materials and can be extended to many other material systems. It should be able to attract academic interest as well as stimulate industrial application.
Pseudo Memory Effects, Majorization and Entropy in Quantum Random Walks
Bracken, A J; Tsohantjis, I; Bracken, Anthony J.; Ellinas, Demosthenes; Tsohantjis, Ioannis
2004-01-01
A quantum random walk on the integers exhibits pseudo memory effects, in that its probability distribution after N steps is determined by reshuffling the first N distributions that arise in a classical random walk with the same initial distribution. In a classical walk, entropy increase can be regarded as a consequence of the majorization ordering of successive distributions. The Lorenz curves of successive distributions for a symmetric quantum walk reveal no majorization ordering in general. Nevertheless, entropy can increase, and computer experiments show that it does so on average. Varying the stages at which the quantum coin system is traced out leads to new quantum walks, including a symmetric walk for which majorization ordering is valid but the spreading rate exceeds that of the usual symmetric quantum walk.
A triple quantum dot based nano-electromechanical memory device
Energy Technology Data Exchange (ETDEWEB)
Pozner, R.; Lifshitz, E. [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Peskin, U., E-mail: uri@tx.technion.ac.il [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Lise Meitner Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)
2015-09-14
Colloidal quantum dots (CQDs) are free-standing nano-structures with chemically tunable electronic properties. This tunability offers intriguing possibilities for nano-electromechanical devices. In this work, we consider a nano-electromechanical nonvolatile memory (NVM) device incorporating a triple quantum dot (TQD) cluster. The device operation is based on a bias induced motion of a floating quantum dot (FQD) located between two bound quantum dots (BQDs). The mechanical motion is used for switching between two stable states, “ON” and “OFF” states, where ligand-mediated effective interdot forces between the BQDs and the FQD serve to hold the FQD in each stable position under zero bias. Considering realistic microscopic parameters, our quantum-classical theoretical treatment of the TQD reveals the characteristics of the NVM.
On the transitional behavior of quantum Gaussian memory channels
Lupo, C
2010-01-01
We address the question of optimality of entangled input states in quantum Gaussian memory channels. For a class of such channels, that can be traced back to the memoryless setting, we state a criterion which relate the optimality of entangled inputs to the symmetry properties of the channels' action. Several examples of channel models belonging to this class are discussed.
Quantum Memory via Wigner Crystals of Polar Molecules
Institute of Scientific and Technical Information of China (English)
薛鹏
2011-01-01
Collective excitations of rotational and spin states of an ensemble of polar molecules as a candidate for a highfidelity quantum memory are studied.The dipolar crystals are formed in the high-density limit of cold clouds of polar molecules under one-dimensional trapping conditions.The lifetime of quantum memory is calculated by identifying the dominant decoherence mechanisms,and we estimate their effects on gate operations,when a molecular ensemble qubit is transferred to a superconducting microwave cavity.%Collective excitations of rotational and spin states of an ensemble of polar molecules as a candidate for a high-fidelity quantum memory are studied. The dipolar crystals are formed in the high-density limit of cold clouds of polar molecules under one-dimensional trapping conditions. The lifetime of quantum memory is calculated by identifying the dominant decoherence mechanisms, and we estimate their effects on gate operations, when a molecular ensemble qubit is transferred to a superconducting microwave cavity.
Quantum Dot Devices for Optical Signal Processing
DEFF Research Database (Denmark)
Chen, Yaohui
. Additional to the static linear amplication properties, we focus on exploring the gain dynamics on the time scale ranging from sub-picosecond to nanosecond. In terms of optical signals that have been investigated, one is the simple sinusoidally modulated optical carrier with a typical modulation frequency...... range of 1-100 gigahertz. Our simulations reveal the role of ultrafast intradot carrier dynamics in enhancing modulation bandwidth of quantum dot semiconductor optical ampliers. Moreover, the corresponding coherent gain response also provides rich dispersion contents over a broad bandwidth. One...... important implementation is recently boosted by the research in slow light. The idea is to migrate such dynamical gain knowledge for the investigation of microwave phase shifter based on semiconductor optical waveguide. Our study reveals that phase shifting based on the conventional semiconductor optical...
Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang
2013-08-01
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
Testing Quantum Devices: Practical Entanglement Verification in Bipartite Optical Systems
Häseler, Hauke; Moroder, Tobias; Lütkenhaus, Norbert
2007-01-01
We present a method to test quantum behavior of quantum information processing devices, such as quantum memories, teleportation devices, channels and quantum key distribution protocols. The test of quantum behavior can be phrased as the verification of effective entanglement. Necessary separability criteria are formulated in terms of a matrix of expectation values in conjunction with the partial transposition map. Our method is designed to reduce the resources for entanglement verification. A...
Topological order and memory time in marginally-self-correcting quantum memory
Siva, Karthik; Yoshida, Beni
2017-03-01
We examine two proposals for marginally-self-correcting quantum memory: the cubic code by Haah and the welded code by Michnicki. In particular, we prove explicitly that they are absent of topological order above zero temperature, as their Gibbs ensembles can be prepared via a short-depth quantum circuit from classical ensembles. Our proof technique naturally gives rise to the notion of free energy associated with excitations. Further, we develop a framework for an ergodic decomposition of Davies generators in CSS codes which enables formal reduction to simpler classical memory problems. We then show that memory time in the welded code is doubly exponential in inverse temperature via the Peierls argument. These results introduce further connections between thermal topological order and self-correction from the viewpoint of free energy and quantum circuit depth.
An optical analog of quantum optomechanics
Rodríguez-Lara, B M
2014-01-01
We present a two-dimensional array of nearest-neighbor coupled waveguides that is the optical analog of a quantum optomechanical system. We show that the quantum model predicts the appearance of effective column isolation, diagonal-coupling and other non-trivial couplings in the two-dimensional photonic lattice under a standard approximation from ion-trap cavity electrodynamics. We provide an approximate impulse function for the case of effective column isolation and compare it with exact numerical propagation in the photonic lattice.
Slow light enhanced atomic frequency comb quantum memories in photonic crystal waveguides
Yuan, Chenzhi; Zhang, Wei; Huang, Yidong; Peng, Jiangde
2016-09-01
In this paper, we propose a slow light-enhanced quantum memory with high efficiency based on atomic frequency comb (AFC) in ion-doped photonic crystal waveguide (PCW). The performance of the quantum memory is investigated theoretically, considering the impact of the signal bandwidth. Both the forward and backward retrieval schemes are analyzed. In the forward retrieval scheme, the analysis shows that a moderate slow light effect can improve the retrieval efficiency to above 50% with very high fidelity, even when the intrinsic optical depth is very low and the signal bandwidth is comparable with the AFC bandwidth. In the backward retrieval scheme, retrieval efficiency larger than 90% can be obtained and fidelity can remain above 90% for signal with bandwidth much narrower than AFC bandwidth, when moderate slow light is introduced into waveguide with low intrinsic optical depth. Although the phase mismatching effect limits the slow light enhancement on retrieval efficiency and decreases the fidelity for signal with bandwidth approaching AFC bandwidth, we design a modified atomic frequency comb structure (MAFC) based on which a moderate slow light can make the retrieval efficiency larger than 85% and keep the fidelity above 80%. Our calculations show that the proposed scheme provides a promising way to realize high efficiency on-chip quantum memory.
Electron quantum optics in ballistic chiral conductors
Energy Technology Data Exchange (ETDEWEB)
Bocquillon, Erwann; Freulon, Vincent; Parmentier, Francois D.; Berroir, Jean-Marc; Placais, Bernard; Feve, Gwendal [Laboratoire Pierre Aigrain, Ecole Normale Superieure, CNRS (UMR 8551), Universite Pierre et Marie Curie, Universite Paris Diderot, Paris (France); Wahl, Claire; Rech, Jerome; Jonckheere, Thibaut; Martin, Thierry [Aix Marseille Universite, CNRS, CPT, UMR 7332, Marseille (France); Universite de Toulon, CNRS, CPT, UMR 7332, La Garde (France); Grenier, Charles; Ferraro, Dario; Degiovanni, Pascal [Universite de Lyon, Federation de Physique Andre Marie Ampere, CNRS - Laboratoire de Physique de l' Ecole Normale Superieure de Lyon, Lyon (France)
2014-01-15
The edge channels of the quantum Hall effect provide one dimensional chiral and ballistic wires along which electrons can be guided in an optics-like setup. Electronic propagation can then be analyzed using concepts and tools derived from optics. After a brief review of electron optics experiments performed using stationary current sources which continuously emit electrons in the conductor, this paper focuses on triggered sources, which can generate on-demand a single particle state. It first outlines the electron optics formalism and its analogies and differences with photon optics and then turns to the presentation of single electron emitters and their characterization through the measurements of the average electrical current and its correlations. This is followed by a discussion of electron quantum optics experiments in the Hanbury-Brown and Twiss geometry where two-particle interferences occur. Finally, Coulomb interactions effects and their influence on single electron states are considered. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Photonic nanowires for quantum optics
DEFF Research Database (Denmark)
Munsch, M.; Claudon, J.; Bleuse, J.;
Photonic nanowires (PWs) are simple dielectric structures for which a very efficient and broadband spontaneous emission (SE) control has been predicted [1]. Recently, a single photon source featuring a record high efficiency was demonstrated using this geometry [2]. Using time-resolved micro......-photoluminescence, we investigate directly the SE of single InAs quantum dots (QDs) embedded in GaAs PWs and demonstrate performances that fully confirm the theoretical predictions [3]. In addition, we discuss recent results obtained on elliptical wires that ensure an efficient control of the photon polarization [4......, equivalent to the one obtained in state-of-the-art 2D photonic crystals, is measured. Moreover, a PW featuring an elliptical section provides a very efficient control over the polarization of the emitted photon. In that case, only one guided mode, with a linear polarization oriented along the major axis...
Fault-tolerant quantum repeater with atomic ensembles and linear optics
Chen, Z B; Schmiedmayer, J; Zhao, B; Chen, Zeng-Bing; Pan, Jian-Wei; Schmiedmayer, Joerg; Zhao, Bo
2006-01-01
Recent years have witnessed remarkable experimental progresses on photon manipulation for quantum communication (QC). However, current probabilistic entangled photon sources and the difficulty of storing photons limit these experiments to moderate distances (about 10-100 km for quantum cryptography and a few photonic qubits. For long-distance (>1000 km) QC, one must realize quantum network with many communication nodes via the quantum repeater (QR) protocol. The existing implementations of QR seem to be not enough. Here we propose an efficient, fault-tolerant long-distance QC architecture with linear-optical robust entangler and atomic-ensemble-based quantum memory for photonic polarization qubits; the architecture is based on two-photon interference, which is about 10^8 times more stable than single-photon interference for atomic-ensemble-based single photons. Incorporating several significant recent advances on atomic-ensemble-based techniques and linear-optical entanglement purification, our scheme faithfu...
Error-thresholds for qudit-based topological quantum memories
Andrist, Ruben S.; Wootton, James R.; Katzgraber, Helmut G.
2014-03-01
Extending the quantum computing paradigm from qubits to higher-dimensional quantum systems allows for increased channel capacity and a more efficient implementation of quantum gates. However, to perform reliable computations an efficient error-correction scheme adapted for these multi-level quantum systems is needed. A promising approach is via topological quantum error correction, where stability to external noise is achieved by encoding quantum information in non-local degrees of freedom. A key figure of merit is the error threshold which quantifies the fraction of physical qudits that can be damaged before logical information is lost. Here we analyze the resilience of generalized topological memories built from d-level quantum systems (qudits) to bit-flip errors. The error threshold is determined by mapping the quantum setup to a classical Potts-like model with bond disorder, which is then investigated numerically using large-scale Monte Carlo simulations. Our results show that topological error correction with qutrits exhibits an improved error threshold in comparison to qubit-based systems.
An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities
Uphoff, Manuel; Brekenfeld, Manuel; Rempe, Gerhard; Ritter, Stephan
2016-03-01
Quantum repeaters promise to enable quantum networks over global distances by circumventing the exponential decrease in success probability inherent in direct photon transmission. We propose a realistic, functionally integrated quantum-repeater implementation based on single atoms in optical cavities. Entanglement is directly generated between the single-atom quantum memory and a photon at telecom wavelength. The latter is collected with high efficiency and adjustable temporal and spectral properties into a spatially well-defined cavity mode. It is heralded by a near-infrared photon emitted from a second, orthogonal cavity. Entanglement between two remote quantum memories can be generated via an optical Bell-state measurement, while we propose entanglement swapping based on a highly efficient, cavity-assisted atom-atom gate. Our quantum-repeater scheme eliminates any requirement for wavelength conversion such that only a single system is needed at each node. We investigate a particular implementation with rubidium and realistic parameters for Fabry-Perot cavities based on hbox {CO}_2 laser-machined optical fibers. We show that the scheme enables the implementation of a rather simple quantum repeater that outperforms direct entanglement generation over large distances and does not require any improvements in technology beyond the state of the art.
Frames and fusion frames in quantum optics
Energy Technology Data Exchange (ETDEWEB)
Jamiolkowski, Andrzej, E-mail: jam@fizyka.umk.p [Institute of Physics, Nicholas Copernicus University, 87-100 Torun (Poland)
2010-03-01
The main purpose of this paper is to show that the notions of frames and fusion frames introduced in non-harmonic Fourier analysis are also very natural in discussion of some basic problems in theory of open quantum systems and, in particular, in quantum optics. Frames are collections of vectors in a Hilbert space which assure a natural representation of each vector in the space, but may have infinitely many different representations for any given vector. For a given quantum system represented in a Hilbert space H the question of minimal number {eta} of observables Q{sub 1},..., Q{sub {eta}} whose expectation values at some instants t{sub 1},...,t{sub p} determine the statistical state of the system is discussed. We assume that the time evolution of the system in question is governed by a semigroup of linear transformations with generator L.
DEFF Research Database (Denmark)
Hoff, Ulrich Busk
The work presented in this thesis is focused on experimental application and generation of continuous variable quantum correlated states of light in integrated dielectric structures. Squeezed states are among the most exploited continuous variable optical states for free-space quantum-enhanced se......The work presented in this thesis is focused on experimental application and generation of continuous variable quantum correlated states of light in integrated dielectric structures. Squeezed states are among the most exploited continuous variable optical states for free-space quantum...... in this thesis: Firstly, we present proof-of-principle demonstration of interfacing squeezed light with an on-chip optomechanical resonator, demonstrating a quantum-enhanced sensitivity to the vibrations of the micromechanical object. Secondly, work on developing an integrated source of squeezed light...
Quantum associative memory with improved distributed queries
Njafa, J -P Tchapet; Woafo, Paul
2012-01-01
The paper proposes an improved quantum associative algorithm with distributed query based on model proposed by Ezhov et al. We introduce two modifications of the query that optimized data retrieval of correct multi-patterns simultaneously for any rate of the number of the recognition pattern on the total patterns. Simulation results are given.
Quantum theory of the optical and electronic properties of semiconductors
Haug, Hartmut
2009-01-01
This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics.This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, the resu...
Distributed quantum computation via optical fibres
Serafini, A; Bose, S; Serafini, Alessio; Mancini, Stefano; Bose, Sougato
2005-01-01
We investigate the possibility of realising effective quantum gates between two atoms in distant cavities coupled by an optical fibre. We show that highly reliable swap and entangling gates are achievable. We exactly study the stability of these gates in presence of imperfections in coupling strengths and interaction times and prove them to be robust. Moreover, we analyse the effect of spontaneous emission and losses and show that such gates are very promising in view of the high level of coherent control currently achievable in optical cavities.
Germanium quantum dots: Optical properties and synthesis
Heath, James R.; Shiang, J. J.; Alivisatos, A. P.
1994-07-01
Three different size distributions of Ge quantum dots (≳200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Colloidal suspensions of these quantum dots were prepared and their extinction spectra are measured with ultraviolet/visible (UV/Vis) and near infrared (IR) spectroscopy, in the regime from 0.6 to 5 eV. The optical spectra are correlated with a Mie theory extinction calculation utilizing bulk optical constants. This leads to an assignment of three optical features to the E(1), E(0'), and E(2) direct band gap transitions. The E(0') transitions exhibit a strong size dependence. The near IR spectra of the largest dots is dominated by E(0) direct gap absorptions. For the smallest dots the near IR spectrum is dominated by the Γ25→L indirect transitions.
Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory
Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues
2017-05-01
The generation and distribution of quantum correlations between photonic qubits is a key resource in quantum information science. For applications in quantum networks and quantum repeaters, it is required that these quantum correlations be stored in a quantum memory. In 2001, Duan, Lukin, Cirac, and Zoller (DLCZ) proposed a scheme combining a correlated photon-pair source and a quantum memory in atomic gases, which has enabled fast progress towards elementary quantum networks. In this Letter, we demonstrate a solid-state source of correlated photon pairs with embedded spin-wave quantum memory, using a rare-earth-ion-doped crystal. We show strong quantum correlations between the photons, high enough for performing quantum communication. Unlike the original DLCZ proposal, our scheme is inherently multimode thanks to a built-in rephasing mechanism, allowing us to demonstrate storage of 11 temporal modes. These results represent an important step towards the realization of complex quantum networks architectures using solid-state resources.
Quantum Size- Dependent Third- Order Nonlinear Optical Susceptibility in Semiconductor Quantum Dots
Institute of Scientific and Technical Information of China (English)
SUN Ting; XIONG Gui-guang
2005-01-01
The density matrix approach has been employed to investigate the optical nonlinear polarization in a single semiconductor quantum dot(QD). Electron states are considered to be confined within a quantum dot with infinite potential barriers. It is shown, by numerical calculation, that the third-order nonlinear optical susceptibilities for a typical Si quantum dot is dependent on the quantum size of the quantum dot and the frequency of incident light.
Quantum stream cipher based on optical communications
Hirota, O; Sohma, M; Usuda, T S; Harasawa, K; Hirota, Osamu; Kato, Kentaro; Sohma, Masaki; Usuda, Tsuyoshi S.; Harasawa, Katsuyoshi
2004-01-01
In 2000, an attractive new quantum cryptography was discovered by H.P.Yuen based on quantum communication theory. It is applicable to direct encryption, for example quantum stream cipher based on Yuen protocol(Y-00), with high speeds and for long distance by sophisticated optical devices which can work under the average photon number per signal light pulse:$ = 1000 \\sim 10000$. In addition, it may provide information-theoretic security against known/chosen plaintext attack, which has no classical analogue. That is, one can provide secure communication, even the system has $H(K) << H(X)$. In this paper, first, we give a brief review on the general logic of Yuen's theory. Then, we show concrete security analysis of quantum stream cipher to quantum individual measurement attacks. Especially by showing the analysis of Lo-Ko known plaintext attack, the feature of Y-00 is clarified. In addition, we give a simple experimental result on the advantage distillation by scheme consisting of intensity modulation/dir...
Vibrational memory in quantum localized states
Ajili, Y.; Trabelsi, T.; Denis-Alpizar, O.; Stoecklin, T.; Császár, A. G.; Mogren Al-Mogren, M.; Francisco, J. S.; Hochlaf, M.
2016-05-01
The rovibrational eigenenergy set of molecular systems is a key feature needed to understand and model elementary chemical reactions. A unique class of molecular systems, represented by an 4A'' excited electronic state of the [H,S ,N ] - system comprising several distinct dipole-bound isomers, is found to contain both bent and linear minima separated by relatively small barriers. Full-dimensional nuclear-motion computations performed in Jacobi coordinates using three-dimensional potential energy surfaces describing the stable isomers and the related transition states yield rovibrational eigenstates located both below and above the barriers. The rovibrational wave functions are well localized, regardless of whether the state's energy is below or above the barriers. We also show that the states preserve the memory of the isomeric forms they "originate from," which is signature of a strong vibrational memory effect above isomerization barriers.
Quantum anomalous Hall effect in topological insulator memory
Energy Technology Data Exchange (ETDEWEB)
Jalil, Mansoor B. A., E-mail: elembaj@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117576 (Singapore); Data Storage Institute, Agency for Science, Technology and Research A*STAR, DSI Building, 5 Engineering Drive 1, Singapore, Singapore 117608 (Singapore); Tan, S. G. [Data Storage Institute, Agency for Science, Technology and Research A*STAR, DSI Building, 5 Engineering Drive 1, Singapore, Singapore 117608 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117576 (Singapore); Siu, Z. B. [Data Storage Institute, Agency for Science, Technology and Research A*STAR, DSI Building, 5 Engineering Drive 1, Singapore, Singapore 117608 (Singapore); NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore)
2015-05-07
We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity σ{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of σ{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing σ{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.
Nonlocal memory effects in the dynamics of open quantum systems
Laine, Elsi-Mari; Piilo, Jyrki; Li, Chuan-Feng; Guo, Guang-Can
2011-01-01
We study a model of two entangled photons interacting locally with two dephasing environments. It is shown that initial correlations between the local environments can generate a nonlocal quantum process from a local interaction Hamiltonian. While the global dynamics of the two-photon polarization state exhibits strong memory effects, the induced local dynamics of either of the two photons is found to be Markovian. A direct connection between the degree of memory effects and the amount of correlations in the initial environmental state is derived. The results demonstrate that, contrary to conventional wisdom, enlarging an open system can change the dynamics from Markovian to non-Markovian.
One-way quantum computing in the optical frequency comb.
Menicucci, Nicolas C; Flammia, Steven T; Pfister, Olivier
2008-09-26
One-way quantum computing allows any quantum algorithm to be implemented easily using just measurements. The difficult part is creating the universal resource, a cluster state, on which the measurements are made. We propose a scalable method that uses a single, multimode optical parametric oscillator (OPO). The method is very efficient and generates a continuous-variable cluster state, universal for quantum computation, with quantum information encoded in the quadratures of the optical frequency comb of the OPO.
Collins, Robert J.; Donaldon, Ross J.; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S.
2014-10-01
Classical digital signatures are commonly used in e-mail, electronic financial transactions and other forms of electronic communications to ensure that messages have not been tampered with in transit, and that messages are transferrable. The security of commonly used classical digital signature schemes relies on the computational difficulty of inverting certain mathematical functions. However, at present, there are no such one-way functions which have been proven to be hard to invert. With enough computational resources certain implementations of classical public key cryptosystems can be, and have been, broken with current technology. It is nevertheless possible to construct information-theoretically secure signature schemes, including quantum digital signature schemes. Quantum signature schemes can be made information theoretically secure based on the laws of quantum mechanics, while classical comparable protocols require additional resources such as secret communication and a trusted authority. Early demonstrations of quantum digital signatures required quantum memory, rendering them impractical at present. Our present implementation is based on a protocol that does not require quantum memory. It also uses the new technique of unambiguous quantum state elimination, Here we report experimental results for a test-bed system, recorded with a variety of different operating parameters, along with a discussion of aspects of the system security.
Implement Quantum Random Walks with Linear Optics Elements
Zhao, Z; Li, H; Yang, T; Chen, Z B; Pan, J W; Zhao, Zhi; Du, Jiangfeng; Li, Hui; Yang, Tao; Chen, Zeng-Bing; Pan, Jian-Wei
2002-01-01
The quantum random walk has drawn special interests because its remarkable features to the classical counterpart could lead to new quantum algorithms. In this paper, we propose a feasible scheme to implement quantum random walks on a line using only linear optics elements. With current single-photon interference technology, the steps that could be experimentally implemented can be extended to very large numbers. We also show that, by decohering the quantum states, our scheme for quantum random walk tends to be classical.
Quantum Information Processing using Nonlinear Optical Effects
DEFF Research Database (Denmark)
Andersen, Lasse Mejling
of the converted idler depends on the other pump. This allows for temporal-mode-multiplexing. When the effects of nonlinear phase modulation (NPM) are included, the phases of the natural input and output modes are changed, reducing the separability. These effects are to some degree mediated by pre......This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear...... to obtain a 100 % conversion efficiency is to use multiple stages of frequency conversion, but this setup suffers from the combined effects of NPM. This problem is circumvented by using asymmetrically pumped BS, where one pump is continuous wave. For this setup, NPM is found to only lead to linear phase...
Entropic Barriers for Two-Dimensional Quantum Memories
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Quantum optical effective-medium theory and transformation quantum optics for metamaterials
Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing; Mortensen, N. Asger
2016-09-01
While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions trans- form under coordinate transformations. Spontaneous-emission rates can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material profile of the cloak enables the directional control of spontaneous emission.
Fibonacci optical lattices for tunable quantum quasicrystals
Singh, K.; Saha, K.; Parameswaran, S. A.; Weld, D. M.
2015-12-01
We describe a quasiperiodic optical lattice, created by a physical realization of the abstract cut-and-project construction underlying all quasicrystals. The resulting potential is a generalization of the Fibonacci tiling. Calculation of the energies and wave functions of ultracold atoms loaded into such a lattice demonstrate a multifractal energy spectrum, a singular continuous momentum-space structure, and the existence of controllable edge states. These results open the door to cold atom quantum simulation experiments in tunable or dynamic quasicrystalline potentials, including topological pumping of edge states and phasonic spectroscopy.
An elementary quantum network of single atoms in optical cavities.
Ritter, Stephan; Nölleke, Christian; Hahn, Carolin; Reiserer, Andreas; Neuzner, Andreas; Uphoff, Manuel; Mücke, Martin; Figueroa, Eden; Bochmann, Joerg; Rempe, Gerhard
2012-04-11
Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.
Ding, Yunhong; Zhang, Xiaobei; Zhang, Xinliang; Huang, Dexiu
2008-11-01
A novel approach for loadable and erasable optical memory unit based on dual microring optical integrators is proposed and studied. The optical integrator, which can generate an optical step function for data storing, is synthesized using active media for loss compensation and a tunable phase shifter for data reading at any time. The input data into the memory is return-to-zero (RZ) signal, and the output data read from the memory is also RZ format with a narrower pulse width. An optical digital register based on the proposed optical memory unit is also investigated and simulated, which shows the potential for large scale data storage and serial-to-parallel data conversion. A great number of such memory units can be densely integrated on a photonic circuit for future large scale data storage and buffer.
Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Cundiff, Steven T. [Univ. of Colorado, Boulder, CO (United States)
2016-05-03
This final report describes the activities undertaken under grant "Optical Two-Dimensional Spectroscopy of Disordered Semiconductor Quantum Wells and Quantum Dots". The goal of this program was to implement optical 2-dimensional Fourier transform spectroscopy and apply it to electronic excitations, including excitons, in semiconductors. Specifically of interest are quantum wells that exhibit disorder due to well width fluctuations and quantum dots. In both cases, 2-D spectroscopy will provide information regarding coupling among excitonic localization sites.
High speed optical object recognition processor with massive holographic memory
Chao, T.; Zhou, H.; Reyes, G.
2002-01-01
Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.
Enhanced Quantum Communication via Optical Refocusing
Lupo, Cosmo; Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth
2011-01-01
We consider the problem of quantum communication mediated by an optical refocusing system, which is schematized as a thin lens with a finite pupil. This model captures the basic features of all those situations in which a signal is either refocused by a repeater for long distance communication, or it is focused on a detector prior to the information decoding process. Introducing a general method for linear optical systems, we compute the communication capacity of the refocusing apparatus. Although the finite extension of the pupil may cause loss of information, we show that the presence of the refocusing system can substantially enhance the rate of reliable communication with respect to the free-space propagation.
PREFACE: International Conference on Quantum Optics and Quantum Information (icQoQi) 2013
2014-11-01
Quantum Information can be understood as being naturally derived from a new understanding of information theory when quantum systems become information carriers and quantum effects become non negligible. Experiments and the realization of various interesting phenomena in quantum information within the established field of quantum optics have been reported, which has provided a very convenient framework for the former. Together, quantum optics and quantum information are among the most exciting areas of interdisciplinary research in modern day science which cover a broad spectrum of topics, from the foundations of quantum mechanics and quantum information science to the introduction of new types of quantum technologies and metrology. The International Conference on Quantum Optics and Quantum Information (icQoQi) 2013 was organized by the Faculty of Science, International Islamic University Malaysia with the objective of bringing together leading academic scientists, researchers and scholars in the domain of interest from around the world to share their experiences and research results about all aspects of quantum optics and quantum information. While the event was organized on a somewhat modest scale, it was in fact a rather fruitful meeting for established researchers and students as well, especially for the local scene where the field is relatively new. We would therefore, like to thank the organizing committee, our advisors and all parties for having made this event successful and last but not least would extend our sincerest gratitude to IOP for publishing these selected papers from icQoQi2013 in Journal of Physics: Conference Series.
Optical nuclear spin polarization in quantum dots
Li, Ai-Xian; Duan, Su-Qing; Zhang, Wei
2016-10-01
Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot (QD) by the coherent population trapping (CPT) and the electric dipole spin resonance (EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip-flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time. Project partially supported by the National Natural Science Foundations of China (Grant Nos. 11374039 and 11174042) and the National Basic Research Program of China (Grant Nos. 2011CB922204 and 2013CB632805).
The Scalable Integration of long-lived quantum memories into a photonic circuit
Mouradian, Sara L; Poitras, Carl B; Li, Luozhou; Goldstein, Jordan; Chen, Edward H; Cardenas, Jaime; Markham, Matthew L; Twitchen, Daniel J; Lipson, Michal; Englund, Dirk
2014-01-01
We demonstrate a photonic circuit with integrated long-lived quantum memories. Pre-selected quantum nodes - diamond micro-waveguides containing single, stable, and negatively charged nitrogen vacancy centers - are deterministically integrated into low-loss silicon nitride waveguides. Each quantum memory node efficiently couples into the single-mode waveguide (> 1 Mcps collected into the waveguide) and exhibits long spin coherence times of up to 120 {\\mu}s. Our system facilitates the assembly of multiple quantum memories into a photonic integrated circuit with near unity yield, paving the way towards scalable quantum information processing.
Scalable Engineering of Quantum Optical Information Processing Architectures (SEQUOIA)
2016-12-13
interfacing with telecom quantum networks /qubit distribution 4. DV quantum computing using CV cluster Embed circuit model quantum computing into CV...linear-optics mode transformations Realizing scalable, high-fidelity interferometric networks is a central challenge to be addressed on the path...methods for characterizing these large interferometric networks . Figure 1:Photonic integrated circuit. Left: programmable PIC. Right: Transmission at
Mekhov, Igor B.; Ritsch, Helmut
2012-05-01
Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles.
Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths.
Fernandez-Gonzalvo, Xavier; Corrielli, Giacomo; Albrecht, Boris; Grimau, Marcel Li; Cristiani, Matteo; de Riedmatten, Hugues
2013-08-26
We report an experiment demonstrating quantum frequency conversion of weak light pulses compatible with atomic quantum memories to telecommunication wavelengths. We use a PPLN nonlinear waveguide to convert weak coherent states at the single photon level with a duration of 30 ns from a wavelength of 780 nm to 1552 nm. We measure a maximal waveguide internal (external) conversion efficiency η(int) = 0.41 (η(ext) = 0.25), and we show that the signal to noise ratio (SNR) is good enough to reduce the input photon number below 1. In addition, we show that the noise generated by the pump beam in the crystal is proportional to the spectral bandwidth of the device, suggesting that narrower filtering could significantly increase the SNR. Finally, we demonstrate that the quantum frequency converter can operate in the quantum regime by converting a time-bin qubit and measuring the qubit fidelity after conversion.
Quantum metamaterials in the microwave and optical ranges
Energy Technology Data Exchange (ETDEWEB)
Zagoskin, Alexandre M. [Loughborough University, Department of Physics, Loughborough (United Kingdom); Moscow Institute for Steel and Alloys, Theoretical Physics and Quantum Technologies Department, Moscow (Russian Federation); Felbacq, Didier; Rousseau, Emmanuel [University of Montpellier, Laboratory Charles Coulomb UMR CNRS-UM 5221, Montpellier (France)
2016-12-15
Quantum metamaterials generalize the concept of metamaterials (artificial optical media) to the case when their optical properties are determined by the interplay of quantum effects in the constituent 'artificial atoms' with the electromagnetic field modes in the system. The theoretical investigation of these structures demonstrated that a number of new effects (such as quantum birefringence, strongly nonclassical states of light, etc.) are to be expected, prompting the efforts on their fabrication and experimental investigation. Here we provide a summary of the principal features of quantum metamaterials and review the current state of research in this quickly developing field, which bridges quantum optics, quantum condensed matter theory and quantum information processing. (orig.)
Nonlinear Quantum Optics in Artificially Structured Media
Helt, Lukas Gordon
This thesis presents an analysis of photon pairs generated via either spontaneous parametric downconversion or spontaneous four-wave mixing in channel waveguides as well as in microring resonators side-coupled to channel waveguides. The state of photons exiting a particular device is calculated within a general Hamiltonian formalism that simplifies the link between quantum nonlinear optics experiments and classical nonlinear optics experiments. This state contains information regarding photon pair production efficiency as well as modal and spectral correlations between the two photons, characterized by a two-dimensional spectral distribution function called the biphoton wave function. In the limit of a low probability of pair production, photon pair production efficiencies are cast into forms resembling corresponding well-known classical nonlinear optical frequency conversion efficiencies, making it easy to see what plays the role of a classical "seed" field in an un-seeded (quantum) process. This also allows photon pair production efficiencies to be calculated based on the results of classical nonlinear optical experiments. It is further calculated that, unless generated photons are collected over a very narrow frequency range, their generation efficiency does not scale the same way with device length in a channel waveguide, or resonance quality factor in a microring resonator, as might be expected from the corresponding classical frequency conversion efficiency. Although calculations do not include self- or cross-phase modulation, nor two-photon absorption or free-carrier absorption, it is calculated that their neglect is justified in the low pair production probability limit. Linear (scattering) loss is also neglected, though partially addressed in the final chapter of this thesis. Biphoton wave functions are calculated explicitly, such that their shape and orientation, including approximate analytic expressions for their widths, can easily be determined. This
An Elementary Quantum Network of Single Atoms in Optical Cavities
Ritter, Stephan; Hahn, Carolin; Reiserer, Andreas; Neuzner, Andreas; Uphoff, Manuel; Mücke, Martin; Figueroa, Eden; Bochmann, Jörg; Rempe, Gerhard
2012-01-01
Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way: by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in independent laboratories. The created nonlocal state is manipulated by local qubit rotation. This efficient cavity-based approach to quantum networking is particularly promising as it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applicati...
Quantum Optics Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence
Orszag, Miguel
2008-01-01
Quantum Optics gives a very broad coverage of basic laser-related phenomena that allow scientist and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this second edition, there is an enlarged chapter on decoherence, as well as additional material dealing with elements of quantum computation, entanglement of pure and mixed states as well as a chapter on quantum copying and processors. These topics are presented in a unified and didactic manner. The presentation of the book is clear and pedagogical; it balances the theoretical aspect of qua...
Block-free optical quantum Banyan network based on quantum state fusion and fission
Zhu, Chang-Hua; Meng, Yan-Hong; Quan, Dong-Xiao; Zhao, Nan; Pei, Chang-Xing
2014-12-01
Optical switch fabric plays an important role in building multiple-user optical quantum communication networks. Owing to its self-routing property and low complexity, a banyan network is widely used for building switch fabric. While, there is no efficient way to remove internal blocking in a banyan network in a classical way, quantum state fusion, by which the two-dimensional internal quantum states of two photons could be combined into a four-dimensional internal state of a single photon, makes it possible to solve this problem. In this paper, we convert the output mode of quantum state fusion from spatial-polarization mode into time-polarization mode. By combining modified quantum state fusion and quantum state fission with quantum Fredkin gate, we propose a practical scheme to build an optical quantum switch unit which is block free. The scheme can be extended to building more complex units, four of which are shown in this paper.
International Conference on Laser Physics and Quantum Optics
Xie, Shengwu; Zhu, Shi-Yao; Scully, Marlan
2000-01-01
Since the advent of the laser about 40 years ago, the field of laser physics and quantum optics have evolved into a major discipline. The early studies included the optical coherence theory and the semiclassical and quantum mechanical theories of the laser. More recently many new and interesting effects have been predicted. These include the role of coherent atomic effects in lasing without inversion and electromagnetically induced transparency, atom optics, laser cooling and trapping, teleportation, the single-atom micromaser and its role in quantum measurement theory, to name a few. The International Conference on Laser Physics and Quantum Optics was held in Shanghai from August 25 to August 28, 1999, to discuss these and many other exciting developments in laser physics and quantum optics. The international character of the conference was manifested by the fact that scientists from over 13 countries participated and lectured at the conference. There were four keynote lectures delivered by Nobel laureate Wi...
A long-lived and solid-state quantum memory for photons (Conference Presentation)
Afzelius, Mikael
2016-04-01
A major challenge in quantum technologies is to build an efficient and long-lived quantum memory, particularly using solid-state devices. I will here report on an experiment where we combine the AFC optical memory with spin-echo techniques to extend the memory time from a few microseconds to about 1 ms, using an Europium-doped crystal. In general the spin-echo technique allows one to control the inhomogeneous spin dephasing which often sets the storage-time limit both in solid-state systems and laser-cooled gases. However, theoretically it is has been argued that spin-echo techniques would be extremely difficult to apply without creating noise in the case of a single quanta stored in a large spin ensemble. We here show how this noise can be limited and demonstrate high signal-to-noise ratio in the output mode when storing pulses at the single-photon level. Furthermore we stored polarization qubits encoded onto weak coherent , with fidelities surpassing a classical storage scheme.
Optimal eavesdropping on BB84 without quantum memory
Bocquet, Aurélien; Alléaume, Romain
2011-01-01
We consider the security of the BB84 quantum key distribution protocol when the eavesdropper doesn't have access to a quantum memory. In this case, Eve's most general strategy is to measure her ancilla with an appropriate POVM designed to take advantage of the post-measurement infor- mation that will be released during the sifting phase of the protocol. Memoryless attacks studied in previous works were not optimal because some aspects of the optimization were not considered, here the optimization was done on all possible parameters accessible to Eve. In particular, we show how to optimize the choice of the POVM as a function of the QBER observed by Alice and Bob. This provides us with tight bounds for the secret key rate of BB84 against a memoryless adversary. The maximum QBER for which a secure key can be extracted is increased from 11% (for collective attacks) to 16.7% with the memoryless assumption.
Memories of Crisis: Bohr, Kuhn, and the Quantum Mechanical ``Revolution''
Seth, Suman
2013-04-01
``The history of science, to my knowledge,'' wrote Thomas Kuhn, describing the years just prior to the development of matrix and wave mechanics, ``offers no equally clear, detailed, and cogent example of the creative functions of normal science and crisis.'' By 1924, most quantum theorists shared a sense that there was much wrong with all extant atomic models. Yet not all shared equally in the sense that the failure was either terribly surprising or particularly demoralizing. Not all agreed, that is, that a crisis for Bohr-like models was a crisis for quantum theory. This paper attempts to answer four questions: two about history, two about memory. First, which sub-groups of the quantum theoretical community saw themselves and their field in a state of crisis in the early 1920s? Second, why did they do so, and how was a sense of crisis related to their theoretical practices in physics? Third, do we regard the years before 1925 as a crisis because they were followed by the quantum mechanical revolution? And fourth, to reverse the last question, were we to call into the question the existence of a crisis (for some at least) does that make a subsequent revolution less revolutionary?
Bozic, Mirjana; Man'ko, Margarita; Arsenovic, Dusan
2009-07-01
The development of quantum optics was part and parcel of the formation of modern physics following the fundamental work of Max Planck and Albert Einstein, which gave rise to quantum mechanics. The possibility of working with pure quantum objects, like single atoms and single photons, has turned quantum optics into the main tool for testing the fundamentals of quantum physics. Thus, despite a long history, quantum optics nowadays remains an extremely important branch of physics. It represents a natural base for the development of advanced technologies, like quantum information processing and quantum computing. Previous Central European Workshops on Quantum Optics (CEWQO) took place in Palermo (2007), Vienna (2006), Ankara (2005), Trieste (2004), Rostock (2003), Szeged (2002), Prague (2001), Balatonfüred (2000), Olomouc (1999), Prague (1997), Budmerice (1995, 1996), Budapest (1994) and Bratislava (1993). Those meetings offered excellent opportunities for the exchange of knowledge and ideas between leading scientists and young researchers in quantum optics, foundations of quantum mechanics, cavity quantum electrodynamics, photonics, atom optics, condensed matter optics, and quantum informatics, etc. The collaborative spirit and tradition of CEWQO were a great inspiration and help to the Institute of Physics, Belgrade, and the Serbian Academy of Sciences and Arts, as the organizers of CEWQO 2008. The 16th CEWQO will take place in 2009 in Turku, Finland, and the 17th CEWQO will be organized in 2010 in St Andrews, United Kingdom. The 15th CEWQO was organized under the auspices and support of the Ministry of Science of the Republic of Serbia, the Serbian Physical Society, the European Physical Society with sponsorship from the University of Belgrade, the Central European Initiative, the FP6 Program of the European Commission under INCO project QUPOM No 026322, the FP7 Program of the European Commission under project NANOCHARM, Europhysics Letters (EPL), The European
Quantum simulations with ultracold atoms in optical lattices.
Gross, Christian; Bloch, Immanuel
2017-09-08
Quantum simulation, a subdiscipline of quantum computation, can provide valuable insight into difficult quantum problems in physics or chemistry. Ultracold atoms in optical lattices represent an ideal platform for simulations of quantum many-body problems. Within this setting, quantum gas microscopes enable single atom observation and manipulation in large samples. Ultracold atom-based quantum simulators have already been used to probe quantum magnetism, to realize and detect topological quantum matter, and to study quantum systems with controlled long-range interactions. Experiments on many-body systems out of equilibrium have also provided results in regimes unavailable to the most advanced supercomputers. We review recent experimental progress in this field and comment on future directions. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Quantum optical effective-medium theory and transformation quantum optics for metamaterials
DEFF Research Database (Denmark)
Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing;
2016-01-01
electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions transform under coordinate...... transformations. Spontaneous-emission rates can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material pro file of the cloak enables the directional control of spontaneous emission....
Tellurium quantum dots: Preparation and optical properties
Lu, Chaoyu; Li, Xueming; Tang, Libin; Lai, Sin Ki; Rogée, Lukas; Teng, Kar Seng; Qian, Fuli; Zhou, Liangliang; Lau, Shu Ping
2017-08-01
Herein, we report an effective and simple method for producing Tellurium Quantum dots (TeQDs), zero-dimensional nanomaterials with great prospects for biomedical applications. Their preparation is based on the ultrasonic exfoliation of Te powder dispersed in 1-methyl-2-pyrrolidone. Sonication causes the van der Waals forces between the structural hexagons of Te to break so that the relatively coarse powder breaks down into nanoscale particles. The TeQDs have an average size of about 4 nm. UV-Vis absorption spectra of the TeQDs showed an absorption peak at 288 nm. Photoluminescence excitation (PLE) and photoluminescence (PL) are used to study the optical properties of TeQDs. Both the PLE and PL peaks revealed a linear relationship against the emission and excitation energies, respectively. TeQDs have important potential applications in biological imaging and catalysis as well as optoelectronics.
Quantum Memory for Microwave Photons in an Inhomogeneously Broadened Spin Ensemble
DEFF Research Database (Denmark)
Julsgaard, Brian; Grezes, Cécile; Bertet, Patrice
2013-01-01
We propose a multi-mode quantum memory protocol able to store the quantum state of the field in a microwave resonator into an ensemble of electronic spins. The stored information is protected against inhomogeneous broadening of the spin ensemble by spin-echo techniques resulting in memory times o...
Ham, Byoung S
2008-09-01
A method of reversible quantum optical data storage is presented using resonant Raman field excited spin coherence, where the spin coherence is stored in an inhomogeneously broadened spin ensemble. Unlike the photon echo method, in the present technique, a 2pi Raman optical rephasing pulse area is used and multimode (parallel) optical channels are available in which the multimode access gives a great benefit to quantum information processors such as quantum repeaters.
International Conference on Coherence and Quantum Optics
RECENT DEVELOPMENTS IN QUANTUM OPTICS
1993-01-01
This volume is composed of papers (invited and contributed) presented at the International Conference on Coherence and Quantum Optics held at the University of Hyderabad January 5-January 10, 1991. It has been organized by Professor Girish Agarwal and his colleagues at the School of Physics, University of Hyderabad, Hyder abad, India under partial support from the Department of Science and Technology, Government of India, International Center for Theoretical Physics, Trieste, Italy and the National Science Foundation, USA. Without the untiring efforts of Prof. Girish Agarwal and the members of his quantum office group, the Conference and the present volume would not have been possible. Some extraordinary circumstances resulted in a delay of the publication of the present volume. Our sincere apologies to all the authors. We deeply regret the inconvenience caused due to the delay. A debt of gratitude is due to Ms. Kim Bella for the excellent typing job of the different versions and the final version of the ma...
Quantum optics and cavity QED Quantum network with individual atoms and photons
Directory of Open Access Journals (Sweden)
Rempe G.
2013-08-01
Full Text Available Quantum physics allows a new approach to information processing. A grand challenge is the realization of a quantum network for long-distance quantum communication and large-scale quantum simulation. This paper highlights a first implementation of an elementary quantum network with two fibre-linked high-finesse optical resonators, each containing a single quasi-permanently trapped atom as a stationary quantum node. Reversible quantum state transfer between the two atoms and entanglement of the two atoms are achieved by the controlled exchange of a time-symmetric single photon. This approach to quantum networking is efficient and offers a clear perspective for scalability. It allows for arbitrary topologies and features controlled connectivity as well as, in principle, infinite-range interactions. Our system constitutes the largest man-made material quantum system to date and is an ideal test bed for fundamental investigations, e.g. quantum non-locality.
Would one rather store squeezing or entanglement in continuous variable quantum memories?
Yadsan-Appleby, Hulya
2010-01-01
Given two quantum memories for continuous variables (e.g., the collective pseudo-spin of two atomic ensembles) and the possibility to perform passive optical operations (typically beam-splitters) on the optical modes before or after the storage, two possible scenarios arise resulting in generally different degrees of final entanglement. Namely, one could either store an entangled state and retrieve it directly from the memory, or rather store two separate single-mode squeezed states and then combine them with a beam-splitter to generate the final entangled state. In this paper, we address the question of which of these two options yields the higher entanglement. By adopting a well established descrip- tion of QND feedback memories, and a simple but realistic noise model, we analytically determine the optimal choice for several regions of noise parameters and quantify the advantage it entails, not only in terms of final entanglement but also in terms of the capability of the final state to act as a shared reso...
The 2004 Latsis Symposium: Quantum optics for Communication and Computing
2004-01-01
1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental c...
The 2004 Latsis Symposium: Quantum optics for Communication and Computing
2004-01-01
1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental ...
The 2004 Latsis Symposium: Quantum optics for Communication and Computing
2004-01-01
1-3 March 2004 Ecole Polytechnique Fédérale de Lausanne Auditoire SG1 The field of Quantum Optics covers topics that extend from basic physical concepts, regarding the quantum description of light, matter, and light-matter interaction, to the applications of these concepts in future information and communication technologies. This field is of primary importance for science and society for two reasons. Firstly, it brings a deeper physical understanding of the fundamental aspects of modern quantum physics. Secondly, it offers perspectives for the invention and implementation of new devices and systems in the fields of communications, information management and computing. The themes that will be addressed in the Latsis Symposium on Quantum Optics are quantum communications, quantum computation, and quantum photonic devices. The objective of the symposium is to give an overview of this fascinating and rapidly evolving field. The different talks will establish links between new fundamental...
Searching for robust quantum memories in many coupled oscillators
Energy Technology Data Exchange (ETDEWEB)
Bosco de Magalhaes, A.R., E-mail: arthur.magalhaes@pq.cnpq.br [Departamento de Fisica e Matematica, Centro Federal de Educacao Tecnologica de Minas Gerais, 30510-000, Belo Horizonte, MG (Brazil)
2011-11-07
The relation between microscopic symmetries in the system-environment interaction and the emergence of robust states is studied for many linearly coupled harmonic oscillators. Different types of symmetry, which are introduced into the model as terms in the coupling constants between each system's oscillator and a common reservoir, lead to distinct robust modes. Since these modes are partially or completely immune to the symmetric part of the environmental noise, they are good candidates for building quantum memories. A comparison of the model investigated here, with bilinear system-reservoir coupling, and a model where such coupling presents an exponential dependence on the variables of interest is performed. -- Highlights: → Macroscopic symmetries may lead to microscopic ones in system-environment coupling. → Robust modes related to these symmetries are found for N coupled oscillators. → They can be used to enhance the lifetime of quantum memories. → They can be built in cavity modes in photonic-band-gap material or trapped ions.
Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence
Orszag, Miguel
2016-01-01
This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific problems and hints to solutions to...
Quantum Gravito-Optics: A Light Route from Semiclassical Gravity to Quantum Gravity
Unnikrishnan, C S
2015-01-01
Quantum gravity remains an elusive theory, in spite of our thorough understanding of the quantum theory and the general theory of relativity separately, presumably due to the lack of any observational clues. We argue that the theory of quantum gravity has a strong constraining anchor in the sector of gravitational radiation ensuring reliable physical clues, albeit in a limited observable form. In particular, all types of gravitational waves expected to be observable in LIGO-like advanced detectors are fully quantum mechanical states of radiation. Exact equivalence of the full quantum gravity theory with the familiar semiclassical theory is ensured in the radiation sector, in most real situations where the relevant quantum operator functions are normal ordered, by the analogue of the optical equivalence theorem in quantum optics. We show that this is indeed the case for detection of the waves from a massive binary system, a single gravitational atom, that emits coherent radiation. The idea of quantum-gravitati...
Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics
2017-01-01
This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...
Sensitivity of quantum-dot semiconductor lasers to optical feedback.
O'Brien, D; Hegarty, S P; Huyet, G; Uskov, A V
2004-05-15
The sensitivity of quantum-dot semiconductor lasers to optical feedback is analyzed with a Lang-Kobayashi approach applied to a standard quantum-dot laser model. The carriers are injected into a quantum well and are captured by, or escape from, the quantum dots through either carrier-carrier or phonon-carrier interaction. Because of Pauli blocking, the capture rate into the dots depends on the carrier occupancy level in the dots. Here we show that different carrier capture dynamics lead to a strong modification of the damping of the relaxation oscillations. Regions of increased damping display reduced sensitivity to optical feedback even for a relatively large alpha factor.
Electro-Optics of an Experimental Quantum-Optical Photometer
Solomos, N. H.
2010-07-01
The first working version of a new ultrafast three-beam photon counting photometer (QOP) has been materialized and demonstrated by the Applied Physics / Electro-optics Laboratory of the Hellenic Naval Academy in Piraeus. The QOP has been installed on the new 0.51m TVD telescope. The instrument is currently being used for quantum-optical study of atmospheric transmission in green monochromatic light over slant paths, at the RFK/Eudoxos Observatories. Actively quenched Single Photon Avalanche Diode detectors can be interchangeably deployed in addition to PMTs and LLL-CCDs. It is also intended for the testing of various approaches for solving the difficult problem of coupling light efficiently to the very small sensitive areas of SPADS, either using fiber couplers, or novel technologies like dedicated fiber tapers. Some particulars of the instrument design philosophy and its optomechanical construction are very briefly mentioned further below. However, it is appropriate to comment, firstly, on its purpose/rationale: The successful formalism of Glauber that led to the quantum-optical framework pertinent to the study of light in the terrestrial laboratories could, perhaps, be proven equally fruitful if applied to celestial light as well. Adopting the new idea of describing an arbitrary light state in terms of coherence functions, it is easily concluded that conventional astronomical instrumentation measures only spatial (imaging) or temporal (spectroscopy) coherence properties of the incoming photon stream. However, higher order spatiotemporal coherence (manifested as correlations among separated photon detection events) convey blueprints of the emission mechanism itself or even of the photon scattering history written in the course of the long path from the emitter to the telescope. To extract this information, high photon fluxes and unprecedented timing resolutions are needed. Our gradual entrance to the era of Extremely Large Telescopes combined with certain new
Second-harmonic scanning optical microscopy of semiconductor quantum dots
DEFF Research Database (Denmark)
Vohnsen, B.; Bozhevolnyi, S.I.; Pedersen, K.;
2001-01-01
Second-harmonic (SH) optical imaging of self-assembled InAlGaAs quantum dots (QD's) grown on a GaAs(0 0 1) substrate has been accomplished at room temperature by use of respectively a scanning far-field optical microscope in reflection mode and a scanning near-field optical microscope...
Silicon quantum dots for optical applications
Wu, Jeslin J.
Luminescent silicon quantum dots (SiQDs) are emerging as attractive materials for optoelectronic devices, third generation photovoltaics, and bioimaging. Their applicability in the real world is contingent on their optical properties and long-term environmental stability; and in biological applications, factors such as water solubility and toxicity must also be taken into consideration. The aforementioned properties are highly dependent on the QDs' surface chemistry. In this work, SiQDs were engineered for the respective applications using liquid-phase and gas-phase functionalization techniques. Preliminary work in luminescent downshifting for photovoltaic systems are also reported. Highly luminescent SiQDs were fabricated by grafting unsaturated hydrocarbons onto the surface of hydrogen-terminated SiQDs via thermal and photochemical hydrosilylation. An industrially attractive, all gas-phase, nonthermal plasma synthesis, passivation (aided by photochemical reactions), and deposition process was also developed to reduce solvent waste. With photoluminescence quantum yields (PLQYs) nearing 60 %, the alkyl-terminated QDs are attractive materials for optical applications. The functionalized SiQDs also exhibited enhanced thermal stability as compared to their unfunctionalized counterparts, and the photochemically-hydrosilylated QDs further displayed photostability under UV irradiation. These environmentally-stable SiQDs were used as luminescent downshifting layers in photovoltaic systems, which led to enhancements in the blue photoresponse of heterojunction solar cells. Furthermore, the QD films demonstrated antireflective properties, improving the coupling efficiency of sunlight into the cell. For biological applications, oxide, amine, or hydroxyl groups were grafted onto the surface to create water-soluble SiQDs. Luminescent, water-soluble SiQDs were produced in by microplasma treating the QDs in water. Stable QYs exceeding 50 % were obtained. Radical-based and
Optical scatter of quantum noise filter cavity optics
Vander-Hyde, Daniel; Smith, Joshua R
2014-01-01
We report on measurements of light scattering from two two-inch super-polished fused silica substrates before and after applying (ATFilms) ion-beam sputtered highly-reflective dielectric coatings. We used an imaging scatterometer, that illuminates the sample with a linearly polarized 1064 nm wavelength laser at a fixed angle of incidence and records images of back scatter for azimuthal angles in the plane of the laser beam, to measure the Bidirectional Reflectance Distribution Function (BRDF) and estimate the total integrated scatter for both samples, before and after coating. We find application of these highly reflective coatings leads to an increase of the integrated scatter of the primary surface by more than 50 %. In addition, the BRDF function of the coated optics takes on a pattern of maxima and zeroes versus azimuthal angle that is qualitatively consistent with bulk scattering from the coating layers. These results are part of a broader study to understand optical loss in quantum noise filter cavities...
Noise-free quantum optical frequency shifting driven by mechanics
Fan, Linran; Poot, Menno; Cheng, Risheng; Guo, Xiang; Han, Xu; Tang, Hong X
2016-01-01
The ability to manipulate single photons is of critical importance for fundamental quantum optics studies and practical implementations of quantum communications. While extraordinary progresses have been made in controlling spatial, temporal, spin and orbit angular momentum degrees of freedom, frequency-domain control of single photons so far relies on nonlinear optical effects, which have faced obstacles such as noise photons, narrow bandwidth and demanding optical filtering. Here we demonstrate the first integrated near-unity efficiency frequency manipulation of single photons, by stretching and compressing a waveguide at 8.3 billion cycles per second. Frequency shift up to 150 GHz at telecom wavelength is realized without measurable added noise and the preservation of quantum coherence is verified through quantum interference between twin photons of different colors. This single photon frequency control approach will be invaluable for increasing the channel capacity of quantum communications and compensati...
Quantum optical effective-medium theory for layered metamaterials
Amooghorban, Ehsan
2016-01-01
The quantum optics of metamaterials starts with the question whether the same effective-medium theories apply as in classical optics. In general the answer is negative. For active plasmonics but also for some passive metamaterials, we show that an additional effective-medium parameter is indispensable besides the effective index, namely the effective noise-photon distribution. Only with the extra parameter can one predict how well the quantumness of states of light is preserved in the metamaterial. The fact that the effective index alone is not always sufficient and that one additional effective parameter suffices in the quantum optics of metamaterials is both of fundamental and practical interest. Here from a Lagrangian description of the quantum electrodynamics of media with both linear gain and loss, we compute the effective noise-photon distribution for quantum light propagation in arbitrary directions in layered metamaterials, thereby detailing and generalizing our recent work [ E. Amooghorban et al., Ph...
Quantum teleportation and entanglement. A hybrid approach to optical quantum information procesing
Energy Technology Data Exchange (ETDEWEB)
Furusawa, Akira [Tokyo Univ. (Japan). Dept. of Applied Physics; Loock, Peter van [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Optik
2011-07-01
Unique in that it is jointly written by an experimentalist and a theorist, this monograph presents universal quantum computation based on quantum teleportation as an elementary subroutine and multi-party entanglement as a universal resource. Optical approaches to measurement-based quantum computation are also described, including schemes for quantum error correction, with most of the experiments carried out by the authors themselves. Ranging from the theoretical background to the details of the experimental realization, the book describes results and advances in the field, backed by numerous illustrations of the authors' experimental setups. Aimed at researchers, physicists, and graduate and PhD students in physics, theoretical quantum optics, quantum mechanics, and quantum information. (orig.)
DEFF Research Database (Denmark)
Johansen, Jeppe; Stobbe, Søren; Nikolaev, I.S.
2007-01-01
We have measured time-resolved spontaneous emission from quantum dots near a dielectric interface with known photonic local density of states. We thus experimentally determine the quantum efficiency and the dipole moment, important for quantum optics.......We have measured time-resolved spontaneous emission from quantum dots near a dielectric interface with known photonic local density of states. We thus experimentally determine the quantum efficiency and the dipole moment, important for quantum optics....
Continuous-variable quantum secret sharing by optical interferometry
Tyc, T; Tyc, Tomas; Sanders, Barry C.
2001-01-01
We develop the theory of continuous-variable quantum secret sharing and propose its interferometric realization using passive and active optical elements. In the ideal case of infinite squeezing, a fidelity ${\\cal F}$ of unity can be achieved with respect to reconstructing the quantum secret. We quantify the reduction in fidelity for the (2,3) threshold scheme due to finite squeezing and establish the condition for verifying that genuine quantum secret sharing has occurred.
Quantum acousto-optic transducer for superconducting qubits
Shumeiko, V S
2015-01-01
We propose theory for reversible quantum transducer connecting superconducting qubits and optical photons using acoustic waves in piezoelectrics. The proposed device consists of integrated acousto-optic resonator that utilizes stimulated Brillouin scattering for phonon-photon conversion, and piezoelectric e?ect for coupling of phonons to qubits. We evaluate the phonon-photon coupling rate, and show that the required power of optical pump as well as the other device parameters providing full and faithful quantum conversion are feasible for implementation with the state of the art integrated acousto-optics.
Pulse-distortion in a quantum-dot optical amplifier
DEFF Research Database (Denmark)
Romstad, Francis Pascal; Borri, Paola; Mørk, Jesper;
2000-01-01
Distortion of a -150fs optical pulse after propagation through an InAs/InGaAs quantum-dot optical amplifier is measured for different input energies an bias currents. Pulse distortion is observed and compared with results on a bulk amplifier.......Distortion of a -150fs optical pulse after propagation through an InAs/InGaAs quantum-dot optical amplifier is measured for different input energies an bias currents. Pulse distortion is observed and compared with results on a bulk amplifier....
DEFF Research Database (Denmark)
Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg
2003-01-01
We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...... effects, as opposed to quantum well or bulk devices....
Characterization of optical quantum circuits using resonant phase shifts
Poot, Menno
2016-01-01
We demonstrate that important information about linear optical circuits can be obtained through the phase shift induced by integrated optical resonators. As a proof of principle, the phase of an unbalanced Mach-Zehnder interferometer is determined. Then the method is applied to a complex optical circuit designed for linear optical quantum computation. In this controlled-NOT gate with qubit initialization and tomography stages, the relative phases are determined as well as the coupling ratios of its directional couplers.
Cavity enhanced telecom heralded single photons for spin-wave solid state quantum memories
Rieländer, Daniel; Lenhard, Andreas; Mazzera, Margherita; de Riedmatten, Hugues
2016-12-01
We report on a source of heralded narrowband (≈ 3 MHz) single photons compatible with solid-state spin-wave quantum memories based on praseodymium doped crystals. Widely non-degenerate narrow-band photon pairs are generated using cavity enhanced down conversion. One photon from the pair is at telecom wavelengths and serves as heralding signal, while the heralded single photon is at 606 nm, resonant with an optical transition of Pr3+:Y2SiO5. The source offers a heralding efficiency of 28% and a generation rate exceeding 2000 pairs mW-1 in a single-mode. The single photon nature of the heralded field is confirmed by a direct antibunching measurement, with a measured antibunching parameter down to 0.010(4). Moreover, we investigate in detail photon cross- and autocorrelation functions proving non-classical correlations between the two photons. The results presented in this paper offer prospects for the demonstration of single photon spin-wave storage in an on-demand solid state quantum memory, heralded by a telecom photon.
Optical levitation of a microdroplet containing a single quantum dot.
Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki
2015-03-15
We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This Letter presents the realization of an optically levitated solid-state quantum emitter.
Optical phonons in Ge quantum dots obtained on Si(111)
Talochkin, A B
2002-01-01
The light combination scattering on the optical phonons in the Ge quantum dots, obtained on the Si surface of the (111) orientation through the molecular-beam epitaxy, is studied. The series of lines, connected with the phonon spectrum quantization, was observed. It is shown, that the phonon modes frequencies are well described by the elastic properties and dispersion of the voluminous Ge optical phonons. The value of the Ge quantum dots deformation is determined
Noise and saturation properties of semiconductor quantum dot optical amplifiers
DEFF Research Database (Denmark)
Berg, Tommy Winther; Mørk, Jesper
2002-01-01
We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....
Interface phonon effect on optical spectra of quantum nanostructures
Energy Technology Data Exchange (ETDEWEB)
Maslov, Alexander Yu., E-mail: maslov.ton@mail.ioffe.r [Ioffe Physical Technical Institute, Polytechnicheskaya st., 26, 194021 Saint Petersburg (Russian Federation); Proshina, Olga V.; Rusina, Anastasia N. [Ioffe Physical Technical Institute, Polytechnicheskaya st., 26, 194021 Saint Petersburg (Russian Federation)
2009-12-15
This paper deals with theory of large radius polaron effect in quantum wells, wires and dots. The interaction of charge particles and excitons with both bulk and interface optical phonons is taken into consideration. The analytical expression for polaron binding energy is obtained for different types of nanostructures. It is shown that the contribution of interface phonons to the polaron binding energy may exceed the bulk phonon part. The manifestation of polaron effects in optical spectra of quantum nanostructures is discussed.
Integrated superconducting detectors on semiconductors for quantum optics applications
Kaniber, M.; Flassig, F.; Reithmaier, G.; Gross, R.; Finley, J. J.
2016-05-01
Semiconductor quantum photonic circuits can be used to efficiently generate, manipulate, route and exploit nonclassical states of light for distributed photon-based quantum information technologies. In this article, we review our recent achievements on the growth, nanofabrication and integration of high-quality, superconducting niobium nitride thin films on optically active, semiconducting GaAs substrates and their patterning to realize highly efficient and ultra-fast superconducting detectors on semiconductor nanomaterials containing quantum dots. Our state-of-the-art detectors reach external detection quantum efficiencies up to 20 % for ~4 nm thin films and single-photon timing resolutions <72 ps. We discuss the integration of such detectors into quantum dot-loaded, semiconductor ridge waveguides, resulting in the on-chip, time-resolved detection of quantum dot luminescence. Furthermore, a prototype quantum optical circuit is demonstrated that enabled the on-chip generation of resonance fluorescence from an individual InGaAs quantum dot, with a linewidth <15 μeV displaced by 1 mm from the superconducting detector on the very same semiconductor chip. Thus, all key components required for prototype quantum photonic circuits with sources, optical components and detectors on the same chip are reported.
Assessments of macroscopicity for quantum optical states
DEFF Research Database (Denmark)
Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund
2015-01-01
With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....
Quantum interference and control of the optical response in quantum dot molecules
Energy Technology Data Exchange (ETDEWEB)
Borges, H. S.; Sanz, L.; Villas-Boas, J. M.; Alcalde, A. M. [Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG (Brazil)
2013-11-25
We discuss the optical response of a quantum molecule under the action of two lasers fields. Using a realistic model and parameters, we map the physical conditions to find three different phenomena reported in the literature: the tunneling induced transparency, the formation of Autler-Townes doublets, and the creation of a Mollow-like triplet. We found that the electron tunneling between quantum dots is responsible for the different optical regime. Our results not only explain the experimental results in the literature but also give insights for future experiments and applications in optics using quantum dots molecules.
Optical Properties of Quantum-Dot-Doped Liquid Scintillators
Aberle, C; Weiss, S; Winslow, L
2013-01-01
Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.
Optical properties of quantum-dot-doped liquid scintillators
Aberle, C.; Li, J. J.; Weiss, S.; Winslow, L.
2013-10-01
Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.
Bell inequalities for quantum optical fields
Żukowski, Marek; Wieśniak, Marcin; Laskowski, Wiesław
2016-08-01
The commonly used "practical" Bell inequalities for quantum optical fields, which use intensities as the observables, are derivable only if specific additional assumptions hold. This limits the range of local hidden variable theories, which are invalidated by their violation. We present alternative Bell inequalities, which do not suffer from any (theoretical) loophole. The inequalities are for correlations of averaged products of local rates. By rates we mean ratios of the measured intensity in the given local output channel to the total local measured intensity, in the given run of the experiment. Bell inequalities of this type detect entanglement in situations in which the "practical" ones fail. Thus, we have full consistency with Bell's theorem, and better device-independent entanglement indicators. Strongly driven type-II parametric down conversion (bright squeezed vacuum) is our working example. The approach can be used to modify many types of standard Bell inequalities, to the case of undefined particle numbers. The rule is to replace the usual probabilities by rates.
Nonadiabatic quantum chaos in atom optics
Prants, S V
2012-01-01
Coherent dynamics of atomic matter waves in a standing-wave laser field is studied. In the dressed-state picture, wave packets of ballistic two-level atoms propagate simultaneously in two optical potentials. The probability to make a transition from one potential to another one is maximal when centroids of wave packets cross the field nodes and is given by a simple formula with the single exponent, the Landau--Zener parameter $\\kappa$. If $\\kappa \\gg 1$, the motion is essentially adiabatic. If $\\kappa \\ll 1$, it is (almost) resonant and periodic. If $\\kappa \\simeq 1$, atom makes nonadiabatic transitions with a splitting of its wave packet at each node and strong complexification of the wave function as compared to the two other cases. This effect is referred as nonadiabatic quantum chaos. Proliferation of wave packets at $\\kappa \\simeq 1$ is shown to be connected closely with chaotic center-of-mass motion in the semiclassical theory of point-like atoms with positive values of the maximal Lyapunov exponent. Th...
Quantum temporal imaging: application of a time lens to quantum optics
Patera, G.; Shi, J.; Horoshko, D. B.; Kolobov, M. I.
2017-05-01
We consider application of a temporal imaging system, based on the sum-frequency generation (SFG), to a nonclassical, squeezed optical temporal waveform. We analyze restrictions on the pump and the phase-matching condition in the summing crystal, which are necessary for preserving the quantum features of the initial waveform. We show that modification of the notion of the field of view (FOV) in the quantum case is necessary, and that the quantum FOV is much narrower than the classical one for the same temporal imaging system. These results are important for temporal stretching and compressing of squeezed fields, which are used in quantum-enhanced metrology and quantum communications.
Long-lasting inverted photon echo and optical memory
Energy Technology Data Exchange (ETDEWEB)
Akhmediev, N.N.; Borisov, B.S.; Zuikov, V.A.; Samartsev, V.V.; Stel' makh, M.F.
1988-06-01
Experimental results are presented on the formation of the long-lasting inverted stimulated photon echo in the LaF3:Pr(3+) crystal. The physics of this phenomenon is explained on the basis of a three-level model. The feasibility of using this echo effect in the development of optical-memory systems is considered. 18 references.
The Rainwater Memorial Calibration Facility for X-Ray Optics
DEFF Research Database (Denmark)
Brejnholt, Nicolai; Christensen, Finn Erland; Hailey, Charles J.;
2011-01-01
and the energy range of interest were unique requirements not met by any existing facility. In this paper we present the requirements for the NuSTAR optics ground calibration, and how the Rainwater Memorial Calibration Facility, RaMCaF, is designed to meet the calibration requirements. The nearly 175 m long...
Orfield, Noah J; McBride, James R; Wang, Feng; Buck, Matthew R; Keene, Joseph D; Reid, Kemar R; Htoon, Han; Hollingsworth, Jennifer A; Rosenthal, Sandra J
2016-02-23
Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. Herein, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking "giant" CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging, rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive "dark" fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be "dark". Therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.
Si-based optical I/O for optical memory interface
Ha, Kyoungho; Shin, Dongjae; Byun, Hyunil; Cho, Kwansik; Na, Kyoungwon; Ji, Hochul; Pyo, Junghyung; Hong, Seokyong; Lee, Kwanghyun; Lee, Beomseok; Shin, Yong-hwack; Kim, Junghye; Kim, Seong-gu; Joe, Insung; Suh, Sungdong; Choi, Sanghoon; Han, Sangdeok; Park, Yoondong; Choi, Hanmei; Kuh, Bongjin; Kim, Kichul; Choi, Jinwoo; Park, Sujin; Kim, Hyeunsu; Kim, Kiho; Choi, Jinyong; Lee, Hyunjoo; Yang, Sujin; Park, Sungho; Lee, Minwoo; Cho, Minchang; Kim, Saebyeol; Jeong, Taejin; Hyun, Seokhun; Cho, Cheongryong; Kim, Jeong-kyoum; Yoon, Hong-gu; Nam, Jeongsik; Kwon, Hyukjoon; Lee, Hocheol; Choi, Junghwan; Jang, Sungjin; Choi, Joosun; Chung, Chilhee
2012-01-01
Optical interconnects may provide solutions to the capacity-bandwidth trade-off of recent memory interface systems. For cost-effective optical memory interfaces, Samsung Electronics has been developing silicon photonics platforms on memory-compatible bulk-Si 300-mm wafers. The waveguide of 0.6 dB/mm propagation loss, vertical grating coupler of 2.7 dB coupling loss, modulator of 10 Gbps speed, and Ge/Si photodiode of 12.5 Gbps bandwidth have been achieved on the bulk-Si platform. 2x6.4 Gbps electrical driver circuits have been also fabricated using a CMOS process.
Concise quantum associative memories with nonlinear search algorithm
Energy Technology Data Exchange (ETDEWEB)
Tchapet Njafa, J.P.; Nana Engo, S.G. [Laboratory of Photonics, Department of Physics, University of Ngaoundere (Cameroon)
2016-02-15
The model of Quantum Associative Memories (QAM) we propose here consists in simplifying and generalizing that of Rigui Zhou et al. [1] which uses the quantum matrix with the binary decision diagram put forth by David Rosenbaum [2] and the Abrams and Lloyd's nonlinear search algorithm [3]. Our model gives the possibility to retrieve one of the sought states in multi-values retrieving scheme when a measurement is done on the first register in O(c-r) time complexity. It is better than Grover's algorithm and its modified form which need O(√((2{sup n})/(m))) steps when they are used as the retrieval algorithm. n is the number of qubits of the first register and m the number of x values for which f(x) = 1. As the nonlinearity makes the system highly susceptible to the noise, an analysis of the influence of the single qubit noise channels on the Nonlinear Search Algorithm of our model of QAM shows a fidelity of about 0.7 whatever the number of qubits existing in the first register, thus demonstrating the robustness of our model. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya
2015-04-01
A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.
Atomic physics and quantum optics using superconducting circuits.
You, J Q; Nori, Franco
2011-06-29
Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.
Quantum dots microstructured optical fiber for x-ray detection
DeHaven, S. L.; Williams, P. A.; Burke, E. R.
2016-02-01
A novel concept for the detection of x-rays with microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide is presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dots application technique are discussed.
Quantum Dots Microstructured Optical Fiber for X-Ray Detection
DeHaven, Stan; Williams, Phillip; Burke, Eric
2015-01-01
Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.
2015-07-06
Assembled InAs Quantum Dot,”, Applied Physics Letters 97, p. 113110 (2010). DOI: 10.1063/1.3487783 http://scitation.aip.org/content/ aip /journal/apl/97/11...in an InAs quantum dot. Conference on Advances in Photonics of Quantum Computing, Memory, and Communication III, JAN 27- 28, 2010 San Francisco, CA...invited Advances in Atomic, Molecular, and Optical Physics, Vol 64, Su- sanne Yelin, editor, Elsevier, Oxford (2015). 15. A. P. Burgers, J. R
Tsutsumi, T; Kawakami, Y; Micheletto, R
2016-01-01
In this letter, we aim to elucidate the physical mechanism of the so called optical memory effect and blinking phenomenon observed in InGaN single quantum wells (SQW). We have found that the optical response of both memory effect and blinking phenomenon, is affected by different excitation wavelengths and by the change of gas adsorption on the crystal surface. A model that reproduce dynamics of the coverage of absorbed gas molecules on the sample surface is given and compared with experimental data with evident match.
Linear Optics Simulation of Non-Markovian Quantum Dynamics
Chiuri, Andrea; Mazzola, Laura; Paternostro, Mauro; Mataloni, Paolo
2012-01-01
The simulation of quantum processes is a key goal for the grand programme aiming at grounding quantum technologies as the way to explore complex phenomena that are inaccessible through standard, classical calculators. Some interesting steps have been performed in this direction and this scenario has recently been extended to open quantum evolutions, marking the possibility to investigate important features of the way a quantum system interacts with its environment. Here we demonstrate experimentally the (non-)Markovianity of a process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a fully controlled photonic quantum simulator, we assess and demonstrate the role that system-environment correlations have in the emergence of memory effects.
Applied research of quantum information based on linear optics
Energy Technology Data Exchange (ETDEWEB)
Xu, Xiao-Ye
2016-08-01
This thesis reports on outstanding work in two main subfields of quantum information science: one involves the quantum measurement problem, and the other concerns quantum simulation. The thesis proposes using a polarization-based displaced Sagnac-type interferometer to achieve partial collapse measurement and its reversal, and presents the first experimental verification of the nonlocality of the partial collapse measurement and its reversal. All of the experiments are carried out in the linear optical system, one of the earliest experimental systems to employ quantum communication and quantum information processing. The thesis argues that quantum measurement can yield quantum entanglement recovery, which is demonstrated by using the frequency freedom to simulate the environment. Based on the weak measurement theory, the author proposes that white light can be used to precisely estimate phase, and effectively demonstrates that the imaginary part of the weak value can be introduced by means of weak measurement evolution. Lastly, a nine-order polarization-based displaced Sagnac-type interferometer employing bulk optics is constructed to perform quantum simulation of the Landau-Zener evolution, and by tuning the system Hamiltonian, the first experiment to research the Kibble-Zurek mechanism in non-equilibrium kinetics processes is carried out in the linear optical system.
Quantum optical circulator controlled by a single chirally coupled atom
Scheucher, Michael; Hilico, Adèle; Will, Elisa; Volz, Jürgen; Rauschenbeutel, Arno
2016-12-01
Integrated nonreciprocal optical components, which have an inherent asymmetry between their forward and backward propagation direction, are key for routing signals in photonic circuits. Here, we demonstrate a fiber-integrated quantum optical circulator operated by a single atom. Its nonreciprocal behavior arises from the chiral interaction between the atom and the transversally confined light. We demonstrate that the internal quantum state of the atom controls the operation direction of the circulator and that it features a strongly nonlinear response at the single-photon level. This enables, for example, photon number–dependent routing and novel quantum simulation protocols. Furthermore, such a circulator can in principle be prepared in a coherent superposition of its operational states and may become a key element for quantum information processing in scalable integrated optical circuits.
Modulatable optical radiators and metasurfaces based on quantum nanoantennas
Chen, Pai-Yen
2015-01-20
We investigate the tunable and switchable optical radiators and metamaterials formed by metallic nanodipole antennas with submicroscopic gaps (1.2 nm), of which linear and third-order nonlinear quantum conductivities are observed due to the photon-assisted tunneling effect. The quantum conductivities induced at the nanogap are relevant to power dissipations, which can be enhanced by the strongly localized optical fields associated with the plasmonic resonance. We demonstrate that the scattering property of an individual quantum nanoantenna and the transparency of a metamasurface constituted of it can be tuned by electrostatically controlling the linear conductivity (electronic tuning) or by adjusting the irradiation intensity that varies the nonlinear quantum conductivity (all-optical tuning).
Energy Technology Data Exchange (ETDEWEB)
Gholipour Verki, N; HajiBadali, A; Abbasian, K; Rostami, A
2011-12-31
A loadable and erasable all-optical memory cell is designed by using two coupled micro-ring resonators with electromagnetically induced transparency (EIT) and lasing without inversion (LWI). To read out stored data, an additional phase is introduced in the upper ring resonator due to EIT. To compensate the fibre loss, use is made of LWI. The EIT is induced by inserting {Lambda}-type three level quantum dots in the right-hand half of the upper ring and LWI is implemented by inserted Y-type four level quantum dots in the left-hand half of both rings. This optical memory cell can operate at a low light power level corresponding to several photons.
Gholipour Verki, N.; Hajibadali, A.; Abbasian, K.; Rostami, A.
2011-12-01
A loadable and erasable all-optical memory cell is designed by using two coupled micro-ring resonators with electromagnetically induced transparency (EIT) and lasing without inversion (LWI). To read out stored data, an additional phase is introduced in the upper ring resonator due to EIT. To compensate the fibre loss, use is made of LWI. The EIT is induced by inserting Λ-type three level quantum dots in the right-hand half of the upper ring and LWI is implemented by inserted Y-type four level quantum dots in the left-hand half of both rings. This optical memory cell can operate at a low light power level corresponding to several photons.
An All-Optical Quantum Gate in a Semiconductor Quantum Dot
National Research Council Canada - National Science Library
Xiaoqin Li; Yanwen Wu; Duncan Steel; D. Gammon; T. H. Stievater; D. S. Katzer; D. Park; C. Piermarocchi; L. J. Sham
2003-01-01
We report coherent optical control of a biexciton (two electron-hole pairs), confined in a single quantum dot, that shows coherent oscillations similar to the excited-state Rabi flopping in an isolated atom...
Quantum simulations in phase-space: from quantum optics to ultra-cold physics
Drummond, Peter D.; Chaturvedi, Subhash
2016-07-01
As a contribution to the international year of light, we give a brief history of quantum optics in phase-space, with new directions including quantum simulations of multipartite Bell violations, opto-mechanics, ultra-cold atomic systems, matter-wave Bell violations, coherent transport and quantum fluctuations in the early Universe. We mostly focus on exact methods using the positive-P representation, and semiclassical truncated Wigner approximations.
DEFF Research Database (Denmark)
Taherkhani, Masoomeh; Gregersen, Niels; Willatzen, Morten
2017-01-01
The exciton oscillator strength (OS) in type-II quantum dot (QD) nanowires is calculated by using a fast and efficient method. We propose a new structure in Double-Well QD (DWQD) nanowire that considerably increases OS of type-II QDs which is a key parameter in optical quantum gating...... in the stimulated Raman adiabatic passage (STIRAP) process [1] for implementing quantum gates....
Quantum optics. Quantum harmonic oscillator state synthesis by reservoir engineering.
Kienzler, D; Lo, H-Y; Keitch, B; de Clercq, L; Leupold, F; Lindenfelser, F; Marinelli, M; Negnevitsky, V; Home, J P
2015-01-02
The robust generation of quantum states in the presence of decoherence is a primary challenge for explorations of quantum mechanics at larger scales. Using the mechanical motion of a single trapped ion, we utilize reservoir engineering to generate squeezed, coherent, and displaced-squeezed states as steady states in the presence of noise. We verify the created state by generating two-state correlated spin-motion Rabi oscillations, resulting in high-contrast measurements. For both cooling and measurement, we use spin-oscillator couplings that provide transitions between oscillator states in an engineered Fock state basis. Our approach should facilitate studies of entanglement, quantum computation, and open-system quantum simulations in a wide range of physical systems. Copyright © 2015, American Association for the Advancement of Science.
Yu, Min; Fang, Mao-Fa
2017-09-01
The dynamic properties of the quantum-memory-assisted entropic uncertainty relation for a system comprised of a qubit to be measured and a memory qubit are investigated. We explore the behaviors of the entropic uncertainty and its lower bound in three different cases: Only one of the two qubits interacts with an external environment and subjects to quantum-jump-based feedback control, or both of the two qubits independently experience their own environments and local quantum-jump-based feedback control. Our results reveal that the quantum-jump-based feedback control with an appropriate feedback parameter can reduce the entropic uncertainty and its lower bound, and for the three different scenarios, the reduction in the uncertainty relates to different physical quantities. Besides, we find out that the quantum-jump-based feedback control not only can remarkably decrease the entropic uncertainty, but also can make the uncertainty reach its lower bound where the dynamical map becomes unital.
Open-Loop Control in Quantum Optics: Two-Level Atom in Modulated Optical Field
Saifullah, Sergei
2008-01-01
The methods of mathematical control theory are widely used in the modern physics, but still they are less popular in quantum science. We will discuss the aspects of control theory, which are the most useful in applications to the real problems of quantum optics. We apply this technique to control the behavior of the two-level quantum particles (atoms) in the modulated external optical field in the frame of the so called "semi classical model", where quantum two-level atomic system (all other levels are neglected) interacts with classical electromagnetic field. In this paper we propose a simple model of feedforward (open-loop) control for the quantum particle system, which is a basement for further investigation of two-level quantum particle in the external one-dimensional optical field.
Experimental realization of entanglement in multiple degrees of freedom between two quantum memories
Zhang, Wei; Ding, Dong-Sheng; Dong, Ming-Xin; Shi, Shuai; Wang, Kai; Liu, Shi-Long; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2016-11-01
Entanglement in multiple degrees of freedom has many benefits over entanglement in a single one. The former enables quantum communication with higher channel capacity and more efficient quantum information processing and is compatible with diverse quantum networks. Establishing multi-degree-of-freedom entangled memories is not only vital for high-capacity quantum communication and computing, but also promising for enhanced violations of nonlocality in quantum systems. However, there have been yet no reports of the experimental realization of multi-degree-of-freedom entangled memories. Here we experimentally established hyper- and hybrid entanglement in multiple degrees of freedom, including path (K-vector) and orbital angular momentum, between two separated atomic ensembles by using quantum storage. The results are promising for achieving quantum communication and computing with many degrees of freedom.
Zhang, Wei; Ding, Dong-Sheng; Dong, Ming-Xin; Shi, Shuai; Wang, Kai; Liu, Shi-Long; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2016-11-14
Entanglement in multiple degrees of freedom has many benefits over entanglement in a single one. The former enables quantum communication with higher channel capacity and more efficient quantum information processing and is compatible with diverse quantum networks. Establishing multi-degree-of-freedom entangled memories is not only vital for high-capacity quantum communication and computing, but also promising for enhanced violations of nonlocality in quantum systems. However, there have been yet no reports of the experimental realization of multi-degree-of-freedom entangled memories. Here we experimentally established hyper- and hybrid entanglement in multiple degrees of freedom, including path (K-vector) and orbital angular momentum, between two separated atomic ensembles by using quantum storage. The results are promising for achieving quantum communication and computing with many degrees of freedom.
Noiseless loss suppression in quantum optical communication.
Mičuda, M; Straka, I; Miková, M; Dušek, M; Cerf, N J; Fiurášek, J; Ježek, M
2012-11-02
We propose a protocol for conditional suppression of losses in direct quantum state transmission over a lossy quantum channel. The method works by noiselessly attenuating the input state prior to transmission through a lossy channel followed by noiseless amplification of the output state. The procedure does not add any noise; hence, it keeps quantum coherence. We experimentally demonstrate it in the subspace spanned by vacuum and single-photon states, and consider its general applicability.
Linear optical implementation of optimal unambiguous discrimination among quantum states
Institute of Scientific and Technical Information of China (English)
Lu Jing; Zhou Lan; Kuang Le-Man
2006-01-01
In this paper, we present a linear optical scheme for optimal unambiguous discrimination among nonorthogonal quantum states in terms of the multiple-rail and polarization representation of a single photon. In our scheme, discriminated quantum states are expressed by using the spatial degree of freedom of a single photon while the polarization degree of freedom of the single photon is used to act as an auxiliary qubit. The optical components used in our scheme are only passive linear optical elements such as polarizing beam splitters, wave plates, polarizers, single photon detectors,and single photon source.
Laser Cooling of Lanthanides: from Optical Clocks to Quantum Simulators
Directory of Open Access Journals (Sweden)
Golovizin A.
2015-01-01
Full Text Available We discuss current progress in laser cooling of lanthanides (Er, Yb, Dy, Tm etc. focusing on applications. We describe some important peculiarities taking Thulium atom as an example: Two stage laser cooling, trapping in an optical lattice, anisotropic interactions and spectroscopy of narrow transitions. Specific level structure and presence of magic wavelengths make ultracold Thulium a favorable candidate for optical clock applications. On the other hand, abundance of Feshbach resonances allow to tune interactions in ultracold gases and thus reach quantum degeneracy. It opens intriguing perspectives for novel quantum simulators employing dipole-dipole interactions in an optical lattice.
Nonlinear and quantum optics with whispering gallery resonators
Strekalov, Dmitry V.; Marquardt, Christoph; Matsko, Andrey B.; Schwefel, Harald G. L.; Leuchs, Gerd
2016-12-01
Optical whispering gallery modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
Nonlinear and Quantum Optics with Whispering Gallery Resonators
Strekalov, Dmitry V; Matsko, Andrey B; Schwefel, Harald G L; Leuchs, Gerd
2016-01-01
Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon was later realized to have a rather general nature, equally applicable to sound and all other waves, but in particular also to electromagnetic waves ranging from radio frequencies to ultraviolet light. Very high quality factors of optical WGM resonators persisting in a wide wavelength range, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
Lassen, Mikael; Huck, Alexander; Niset, Julien; Leuchs, Gerd; Cerf, Nicolas J; Andersen, Ulrik L
2010-01-01
A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code (QECC) that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information technologies, it is believed that QECC will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the first experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Whereas {\\it errors} translate, in an information theoretic language, the noise affecting a transmission line, {\\it erasures} correspond to the in-line probabilistic loss of photons. Our quantum code protects a four-mode entangled mesoscopic state of light against erasures, and its associated encoding and decoding operations only require linear optics and Gaussian resources. Since in-line attenuation is generally the strongest limitation to quantum co...
An electro-optic waveform interconnect based on quantum interference
Qin, Li-Guo; Gong, Shang-Qing
2016-01-01
The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information processing systems. One of the main required devices for such interconnects is the electro-optic modulator (EOM). Current EOM based on the electro-optic effect and the electro-absorption effect often is bulky and power inefficient due to the weak electro-optic properties of its constituent materials. Here we propose a new mechanism to produce an arbitrary-waveform EOM based on the quantum interference, in which both the real and imaginary parts of the susceptibility are engineered coherently with the superhigh efficiency. Based on this EOM, a waveform interconnect from the voltage to the modulated optical absorption is realised. We expect that such a new type of electro-optic interconnect will have a broad range of applications including the optical communications and network.
Coherent feedback control of multipartite quantum entanglement for optical fields
Energy Technology Data Exchange (ETDEWEB)
Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)
2011-12-15
Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.
Bringing Order through Disorder: Localization of Errors in Topological Quantum Memories
Wootton, James R.; Pachos, Jiannis K.
2011-07-01
Anderson localization emerges in quantum systems when randomized parameters cause the exponential suppression of motion. Here we consider this phenomenon in topological models and establish its usefulness for protecting topologically encoded quantum information. For concreteness we employ the toric code. It is known that in the absence of a magnetic field this can tolerate a finite initial density of anyonic errors, but in the presence of a field anyonic quantum walks are induced and the tolerable density becomes zero. However, if the disorder inherent in the code is taken into account, we demonstrate that the induced localization allows the topological quantum memory to regain a finite critical anyon density and the memory to remain stable for arbitrarily long times. We anticipate that disorder inherent in any physical realization of topological systems will help to strengthen the fault tolerance of quantum memories.
Spatial mode effects in a cavity EIT-based quantum memory with ion Coulomb crystals
Zangenberg, Kasper R; Drewsen, Michael
2012-01-01
Quantum storage and retrieval of light in ion Coulomb crystals using cavity electromagnetically induced transparency is investigated theoretically. It is found that, when both the control and probe fields are coupled to the same cavity mode, their transverse mode profile affects the quantum memory efficiency in a non-trivial way. Under such conditions the control field parameters and crystal dimensions that maximize the memory efficiency are calculated.
Spatial mode effects in a cavity-EIT based quantum memory with ion Coulomb crystals
DEFF Research Database (Denmark)
Zangenberg, Kasper Rothe; Dantan, Aurelien Romain; Drewsen, Michael
2012-01-01
Quantum storage and retrieval of light in ion Coulomb crystals using cavity electromagnetically induced transparency are investigated theoretically. It is found that when both the control and the probe fields are coupled to the same spatial cavity mode, their transverse mode profile affects the q...... the quantum memory efficiency in a non-trivial way. Under such conditions, the control-field parameters and crystal dimensions that maximize the memory efficiency are calculated....
Optical studies of capped quantum dots
Wuister, S.F.
2005-01-01
This thesis describes the synthesis and spectroscopy of CdSe and CdTe semiconductor quantum dots (QDs). The first chapter gives an introduction into the unique size dependent properties of semiconductor quantum dots. Highly luminescent QDs of CdSe and CdTe were prepared via a high temperature method
Quantum computing by optical control of electron spins
Liu, Ren-Bao; Sham, L J
2010-01-01
We review the progress and main challenges in implementing large-scale quantum computing by optical control of electron spins in quantum dots (QDs). Relevant systems include self-assembled QDs of III-V or II-VI compound semiconductors (such as InGaAs and CdSe), monolayer fluctuation QDs in compound semiconductor quantum wells, and impurity centers in solids such as P-donors in silicon and nitrogen-vacancy centers in diamond. The decoherence of the electron spin qubits is discussed and various schemes for countering the decoherence problem are reviewed. We put forward designs of local nodes consisting of a few qubits which can be individually addressed and controlled. Remotely separated local nodes are connected by photonic structures (microcavities and waveguides) to form a large-scale distributed quantum system or a quantum network. The operation of the quantum network consists of optical control of a single electron spin, coupling of two spins in a local nodes, optically controlled quantum interfacing betwe...
Nonlinear Quantum Optical Springs and Their Nonclassical Properties
Institute of Scientific and Technical Information of China (English)
M.J. Faghihi; M.K. Tavassoly
2011-01-01
The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant （and so its frequency） depends on the quantum states ofanother system. Recently, it is realized that by the assumption of frequency modulation of ω to ω √1＋ μα＋α the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence or trequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized tlamiltonian of nonlinear quantum optical spring and it＇s solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed.
Quantum enhanced estimation of optical detector efficiencies
Directory of Open Access Journals (Sweden)
Barbieri Marco
2016-01-01
Full Text Available Quantum mechanics establishes the ultimate limit to the scaling of the precision on any parameter, by identifying optimal probe states and measurements. While this paradigm is, at least in principle, adequate for the metrology of quantum channels involving the estimation of phase and loss parameters, we show that estimating the loss parameters associated with a quantum channel and a realistic quantum detector are fundamentally different. While Fock states are provably optimal for the former, we identify a crossover in the nature of the optimal probe state for estimating detector imperfections as a function of the loss parameter using Fisher information as a benchmark. We provide theoretical results for on-off and homodyne detectors, the most widely used detectors in quantum photonics technologies, when using Fock states and coherent states as probes.
Nonlinear fiber optics formerly quantum electronics
Agrawal, Govind
1995-01-01
The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is
Wei, Hai-Rui; Deng, Fu-Guo
2013-07-29
We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.
Quantum optics with quantum dots in photonic wires
DEFF Research Database (Denmark)
Munsch, Mathieu; Cadeddu, Davide; Teissier, Jean
2016-01-01
We present an exploration of the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter's properties with the highest sensitivity, allowing...
Effective boson-spin model for nuclei ensemble based universal quantum memory
Song, Z; Shi, T; Sun, C P
2004-01-01
We study the collective excitation of a macroscopic ensemble of polarized nuclei fixed in a quantum dot. Under the approximately homogeneous condition that we explicitly present in this paper, this many-particle system behaves as a single mode boson interacting with the spin of a single conduction band electron confined in this quantum dot. Within this effective spin-boson system, the quantum information carried by the electronic spin can be coherently transferred into the collective bosonic mode of excitation in the ensemble of nuclei. In this sense, the collective bosonic excitation can serve as a stable quantum memory to store the quantum information of spin state of electron.
On the experimental verification of quantum complexity in linear optics
Carolan, Jacques; Meinecke, Jasmin D. A.; Shadbolt, Peter J.; Russell, Nicholas J.; Ismail, Nur; Wörhoff, Kerstin; Rudolph, Terry; Thompson, Mark G.; O'Brien, Jeremy L.; Matthews, Jonathan C. F.; Laing, Anthony
2014-08-01
Quantum computers promise to solve certain problems that are forever intractable to classical computers. The first of these devices are likely to tackle bespoke problems suited to their own particular physical capabilities. Sampling the probability distribution from many bosons interfering quantum-mechanically is conjectured to be intractable to a classical computer but solvable with photons in linear optics. However, the complexity of this type of problem means its solution is mathematically unverifiable, so the task of establishing successful operation becomes one of gathering sufficiently convincing circumstantial or experimental evidence. Here, we develop scalable methods to experimentally establish correct operation for this class of computation, which we implement for three, four and five photons in integrated optical circuits, on Hilbert spaces of up to 50,000 dimensions. Our broad approach is practical for all quantum computational architectures where formal verification methods for quantum algorithms are either intractable or unknown.
Quantum confined laser devices optical gain and recombination in semiconductors
Blood, Peter
2015-01-01
The semiconductor laser, invented over 50 years ago, has had an enormous impact on the digital technologies that now dominate so many applications in business, commerce and the home. The laser is used in all types of optical fibre communication networks that enable the operation of the internet, e-mail, voice and skype transmission. Approximately one billion are produced each year for a market valued at around $5 billion. Nearly all semiconductor lasers now use extremely thin layers of light emitting materials (quantum well lasers). Increasingly smaller nanostructures are used in the form of quantum dots. The impact of the semiconductor laser is surprising in the light of the complexity of the physical processes that determine the operation of every device. This text takes the reader from the fundamental optical gain and carrier recombination processes in quantum wells and quantum dots, through descriptions of common device structures to an understanding of their operating characteristics. It has a consistent...
Optically Measuring Force near the Standard Quantum Limit
Schreppler, Sydney; Brahms, Nathan; Botter, Thierry; Barrios, Maryrose; Stamper-Kurn, Dan M
2013-01-01
The Heisenberg uncertainty principle sets a lower bound on the sensitivity of continuous optical measurements of force. This bound, the standard quantum limit, can only be reached when a mechanical oscillator subjected to the force is unperturbed by its environment, and when measurement imprecision from photon shot-noise is balanced against disturbance from measurement backaction. We apply an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity. The optomechanically transduced response clearly demonstrates the trade-off between measurement imprecision and back-action noise. We achieve a sensitivity that is consistent with theoretical predictions for the quantum limit given the atoms' slight residual thermal disturbance and the photodetection quantum efficiency, and is a factor of 4 above the absolute standard quantum limit.
Analogies between optical and quantum mechanical angular momentum
Nienhuis, Gerard
2017-02-01
The insight that a beam of light can carry orbital angular momentum (AM) in its propagation direction came up in 1992 as a surprise. Nevertheless, the existence of momentum and AM of an electromagnetic field has been well known since the days of Maxwell. We compare the expressions for densities of AM in general three-dimensional modes and in paraxial modes. Despite their classical nature, these expressions have a suggestive quantum mechanical appearance, in terms of linear operators acting on mode functions. In addition, paraxial wave optics has several analogies with real quantum mechanics, both with the wave function of a free quantum particle and with a quantum harmonic oscillator. We discuss how these analogies can be applied. This article is part of the themed issue 'Optical orbital angular momentum'.
Bringing order through disorder: Localisation of errors in topological quantum memories
Wootton, James R
2011-01-01
The ability to reliably store quantum states is an essential element for any task in quantum information. Topological systems promise to protect quantum information by topological and energetic considerations. If undesired anyonic excitations are propagated at large distances, either through coherent or probabilistic processes, they can cause logical errors in the topologically encoded information. Here we show that Anderson localisation induced by disorder in the system can successfully protect topological quantum memories from the coherent propagation of anyons. For concreteness we employ the toric code model at zero temperature. It is known that in the absence of a magnetic field it can tolerate a finite initial density of anyonic errors. In the presence of a spurious magnetic field anyonic quantum walks are induced and the tolerable density becomes zero. We demonstrate that disorder in the couplings of the model can successfully localise anyons. This allows the topological quantum memory to tolerate a fin...
Memory cost for simulating all quantum correlations from the Peres-Mermin scenario
Fagundes, Gabriel; Kleinmann, Matthias
2017-08-01
Sequences of compatible quantum measurements can be contextual and any simulation with a classical model conforming with the quantum predictions needs to use internal memory. Kleinmann et al (2011 New J. Phys. 13 113011) showed that simulating sequences from the Peres-Mermin scenario requires at least three different internal states in order not to contradict the deterministic predictions of quantum theory. We extend this analysis to probabilistic quantum predictions and ask how much memory is required to simulate correlations generated for sequences of compatible observables by any quantum state. We find that even in this comprehensive approach only three internal states are required for a perfect simulation of quantum correlations in the Peres-Mermin scenario.
EDITORIAL The 17th Central European Workshop on Quantum Optics
Man'ko, Margarita A.
2011-02-01
Although the origin of quantum optics can be traced back to the beginning of the 20th century, when the fundamental ideas about the quantum nature of the interaction between light and matter were put forward, the splendid blossoming of this part of physics began half a century later, after the invention of masers and lasers. It is remarkable that after another half a century the tree of quantum optics is not only very strong and spreading, but all its branches continue to grow, showing new beautiful blossoms and giving very useful fruits. A reflection of this progress has been the origin and development of the series of annual events called the Central European Workshops on Quantum Optics (CEWQO). They started at the beginning of the 1990s as rather small meetings of physicists from a few countries in central-eastern Europe, but in less than two decades they have transformed into important events, gathering 100 to 200 participants from practically all European countries. Moreover, many specialists from other continents like to attend these meetings, since they provide an excellent chance to hear about the latest results and new directions of research. Regarding this, it seems worth mentioning at least some of the most interesting and important areas of quantum optics that have attracted the attention of researchers for the past two decades. One of these areas is quantum information, which over the course of time has become an almost independent area of quantum physics. But it still maintains very close ties with quantum optics. The specific parts of this area are, in particular, quantum computing, quantum communication and quantum cryptography, and the problem of quantitative description of such genuine quantum phenomena as entanglement is one of the central items in the current stream of publications. Theory and experiment related to quantum tomography have also become important to contemporary quantum optics. They are closely related to the subject of so
Realization of Shor's algorithm on an optical quantum computer
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
@@ A research team led by Prof. PAN Jianwei with the University of Science and Technology of China (USTC), CAS has been successful in performing Shor's algorithm, a quantum algorithm for factorization, in an optical quantum computer. The feat is also independently made by another team led by Andrew White from the University of Queensland in Brisbane, Australia. Both results were published in the 19 December, 2007 issue of Physics Review Newsletters.
Experimental Demonstration of a Quantum Circuit using Linear Optics Gates
Pittman, T B; Franson, J D
2004-01-01
Probabilistic quantum logic gates can be constructed using linear optical elements, ancilla photons, and post-selection based on the results of measurements. Here we describe an experimental demonstration of a simple quantum circuit that combines two exclusive-OR (XOR) logic gates of that kind. Although circuits using XOR gates are not reversible, they may still be useful in a variety of applications such as generating non-classical states of light.
Optical Telecom Networks as Weak Quantum Measurements with Postselection
Brunner, Nicolas; Acin, Antonio; Collins, Daniel Geoffrey; Gisin, Nicolas; Scarani, Valerio
2003-01-01
We show that weak measurements with post-selection, proposed in the context of the quantum theory of measurement, naturally appear in the everyday physics of fiber optics telecom networks through polarization-mode dispersion (PMD) and polarization-dependent losses (PDL). Specifically, the PMD leads to a time-resolved discrimination of polarization; the post-selection is done in the most natural way: one post-selects those photons that have not been lost because of the PDL. The quantum formali...
The role of entanglement in calibrating optical quantum gyroscopes
Kok, Pieter; Dunningham, Jacob; Ralph, Jason F.
2015-01-01
We consider the calibration of an optical quantum gyroscope by modeling two Sagnac interferometers, mounted approximately at right angles to each other. Reliable operation requires that we know the angle between the interferometers with high precision, and we show that a procedure akin to multi-position testing in inertial navigation systems can be generalized to the case of quantum interferometry. We find that while entanglement is a key resource within an individual Sagnac interferometer, i...
Quantum optics: Quiet moments in time
Bellini, Marco
2017-01-01
'Squeezed' light exhibits smaller quantum fluctuations than no light at all. Localized squeezed regions have now been produced along an infrared light wave and probed with unprecedented time resolution. See Letter p.376
Strain-optic active control for quantum integrated photonics
Humphreys, Peter C; Spring, Justin B; Moore, Merritt; Salter, Patrick S; Booth, Martin J; Kolthammer, W Steven; Walmsley, Ian A
2014-01-01
We present a practical method for active phase control on a photonic chip that has immediate applications in quantum photonics. Our approach uses strain-optic modification of the refractive index of individual waveguides, effected by a millimeter-scale mechanical actuator. The resulting phase change of propagating optical fields is rapid and polarization-dependent, enabling quantum applications that require active control and polarization encoding. We demonstrate strain-optic control of non-classical states of light in silica, showing the generation of 2-photon polarisation N00N states by manipulating Hong-Ou-Mandel interference. We also demonstrate switching times of a few microseconds, which are sufficient for silica-based feed-forward control of photonic quantum states.
Ultrafast Long-Distance Quantum Communication with Static Linear Optics
Ewert, Fabian; Bergmann, Marcel; van Loock, Peter
2016-11-01
We propose a projection measurement onto encoded Bell states with a static network of linear optical elements. By increasing the size of the quantum error correction code, both Bell measurement efficiency and photon-loss tolerance can be made arbitrarily high at the same time. As a main application, we show that all-optical quantum communication over large distances with communication rates similar to those of classical communication is possible solely based on local state teleportations using optical sources of encoded Bell states, fixed arrays of beam splitters, and photon detectors. As another application, generalizing state teleportation to gate teleportation for quantum computation, we find that in order to achieve universality the intrinsic loss tolerance must be sacrificed and a minimal amount of feedforward has to be added.
Quantum theory of superresolution for two incoherent optical point sources
Tsang, Mankei; Lu, Xiaoming
2015-01-01
We prove that Rayleigh's criterion is fundamentally irrelevant to the localization of two incoherent point sources in far-field optical imaging. This is done in two ways: (1) We derive the quantum Cram\\'er-Rao error bound for the problem under standard assumptions for thermal optical sources, and the bound shows little sign of the accuracy degradation that plagues conventional imaging when Rayleigh's criterion is violated. (2) We propose a linear optical measurement method called spatial-mode demultiplexing (SPADE) that can attain the quantum bound for separation estimation regardless of the distance between the sources, a task conventional methods perform poorly for close sources. These results demonstrate that Rayleigh's criterion is nothing but a technicality specific to conventional imaging, and cleverer quantum measurements can locate two incoherent sources with arbitrary separation almost as accurately as conventional methods do for isolated sources.
Quantum cloning with an optical fiber amplifier
Fasel, S; Ribordy, G; Scarani, V; Zbinden, H; Fasel, Sylvain; Gisin, Nicolas; Ribordy, Gregoire; Scarani, Valerio; Zbinden, Hugo
2002-01-01
It has been shown theoretically that a light amplifier working on the physical principle of stimulated emission should achieve optimal quantum cloning of the polarization state of light. We demonstrate close-to-optimal universal quantum cloning of polarization in a standard fiber amplifier for telecom wavelengths. For cloning $1\\to 2$ we find a fidelity of 0.82, the optimal value being ${5/6}=0.83$.
Germanium quantum dots: Optical properties and synthesis
Heath, James R.; Shiang, J. J.; Alivisatos, A. P.
1994-01-01
Three different size distributions of Ge quantum dots (>~200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Col...
Memory effect in the upper bound of the heat flux induced by quantum fluctuations
Koide, T.
2016-10-01
Thermodynamic behaviors in a quantum Brownian motion coupled to a classical heat bath is studied. We then define a heat operator by generalizing the stochastic energetics and show the energy balance (first law) and the upper bound of the expectation value of the heat operator (second law). We further find that this upper bound depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can be qualitatively modified in quantum thermodynamics.
Protecting a Diamond Quantum Memory by Charge State Control.
Pfender, Matthias; Aslam, Nabeel; Simon, Patrick; Antonov, Denis; Thiering, Gergő; Burk, Sina; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Fedder, Helmut; Meijer, Jan; Garrido, Jose A; Gali, Adam; Teraji, Tokuyuki; Isoya, Junichi; Doherty, Marcus William; Alkauskas, Audrius; Gallo, Alejandro; Grüneis, Andreas; Neumann, Philipp; Wrachtrup, Jörg
2017-09-11
In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and VSi-centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability.
De Martini, Francesco
2012-01-01
The present work reports on an extended research endeavor focused on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. As it is well known, this intriguing, fundamental quantum condition is at the core of a famous argument conceived by Erwin Schroedinger, back in 1935. The main experimental challenge to the actual realization of this object resides generally on the unavoidable and uncontrolled interactions with the environment, i.e. the decoherence leading to the cancellation of any evidence of the quantum features associated with the macroscopic system. The present scheme is based on a nonlinear process, the "quantum injected optical parametric amplification", that maps by a linearized cloning process the quantum coherence of a single - particle state, i.e. a Micro - qubit, into a Macro - qubit, consisting in a large number M of photons in quantum superposition. Since the adopted scheme was found resilient to decoherence, the MQS\\ demonstration wa...
Capacity of a Nonlinear Optical Channel with Finite Memory
Agrell, Erik; Durisi, Giuseppe; Karlsson, Magnus
2014-01-01
The channel capacity of a nonlinear, dispersive fiber-optic link is revisited. To this end, the popular Gaussian noise (GN) model is extended with a parameter to account for the finite memory of realistic fiber channels. This finite-memory model is harder to analyze mathematically but, in contrast to previous models, it is valid also for nonstationary or heavy-tailed input signals. For uncoded transmission and standard modulation formats, the new model gives the same results as the regular GN model when the memory of the channel is about 10 symbols or more. These results confirm previous results that the GN model is accurate for uncoded transmission. However, when coding is considered, the results obtained using the finite-memory model are very different from those obtained by previous models, even when the channel memory is large. In particular, the peaky behavior of the channel capacity, which has been reported for numerous nonlinear channel models, appears to be an artifact of applying models derived for i...
Gigahertz optical memory with up to 20 dB gain via molecular quenching in caesium vapour
Thomas, S E; Kaczmarek, K T; Qiu, C; Brecht, B; Feizpour, A; Ledingham, P M; Walmsley, I A; Nunn, J; Saunders, D J
2016-01-01
Raman interactions in alkali vapours are used in applications such as atomic clocks, optical signal processing, generation of squeezed light and Raman quantum memories for temporal multiplexing. To achieve a strong interaction the alkali ensemble needs both a large optical depth and a high level of spin-polarisation. We implement a technique known as quenching using a molecular buffer gas which allows near-perfect spin-polarisation of over 99.5% in caesium vapour at high optical depths of up to $\\sim 10^5$; a factor of 4 higher than can be achieved without quenching. We use this system to explore efficient light storage with high gain in a GHz bandwidth Raman memory.
Teaching Quantum Mechanical Commutation Relations via an Optical Experiment
Billur, A Alper; Bursal, Murat
2015-01-01
The quantum mechanical commutation relations, which are directly related to the Heisenberg uncertainty principle, have a crucial importance for understanding the quantum mechanics of students. During undergraduate level courses, the operator formalisms are generally given theoretically and it is documented that these abstract formalisms are usually misunderstood by the students. Based on the idea that quantum mechanical phenomena can be investigated via geometric optical tools, this study aims to introduce an experiment, where the quantum mechanical commutation relations are represented in a concrete way to provide students an easy and permanent learning. The experimental tools are chosen to be easily accessible and economic. The experiment introduced in this paper can be done with students or used as a demonstrative experiment in laboratory based or theory based courses requiring quantum physics content; particularly in physics, physics education and science education programs.
Quantum key distribution in 50-km optic fibers
Institute of Scientific and Technical Information of China (English)
ZHOU Chunyuan; WU Guang; CHEN Xiuliang; LI Hexiang; ZENG Heping
2004-01-01
In this paper, we report our recent experiment of long-distance fiber-optic "plug and play" quantum cryptography system wherein a Faraday-Mirror was used to compensate for the polarization mode dispersion and phase drifts. The pulse-biased coincident gate single-photon detection technique was used to effectively reduce the noises from the detrimental Rayleigh backscattering. We have achieved a quantum key distribution system with the working distance of 50 km, which was tested to be stable in more than 6 hours' continuous work. And we also demonstrated the practical quantum communication in a local area network using the TCP protocol.
Classical and quantum interference in multiband optical Bloch oscillations
Longhi, S
2010-01-01
Classical and quantum interference of light propagating in arrays of coupled waveguides and undergoing multiband optical Bloch oscillations (BOs) with negligible Zener tunneling is theoretically investigated. In particular, it is shown that Mach-Zehnder-like interference effects spontaneously arise in multiband BOs owing to beam splitting and subsequent beam recombination occurring in one BO cycle. As a noteworthy example of quantum interference, we discuss the doubling of interference fringes in photon counting rates for a correlated photon pair undergoing two-band BOs, a phenomenon analogous to the manifestation of the de Broglie wavelength of an entangled biphoton state observed in quantum Mach-Zehnder interferometry.
PT-symmetric quantum oscillator in an optical cavity
Longhi, Stefano
2016-01-01
The quantum harmonic oscillator with parity-time ($\\mathcal{PT}$) symmetry, obtained from the ordinary (Hermitian) quantum harmonic oscillator by an imaginary displacement of the spatial coordinate, provides an important and exactly-solvable model to investigate non-Hermitian extension of the Ehrenfest theorem. Here it is shown that transverse light dynamics in an optical resonator with off-axis longitudinal pumping can emulate a $\\mathcal{PT}$-symmetric quantum harmonic oscillator, providing an experimentally accessible system to investigate non-Hermitian coherent state propagation.
Continuous variable quantum communication with bright entangled optical beams
Institute of Scientific and Technical Information of China (English)
XIE Chang-de; ZHANG Jing; PAN Qing; JIA Xiao-jun; PENG Kun-chi
2006-01-01
In this paper,we briefly introduce the basic concepts and protocols of continuous variable quantum communication,and then summarize the experimental researches accomplished by our group in this field.The main features of quantum communication systems used in our experiments are:(1) The bright entangled optical beams with the anticorrelated amplitude quadratures and the correlated phase quadratures that serve as the entanglement resources and (2) The Bell-state direct detection systems are utilized in the measurements of quantum entanglement and transmitted signals instead of the usually balanced homodyne detectors.
Silicon nanowire charge-trap memory incorporating self-assembled iron oxide quantum dots.
Huang, Ruo-Gu; Heath, James R
2012-11-19
Charge-trap non-volatile memory devices based upon the precise integration of quantum dot storage elements with silicon nanowire field-effect transistors are described. Template-assisted assembly yields an ordered array of FeO QDs within the trenches that separate highly aligned SiNWs, and injected charges are reversibly stored via Fowler-Nordheim tunneling into the QDs. Stored charges shift the transistor threshold voltages, providing the basis for a memory device. Quantum dot size is found to strongly influence memory performance metrics.
Editorial . Quantum fluctuations and coherence in optical and atomic structures
Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna
2003-03-01
From simple interference fringes, over molecular wave packets, to nonlinear optical patterns - the fundamental interaction between light and matter leads to the formation of structures in many areas of atomic and optical physics. Sophisticated technology in experimental quantum optics, as well as modern computational tools available to theorists, have led to spectacular achievements in the investigation of quantum structures. This special issue is dedicated to recent developments in this area. It presents a selection of examples where quantum dynamics, fluctuations, and coherence generate structures in time or in space or where such structures are observed experimentally. The examples range from coherence phenomena in condensed matter, over atoms in optical structures, entanglement in light and matter, to quantum patterns in nonlinear optics and quantum imaging. The combination of such seemingly diverse subjects formed the basis of a successful European TMR network, "Quantum Structures" (visit http://cnqo.phys.strath.ac.uk/~gianluca/QSTRUCT/). This special issue partly re.ects the results and collaborations of the network, going however well beyond its scope by including contributions from a global community and from many related topics which were not addressed directly in the network. The aim of this issue is to present side by side these di.erent topics, all of which are loosely summarized under quantum structures, to highlight their common aspects, their di.erences, and the progress which resulted from the mutual exchange of results, methods, and knowledge. To guide the reader, we have organized the articles into subsections which follow a rough division into structures in material systems and structures in optical .elds. Nevertheless, in the following introduction we point out connections between the contributions which go beyond these usual criteria, thus highlighting the truly interdisciplinary nature of quantum structures. Much of the progress in atom optics
Quantum-dot based nanothermometry in optical plasmonic recording media
Energy Technology Data Exchange (ETDEWEB)
Maestro, Laura Martinez [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Autónoma de Madrid, Madrid 28049 (Spain); Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Zhang, Qiming; Li, Xiangping; Gu, Min [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Jaque, Daniel [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias Físicas, Universidad Autónoma de Madrid, Madrid 28049 (Spain)
2014-11-03
We report on the direct experimental determination of the temperature increment caused by laser irradiation in a optical recording media constituted by a polymeric film in which gold nanorods have been incorporated. The incorporation of CdSe quantum dots in the recording media allowed for single beam thermal reading of the on-focus temperature from a simple analysis of the two-photon excited fluorescence of quantum dots. Experimental results have been compared with numerical simulations revealing an excellent agreement and opening a promising avenue for further understanding and optimization of optical writing processes and media.
Optical telecom networks as weak quantum measurements with post- selection
Brunner, N; Collins, D; Gisin, Nicolas; Scarani, V; Acin, Antonio; Brunner, Nicolas; Collins, Daniel; Gisin, Nicolas; Scarani, Valerio
2003-01-01
We show that weak measurements with post-selection, proposed in the context of the quantum theory of measurement, naturally appear in the everyday physics of fiber optics telecom networks through polarization-mode dispersion (PMD) and polarization-dependent losses (PDL). Specifically, the PMD leads to a time-resolved discrimination of polarization; the post-selection is done in the most natural way: one post-selects those photons that have not been lost because of the PDL. The quantum formalism is shown to simplify the calculation of optical networks in the telecom limit of weak PMD.
Optical telecom networks as weak quantum measurements with postselection.
Brunner, Nicolas; Acín, Antonio; Collins, Daniel; Gisin, Nicolas; Scarani, Valerio
2003-10-31
We show that weak measurements with postselection, proposed in the context of the quantum theory of measurement, naturally appear in the everyday physics of fiber optics telecom networks through polarization-mode dispersion (PMD) and polarization-dependent losses (PDL). Specifically, the PMD leads to a time-resolved discrimination of polarization; the postselection is done in the most natural way: one postselects those photons that have not been lost because of the PDL. The quantum formalism is shown to simplify the calculation of optical networks in the telecom limit of weak PMD.
Static gain saturation in quantum dot semiconductor optical amplifiers.
Meuer, Christian; Kim, Jungho; Laemmlin, Matthias; Liebich, Sven; Capua, Amir; Eisenstein, Gadi; Kovsh, Alexey R; Mikhrin, Sergey S; Krestnikov, Igor L; Bimberg, Dieter
2008-05-26
Measurements of saturated amplified spontaneous emission-spectra of quantum dot semiconductor optical amplifiers demonstrate efficient replenishment of the quantum-dot ground state population from excited states. This saturation behavior is perfectly modeled by a rate equation model. We examined experimentally the dependence of saturation on the drive current and the saturating optical pump power as well as on the pump wavelength. A coherent noise spectral hole is observed with which we assess dynamical properties and propose optimization of the SOA operating parameters for high speed applications.
Topological Quantum Optics in Two-Dimensional Atomic Arrays
Perczel, J.; Borregaard, J.; Chang, D. E.; Pichler, H.; Yelin, S. F.; Zoller, P.; Lukin, M. D.
2017-07-01
We demonstrate that two-dimensional atomic emitter arrays with subwavelength spacing constitute topologically protected quantum optical systems where the photon propagation is robust against large imperfections while losses associated with free space emission are strongly suppressed. Breaking time-reversal symmetry with a magnetic field results in gapped photonic bands with nontrivial Chern numbers and topologically protected, long-lived edge states. Due to the inherent nonlinearity of constituent emitters, such systems provide a platform for exploring quantum optical analogs of interacting topological systems.
Optical generation and control of quantum coherence in semiconductor nanostructures
Slavcheva, Gabriela
2010-01-01
The unprecedented control of coherence that can be exercised in quantum optics of atoms and molecules has stimulated increasing efforts in extending it to solid-state systems. One motivation to exploit the coherent phenomena comes from the emergence of the quantum information paradigm, however many more potential device applications ranging from novel lasers to spintronics are all bound up with issues in coherence. The book focuses on recent advances in the optical control of coherence in excitonic and polaritonic systems as model systems for the complex semiconductor dynamics towards the goal
Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system
Energy Technology Data Exchange (ETDEWEB)
Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios, E-mail: bask@upatras.gr
2014-07-18
Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system have been theoretically studied. In general, we find that the structure parameters of the coupled system significantly affect the optical susceptibilities. The enhancement of the coupling effects between the dot and ring is found to increase considerably the optical susceptibilities and redshift drastically the transition energies. Comparing to the linear susceptibility, the nonlinear optical susceptibility is found to be more sensitive to the variation of the structure parameters. A comprehensive analysis of the electron probability density movement with respect to the modification of the structure parameters is provided, which offers a unique perspective of the ground-state localization. - Highlights: • Optical susceptibilities in a quantum-dot–quantum-ring system are studied. • The structure parameters significantly affect the optical susceptibilities. • The enhancement of the coupling effects increases the optical susceptibilities. • The nonlinear susceptibility is more sensitive to the change in structure parameters. • A comprehensive analysis of the electron probability density movement is provided.
Optical control of the spin of a magnetic atom in a semiconductor quantum dot
Directory of Open Access Journals (Sweden)
Besombes L.
2015-04-01
Full Text Available The control of single spins in solids is a key but challenging step for any spin-based solid-state quantumcomputing device. Thanks to their expected long coherence time, localized spins on magnetic atoms in a semiconductor host could be an interesting media to store quantum information in the solid state. Optical probing and control of the spin of individual or pairs of Manganese (Mn atoms (S = 5/2 have been obtained in II-VI and IIIV semiconductor quantum dots during the last years. In this paper, we review recently developed optical control experiments of the spin of an individual Mn atoms in II-VI semiconductor self-assembled or strain-free quantum dots (QDs.We first show that the fine structure of the Mn atom and especially a strained induced magnetic anisotropy is the main parameter controlling the spin memory of the magnetic atom at zero magnetic field. We then demonstrate that the energy of any spin state of a Mn atom or pairs of Mn atom can be independently tuned by using the optical Stark effect induced by a resonant laser field. The strong coupling with the resonant laser field modifies the Mn fine structure and consequently its dynamics.We then describe the spin dynamics of a Mn atom under this strong resonant optical excitation. In addition to standard optical pumping expected for a resonant excitation, we show that the Mn spin population can be trapped in the state which is resonantly excited. This effect is modeled considering the coherent spin dynamics of the coupled electronic and nuclear spin of the Mn atom optically dressed by a resonant laser field. Finally, we discuss the spin dynamics of a Mn atom in strain-free QDs and show that these structures should permit a fast optical coherent control of an individual Mn spin.
Experimentally modeling stochastic processes with less memory by the use of a quantum processor.
Palsson, Matthew S; Gu, Mile; Ho, Joseph; Wiseman, Howard M; Pryde, Geoff J
2017-02-01
Computer simulation of observable phenomena is an indispensable tool for engineering new technology, understanding the natural world, and studying human society. However, the most interesting systems are often so complex that simulating their future behavior demands storing immense amounts of information regarding how they have behaved in the past. For increasingly complex systems, simulation becomes increasingly difficult and is ultimately constrained by resources such as computer memory. Recent theoretical work shows that quantum theory can reduce this memory requirement beyond ultimate classical limits, as measured by a process' statistical complexity, C. We experimentally demonstrate this quantum advantage in simulating stochastic processes. Our quantum implementation observes a memory requirement of Cq = 0.05 ± 0.01, far below the ultimate classical limit of C = 1. Scaling up this technique would substantially reduce the memory required in simulations of more complex systems.
Experimentally modeling stochastic processes with less memory by the use of a quantum processor
Palsson, Matthew S.; Gu, Mile; Ho, Joseph; Wiseman, Howard M.; Pryde, Geoff J.
2017-01-01
Computer simulation of observable phenomena is an indispensable tool for engineering new technology, understanding the natural world, and studying human society. However, the most interesting systems are often so complex that simulating their future behavior demands storing immense amounts of information regarding how they have behaved in the past. For increasingly complex systems, simulation becomes increasingly difficult and is ultimately constrained by resources such as computer memory. Recent theoretical work shows that quantum theory can reduce this memory requirement beyond ultimate classical limits, as measured by a process’ statistical complexity, C. We experimentally demonstrate this quantum advantage in simulating stochastic processes. Our quantum implementation observes a memory requirement of Cq = 0.05 ± 0.01, far below the ultimate classical limit of C = 1. Scaling up this technique would substantially reduce the memory required in simulations of more complex systems. PMID:28168218
Quantum optical feedback control for creating strong correlations in many-body systems
Mazzucchi, Gabriel; Ivanov, Denis A; Mekhov, Igor B
2016-01-01
Light enables manipulating many-body states of matter, and atoms trapped in optical lattices is a prominent example. However, quantum properties of light are completely neglected in all quantum gas experiments. Extending methods of quantum optics to many-body physics will enable phenomena unobtainable in classical optical setups. We show how using the quantum optical feedback creates strong correlations in bosonic and fermionic systems. It balances two competing processes, originating from different fields: quantum backaction of weak optical measurement and many-body dynamics, resulting in stabilized density waves, antiferromagnetic and NOON states. Our approach is extendable to other systems promising for quantum technologies.
Quantum phase gate based on electromagnetically induced transparency in optical cavities
Borges, Halyne S.; Villas-Bôas, Celso J.
2016-11-01
We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.
QuantEYE: The Quantum Optics Instrument for OWL
Dravins, D; Fosbury, R A E; Naletto, G; Nilsson, R; Occhipinti, T; Tamburini, F; Uthas, H; Zampieri, L
2005-01-01
QuantEYE is designed to be the highest time-resolution instrument on ESO:s planned Overwhelmingly Large Telescope, devised to explore astrophysical variability on microsecond and nanosecond scales, down to the quantum-optical limit. Expected phenomena include instabilities of photon-gas bubbles in accretion flows, p-mode oscillations in neutron stars, and quantum-optical photon bunching in time. Precise timescales are both variable and unknown, and studies must be of photon-stream statistics, e.g., their power spectra or autocorrelations. Such functions increase with the square of the intensity, implying an enormously increased sensitivity at the largest telescopes. QuantEYE covers the optical, and its design involves an array of photon-counting avalanche-diode detectors, each viewing one segment of the OWL entrance pupil. QuantEYE will work already with a partially filled OWL main mirror, and also without [full] adaptive optics.
Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures
Longhi, Stefano
2011-01-01
Spatial and/or temporal propagation of light waves in periodic optical structures offers a rather unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based on either spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair-production, the Dirac oscillator, the relativistic Kronig-Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.
Voltage controlled optics of a monolayer semiconductor quantum emitter
Chakraborty, Chitraleema; Goodfellow, Kenneth; Kinnischtzke, Laura; Vamivakas, Nick; University of Rochester Team
2015-03-01
Two-dimensional atomically thin materials are being actively investigated for next generation optoelectronic devices. Particularly exciting are transition metal dichalcogenides (TMDC) since these materials exhibit a band gap, and support valley specific exciton mediated optical transitions. In this work we report the observation of single photon emission in the TMDC tungsten diselenide. We present magneto-optical spectroscopy results and demonstrate voltage controlled photoluminescence of these localized quantum emitters.
Superconducting single-photon detectors for integrated quantum optics
Energy Technology Data Exchange (ETDEWEB)
Kahl, Oliver
2016-01-29
This thesis reports on the implementation and characterization of a fully integrated single-photon detector. Several detector circuits are realized and it is shown that the detectors exhibit supreme detection performance over a wide optical spectrum. The detectors' scalability is showcased by the parallel operation of multiple detectors within a single integrated circuit. These demonstrations are essential for future developments in integrated quantum optics.
Generation of a macroscopic entangled coherent state using quantum memories in circuit QED
Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco
2016-01-01
W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. PMID:27562055
pyCTQW: A continuous-time quantum walk simulator on distributed memory computers
Izaac, Josh A.; Wang, Jingbo B.
2015-01-01
In the general field of quantum information and computation, quantum walks are playing an increasingly important role in constructing physical models and quantum algorithms. We have recently developed a distributed memory software package pyCTQW, with an object-oriented Python interface, that allows efficient simulation of large multi-particle CTQW (continuous-time quantum walk)-based systems. In this paper, we present an introduction to the Python and Fortran interfaces of pyCTQW, discuss various numerical methods of calculating the matrix exponential, and demonstrate the performance behavior of pyCTQW on a distributed memory cluster. In particular, the Chebyshev and Krylov-subspace methods for calculating the quantum walk propagation are provided, as well as methods for visualization and data analysis.
Optical anisotropy in vertically coupled quantum dots
DEFF Research Database (Denmark)
Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan;
1999-01-01
We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....
Quantum optics of spatial transformation media
Leonhardt, U
2006-01-01
We show how transformation media [J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006); U. Leonhardt and T. G. Philbin, cond-mat/0607418] map quantum electromagnetism in physical space to QED in empty flat space. As a consequence, the Casimir force of left-handed dielectric media may become repulsive and may possibly levitate ultra-thin metal foils.
Minimal memory requirements for pearl necklace encoders of quantum convolutional codes
Houshmand, Monireh; Wilde, Mark M
2010-01-01
One of the major goals in quantum computer science is to reduce the overhead associated with the implementation of quantum computers, and inevitably, routines for quantum error correction will account for most of this overhead. A particular technique for quantum error correction that may be useful in the outer layers of a concatenated scheme for fault tolerance is quantum convolutional coding. The encoder for a quantum convolutional code has a representation as a convolutional encoder or as a "pearl necklace" encoder. In the pearl necklace representation, it has not been particularly clear in the research literature how much quantum memory such an encoder would require for implementation. Here, we offer an algorithm that answers this question. The algorithm first constructs a weighted, directed acyclic graph where each vertex of the graph corresponds to a gate string in the pearl necklace encoder, and each path through the graph represents a non-commutative path through gates in the encoder. We show that the ...
DEFF Research Database (Denmark)
Lassen, Mikael Østergaard; Sabuncu, Metin; Huck, Alexander
2010-01-01
A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information t...... is generally the strongest limitation to quantum communication, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances.......A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information...... technologies, it is believed that quantum error-correcting code will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Our quantum code is based...
Nonlinear carrier dynamics in a quantum dash optical amplifier
DEFF Research Database (Denmark)
Hansen, Per Lunnemann; Ek, Sara; Yvind, Kresten
2012-01-01
Results of experimental pump-probe spectroscopy of a quantum dash optical amplifier biased at transparency are presented. Using strong pump pulses we observe a competition between free carrier absorption and two-photon induced stimulated emission that can have drastic effects on the transmission ...
Generation of optical coherent state superpositions for quantum information processing
DEFF Research Database (Denmark)
Tipsmark, Anders
2012-01-01
I dette projektarbejde med titlen “Generation of optical coherent state superpositions for quantum information processing” har målet været at generere optiske kat-tilstande. Dette er en kvantemekanisk superpositions tilstand af to koherente tilstande med stor amplitude. Sådan en tilstand er...
Electrical versus optical pumping of quantum dot amplifiers
DEFF Research Database (Denmark)
Berg, Tommy Winther; Bischoff, Svend; Mørk, Jesper
2001-01-01
The influence of the pumping mechanism for the dynamical properties of quantum dot amplifiers is investigated for 10, 40 and 160 GHz signals. A fast response is predicted in the case of optical pumping in the wetting layer (WL). The combination of fast relaxation and capture times and the presence...
Quantum phase transitions in low-dimensional optical lattices
Di Liberto, M.F.
2015-01-01
In this thesis, we discuss quantum phase transitions in low-dimensional optical lattices, namely one- and two-dimensional lattices. The dimensional confinement is realized in experiments by suppressing the hopping in the extra dimensions through a deep potential barrier that prevents the atoms to tu
Modelling exciton–phonon interactions in optically driven quantum dots
DEFF Research Database (Denmark)
Nazir, Ahsan; McCutcheon, Dara
2016-01-01
We provide a self-contained review of master equation approaches to modelling phonon effects in optically driven self-assembled quantum dots. Coupling of the (quasi) two-level excitonic system to phonons leads to dissipation and dephasing, the rates of which depend on the excitation conditions...
Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers
DEFF Research Database (Denmark)
Poel, Mike van der; Hvam, Jørn Märcher
2007-01-01
We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...
Quantum optical ABCD theorem in two-mode case
Institute of Scientific and Technical Information of China (English)
Fan Hong-Yi; Hu Li-Yun
2008-01-01
By introducing the entangled Fresnel operator (EFO) this paper demonstrates that there exists ABCD theorem for two-mode entangled case in quantum optics.The canonical operator method as mapping of ray-transfer ABCD matrix is explicitly shown by EFO's normally ordered expansion through the coherent state representation and the technique of integration within an ordered product of operators.
Quantum correlation in degenerate optical parametric oscillators with mutual injections
Takata, Kenta
2015-01-01
We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive $P$ representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections are simulated, and their quantum states are investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes $\\hat{p}$ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, and the entanglement between the intracavity subharmonic fields. When with a small loss of the injection path, each oscillator around the phase transition point forms macroscopic superposition for a small pump noise. It suggests that the low-loss injection path works as a sq...
Non-Markovian Quantum Evolution: Time-Local Generators and Memory Kernels
Chruściński, Dariusz; Należyty, Paweł
2016-06-01
In this paper we provide a basic introduction to the topic of quantum non-Markovian evolution presenting both time-local and memory kernel approach to the evolution of open quantum systems. We start with the standard notion of a classical Markovian stochastic process and generalize it to classical Markovian stochastic evolution which in turn becomes a starting point of the quantum setting. Our approach is based on the notion of P-divisible, CP-divisible maps and their refinements to k-divisible maps. Basic methods enabling one to detect non-Markovianity of the quantum evolution are also presented. Our analysis is illustrated by several simple examples.
Memory Effect in Upper Bound of Heat Flux Induced by Quantum Fluctuations
Koide, T
2016-01-01
We develop a model of quantum open systems as a quantum Brownian motion coupled to a classical heat bath by introducing a mathematical definition of operator differentials. We then define a heat operator by extending the stochastic energetics and show that this operator satisfies properties corresponding to the first and second laws in thermodynamics. We further find that the upper bound of the heat flux depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can be qualitatively modified in quantum thermodynamics.
Quantum control study of ultrafast optical responses in semiconductor quantum dot devices.
Huang, Jung Y; Lin, Chien Y; Liu, Wei-Sheng; Chyi, Jen-Inn
2014-12-15
Two quantum control spectroscopic techniques were applied to study InAs quantum dot (QD) devices, which contain different strain-reducing layers. By adaptively control light matter interaction, a delayed resonant response from the InAs QDs was found to be encoded into the optimal phase profile of ultrafast optical pulse used. We verified the delayed resonant response to originate from excitons coupled to acoustic phonons of InAs QDs with two-dimensional coherent spectroscopy. Our study yields valuable dynamical information that can deepen our understanding of the coherent coupling process of exciton in the quantum-confined systems.
Time-dependent fractional dynamics with memory in quantum and economic physics
Tarasov, Vasily E.; Tarasova, Valentina V.
2017-08-01
Fractional dynamics of open quantum systems and sectors of national economies, where the parameters depend on time, are discussed. We show that the quantum and economic processes can demonstrate the same dynamic behavior caused by effects of power-law fading memory. In this paper, we propose generalizations of time-ordered exponential (T-exponential) and time-ordered product (T-product) for processes with power-lawmemory. The expressions of time-ordered exponential with memory and corresponding generalization time-ordered product are derived by using matrix fractional differential equations. In quantum physics, we consider equations of N-level open quantum system with memory, quantum oscillator with friction and memory. In economic physics (econophysics), we use equations of dynamic intersectoral model with power-law memory, where the matrix of direct material costs and the matrix of incremental capital intensity of production depend on time. The solutions of these equations with derivatives of non-integer orders are suggested.
Optically Driven Spin Based Quantum Dots for Quantum Computing
2008-01-01
a), no deco - herence or inhomogeneous broadening is present (T−12 = σ = 0); In (b), T2 = 200 ns but σ = 0; In (c), T2 = 200 ns and σ−1 = 10 ns. (d...processes involves at least two orders of optical field and hole-burning two more. The state-of-the- art spec- troscopy already has the ultrahigh resolution
The Quantum Jump Approach to Dissipative Dynamics in Quantum Optics
Plenio, M B
1998-01-01
Dissipation, the irreversible loss of energy and coherence, from a microsystem, is the result of coupling to a much larger macrosystem (or reservoir) which is so large that one has no chance of keeping track of all of its degrees of freedom. The microsystem evolution is then described by tracing over the reservoir states, resulting in an irreversible decay as excitation leaks out of the initially excited microsystems into the outer reservoir environment. Earlier treatments of this dissipation described an ensemble of microsystems using density matrices, either in Schroedinger picture with Master equations, or in Heisenberg picture with Langevin equations. The development of experimental techniques to study single quantum systems (for example single trapped ions, or cavity radiation field modes) has stimulated the construction of theoretical methods to describe individual realizations conditioned on a particular observation record of the decay channel, in the environment. These methods, variously described as ...
Linear optical quantum computing in a single spatial mode.
Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A
2013-10-11
We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.
Physics Colloquium: The optical route to quantum information processing
Université de Genève
2011-01-01
Geneva University Physics Department 24, Quai Ernest Ansermet CH-1211 Geneva 4 Monday 11 April 2011 17h00 - Ecole de Physique, Auditoire Stückelberg The optical route to quantum information processing Prof. Terry Rudolph/Imperial College, London Photons are attractive as carriers of quantum information both because they travel, and can thus transmit information, but also because of their good coherence properties and ease in undergoing single-qubit manipulations. The main obstacle to their use in information processing is inducing an effective interaction between them in order to produce entanglement. The most promising approach in photon-based information processing architectures is so-called measurement-based quantum computing. This relies on creating upfront a multi-qubit highly entangled state (the cluster state) which has the remarkable property that, once prepared, it can be used to perform quantum computation by making only single qubit measurements. In this talk I will discuss generically the...
Losev, A. S.; Tikhonov, K. S.; Golubeva, T. Yu; Golubev, Yu M.
2016-10-01
We have considered theoretically the feasibility of broadband quantum memory based on the resonant tripod-type atomic configuration. In this case, the writing of a signal field is carried out simultaneously into two channels, and characterized by an excitation of two spin waves of the atomic ensemble. With simultaneous read out from both channels, quantum properties of the original signal are mapped onto the retrieval pulse no worse than in the case of memory based on a Λ-type atomic configuration. At the same time new possibilities are opened up for the manipulation of quantum states associated with sequential reading out (and/or sequential writing) of signal pulses. For example, a pulse in the squeezed state is converted into two partially entangled pulses with partially squeezed quadratures. Alternatively, two independent signal pulses with orthogonally squeezed quadratures can be converted into two entangled pulses.
Examples of minimal-memory, non-catastrophic quantum convolutional encoders
Wilde, Mark M; Hosseini-Khayat, Saied
2010-01-01
One of the most important open questions in the theory of quantum convolutional coding is to determine a minimal-memory, non-catastrophic, polynomial-depth convolutional encoder for an arbitrary quantum convolutional code. Here, we present a technique that finds quantum convolutional encoders with such desirable properties for several example quantum convolutional codes (an exposition of our technique in full generality will appear elsewhere). We first show how to encode the well-studied Forney-Grassl-Guha (FGG) code with an encoder that exploits just one memory qubit (the former Grassl-Roetteler encoder requires 15 memory qubits). We then show how our technique can find an online decoder corresponding to this encoder, and we also detail the operation of our technique on a different example of a quantum convolutional code. Finally, the reduction in memory for the FGG encoder makes it feasible to simulate the performance of a quantum turbo code employing it, and we present the results of such simulations.
Quantum Magneto-Optics in Graphene
Directory of Open Access Journals (Sweden)
Leonid Falkovsky
2015-01-01
Full Text Available The optical conductivity of graphene in quantizing magnetic fields is studied. Both dynamical conductivities, longitudinal and Hall’s, are analytically evaluated. The conductivity peaks are explained in terms of electron transitions. The optical transitions obey the selection rule with Δn = 1 for the Landau number n. The light transmission and Faraday rotation in the quantizing magnetic fields are calculated.
On the Polarization of non-Guassian optical quantum field: higher-order optical-polarization
Singh, Ravi S
2013-01-01
Polarization of light signifies transversal, anisotropic and asymmetrical statistical property of electromagnetic radiation about direction of propagation. Traditionally, optical-polarization is characterized by Stokes theory susceptible to be insufficient in assessing polarization structure of optical quantum fields and, also, does not decipher twin characteristic polarization parameters (ratio of real amplitudes and difference in phases). An alternative way, in spirit of classical description of optical-polarization, is introduced which can be generalized to deal higher-order polarization of quantum light, particularly, prepared in non-Guassian Schrodinger Cat or Cat-like states and entangled bi-modal coherent states. On account of pseudo mono-modal or multi-modal nature of such optical quantum field, higher-order polarization is seen to be highly sensitive to the basis of description.
Polarization-Sensitive Quantum Optical Coherence Tomography: Experiment
Booth, Mark C; Teich, Malvin Carl
2010-01-01
Polarization-sensitive quantum optical coherence tomography (PS-QOCT) makes use of a Type-II twin-photon light source for carrying out optical sectioning with polarization sensitivity. A BBO nonlinear optical crystal pumped by a Ti:sapphire psec-pulsed laser is used to confirm the theoretical underpinnings of this imaging paradigm. PS-QOCT offers even-order dispersion cancellation with simultaneous access to the group-velocity dispersion characteristics of the interstitial medium between the reflecting surfaces of the sample.
A Monolithic Filter Cavity for Experiments in Quantum Optics
Palittapongarnpim, Pantita; Lvovsky, A I
2012-01-01
By applying a high-reflectivity dielectric coating on both sides of a commercial plano-convex lens, we produce a stable monolithic Fabry-Perot cavity suitable for use as a narrow band filter in quantum optics experiments. The resonant frequency is selected by means of thermal expansion. Owing to the long term mechanical stability, no optical locking techniques are required. We characterize the cavity performance as an optical filter, obtaining a 45 dB suppression of unwanted modes while maintaining a transmission of 60%.
Fiber-Optic Sources of Quantum Entanglement
Kumar, P; Fiorentino, M; Voss, P L; Sharping, J E; Barbosa, G A
2002-01-01
We present a fiber-based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1.5$\\mu$m band of standard telecommunication fiber. Quantum-correlated signal and idler photon pairs are produced when a nonlinear-fiber Sagnac interferometer is pumped in the anomalous-dispersion region of the fiber. Recently, we have demonstrated nonclassical properties of such photon pairs by using Geiger-mode InGaAs/InP avalanche photodiodes. Polarization entanglement in the photon pairs can be created by pumping the Sagnac interferometer with two orthogonally polarized pulses. In this case the parametrically scattered signal-idler photons yield biphoton interference with $>$90% visibility in coincidence detection, while no interference is observed in direct detection of either the signal or the idler photons.
High speed optical quantum random number generation.
Fürst, Martin; Weier, Henning; Nauerth, Sebastian; Marangon, Davide G; Kurtsiefer, Christian; Weinfurter, Harald
2010-06-07
We present a fully integrated, ready-for-use quantum random number generator (QRNG) whose stochastic model is based on the randomness of detecting single photons in attenuated light. We show that often annoying deadtime effects associated with photomultiplier tubes (PMT) can be utilized to avoid postprocessing for bias or correlations. The random numbers directly delivered to a PC, generated at a rate of up to 50 Mbit/s, clearly pass all tests relevant for (physical) random number generators.
Optical analogue of 2D heteronuclear double-quantum NMR
Tollerud, Jonathan
2016-01-01
Heteronuclear multi-quantum spectroscopy is a powerful part of the NMR toolbox, commonly used to identify specific sequences of atoms in complex pulse sequences designed to determine the structure of complex molecules, including proteins. Optical coherent multidimensional spectroscopy (CMDS) is analogous to multidimensional NMR and many of the techniques of NMR have been adapted for application in the optical regime. This has been highly successful, with CMDS being used to understand energy transfer in photosynthesis and many body effects in semiconductor nanostructures amongst many other scientific breakthroughs. Experimental challenges have, however, prevented the translation of heteronuclear multi-quantum NMR to the optical regime, where capabilities to isolate signals in otherwise congested spectra, reduce acquisition times and enable more incisive probes of multi-particle correlations and complex electronic systems would have great benefit. Here we utilise a diffraction based pulseshaper to impose the tw...
Quantum optical coherence in cytoskeletal microtubules: implications for brain function.
Jibu, M; Hagan, S; Hameroff, S R; Pribram, K H; Yasue, K
1994-01-01
'Laser-like,' long-range coherent quantum phenomena may occur biologically within cytoskeletal microtubules. This paper presents a theoretical prediction of the occurrence in biological media of the phenomena which we term 'superradiance' and 'self-induced transparency'. Interactions between the electric dipole field of water molecules confined within the hollow core of microtubules and the quantized electromagnetic radiation field are considered, and microtubules are theorized to play the roles of non-linear coherent optical devices. Superradiance is a specific quantum mechanical ordering phenomenon with characteristic times much shorter than those of thermal interaction. Consequently, optical signalling (and computation) in microtubules would be free from both thermal noise and loss. Superradiant optical computing in networks of microtubules and other cytoskeletal structures may provide a basis for biomolecular cognition and a substrate for consciousness.
Optical response in a laser-driven quantum pseudodot system
Energy Technology Data Exchange (ETDEWEB)
Kilic, D. Gul [Physics Department, Graduate School of Natural and Applied Sciences, Dokuz Eylül University, 35390 Izmir (Turkey); Sakiroglu, S., E-mail: serpil.sakiroglu@deu.edu.tr [Physics Department, Faculty of Science, Dokuz Eylül University, 35390 Izmir (Turkey); Ungan, F.; Yesilgul, U. [Department of Optical Engineering, Faculty of Technology, Cumhuriyet University, 58140 Sivas (Turkey); Kasapoglu, E. [Physics Department, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Sari, H. [Department of Primary Education, Faculty of Education, Cumhuriyet University, 58140 Sivas (Turkey); Sokmen, I. [Physics Department, Faculty of Science, Dokuz Eylül University, 35390 Izmir (Turkey)
2017-03-15
We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.
Auto- and hetero-associative memory using a 2-D optical logic gate
Chao, Tien-Hsin
1989-01-01
An optical associative memory system suitable for both auto- and hetero-associative recall is demonstrated. This system utilizes Hamming distance as the similarity measure between a binary input and a memory image with the aid of a two-dimensional optical EXCLUSIVE OR (XOR) gate and a parallel electronics comparator module. Based on the Hamming distance measurement, this optical associative memory performs a nearest neighbor search and the result is displayed in the output plane in real-time. This optical associative memory is fast and noniterative and produces no output spurious states as compared with that of the Hopfield neural network model.
Meyers, Ronald E.; Deacon, Keith S.; Rosen, D.
2002-12-01
A new quantum optics tool for simulating quantum probability density functions resulting from the linear and nonlinear interaction of photons with atoms and with other photons is developed and presented. It can be used to design and simulate quantum optics experiments used in quantum communications, quantum computing, and quantum imaging. Examples of a photon interacting with linears systems of mirrors and beamsplitters are simulated. Nonlinear simulations of the interaction of three photons resulting in photon momentum entanglement is presented. The wavefunction is expanded in Fock states. Fock states cannot be represented by classical modeling and therefore, the results of our modeling can in general represent phenomena in both the linear and nonlinear cases which cannot be modeled by classical linear optics. The modeling presented here is more general than the classical linear optics. Models of atmospheric turbulence and their simulations are presented and demonstrate the potential for first principles physics quantum optics simulations through turbulence in realistic environments.
Vibration Spectrums of Polar Interface Optical Phonons in GaAs/AlAs Cylindrical Quantum Dots
Institute of Scientific and Technical Information of China (English)
ZHANG Li
2005-01-01
The dispersions of the top interface optical phonons and the side interface optical phonons in cylindrical quantum dots are solved by using the dielectric continuum model. Our calculation mainly focuses on the frequency dependence of the IO phonon modes on the wave-vector and quantum number in the cylindrical quantum dot system.Results reveal that the frequency of top interface optical phonon sensitively depends on the discrete wave-vector in z direction and the azimuthal quantum number, while that of the side interface optical phonon mode depends on the radial and azimuthal quantum numbers. These features are obviously different from those in quantum well, quantum well wire,and spherical quantum dot systems. The limited frequencies of interface optical modes for the large wave-vector or quantum number approach two certain constant values, and the math and physical reasons for this feature have been explained reasonably.
A plasmonic dipole optical antenna coupled quantum dot infrared photodetector
Mojaverian, Neda; Gu, Guiru; Lu, Xuejun
2015-12-01
In this paper, we report a full-wavelength plasmonic dipole optical antenna coupled quantum dot infrared photodetector (QDIP). The plasmonic dipole optical antenna can effectively modify the EM wave distribution and convert free-space propagation infrared light to localized surface plasmonic resonance (SPR) within the nanometer (nm) gap region of the full-wavelength dipole antenna. The plasmonic dipole optical antenna coupled QDIP shows incident-angle-dependent photocurrent enhancement. The angular dependence follows the far-field pattern of a full-wavelength dipole antenna. The directivity of the plasmonic dipole optical antenna is measured to be 1.8 dB, which agrees well with the antenna simulation. To our best knowledge, this is the first report of the antenna far-field and directivity measurement. The agreement of the detection pattern and the directivity with antenna theory confirms functions of an optical antenna are similar to that of a RF antenna.
Quantum limited particle sensing in optical tweezers
Tay, Jian Wei; Bowen, Warwick P
2009-01-01
Particle sensing in optical tweezers systems provides information on the position, velocity and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these parameters. In this paper we show that quadrant detection is non-optimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacy of both quadrant and spatial homodyne detection are shown. We demonstrate that an order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.
Optical Signatures of Quantum Emitters in Suspended Hexagonal Boron Nitride.
Exarhos, Annemarie L; Hopper, David A; Grote, Richard R; Alkauskas, Audrius; Bassett, Lee C
2017-03-28
Hexagonal boron nitride (h-BN) is rapidly emerging as an attractive material for solid-state quantum engineering. Analogously to three-dimensional wide-band-gap semiconductors such as diamond, h-BN hosts isolated defects exhibiting visible fluorescence at room temperature, and the ability to position such quantum emitters within a two-dimensional material promises breakthrough advances in quantum sensing, photonics, and other quantum technologies. Critical to such applications is an understanding of the physics underlying h-BN's quantum emission. We report the creation and characterization of visible single-photon sources in suspended, single-crystal, h-BN films. With substrate interactions eliminated, we study the spectral, temporal, and spatial characteristics of the defects' optical emission. Theoretical analysis of the defects' spectra reveals similarities in vibronic coupling to h-BN phonon modes despite widely varying fluorescence wavelengths, and a statistical analysis of the polarized emission from many emitters throughout the same single-crystal flake uncovers a weak correlation between the optical dipole orientations of some defects and h-BN's primitive crystallographic axes, despite a clear misalignment for other dipoles. These measurements constrain possible defect models and, moreover, suggest that several classes of emitters can exist simultaneously throughout free-standing h-BN, whether they be different defects, different charge states of the same defect, or the result of strong local perturbations.
Raychaudhuri equation in quantum gravitational optics
Indian Academy of Sciences (India)
N Ahmadi; M Nouri-Zonoz
2007-07-01
The equation of Raychaudhuri is one of the key concepts in the formulation of the singularity theorems introduced by Penrose and Hawking. In the present article, taking into account QED vacuum polarization, we study the propagation of a bundle of rays in a background gravitational field through the perturbative deformation of Raychaudhuri's equation. In a sense, this could be seen as another semiclassical study in which geometry is treated classically but matter (which means the photon here) is allowed to exhibit quantum characteristics that are encoded in its coupling to the background curvature.
Quantum filtering of optical coherent states
DEFF Research Database (Denmark)
Wittmann, C.; Elser, D.; Andersen, Ulrik Lund
2008-01-01
We propose and experimentally demonstrate nondestructive and noiseless removal (filtering) of vacuum states from an arbitrary set of coherent states of continuous variable systems. Errors, i.e., vacuum states in the quantum information are diagnosed through a weak measurement, and on that basis......, probabilistically filtered out. We consider three different filters based on on-off detection, phase stabilized, and phase randomized homodyne detection. We find that on-off detection, optimal in the ideal theoretical setting, is superior to the homodyne strategy also in a practical setting....
Novel optical probe for quantum Hall system
Indian Academy of Sciences (India)
Biswajit Karmakar; Brij Mohan Arora
2006-07-01
Surface photovoltage (SPV) spectroscopy has been used for the first time to explore Landau levels of a two-dimensional electron gas (2DEG) in modulation doped InP/InGaAs/InP QW in the quantum Hall regime. The technique gives spectroscopically distinct signals from the bulk Landau levels and the edge states. Evolution of the bulk Landau levels and the edge electronic states is investigated at 2.0 K for magnetic field up to 8 T using SPV spectroscopy.
Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective.
Bylicka, B; Chruściński, D; Maniscalco, S
2014-07-21
Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication.
Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective
Bylicka, B.; Chruściński, D.; Maniscalco, S.
2014-01-01
Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication. PMID:25043763
A proposed optical test for Popper's challenge to quantum mechanics
Reintjes, J.; Bashkansky, Mark
2016-05-01
We describe an optical configuration that is predicted to exhibit the behavior described by Popper in his challenge to conventional quantum mechanics. Popper rejected this behavior on the grounds that it was unphysical because it relied on observer knowledge as a causative agent. We offer an interpretation in which the behavior arises simply out of the mode properties of an entangled system. In this interpretation the observer knowledge reveals in which mode an excitation occurs, but does not affect future behavior as asserted by Popper. We also discuss the relation of our system to the quantum eraser.
Fluctuations and entropy in models of quantum optical resonance
Phoenix, S. J. D.; Knight, P. L.
1988-09-01
We use variances, entropy, and the Shannon entropy to analyse the fluctuations and quantum evolution of various simple models of quantum optical resonance. We discuss at length the properties of the single-mode radiation field coupled to a single two-level atom, and then extend our analysis to describe the micromaser in which a cavity mode is repeatedly pumped by a succession of atoms passing through the cavity. We also discuss the fluctuations in the single-mode laser theory of Scully and Lamb.
All-optical sampling based on quantum-dot semiconductor optical amplifier
Wu, Chen; Wang, Yongjun; Wang, Lina
2016-11-01
In recent years, the all-optical signal processing system has become a hot research field of optical communication. This paper focused on the basic research of quantum-dot (QD) semiconductor optical amplifier (SOA) and studied its practical application to all-optical sampling. A multi-level dynamic physical model of QD-SOA is established, and its ultrafast dynamic characteristics are studied through theoretical and simulation research. For further study, an all-optical sampling scheme based on the nonlinear polarization rotation (NPR) effect of QD-SOA is also proposed. This paper analyzed the characteristics of optical switch window and investigated the influence of different control light pulses on switch performance. The presented optical sampling method has an important role in promoting the improvement of all-optical signal processing technology.
Calculation Model for Current-voltage Relation of Silicon Quantum-dots-based Nano-memory
Institute of Scientific and Technical Information of China (English)
YANG Hong-guan; DAI Da-kang; YU Biao; SHANG Lin-lin; GUO You-hong
2007-01-01
Based on the capacitive coupling formalism, an analytic model for calculating the drain currents of the quantum-dots floating-gate memory cell is proposed. Using this model, one can calculate numerically the drain currents of linear, saturation and subthreshold regions of the device with/without charges stored on the floating dots. The read operation process of an n-channel Si quantum-dots floating-gate nano-memory cell is discussed after calculating the drain currents versus the drain to source voltages and control gate voltages in both high and low threshold states respectively.
Toward quantum processing in molecules: A THz-bandwidth coherent memory for light
Bustard, Philip J; England, Duncan G; Sussman, Benjamin J
2013-01-01
The unusual features of quantum mechanics are enabling the development of technologies not possible with classical physics. These devices utilize nonclassical phenomena in the states of atoms, ions, and solid-state media as the basis for many prototypes. Here we investigate molecular states as a distinct alternative. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules. The THz-bandwidth molecular memory is used to store 100-fs pulses for durations up to 1ns, enabling 10,000 operational time bins. The results demonstrate the promise of molecules for constructing compact ultrafast quantum photonic technologies.
Quantum-Confinement Effects on Binding Energies and Optical Properties of Excitons in Quantum Dots
Institute of Scientific and Technical Information of China (English)
潘晖
2004-01-01
Quantum-confinement effects on the binding energy and the linear optical susceptibility of excitons in quantum dots are studied. It is found that the binding energy and the linear optical susceptibility are sensitive to the barrier height and the dot size. For an infinite barrier, the binding energy of excitons decreases monotonically with the increasing dot radius, and the absorption intensity has almost the same amplitude with the increasing photon energy. For a finite barrier, the binding energy has a maximum value with the increasing dot radius, and the absorption intensity damps rapidly with the increasing photon energy. The effective mass ratio is also found to have an influence on the binding energy. The results could be confirmed by future experiments on excitons in quantum dots.
All-optical production of 6Li quantum gases
Burchianti, A.; Seman, J. A.; Valtolina, G.; Morales, A.; Inguscio, M.; Zaccanti, M.; Roati, G.
2015-03-01
We report efficient production of quantum gases of 6Li using a sub-Doppler cooling scheme based on the D1 transition. After loading in a standard magneto-optical trap, an atomic sample of 109 atoms is cooled at a temperature of 40 μK by a bichromatic D1 gray-molasses. More than 2×107 atoms are then transferred into a high-intensity optical dipole trap, where a two-spin state mixture is evaporatively cooled down to quantum degeneracy. We observe that D1 cooling remains effective in the deep trapping potential, allowing an effective increase of the atomic phase-space density before starting the evaporation. In a total experimental cycle of 11 s, we produce weakly-interacting degenerate Fermi gases of 7×105 atoms at T/TF molecules. We further describe a simple and compact optical system both for high-resolution imaging and for imprinting a thin optical barrier on the atomic cloud; this represents a first step towards the study of quantum tunneling in strongly interacting superfluid Fermi gases.
Hard X-ray quantum optics in thin films nanostructures
Energy Technology Data Exchange (ETDEWEB)
Haber, Johann Friedrich Albert
2017-05-15
This thesis describes quantum optical experiments with X-rays with the aim of reaching the strong-coupling regime of light and matter. We make use of the interaction which arises between resonant matter and X-rays in specially designed thin-film nanostructures which form X-ray cavities. Here, the resonant matter are Tantalum atoms and the Iron isotope {sup 57}Fe. Both limit the number of modes available to the resonant atoms for interaction, and enhances the interaction strength. Thus we have managed to observe a number of phenomena well-known in quantum optics, which are the building blocks for sophisticated applications in e.g. metrology. Among these are the strong coupling of light and matter and the concurrent exchange of virtual photons, often called Rabi oscillations. Furthermore we have designed and tested a type of cavity hitherto unused in X-ray optics. Finally, we develop a new method for synchrotron Moessbauer spectroscopy, which not only promises to yield high-resolution spectra, but also enables the retrieval of the phase of the scattered light. The results open new avenues for quantum optical experiments with X-rays, particularly with regards to the ongoing development of high-brilliance X-ray free-electron lasers.
Experimental multiplexing of quantum key distribution with classical optical communication
Energy Technology Data Exchange (ETDEWEB)
Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xu, Mu-Lan; Zhao, Yong [Quantum Communication Technology Co., Ltd., Anhui, Hefei, Anhui 230088 (China); Chen, Kai; Chen, Zeng-Bing; Chen, Teng-Yun, E-mail: tychen@ustc.edu.cn; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2015-02-23
We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users.
Energy Technology Data Exchange (ETDEWEB)
Weber, Carsten
2008-07-01
This work is focused on the optical dynamics of mesoscopic semiconductor heterostructures, using as prototypes zero-dimensional quantum dots and quantum cascade lasers which consist of quasitwo- dimensional quantum wells. Within a density matrix theory, a microscopic many-particle theory is applied to study scattering effects in these structures: the coupling to external as well as local fields, electron-phonon coupling, coupling to impurities, and Coulomb coupling. For both systems, the investigated effects are compared to experimentally observed results obtained during the past years. In quantum dots, the three-dimensional spatial confinement leads to the necessity to consider a quantum kinetic description of the dynamics, resulting in non-Markovian electron-phonon effects. This can be seen in the spectral phonon sidebands due to interaction with acoustic phonons as well as a damping of nonlinear Rabi oscillations which shows a nonmonotonous intensity and pulse duration dependence. An analysis of the inclusion of the self-interaction of the quantum dot shows that no dynamical local field terms appear for the simple two-level model. Considering local fields which have their origin in many quantum dots, consequences for a two-level quantum dot such as a zero-phonon line broadening and an increasing signal in photon echo experiments are found. For the use of quantum dots in an optical spin control scheme, it is found that the dephasing due to the electron-phonon interaction can be dominant in certain regimes. Furthermore, soliton and breather solutions are studied analytically in nonlinear quantum dot ensembles. Generalizing to quasi-two-dimensional structures, the intersubband dynamics of quantum cascade laser structures is investigated. A dynamical theory is considered in which the temporal evolution of the subband populations and the current density as well as the influence of scattering effects is studied. In the nonlinear regime, the scattering dependence and
Quantum Memory Effects in the Measurement of Observables with a Continuous Spectrum
Druhl, K J
1993-01-01
In the measurement of a continuous observable Q, the pure components of the reduced state do, in general, depend on the initial state. For measurements which attempt to localize the measured system in a certain region R, the localized wave functions are proportional to the original wave function outside of R. This `quantum memory' effect shows that it is not possible to perfectly localize a quantum particle.
2016-09-01
Further support was provided by student interns from the Naval Research Enterprise Internship Program (NREIP) and the SDSU Research Foundation... nuclear spin states of qubits/quantum memory applicable to semiconductor, superconductor, ionic, and superconductor-ionic hybrid technologies. As the...magnetic and nuclear spins of an entangled ensemble or of single spins or photons. These quantum states can be controlled by resonant microwave
Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.
Vasseur, Romain; Moore, Joel E
2014-04-11
The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.
Quantum Optics in Diamond Nanophotonic Chips
2014-07-01
techniques [12]. Using a CCD camera, this “deterministic emitter switch microscopy ” (DESM) technique enables super - resolution imaging with localization down...selective optical transitions allow individual NV electron spins to be easily observed using standard confocal microscopy . The NV has two unpaired...record-precision magnetometry with diamond nanocrystals [11]. 1.3 Wide-Field Multispectral Super - Resolution Imaging Using Spin- Dependent Fluorescence in
Controlled rephasing of single spin-waves in a quantum memory based on cold atoms
Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team
2015-05-01
Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.
Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications
DEFF Research Database (Denmark)
Berg, Tommy Winther
2004-01-01
This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... devices in communication systems in the future. The basic properties of quantum dot devices are investigated, especially regarding the potential of realizing amplification and signal processing without introducing pattern dependence. Also the gain recovery of a single short pulse is modeled...... and an explanation for the fast gain recovery observed experimentally is given. The properties of quantum dot amplifiers operating in the linear regime are investigated. The devices are predicted to show high device gain, high saturated output power, and low noise figure, resulting in a performance, that in some...
Nonlinear optical signals and spectroscopy with quantum light
Dorfman, Konstantin E; Mukamel, Shaul
2016-01-01
Conventional nonlinear spectroscopy uses classical light to detect matter properties through the variation of its response with frequencies or time delays. Quantum light opens up new avenues for spectroscopy by utilizing parameters of the quantum state of light as novel control knobs and through the variation of photon statistics by coupling to matter. We present an intuitive diagrammatic approach for calculating ultrafast spectroscopy signals induced by quantum light, focusing on applications involving entangled photons with nonclassical bandwidth properties - known as "time-energy entanglement". Nonlinear optical signals induced by quantized light fields are expressed using time ordered multipoint correlation functions of superoperators. These are different from Glauber's g- functions for photon counting which use normally ordered products of ordinary operators. Entangled photon pairs are not subjected to the classical Fourier limitations on the joint temporal and spectral resolution. After a brief survey o...
Quantum correlations in optical angle-orbital angular momentum variables.
Leach, Jonathan; Jack, Barry; Romero, Jacqui; Jha, Anand K; Yao, Alison M; Franke-Arnold, Sonja; Ireland, David G; Boyd, Robert W; Barnett, Stephen M; Padgett, Miles J
2010-08-06
Entanglement of the properties of two separated particles constitutes a fundamental signature of quantum mechanics and is a key resource for quantum information science. We demonstrate strong Einstein, Podolsky, and Rosen correlations between the angular position and orbital angular momentum of two photons created by the nonlinear optical process of spontaneous parametric down-conversion. The discrete nature of orbital angular momentum and the continuous but periodic nature of angular position give rise to a special sort of entanglement between these two variables. The resulting correlations are found to be an order of magnitude stronger than those allowed by the uncertainty principle for independent (nonentangled) particles. Our results suggest that angular position and orbital angular momentum may find important applications in quantum information science.
Electro-optical properties of phosphorene quantum dots
Saroka, V. A.; Lukyanchuk, I.; Portnoi, M. E.; Abdelsalam, H.
2017-08-01
We study the electronic and optical properties of single-layer phosphorene quantum dots with various shapes, sizes, and edge types (including disordered edges) subjected to an external electric field normal to the structure plane. Compared to graphene quantum dots, in phosphorene clusters of similar shape and size there is a set of edge states with energies dispersed at around the Fermi level. These states make the majority of phosphorene quantum dots metallic and enrich the phosphorene absorption gap with low-energy absorption peaks tunable by the electric field. The presence of the edge states dispersed around the Fermi level is a characteristic feature that is independent of the edge morphology and roughness.
Generalized Uncertainty Principle and Analogue of Quantum Gravity in Optics
Braidotti, Maria Chiara; Conti, Claudio
2016-01-01
The design of optical systems capable of processing and manipulating ultra-short pulses and ultra-focused beams is highly challenging with far reaching fundamental technological applications. One key obstacle routinely encountered while implementing sub-wavelength optical schemes is how to overcome the limitations set by standard Fourier optics. A strategy to overcome these difficulties is to utilize the concept of generalized uncertainty principle (G-UP) that has been originally developed to study quantum gravity. In this paper we propose to use the concept of G-UP within the framework of optics to show that the generalized Schrodinger equation describing short pulses and ultra-focused beams predicts the existence of a minimal spatial or temporal scale which in turn implies the existence of maximally localized states. Using a Gaussian wavepacket with complex phase, we derive the corresponding generalized uncertainty relation and its maximally localized states. We numerically show that the presence of nonlin...
Quantum Limits to Optical Point-Source Localization
Tsang, Mankei
2014-01-01
Many superresolution microscopic techniques rely on the accurate localization of optical point sources from far field. To investigate the fundamental limits to their resolution, here I derive measurement-independent quantum lower bounds on the error of locating point sources in free space, taking full account of the quantum, nonparaxial, and vectoral nature of photons. To arrive at analytic results, I focus mainly on the cases of one and two classical monochromatic sources with an initial vacuum optical state. For one source, a lower bound on the root-mean-square position estimation error is on the order of $\\lambda_0/\\sqrt{N}$, where $\\lambda_0$ is the free-space wavelength and $N$ is the average number of radiated photons. For two sources, owing to a nuisance parameter effect, the error bound diverges when their radiated fields overlap significantly. The use of squeezed light to further enhance the accuracy of locating one point source is also discussed.
Ultrastable, Zerodur-based optical benches for quantum gas experiments.
Duncker, Hannes; Hellmig, Ortwin; Wenzlawski, André; Grote, Alexander; Rafipoor, Amir Jones; Rafipoor, Mona; Sengstock, Klaus; Windpassinger, Patrick
2014-07-10
Operating ultracold quantum gas experiments outside of a laboratory environment has so far been a challenging goal, largely due to the lack of sufficiently stable optical systems. In order to increase the thermal stability of free-space laser systems, the application of nonstandard materials such as glass ceramics is required. Here, we report on Zerodur-based optical systems which include single-mode fiber couplers consisting of multiple components jointed by light-curing adhesives. The thermal stability is thoroughly investigated, revealing excellent fiber-coupling efficiencies between 0.85 and 0.92 in the temperature range from 17°C to 36°C. In conjunction with successfully performed vibration tests, these findings qualify our highly compact systems for atom interferometry experiments aboard a sounding rocket as well as various other quantum information and sensing applications.