WorldWideScience

Sample records for optical pulse generation

  1. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.

    1995-01-01

    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  2. Generation of a single-cycle optical pulse

    International Nuclear Information System (INIS)

    Shverdin, M.Y.; Walker, D.R.; Yavuz, D.D.; Yin, G.Y.; Harris, S.E.

    2005-01-01

    We make use of coherent control of four-wave mixing to the ultraviolet as a diagnostic and describe the generation of a periodic optical waveform where the spectrum is sufficiently broad that the envelope is approximately a single-cycle in length, and where the temporal shape of this envelope may be synthesized by varying the coefficients of a Fourier series. Specifically, using seven sidebands, we report the generation of a train of single-cycle optical pulses with a pulse width of 1.6 fs, a pulse separation of 11 fs, and a peak power of 1 MW

  3. Generation of frequency-chirped optical pulses with felix

    Energy Technology Data Exchange (ETDEWEB)

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M. [FOM-Institute for Plasma Physics, Nieuwegein (Netherlands)] [and others

    1995-12-31

    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  4. Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2012-01-01

    Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

  5. Optical third-harmonic generation using ultrashort laser pulses

    International Nuclear Information System (INIS)

    Stoker, D.; Keto, J.W.; Becker, M.F.

    2005-01-01

    To better predict optical third-harmonic generation (THG) in transparent dielectrics, we model a typical ultrashort pulsed Gaussian beam, including both group velocity mismatch and phase mismatch of the fundamental and harmonic fields. We find that competition between the group velocity mismatch and phase mismatch leads to third-harmonic generation that is sensitive only to interfaces. In this case, the spatial resolution is determined by the group velocity walk-off length. THG of modern femtosecond lasers in optical solids is a bulk process, without a surface susceptibility, but bears the signature of a surface enhancement effect in z-scan measurements. We demonstrate the accuracy of the model, by showing the agreement between the predicted spectral intensity and the measured third-harmonic spectrum from a thin sapphire crystal

  6. Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2009-03-30

    We propose theoretically and demonstrate experimentally an optical architecture for flexible Ultra-Wideband pulse generation. It is based on an N-tap reconfigurable microwave photonic filter fed by a laser array by using phase inversion in a Mach-Zehnder modulator. Since a large number of positive and negative coefficients can be easily implemented, UWB pulses fitted to the FCC mask requirements can be generated. As an example, a four tap pulse generator is experimentally demonstrated which complies with the FCC regulation. The proposed pulse generator allows different pulse modulation formats since the amplitude, polarity and time delay of generated pulse is controlled.

  7. Direct generation of all-optical random numbers from optical pulse amplitude chaos.

    Science.gov (United States)

    Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong

    2012-02-13

    We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.

  8. Pulse Generator

    Science.gov (United States)

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  9. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses

    International Nuclear Information System (INIS)

    Major, Zs.; Osterhoff, J.; Hoerlein, R.; Karsch, S.; Fuoloep, J.A.; Krausz, F.; Ludwig-Maximilians Universitaet, Muenchen

    2006-01-01

    Complete test of publication follows. In the quest for a way to generate ultrashort, high-power, few-cycle laser pulses the discovery of optical parametric amplification (OPA) has opened up to the path towards a completely new regime, well beyond that of conventional laser amplification technology. The main advantage of this parametric amplification process is that it allows for an extremely broad amplification bandwidth compared to any known laser amplifier medium. When combined with the chirped-pulse amplification (CPA) principle (i.e. OPCPA), on one hand pulses of just 10 fs duration and 8 mJ pulse energy have been demonstrated. On the other hand, pulse energies of up to 30 J were also achieved on a different OPCPA system; the pulse duration in this case, however, was 100 fs. In order to combine ultrashort pulse durations (i.e. pulses in the few-cycle regime) with high pulse energies (i.e. in the Joule range) we propose tu pump on OPCPA chain with TW-scale short pulses (100 fs - 1 ps instead of > 100 ps of previous OPCPA systems) delivered by a conventional CPA system. This approach inherently improves the conditions for generating high-power ultrashort pulses using OPCPA in the following ways. Firstly, the short pump pulse duration reduces the necessary stretching factor for the seed pulse, thereby increasing stretching and compression fidelity. Secondly, also due to the shortened pump pulse duration, a much higher contrast is achieved. Finally, the significantly increased pump power makes the use of thinner OPCPA crystals possible, which implies an even broader amplification bandwidth, thereby allowing for even shorter pulses. We carried out theoretical investigations to show the feasibility of such a set-up. Alongside these studies we will also present preliminary experimental results of an OPCPA system pumped by the output of our Ti:Sapphire ATLAS laser, currently delivering 350 mJ in 43 fs. An insight into the planned scaling of this technique to petawatt

  10. Optical transponder DC probe [for pulsed power generator

    CERN Document Server

    Thompson, M C

    1999-01-01

    The Atlas Pulse Power, Marx Bank will produce significant electromagnetic interference potential (EMI) via its 192 spark-gaps and trigger systems (36 more spark gaps). The authors have a need to measure DC charge components to a fair degree of accuracy during charge to ensure a safe and balanced system. Isolation from elevated- deck and/or high EMI environments during DC voltage or current measurement has classically been approached using frequency modulation (FM) of an imposed carrier on an optical fiber coupled system. There are shortcomings in most systems that can generally be compensated for by various means. In their application of remote sensing, the power to run this remote probe was a central issue. As such the authors took another approach to monitor the DC charge record for the Atlas' Marx banks. (0 refs).

  11. Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael

    2009-01-01

    This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super-Gaussian sp......This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super...

  12. The optimal input optical pulse shape for the self-phase modulation based chirp generator

    Science.gov (United States)

    Zachinyaev, Yuriy; Rumyantsev, Konstantin

    2018-04-01

    The work is aimed to obtain the optimal shape of the input optical pulse for the proper functioning of the self-phase modulation based chirp generator allowing to achieve high values of chirp frequency deviation. During the research, the structure of the device based on self-phase modulation effect using has been analyzed. The influence of the input optical pulse shape of the transmitting optical module on the chirp frequency deviation has been studied. The relationship between the frequency deviation of the generated chirp and frequency linearity for the three options for implementation of the pulse shape has been also estimated. The results of research are related to the development of the theory of radio processors based on fiber-optic structures and can be used in radars, secure communications, geolocation and tomography.

  13. High-order UWB pulses scheme to generate multilevel modulation formats based on incoherent optical sources.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2013-11-18

    We present a high-order UWB pulses generator based on a microwave photonic filter which provides a set of positive and negative samples by using the slicing of an incoherent optical source and the phase inversion in a Mach-Zehnder modulator. The simple scalability and high reconfigurability of the system permit a better accomplishment of the FCC requirements. Moreover, the proposed scheme permits an easy adaptation to pulse amplitude modulation, bi phase modulation, pulse shape modulation and pulse position modulation. The flexibility of the scheme for being adaptable to multilevel modulation formats permits to increase the transmission bit rate by using hybrid modulation formats.

  14. A Fiber-Optic System Generating Pulses of High Spectral Density

    Science.gov (United States)

    Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.

    2018-03-01

    A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.

  15. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    Science.gov (United States)

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  16. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  17. Soliton-effect generation of Raman pulses in optical fibers with slowly decreasing dispersion

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang

    1995-01-01

    We suggested that single-mode fibers with slowly decreasing dispersion (FSDD) should be used for the generation of tunable ultrashort RAman pulses. A mathematical model is obtained for the description of ultrafast stimulated Raman scattering in optical fibers with slowly decreasing dispersion. Numerical simulations show that, under identical pump conditions, Raman pulse generated from this kind of fiber is shorter with a higher peak power than that generated from conventional fibers. This means that the Raman threshold of fibers with slowly decreasing dispersion may be lower than that of conventional fibers. Given pump conditions, we found that the highest peak power and narrowest width of the Raman pulse correspond to an optimal decrement velocity of the fiber dispersion

  18. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  19. Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers

    Science.gov (United States)

    Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.

    2015-10-01

    We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.

  20. The transformation of optical bistability effect and of generated pulses in operation of a DFB laser with two sections

    International Nuclear Information System (INIS)

    Nguyen Van Phu; Dinh Van Hoang

    2005-01-01

    In this paper is presented the transformation of characteristics of optical bistability effect and of generated pulses in operation of a DFB laser with two sections. By solving the rate equations describing the operation of this laser the appearance of optical bistability effect in stationary regime and of short pulses in transient regime is obtained. With the variation of dynamical laser parameter we can evaluate the transformation indicated above. The method of examination used here is simple for determining the influence of any dynamical laser parameter on characteristics of optical bistability effect and generated pulses. (author)

  1. All-optical generation of DFT-S-OFDM superchannels using periodic sinc pulses.

    Science.gov (United States)

    Lowery, Arthur James; Zhu, Chen; Viterbo, Emanuele; Corcoran, Bill

    2014-11-03

    Discrete-Fourier-transform spread (DFT-S) optical Orthogonal Frequency Division Multiplexed (OFDM) signals offer improved nonlinearity performance in long haul optical communications systems, and can be used to form superchannels. In this paper we propose how DFT-S-OFDM superchannels can be generated and demultiplexed using all-optical techniques, and demonstrate the feasibility using numerical simulations. We also discuss how each wavelength channel is similar to recently proposed Orthogonally Time-Division Multiplexed (OrthTDM) systems using periodic-sinc pulses from, for example, a Nyquist laser. The key difference between OrthTDM and DFT-S-OFDM is the synchronization of the symbol boundaries of every modulation tributary; because of this we show that OrthTDM cannot be formed into superchannels that can be demultiplexed without penalties, but DFT-S-OFDM can be.

  2. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  3. Generation of short optical pulses for laser fusion. M.L. report No. 2451

    International Nuclear Information System (INIS)

    Kuizenga, D.J.

    1975-06-01

    This report considers some of the problems involved in generating the required short pulses for the laser-fusion program. Short pulses are required to produce the laser fusion, and pulses produced synchronously with this primary pulse are required for plasma diagnostics. The requirements of these pulses are first described. Several methods are considered in order to generate pulses at 1.064 μ to drive the Nd:Glass amplifiers to produce laser fusion. Conditions for optimum energy extraction per short pulse for Nd:YAG and Nd:Glass lasers are given. Four methods are then considered to produce these pulses: (1) using a fast switch to chop the required pulse out of a much longer Q-switched pulse; (2) active mode locking; (3) passive mode locking; and (4) a combination of active and passive mode locking. The use of cavity dumping is also considered to increase the energy per short pulse

  4. Random pulse generator

    International Nuclear Information System (INIS)

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  5. Half-period optical pulse generation using a free-electron laser

    International Nuclear Information System (INIS)

    Jaroszynski, D.A.; Chaix, P.; Piovella, N.

    1995-01-01

    Recently there has been growth, in interest in non-equilibrium interaction of half-period long optical pulses with matter. To date the optical pulses have been produced by chopping out a half-period long segment from a longer pulse using a semiconductor switch driven by a femtosecond laser. In this paper we present new methods for producing tunable ultra-short optical pulses as short as half an optical period using a free-electron laser driven by electron bunches with a duration a fraction of an optical period. Two different methods relying on the production of coherent spontaneous emission will be described. In the first method we show that when a train of ultra-short optical pulses as short as one half period. We present calculations which show that the small signal gain is unimportant in the early stages of radiation build up in the cavity when the startup process is dominated by coherent spontaneous emission. To support our proposed method we present encouraging experimental results from the FELIX experiment in the Netherlands which show that interference effects between the coherent spontaneous optical pulses at start-up are very important. The second proposed method relies on the fact that coherent spontaneous emission mimics the undulations of electrons as they pass through the undulator. We show that ultra-short optical pulses are produced by coherent spontaneous emission when ultra-short electron bunches pass through an ultra-short undulator. We discuss the interesting case of such undulator radiation in the presence of an optical cavity and show that the optical pulse can be open-quotes tayloredclose quotes by simply adjusting the optical cavity desynchronism. The proposed methods may be realisable using existing rf driven FELs in the far-infrared

  6. Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch.

    Science.gov (United States)

    Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing

    2018-04-16

    We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.

  7. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    Science.gov (United States)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  8. Observation of self-pulsing in singly resonant optical second-harmonic generation with competing nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Lodahl, Peter; Mamaev, Alexander V.

    2002-01-01

    We predict and experimentally observe temporal self-pulsing in singly resonant intracavity second-harmonic generation under conditions of simultaneous parametric oscillation. The threshold for self-pulsing as a function of cavity tuning and phase mismatch are found from analysis of a three...

  9. Third order effects generated by refractive lenses on sub 20 femtosecond optical pulses

    International Nuclear Information System (INIS)

    Estrada-Silva, F C; Rosete-Aguilar, M; Garduno-Mejia, J; Gonzalez-Galicia, M A; Bruce, N C; Ortega-Martinez, R

    2011-01-01

    When using lenses to focus ultra-short pulses, chromatic aberration produces pulse spreading, after propagation through the lens. The focusing of ultra-short pulses has been analyzed by using Fourier optics where the field amplitude of the pulse is evaluated around the focal region of the lens by performing a third order expansion on the wave number around the central frequency of the carrier. In the literature, the pulse focusing in the neighborhood of the focal region of the lens has been calculated by expanding the wave number up to second order. The second order approximation works for pulses with a duration greater than 20fs, or pulses propagating through low dispersion materials; but, it is necessary to do third order approximation for pulses with a shorter duration, or propagating through highly dispersive materials. In this paper we analyze 15fs and 20fs pulses, with a carrier wavelength of 810nm, at the paraxial focal plane of singlets and achromatic doublets. The analysis includes the third order GVD and the results are compared with those obtained when the wave number is expanded up to second order.

  10. Programmable pulse generator

    International Nuclear Information System (INIS)

    Xue Zhihua; Lou Binqiao; Duan Xiaohui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  11. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser

    International Nuclear Information System (INIS)

    Zhuang, W Z; Chang, M T; Su, K W; Huang, K F; Chen, Y F

    2013-01-01

    We report on high-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. A semiconductor saturable absorber mirror is developed to achieve synchronously mode-locked operation at two spectral bands centered at 1031.67 and 1049.42 nm with a pulse duration of 1.54 ps and a pulse repetition rate of 80.3 GHz. With a diamond heat spreader to improve the heat removal efficiency, the average output power can be up to 1.1 W at an absorbed pump power of 5.18 W. The autocorrelation traces reveal that the mode-locked pulse is modulated with a beat frequency of 4.92 THz and displays a modulation depth to be greater than 80%. (paper)

  12. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  13. Control of broadband optically generated ultrasound pulses using binary amplitude holograms.

    Science.gov (United States)

    Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E

    2016-04-01

    In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.

  14. Modulational instability and generation of pulse trains in asymmetric dual-core nonlinear optical fibers

    International Nuclear Information System (INIS)

    Ganapathy, R.; Malomed, Boris A.; Porsezian, K.

    2006-01-01

    Instability of continuous-wave (CW) states is investigated in a system of two parallel-coupled fibers, with a pumped (active) nonlinear dispersive core and a lossy (passive) linear one. Modulational instability (MI) conditions are found from linearized equations for small perturbations, the results being drastically different for the normal and anomalous group-velocity dispersion (GVD) in the active core. Simulations of the full system demonstrate that the development of the MI in the former regime leads to establishment of a regular or chaotic array of pulses, if the MI saturates, or a chain of well-separated peaks with continuously growing amplitudes if the instability does not saturate. In the anomalous-GVD regime, a chain of return-to-zero (RZ) peaks, or a single RZ peak emerge, also with growing amplitudes. The latter can be used as a source of RZ pulses for optical telecommunications

  15. Silicon switch development for optical pulse generation in fusion lasers at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Wilcox, R.B.

    1983-01-01

    We have been developing a silicon photoconductive switch for use as a Pockels cell driver in the pulse generation systems of the fusion lasers Nova and Novette. The objective has been to make 10 kV switches repeatably and which are reliable on an operating system. We found that nonlinear phenomena in nearly intrinsic silicon caused excessive conduction at high voltage resulting in breakdown. Our experiments with doped material show that this problem can be eliminated, resulting in useful devices

  16. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  17. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    Energy Technology Data Exchange (ETDEWEB)

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant, E-mail: vasant@physics.iisc.ernet.in

    2016-08-26

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in optical molasses by turning off the MOT magnetic field before the transfer beams are turned on. - Highlights: • Getter-source loaded magneto-optic trap (MOT). • Cold atomic beam generated by deflection from the MOT. • Use of two inclined beams for deflection.

  18. A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals

    DEFF Research Database (Denmark)

    Lasri, J.; Bilenca, A.; Dahan, D.

    2002-01-01

    In this letter, we describe a self-starting optical pulse source generating ultra low noise 15-ps-wide pulses at 10 GHz. It is based on a hybrid optoelectronic oscillator comprising a fiber extended cavity mode-locked diode laser which injection locks a self-oscillating heterojunction bipolar...

  19. Electro-optic analysis of the influence of target geometry on electromagnetic pulses generated by petawatt laser-matter interactions

    Science.gov (United States)

    Robinson, Timothy; Giltrap, Samuel; Eardley, Samuel; Consoli, Fabrizio; De Angelis, Riccardo; Ingenito, Francesco; Stuart, Nicholas; Verona, Claudio; Smith, Roland A.

    2018-01-01

    We present an analysis of strong laser-driven electromagnetic pulses using novel electro-optic diagnostic techniques. A range of targets were considered, including thin plastic foils (20-550 nm) and mass-limited, optically-levitated micro-targets. Results from foils indicate a dependence of EMP on target thickness, with larger peak electric fields observed with thinner targets. Spectral analysis suggests high repeatability between shots, with identified spectral features consistently detected with earth following ejection of hot electrons from the plasma, in contrast to predictions for pin-mounted foils in the Poyé EMP generation model. With levitated targets, no EMP was measurable above the noise threshold of any diagnostic, despite observation of protons accelerated to >30 MeV energies, suggesting the discharge current contribution to EMP is dominant.

  20. Single attosecond pulse generation by using plasmon-driven double optical gating technology in crossed metal nanostructures

    Science.gov (United States)

    Feng, Liqiang; Liu, Katheryn

    2018-05-01

    An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.

  1. Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films

    NARCIS (Netherlands)

    Ramakrishnan, G.; Planken, P.C.M.

    2011-01-01

    Emission of pulses of electromagnetic radiation in the terahertz range is observed when ultrathin gold films on glass are illuminated with femtosecond near-IR laser pulses. A distinct maximum is observed in the emitted terahertz amplitude from films of average thickness just above the percolation

  2. PULSE SYNTHESIZING GENERATOR

    Science.gov (United States)

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  3. Pulsed current generator

    International Nuclear Information System (INIS)

    Semenov, V.D.; Furman, Eh.G.

    1974-01-01

    The paper describes a current pulse generator with an auxiliary network consisting of a choke and diode in series designed to enlarge the range of pulse frequency control. One output of the network is connected to an adjustable valve cathode and via antoher auxiliary condenser to the point where the cathode of the main key unit is joined to the start of the magnetizing coil. A second output is connected to the anode of another adjustable valve and via another auxiliary condenser to the point where the anode of the other main key unit is joined to the end of the magnetizing coil. The generator can be used to excite the electromagnets of charged particle accelerators or in devices designed to produce magnetic fields. (author)

  4. Short pulse neutron generator

    Science.gov (United States)

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  5. Arbitrary waveform generator and differentiator employing an integrated optical pulse shaper

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2015-01-01

    We propose and demonstrate an optical arbitrary waveformgenerator and high-order photonic differentiator based on a four-tap finiteimpulse response (FIR) silicon-on-insulator (SOI) on-chip circuit. Based onamplitude and phase modulation of each tap controlled by thermal heaters,we obtain several...

  6. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser.

    Science.gov (United States)

    Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).

  7. Pulsed Corona Discharge Generated By Marx Generator

    Science.gov (United States)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  8. Optically isolated, 2 kHz repetition rate, 4 kV solid-state pulse trigger generator.

    Science.gov (United States)

    Barnett, D H; Parson, J M; Lynn, C F; Kelly, P M; Taylor, M; Calico, S; Scott, M C; Dickens, J C; Neuber, A A; Mankowski, J J

    2015-03-01

    This paper presents the design and operation characteristics of a solid-state high voltage pulse generator. Its primary utilization is aimed at triggering a gaseous spark gap with high repeatability. Specifically, the trigger generator is designed to achieve a risetime on the order of 0.1 kV/ns to trigger the first stage, trigatron spark gap of a 10-stage, 500 kV Marx generator. The major design components are comprised of a 60 W constant current DC-DC converter for high voltage charging, a single 4 kV thyristor, a step-up pulse transformer, and magnetic switch for pulse steepening. A risetime of <30 ns and pulse magnitude of 4 kV is achieved matching the simulated performance of the design.

  9. Powerful nanosecond pulse train generator

    International Nuclear Information System (INIS)

    Isakov, I.F.; Logachev, E.I.; Opekunov, M.S.; Pechenkin, S.A.; Remnev, G.E.; Usov, Yu.P.

    1987-01-01

    A generator permitting to shape on the load pulsed with the repetition frequency of 10 3 -10 6 Hz and more is described. The amplitude of shaped voltage pulses is up to 150 kV at pulse duration equal to 50 ns. The generator comprises connected in-series with the load two shaping and two transmission lines realized on the base of the KVI-300 low-ohmic cable. The shaping lines are supplied from two independently connected pulse voltage generators for obtaining time interval between pulses > 10 -6 s; they may be also supplied from one generator for obtaining time interval -6 s. At the expense of reducing losses in the discharge circuit the amplitude of the second pulse grows with increase of time interval between pulses up to 300 ns, further on the curve flat-topping exists. The described generator is used in high-current accelerators, in which the primary negative pulse results in generation of explosive-emission plasma, and the second positive pulse provides ion beam shaping including ions of heavy metal used for production of a potential electrode. The generator multipulse mode is used for successive ion acceleration in the transport system

  10. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  11. Assembly delay line pulse generators

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  12. Sub-50-as isolated extreme ultraviolet continua generated by 1.6-cycle near-infrared pulse combined with double optical gating scheme

    Science.gov (United States)

    Oguri, Katsuya; Mashiko, Hiroki; Ogawa, Tatsuya; Hanada, Yasutaka; Nakano, Hidetoshi; Gotoh, Hideki

    2018-04-01

    We demonstrate the generation of ultrabroad bandwidth attosecond continua extending to sub-50-as duration in the extreme ultraviolet (EUV) region based on a 1.6-cycle Ti:sapphire laser pulse. The combination of the amplitude gating scheme with a sub-two-cycle driver pulse and the double optical gating scheme achieves the continuum generation with a bandwidth of 70 eV at the full width at half maximum near the peak photon energy of 140 eV, which supports a Fourier-transform-limited pulse duration as short as 32 as. The carrier-envelope-phase (CEP) dependence of the attosecond continua shows a single-peak structure originating from the half-cycle cut-off at appropriate CEP values, which strongly indicates the generation of a single burst of an isolated attosecond pulse. Our approach suggests a possibility for isolated sub-50-as pulse generation in the EUV region by compensating for the intrinsic attosecond chirp with a Zr filter.

  13. An Ultra Low Noise Self-Starting Pulse Generator

    DEFF Research Database (Denmark)

    Lasri, J.; Bilenca, A.; Dahan, D.

    2002-01-01

    We describe a self-starting optical pulse source generating 10 GHz, 15 ps pulses with an average jitter of 43 fs and a o.15% amplitude noise over a frequency range of 500 Hz - 1 MHz.......We describe a self-starting optical pulse source generating 10 GHz, 15 ps pulses with an average jitter of 43 fs and a o.15% amplitude noise over a frequency range of 500 Hz - 1 MHz....

  14. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  15. Generation of a cold pulsed beam of Rb atoms by transfer from a 3D magneto-optic trap

    OpenAIRE

    Chanu, Sapam Ranjita; Rathod, Ketan D.; Natarajan, Vasant

    2016-01-01

    We demonstrate a technique for producing a cold pulsed beam of atoms by transferring a cloud of atoms trapped in a three dimensional magneto-optic trap (MOT). The MOT is loaded by heating a getter source of Rb atoms. We show that it is advantageous to transfer with two beams (with a small angle between them) compared to a single beam, because the atoms stop interacting with the beams in the two-beam technique, which results in a Gaussian velocity distribution. The atoms are further cooled in ...

  16. Generation of picosecond pulsed coherent state superpositions

    DEFF Research Database (Denmark)

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...... which exhibit non-Gaussian behavior. (C) 2014 Optical Society of America...

  17. The Vulcan pulse generating system

    International Nuclear Information System (INIS)

    Danson, C.N.; Edwards, C.B.; Wyatt, R.W.W.

    1985-01-01

    During the past two years several changes have been made to the front end system on the VULCAN pulse generating system. These changes give greater flexibility and a wider choice of operating conditions. This note gives an updated description of the system capabilities, and gives users of the facility an idea of the various pulse combinations that are available. (author)

  18. Pulse-voltage fast generator

    International Nuclear Information System (INIS)

    Valeev, R.I.; Nikiforov, M.G.; Kharchenko, A.F.

    1988-01-01

    The design is described and the test results of a four-channel pulse-voltage generator with maximum output voltage 200 kV are presented. The measurement results of generator triggering time depending on the value and polarity of the triggering voltage pulse for different triggering circuits are presented. The tests have shown stable triggering of all four channels of the generator in the range up to 40 % from selfbreakdown voltage. The generator triggering delay in the given range is <25 ns, asynchronism in channel triggering is <±1 ns

  19. Bipolar pulse generator for intense pulsed ion beam accelerator

    International Nuclear Information System (INIS)

    Ito, H.; Igawa, K.; Kitamura, I.; Masugata, K.

    2007-01-01

    A new type of pulsed ion beam accelerator named ''bipolar pulse accelerator'' (BPA) has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator for the bipolar pulse experiment, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the first experimental result of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PFL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time

  20. Pulsed neutron generator for logging

    International Nuclear Information System (INIS)

    Thibideau, F.D.

    1977-01-01

    A pulsed neutron generator for uranium logging is described. This generator is one component of a prototype uranium logging probe which is being developed by SLA to detect, and assay, uranium by borehole logging. The logging method is based on the measurement of epithermal neutrons resulting from the prompt fissioning of uranium from a pulsed source of 17.6 MeV neutrons. An objective of the prototype probe was that its diameter not exceed 2.75 inches, which would allow its use in conventional rotary drill holes of 4.75-inch diameter. This restriction limited the generator to a maximum 2.375-inch diameter. The performance requirements for the neutron generator specified that it operate with a nominal output of 5 x 10 6 neutrons/pulse at up to 100 pulses/second for a one-hour period. The development of a neutron generator meeting the preliminary design goals was completed and two prototype models were delivered to SLA. These two generators have been used by SLA to log a number of boreholes in field evaluation of the probe. The results of the field evaluations have led to the recommendation of several changes to improve the probe's operation. Some of these changes will require additional development effort on the neutron generator. It is expected that this work will be performed during 1977. The design and operation of the first prototype neutron generators is described

  1. High-voltage pulse generator

    International Nuclear Information System (INIS)

    Roche, M.

    1991-01-01

    This generator is composed of elementary impulsion generators connected in series. Each of them have -storage capacities, and switchs. The closure of switch causes an accumulator discharge. -control means of these switches are electrically independent and forecast to switch on by pulses in the same time -loading means of storage means have a very low enough electric dependence not to induce a loss of power at the exit of the generator. Applications to particle accelerators [fr

  2. PNG-300 a nanosecond pulsed neutron generator

    International Nuclear Information System (INIS)

    Sztaricskai, T.; Vasvary, L.; Petoe, G.C.; Devkin, B.V.

    1985-01-01

    The design and operation of a nanosecond-pulse neutron generator is reported. It was constructed for the measurement of prompt neutron and gamma radiation in experimental studies of fast neutron reactions by time of flight techniques. The acceleration voltage is 300 kV and the total resolution of the generator-neutron spectrometer system is 2 ns. The ion-optical system, the vacuum system and the control of the neutron generator is described in detail. The equipment was used for prompt neutron and gamma radiation induced in construction materials. (R.P.)

  3. Terahertz pulse generation from metal nanoparticle ink

    Science.gov (United States)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto

    2016-11-01

    Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.

  4. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  5. Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source

    DEFF Research Database (Denmark)

    Tu, H.; Liu, Y.; Lægsgaard, Jesper

    2012-01-01

    source with the MIIPS-integrated pulse shaper produces compressed transform-limited 9.6 fs (FWHM) pulses or arbitrarily shaped pulses at a central wavelength of 1020 nm, an average power over 100 mW, and a repetition rate of 76 MHz. In comparison to the 229-fs pump laser pulses that generate the fiber......The predicted spectral phase of a fiber continuum pulsed source rigorously quantified by the scalar generalized nonlinear Schrödinger equation is found to be in excellent agreement with that measured by multiphoton intrapulse interference phase scan (MIIPS) with background subtraction. This cross......-validation confirms the absolute pulse measurement by MIIPS and the transform-limited compression of the fiber continuum pulses by the pulse shaper performing the MIIPS measurement, and permits the subsequent coherent control on the fiber continuum pulses by this pulse shaper. The combination of the fiber continuum...

  6. Microwave pulse generation by photoconductive switching

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, M.D.; Druce, R.L.

    1989-03-14

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories (1) the frozen wave generator or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200..mu..J optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency. 3 refs., 6 figs.

  7. Microwave pulse generation by photoconductive switching

    Science.gov (United States)

    Pocha, M. D.; Druce, R. L.

    1989-03-01

    Laser activated photoconductive semiconductor switching shows significant potential for application in high power microwave generation. Primary advantages of this concept are: small size, light weight, ruggedness, precise timing and phasing by optical control, and the potential for high peak power in short pulses. Several concepts have been suggested for microwave generation using this technology. They generally fall into two categories: (1) the frozen wave generator, or (2) tuned cavity modulation, both of which require only fast closing switches. We have been exploring a third possibility requiring fast closing and opening switches, that is the direct modulation of the switch at microwave frequencies. Switches have been fabricated at LLNL using neutron irradiated Gallium Arsenide which exhibit response times as short as 50 ps at low voltages. We are in the process of performing high voltage tests. So far, we have been able to generate 2.4 kV pulses with approximately 340 ps response time (FWHM) using approximately a 200 microJ optical pulse. Experiments are continuing to increase the voltage and improve the switching efficiency.

  8. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high- pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  9. The Use of Ultrashort Picosecond Laser Pulses to Generate Quantum Optical Properties of Single Molecules in Biophysics

    Science.gov (United States)

    Ly, Sonny

    Generation of quantum optical states from ultrashort laser-molecule interactions have led to fascinating discoveries in physics and chemistry. In recent years, these interactions have been extended to probe phenomena in single molecule biophysics. Photons emitted from a single fluorescent molecule contains important properties about how the molecule behave and function in that particular environment. Analysis of the second order coherence function through fluorescence correlation spectroscopy plays a pivotal role in quantum optics. At very short nanosecond timescales, the coherence function predicts photon antibunching, a purely quantum optical phenomena which states that a single molecule can only emit one photon at a time. Photon antibunching is the only direct proof of single molecule emission. From the nanosecond to microsecond timescale, the coherence function gives information about rotational diffusion coefficients, and at longer millisecond timescales, gives information regarding the translational diffusion coefficients. In addition, energy transfer between molecules from dipole-dipole interaction results in FRET, a highly sensitive method to probe conformational dynamics at nanometer distances. Here I apply the quantum optical techniques of photon antibunching, fluorescence correlation spectroscopy and FRET to probe how lipid nanodiscs form and function at the single molecule level. Lipid nanodiscs are particles that contain two apolipoprotein (apo) A-I circumventing a lipid bilayer in a belt conformation. From a technological point of view, nanodiscs mimics a patch of cell membrane that have recently been used to reconstitute a variety of membrane proteins including cytochrome P450 and bacteriorhodopsin. They are also potential drug transport vehicles due to its small and stable 10nm diameter size. Biologically, nanodiscs resemble to high degree, high density lipoproteins (HDL) in our body and provides a model platform to study lipid-protein interactions

  10. Acousto-optic replication of ultrashort laser pulses

    Science.gov (United States)

    Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.

    2017-10-01

    Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.

  11. Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier.

    Science.gov (United States)

    Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio

    2009-03-15

    We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.

  12. Harmonic generation with a dual frequency pulse.

    Science.gov (United States)

    Keravnou, Christina P; Averkiou, Michalakis A

    2014-05-01

    Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.

  13. Optical reprogramming with ultrashort femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  14. Pulsed electron beam generation with fast repetitive double pulse system

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Surender Kumar; Deb, Pankaj; Shyam, Anurag, E-mail: surender80@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Visakhapatnam (India); Sharma, Archana [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Longer duration high voltage pulse (∼ 100 kV, 260 ns) is generated and reported using helical pulse forming line in compact geometry. The transmission line characteristics of the helical pulse forming line are also used to develop fast repetition double pulse system with very short inter pulse interval. It overcomes the limitations caused due to circuit parameters, power supplies and load characteristics for fast repetitive high voltage pulse generation. The high voltage double pulse of 100 kV, 100 ns with an inter pulse repetition interval of 30 ns is applied across the vacuum field emission diode for pulsed electron beam generation. The electron beam is generated from cathode material by application of negative high voltage (> 100 kV) across the diode by explosive electron emission process. The vacuum field emission diode is made of 40 mm diameter graphite cathode and SS mesh anode. The anode cathode gap was 6 mm and the drift tube diameter was 10 cm. The initial experimental results of pulsed electron beam generation with fast repetitive double pulse system are reported and discussed. (author)

  15. Pulse Compression Techniques for Laser Generated Ultrasound

    Science.gov (United States)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  16. Nanosecond bipolar pulse generators for bioelectrics.

    Science.gov (United States)

    Xiao, Shu; Zhou, Chunrong; Yang, Enbo; Rajulapati, Sambasiva R

    2018-04-26

    Biological effects caused by a nanosecond pulse, such as cell membrane permeabilization, peripheral nerve excitation and cell blebbing, can be reduced or cancelled by applying another pulse of reversed polarity. Depending on the degree of cancellation, the pulse interval of these two pulses can be as long as dozens of microseconds. The cancellation effect diminishes as the pulse duration increases. To study the cancellation effect and potentially utilize it in electrotherapy, nanosecond bipolar pulse generators must be made available. An overview of the generators is given in this paper. A pulse forming line (PFL) that is matched at one end and shorted at the other end allows a bipolar pulse to be produced, but no delay can be inserted between the phases. Another generator employs a combination of a resistor, an inductor and a capacitor to form an RLC resonant circuit so that a bipolar pulse with a decaying magnitude can be generated. A third generator is a converter, which converts an existing unipolar pulse to a bipolar pulse. This is done by inserting an inductor in a transmission line. The first phase of the bipolar pulse is provided by the unipolar pulse's rising phase. The second phase is formed during the fall time of the unipolar pulse, when the inductor, which was previously charged during the flat part of the unipolar pulse, discharges its current to the load. The fourth type of generator uses multiple MOSFET switches stacked to turn on a pre-charged, bipolar RC network. This approach is the most flexible in that it can generate multiphasic pulses that have different amplitudes, delays, and durations. However, it may not be suitable for producing short nanosecond pulses (<100 ns), whereas the PFL approach and the RLC approach with gas switches are used for this range. Thus, each generator has its own advantages and applicable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Custom pulse generator for RPC testing

    International Nuclear Information System (INIS)

    Gil, A.; Castro, E.; Diaz, J.; Fonte, P.; Garzon, J.A.; Montes, N.; Zapata, M.

    2009-01-01

    We present a pulse generator able to generate pulses statistically similar to the ones produced by RPC cells. The device generates up to four arrays of fast and narrow random-like pulses. Polarity, maximum amplitudes, widths and pulse rate in each channel may be modified independently in order to simulate different RPC setups and environments. This portable and cost-effective pulse generator is a versatile instrument for testing FE-Electronics and different real detector features related with the signal propagation inside the detector. It has been developed in the framework of the ESTRELA project of the HADES experiment at GSI.

  18. Pulsed neutron generator for use with pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Rochau, G.E.

    1980-01-01

    A high-output, transportable, pulsed neutron generator has been developed by Sandia National Laboratories for use with Pulsed Neutron Activation (PNA) techniques. The PNA neutron generator generates > 10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. Each operation of the unit will produce a nominal total neutron output of 1.2 x 10 10 neutrons. The generator has been designed to be easily repaired and modified. The unit requires no additional equipment for operation or measurement of output

  19. Apparatus for generating nonlinear pulse patterns

    Science.gov (United States)

    Nakamura, N.M.I.

    Apparatus for generating a plurality of nonlinear pulse patterns from a single linear pulse pattern. A first counter counts the pulses of the linear pulse pattern and a second counter counts the pulses of the nonlinear pulse pattern. A comparator compares the counts of both counters, and in response to an equal count, a gate is enabled to gate a pulse of the linear pattern as a pulse of the nonlinear pattern, the latter also resetting the first counter. Presettable dividers divide the pulses of each pattern before they are counted by the respective counters. Apparatus for generating a logarithmic pulse pattern from a linear pulse pattern to any log base is described. In one embodiment, a shift register is used in place of the second counter to be clocked by each pulse of the logarithmic pattern to generate the pattern. In another embodiment, a memory stores the logarithmic pattern and is addressed by the second counter which is clocked by the pulses of the logarithmic pulse pattern.

  20. High efficiency, monolithic fiber chirped pulse amplification system for high energy femtosecond pulse generation.

    Science.gov (United States)

    Peng, Xiang; Kim, Kyungbum; Mielke, Michael; Jennings, Stephen; Masor, Gordon; Stohl, Dave; Chavez-Pirson, Arturo; Nguyen, Dan T; Rhonehouse, Dan; Zong, Jie; Churin, Dmitriy; Peyghambarian, N

    2013-10-21

    A novel monolithic fiber-optic chirped pulse amplification (CPA) system for high energy, femtosecond pulse generation is proposed and experimentally demonstrated. By employing a high gain amplifier comprising merely 20 cm of high efficiency media (HEM) gain fiber, an optimal balance of output pulse energy, optical efficiency, and B-integral is achieved. The HEM amplifier is fabricated from erbium-doped phosphate glass fiber and yields gain of 1.443 dB/cm with slope efficiency >45%. We experimentally demonstrate near diffraction-limited beam quality and near transform-limited femtosecond pulse quality at 1.55 µm wavelength. With pulse energy >100 µJ and pulse duration of 636 fs (FWHM), the peak power is estimated to be ~160 MW. NAVAIR Public Release Distribution Statement A-"Approved for Public release; distribution is unlimited".

  1. Embedded fiber optic ultrasonic sensors and generators

    Science.gov (United States)

    Dorighi, John F.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    1995-04-01

    Ultrasonic sensors and generators based on fiber-optic systems are described. It is shown that intrinsic fiber optic Fabry-Perot ultrasound sensors that are embedded in a structure can be stabilized by actively tuning the laser frequency. The need for this method of stabilization is demonstrated by detecting piezoelectric transducer-generated ultrasonic pulses in the presence of low frequency dynamic strains that are intentionally induced to cause sensor drift. The actively stabilized embedded fiber optic Fabry-Perot sensor is also shown to have sufficient sensitivity to detect ultrasound that is generated in the interior of a structure by means of a high-power optical fiber that pipes energy from a pulsed laser to an embedded generator of ultrasound.

  2. High current high accuracy IGBT pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 μF capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles

  3. A high-voltage pulse generator for corona plasma generation

    NARCIS (Netherlands)

    Yan, K.; Heesch, van E.J.M.; Pemen, A.J.M.; Huijbrechts, P.A.H.J.; Gompel, van F.M.; Leuken, van H.E.M.; Matyas, Z.

    2002-01-01

    This paper discusses a high-voltage pulse generator for producing corona plasma. The generator consists of three resonant charging circuits, a transmission line transformer, and a triggered spark-gap switch. Voltage pulses in the order of 30-100 kV with a rise time of 10-20 ns, a pulse duration of

  4. Few-layer antimonene decorated microfiber: ultra-short pulse generation and all-optical thresholding with enhanced long term stability

    Science.gov (United States)

    Song, Yufeng; Liang, Zhiming; Jiang, Xiantao; Chen, Yunxiang; Li, Zhongjun; Lu, Lu; Ge, Yanqi; Wang, Ke; Zheng, Jilin; Lu, Shunbin; Ji, Jianhua; Zhang, Han

    2017-12-01

    Antimonene, a new type of mono/few-layer two-dimensional (2D) mono-elemental material purely consisting of antimony similar as graphene and phosphorene, has been theoretically predicted with excellent optical response and enhanced stability. Herein, we experimentally investigated the broadband nonlinear optical response of highly stable few-layer antimonene (FLA) by performing an open-aperture Z-scan laser measurement. Thanks to the direct bandgap and resonant absorption at the telecommunication band, we demonstrated the feasibility of FLA-decorated microfiber not only as an optical saturable absorber for ultrafast photonics operation, but also as a stable all-optical pulse thresholder that can effectively suppress the transmission noise, boost the signal-to-noise ratio (SNR), and reshape the deteriorated input signal. Our findings, as the first prototypic device of absorption of antimonene, might facilitate the development of antimonene-based optical communication technologies towards high stability and practical applications in the future.

  5. Pulse power applications of flux compression generators

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.

    1981-01-01

    Characteristics are presented for two different types of explosive driven flux compression generators and a megavolt pulse transformer. Status reports are given for rail gun and plasma focus programs for which the generators serve as power sources

  6. High reliability low jitter pulse generator

    Science.gov (United States)

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  7. Pulse shaping using the optical Fourier transform technique - for ultra-high-speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael

    2009-01-01

    This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment.......This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment....

  8. Next generation Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nees, J; Biswal, S; Mourou, G [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  9. Generation and amplification of nanaosecond duration multiline hf laser pulses

    International Nuclear Information System (INIS)

    Getzinger, R.L.; Ware, K.D.; Carpenter, J.P.

    1976-01-01

    High-power, fast-rising pulses of hydrogen fluoride laser energy suitable for laser-fusion target interaction experiments can in principle be generated by directing an electro-optically shuttered oscillator pulse through one or more electron-beam driven amplifiers. A three-stage HF master oscillator-power amplifier (MOPA) configuration was constructed and tested using SF 6 -C 2 H 6 in which an E-O generated 4-ns-FWHM pulse was amplified in an electron-beam-excited third stage and subsequently isolated with a Brewster angle splitter. Independent experiments in which a 100-ns-FWHM pilot pulse interacted with the power amplifier demonstrated for the first time complete extraction of the available laser energy. These two results provide strong evidence that with upgrading to H 2 -F 2 , it should be possible to obtain nanosecond duration pulses with power levels sufficient for meaningful laser fusion target coupling experiments

  10. Noise Pulses in Large Area Optical Modules

    International Nuclear Information System (INIS)

    Aiello, Sebastiano; Leonora, Emanuele; Giordano, Valentina

    2013-06-01

    A great number of large area photomultipliers are widely used in neutrino and astro-particle detector to measure Cherenkov light in medium like water or ice. The key element of these detectors are the so-called 'optical module', which consist in photodetectors closed in a transparent pressure-resistant container to protect it and ensure good light transmission. The noise pulses present on the anode of each photomultiplier affect strongly the performance of the detector. A large study was conducted on noise pulses of large area photomultipliers, considering time and charge distributions of dark pulses, prepulses, delayed pulses, and after pulses. The contribution to noise pulses due to the presence of the external glass spheres was also studied, even comparing two vessels of different brands. (authors)

  11. A simple optical spectral calibration technique for pulsed THz sources

    NARCIS (Netherlands)

    Wijnen, F.J.P.; G. Berden,; Jongma, R.T.

    2010-01-01

    We have quantified the sensitivity of a simple method to measurethe frequency spectrum of pulsed terahertz (THz) radiation. The THzpulses are upconverted to the optical regime by sideband generation in a zinctelluride (ZnTe) crystal using a continuous wave (cw) narrow-bandwidthnear-infrared laser. A

  12. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Koptev, M Yu; Anashkina, E A; Lipatov, D S; Andrianov, A V; Muravyev, S V; Kim, A V [Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (Russian Federation); Bobkov, K K; Likhachev, M E; Levchenko, A E; Aleshkina, S S; Semjonov, S L; Denisov, A N; Bubnov, M M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Laptev, A Yu; Gur' yanov, A N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2015-05-31

    We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm range and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)

  13. Review of pulsed rf power generation

    International Nuclear Information System (INIS)

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies

  14. Temporal self-splitting of optical pulses

    Science.gov (United States)

    Ding, Chaoliang; Koivurova, Matias; Turunen, Jari; Pan, Liuzhan

    2018-05-01

    We present mathematical models for temporally and spectrally partially coherent pulse trains with Laguerre-Gaussian and Hermite-Gaussian Schell-model statistics as extensions of the standard Gaussian Schell model for pulse trains. We derive propagation formulas of both classes of pulsed fields in linearly dispersive media and in temporal optical systems. It is found that, in general, both types of fields exhibit time-domain self-splitting upon propagation. The Laguerre-Gaussian model leads to multiply peaked pulses, while the Hermite-Gaussian model leads to doubly peaked pulses, in the temporal far field (in dispersive media) or at the Fourier plane of a temporal system. In both model fields the character of the self-splitting phenomenon depends both on the degree of temporal and spectral coherence and on the power spectrum of the field.

  15. Wavelength-tunable laser based on nonlinear dispersive-wave generation in a tapered optical waveguide

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a method and a wavelength tunable laser comprising a first laser source configured to emit a first optical pulse having a pump wavelength, the first optical pulse being emitted in a first longitudinal direction. Furthermore, the wavelength tunable laser comprises...... a waveguide extending in the first longitudinal direction, the waveguide having longitudinally varying phase matching conditions, the waveguide being configured to generate a second optical pulse with a centre wavelength upon receiving the first optical pulse, wherein the wavelength tunable laser...... is configured to tune the centre wavelength of the second optical pulse by varying at least one pulse property of the first optical pulse....

  16. A versatile programmable CAMAC random pulse generator

    International Nuclear Information System (INIS)

    Abdel-Aal, R.E.

    1991-01-01

    A new technique for generating linear pulses which can be random in both amplitude and time is described. With this technique, desired values for both pulse amplitude and spacing are set for the individual pulses by the software on a pulse-by-pulse basis. The versatility offered by this software programming allows a wide range of distributions to be obtained; with the user having close control on the distribution parameters. A number of such distributions may also be combined into a single output pulse stream. An implementation in a CAMAC module is presented. Both hardware and software aspects are described and typical performance results for amplitude and time distributions of the uniform and Gaussian type are given. Implications of using the pulser in a typical data acquisition environment on both the data acquisition and the pulser performance are considered. Typical applications are discussed together with some of the limitations. (orig.)

  17. A system for long pulse REB generation

    International Nuclear Information System (INIS)

    Tsuzuki, Tetsuya; Hasegawa, Mitsuru; Narihara, Kazumichi; Tomita, Yukihiro; Kubo, Shin; Kobata, Tadasuke; Mohri, Akihiro.

    1987-02-01

    A high voltage pulse generator system producing intense relativistic electron beams (REB) (1.5 μs pulse width, 30 kA peak current, 1 MeV energy) was developed to the use of REB ring formation. The system consists of a Marx generator, a transmission line with plastics-water hybrid insulators and a magnetically insulated transmission line connected with a cathode. The system has been well operated more than twenty thousands shots without troubles. (author)

  18. Generation of sub-100-fs Stokes pulses upon SRS in a barium nitrate crystal

    International Nuclear Information System (INIS)

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2010-01-01

    72-fs pulses are generated at the first Stokes component frequency upon stimulated Raman scattering in a barium nitrate crystal for the radiation of the Ti 3+ :Al 2 O 3 laser with the pulse duration of 50 fs. The energy efficiency of conversion is 20%. The barium nitrate crystal was optically pumped by two consecutive orthogonally polarised chirped pulses with the following time compression of the Stokes radiation pulse. (nonlinear optical phenomena)

  19. Macroscopic effects in attosecond pulse generation

    International Nuclear Information System (INIS)

    Ruchon, T; Varju, K; Mansten, E; Swoboda, M; L'Huillier, A; Hauri, C P; Lopez-Martens, R

    2008-01-01

    We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization which control the dispersion. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of compressed attosecond pulses. We show these macroscopic effects experimentally, using a 6 mm-long argon-filled gas cell as the generating medium

  20. Macroscopic effects in attosecond pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Ruchon, T; Varju, K; Mansten, E; Swoboda, M; L' Huillier, A [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Hauri, C P; Lopez-Martens, R [Laboratoire d' Optique Appliquee, Ecole Nationale Superieure des Techniques Avancees (ENSTA)-Ecole Polytechnique CNRS UMR 7639, 91761 Palaiseau (France)], E-mail: anne.lhuillier@fysik.lth.se

    2008-02-15

    We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization which control the dispersion. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of compressed attosecond pulses. We show these macroscopic effects experimentally, using a 6 mm-long argon-filled gas cell as the generating medium.

  1. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation.

    Science.gov (United States)

    Neufeld, Ofer; Cohen, Oren

    2018-03-30

    Optical chirality (OC)-one of the fundamental quantities of electromagnetic fields-corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  2. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation

    Science.gov (United States)

    Neufeld, Ofer; Cohen, Oren

    2018-03-01

    Optical chirality (OC)—one of the fundamental quantities of electromagnetic fields—corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  3. Generation of Femtosecond Electron and Photon Pulses

    CERN Document Server

    Thongbai, Chitrlada; Kangrang, Nopadol; Kusoljariyakul, Keerati; Rhodes, Michael W; Rimjaem, Sakhorn; Saisut, Jatuporn; Vilaithong, Thiraphat; Wichaisirimongkol, Pathom; Wiedemann, Helmut

    2005-01-01

    Femtosecond electron and photon pulses become a tool of interesting important to study dynamics at molecular or atomic levels. Such short pulses can be generated from a system consisting of an RF-gun with a thermionic cathode, an alpha magnet as a magnetic bunch compressor, and a linear accelerator. The femtosecond electron pulses can be used directly or used as sources to produce electromagnetic radiation of equally short pulses by choosing certain kind of radiation pruduction processes. At the Fast Neutron Research Facility (Thailand), we are especially interested in production of radiation in Far-infrared and X-ray regime. In the far-infrared wavelengths which are longer than the femtosecond pulse length, the radiation is emitted coherently producing intense radiation. In the X-ray regime, development of femtosecond X-ray source is crucial for application in ultrafast science.

  4. Precise generator of stability amplitude pulses

    International Nuclear Information System (INIS)

    Zhuk, N.A.; Zdesenko, Yu.G.; Kuts, V.N.

    1989-01-01

    A generator of stability amplitude pulses, designed for stabilization of a low-noise semiconducting spectrometer, used in investigations of 76 Ge2β-decay, is described. The generator contains a permanent-voltage source, a storage element and a switch based on a Hg relay. A thermostatic source provides a relative voltage instability less than ±5x10 -6 per 80h (standard deviation). The Hg relay is placed into a separate thermostat. The relative instability of output generator pulse amplitude does not exceed ±1.5x10 -5 per 24h

  5. Strong and superstrong pulsed magnetic fields generation

    CERN Document Server

    Shneerson, German A; Krivosheev, Sergey I

    2014-01-01

    Strong pulsed magnetic fields are important for several fields in physics and engineering, such as power generation and accelerator facilities. Basic aspects of the generation of strong and superstrong pulsed magnetic fields technique are given, including the physics and hydrodynamics of the conductors interacting with the field as well as an account of the significant progress in generation of strong magnetic fields using the magnetic accumulation technique. Results of computer simulations as well as a survey of available field technology are completing the volume.

  6. The Maxwell-Lorentz Model for optical Pulses

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Brio, Moysey

    2007-01-01

    Dynamics of optical pulses, especially of ultra short femtosecond pulses, are of great technological and theoretical interest. The dynamics of optical pulses is usually studied using the nonlinear Schrodinger (NLS) equation model. While such approach works surprisingly well for description of pulse...

  7. Programmable pulse series generator for NMR relaxometer

    International Nuclear Information System (INIS)

    Stolbunov, R.N.; Chichikov, S.A.; Lundin, A.G.

    2005-01-01

    Paper describes a pulse series generator for NMR relaxometer. The operation mode is set on the basis of the PC program by the PCI bus in the internal memory. The design is based on two Altera Company MAX7000S and Cyclone family microcircuits using the Qartus II 4.0 software. The basic parameters are as follows: pulse minimum length - 50 ns, time resolution - 10 ns, pulse maximum number - 1024, number of controlled output channels - 8. The designed device as a part of the NMR hardware-software system enables to record, to process and to store the experiment results in the form of electronic document [ru

  8. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  9. Optical pulse coupling in a photorefractive crystal, propagation of encoded pulses in an optical fiber, and phase conjugate optical interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Yao, X.S.

    1992-01-01

    In Part I, the author presents a theory to describe the interaction between short optical pulses in a photorefractive crystal. This theory provides an analytical framework for pulse coherence length measurements using a photorefractive crystal. The theory also predicts how a pulse changes its temporal shape due to its coupling with another pulse in a photorefractive crystal. The author describes experiments to demonstrate how photorefractive coupling alters the temporal shape and the frequency spectrum of an optical pulse. The author describes a compact optical field correlator. Using this correlator, the author measured the field cross-correlation function of optical pulses using a photorefractive crystal. The author presents a more sophisticated theory to describe the photorefractive coupling of optical pulses that are too short for the previous theory to be valid. In Part II of this dissertation, the author analyzes how the group-velocity dispersion and the optical nonlinearity of an optical fiber ruin an fiberoptic code-division multiple-access (CDMA) communication system. The author treats the optical fiber's nonlinear response with a novel approach and derives the pulse propagation equation. Through analysis and numerically simulations, the author obtains the maximum and the maximum allowed peak pulse power, as well as the minimum and the maximum allowed pulse width for the communication system to function properly. The author simulates how the relative misalignment between the encoding and the decoding masks affects the system's performance. In Part III the author demonstrates a novel optical interconnection device based on a mutually pumped phase conjugator. This device automatically routes light from selected information-sending channels to selected information-receiving channels, and vice versa. The phase conjugator eliminates the need for critical alignment. It is shown that a large number of optical channels can be interconnected using this

  10. Pulse generator circuit triggerable by nuclear radiation

    International Nuclear Information System (INIS)

    Fredrickson, P.B.

    1980-01-01

    A pulse generator circuit triggerable by a pulse of nuclear radiation is described. The pulse generator circuit includes a pair of transistors arranged, together with other electrical components, in the topology of a standard monostable multivibrator circuit. The circuit differs most significantly from a standard monostable multivibrator circuit in that the circuit is adapted to be triggered by a pulse of nuclear radiation rather than electrically and the transistors have substantially different sensitivities to radiation, due to different physical and electrical characteristics and parameters. One of the transistors is employed principally as a radiation detector and is in a normally non-conducting state and the other transistor is normally in a conducting state. When the circuit is exposed to a pulse of nuclear radiation, currents are induced in the collector-base junctions of both transistors but, due to the different radiation sensitivities of the transistors, the current induced in the collector-base junction of the radiation-detecting transistor is substantially greater than that induced in the collector-base junction of the other transistor. The pulse of radiation causes the radiation-detecting transistor to operate in its conducting state, causing the other transistor to operate in its non-conducting state. As the radiation-detecting transistor operates in its conducting state, an output signal is produced at an output terminal connected to the radiation-detecting transistor indicating the presence of a predetermined intensity of nuclear radiation

  11. Pulse shaping for all-optical signal processing of ultra-high bit rate serial data signals

    DEFF Research Database (Denmark)

    Palushani, Evarist

    The following thesis concerns pulse shaping and optical waveform manipulation for all-optical signal processing of ultra-high bit rate serial data signals, including generation of optical pulses in the femtosecond regime, serial-to-parallel conversion and terabaud coherent optical time division...

  12. Pulsed laser damage to optical fibers

    International Nuclear Information System (INIS)

    Allison, S.W.; Gillies, G.T.; Magnuson, D.W.; Pagano, T.S.

    1985-01-01

    This paper describes some observations of pulsed laser damage to optical fibers with emphasis on a damage mode characterized as a linear fracture along the outer core of a fiber. Damage threshold data are presented which illustrate the effects of the focusing lens, end-surface preparation, and type of fiber. An explanation based on fiber-beam misalignment is given and is illustrated by a simple experiment and ray trace

  13. Development of optical parametric chirped-pulse amplifiers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuhisa

    2006-11-21

    In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA) has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared (NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to achieve by existing techniques of pulse amplification based on standard laser gain media followed by external compression. Potential applications of few-cycle pulses in the IR have also been demonstrated. The NIR OPCPA system produces 0.5-terawatt (10 fs,5 mJ) pulses by use of noncollinearly phase-matched optical parametric amplification and a down-chirping stretcher and up-chirping compressor pair. An IR OPCPA system was also developed which produces 20-gigawatt (20 fs,350 {mu}J) pulses at 2.1 {mu}m. The IR seed pulse is generated by optical rectification of a broadband pulse and therefore it exhibits a self-stabilized carrier-envelope phase (CEP). In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an inherent sub-picosecond optical synchronization between the two pulses. This was achieved by use of a custom-built Nd:YLF picosecond pump pulse amplifier that is directly seeded with optical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between the pump and seed pulses is critical for efficient and stable amplification. Two spectroscopic applications which utilize these unique sources have been demonstrated. First, the visible supercontinuum was generated in a solid-state media by the infrared optical pulses and through which the carrier-envelope phase (CEP) of the driving pulse was measured with an f-to-3f interferometer. This measurement confirms the self-stabilization mechanism of the CEP in a difference frequency generation process and the preservation of the CEP during optical parametric amplification. Second, high-order harmonics with energies extending beyond 200 eV were generated with the few

  14. Design Study for Pulsed Proton Beam Generation

    Directory of Open Access Journals (Sweden)

    Han-Sung Kim

    2016-02-01

    Full Text Available Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

  15. Preliminary Optical And Electric Field Pulse Statistics From Storm Overflights During The Altus Cumulus Electrification Study

    Science.gov (United States)

    Mach, D. A.; Blakeslee, R. J.; Bailey, J. C.; Farrell, W. M.; Goldberg, R. A.; Desch, M. D.; Houser, J. G.

    2003-01-01

    The Altus Cumulus Electrification Study (ACES) was conducted during the month of August, 2002 in an area near Key West, Florida. One of the goals of this uninhabited aerial vehicle (UAV) study was to collect high resolution optical pulse and electric field data from thunderstorms. During the month long campaign, we acquired 5294 lightning generated optical pulses with associated electric field changes. Most of these observations were made while close to the top of the storms. We found filtered mean and median 10-10% optical pulse widths of 875 and 830 microns respectively while the 50-50% mean and median optical pulse widths are 422 and 365 microns respectively. These values are similar to previous results as are the 10-90% mean and median rise times of 327 and 265 microns. The peak electrical to optical pulse delay mean and median were 209 and 145 microns which is longer than one would expect from theoretical results. The results of the pulse analysis will contribute to further validation of the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS) satellites. Pre-launch estimates of the flash detection efficiency were based on a small sample of optical pulse measurements associated with less than 350 lightning discharges collected by NASA U-2 aircraft in the early 1980s. Preliminary analyses of the ACES measurements show that we have greatly increased the number of optical pulses available for validation of the LIS and other orbital lightning optical sensors. Since the Altus was often close to the cloud tops, many of the optical pulses are from low-energy pulses. From these low-energy pulses, we can determine the fraction of optical lightning pulses below the thresholds of LIS, OTD, and any future satellite-based optical sensors such as the geostationary Lightning Mapping Sensor.

  16. Optical pulse shaping approaches to coherent control

    International Nuclear Information System (INIS)

    Goswami, Debabrata

    2003-01-01

    The last part of the twentieth century has experienced a huge resurge of activity in the field of coherent light-matter interaction, more so in attempting to exert control over such interactions. Birth of coherent control was originally spurred by the theoretical understanding of the quantum interferences that lead to energy randomization and experimental developments in ultrafast laser spectroscopy. The theoretical predictions on control of reaction channels or energy randomization processes are still more dramatic than the experimental demonstrations, though this gap between the two is consistently reducing over the recent years with realistic theoretical models and technological developments. Experimental demonstrations of arbitrary optical pulse shaping have made some of the previously impracticable theoretical predictions possible to implement. Starting with the simple laser modulation schemes to provide proof-of-the-principle demonstrations, feedback loop pulse shaping systems have been developed that can actively manipulate some atomic and molecular processes. This tremendous experimental boost of optical pulse shaping developments has prospects and implications into many more new directions, such as quantum computing and terabit/sec data communications. This review captures certain aspects and impacts of optical pulse shaping into the fast developing areas of coherent control and other related fields. Currently available reviews focus on one or the other detailed aspects of coherent control, and the reader will be referred to such details as and when necessary for issues that are dealt in brief here. We will focus on the current issues including control of intramolecular dynamics and make connections to the future concepts, such as, quantum computation, biomedical applications, etc

  17. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    Silva, V.L. da.

    1986-01-01

    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N 2 , NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N 2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author) [pt

  18. Optical Pulsing in an Absorbing Liquid

    Science.gov (United States)

    Barnes, Jacob; Evans, Dean; Guha, Shekhar

    2003-03-01

    A continuous-wave laser can be converted into a series of repetitive pulses by focusing the laser beam into an absorbing liquid (e.g. nigrosine dissolved in a solvent), where the mechanism responsible for the pulses is the scattering of light off of photo-generated bubbles. The dependence of the pulsation frequency on the solvent, power, and cell thickness will be shown. The authors would like to acknowledge the contributions made by Prof. Daniel Lathrop (University of Maryland, Department of Physics) at the APS March 2002 meeting.

  19. Infrared Supercontinuum Generation in Optical Fibres

    DEFF Research Database (Denmark)

    Dupont, Sune Vestergaard Lund

    During my PhD studies I have worked with intense lasers and optical fibres. In our conceptual universe the colour of light (wavelength) does not depend on the material in which it propagates. At high intensities however, nonlinear effects change the behaviour of light and rise of new wavelength...... with laser-like intensity is obtained, which otherwise is impossible without the use of more complicated equipment. Until recently, supercontinuum covering the mid-infrared was not possible due to absorption in the silica glass optical fibres are made of. In our project infrared transparent materials...... such as ZBLAN and chalcogenide have been investigated. Using ZBLAN it has been possible to generated a supercontinuum stretching beyond 4200 nm. Supercontinuum generation requires knowledge about the physical properties of the optical fibre in which the pulse-broadening takes place. Consequently thorough...

  20. A pulse generator for xenon lamps

    CERN Document Server

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  1. 4-channel time delayed pulse generator

    International Nuclear Information System (INIS)

    Wetzel, L.F.S.; Rossi, J.O.; Del Bosco, E.

    1987-02-01

    It is described the project of a 4-channel delayed pulse generator employed to trigger the plasma centrifuge experiment of the Laboratorio Associado de Plasmas. The circuit delivers pulses with amplitude of 15V, full width at half maximum of 50μs and rise time of 0.7μs. The maximum time delay is 100ms. There are two channels with a fine adjustment of 0-1ms. The system can be manually or automatically driven. (author) [pt

  2. Pulse tube coolers for Meteosat third generation

    International Nuclear Information System (INIS)

    Butterworth, James; Aigouy, Gérald; Chassaing, Clement; Debray, Benoît; Huguet, Alexandre

    2014-01-01

    Air Liquide's Large Pulse Tube Coolers (LPTC) will be used to cool the focal planes of the Infrared Sounder (IRS) and Flexible Combined Imager (FCI) instruments aboard the ESA/Eumetsat satellites Meteosat Third Generation (MTG). This cooler consists of an opposed piston linear compressor driving a pulse tube cold head and the associated drive electronics including temperature regulation and vibration cancellation algorithms. Preparations for flight qualification of the cooler are now underway. In this paper we present results of the optimization and qualification activities as well as an update on endurance testing

  3. Voltage-pulse generator for electron gun

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    A voltage-pulse generator with combined capacitive and inductive storage devices of an electron gun is described. The current interrupter is a hydrogen thyratron (TGI1-100/8, TGI1-500/16, or TGI1-1000/25) installed in a short magnetic lens. The current interruption time of the thyratrons is 100-300 nsec. When the capacitive storage device is charged to 1 kV, a voltage pulse with an amplitude of 25 kV is obtained at the load

  4. Pulse patterning effect in optical pulse division multiplexing for flexible single wavelength multiple access optical network

    Science.gov (United States)

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-01

    A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.

  5. Generation and characterization of atto second pulses

    International Nuclear Information System (INIS)

    Mairesse, Y.

    2005-07-01

    Atto-second pulse trains in the extreme ultraviolet range can be produced by high-order harmonic generation, by focusing an intense femtosecond pulse in a rare gas jet. In this thesis, we present a temporal characterization of this radiation on the femtosecond and atto-second timescales. By transposing a spectral interferometry technique commonly used in the infrared range (SPIDER), we make a complete single-shot characterization of the temporal profile of individual harmonics, on the femtosecond timescale. In a second part, we study experimentally the atto-second structure of the harmonic radiation, and demonstrate a temporal drift in the emission: the lowest harmonics are emitted before the highest ones. This chirp, which is directly related to the electron dynamics in the generation process, imposes a lower limit to the duration that can be achieved by increasing the spectral range. We show how generating conditions can be optimized in order to enhance the synchronization in the emission, and how atto-second pulses can be re-compressed. Last, we propose a new technique for the complete characterization of arbitrary atto-second pulses: FROGCRAB. This method would allow simultaneous measurements of the femtosecond and atto-second structures of the radiation, and thus a complete knowledge of the atto-second light source in the perspective of applications. (author)

  6. 1 MV low-induction pulse generator

    International Nuclear Information System (INIS)

    Koba, G.I.; Koba, Yu.V.; Slivkov, I.N.; Sukhov, A.D.; Tarumov, Eh.Z.

    1980-01-01

    A high-voltage pulse generator is described. The generator Uses the Arkadiev-Marx circuit at 1 MV voltage and 12 kJ energy; the inductance of the discharge circuit is 1.3 μN. Low inductance of the generator has been obtained due to the use of low-inductance capacitors and employment of bifilar buses with oil barrier insulation. To provide reliable generator triggering, an ignition circuit has been developed with a resistive coupling between generator steps, based on controlled three-electrode sparkgaps with a distorted field. The generator switching time is slightly dependent on pressure and constitutes 200-300 ns. The generator efficiency is 83%

  7. Nonlinear dispersion-based incoherent photonic processing for microwave pulse generation with full reconfigurability.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2012-03-12

    A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product.

  8. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz

    Science.gov (United States)

    Garg, M.; Kim, H. Y.; Goulielmakis, E.

    2018-05-01

    Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.

  9. Generation of an intense pulsed positron beam and its applications

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Mikado, Tomohisa; Ohgaki, Hideaki; Chiwaki, Mitsukuni; Yamazaki, Tetsuo; Kobayashi, Yoshinori.

    1994-01-01

    A positron pulsing system for an intense positron beam generated by an electron linac has been developed at the Electrotechnical Laboratory. The pulsing system generates an intense pulsed positron beam of variable energy and variable pulse period. The pulsed positron beam is used as a non destructive probe for various materials researches. In this paper, we report the present status of the pulsed positron beam and its applications. (author)

  10. High power, repetitive stacked Blumlein pulse generators

    Energy Technology Data Exchange (ETDEWEB)

    Davanloo, F; Borovina, D L; Korioth, J L; Krause, R K; Collins, C B [Univ. of Texas at Dallas, Richardson, TX (United States). Center for Quantum Electronics; Agee, F J [US Air Force Phillips Lab., Kirtland AFB, NM (United States); Kingsley, L E [US Army CECOM, Ft. Monmouth, NJ (United States)

    1997-12-31

    The repetitive stacked Blumlein pulse power generators developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single switch at the other end. In this way, relatively low charging voltages are multiplied to give a high discharge voltage across an arbitrary load. Extensive characterization of these novel pulsers have been performed over the past few years. Results indicate that they are capable of producing high power waveforms with rise times and repetition rates in the range of 0.5-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap, or photoconductive switch. The progress in the development and use of stacked Blumlein pulse generators is reviewed. The technology and the characteristics of these novel pulsers driving flash x-ray diodes are discussed. (author). 4 figs., 5 refs.

  11. Pulse generation scheme for flying electromagnetic doughnuts

    Science.gov (United States)

    Papasimakis, Nikitas; Raybould, Tim; Fedotov, Vassili A.; Tsai, Din Ping; Youngs, Ian; Zheludev, Nikolay I.

    2018-05-01

    Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short bursts of electromagnetic energy propagating in free space at the speed of light. They are distinguished from transverse waves by a doughnutlike configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we demonstrate numerically that such flying doughnuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate flying doughnuts is of fundamental interest, as they shall interact with matter in unique ways, including nontrivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, hence offering opportunities for telecommunications, sensing, and spectroscopy.

  12. Black phosphorus saturable absorber for ultrashort pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, Wroclaw 50-370 (Poland); Macherzynski, W.; Paletko, P. [Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, Janiszewskiego 11/17, Wroclaw 50-372 (Poland)

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  13. Ultrafast pulse generation in photoconductive switches

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Dykaar, D. R.

    1996-01-01

    Carrier and field dynamics in photoconductive switches are investigated by electrooptic sampling and voltage-dependent reflectivity measurements. We show that the nonuniform field distribution due to the two-dimensional nature of coplanar photoconductive switches, in combination with the large di...... difference in the mobilities of holes and electrons, determine the pronounced polarity dependence. Our measurements indicate that the pulse generation mechanism is a rapid voltage breakdown across the photoconductive switch and not a local field breakdown...

  14. Pulsed corona generation using a diode-based pulsed power generator

    Science.gov (United States)

    Pemen, A. J. M.; Grekhov, I. V.; van Heesch, E. J. M.; Yan, K.; Nair, S. A.; Korotkov, S. V.

    2003-10-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and repetitive high-voltage pulsed power technology. Heavy-duty opening switches are the most critical components in high-voltage pulsed power systems with inductive energy storage. At the Ioffe Institute, an unconventional switching mechanism has been found, based on the fast recovery process in a diode. This article discusses the application of such a "drift-step-recovery-diode" for pulsed corona plasma generation. The principle of the diode-based nanosecond high-voltage generator will be discussed. The generator will be coupled to a corona reactor via a transmission-line transformer. The advantages of this concept, such as easy voltage transformation, load matching, switch protection and easy coupling with a dc bias voltage, will be discussed. The developed circuit is tested at both a resistive load and various corona reactors. Methods to optimize the energy transfer to a corona reactor have been evaluated. The impedance matching between the pulse generator and corona reactor can be significantly improved by using a dc bias voltage. At good matching, the corona energy increases and less energy reflects back to the generator. Matching can also be slightly improved by increasing the temperature in the corona reactor. More effective is to reduce the reactor pressure.

  15. Design of a ns-pulse generator with microwave studio

    NARCIS (Netherlands)

    Huiskamp, T.; Voeten, S.J.; Pemen, A.J.M.

    2012-01-01

    In this paper we present a design approach of a nanosecond pulse generator by using CST MICROWAVE STUDIO R . Through detailed simulation we arrive at a design for a fast rise-time variable pulse duration pulse generator which is able to produce 1–10 nanosecond pulses with tens of kilovolt amplitude.

  16. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    Science.gov (United States)

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  17. Broadband noise limit in the photodetection of ultralow jitter optical pulses.

    Science.gov (United States)

    Sun, Wenlu; Quinlan, Franklyn; Fortier, Tara M; Deschenes, Jean-Daniel; Fu, Yang; Diddams, Scott A; Campbell, Joe C

    2014-11-14

    Applications with optical atomic clocks and precision timing often require the transfer of optical frequency references to the electrical domain with extremely high fidelity. Here we examine the impact of photocarrier scattering and distributed absorption on the photocurrent noise of high-speed photodiodes when detecting ultralow jitter optical pulses. Despite its small contribution to the total photocurrent, this excess noise can determine the phase noise and timing jitter of microwave signals generated by detecting ultrashort optical pulses. A Monte Carlo simulation of the photodetection process is used to quantitatively estimate the excess noise. Simulated phase noise on the 10 GHz harmonic of a photodetected pulse train shows good agreement with previous experimental data, leading to the conclusion that the lowest phase noise photonically generated microwave signals are limited by photocarrier scattering well above the quantum limit of the optical pulse train.

  18. Optical surgical navigation system causes pulse oximeter malfunction.

    Science.gov (United States)

    Satoh, Masaaki; Hara, Tetsuhito; Tamai, Kenji; Shiba, Juntaro; Hotta, Kunihisa; Takeuchi, Mamoru; Watanabe, Eiju

    2015-01-01

    An optical surgical navigation system is used as a navigator to facilitate surgical approaches, and pulse oximeters provide valuable information for anesthetic management. However, saw-tooth waves on the monitor of a pulse oximeter and the inability of the pulse oximeter to accurately record the saturation of a percutaneous artery were observed when a surgeon started an optical navigation system. The current case is thought to be the first report of this navigation system interfering with pulse oximetry. The causes of pulse jamming and how to manage an optical navigation system are discussed.

  19. Evaluation of material dispersion using a nanosecond optical pulse radiator.

    Science.gov (United States)

    Horiguchi, M; Ohmori, Y; Miya, T

    1979-07-01

    To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.

  20. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  1. S100 lathe bed pulse generator applied to pulsed nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cernicchiaro, G.R.C.; Rudge, M.G.; Albuquerque, M.P.

    1989-01-01

    The project and construction of four channel pulse generator in the S100 standard plate and its control software for microcomputer are described. The microcomputer has total control on the pulse generator, which has seven programable parameters, defining the position of four pulses and the width for the three first ones. This pulse generator is controlled by a software developed in c language, and is used in pulsed nuclear magnetic resonance experiences. (M.C.K.) [pt

  2. Practical system for the generation of pulsed quantum frequency combs.

    Science.gov (United States)

    Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2017-08-07

    The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

  3. Universal pulse generator with a nanosecond fast responce

    International Nuclear Information System (INIS)

    Basiladze, S.G.; Nguen Kuang Min'.

    1977-01-01

    A pulse generator with nanosecond action is described; it is mainly designed for testing and tuning fast electronic devices operating with pulses in the N/1/M standard. The generator is principally based on integral circuits and has wide functional potentialities: it includes a main-pulse channel, a delayed-pulse channel, and an overall output, which sums up these pulses; in addition to the logic pulse outputs it includes a linear pulse output with an amplitude smoothly regulated in the range from 0.3 to 6.0 V; it can operate in the self-oscillation mode, in the pulse series formation mode, in the starting mode, and in the single-start mode. Two generators are placed in a double-width CAMAC cell. The generation frequency is from 3 Hz to 75 MHz, pulse duration from 8 to 320 ns, and pulse front duration 2 ns

  4. Electro-optic sampling of THz pulses at the CTR source at FLASH

    International Nuclear Information System (INIS)

    Wunderlich, Steffen

    2012-06-01

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  5. Electro-optic sampling of THz pulses at the CTR source at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Steffen

    2012-06-15

    Several applications in material science, non-linear optics and solid-state physics require short pulses with a high pulse energy of radiation in the far-infrared and in the terahertz (THz) regime in particular. As described in the following, coherent transition radiation generated by high-relativistic electron bunches at FLASH provides broadband single-cycle pulses of sub-picosecond length. The pulses are characterized using the quantitative and time-resolved technique of electro-optic sampling showing peak field strengths in the order of 1 MV/cm.

  6. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Science.gov (United States)

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  7. 21 CFR 870.3600 - External pacemaker pulse generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External pacemaker pulse generator. 870.3600... pacemaker pulse generator. (a) Identification. An external pacemaker pulse generator is a device that has a... intrinsic pacing sytem until a permanent pacemaker can be implanted, or to control irregular heartbeats in...

  8. 21 CFR 870.3610 - Implantable pacemaker pulse generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implantable pacemaker pulse generator. 870.3610 Section 870.3610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... pacemaker pulse generator. (a) Identification. An implantable pacemaker pulse generator is a device that has...

  9. Pulse generation and compression using an asymmetrical porous ...

    Indian Academy of Sciences (India)

    2016-11-03

    Nov 3, 2016 ... DOI 10.1007/s12043-016-1301-z. Pulse generation ... Silicon nanophotonics; porous silicon waveguide; pulse generation and compression. PACS Nos 42.70. ..... a switching single- and double-pulse generation tech- nique is ...

  10. A pulse generator of arbitrary shaped waveform

    International Nuclear Information System (INIS)

    Jiang Jiayou; Chen Zhihao

    2011-01-01

    The three bump magnets in the booster extraction system of SSRF are driven by a signal generator with an external trigger. The signal generator must have three independent and controllable outputs, and both amplitude and make-and-break should be controllable, with current state information being readable. In this paper, we describe a signal generator based on FPGA and DAC boards. It makes use of characteristics of both FPGA flex programmable and rich reconfigurable IO resources. The system has a 16-bit DAC with four outputs, using Matlab to write a GUI based on RS232 protocol for control. It was simulated in Modelsim and tested on board. The results indicate that the system is well designed and all the requirements are met. The arbitrary waveform is writable, and the pulse width and period can be controlled. (authors)

  11. Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI.

    Science.gov (United States)

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2013-09-23

    We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.

  12. High voltage pulse generator. [Patent application

    Science.gov (United States)

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  13. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  14. Controlled generation of a single Trichel pulse and a series of single Trichel pulses in air

    Science.gov (United States)

    Mizeraczyk, Jerzy; Berendt, Artur; Akishev, Yuri

    2018-04-01

    In this paper, a simple method for the controlled generation of a single Trichel pulse or a series of single Trichel pulses of a regulated repetition frequency in air is proposed. The concept of triggering a single Trichel pulse or a series of such pulses is based on the precise controlling the voltage inception of the negative corona, which can be accomplished through the use of a ramp voltage pulse or a series of such pulses with properly chosen ramp voltage pulse parameters (rise and fall times, and ramp voltage pulse repetition frequency). The proposal has been tested in experiments using a needle-to-plate electrode arrangement in air, and reproducible Trichel pulses (single or in a series) were obtained by triggering them with an appropriately designed voltage waveform. The proposed method and results obtained have been qualitatively analysed. The analysis provides guidance for designing the voltage ramp pulse in respect of the generation of a single Trichel pulse or a series of single Trichel pulses. The controlled generation of a single Trichel pulse or a series of such pulses would be a helpful research tool for the refined studies of the fundamental processes in a negative corona discharge in a single- (air is an example) and multi-phase gaseous fluids. The controlled generation of a single Trichel pulse or a series of Trichel pulses can also be attractive for those corona treatments which need manipulation of the electric charge and heat portions delivered by the Trichel pulses to the object.

  15. Modulational instability of short pulses in long optical fibers

    DEFF Research Database (Denmark)

    Shukla, P. K.; Juul Rasmussen, Jens

    1986-01-01

    The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed......The effect of time-derivative nonlinearity is incorporated into the study of the modulational instability of heat pulses propagating through long optical fibers. Conditions for soliton formation are discussed...

  16. Optic fiber pulse-diagnosis sensor of traditional Chinese medicine

    Science.gov (United States)

    Ni, J. S.; Jin, W.; Zhao, B. N.; Zhang, X. L.; Wang, C.; Li, S. J.; Zhang, F. X.; Peng, G. D.

    2013-09-01

    The wrist-pulse is a kind of signals, from which a lot of physiological and pathological status of patients are deduced according to traditional Chinese medicine theories. This paper designs a new optic fiber wrist-pulse sensor that based on a group of FBGs. Sensitivity of the optic fiber wrist-pulse measurement system reaches 0.05% FS and the range reaches 50kPa. Frequency response is from 0 Hz to 5 kHz. A group of typical pulse signal is given out in the paper to compare different status of patient. It will improve quantification of pulse diagnosis greatly.

  17. Experimental Testing of a Van De Graaff Generator as an Electromagnetic Pulse Generator

    Science.gov (United States)

    2016-07-01

    EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR THESIS...protection in the United States AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENP-MS-16-S-075 EXPERIMENTAL TESTING OF A VAN DE GRAAFF GENERATOR AS AN ELECTROMAGNETIC PULSE GENERATOR

  18. Geometric Phase Generated Optical Illusion.

    Science.gov (United States)

    Yue, Fuyong; Zang, Xiaofei; Wen, Dandan; Li, Zile; Zhang, Chunmei; Liu, Huigang; Gerardot, Brian D; Wang, Wei; Zheng, Guoxing; Chen, Xianzhong

    2017-09-12

    An optical illusion, such as "Rubin's vase", is caused by the information gathered by the eye, which is processed in the brain to give a perception that does not tally with a physical measurement of the stimulus source. Metasurfaces are metamaterials of reduced dimensionality which have opened up new avenues for flat optics. The recent advancement in spin-controlled metasurface holograms has attracted considerate attention, providing a new method to realize optical illusions. We propose and experimentally demonstrate a metasurface device to generate an optical illusion. The metasurface device is designed to display two asymmetrically distributed off-axis images of "Rubin faces" with high fidelity, high efficiency and broadband operation that are interchangeable by controlling the helicity of the incident light. Upon the illumination of a linearly polarized light beam, the optical illusion of a 'vase' is perceived. Our result provides an intuitive demonstration of the figure-ground distinction that our brains make during the visual perception. The alliance between geometric metasurface and the optical illusion opens a pathway for new applications related to encryption, optical patterning, and information processing.

  19. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin; Fisher, Paul; Lobino, Mirko [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane (Australia); Streed, Erik W. [Centre for Quantum Dynamics, Griffith University, Brisbane (Australia); Institute for Glycomics, Griffith University, Gold Coast (Australia)

    2016-05-15

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sources and detectors through an external clock with adjustable delay.

  20. Concepts for the Temporal Characterization of Short Optical Pulses

    Directory of Open Access Journals (Sweden)

    Walmsley Ian A

    2005-01-01

    Full Text Available Methods for the characterization of the time-dependent electric field of short optical pulses are reviewed. The representation of these pulses in terms of correlation functions and time-frequency distributions is discussed, and the strategies for their characterization are explained using these representations. Examples of the experimental implementations of the concepts of spectrography, interferometry, and tomography for the characterization of pulses in the optical telecommunications environment are presented.

  1. A 350 KV nanosecond pulse voltage generator with adjustable pulsed-width

    International Nuclear Information System (INIS)

    Wang, X.; Wang, M.; Chen, Y.Q.; Zeng, L.G.; Han, M.

    2002-01-01

    This paper presents a 350 kV nanosecond pulse voltage generator (NPVG). The voltage pulsed-width can be adjusted from 30 to 160 ns. The generator consists of: Marx generator, pulsed forming line (PFL), main switch and matched impedance. The output voltage of Marx generator is over than nU c (n- the stage number of Marx generator, U c -the charging voltage of capacitor). When the pulse forming line is terminated with an impedance that is over than the characteristic impedance of PFL, the higher voltage pulse was provided for the load

  2. Evaluation of bipolar pulse generator for high-purity pulsed ion beam

    International Nuclear Information System (INIS)

    Ito, H.; Kitamura, I.; Masugata, K.

    2008-01-01

    A new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)' has been proposed in order to improve the purity of intense pulsed ion beams. To confirm the principle of the BPA, we developed a bipolar pulse generator, which consists of a Marx generator and a pulse forming line (PFL) with a rail gap switch on its end. In this article, we report the experimental results of the bipolar pulse and evaluate the electrical characteristics of the bipolar pulse generator. When the bipolar pulse generator was operated at 70% of the full charge condition of the PEL, the bipolar pulse with the first (-138 kV, 72 ns) and the second pulse (+130 kV, 70 ns) was successfully obtained. The evaluation of the electrical characteristics indicates that the developed generator can produce the bipolar pulse with fast rise time and sharp reversing time. At present the bipolar pulse generator is installed in the B y type magnetically insulated ion diode and we carry out the experiment on the production of an intense pulsed ion beam by the bipolar pulse accelerator. (author)

  3. Twenty-channel high-voltage pulse generators

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Kashirin, A.P.

    1980-01-01

    A 20-channel high-voltage pulse generator operating with a mismatched load is described. The generator contains shaping lines 20 m long made of coaxial cable, a trigatron-type discharged, and isolating plates. The channel characteristic impedance is 50 Ohm. The maximum pulse amplitude is up to 15 kV on a high-resistance load and 7.5 kV on a matched one. The pulse duration is 100 ns at a pulse rise time of 12 ns, the delay introduced by the generator is 200 +-2.5 ns. Provision is made in the control circuit for compensation of the shaped pulse and separation of a pulse reflected from the load. The reflected pulse shape and amplitude characterize load parameters. Generator tests proved its high operational reliability (after 10 5 operations no significant changes in generator performances have been observed). The generator is intended for filmless data output from spark chambers

  4. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2017-01-01

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  5. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, J. S. Totero

    2017-05-31

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  6. Spectrally modified chirped pulse generation of sustained shock waves

    International Nuclear Information System (INIS)

    McGrane, S.D.; Moore, D.S.; Funk, D.J.; Rabie, R.L.

    2002-01-01

    A method is described for generating shock waves with 10-20 ps risetime followed by >200 ps constant pressure, using spectrally modified (clipped) chirped laser pulses. The degree of spectral clipping alters the chirped pulse temporal intensity profile and thereby the time-dependent pressure (tunable via pulse energy) generated in bare and nitrocellulose-coated Al thin films. The method is implementable in common chirped amplified lasers, and allows synchronous probing with a <200 fs pulse

  7. Extremely Short Optical Pulses and Ads/CFT Compliance

    Directory of Open Access Journals (Sweden)

    Konobeeva N.N.

    2015-01-01

    Full Text Available Dynamics of few cycle optical pulses in non-Fermi liquid was considered. Energy spectrum of non-Fermi liquid was taken from the AdS/CFT compliance. Conditions of quasiparticle excitation existence were defined. Non-Fermi liquid parameters impact on the shape of few cycle pulses were estimated. It was shown that extremely short optical pulse propagation in the non-Fermi liquid is a stable pattern. The value of chemical potential has a significant impact on extremely short pulse shape. An increase in initial pulse amplitude does not result in pulse-shape distortions under its propagation in considered medium that is why the non-Fermi liquid can be used in applications inherent in extremely short pulse processing.

  8. A compact nanosecond pulse generator for DBD tube characterization

    Science.gov (United States)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  9. Linear transformer driver for pulse generation

    Science.gov (United States)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  10. Optical continuum generation on a silicon chip

    Science.gov (United States)

    Jalali, Bahram; Boyraz, Ozdal; Koonath, Prakash; Raghunathan, Varun; Indukuri, Tejaswi; Dimitropoulos, Dimitri

    2005-08-01

    Although the Raman effect is nearly two orders of magnitude stronger than the electronic Kerr nonlinearity in silicon, under pulsed operation regime where the pulse width is shorter than the phonon response time, Raman effect is suppressed and Kerr nonlinearity dominates. Continuum generation, made possible by the non-resonant Kerr nonlinearity, offers a technologically and economically appealing path to WDM communication at the inter-chip or intra-chip levels. We have studied this phenomenon experimentally and theoretically. Experimentally, a 2 fold spectral broadening is obtained by launching ~4ps optical pulses with 2.2GW/cm2 peak power into a conventional silicon waveguide. Theoretical calculations, that include the effect of two-photon-absorption, free carrier absorption and refractive index change indicate that up to >30 times spectral broadening is achievable in an optimized device. The broadening is due to self phase modulation and saturates due to two photon absorption. Additionally, we find that free carrier dynamics also contributes to the spectral broadening and cause the overall spectrum to be asymmetric with respect to the pump wavelength.

  11. Generation of ozone by Ns-width pulsed power

    International Nuclear Information System (INIS)

    Shimomura, Naoyuki; Wakimoto, Masaya; Shinke, Yosuke; Nagata, Masayoshi; Namihira, Takao; Akiyama, Hidenori

    2002-01-01

    The demand of ozone will be increasing for wholesome and environment-conscious sterilizations. The generation of ozone using the pulsed power discharge will apply electron accelerations around the head of streamer discharge principally. The breakdown in reactor often limits the efficient generation. Therefore, the pulse shape should be controlled for dimension of the reactor. It is clear that a pulse shortening is one of effective approaches. Pulsed power voltage with ns-width applies for ozone generation. The effects, on concentration and efficiency of generation, of pulse shape, repetition rate of pulse, flow rate of oxygen gas, and dimension and configuration of reactor, are discussed. The dimension and configuration of the reactor are optimized for the pulse width

  12. Generation of programmable temporal pulse shape and applications in micromachining

    Science.gov (United States)

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  13. Pulsed power generators using an inductive energy storage system

    International Nuclear Information System (INIS)

    Akiyama, H.; Sueda, T.; Katschinski, U.; Katsuki, S.; Maeda, S.

    1996-01-01

    The pulsed power generators using an inductive energy storage system are extremely compact and lightweight in comparison with those using a capacitive energy storage system. The reliable and repetitively operated opening switch is necessary to realize the inductive pulsed power generator. Here, the pulsed power generators using the inductive energy storage system, which have been developed in Kumamoto University, are summarized. copyright 1996 American Institute of Physics

  14. Characteristics of bipolar-pulse generator for intense pulsed heavy ion beam acceleration

    International Nuclear Information System (INIS)

    Igawa, K.; Tomita, T.; Kitamura, I.; Ito, H.; Masugata, K.

    2006-01-01

    Intense pulsed heavy ion beams are expected to be applied to the implantation technology for semiconductor materials. In the application it is very important to purify the ion beam. In order to improve the purity of an intense pulsed ion beams we have proposed a new type of pulsed ion beam accelerator named 'bipolar pulse accelerator (BPA)'. A prototype of the experimental system has been developed to perform proof of principle experiments of the accelerator. A bipolar pulse generator has been designed for the generation of the pulsed ion beam with the high purity via the bipolar pulse acceleration and the electrical characteristics of the generator were evaluated. The production of the bipolar pulse has been confirmed experimentally. (author)

  15. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica Catalunya, Terrassa 08222 (Spain); Sola, I. [Grupo de Investigación en Óptica Extrema (GIOE), Departamento de Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Krolikowski, W. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Science Program, Texas A and M University at Qatar, Doha (Qatar); Sheng, Y. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  16. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    International Nuclear Information System (INIS)

    Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Krolikowski, W.; Sheng, Y.

    2015-01-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system

  17. Few-cycle nonlinear mid-IR pulse generated with cascaded quadratic nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Liu, Xing; Zhou, Binbin

    Generating few-cycle energetic and broadband mid-IR pulses is an urgent current challenge in nonlinear optics. Cascaded second-harmonic generation (SHG) gives access to an ultrafast and octave-spanning self-defocusing nonlinearity: when ΔkL >> 2π the pump experiences a Kerr-like nonlinear index...

  18. Generation of high harmonics and attosecond pulses with ultrashort ...

    Indian Academy of Sciences (India)

    2014-07-11

    Jul 11, 2014 ... Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes ...

  19. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    Science.gov (United States)

    Rahimi, Eesa; Şendur, Kürşat

    2018-02-01

    Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  20. SBS [stimulated Brillouin scattering] pulse distortion in multimode optical fibers

    International Nuclear Information System (INIS)

    Smith, J.R.; Hawkins, R.J.; Laumann, C.W.; Hatch, J.

    1989-01-01

    We have observed sever temporal-pulse-shape distortion due to stimulated Brillouin scattering (SBS) in multimode optical fibers used to diagnose 351 m laser pulses on the Nova laser system. Our measurements can be fit by a basic model of SBS and provide a clear indication of the intensity and temporal regimes where significant SBS-induced temporal-pulse-shape distortion can be avoided. 15 refs., 3 figs., 1 tab

  1. Effect of idler absorption in pulsed optical parametric oscillators.

    Science.gov (United States)

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  2. Time-lens based optical packet pulse compression and retiming

    DEFF Research Database (Denmark)

    Laguardia Areal, Janaina; Hu, Hao; Palushani, Evarist

    2010-01-01

    recovery, resulting in a potentially very efficient solution. The scheme uses a time-lens, implemented through a sinusoidally driven optical phase modulation, combined with a linear dispersion element. As time-lenses are also used for pulse compression, we design the circuit also to perform pulse...

  3. Spatiotemporal optical pulse transformation by a resonant diffraction grating

    Energy Technology Data Exchange (ETDEWEB)

    Golovastikov, N. V.; Bykov, D. A., E-mail: bykovd@gmail.com; Doskolovich, L. L., E-mail: leonid@smr.ru; Soifer, V. A. [Russian Academy of Sciences, Image Processing Systems Institute (Russian Federation)

    2015-11-15

    The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has been obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.

  4. Interaction of solitary pulses in single mode optical fibres | Usman ...

    African Journals Online (AJOL)

    Two solitary waves launched, by way of incidence, into an optical fibre from a single pulse if the pulses are in-phase as understood from results of inverse scattering transform method applied to the cubic nonlinear Schrödinger equations, (CNLSE\\'s). The single CNLSE is then understood to describe evolution of coupled ...

  5. A comparison of electrical and photonic pulse generation for IR-UWB on fiber links

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Caballero Jambrina, Antonio; Yu, Xianbin

    2010-01-01

    We present and compare experimental results for electrical and photonic generation of 2-Gb/s pulses for impulse radio ultra-wideband on fiber transmission systems based on direct current modulation of a semiconductor laser diode and external optical injection of a semiconductor laser diode......, respectively. We assess the performance of the two generation approaches in terms of bit-error rate after propagation over 20 km of optical fiber followed by wireless transmission....

  6. Origin of unipolar half-cycle pulses generation in inversion symmetric media

    International Nuclear Information System (INIS)

    Song, Xiaohong; Hao, Zhizhen; Yan, Ming; Wu, Miaoli; Yang, Weifeng

    2015-01-01

    We investigate the physical mechanism of unipolar half-cycle pulses generation in resonant two-level media with inversion symmetry. The unipolar half-cycle pulse contains substantial nonzero dc or zero-frequency component in its Fourier spectrum of the electric field. Here the origin of zero-frequency component generation in inversion symmetric media driven by symmetric electric field is identified. We show that in the regime of extreme nonlinear optics, i.e. the Rabi frequency is comparable to or even larger than the carrier frequency of the laser pulse, the time evolution of the polarization can display obvious up-down asymmetric structure under certain conditions, which manifests in the zero-frequency component generation, and is responsible for the formation of unipolar half-cycle pulses in the course of pulse propagation. (letter)

  7. A Novel Subnanosecond Monocycle Pulse Generator for UWB Radar Applications

    Directory of Open Access Journals (Sweden)

    Xinfan Xia

    2014-01-01

    Full Text Available A novel ultra-wideband (UWB monocycle pulse generator with good performance is designed and demonstrated in this paper. It contains a power supply circuit, a pulse drive circuit, a unique pulse forming circuit, and a novel monopolar-to-monocycle pulse transition circuit. The drive circuit employs wideband bipolar junction transistors (BJTs and linear power amplifier transistor to produce a high amplitude drive pulse, and the pulse forming circuit uses the transition characteristics of step recovery diode (SRD effectively to produce a negative narrow pulse. At last, the monocycle pulse forming circuit utilizes a novel inductance L short-circuited stub to generate the monocycle pulse directly. Measurement results show that the waveform of the generated monocycle pulses is over 76 V in peak-to-peak amplitude and 3.2 ns in pulse full-width. These characteristics of the monocycle pulse are advantageous for obtaining long detection range and high resolution, when it is applied to ultra-wideband radar applications.

  8. Optical Comb Generation for Streak Camera Calibration for Inertial Confinement Fusion Experiments

    International Nuclear Information System (INIS)

    Ronald Justin; Terence Davies; Frans Janson; Bruce Marshall; Perry Bell; Daniel Kalantar; Joseph Kimbrough; Stephen Vernon; Oliver Sweningsen

    2008-01-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is coming on-line to support physics experimentation for the U.S. Department of Energy (DOE) programs in Inertial Confinement Fusion (ICF) and Stockpile Stewardship (SS). Optical streak cameras are an integral part of the experimental diagnostics instrumentation at NIF. To accurately reduce streak camera data a highly accurate temporal calibration is required. This article describes a technique for simultaneously generating a precise +/- 2 ps optical marker pulse (fiducial reference) and trains of precisely timed, short-duration optical pulses (so-called 'comb' pulse trains) that are suitable for the timing calibrations. These optical pulse generators are used with the LLNL optical streak cameras. They are small, portable light sources that, in the comb mode, produce a series of temporally short, uniformly spaced optical pulses, using a laser diode source. Comb generators have been produced with pulse-train repetition rates up to 10 GHz at 780 nm, and somewhat lower frequencies at 664 nm. Individual pulses can be as short as 25-ps FWHM. Signal output is via a fiber-optic connector on the front panel of the generator box. The optical signal is transported from comb generator to streak camera through multi-mode, graded-index optical fiber

  9. Pulsed neutron generator for mass flow measurement using the pulsed neutron activation technique

    International Nuclear Information System (INIS)

    Rochau, G.E.; Hornsby, D.R.; Mareda, J.F.; Riggan, W.C.

    1980-01-01

    A high-output, transportable neutron generator has been developed to measure mass flow velocities in reactor safety tests using the Pulsed Neutron Activation (PNA) Technique. The PNA generator produces >10 10 14 MeV D-T neutrons in a 1.2 millisecond pulse. The Millisecond Pulse (MSP) Neutron Tube, developed for this application, has an expected operational life of 1000 pulses, and it limits the generator pulse repetition rate to 12 pulses/minute. A semiconductor neutron detector is included in the generator package to monitor the neutron output. The control unit, which can be operated manually or remotely, also contains a digital display with a BCD output for the neutron monitor information. The digital logic of the unit controls the safety interlocks and rejects transient signals which could accidently fire the generator

  10. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains

    Science.gov (United States)

    Kozák, M.; Schönenberger, N.; Hommelhoff, P.

    2018-03-01

    Atomic motion dynamics during structural changes or chemical reactions have been visualized by pico- and femtosecond pulsed electron beams via ultrafast electron diffraction and microscopy. Imaging the even faster dynamics of electrons in atoms, molecules, and solids requires electron pulses with subfemtosecond durations. We demonstrate here the all-optical generation of trains of attosecond free-electron pulses. The concept is based on the periodic energy modulation of a pulsed electron beam via an inelastic interaction, with the ponderomotive potential of an optical traveling wave generated by two femtosecond laser pulses at different frequencies in vacuum. The subsequent dispersive propagation leads to a compression of the electrons and the formation of ultrashort pulses. The longitudinal phase space evolution of the electrons after compression is mapped by a second phase-locked interaction. The comparison of measured and calculated spectrograms reveals the attosecond temporal structure of the compressed electron pulse trains with individual pulse durations of less than 300 as. This technique can be utilized for tailoring and initial characterization of suboptical-cycle free-electron pulses at high repetition rates for stroboscopic time-resolved experiments with subfemtosecond time resolution.

  11. Fast pulse beam generation systems for electron accelerators

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1977-01-01

    The fast pulse beam generation system to supply the SLAC storage ring, SPEAR, by the two one nanosecond bunch electron beam pulses is described. Generation of these pulses is accomplished with a combination of a fast pulsed grided gun and a synchronized transverse beam chopper. Fast gun based on spherical cathode-grid assembly has output current up to 2As. Fast pulse amplifier system can handle trains of short pulses with repetition rates up to 40 MHz during the 1.6 μs normal accelerating time. Chopping deflector system consists of a resonant coaxial line with the deflecting plates. The resonator frequency is 39.667 MHz. A schematic diagram of the resonant system is shown. The fast beam pickup system has a one hundred picosecond rise time overrall. Fast beam generation and chopper systems permit to generate almost any short or single bunch beam profile needed for experiments

  12. A Radiation Dosimetry Method Using Pulsed Optically Stimulated Luminescence

    International Nuclear Information System (INIS)

    Akselrod, M.S.; McKeever, S.W.S.

    1999-01-01

    A method for the determination of absorbed radiation dose is described based on pulsed optically stimulated luminescence (POSL). The method relies upon the stimulation of an irradiated sample with a train of light pulses from a suitable light source (e.g. a laser) using a wavelength which is within the range of wavelengths corresponding to the radiation-induced optical absorption in the irradiated sample. The subsequent emitted light, due to the detrapping of trapped charges and their subsequent recombination with charge of the opposite sign, is synchronously detected in the period between each stimulation pulse. The total luminescence is summed over the desired number of stimulation pulses and this forms the measured POSL signal. By monitoring the emitted light only in the period between stimulation pulses one can reduce the optical filtering required to discriminate between the stimulation light and the emission light; in this way a high measurement efficiency, and, therefore, a high radiation sensitivity (luminescence intensity per unit absorbed dose) is achieved. Key parameters in the method are the intrinsic luminescence lifetime for the material being used as the luminescent detector, the width of the optical stimulation pulse, and the period between pulses. For optimum operation the measurement parameters should be such that both the pulse width and the time between pulses are much less than the luminescence lifetime. By appropriate choice of the power of the optical stimulation, the frequency of the stimulation pulses, and the total stimulation period, one can also re-measure the absorbed dose several times. In this way, a re-read capability is available with the procedure. The method is illustrated using light from a 2nd-harmonic Nd:YAG laser, with irradiated, anion-deficient aluminium oxide as the luminescent detector material. (author)

  13. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Diez, S.; Mecozzi, A.; Mørk, Jesper

    1999-01-01

    We investigate the saturation properties of four-wave mixing of short optical pulses in a semiconductor optical amplifier. By varying the gain of the optical amplifier, we find a strong dependence of both conversion efficiency and signal-to-background ratio on pulse width and bit rate....... In particular, the signal-to-background ratio can be optimized for a specific amplifier gain. This behavior, which is coherently described in experiment and theory, is attributed to the dynamics of the amplified spontaneous emission, which is the main source of noise in a semiconductor optical amplifier....

  14. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We show a first-time demonstration of amplification of 400 fs pulses in a fiber optical parametric amplifier. The 400 fs signal is stretched in time, amplified by 26 dB and compressed back to 500 fs. A significant broadening of the pulses is experimentally shown due to dispersion and limited gain...

  15. Shaping of picosecond pulses for pumping optical parametric amplification

    International Nuclear Information System (INIS)

    Fueloep, J.A.; Krausz, F.; Major, Zs.; Horvath, B.

    2006-01-01

    Complete test of publication follows. The use of temporally shaped pump pulses for optical parametric amplification (OPA) is expected to facilitate an increase of efficiency and suppression of possible spectral distortions in this process, since the gain sensitively depends on the pump intensity. Our simulations confirmed such beneficial effect of temporally shaped pump pulses on the OPA process. With the aim to realize an optimized OPA stage pumped by shaped pulses, a novel method for passively shaping narrow band picosecond pulses has been developed. The method is based on the pulse-stacking principle, where replicas of the incoming pulse are created in a specially designed four-beam interferometer. The replicas are recombined with appropriate delays. The interferometer design allows for a unique flexibility in varying the pulse shape, since all relevant degrees of freedom, such as relative intensities and delays between the pulse replicas are independently adjustable. According to our calculations a pulse with a flat-top time profile would provide optimal conditions in the OPA process. Usually the pump pulse needs to be amplified in a conventional laser amplifier prior to the OPA. Our cross-correlation measurements showed that we are able to obtain shaped amplified pulses by shaping the amplifier input. Furthermore, by precompensating the distortions introduced by the amplifier we demonstrated our capability to produce amplified pulses with a flat-top time profile.

  16. High reliability low jitter 80 kV pulse generator

    International Nuclear Information System (INIS)

    Savage, Mark Edward; Stoltzfus, Brian Scott

    2009-01-01

    Switching can be considered to be the essence of pulsed power. Time accurate switch/trigger systems with low inductance are useful in many applications. This article describes a unique switch geometry coupled with a low-inductance capacitive energy store. The system provides a fast-rising high voltage pulse into a low impedance load. It can be challenging to generate high voltage (more than 50 kilovolts) into impedances less than 10 (Omega), from a low voltage control signal with a fast rise time and high temporal accuracy. The required power amplification is large, and is usually accomplished with multiple stages. The multiple stages can adversely affect the temporal accuracy and the reliability of the system. In the present application, a highly reliable and low jitter trigger generator was required for the Z pulsed-power facility [M. E. Savage, L. F. Bennett, D. E. Bliss, W. T. Clark, R. S. Coats,J. M. Elizondo, K. R. LeChien, H. C. Harjes, J. M. Lehr, J. E. Maenchen, D. H. McDaniel, M. F. Pasik, T. D. Pointon, A. C. Owen, D. B. Seidel, D. L. Smith, B. S. Stoltzfus, K.W. Struve, W.A. Stygar, L.K. Warne, and J. R. Woodworth, 2007 IEEE Pulsed Power Conference, Albuquerque, NM (IEEE, Piscataway, NJ, 2007), p. 979]. The large investment in each Z experiment demands low prefire probability and low jitter simultaneously. The system described here is based on a 100 kV DC-charged high-pressure spark gap, triggered with an ultraviolet laser. The system uses a single optical path for simultaneously triggering two parallel switches, allowing lower inductance and electrode erosion with a simple optical system. Performance of the system includes 6 ns output rise time into 5.6 (Omega), 550 ps one-sigma jitter measured from the 5 V trigger to the high voltage output, and misfire probability less than 10 -4 . The design of the system and some key measurements will be shown in the paper. We will discuss the design goals related to high reliability and low jitter. While

  17. A broadly tunable autocorrelator for ultra-short, ultra-high power infrared optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Szarmes, E.B.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)

    1995-12-31

    We describe the design of a crossed-beam, optical autocorrelator that uses an uncoated, birefringent beamsplitter to split a linearly polarized incident pulse into two orthogonally polarized pulses, and a Type II, SHG crystal to generate the intensity autocorrelation function. The uncoated beamsplitter accommodates extremely broad tunability while precluding any temporal distortion of ultrashort optical pulses at the dielectric interface, and the specific design provides efficient operation between 1 {mu}m and 4 {mu}m. Furthermore, the use of Type II SHG completely eliminates any single-beam doubling, so the autocorrelator can be operated at very shallow crossed-beam angles without generating a background pedestal. The autocorrelator has been constructed and installed in the Mark III laboratory at Duke University as a broadband diagnostic for ongoing compression experiments on the chirped-pulse FEL.

  18. Optical soliton communication using ultra-short pulses

    CERN Document Server

    Sadegh Amiri, Iraj

    2015-01-01

    This brief analyzes the characteristics of a microring resonator (MRR) to perform communication using ultra-short soliton pulses. The raising of nonlinear refractive indices, coupling coefficients and radius of the single microring resonator leads to decrease in input power and round trips wherein the bifurcation occurs. As a result, bifurcation or chaos behaviors are seen at lower input power of 44 W, where the nonlinear refractive index is n2=3.2×10−20 m2/W. Using a decimal convertor system, these ultra-short signals can be converted into quantum information. Results show that multi solitons with FWHM and FSR of 10 pm and 600 pm can be generated respectively. The multi optical soliton with FWHM and FSR of 325 pm and 880 nm can be incorporated with a time division multiple access (TDMA) system wherein the transportation of quantum information is performed.

  19. 21 CFR 870.1750 - External programmable pacemaker pulse generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External programmable pacemaker pulse generator. 870.1750 Section 870.1750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... External programmable pacemaker pulse generator. (a) Identification. An external programmable pacemaker...

  20. Developing a Methodology for Elaborating a Pulsed Optical Safety Area for High Power Laser Diodes

    National Research Council Canada - National Science Library

    Yankov, Plamen

    2006-01-01

    The laser diodes are efficient sources of optical radiation. The maximum optical peak power depends on the pulse duration of the driving current pulse - reducing the pulse duration the safety peak power is increased...

  1. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    Science.gov (United States)

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  2. A kilohertz picosecond x-ray pulse generation scheme

    International Nuclear Information System (INIS)

    Guo, W.; Borland, M.; Harkay, K. C.; Wang, C.-X.; Yang, B.

    2007-01-01

    The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1 utilde2 kHz, which can be used for pump-probe experiments

  3. OPTICAL COMMUNICATION: Simulation of autosoliton optical pulses in high-speed fibreoptic communication systems

    Science.gov (United States)

    Latkin, A. I.

    2005-03-01

    The propagation of a pulse in a fibreoptic communication link with periodically included regenerators — nonlinear optical loop mirrors, is studied. The autosoliton propagation regime of the optical pulse is revealed. It is shown that the inclusion of a ring mirror to the communication link leads to a substantial increase in the transmission distance of the pulse at a small negative average dispersion in the link.

  4. Study of general digital DC/pulse neutron generator

    International Nuclear Information System (INIS)

    Li Gang; Liu Zheng; Li Wensheng; Liu Hanlin; Liu Linmao

    2014-01-01

    Preliminary experimental results of digital DC/pulse neutron generator based on a ceramic drive-in target neutron tube for explosives detection are presented. The generator is a portable and on-off neutron source, and it can be controlled by remote PC. The generator can produce DC neutrons, pulse neutrons and multiple pulse neutrons. The maximum neutron yield is about 2 × 10"8 n/s, the minimum pulse width is 10 μs and the maximum pulse frequency is 10 kHz. Neutron yield and time-spectrum is measured in China Academy of Engineering Physics. The generator is suitable for explosive detection with PFTNA technology, and it can be used in other areas such as reactor measurements and on-line industrial test systems. (authors)

  5. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    International Nuclear Information System (INIS)

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-01-01

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach

  6. All-optical fast random number generator.

    Science.gov (United States)

    Li, Pu; Wang, Yun-Cai; Zhang, Jian-Zhong

    2010-09-13

    We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.

  7. Stable optical frequency comb generation and applications in arbitrary waveform generation, signal processing and optical data mining

    Science.gov (United States)

    Ozharar, Sarper

    This thesis focuses on the generation and applications of stable optical frequency combs. Optical frequency combs are defined as equally spaced optical frequencies with a fixed phase relation among themselves. The conventional source of optical frequency combs is the optical spectrum of the modelocked lasers. In this work, we investigated alternative methods for optical comb generation, such as dual sine wave phase modulation, which is more practical and cost effective compared to modelocked lasers stabilized to a reference. Incorporating these comblines, we have generated tunable RF tones using the serrodyne technique. The tuning range was +/-1 MHz, limited by the electronic waveform generator, and the RF carrier frequency is limited by the bandwidth of the photodetector. Similarly, using parabolic phase modulation together with time division multiplexing, RF chirp extension has been realized. Another application of the optical frequency combs studied in this thesis is real time data mining in a bit stream. A novel optoelectronic logic gate has been developed for this application and used to detect an 8 bit long target pattern. Also another approach based on orthogonal Hadamard codes have been proposed and explained in detail. Also novel intracavity modulation schemes have been investigated and applied for various applications such as (a) improving rational harmonic modelocking for repetition rate multiplication and pulse to pulse amplitude equalization, (b) frequency skewed pulse generation for ranging and (c) intracavity active phase modulation in amplitude modulated modelocked lasers for supermode noise spur suppression and integrated jitter reduction. The thesis concludes with comments on the future work and next steps to improve some of the results presented in this work.

  8. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  9. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  10. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  11. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    Science.gov (United States)

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  12. High-voltage pulse generator for electron gun power supply

    International Nuclear Information System (INIS)

    Korenev, S.A.; Enchevich, I.B.; Mikhov, M.K.

    1987-01-01

    High-voltage pulse generator with combined capacitive and inductive energy storages for electron gun power supply is described. Hydrogen thyratron set in a short magnetic lense is a current breaker. Times of current interruption in thyratrons are in the range from 100 to 300 ns. With 1 kV charging voltage of capacitive energy storage 25 kV voltage pulse is obtained in the load. The given high-voltage pulse generator was used for supply of an electron gun generating 10-30 keV low-energy electron beam

  13. Current pulse generator of an induction accelerator electromagnet

    International Nuclear Information System (INIS)

    Baginskij, B.A.; Makarevich, V.N.; Shtejn, M.M.

    1987-01-01

    Thyristor generator forming in betatron electromagnet coil sinusoidal and quasisinusoidal current unipolar pulses, the field being deforced at the beginning of acceleration cycle, and with the pulse flat top in the cycle end, is described. The current amplitude is controlled by pulse-phase method. The current pulse time shift permitted to decrease the loss rate in the accumulating capacitor. The generator is used in systems with 1-10 ms pulse duration, electromagnet magnetic field maximal energy - 45-450 J, the voltage amplitude in the coil 960-1500 V and amplitude of the current passing the coil 100-500 A, the repetition frequency being 50-200 Hz. In particular, the generator is used to supply betatrons designed for defectoscopy in nonstationary conditions, the accelerated electron energy being 4, 6, 8 and 15 MeV

  14. Stochastic modeling of the hypothalamic pulse generator activity.

    Science.gov (United States)

    Camproux, A C; Thalabard, J C; Thomas, G

    1994-11-01

    Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.

  15. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  16. Precise ion optical description of strip-line pulsed magnetic lenses

    International Nuclear Information System (INIS)

    Varentsov, D.; Spiller, P.; Eickhoff, H.; Hoffmann, D.H.H.

    2002-01-01

    A specific computer code has been developed to investigate ion optical properties of a new generation of pulsed strip-line high current magnets. The code is based on a modern 'Differential Algebra' computational technique and it is able to calculate transfer matrices of pulsed strip-line magnets up to arbitrary order. The realistic three-dimensional distribution of the magnetic field in pulsed lenses as well as all the fringing field effects are taken into account in the simulations. We have demonstrated, that for precise description of such magnets one cannot use the existing ion optical codes where ideal multipole field distributions and fringing fields, typical for conventional iron-dominated magnets are assumed. The transfer matrix elements of pulsed strip-line lenses differ significantly from those of conventional magnets, especially in higher orders

  17. Scalable UWB photonic generator based on the combination of doublet pulses.

    Science.gov (United States)

    Moreno, Vanessa; Rius, Manuel; Mora, José; Muriel, Miguel A; Capmany, José

    2014-06-30

    We propose and experimentally demonstrate a scalable and reconfigurable optical scheme to generate high order UWB pulses. Firstly, various ultra wideband doublets are created through a process of phase-to-intensity conversion by means of a phase modulation and a dispersive media. In a second stage, doublets are combined in an optical processing unit that allows the reconfiguration of UWB high order pulses. Experimental results both in time and frequency domains are presented showing good performance related to the fractional bandwidth and spectral efficiency parameters.

  18. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...

  19. Soliton generation from a multi-frequency optical signal

    International Nuclear Information System (INIS)

    Panoiu, N-C; Mel'nikov, I V; Mihalache, D; Etrich, C; Lederer, F

    2002-01-01

    We present a comprehensive analysis of the generation of optical solitons in a monomode optical fibre from a superposition of soliton-like optical pulses at different frequencies. It is demonstrated that the structure of the emerging optical field is highly dependent on the number of input channels, the inter-channel frequency separation, the time shift between the pulses belonging to adjacent channels, and the polarization of the pulses. Also, it is found that there exists a critical frequency separation above which wavelength-division multiplexing with solitons is feasible and that this critical frequency increases with the number of transmission channels. Moreover, for the case in which only two channels are considered, we analyse the propagation of the emerging two-soliton solutions in the presence of several perturbations important for optical networks: bandwidth-limited amplification, nonlinear amplification, and amplitude and phase modulation. Finally, the influence of the birefringence of the fibre on the structure of the emerging optical field is discussed. (review article)

  20. Generation of ultrafast pulse via combined effects of stimulated

    Indian Academy of Sciences (India)

    A project of ultrafast pulse generation has been presented and demonstrated by utilizing the combined nonlinear effects of stimulated Raman scattering (SRS) and non-degenerate two-photon absorption (TPA) based on silicon nanophotonic chip, in which a continuous wave (CW) and an ultrafast dark pulse are ...

  1. High-order harmonic generation spectra and isolated attosecond pulse generation with a two-color time delayed pulse

    International Nuclear Information System (INIS)

    Feng Liqiang; Chu Tianshu

    2012-01-01

    Highlights: ► Investigation of HHG spectra and single isolated attosecond pulse generation. ► Irradiation from a model Ne atom by two-color time delayed pulse. ► Observation of time delay effect and relative phase effect. ► Revelation of the optimal condition for generating isolated attosecond pulse. ► Generation of a single isolated attosecond pulse of 45as. - Abstract: In this paper, we theoretically investigate the delay time effect on the high-order harmonic generation (HHG) when a model Ne atom is exposed to a two-color time delayed pulse, consisting of a 5fs/800 nm fundamental field and a 20fs/2000 nm controlling field. It shows that the HHG spectra are strongly sensitive to the delay time between the two laser fields, in particular, for the zero carrier-envelope phase (CEP) φ case (corresponding to the 800 nm fundamental field), the maximum cutoff energy has been achieved at zero delay time. However, with the introduction of the CEP (φ = 180°), the delay effect on HHG is changed, exhibiting a ‘U’ structure harmonic emission from −1 T to 1 T. In addition, the combinations of different controlling pulse frequencies and pulse intensities have also been considered, showing the similar results as the original controlling field case, but with some characteristics. Finally, by properly superposing the optimal harmonic spectrum, an isolated 45as pulse is generated without phase compensation.

  2. High-explosive-driven delay line pulse generator

    International Nuclear Information System (INIS)

    Shearer, J.W.

    1982-01-01

    The inclusion of a delay line circuit into the design of a high-explosive-driven generator shortens the time constant of the output pulse. After a brief review of generator concepts and previously described pulse-shortening methods, a geometry is presented which incorporates delay line circuit techcniques into a coil generator. The circuit constants are adjusted to match the velocity of the generated electromagnetic wave to the detonation velocity of the high explosive. The proposed generator can be modeled by adding a variable inductance term to the telegrapher's equation. A particular solution of this equation is useful for exploring the operational parameters of the generator. The duration of the electromagnetic pulse equals the radial expansion time of the high-explosive-driven armature until it strikes the coil. Because the impedance of the generator is a constant, the current multiplication factor is limited only by nonlinear effects such as voltage breakdown, diffusion, and compression at high energies

  3. Propagation of complex shaped ultrafast pulses in highly optically dense samples

    International Nuclear Information System (INIS)

    Davis, J. C.; Fetterman, M. R.; Warren, W. S.; Goswami, D.

    2008-01-01

    We examine the propagation of shaped (amplitude- and frequency-modulated) ultrafast laser pulses through optically dense rubidium vapor. Pulse reshaping, stimulated emission dynamics, and residual electronic excitation all strongly depend on the laser pulse shape. For example, frequency swept pulses, which produce adiabatic passage in the optically thin limit (independent of the sign of the frequency sweep), behave unexpectedly in optically dense samples. Paraxial Maxwell optical Bloch equations can model our ultrafast pulse propagation results well and provide insight

  4. New generation of optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Dianov, E M; Semjonov, S L; Bufetov, I A [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-01-31

    The growing need for information in contemporary society is the motivating force behind the development of fibre optics in general and optical fibre communications in particular. Intensive research effort has been concentrated on designing new types of optical fibres and extending their application field. This paper reviews results of research on new types of optical fibres: bismuthdoped active fibres, multicore fibres and hollow-core fibres, which can be used as key components of systems that ensure further increase in optical information transfer rate. (invited paper)

  5. Generation of Quasi-Gaussian Pulses Based on Correlation Techniques

    Directory of Open Access Journals (Sweden)

    POHOATA, S.

    2012-02-01

    Full Text Available The Gaussian pulses have been mostly used within communications, where some applications can be emphasized: mobile telephony (GSM, where GMSK signals are used, as well as the UWB communications, where short-period pulses based on Gaussian waveform are generated. Since the Gaussian function signifies a theoretical concept, which cannot be accomplished from the physical point of view, this should be expressed by using various functions, able to determine physical implementations. New techniques of generating the Gaussian pulse responses of good precision are approached, proposed and researched in this paper. The second and third order derivatives with regard to the Gaussian pulse response are accurately generated. The third order derivates is composed of four individual rectangular pulses of fixed amplitudes, being easily to be generated by standard techniques. In order to generate pulses able to satisfy the spectral mask requirements, an adequate filter is necessary to be applied. This paper emphasizes a comparative analysis based on the relative error and the energy spectra of the proposed pulses.

  6. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network.

    Science.gov (United States)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin

    2014-06-01

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  7. An 8-GW long-pulse generator based on Tesla transformer and pulse forming network

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiancang; Zhang, Xibo; Li, Rui; Zhao, Liang, E-mail: zhaoliang0526@163.com; Sun, Xu; Wang, Limin; Zeng, Bo; Cheng, Jie; Wang, Ying; Peng, Jianchang; Song, Xiaoxin [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an, Shaanxi 710024 (China)

    2014-06-15

    A long-pulse generator TPG700L based on a Tesla transformer and a series pulse forming network (PFN) is constructed to generate intense electron beams for the purpose of high power microwave (HPM) generation. The TPG700L mainly consists of a 12-stage PFN, a built-in Tesla transformer in a pulse forming line, a three-electrode gas switch, a transmission line with a trigger, and a load. The Tesla transformer and the compact PFN are the key technologies for the development of the TPG700L. This generator can output electrical pulses with a width as long as 200 ns at a level of 8 GW and a repetition rate of 50 Hz. When used to drive a relative backward wave oscillator for HPM generation, the electrical pulse width is about 100 ns on a voltage level of 520 kV. Factors affecting the pulse waveform of the TPG700L are also discussed. At present, the TPG700L performs well for long-pulse HPM generation in our laboratory.

  8. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  9. Generating shaped femtosecond pulses in the far infrared using a spatial light modulator and difference frequency generation

    CSIR Research Space (South Africa)

    Botha, N

    2010-08-31

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  10. Nearly penalty-free, less than 4 ps supercontinuum Gbit/s pulse generation over 1535-1560 nm

    Science.gov (United States)

    Morioka, T.; Kawanishi, S.; Mori, K.; Saruwatari, M.

    1994-05-01

    Nearly penalty-free less than 4ps supercontinuum WDM pulses are generated at 6.3 Gbit/s over 1535-1560 nm for the first time using a 200 nm superbroadened supercontinuum in an optical fibre pumped by 1.7 W, 3.3 ps, 1542 nm short pulses from an Er(3+)-doped fibre ring laser.

  11. Third-harmonic generation in isotropic media by focused pulses

    International Nuclear Information System (INIS)

    Tasgal, Richard S.; Band, Y.B.

    2004-01-01

    For focused pulses of light in isotropic nonlinear media, third-harmonic generation can be strongly affected by group-velocity mismatch between the fundamental and third-harmonic. There is a characteristic time determined by the group-velocity mismatch and the Rayleigh range of the focused pulse. The dynamics depend on two dimensionless quantities, namely the ratio of the characteristic time to the pulse duration and the phase-velocity mismatch times the Rayleigh range. Pulses shorter than the characteristic time have physics described by simple analytic formulas. Pulses near the characteristic time have an intermediate behavior given by an explicit but more complicated formula. Pulses longer than the characteristic time tend to the continuous-wave case

  12. All-optical temporal integration of ultrafast pulse waveforms.

    Science.gov (United States)

    Park, Yongwoo; Ahn, Tae-Jung; Dai, Yitang; Yao, Jianping; Azaña, José

    2008-10-27

    An ultrafast all-optical temporal integrator is experimentally demonstrated. The demonstrated integrator is based on a very simple and practical solution only requiring the use of a widely available all-fiber passive component, namely a reflection uniform fiber Bragg grating (FBG). This design allows overcoming the severe speed (bandwidth) limitations of the previously demonstrated photonic integrator designs. We demonstrate temporal integration of a variety of ultrafast optical waveforms, including Gaussian, odd-symmetry Hermite Gaussian, and (odd-)symmetry double pulses, with temporal features as fast as ~6-ps, which is about one order of magnitude faster than in previous photonic integration demonstrations. The developed device is potentially interesting for a multitude of applications in all-optical computing and information processing, ultrahigh-speed optical communications, ultrafast pulse (de-)coding, shaping and metrology.

  13. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    Science.gov (United States)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the

  14. Elemental analysis using temporal gating of a pulsed neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Sudeep

    2018-02-20

    Technologies related to determining elemental composition of a sample that comprises fissile material are described herein. In a general embodiment, a pulsed neutron generator periodically emits bursts of neutrons, and is synchronized with an analyzer circuit. The bursts of neutrons are used to interrogate the sample, and the sample outputs gamma rays based upon the neutrons impacting the sample. A detector outputs pulses based upon the gamma rays impinging upon the material of the detector, and the analyzer circuit assigns the pulses to temporally-based bins based upon the analyzer circuit being synchronized with the pulsed neutron generator. A computing device outputs data that is indicative of elemental composition of the sample based upon the binned pulses.

  15. Optimizing the next generation optical access networks

    DEFF Research Database (Denmark)

    Amaya Fernández, Ferney Orlando; Soto, Ana Cardenas; Tafur Monroy, Idelfonso

    2009-01-01

    Several issues in the design and optimization of the next generation optical access network (NG-OAN) are presented. The noise, the distortion and the fiber optic nonlinearities are considered to optimize the video distribution link in a passive optical network (PON). A discussion of the effect...

  16. Advanced materials for the optical delay line of frequency pulse modulator on the basis of semiconductor laser

    International Nuclear Information System (INIS)

    Abrarov, S.M.

    1999-01-01

    In the paper some materials which can be sued as an optical delay line of the pulse frequency modulator are considered. The structure and the principle are described as a modulator consisting of a laser diode with two Fabry Perot resonators and an optical wave guide providing a feedback loop. The optical wave guide fulfills the function of delay line and links the two resonators. The pulse sequence of the radiation of the semiconductor laser arises due to failure and recovery of optical generation. The pulse frequency modulation can be carried out by the action of electrical tension field on the electro optic martial of the wave guide. The selection of three electro-optic crystals for making of the optical wave guide of the considered modulator is justified. (author)

  17. Excess quantum noise in optical parametric chirped-pulse amplification

    OpenAIRE

    Manzoni, C.; Moses, J.; Kärtner, F. X.; Cerullo, G.

    2011-01-01

    Noise evolution in an optical parametric chirped-pulse amplifier (OPCPA) differs essentially from that of an optical parametric or a conventional laser amplifier, in that an incoherent pedestal is produced by superfluorescence that can overwhelm the signal under strong saturation. Using a model for the nonlinear dynamics consistent with quantum mechanics, we numerically study the evolution of excess noise in an OPCPA. The observed dynamics explain the macroscopic characteristics seen previous...

  18. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    International Nuclear Information System (INIS)

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  19. Pulsed-diode-pumped, all-solid-state, electro-optically controlled picosecond Nd:YAG lasers

    International Nuclear Information System (INIS)

    Gorbunkov, Mikhail V; Shabalin, Yu V; Konyashkin, A V; Kostryukov, P V; Olenin, A N; Tunkin, V G; Morozov, V B; Rusov, V A; Telegin, L S; Yakovlev, D V

    2005-01-01

    The results of the development of repetitively pulsed, diode-pumped, electro-optically controlled picosecond Nd:YAG lasers of two designs are presented. The first design uses the active-passive mode locking with electro-optical lasing control and semiconductor saturable absorber mirrors (SESAM). This design allows the generation of 15-50-ps pulses with an energy up to 0.5 mJ and a maximum pulse repetition rate of 100 Hz. The laser of the second design generates 30-ps pulses due to combination of positive and negative electro-optical feedback and the control of the electro-optical modulator by the photocurrent of high-speed semiconductor structures. (active media. lasers)

  20. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    also because of high laser damage threshold coating on mirror as well as on crystal. Now-a-days with the development of coating technology and with the availability of good optical quality crystals having high damage threshold and deep infrared. (IR) transparency it is possible to extend the tunability of the OPO.

  1. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grating and etalon in combination, grazing angle of incidence, entangled cavity ...

  2. Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices

    International Nuclear Information System (INIS)

    Carusotto, Iacopo; Embriaco, Davide; La Rocca, Giuseppe C.

    2002-01-01

    We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture of the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due to the atom-atom interaction are discussed in detail, such as atom-optical limiting and atom-optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties

  3. Pulse generation and preamplification for long pulse beamlines of Orion laser facility.

    Science.gov (United States)

    Hillier, David I; Winter, David N; Hopps, Nicholas W

    2010-06-01

    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  4. The nanosecond generator RG-1 with near-rectangular pulse

    International Nuclear Information System (INIS)

    Bulan, V.V.; Grabovskij, E.V.; Gribov, A.N.; Luzhnov, V.G.

    1996-01-01

    The 300 kV, 17 Ohm generator RG-1, which can deliver near-rectangular pulses with a pulse duration of 80 ns FWHM, is described. The polarity of the output pulse can be changed by a simple switch. The fast capacities of the Marx generator are used instead of the pulse forming line. Multi-spark gas switches were developed to decrease the inductance of the discharged circuit. The generator is supplied by a built-in high voltage source and its operation is controlled by a minicomputer. It is used the power supply-line 220 V. The RG-1 can be used in different modes of operation: gas discharge, particle beam formation, etc. (author). 4 figs., 3 refs

  5. A programmable Gaussian random pulse generator for automated performance measurements

    International Nuclear Information System (INIS)

    Abdel-Aal, R.E.

    1989-01-01

    This paper describes a versatile random signal generator which produces logic pulses with a Gaussian distribution for the pulse spacing. The average rate at the pulse generator output can be software-programmed, which makes it useful in performing automated measurements of dead time and CPU time performance of data acquisition systems and modules over a wide range of data rates. Hardware and software components are described and data on the input-output characteristics and the statistical properties of the pulse generator are given. Typical applications are discussed together with advantages over using radioactive test sources. Results obtained from an automated performance run on a VAX 11/785 data acquisition system are presented. (orig.)

  6. The nanosecond generator RG-1 with near-rectangular pulse

    Energy Technology Data Exchange (ETDEWEB)

    Bulan, V V; Grabovskij, E V; Gribov, A N; Luzhnov, V G [TRINITI, Troitsk (Russian Federation)

    1997-12-31

    The 300 kV, 17 Ohm generator RG-1, which can deliver near-rectangular pulses with a pulse duration of 80 ns FWHM, is described. The polarity of the output pulse can be changed by a simple switch. The fast capacities of the Marx generator are used instead of the pulse forming line. Multi-spark gas switches were developed to decrease the inductance of the discharged circuit. The generator is supplied by a built-in high voltage source and its operation is controlled by a minicomputer. It is used the power supply-line 220 V. The RG-1 can be used in different modes of operation: gas discharge, particle beam formation, etc. (author). 4 figs., 3 refs.

  7. 125-GHz Microwave Signal Generation Employing an Integrated Pulse Shaper

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2017-01-01

    We propose and experimentally demonstrate an on-chip pulse shaper for 125-GHz microwave waveform generation. The pulse shaper is implemented based on a silicon-on-insulator (SOI) platform that has a structure with eight-tap finite impulse response (FIR) and there is an amplitude modulator on each...... of the generated microwave waveforms is larger than 100 GHz, and it has wide bandwidth when changing the time delay of the adjacent taps and compactness, capability for integration with electronics and small power consumption are also its merits.......We propose and experimentally demonstrate an on-chip pulse shaper for 125-GHz microwave waveform generation. The pulse shaper is implemented based on a silicon-on-insulator (SOI) platform that has a structure with eight-tap finite impulse response (FIR) and there is an amplitude modulator on each...

  8. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    Science.gov (United States)

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  9. Generation of strong pulsed magnetic fields using a compact, short pulse generator

    Science.gov (United States)

    Yanuka, D.; Efimov, S.; Nitishinskiy, M.; Rososhek, A.; Krasik, Ya. E.

    2016-04-01

    The generation of strong magnetic fields (˜50 T) using single- or multi-turn coils immersed in water was studied. A pulse generator with stored energy of ˜3.6 kJ, discharge current amplitude of ˜220 kA, and rise time of ˜1.5 μs was used in these experiments. Using the advantage of water that it has a large Verdet constant, the magnetic field was measured using the non-disturbing method of Faraday rotation of a polarized collimated laser beam. This approach does not require the use of magnetic probes, which are sensitive to electromagnetic noise and damaged in each shot. It also avoids the possible formation of plasma by either a flashover along the conductor or gas breakdown inside the coil caused by an induced electric field. In addition, it was shown that this approach can be used successfully to investigate the interesting phenomenon of magnetic field enhanced diffusion into a conductor.

  10. Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

    Directory of Open Access Journals (Sweden)

    Felix Pyatkov

    2017-01-01

    Full Text Available Carbon nanotubes (CNTs have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.

  11. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    Science.gov (United States)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  12. Design of Optical Pulse Position Modulation (PPM) Translating Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, A J; Hernandez, V J; Gagliardi, R M; Bennett, C V

    2009-06-19

    M-ary pulse position modulation (M-ary PPM) signaling is a means of transmitting multiple bits per symbol in an intensity modulated/direct detection (IM/DD) system. PPM is used in applications with average power limitations. In optical communication systems, PPM becomes challenging to implement at gigabit rates and/or large M, since pulsed signaling requires higher electronic processing bandwidths than the fundamental transmission rate. they have thus been exploring techniques for PPM communications using optical processing. Previous work described a transmitter algorithm that directly translates a bit sequence of N digital bits to the optical pulse position m for any M = 2{sup N}. It has been considerably more difficult to define a similar receiver algorithm that translates the received optical pulse position directly back to a bit sequence with minimal electronic processing. Designs for specific Ms (e.g., 4-ary) have been shown and implemented, but are difficult to scale to larger M. In this work, they present for the first time a generalized PPM translating receiver that is applicable to all M and data rates.

  13. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...... in dose at the largest penetration depths in the cell and at the extreme lateral edges of the cell interior near the optical windows. This method of measurement was convenient because of the high spatial resolution capability of the detector and the linearity and absence of dose-rate dependence of its...

  14. Study on high gain broadband optical parametric chirped pulse amplification

    International Nuclear Information System (INIS)

    Zhang, S.K.; Fujita, M.; Yamanaka, C.; Yoshida, H.; Kodama, R.; Fujita, H.; Nakatsuka, M.; Izawa, Y.

    2000-01-01

    Optical parametric chirped pulse amplification has apparent advantages over the current schemes for high energy ultrashort pulse amplification. High gain in a single pass amplification, small B-integral, low heat deposition, high contrast ratio and, especially the extremely broad gain bandwidth with large-size crystals available bring people new hope for over multi-PW level at which the existing Nd:glass systems suffered difficulties. In this paper we present simulation and experimental studies for a high gain optical parametric chirped pulse amplification system which may be used as a preamplifier to replace the current complicated regenerative system or multi-pass Ti:sapphire amplifiers. Investigations on the amplification bandwidth and gain with BBO are performed. Analysis and discussions are also given. (author)

  15. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces

    International Nuclear Information System (INIS)

    Sprangle, P.; Penano, J.R.; Hafizi, B.; Kapetanakos, C.A.

    2004-01-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, -8 . Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated

  16. Programmable pseudo-random detector-pulse-pattern generator

    International Nuclear Information System (INIS)

    Putten, R. van der; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1990-01-01

    This report discusses the design and realization of the digital part of the programmable pseudo-random detector pulse-pattern generator. For the design and realization use has been made of F-TTL and high speed special purpose ic's, in particular FAL's (15 ns). The design possibilities offered by the software for pro-gramming of the FAL's have been utilized as much as possible. In this way counters, registers and a state machine with extended control possibilities have been designed and an advanced 8 channel pulse generator has been developed which is controlled via the VME system bus. the generator possesses an internal clock oscillator of 16 MHZ. The moment when a pulse is generated can be adjusted with a step size of 250 ps. 2000 different periods (time windows) can be stored for generating a pattern. (author). 37 refs.; 6 figs

  17. Tunable error-free optical frequency conversion of a 4ps optical short pulse over 25 nm by four-wave mixing in a polarisation-maintaining optical fibre

    Science.gov (United States)

    Morioka, T.; Kawanishi, S.; Saruwatari, M.

    1994-05-01

    Error-free, tunable optical frequency conversion of a transform-limited 4.0 ps optical pulse signalis demonstrated at 6.3 Gbit/s using four-wave mixing in a polarization-maintaining optical fibre. The process generates 4.0-4.6 ps pulses over a 25nm range with time-bandwidth products of 0.31-0.43 and conversion power penalties of less than 1.5 dB.

  18. Broadband and short (10-ps) pulse generation on Nova

    International Nuclear Information System (INIS)

    Perry, M.D.; Browning, D.; Bibeau, C.; Patterson, F.G.; Wilcox, R.; Henesian, M.

    1990-01-01

    The ability to produce high power broadband pulses for purposes of focal spot beam smoothing has recently become an important issue in inertial confinement fusion (ICF). As the first step toward the generation and propagation of such pulses on Nova, the authors have performed a series of experiments with 10-ps pulses. Aside from the inherently broad bandwidth, these short pulses have important applications in ICF experiments and x-ray laser research. The author's experimental results are discussed. The short pulses were produced by diffraction grating pulse compression of chirped pulses formed from self-phase modulation in a single-mode 10-m fused silica fiber. Use of such a short fiber produces a nonlinearly chirped spectrum of 0.74 nm. The central nearly linearly chirped 0.26 nm is selected by polarization discrimination and compressed using 1800-line/mm diffraction gratings to a nearly Gaussian pulse of 10 ps FWHM with an energy contrast ratio of 20:1. This 1-nJ pulse is injected into a Nova amplifier chain with selected amplifiers unfired

  19. Pulse processing in optical fibers using the temporal Radon-Wigner transform

    Energy Technology Data Exchange (ETDEWEB)

    Bulus-Rossini, L A; Costanzo-Caso, P A; Duchowicz, R [Centro de Investigaciones Opticas, CONICET La Plata - CIC, Camino Parque Centenario y 506, C.C. 3 (1897) La Plata (Argentina); Sicre, E E, E-mail: lbulus@ing.unlp.edu.ar [Instituto de Tecnologia, Facultad de Ingenieria y Ciencias Exactas, Universidad Argentina de la Empresa, Lima 717, C1073AAO Buenos Aires (Argentina)

    2011-01-01

    It is presented the use of the temporal Radon-Wigner transform (RWT), which is the squared modulus of the fractional Fourier transform (FRT) for a varying fractional order p, as a processing tool for pulses with FWHM of ps-tens of ps. For analysis purposes, the complete numerical generation of the RWT with 0 < p < 1 is proposed to select a particular pulse shape related to a determined value of p. To this end, the amplitude and phase of the signal to be processed are obtained using a pulse characterization technique. To synthesize the processed pulse, the selected FRT irradiance is optically produced employing a photonic device that combines phase modulation and dispersive transmission. The practical implementation of this device involves a scaling factor that depends on the modulation and dispersive parameters. It is explored the variation of this factor in order to obtain an enhancement of the particular characteristic sought in the pulse to be synthesized. To illustrate the implementation of the proposed method, numerical simulations of its application to compress signals commonly found in fiber optic transmission systems, are performed. The examples presented consider chirped Gaussian pulses and pulses distorted by group velocity dispersion and self-phase modulation.

  20. Single-cycle Optical Pulses and Isolated Attosecond Pulse Generation

    Science.gov (United States)

    2012-02-29

    picosecond green light from a frequency-doubled hybrid cryogenic Yb:YAG laser system,” 36 UFO /HFSW 2009 (Arcachon, France, Aug. 31-Sept. 4, 2009...High Fields Short Wavelength,” ( UFO VII – HFSW XIII), Arcachon, France, August 31 – September 4, 2009 (invited). 25) Kyung-Han Hong, Juliet Gopinath

  1. Generation of Phase-Stable Sub-Cycle Mid-Infrared Pulses from Filamentation in Nitrogen

    Directory of Open Access Journals (Sweden)

    Takao Fuji

    2013-02-01

    Full Text Available Sub-single-cycle pulses in the mid-infrared (MIR region were generated through a laser-induced filament. The fundamental (ω1 and second harmonic (ω2 output of a 30-fs Ti:sapphire amplifier were focused into nitrogen gas and produce phase-stable broadband MIR pulses (ω0 by using a four-wave mixing process (ω1 + ω1 - ω2 → ω0 through filamentation. The spectrum spread from 400 cm-1 to 5500 cm-1, which completely covered the MIR region. The low frequency components were detected by using an electro-optic sampling technique with a gaseous medium. The efficiency of the MIR pulse generation was very sensitive to the delay between the fundamental and second harmonic pulses. It was revealed that the delay dependence of the efficiency came from the interference between two opposite parametric processes, ω1 + ω1 - ω2 → ω0 and ω2 - ω1 - ω1 → ω0. The pulse duration was measured as 6.9 fs with cross-correlation frequency-resolved optical gating by using four-wave mixing in nitrogen. The carrier-envelope phase of the MIR pulse was passively stabilized. The instability was estimated as 154 mrad rms in 2.5 h.

  2. Uranium vapor generator: pulsed hollow cathode lamp

    International Nuclear Information System (INIS)

    Carleer, M.; Gagne, J.; Leblanc, B.; Demers, Y.; Mongeau, B.

    1979-01-01

    The production of uranium vapors has been studied in the 5 L 0 6 ground state using a pulsed hollow cathode lamp. The evolution of the 238 U ( 5 L 0 6 ) concentration with time has been studied with Xe and Ar as buffer gases. A density of 2.7 x 10 13 atoms cm -3 was obtained with Xe as a buffer gas. In addition, those measurements, obtained from the absorption of a laser beam tuned to the 5758.143 A ( 5 L 0 6 -17,361 7 L 6 ) transition, allowed the determination of the transition probability A=2.1 x 10 5 sec -1 and of the branching ratio BR=0.08 for this transition

  3. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  4. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2004-01-01

    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  5. Application of nonlinear pulse shaping of femtosecond pulse generation in a fiber amplifier at 500 MHz repetition rate

    Science.gov (United States)

    Liu, Yang; Luo, Daping; Wang, Chao; Zhu, Zhiwei; Li, Wenxue

    2018-03-01

    We numerically and experimentally demonstrate that a nonlinear pulse shaping technique based on pre-chirping management in a short gain fiber can be exploited to improve the quality of a compressed pulse. With prior tuning of the pulse chirp, the amplified pulse express different nonlinear propagating processes. A spectrum with s flat top and more smooth wings, showing a similariton feature, generates with the optimal initial pulse chirp, and the shortest pulses with minimal pulse pedestals are obtained. Experimental results show the ability of nonlinear pulse shaping to enhance the quality of compressed pulses, as theoretically expected.

  6. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    Science.gov (United States)

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  7. A compact bipolar pulse-forming network-Marx generator based on pulse transformers.

    Science.gov (United States)

    Zhang, Huibo; Yang, Jianhua; Lin, Jiajin; Yang, Xiao

    2013-11-01

    A compact bipolar pulse-forming network (PFN)-Marx generator based on pulse transformers is presented in this paper. The high-voltage generator consisted of two sets of pulse transformers, 6 stages of PFNs with ceramic capacitors, a switch unit, and a matched load. The design is characterized by the bipolar pulse charging scheme and the compact structure of the PFN-Marx. The scheme of bipolar charging by pulse transformers increased the withstand voltage of the ceramic capacitors in the PFNs and decreased the number of the gas gap switches. The compact structure of the PFN-Marx was aimed at reducing the parasitic inductance in the generator. When the charging voltage on the PFNs was 35 kV, the matched resistive load of 48 Ω could deliver a high-voltage pulse with an amplitude of 100 kV. The full width at half maximum of the load pulse was 173 ns, and its rise time was less than 15 ns.

  8. Subnanosecond-rise-time, low-impedance pulse generator

    International Nuclear Information System (INIS)

    Druce, R.; Vogtlin, G.

    1983-01-01

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform

  9. Subnanosecond-rise-time, low-impedance pulse generator

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.; Vogtlin, G.

    1983-06-03

    This paper describes a fast rise, low-impedance pulse generator that has been developed at the Lawrence Livermore National Laboratory. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel-plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  10. Subnanosecond-rise-time, low-impedance pulse generator

    Science.gov (United States)

    Druce, R.; Vigtlin, G.

    1983-06-01

    A fast rise, low impedance pulse generator developed at the Lawrence Livermore National Laboratory is described. The design specifications of this generator are: 50-kV operating voltage, 1-ohm output impedance, subnanosecond rise time, and a 2 to 10 nanosecond pulse length. High repetition rate is not required. The design chosen is a parallel plate, folded Blumlein generator. A tack switch is utilized for its simple construction and high performance. The primary diagnostic is a capacitive voltage divider with a B probe used to measure the current waveform.

  11. High Intensity, Pulsed, D-D Neutron Generator

    International Nuclear Information System (INIS)

    Williams, D.L.; Vainionpaa, J.H.; Jones, G.; Piestrup, M.A.; Gary, C.K.; Harris, J.L.; Fuller, M.J.; Cremer, J.T.; Ludewigt, Bernhard A.; Kwan, J.W.; Reijonen, J.; Leung, K.-N.; Gough, R.A.

    2008-01-01

    Single ion-beam RF-plasma neutron generators are presented as a laboratory source of intense neutrons. The continuous and pulsed operations of such a neutron generator using the deuterium-deuterium fusion reaction are reported. The neutron beam can be pulsed by switching the RF plasma and/or a gate electrode. These generators are actively vacuum pumped so that a continuous supply of deuterium gas is present for the production of ions and neutrons. This contributes to the generator's long life. These single-beam generators are capable of producing up to 1E10 n/s. Previously, Adelphi and LBNL have demonstrated these generators applications in fast neutron radiography, Prompt Gamma Neutron Activation Analysis (PGNAA) and Neutron Activation Analysis (NAA). Together with an inexpensive compact moderator, these high-output neutron generators extend useful applications to home laboratory operations.

  12. The random signal generator of imitated nuclear radiation pulse

    International Nuclear Information System (INIS)

    Li Dongcang; Yang Lei; Yuan Shulin; Yang Yinghui; Zang Fujia

    2007-01-01

    Based in pseudo-random uniformity number, it produces random numbers of Gaussian distribution and exponential distribution by arithmetic. The hardware is the single-chip microcomputer of 89C51. Program language makes use of Keil C. The output pulse amplitude is Gaussian distribution, exponential distribution or uniformity distribution. Likewise, it has two mode or upwards two. The time alternation of output pulse is both periodic and exponential distribution. The generator has achieved output control of multi-mode distribution, imitated random characteristic of nuclear pulse in amplitude and in time. (authors)

  13. Generation of nanosecond S band microwave pulses based on superradiance

    International Nuclear Information System (INIS)

    Ginzburg, N.S.; Zotova, I.V.; Rozental, R.M.

    2002-01-01

    Modeling carried out demonstrates possibility of generation of gigawatt power level S band microwave pulse with duration of several nanoseconds using superradiation of short electron beam moving along slow-wave periodical structure. A 10 ns / 500 keV / 5 kA accelerator of Kanazawa University can be used in such experiments. It is shown that significant increasing peak power can be obtained by optimization of voltage and current pulses waveforms. Required increasing of electron energy and current by the end of electron pulse can be achieved by using self-acceleration of a short beam passing through a system of passive cavities. (author)

  14. Generation of nanosecond S band microwave pulses based on superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N.S.; Zotova, I.V.; Rozental, R.M. [Russian Academy of Science, Institute of Applied Physics, Nizhny Novgorod (RU)] [and others

    2002-06-01

    Modeling carried out demonstrates possibility of generation of gigawatt power level S band microwave pulse with duration of several nanoseconds using superradiation of short electron beam moving along slow-wave periodical structure. A 10 ns / 500 keV / 5 kA accelerator of Kanazawa University can be used in such experiments. It is shown that significant increasing peak power can be obtained by optimization of voltage and current pulses waveforms. Required increasing of electron energy and current by the end of electron pulse can be achieved by using self-acceleration of a short beam passing through a system of passive cavities. (author)

  15. Optical Interconnection Via Computer-Generated Holograms

    Science.gov (United States)

    Liu, Hua-Kuang; Zhou, Shaomin

    1995-01-01

    Method of free-space optical interconnection developed for data-processing applications like parallel optical computing, neural-network computing, and switching in optical communication networks. In method, multiple optical connections between multiple sources of light in one array and multiple photodetectors in another array made via computer-generated holograms in electrically addressed spatial light modulators (ESLMs). Offers potential advantages of massive parallelism, high space-bandwidth product, high time-bandwidth product, low power consumption, low cross talk, and low time skew. Also offers advantage of programmability with flexibility of reconfiguration, including variation of strengths of optical connections in real time.

  16. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    Directory of Open Access Journals (Sweden)

    Rahimi Eesa

    2018-02-01

    Full Text Available Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse’s spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  17. Synthesizing genetic sequential logic circuit with clock pulse generator.

    Science.gov (United States)

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  18. Design and construction of a precision pulse generator

    International Nuclear Information System (INIS)

    Robles G, J.C.

    1977-06-01

    The design and consruction of a pulse generator is considered to simulate in due form and magnitude the pulses obtained in semiconductor detectors of nuclear radiation in a frequency interval to allow its use in testing and calibration of spectrometric systems. A parameters analysis which define the pulse form through the various types of semiconductor detectors was realized with the object to obtain the most important characteristics of the pulse transmitted by the generator. These are the characteristics: Variable frequency from 0.0124 to 120 Hz, variable amplitude from 0 to 1 V, Integral lineality +- 0.25%, amplitude stability -0.031%/degC exponential going up time and variable according to steps of 6.5, 25, 60, 130 and 275 nsec., decay time constant 200 or 400μsec. with output ending at 100Ω. According to the results, the stability is less than the established in the design. In order to improve it, an analysis was made in function with the temperature of the components which integrate the circuit that produces the pulse. This analysis allow us to define the specifications related to the components which integrate the circuit that produces the pulse. This analysis allow us to define the specifications related to the components. Finally a compilation was made of the most common applications of the generator in nuclear instrumentation. (author)

  19. Pulsed corona generation using a diode-based pulsed power generator

    NARCIS (Netherlands)

    Pemen, A.J.M.; Grekhov, I.V.; Heesch, van E.J.M.; Yan, K.; Nair, S.A.; Korotkov, S.V.

    2003-01-01

    Pulsed plasma techniques serve a wide range of unconventional processes, such as gas and water processing, hydrogen production, and nanotechnology. Extending research on promising applications, such as pulsed corona processing, depends to a great extent on the availability of reliable, efficient and

  20. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    Science.gov (United States)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  1. Control of trapped-ion quantum states with optical pulses

    International Nuclear Information System (INIS)

    Rangan, C.; Monroe, C.; Bucksbaum, P.H.; Bloch, A.M.

    2004-01-01

    We present new results on the quantum control of systems with infinitely large Hilbert spaces. A control-theoretic analysis of the control of trapped-ion quantum states via optical pulses is performed. We demonstrate how resonant bichromatic fields can be applied in two contrasting ways--one that makes the system completely uncontrollable and the other that makes the system controllable. In some interesting cases, the Hilbert space of the qubit-harmonic oscillator can be made finite, and the Schroedinger equation controllable via bichromatic resonant pulses. Extending this analysis to the quantum states of two ions, a new scheme for producing entangled qubits is discovered

  2. Attosecond pulse trains generated using two color laser fields

    International Nuclear Information System (INIS)

    Mauritsson, J.; Louisiana State University, Baton Rouge, LA; Johnsson, P.; Gustafsson, E.; L'Hullier, A.; Schafer, K.J.; Gaarde, M.B.

    2006-01-01

    Complete test of publication follows. We present the generation of attosecond pulse trains from a superposition of an infrared (IR) laser field and its second harmonic. Our attosecond pulses are synthesized by selecting a number of synchronized harmonics generated in argon. By adding the second harmonic to the driving field the inversion symmetry of generation process is broken and both odd and even harmonics are generated. Consecutive half cycles in the two color field differ beyond the simple sign change that occurs in a one color field and have very different shapes and amplitudes. This sub-cycle structure of the field, which governs the generation of the attosecond pulses, depends strongly on the relative phase and intensity of the two fields, thereby providing additional control over the generation process. The generation of attosecond pulses is frequently described using the semi-classical three step model where an electron is: (1) ionized through tunneling ionization during one half cycle; (2) reaccelerated back towards the ion core by the next half cycle; where it (3) recombines with the ground-state releasing the access energy in a short burst of light. In the two color field the symmetry between the ionizing and reaccelerating field is broken, which leads to two possible scenarios: the electron can either be ionized during a strong half cycle and reaccelerated by a weaker field or vice versa. The periodicity is a full IR cycle in both cases and hence two trains of attosecond pulses are generated which are offset from each other. The generation efficiency, however, is very different for the two cases since it is determined mainly by the electric field strength at the time of tunneling and one of the trains will therefore dominate the other. We investigate experimentally both the spectral and temporal structure of the generated attosecond pulse trains as a function of the relative phase between the two driving fields. We find that for a wide range of

  3. Compact pulse topology for adjustable high-voltage pulse generation using an SOS diode

    NARCIS (Netherlands)

    Driessen, A.B.J.M.; Heesch, van E.J.M.; Huiskamp, T.; Beckers, F.J.C.M.; Pemen, A.J.M.

    2014-01-01

    In this paper, a compact circuit topology is presented for pulsed power generation with a semiconductor opening switch (SOS). Such circuits require the generation of a fast forward current through the diode, followed by a reverse current that activates the recovery process. In general, magnetic

  4. Digitally controlled twelve-pulse firing generator

    International Nuclear Information System (INIS)

    Berde, D.; Ferrara, A.A.

    1981-01-01

    Control System Studies for the Tokamak Fusion Test Reactor (TFTR) indicate that accurate thyristor firing in the AC-to-DC conversion system is required in order to achieve good regulation of the various field currents. Rapid update and exact firing angle control are required to avoid instabilities, large eddy currents, or parasitic oscillations. The Prototype Firing Generator was designed to satisfy these requirements. To achieve the required /plus or minus/0.77/degree/firing accuracy, a three-phase-locked loop reference was designed; otherwise, the Firing Generator employs digital circuitry. The unit, housed in a standard CAMAC crate, operates under microcomputer control. Functions are performed under program control, which resides in nonvolatile read-only memory. Communication with CICADA control system is provided via an 11-bit parallel interface

  5. Picosecond pulse generated supercontinuum as a stable seed for OPCPA

    Czech Academy of Sciences Publication Activity Database

    Indra, Lukáš; Batysta, František; Hříbek, Petr; Novák, Jakub; Hubka, Zbyněk; Green, Jonathan T.; Antipenkov, Roman; Boge, Robert; Naylon, Jack A.; Bakule, Pavel; Rus, Bedřich

    2017-01-01

    Roč. 42, č. 4 (2017), s. 843-846 ISSN 0146-9592 R&D Projects: GA MŠk LQ1606; GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : supercontinuum generation * ultrafast lasers * ultrafast nonlinear optics * thin-disk amplifier * repetition-rate Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 3.416, year: 2016

  6. Effect of Pulse Width on Ozone Generation in Pulsed Streamer Discharges

    OpenAIRE

    Tamaribuchi, Hiroyuki; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; タマリブチ, ヒロユキ; オウ, トエン; ナミヒラ, タカオ; カツキ, スナオ; アキヤマ, ヒデノリ; 溜渕, 浩之; 王, 斗艶; 浪平, 隆男; 勝木, 淳; 秋山, 秀典

    2007-01-01

    Ozone has been used in treatment of drinking water andwaste water (e.g., deodorization, decolorization, anddisinfection). Though general ozonizers based on silentdischarge or barrier discharge have been used to supplyozone at many industrial situations, there is still someproblem, such as improvements of ozone concentrationand ozone yield.In this work, ozone was generated by pulsed powerdischarge in order to improve the characteristics of ozonegeneration. High electric field with short pulse ...

  7. Generation and Characterization of Attosecond Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ian A. Walmsley; Robert W. Boyd

    2006-04-24

    The research undertaken in this project has been directed toward the area of attoscience, in particular the problem of attosecond metrology. That is, the accurate determination of the electric field of attosecond XUV radiation. This outstanding problem has been identified as a critical technology for further development of the field, and our research adds to the area by providing the first method for characterization using the harmonic radiation itself as a tool. The technical effectiveness of this approach is very high, since it is vastly easier to detect XUV radiation directly than via the spectrum of photoelectrons liberated from atoms by it. This means that the experimental data rate can be much higher in principle using all-optical detection that electron detection, which will greatly aid the utility of harmonic XUV sources in attoscience applications. There are as yet no direct public benefits from this area of scientific research, though access to material structural dynamics on unprecedented brief timescales are expected to yield significant benefits for the future.

  8. Experimental generation of optical coherence lattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)

    2016-08-08

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  9. Generating photon pairs from a silicon microring resonator using an electronic step recovery diode for pump pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-06-20

    Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, we generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.

  10. High-voltage short-fall pulse generator

    International Nuclear Information System (INIS)

    Dolbilov, G.V.; Fateev, A.A.; Petrov, V.A.

    1986-01-01

    Powerful high-voltage pulses with short fall times and relatively low afterpulse amplitude are required for the deflection systems of accelerators. A generator is described that provides, into a 75-ohm load, a voltage pulse of up to 100 kV with a fall time of less than 1 nsec and a relative afterpulse amplitude of less than or equal to 15%. The generator employs a short-circuited ferrite-filled line in which shock waves are formed. A magnetic section is used to increase power. The switch is a TGI1-2500/50 thyratron. The main causes of afterpulses and methods for reducing their amplitude are examined

  11. Pulsed White Spectrum Neutron Generator for Explosive Detection

    International Nuclear Information System (INIS)

    King, Michael J.; Miller, Gill T.; Reijonen, Jani; Ji, Qing; Andresen, Nord; Gicquel, Frederic; Kavlas, Taneli; Leung, Ka-Ngo; Kwan, Joe

    2008-01-01

    Successful explosive material detection in luggage and similar sized containers is a critical issue in securing the safety of all airline passengers. Tensor Technology Inc. has recently developed a methodology that will detect explosive compounds with pulsed fast neutron transmission spectroscopy. In this scheme, tritium beams will be used to generate neutrons with a broad energy spectrum as governed by the T(t,2n)4He fission reaction that produces 0-9 MeV neutrons. Lawrence Berkeley National Laboratory (LBNL), in collaboration with Tensor Technology Inc., has designed and fabricated a pulsed white-spectrum neutron source for this application. The specifications of the neutron source are demanding and stringent due to the requirements of high yield and fast pulsing neutron emission, and sealed tube, tritium operation. In a unique co-axial geometry, the ion source uses ten parallel rf induction antennas to externally couple power into a toroidal discharge chamber. There are 20 ion beam extraction slits and 3 concentric electrode rings to shape and accelerate the ion beam into a titanium cone target. Fast neutron pulses are created by using a set of parallel-plate deflectors switching between +-1500 volts and deflecting the ion beams across a narrow slit. The generator is expected to achieve 5 ns neutron pulses at tritium ion beam energies between 80-120 kV. First experiments demonstrated ion source operation and successful beam pulsing

  12. Optical Subsystems for Next Generation Access Networks

    DEFF Research Database (Denmark)

    Lazaro, J.A; Polo, V.; Schrenk, B.

    2011-01-01

    Recent optical technologies are providing higher flexibility to next generation access networks: on the one hand, providing progressive FTTx and specifically FTTH deployment, progressively shortening the copper access network; on the other hand, also opening fixed-mobile convergence solutions...... in next generation PON architectures. It is provided an overview of the optical subsystems developed for the implementation of the proposed NG-Access Networks....

  13. Effects of simulated nuclear thermal pulses on fiber optic cables

    International Nuclear Information System (INIS)

    Baba, A.J.; Share, S.; Wasilik, J.H.

    1979-01-01

    The effects of pulsed thermal radiation on fiber optic cables with a variety of jackets (polyurethane, PVC, fluorocarbon) are presented. Exposure between 27 and 85 cal/cm 2 did not sever the optical fibers, but the radiation did cause disintegration of the jackets and the Kevlar strength members, which resulted in a significant reduction of the cable's ability to survive mechanical stress. Hardening techniques are discussed. The addition of low absorptance materials (white Teflon tape and aluminum foil) under clear or white Teflon jackets prevented some types of cables from being affected at fluences up to 110 cal/cm 2

  14. New methods of generation of ultrashort laser pulses for ranging

    Science.gov (United States)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  15. Optical pulse characteristics of sonoluminescence at low acoustic drive levels

    Science.gov (United States)

    Arakeri, Vijay H.; Giri, Asis

    2001-06-01

    From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E 58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. 94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well.

  16. Optical pulse characteristics of sonoluminescence at low acoustic drive levels

    International Nuclear Information System (INIS)

    Arakeri, Vijay H.; Giri, Asis

    2001-01-01

    From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E >58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. >94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well

  17. Ultrashort pulse shaping by optical parametric chirped amplification

    International Nuclear Information System (INIS)

    Nelet, Ambre

    2007-01-01

    The aim of this work is to propose new laser architectures based on optical parametric chirped pulse amplification (OPCPA). Common goals of OPCPA pre-amplifiers are to reach high energy level while maintaining the spectrum width and to adapt geometry of the amplified beam to the high power laser chain optics. We consider OPCPA as a way to control and to sculpt ultrashort pulses. Our first set-up aims at thwarting possible time recovery default between pump and signal pulses, which lower the energy extraction. A regenerative OPCPA, idler resonant, is a way to produce a high-intensity and high-repetition rate train of amplified signal replicas. Our second laser system pre-compensates the spectral gain narrowing by sculpting pulses directly within the OPCPA section, where a temporal shaping of the pump beam permits a spectro-spectral shaping of the amplified signal. Finally, we propose an OPCPA based on spatial coding and uniform amplification of spectral signal components by using a fan-out periodically poled crystal and a zero dispersion line. (author) [fr

  18. Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging.

    Science.gov (United States)

    Kumar, Sunil; Kamali, Tschackad; Levitte, Jonathan M; Katz, Ori; Hermann, Boris; Werkmeister, Rene; Považay, Boris; Drexler, Wolfgang; Unterhuber, Angelika; Silberberg, Yaron

    2015-05-18

    Noninvasive label-free imaging of biological systems raises demand not only for high-speed three-dimensional prescreening of morphology over a wide-field of view but also it seeks to extract the microscopic functional and molecular details within. Capitalizing on the unique advantages brought out by different nonlinear optical effects, a multimodal nonlinear optical microscope can be a powerful tool for bioimaging. Bringing together the intensity-dependent contrast mechanisms via second harmonic generation, third harmonic generation and four-wave mixing for structural-sensitive imaging, and single-beam/single-pulse coherent anti-Stokes Raman scattering technique for chemical sensitive imaging in the finger-print region, we have developed a simple and nearly alignment-free multimodal nonlinear optical microscope that is based on a single wide-band Ti:Sapphire femtosecond pulse laser source. Successful imaging tests have been realized on two exemplary biological samples, a canine femur bone and collagen fibrils harvested from a rat tail. Since the ultra-broad band-width femtosecond laser is a suitable source for performing high-resolution optical coherence tomography, a wide-field optical coherence tomography arm can be easily incorporated into the presented multimodal microscope making it a versatile optical imaging tool for noninvasive label-free bioimaging.

  19. High-voltage pulsed generator for dynamic fragmentation of rocks.

    Science.gov (United States)

    Kovalchuk, B M; Kharlov, A V; Vizir, V A; Kumpyak, V V; Zorin, V B; Kiselev, V N

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ∼50 ns, current amplitude of ∼6 kA with the 40 Ω active load, and ∼20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  20. High-voltage pulsed generator for dynamic fragmentation of rocks

    Science.gov (United States)

    Kovalchuk, B. M.; Kharlov, A. V.; Vizir, V. A.; Kumpyak, V. V.; Zorin, V. B.; Kiselev, V. N.

    2010-10-01

    A portable high-voltage (HV) pulsed generator has been designed for rock fragmentation experiments. The generator can be used also for other technological applications. The installation consists of low voltage block, HV block, coaxial transmission line, fragmentation chamber, and control system block. Low voltage block of the generator, consisting of a primary capacitor bank (300 μF) and a thyristor switch, stores pulse energy and transfers it to the HV block. The primary capacitor bank stores energy of 600 J at the maximum charging voltage of 2 kV. HV block includes HV pulsed step up transformer, HV capacitive storage, and two electrode gas switch. The following technical parameters of the generator were achieved: output voltage up to 300 kV, voltage rise time of ˜50 ns, current amplitude of ˜6 kA with the 40 Ω active load, and ˜20 kA in a rock fragmentation regime (with discharge in a rock-water mixture). Typical operation regime is a burst of 1000 pulses with a frequency of 10 Hz. The operation process can be controlled within a wide range of parameters. The entire installation (generator, transmission line, treatment chamber, and measuring probes) is designed like a continuous Faraday's cage (complete shielding) to exclude external electromagnetic perturbations.

  1. Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.

    Science.gov (United States)

    Kim, Jimyung; Delfyett, Peter J

    2008-07-21

    We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.

  2. Generation of Ultra-high Intensity Laser Pulses

    International Nuclear Information System (INIS)

    Fisch, N.J.; Malkin, V.M.

    2003-01-01

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10 25 W/cm 2 can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers

  3. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Pechousek, Jiri, E-mail: jiri.pechousek@upol.cz [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Konecny, Daniel [Department of Optics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Novak, Petr; Kouril, Lukas; Kohout, Pavel [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Celiktas, Cuneyt [Department of Physics, Faculty of Science, Ege University, Bornova, Izmir (Turkey); Vujtek, Milan [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic)

    2016-08-21

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  4. Generation of optical vortices in an integrated optical circuit

    Science.gov (United States)

    Tudor, Rebeca; Kusko, Mihai; Kusko, Cristian

    2017-09-01

    In this work, the generation of optical vortices in an optical integrated circuit is numerically demonstrated. The optical vortices with topological charge m = ±1 are obtained by the coherent superposition of the first order modes present in a waveguide with a rectangular cross section, where the phase delay between these two propagating modes is Δφ = ±π/2. The optical integrated circuit consists of an input waveguide continued with a y-splitter. The left and the right arms of the splitter form two coupling regions K1 and K2 with a multimode output waveguide. In each coupling region, the fundamental modes present in the arms of the splitter are selectively coupled into the output waveguide horizontal and vertical first order modes, respectively. We showed by employing the beam propagation method simulations that the fine tuning of the geometrical parameters of the optical circuit makes possible the generation of optical vortices in both transverse electric (TE) and transverse magnetic (TM) modes. Also, we demonstrated that by placing a thermo-optical element on one of the y-splitter arms, it is possible to switch the topological charge of the generated vortex from m = 1 to m = -1.

  5. Experimental investigation of powerful pulse current generators based on capacitive storage and explosive magnetic generators

    Science.gov (United States)

    Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.; Povareshkin, M. N.; Kozlov, A. A.; Shurupova, N. P.

    2018-01-01

    Experimental models of microsecond duration powerful generators of current pulses on the basis of explosive magnetic generators and voltage impulse generator have been developed for the electromagnetic pulse effects on energy facilities to verify their stability. Exacerbation of voltage pulse carried out through the use of electro explosive current interrupter made of copper wires with diameters of 80 and 120 μm. Experimental results of these models investigation are represented. Voltage fronts about 100 ns and the electric field strength of 800 kV/m are registered.

  6. Micro-combs: A novel generation of optical sources

    Science.gov (United States)

    Pasquazi, Alessia; Peccianti, Marco; Razzari, Luca; Moss, David J.; Coen, Stéphane; Erkintalo, Miro; Chembo, Yanne K.; Hansson, Tobias; Wabnitz, Stefan; Del'Haye, Pascal; Xue, Xiaoxiao; Weiner, Andrew M.; Morandotti, Roberto

    2018-01-01

    -integrated technologies. Indeed, it is well acknowledged by the electronics industry that future generations of computer processing chips will inevitably require an extremely high density of copper-based interconnections, significantly increasing the chip power dissipation to beyond practical levels [15-17]; hence, conventional approaches to chip design must undergo radical changes. On-chip optical networks, or optical interconnects, can offer high speed and low energy per-transferred-bit, and micro-resonators are widely seen as a key component to interface the electronic world with photonics. Many information technology industries have recently focused on the development of integrated ring resonators to be employed for electrically-controlled light modulators [14-17], greatly advancing the maturity of micro-resonator technology as a whole. Recently [11-13], the demonstration of OFC sources in micro-resonators fabricated in electronic (i.e. in complementary metal oxide semiconductor (CMOS)) compatible platforms has given micro-cavities an additional appeal, with the possibility of exploiting them as light sources in microchips. This scenario is creating fierce competition in developing highly efficient OFC generators based on micro-cavities which can radically change the nature of information transport and processing. Even in telecommunications, perhaps a more conventional environment for optical technologies, novel time-division multiplexed optical systems will require extremely stable optical clocks at ultra-high pulse repetition-rates towards the THz scale. Furthermore, arbitrary pulse generators based on OFC [18,19] are seen as one of the most promising solutions for this next generation of high-capacity optical coherent communication systems. This review will summarise the recent exciting achievements in the field of micro-combs, namely optical frequency combs based on high-Q micro-resonators, with a perspective on both the potential of this technology, as well as the open questions

  7. EXCESS OPTICAL ENHANCEMENT OBSERVED WITH ARCONS FOR EARLY CRAB GIANT PULSES

    Energy Technology Data Exchange (ETDEWEB)

    Strader, M. J.; Mazin, B. A.; Spiro Jaeger, G. V.; Gwinn, C. R.; Meeker, S. R.; Szypryt, P.; Van Eyken, J. C.; Marsden, D.; Walter, A. B.; Ulbricht, G. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Johnson, M. D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); O' Brien, K. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Stoughton, C. [Fermilab Center for Particle Astrophysics, Batavia, IL 60510 (United States); Bumble, B. [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91125 (United States)

    2013-12-10

    We observe an extraordinary link in the Crab pulsar between the enhancement of an optical pulse and the timing of the corresponding giant radio pulse. At optical through infrared wavelengths, our observations use the high time resolution of ARray Camera for Optical to Near-IR Spectrophotometry, a unique superconducting energy-resolving photon-counting array at the Palomar 200 inch telescope. At radio wavelengths, we observe with the Robert C. Byrd Green Bank Telescope and the Green Bank Ultimate Pulsar Processing Instrument backend. We see an 11.3% ± 2.5% increase in peak optical flux for pulses that have an accompanying giant radio pulse arriving near the peak of the optical main pulse, in contrast to a 3.2% ± 0.5% increase when an accompanying giant radio pulse arrives soon after the optical peak. We also observe that the peak of the optical main pulse is 2.8% ± 0.8% enhanced when there is a giant radio pulse accompanying the optical interpulse. We observe no statistically significant spectral differences between optical pulses accompanied by and not accompanied by giant radio pulses. Our results extend previous observations of optical-radio correlation to the time and spectral domains. Our refined temporal correlation suggests that optical and radio emission are indeed causally linked, and the lack of spectral differences suggests that the same mechanism is responsible for all optical emission.

  8. EXCESS OPTICAL ENHANCEMENT OBSERVED WITH ARCONS FOR EARLY CRAB GIANT PULSES

    International Nuclear Information System (INIS)

    Strader, M. J.; Mazin, B. A.; Spiro Jaeger, G. V.; Gwinn, C. R.; Meeker, S. R.; Szypryt, P.; Van Eyken, J. C.; Marsden, D.; Walter, A. B.; Ulbricht, G.; Johnson, M. D.; O'Brien, K.; Stoughton, C.; Bumble, B.

    2013-01-01

    We observe an extraordinary link in the Crab pulsar between the enhancement of an optical pulse and the timing of the corresponding giant radio pulse. At optical through infrared wavelengths, our observations use the high time resolution of ARray Camera for Optical to Near-IR Spectrophotometry, a unique superconducting energy-resolving photon-counting array at the Palomar 200 inch telescope. At radio wavelengths, we observe with the Robert C. Byrd Green Bank Telescope and the Green Bank Ultimate Pulsar Processing Instrument backend. We see an 11.3% ± 2.5% increase in peak optical flux for pulses that have an accompanying giant radio pulse arriving near the peak of the optical main pulse, in contrast to a 3.2% ± 0.5% increase when an accompanying giant radio pulse arrives soon after the optical peak. We also observe that the peak of the optical main pulse is 2.8% ± 0.8% enhanced when there is a giant radio pulse accompanying the optical interpulse. We observe no statistically significant spectral differences between optical pulses accompanied by and not accompanied by giant radio pulses. Our results extend previous observations of optical-radio correlation to the time and spectral domains. Our refined temporal correlation suggests that optical and radio emission are indeed causally linked, and the lack of spectral differences suggests that the same mechanism is responsible for all optical emission

  9. High-voltage pulse generator synchronous with LINAC

    International Nuclear Information System (INIS)

    Muto, M.; Hiratsuka, Yoshio; Niimura, Nobuo

    1974-01-01

    High-voltage pulse generator (H.V. Flip-Flop) No.2, an improved type of No.1, is described, which is used in the structural analysis of transient phenomena in materials through the neutron TOF with a Linac. The method of producing positive and negative high-voltage pulses synchronous with the Linac is identical with that in No.1. However, No.2 has outstanding features as follows: (1) The rise time of output pulses is reduced to 0.3 msec, due to the improvement of switching circuit and the winding of a step-up transformer; (2) The widths of positive and negative pulses are variable up to maximum 8 and 16 frames, respectively (One frame = 10 msec); (3) The distribution of TOF signals from a BF 3 counter to a time analyzer is possible even in the negative voltage duration. The panel is provided with the switches for choosing pulse width and the frame for analysis, as well as the dials for setting positive/negative pulse voltage values and the respective indicating meters. (Mori, K)

  10. High-voltage variable-duration pulse generator

    International Nuclear Information System (INIS)

    Anisimova, T.E.; Akkuratov, E.V.; Gromovenko, V.M.; Nikonov, Yu.P.; Malinin, A.N.

    1988-01-01

    A high-voltage generator is described that allows pulse duration tau to be varied within wide limits and has high efficiency (at least 50% for tau = 0.5 tau/sub max/) and an amplitude of up to 5 kV, a repetition frequency of up to 200 Hz,and a variable duration of 0-30 μsec. The generator is used in the controller of an electron accelerator

  11. Utilization of a pulsed D-T neutron generator

    International Nuclear Information System (INIS)

    Vilaithong, T.; Singkarat, S.; Tippawan, U.

    2000-01-01

    In the past two decades the IAEA has supported the establishment of neutron laboratories in many developing countries by providing small D-T neutron generators. The neutron generator is basically a low energy (100-400 keV) ion accelerator capable of producing a continuous beam of deuterons with a current in the range between 1-2.5 mA. These neutron generators are primarily intended to be used for fast neutron activation analysis. This paper describes the utilization of a 14 MeV neutron generator in continuous and pulsed beam modes in applied neutron physics program at Chiang Mai University. (author)

  12. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  13. Attosecond pulse generation in noble gases in the presence of extreme high intensity THz pulses

    International Nuclear Information System (INIS)

    Balogh, E.; Varju, K.

    2010-01-01

    Complete text of publication follows. The shortest - attosecond - light pulses available today are produced by high harmonic generation (HHG) of near-infrared (NIR) laser pulses in noble gas jets, providing a broad spectral plateau of XUV radiation ending in a cutoff. The minimum pulse duration is determined by the achievable bandwidth (i.e. the position of the cutoff), and the chirp of the produced pulses. The extension of the cutoff by increasing the laser intensity is limited by the depletion and phase matching problems of the medium. An alternative method demonstrated to produce higher harmonic orders is by using longer pump pulse wavelength, with the disadvantage of decreased efficiency. Recently it was shown that application of a quasi-DC high strength electric field results in an increase of more than a factor of two in the order of efficiently generated high harmonics. However, the possibility to implement the method proposed in [3] of using a CO 2 laser to create a quasi-DC field for assisting HHG of the NIR laser is questionable, because it's technically very challenging to synchronize pulses from different laser sources. Alternatively, synchronous production of THz pulses with the NIR laser pulse offers a more promising route. The first numerical test of this idea has been reported in [4]. In this contribution we further investigate the method for realistic THz field strengths and short driving pulses, exploring the effect of longer pump laser wavelength on the process. We assume the presence of high intensity THz pulses for supplying the high-strength quasi-DC electric field. The spectrum as well as the chirp of the produced radiation is calculated. We use the non-adiabatic saddle point method to determine the generated radiation described in [6]. We simulate harmonic generation in noble gas atoms, with few cycle NIR pulses of peak intensity at and above 2 x 10 14 W/cm 2 (388 MV/cm) and wavelengths 800 nm and 1560 nm. The THz field strength is varied

  14. Phase-locked high-order-harmonic and sub-100-as pulse generation from stretched molecules

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Wang Xinlin; Yang Guang

    2006-01-01

    High harmonic generation from diatomic molecules in a linearly polarized intense laser field is investigated and the emission time of the harmonics is discussed with the time-frequency analysis method. It is shown that high harmonic generation from molecules at equilibrium distance is similar to that from atoms. Only the harmonics in the cutoff are synchronized, i.e., well phase-locked, whereas the other harmonics are not phase-locked. For the molecule stretched well beyond its equilibrium distance, the harmonics exhibit distinct time-frequency characteristics. The harmonic spectrum can be extended to I p +8U p , where I p and U p are the ionization and ponderomotive potential, and the harmonics with energies below I p +3.17U p are not phase-locked and the harmonics with energies beyond I p +3.17U p are well phase-locked. Thus a large range of harmonics which are well phase-locked are produced, and a train of clean attosecond (as) pulses with a single 90-as pulse in each half optical cycle can be generated with a multicycle laser pulse. Using a few-cycle laser pulse, an isolated attosecond pulse with a duration of about 95 as is obtained

  15. All-optical optoacoustic microscope based on wideband pulse interferometry.

    Science.gov (United States)

    Wissmeyer, Georg; Soliman, Dominik; Shnaiderman, Rami; Rosenthal, Amir; Ntziachristos, Vasilis

    2016-05-01

    Optical and optoacoustic (photoacoustic) microscopy have been recently joined in hybrid implementations that resolve extended tissue contrast compared to each modality alone. Nevertheless, the application of the hybrid technique is limited by the requirement to combine an optical objective with ultrasound detection collecting signal from the same micro-volume. We present an all-optical optoacoustic microscope based on a pi-phase-shifted fiber Bragg grating (π-FBG) with coherence-restored pulsed interferometry (CRPI) used as the interrogation method. The sensor offers an ultra-small footprint and achieved higher sensitivity over piezoelectric transducers of similar size. We characterize the spectral bandwidth of the ultrasound detector and interrogate the imaging performance on phantoms and tissues. We show the first optoacoustic images of biological specimen recorded with π-FBG sensors. We discuss the potential uses of π-FBG sensors based on CRPI.

  16. High average power scaling of optical parametric amplification through cascaded difference-frequency generators

    Science.gov (United States)

    Jovanovic, Igor; Comaskey, Brian J.

    2004-09-14

    A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.

  17. Generating Efficient Femtosecond Mid-infrared Pulse by Single Near-infrared Pump Wavelength in Bulk Nonlinear Crystal Without Phase-matching

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8-2.92 μm are generated using the single pump wavelengths from 1.25-1.45 μm. © 2014 Optical Society of America...

  18. X-ray Pulse Length Characterization using the Surface Magneto Optic Kerr Effect

    International Nuclear Information System (INIS)

    Krejcik, P.; SLAC

    2006-01-01

    It will be challenging to measure the temporal profile of the hard X-ray SASE beam independently from the electron beam in the LCLS and other 4th generation light sources. A fast interaction mechanism is needed that can be probed by an ultrafast laser pulse in a pump-probe experiment. It is proposed to exploit the rotation in polarization of light reflected from a thin magnetized film, known as the surface magneto optic Kerr effect (SMOKE), to witness the absorption of the x-ray pulse in the thin film. The change in spin orbit coupling induced by the x-ray pulse occurs on the subfemtosecond time scale and changes the polarization of the probe beam. The limitation to the technique lies with the bandwidth of the probe laser pulse and how short the optical pulse can be made. The SMOKE mechanism will be described and the choices of materials for use with 1.5 (angstrom) x-rays. A schematic description of the pump-probe geometry for x-ray diagnosis is also described

  19. Dual-Pulse Pulse Position Modulation (DPPM) for Deep-Space Optical Communications: Performance and Practicality Analysis

    Science.gov (United States)

    Li, Jing; Hylton, Alan; Budinger, James; Nappier, Jennifer; Downey, Joseph; Raible, Daniel

    2012-01-01

    Due to its simplicity and robustness against wavefront distortion, pulse position modulation (PPM) with photon counting detector has been seriously considered for long-haul optical wireless systems. This paper evaluates the dual-pulse case and compares it with the conventional single-pulse case. Analytical expressions for symbol error rate and bit error rate are first derived and numerically evaluated, for the strong, negative-exponential turbulent atmosphere; and bandwidth efficiency and throughput are subsequently assessed. It is shown that, under a set of practical constraints including pulse width and pulse repetition frequency (PRF), dual-pulse PPM enables a better channel utilization and hence a higher throughput than it single-pulse counterpart. This result is new and different from the previous idealistic studies that showed multi-pulse PPM provided no essential information-theoretic gains than single-pulse PPM.

  20. Electromagnetic-implosion generation of pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Baker, W.L.; Broderick, N.F.; Degnan, J.H.; Hussey, T.W.; Kiuttu, G.F.; Kloc, D.A.; Reinovsky, R.E.

    1983-01-01

    This chapter reports on the experimental and theoretical investigation of the generation of pulsed high-energy-density plasmas by electromagnetic implosion of cylindrical foils (i.e., imploding liners or hollow Z-pinches) at the Air Force Weapons Laboratory. Presents a comparison of experimental data with one-dimensional MHD and two-dimensional calculations. Points out that the study is distinct from other imploding liner efforts in that the approach is to produce a hot, dense plasma from the imploded liner itself, rather than to compress a magnetic-field-performed plasma mixture. The goal is to produce an intense laboratory pulsed X-ray source

  1. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    International Nuclear Information System (INIS)

    Zhang, Cheng; Shao, Tao; Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-01-01

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs

  2. A 70 kV solid-state high voltage pulse generator based on saturable pulse transformer.

    Science.gov (United States)

    Fan, Xuliang; Liu, Jinliang

    2014-02-01

    High voltage pulse generators are widely applied in many fields. In recent years, solid-state and operating at repetitive mode are the most important developing trends of high voltage pulse generators. A solid-state high voltage pulse generator based on saturable pulse transformer is proposed in this paper. The proposed generator is consisted of three parts. They are charging system, triggering system, and the major loop. Saturable pulse transformer is the key component of the whole generator, which acts as a step-up transformer and main switch during working process of this generator. The circuit and working principles of the proposed pulse generator are introduced first in this paper, and the saturable pulse transformer used in this generator is introduced in detail. Circuit of the major loop is simulated to verify the design of the system. Demonstration experiments are carried out, and the results show that when the primary energy storage capacitor is charged to a high voltage, such as 2.5 kV, a voltage with amplitude of 86 kV can be achieved on the secondary winding. The magnetic core of saturable pulse transformer is saturated deeply and the saturable inductance of the secondary windings is very small. The switch function of the saturable pulse transformer can be realized ideally. Therefore, a 71 kV output voltage pulse is formed on the load. Moreover, the magnetic core of the saturable pulse transformer can be reset automatically.

  3. CIAE 600 kV ns pulse neutron generator

    International Nuclear Information System (INIS)

    Shen Guanren; Guan Xialing; Chen Hongtao

    2001-01-01

    The overall composition of CIAE 600 kV ns Pulse Neutron Generator (CPNG) are introduced, and its characteristic, main technological performance and application were also given. CPNG consists of high voltage power supply with highest output voltage 600 kV, direct current 15 mA, stability and ripple ≤0.1%, 2214 mm x 1604 mm x 1504 mm stainless steel high voltage electrode, built in head equipment uniform field accelerating tube, ns pulsed installation, turbomolecular vacuum pump system and drift pipes at 0 degree and 45 degree. Its characteristics are: (1) high current beam; (2) high current beam ns pulsed installation made use of low energy for chopper and high energy for buncher; (3) compactly laid out and simple in structure

  4. The VELOCE pulsed power generator for isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Asay, James Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Chantrenne, Sophie J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hickman, Randall John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Willis, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Shay, Andrew W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Grine-Jones, Suzi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hall, Clint Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Baer, Melvin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2007-12-01

    Veloce is a medium-voltage, high-current, compact pulsed power generator developed for isentropic and shock compression experiments. Because of its increased availability and ease of operation, Veloce is well suited for studying isentropic compression experiments (ICE) in much greater detail than previously allowed with larger pulsed power machines such as the Z accelerator. Since the compact pulsed power technology used for dynamic material experiments has not been previously used, it is necessary to examine several key issues to ensure that accurate results are obtained. In the present experiments, issues such as panel and sample preparation, uniformity of loading, and edge effects were extensively examined. In addition, magnetohydrodynamic (MHD) simulations using the ALEGRA code were performed to interpret the experimental results and to design improved sample/panel configurations. Examples of recent ICE studies on aluminum are presented.

  5. Efficient On-chip Optical Microresonator for Optical Comb Generation: Design and Fabrication

    Science.gov (United States)

    Han, Kyunghun

    An optical frequency comb is a series of equally spaced frequency components. It has gained much attention since Nobel physics prize was awarded John L. Hall and Theodor W. Hansch for their contribution to the optical frequency comb technique in 2005. The optical frequency comb has been extensively studied because of its precision as a tool for spectroscopy, and is now widely used in bio- and chemical sensors, optical clocks, mode-locked dark pulse generation, soliton generation, and optical communication. Recently, thanks to the developments in nanotechnology, the optical frequency comb generation is made possible at a chip-scale level with microresonators. However, because the threshold power of the optical frequency comb generation is beyond the capability of the on-chip laser source, efficient microresonator is required. Here, we demonstrate an ultra-compact and highly efficient strip-slot direct mode coupler, aiming to achieve slotted silicon microresonator cladded with nonlinear polymer Poly-DDMEBT in SOI platform. As an application of the strip-slot direct mode coupling, a double slot fiber-to-chip edge coupler is demonstrated showing 2 dB insertion loss reduction compared to the conventional single tip edge coupler. For silicon nitride platform, we investigated evanescent wave coupling of microresonator, focusing on bus waveguide geometry optimization. The optimized waveguide width offers an efficient excitation of a fundamental mode in the resonator waveguide. This investigation can benefit low threshold comb generation by enhancing the extinction ratio. We experimentally demonstrated the high Q-factor micro-ring resonator with intrinsic Q of 12.6 million as well as the single FSR comb generation with 63 mW.

  6. Optical vortex beams: Generation, propagation and applications

    Science.gov (United States)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  7. Transient magnetized plasma as an optical element for high power laser pulses

    Directory of Open Access Journals (Sweden)

    Nobuhiko Nakanii

    2015-02-01

    Full Text Available Underdense plasma produced in gas jets by low intensity laser prepulses in the presence of a static magnetic field, B∼0.3  T, is shown experimentally to become an optical element allowing steering of tightly focused high power femtosecond laser pulses within several degrees along with essential enhancement of pulse’s focusability. Strong laser prepulses form a density ramp perpendicularly to magnetic field direction and, owing to the light refraction, main laser pulses propagate along the magnetic field even if it is tilted from the laser axis. Electrons generated in the laser pulse wake are well collimated and follow in the direction of the magnetic field; their characteristics are measured to be not sensitive to the tilt of magnetic field up to angles ±5°.

  8. In-Fiber Subpicosecond Pulse Shaping for Nonlinear Optical Telecommunication Data Processing at 640 Gbit/s

    Directory of Open Access Journals (Sweden)

    J. Azaña

    2012-01-01

    Full Text Available We review recent work on all-fiber (long-period fiber grating devices for optical pulse shaping, particularly flat-top pulse generation, down to the subpicosecond range and their application for nonlinear switching (demultiplexing of optical time-division multiplexed (OTDM data signals in fiber-optic telecommunication links operating up to 640 Gbit/s. Experiments are presented demonstrating error-free 640-to-10 Gbit/s demultiplexing of the 64 tributary channels using the generated flat-top pulses for temporal gating in a Kerr-effect-based nonlinear optical loop mirror. The use of flat-top pulses has critical benefits in the demultiplexing process, including a significantly increased timing-jitter tolerance (up to ~500 fs, i.e., 30% of the bit period and the associated improvement in the bit-error-rate performance (e.g., with a sensitivity increase of up to ~13 dB as compared with the use of Gaussian-like gating pulses. Long-period fiber grating pulse shapers with reduced polarization dependence are fabricated and successfully used for polarization-independent 640-to-10 Gbit/s demultiplexing experiments.

  9. Programmable pulse sequence generator with multiple output lines

    Science.gov (United States)

    Drabczyk, Hubert

    2006-10-01

    This paper presents a novel concept of pulse sequence generator and its prototype as an electronic circuit testing laboratory tool. The generator has multiple output lines and is capable of using control data defining different pulse sequences to be given to the outputs. It is also possible to use different voltage levels in output signal and switch output lines for reading data from driven system. The pulse sequence generator can be used for runtime environment simulation, as hardware tester or auxiliary tool in new designs. Important design factors were to keep cost of the tool low and allow integration with other projects by using flexible architecture. The prototype was based on universal programmer with adjustable power supply, '51 microcontroller and Altera Cyclone chip. The generator communicates witch PC computer via RS232 port. Dedicated software was developed in the course of this project, to control the tool and data transmission. The prototype confirmed the possibility to create an inexpensive multipurpose laboratory tool for programming, testing and simulation of digital devices.

  10. Laser plasma as a source of intense attosecond pulses via high-order harmonic generation

    International Nuclear Information System (INIS)

    Ozaki, T.

    2013-01-01

    The incredible progress in ultrafast laser technology and Ti:sapphire lasers have lead to many important applications, one of them being high-order harmonic generation (HHG). HHG is a source of coherent extreme ultraviolet (XUV) radiation, which has opened new frontiers in science by extending nonlinear optics and time-resolved spectroscopy to the XUV region, and pushing ultrafast science to the attosecond domain. Progress in attosecond science has revealed many new phenomena that have not been seen with femtosecond pulses. Clearly, the next frontier is to study nonlinear effects at the attosecond timescale and in the XUV. However, a problem with present-day attosecond pulses is that they are just too weak to induce measurable nonlinearities, which severely limits the application of this source. While HHG from solid targets has shown promise for higher conversion efficiency, there is no experiment so far that demonstrates isolated attosecond pulse generation. The generation of isolated, several 100-as pulses with few-µJ energy will enable us to enter a completely new phase in attoscience. In past works, we have demonstrated that high-order harmonics from lowly ionized plasma is a highly efficient method to generate coherent XUV pulses. For example, indium plasma has been shown to generate intense 13th harmonic of the Ti:sapphire laser, with conversion efficiency of 10-4. However, the quasi-monochromatic nature of indium harmonics would make it difficult to generate attosecond pulses. We have also demonstrated that one could increase the harmonic yield by using nanoparticle targets. Specifically, we showed that by using indium oxide nanoparticles or C60 film, we could obtain intense harmonics between wavelengths of 50 to 90 nm. The energy in each of these harmonic orders was measured to be a few µJ, which is sufficient for many applications. However, the problem of using nanoparticle or film targets is the rapid decrease in the harmonic intensity, due to the rapid

  11. Catenary optics for achromatic generation of perfect optical angular momentum

    Science.gov (United States)

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-01-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a “true mathematical and mechanical form” in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283

  12. Recent results of the pulsed optically pumped rubidium clock

    Science.gov (United States)

    Levi, F.; Micalizio, S.; Godone, A.; Calosso, C.; Bertacco, E.

    2017-11-01

    A laboratory prototype of a pulsed optically pumped (POP) clock based on a rubidium cell with buffer gas is described. This clock has shown very interesting physical and metrological features, such as negligible light-shift, strongly reduced cavity-pulling and very good frequency stability. In this regard, an Allan deviation of σy(τ) = 1.2 τ-1/2 for measurement times up to τ = 105 s has been measured. These results confirm the interesting perspectives of such a frequency standard and make it very attractive for several technological applications, such as radionavigation.

  13. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  14. High-order harmonic generation with short-pulse lasers

    International Nuclear Information System (INIS)

    Schafer, K.J.; Krause, J.L.; Kulander, K.C.

    1992-12-01

    Recent progress in the understanding of high-order harmonic conversion from atoms and ions exposed to high-intensity, short-pulse optical lasers is reviewed. We find that ions can produce harmonics comparable in strength to those obtained from neutral atoms, and that the emission extends to much higher order. Simple scaling laws for the strength of the harmonic emission and the maximium observable harmonic are suggested. These results imply that the photoemission observed in recent experiments in helium and neon contains contributions from ions as well as neutrals

  15. Influence of energy and duration of laser pulses on stability of dielectric nanoparticles in optical trap

    International Nuclear Information System (INIS)

    Ho Quang Quy; Mai Van Luu; Hoang Dinh Hai

    2010-01-01

    In this article the gradient force of optical trap using two counter- propagating pulsed Gaussian beam and the Brownian motion in optical force field are investigated. The influence of the energy and duration time of optical pulsed Gaussian beams on stability of nano-particle in trap is simulated and discussed. (author)

  16. Applications of lightweight composite materials in pulsed rotating electrical generators

    International Nuclear Information System (INIS)

    Walls, W.A.; Maifold, S.M.

    1987-01-01

    Present rotating electrical pulse power generators are limited in energy storage capability, specific energy, and peak power density by the use of iron-magnetic circuits. This paper discusses lightweight and compact iron-core homopolar generators (HPGs) which have attained specific energies of 6 kJ/kg and have the potential to achieve 8 kJ/kg in the near future. Prototype iron based pulsed alternators are the favored choice for high power to mass ratio applications and have estimated peak ratings of 180 kW/kg. In terms of total energy storage capability, these machines are limited to several hundred MJ due to the availability of large steel forgings for rotors and basic design considerations including rotor dynamics, allowable rotor tip speeds, and present high speed current collection technology

  17. Low-cost programmable pulse generator for particle telescope calibration

    CERN Document Server

    Sanchez, S; Seisdedos, M; Meziat, D; Carbajo, M; Medina, J; Bronchalo, E; Peral, L D; Rodríguez-Pacheco, J

    1999-01-01

    In this paper we present a new calibration system for particle telescopes including multipulse generator and digital controller. The calibration system generates synchronized pulses of variable height for every detector channel on the telescope. The control system is based on a commercial microcontroller linked to a personal computer through an RS-232 bidirectional line. The aim of the device is to perform laboratory calibration of multi-detector telescopes prior to calibration at accelerator. This task includes evaluation of linearity and resolution of each detector channel, as well as coincidence logic. The heights of the pulses sent to the detectors are obtained by Monte Carlo simulation of telescope response to a particle flux of any desired geometry and composition.

  18. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  19. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  20. Operation and technology of high pulsed power generators

    International Nuclear Information System (INIS)

    Eyl, P.; Romary, P.

    1995-01-01

    In order to satisfy the needs of ''components and electronic circuits hardness'', a range of high pulsed power generators is available in the French Atomic Energy Commission. The goal of this paper is to present the general principles of operation and the main characteristics of the irradiation facilities which are operational at the CESTA center. Finally, we give a brief outline of the new technology developments. (authors). 6 refs., 16 figs

  1. Unbiased All-Optical Random-Number Generator

    Science.gov (United States)

    Steinle, Tobias; Greiner, Johannes N.; Wrachtrup, Jörg; Giessen, Harald; Gerhardt, Ilja

    2017-10-01

    The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to "iron out" such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.

  2. Mechanism for the generation of cavitation maxima by pulsed ultrasound

    International Nuclear Information System (INIS)

    Flynn, H.G.; Church, C.C.

    1984-01-01

    A train of 1-MHz pulses can generate maxima of cavitation activity at pulse lengths of 6 and 60 ms and at pressure amplitudes, P/sub A/, between 5.4 and 9.4 bars (or intensities between 10 and 30 W/cm 2 ). Generation of maxima at P/sub A/ between these limits on pressure amplitude implies that the increase in cavitation activity originates from gas nuclei with radii lying in a critical size range centered at about 0.08 μm. The mechanism proposed for this phenomenon suggests that nuclei in this critical range are unstabilized nuclei generated in one pulse and surviving to the next with an appreciable fraction of the survivors lying in the critical range. Transient cavities that grow from such small nuclei are shown to behave as isolated mechanical systems that on reaching maximum size collapse as imploding spheres. The maximum pressures reached in such imploding cavities would then approximate those calculated for the spherical collapse of cavities. The occurrence of the observed maxima is ascribed to the spherical collapse of transient cavities. 17 references, 5 figures

  3. Optical Generation of Fuzzy-Based Rules

    Science.gov (United States)

    Gur, Eran; Mendlovic, David; Zalevsky, Zeev

    2002-08-01

    In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.

  4. Generation of atto-second pulses on relativistic mirror plasma

    International Nuclear Information System (INIS)

    Vincenti, H.

    2012-12-01

    When an ultra intense femtosecond laser (I > 10 16 W.cm -2 ) with high contrast is focused on a solid target, the laser field at focus is high enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This plasma is so dense (the electron density is of the order of hundred times the critical density) that it completely reflects the incident laser beam in the specular direction: this is the so-called 'plasma mirror'. When laser intensity becomes very high, the non-linear response of the plasma mirror to the laser field periodically deforms the incident electric field leading to high harmonic generation in the reflected beam. In the temporal domain this harmonic spectrum is associated to a train of atto-second pulses. The goals of my work were to get a better comprehension of the properties of harmonic beams produced on plasma mirrors and design new methods to control theses properties, notably in order to produce isolated atto-second pulses instead of trains. Initially, we imagined and modeled the first realistic technique to generate isolated atto-second on plasma mirrors. This brand new approach is based on a totally new physical effect: 'the atto-second lighthouse effect'. Its principle consists in sending the atto-second pulses of the train in different directions and selects one of these pulses by putting a slit in the far field. Despite its simplicity, this technique is very general and applies to any high harmonic generation mechanism. Moreover, the atto-second lighthouse effect has many other applications (e.g in metrology). In particular, it paves the way to atto-second pump-probe experiments. Then, we studied the spatial properties of these harmonics, whose control and characterization are crucial if one wants to use this source in future application experiments. For instance, we need to control very precisely the harmonic beam divergence in order to achieve the atto-second lighthouse effect and get

  5. Periodic refractive index modifications inscribed in polymer optical fibre by focussed IR femtosecond pulses

    DEFF Research Database (Denmark)

    Stecher, Matthias; Williams, Robert J.; Bang, Ole

    Focussed femtosecond laser pulses were used to inscribe a periodic array of modifications in the core of a polymer optical fibre. Structural and refractive-index modifications have been observed at different pulse energies using DIC microscopy.......Focussed femtosecond laser pulses were used to inscribe a periodic array of modifications in the core of a polymer optical fibre. Structural and refractive-index modifications have been observed at different pulse energies using DIC microscopy....

  6. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    International Nuclear Information System (INIS)

    Okishev, A.V.; Skeldon, M.D.; Keck, R.L.; Seka, W.

    2000-01-01

    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities

  7. Characterizing the Statistics of a Bunch of Optical Pulses Using a Nonlinear Optical Loop Mirror

    Directory of Open Access Journals (Sweden)

    Olivier Pottiez

    2015-01-01

    Full Text Available We propose in this work a technique for determining the amplitude distribution of a wave packet containing a large number of short optical pulses with different amplitudes. The technique takes advantage of the fast response of the optical Kerr effect in a fiber nonlinear optical loop mirror (NOLM. Under some assumptions, the statistics of the pulses can be determined from the energy transfer characteristic of the packet through the NOLM, which can be measured with a low-frequency detection setup. The statistical distribution is retrieved numerically by approximating the solution of a system of nonlinear algebraic equations using the least squares method. The technique is demonstrated numerically in the case of a packet of solitons.

  8. Optical magnetic flux generation in superconductor

    Indian Academy of Sciences (India)

    Keywords. Ultrafast phenomena; femtosecond laser; optical magnetic flux generation. PACS Nos 85.25.Oj; 74.25.-q; 42.65.Re. 1. Introduction. Excitation and observation of ultrafast phenomena in solid states are of essential interest in the field of condensed matter physics. Recent femtosecond (fs) laser technology is now.

  9. Fabrication of micro-optical components using femtosecond oscillator pulses

    Science.gov (United States)

    Rodrigues, Vanessa R. M.; Ramachandran, Hema; Chidangil, Santhosh; Mathur, Deepak

    2017-06-01

    With a penchant for integrated photonics and miniaturization, the fabrication of micron sized optical elements using precision laser pulse management is drawing attention due to the possibility of minimizing tolerances for collateral material damage. The work presented here deals with the design, fabrication and characterization of a range of diffractive optics - gratings, grids and Fresnel zone plates - on transparent and metallic samples. Their low volume, light weight, transmission bandwidth, high damage threshold and flexible design make them suited for replacing conventional refractive optical elements. Our one-step, mask-less, 3-D laser direct writing process is a green fabrication technique which is in stark contrast to currently popular Photo-lithography based micro-structuring. Our method provides scope for modifications on the surface as well as within the bulk of the material. The mechanism involved in the fabrication of these optics on transparent and thin metallic substrates differ from each other. Our studies show that both amplitude and phase versions of micro-structures were achieved successfully with performances bearing 98% accuracy vis-a-vis theoretical expectations.

  10. Numerical simulation of compact intracloud discharge and generated electromagnetic pulse

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-06-01

    Using the concept of the relativistic runaway electron avalanche, numerical simulation of compact intracloud discharge as a generator of powerful natural electromagnetic pulses (EMPs) in the HF-UHF range was conducted. We evaluated the numbers of electrons initiating the avalanche, with which the calculated EMP characteristics are consistent with measured ones. The discharge capable of generating EMPs produces runaway electrons in numbers close to those in the source of terrestrial γ-flashes (TGF) registered in the nearest space, which may be an argument for a joint EMP and TGF source.

  11. Simulation of autosoliton optical pulses in high-speed fibreoptic communication systems

    International Nuclear Information System (INIS)

    Latkin, A I

    2005-01-01

    The propagation of a pulse in a fibreoptic communication link with periodically included regenerators - nonlinear optical loop mirrors, is studied. The autosoliton propagation regime of the optical pulse is revealed. It is shown that the inclusion of a ring mirror to the communication link leads to a substantial increase in the transmission distance of the pulse at a small negative average dispersion in the link. (optical communication)

  12. Current multiplier to improved generator-to-load coupling for pulse-power generators

    International Nuclear Information System (INIS)

    Chuvatin, A.S.; Rudakov, L.I.; Weber, B.V.; Bayol, F.; Cadiergues, R.

    2005-01-01

    The circuit presented improves the coupling of existing and future pulsed power generators to physical loads. The efficiency of the proposed current multiplication scheme could theoretically exceed the values for a typical direct load-to-generator circuit. The scheme could be beneficial for use in actual applications and two examples of such applications are given [ru

  13. Single-photon generator for optical telecommunication wavelength

    International Nuclear Information System (INIS)

    Usuki, T; Sakuma, Y; Hirose, S; Takemoto, K; Yokoyama, N; Miyazawa, T; Takatsu, M; Arakawa, Y

    2006-01-01

    We report on the generation of single-photon pulses from a single InAs/InP quantum dot in telecommunication bands (1.3-1.55 μm: higher transmittance through an optical fiber). First we prepared InAs quantum dots on InP (0 0 1) substrates in a low-pressure MOCVD by using a so-called InP 'double-cap' procedure. The quantum dots have well-controlled photo emission wavelength in the telecommunication bands. We also developed a single-photon emitter in which quantum dots were embedded. Numerical simulation designed the emitter to realize efficient injection of the emitted photons into a single-mode optical fiber. Using a Hanbury-Brown and Twiss technique has proved that the photons through the fiber were single photons

  14. Optimization of Industrial Ozone Generation with Pulsed Power

    Science.gov (United States)

    Lopez, Jose; Guerrero, Daniel; Freilich, Alfred; Ramoino, Luca; Seton Hall University Team; Degremont Technologies-Ozonia Team

    2013-09-01

    Ozone (O3) is widely used for applications ranging from various industrial chemical synthesis processes to large-scale water treatment. The consequent surge in world-wide demand has brought about the requirement for ozone generation at the rate of several hundreds grams per kilowatt hour (g/kWh). For many years, ozone has been generated by means of dielectric barrier discharges (DBD), where a high-energy electric field between two electrodes separated by a dielectric and gap containing pure oxygen or air produce various microplasmas. The resultant microplasmas provide sufficient energy to dissociate the oxygen molecules while allowing the proper energetics channels for the formation of ozone. This presentation will review the current power schemes used for large-scale ozone generation and explore the use of high-voltage nanosecond pulses with reduced electric fields. The created microplasmas in a high reduced electric field are expected to be more efficient for ozone generation. This is confirmed with the current results of this work which observed that the efficiency of ozone generation increases by over eight time when the rise time and pulse duration are shortened. Department of Physics, South Orange, NJ, USA.

  15. Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Trebino, R.

    1994-01-01

    We report on significant improvements in the pulse-retrieval algorithm used to reconstruct the amplitude and the phase of ultrashort optical pulses from the experimental frequency-resolved optical gating trace data in the polarization-gate geometry. These improvements involve the use of an intensity constraint, an overcorrection technique, and a multidimensional minimization scheme. While the previously published, basic algorithm converged for most common ultrashort pulses, it failed to retrieve pulses with significant intensity substructure. The improved composite algorithm successfully converges for such pulses. It can now retrieve essentially all pulses of practical interest. We present examples of complex waveforms that were retrieved by the improved algorithm

  16. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits.

    Science.gov (United States)

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J

    2017-04-17

    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  17. A new digital pulse generator for the CALIFA detector

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, Michael; Gernhaeuser, Roman; Heiss, Benjamin; Klenze, Philipp; Remmels, Patrick; Winkel, Max [Physik Department E12, Technische Universitaet Muenchen (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    The 4π-calorimeter CALIFA ist one of the major detectors of the R3B-experiment at the upcoming Facility for Antiproton and Ion Research in Darmstadt. The monitoring of stability, single channel properties, temperature effects and rate dependency in a high resolution, high granularity calorimeter is essential for the success of the whole experiment. A new digital pulse generator will emulate the complex signal of the CsI(Tl) crystals in order to fine tune the online pulse shape analysis for particle identification, background suppression, energy calibration and for deadtime and pileup studies. The total pulse generator firmware is implemented into the digital readout platform FEBEX used in CALIFA. The FPGA and a small analog add on board allow for highly flexible parameter adjustment. New applications are easy to implement and even very complex shapes are produced by simple lookup tables. The concept, features and implementation of a prototype and a first application in the CALIFA Demonstrator Experiment in October 2014 at GSI in Darmstadt are presented.

  18. Generation of 70-fs pulses at 286 μm from a mid-infrared fiber laser

    Science.gov (United States)

    Woodward, R. I.; Hudson, D. D.; Fuerbach, A.; Jackson, S. D.

    2017-12-01

    We propose and demonstrate a simple route to few-optical-cycle pulse generation from a mid-infrared fiber laser through nonlinear compression of pulses from a holmium-doped fiber oscillator using a short length of chalcogenide fiber and a grating pair. Pulses from the oscillator with 265-fs duration at 2.86 {\\mu}m are spectrally broadened through self-phase modulation in step-index As2S3 fiber to 141-nm bandwidth and then re-compressed to 70 fs (7.3 optical cycles). These are the shortest pulses from a mid-infrared fiber system to date, and we note that our system is compact, robust, and uses only commercially available components. The scalability of this approach is also discussed, supported by numerical modeling.

  19. Second harmonic generation in resonant optical structures

    Science.gov (United States)

    Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel

    2018-01-09

    An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.

  20. Photoconductive switch enhancements for use in Blumlein pulse generators

    International Nuclear Information System (INIS)

    Davanloo, F.; Park, H.; Collins, C. B.; Agee, F. J.

    1999-01-01

    Stacked Blumlein pulse generators developed at the University of Texas at Dallas have produced high-power waveforms with risetimes and repetition rates in the range of 0.2-50 ns and 1-300 Hz, respectively, using a conventional thyratron, spark gap or photoconductive switch. Adaptation of the design has enabled the stacked Blumleins to produce 80 MW, nanosecond pulses with risetimes better than 200 ps into nominally matched loads. The device has a compact line geometry and is commutated by a single GaAs photoconductive switch triggered by a low power laser diode array. Our current investigations involve the switch characteristics that affect the broadening of the current channels in the avalanche, pre-avalanche seedings, the switch lifetime and the durability. This report presents the progress toward improving the GaAs switch operation and lifetime in stacked Blumlein pulsers. Advanced switch treatments including diamond film overcoating are implemented and discussed

  1. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Ladera, C.L.; Trebino, R.; Kohler, B.; Wilson, K.R.

    1995-01-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms

  2. Optical rogue waves generation in a nonlinear metamaterial

    Science.gov (United States)

    Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin

    2014-11-01

    We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.

  3. Highly efficient actively Q-switched Yb:LGGG laser generating 3.26 mJ of pulse energy

    Science.gov (United States)

    Li, Yanbin; Zhang, Jian; Zhao, Ruwei; Zhang, Baitao; He, Jingliang; Jia, Zhitai; Tao, Xutang

    2018-05-01

    An efficient acousto-optic Q-switched laser operation of Yb:(LuxGd1-x)3Ga5O12 (x = 0.062) (Yb:LGGG) crystal is demonstrated, producing stable pulses with repetition rate ranging from 1 to 20 kHz. Under the absorbed pump power of 8.75 W, the maximum average output power of 3.26 W is obtained at the pulse repletion rate of 1 kHz, corresponding to the slope efficiency as high as 52%. The pulse width of 14.5 ns is achieved with the pulse energy and peak power of 3.26 mJ and 225 kW, respectively. It indicates great potential of Yb:LGGG crystal for generating pulsed lasers.

  4. Effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier

    International Nuclear Information System (INIS)

    Song Rui; Hou Jing; Wang Ze-Feng; Lu Qi-Sheng; Xiao Rui

    2013-01-01

    Theoretical and experimental research on the effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier is carried out. The complex Ginzburg—Landau equation is used to simulate the propagation of the pulse in the fiber amplifier and the results show that pulses with negative initial chirp produce the widest supercontinuum and pulses with positive initial chirp produce the narrowest supercontinuum when the central wavelength of the pump lies in the normal dispersion region of the gain fiber. A self-made line width narrowing system is utilized to control the initial chirp of the nanosecond pump pulse and a four-stage master oscillator power amplifier configuration is adopted to produce a high power near-infrared suppercontinuum. The experimental results are in good agreement with simulations which can provide some guidance on further optimization of the system in future work. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. Arbitrary digital pulse sequence generator with delay-loop timing

    Science.gov (United States)

    Hošák, Radim; Ježek, Miroslav

    2018-04-01

    We propose an idea of an electronic multi-channel arbitrary digital sequence generator with temporal granularity equal to two clock cycles. We implement the generator with 32 channels using a low-cost ARM microcontroller and demonstrate its capability to produce temporal delays ranging from tens of nanoseconds to hundreds of seconds, with 24 ns timing granularity and linear scaling of delay with respect to the number of delay loop iterations. The generator is optionally synchronized with an external clock source to provide 100 ps jitter and overall sequence repeatability within the whole temporal range. The generator is fully programmable and able to produce digital sequences of high complexity. The concept of the generator can be implemented using different microcontrollers and applied for controlling of various optical, atomic, and nuclear physics measurement setups.

  6. Propagation of Partial Discharge and Noise Pulses in Turbine Generators

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Stone, G. C.; Kurtz, M.

    1986-01-01

    Changes with time in the partial discharge (PD) activity originating in a generator stator's insulation system provide information about the electrical integrity of the stator winding. It is desirable to measure PD during normal service to minimize costs. To do this successfully, the influence...... of electrical interference must be reduced. Tests are reported which characterize the nature of discharge and noise pulses when using capacitive couplers mounted on each of the phase leads and an RF current transformer mounted on the neutral lead for signal detection. Significant differences between PD...... and electrical noise have been observed....

  7. Generation efficiency of single-photon current pulses in the Geiger mode of silicon avalanche photodiodes

    International Nuclear Information System (INIS)

    Verkhovtseva, A. V.; Gergel, V. A.

    2009-01-01

    Statistical fluctuations of the avalanche's multiplication efficiency were studied as applied to the single-photon (Geiger) mode of avalanche photodiodes. The distribution function of partial multiplication factors with an anomalously wide (of the order of the average) dispersion was obtained. Expressions for partial feedback factors were derived in terms of the average gain and the corresponding dependences on the diode's overvoltage were calculated. Final expressions for the photon-electric pulse's conversion were derived by averaging corresponding formulas over the coordinate of initiating photoelectron generation using the functions of optical photon absorption in silicon.

  8. Multifunctional pulse generator for high-intensity focused ultrasound system

    Science.gov (United States)

    Tamano, Satoshi; Yoshizawa, Shin; Umemura, Shin-Ichiro

    2017-07-01

    High-intensity focused ultrasound (HIFU) can achieve high spatial resolution for the treatment of diseases. A major technical challenge in implementing a HIFU therapeutic system is to generate high-voltage high-current signals for effectively exciting a multichannel HIFU transducer at high efficiencies. In this paper, we present the development of a multifunctional multichannel generator/driver. The generator can produce a long burst as well as an extremely high-voltage short pulse of pseudosinusoidal waves (trigger HIFU) and second-harmonic superimposed waves for HIFU transmission. The transmission timing, waveform, and frequency can be controlled using a field-programmable gate array (FPGA) via a universal serial bus (USB) microcontroller. The hardware is implemented in a compact printed circuit board. The test results of trigger HIFU reveal that the power consumption and the temperature rise of metal-oxide semiconductor field-effect transistors were reduced by 19.9% and 38.2 °C, respectively, from the previous design. The highly flexible performance of the novel generator/driver is demonstrated in the generation of second-harmonic superimposed waves, which is useful for cavitation-enhanced HIFU treatment, although the previous design exhibited difficulty in generating it.

  9. Self-slowdown and -advancement of fs pulses in a quantum-dot semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    We demonstrate changes in the propagation time of 180 femtosecond pulses in a quantum-dot semiconductor optical amplifier as function of pulse input power and bias current. The results interpreted as a result of pulse reshaping by gain saturation but are also analogous to coherent population osci...

  10. Controllable delay of ultrashort pulses in a quantum dot optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    Optical and electrical tuning of the propagation time of 170 fs pulses in a quantum dot semiconductor amplifier at room temperature is demonstrated. Both pulse slowdown and advancement is possible and we achieve fractional delays (delay divided with pulse duration) of up to 40%. The results...

  11. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  12. Generation of ultra short pulses by auto injection in the Nd: YAG laser

    International Nuclear Information System (INIS)

    Faria, I.C. de.

    1986-01-01

    Yhe work presented here, was concerned to the construction of a coherent light source in the near infrared region with pulses of 10 -10 seconds. The auto-injection technique was employed for generating these short pulses with posterior extraction of the pulse applied to a Nd=YAG-pulsed laser. (author) [pt

  13. Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts

    Science.gov (United States)

    Karasawa, Naoki

    2018-04-01

    Optical setups for measuring the sequence of ultrafast optical wavefronts using a chirped pulse as a reference wave in digital holography are proposed and analyzed. In this method, multiple ultrafast object pulses are used to probe the temporal evolution of ultrafast phenomena and they are interfered with a chirped reference wave to record a digital hologram. Wavefronts at different times can be reconstructed separately from the recorded hologram when the reference pulse can be treated as a quasi-monochromatic wave during the pulse width of each object pulse. The feasibility of this method is demonstrated by numerical simulation.

  14. High powered pulsed plasma enhanced deposition of thin film semiconductor and optical materials

    International Nuclear Information System (INIS)

    Llewellyn, I.P.; Sheach, K.J.A.; Heinecke, R.A.

    1993-01-01

    A glow discharge deposition technique is described which allows the deposition of a large range of high quality materials without the requirement for substrate heating. The method is differentiated from conventional plasma deposition techniques in that a much higher degree of dissociation is achieved in the gases prior to deposition, such that thermally activated surface reactions are no longer required in order to produce a dense film. The necessary discharge intensity (>300Wcm -3 ) is achieved using a high power radio frequency generator which is pulsed at a low duty cycle (1%) to keep the average energy of the discharge low (100W), in order to avoid the discharge heating the substrate. In addition, by varying the gas composition between discharge pulses, layered structures of materials can be produced, with a disordered interface about 8 A thick. Various uses of the technique in semiconductor and optical filter production are described, and the properties of films deposited using these technique are presented. (orig.)

  15. Second-harmonic generation in atomic vapor with picosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.

    1997-01-01

    Picosecond laser pulses were used to study the highly forbidden resonant second-harmonic generation (SHG) in potassium vapor. The input intensity dependence, vapor density dependence, buffer-gas pressure dependence, and spatial profile of the SHG were measured. A pump - probe experiment was conducted to probe the time dependence of the SHG signal. The experimental results can be understood from an ionization-initiated dc-field-induced SHG model. A theory of a dc-field-induced SHG model is developed that takes into account the time development of the dc electric field in detail. This temporal buildup of the dc field along with transient coherent excitation between two-photon-allowed transitions can explain the experimental results quantitatively, including the previous vapor SHG results with nanosecond laser pulses. copyright 1997 Optical Society of America

  16. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu-De [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China); School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000 (China); Luo, Zhi-Chao; Liu, Hao; Liu, Meng; Luo, Ai-Ping, E-mail: luoaiping@scnu.edu.cn; Xu, Wen-Cheng, E-mail: xuwch@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-10-20

    We reported on the femtosecond pulse generation from an erbium-doped fiber (EDF) laser by using microfiber-based gold nanorods (GNRs) as saturable absorber (SA). By virtue of the geometric characteristic of microfiber-based GNRs, the optical damage threshold of GNRs-SA could be greatly enhanced. The microfiber-based GNRs-SA shows a modulation depth of 4.9% and a nonsaturable loss of 21.1%. With the proposed GNRs-SA, the fiber laser emitted a mode-locked pulse train with duration of ∼887 fs. The obtained results demonstrated that the GNRs deposited microfiber could indeed serve as a high-performance SA towards the practical applications in the field of ultrafast photonics.

  17. Ultrashort Generation Regimes in the All-Fiber Kerr Mode-Locked Erbium-Doped Fiber Ring Laser for Terahertz Pulsed Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. S. Voropaev

    2015-01-01

    Full Text Available Many femtosecond engineering applications require for a stable generation of ultrashort pulses. Thus, in the terahertz pulsed spectroscopy a measurement error in the refractive index is strongly dependent on the pulse duration stability with allowable variation of few femtoseconds. The aim of this work is to study the ultrashort pulses (USP regimes stability in the all – fiber erbium doped ring laser with Kerr mode-locking. The study was conducted at several different values of the total resonator intra-cavity dispersion. Three laser schemes with the intra-cavity dispersion values from -1.232 ps2 to +0.008 ps2 have been studied. In the experiment there were two regimes of generation observed: the stretched pulse generation and ordinary soliton generation. Main attention is focused on the stability of regimes under study. The most stable regime was that of the stretched pulse generation with a spectrum form of sech2 , possible pulse duration of 490 fs at least, repetition rate of 2.9 MHz, and average output power of 17 mW. It is worth noting, that obtained regimes had characteristics suitable for the successful use in the terahertz pulsed spectroscopy. The results may be useful in the following areas of science and technology: a high-precision spectroscopy, optical frequency standards, super-continuum generation, and terahertz pulsed spectroscopy. The future system development is expected to stabilize duration and repetition rate of the obtained regime of ultra-short pulse generation.

  18. Generation of atto-second pulses in atoms and molecules

    International Nuclear Information System (INIS)

    Haessler, St.

    2009-12-01

    When a low-frequency laser pulse is focused to a high intensity into a gas, the electric field of the laser light may become of comparable strength to that felt by the electrons bound in an atom or molecule. A valence electron can then be 'freed' by tunnel ionization, accelerated by the strong oscillating laser field and can eventually re-collide and recombine with the ion. The gained kinetic energy is then released as a burst of coherent X-UV light and the macroscopic gas medium then becomes a source of X-UV light pulses of atto-second (1 as equals 10 -18 s) duration. This is the natural time-scale of electron dynamics in atoms and molecules. The largest part of this thesis deals with experiments where molecules are the harmonic generation medium and the re-colliding electron wave packet acts as a 'self-probe'. In several experiments, we demonstrate the potential of this scheme to observe or image ultra-fast intra-molecular electronic and nuclear dynamics. In particular, we have performed the first phase measurements of the high harmonic emission from aligned molecules and we have extracted the recombination dipole matrix element. This observable contains signatures of quantum interference between the continuum and bound parts of the total electronic wavefunction. It is shown how this quantum interference can be utilized to shape the atto-second light emission from the molecules. In a second part of this thesis, we use the well characterized coherent X-UV light emitted by rare gas atoms to photo-ionize molecules. Measuring the ejected photoelectron wave packet then allows to extract information on the photoionization process itself, and possibly about the initial bound and final continuum states of the electron. The last chapter of this manuscript describes studies of high harmonic and atto-second light pulse generation in a different medium: ablation plasmas. (author)

  19. Silicon dioxide etching process for fabrication of micro-optics employing pulse-modulated electron-beam-excited plasma

    International Nuclear Information System (INIS)

    Takeda, Keigo; Ohta, Takayuki; Ito, Masafumi; Hori, Masaru

    2006-01-01

    Silicon dioxide etching process employing a pulse-modulated electron-beam-excited plasma (EBEP) has been developed for a fabrication process of optical micro-electro-mechanical systems (MEMSs). Nonplanar dielectric materials were etched by using self-bias induced by the electron beam generating the plasma. In order to investigate the effect of pulse modulation on electron beam, plasma diagnostics were carried out in the EBEP employing C 4 F 8 gas diluted with Ar gas by using a Langmuir single probe and time resolved optical emission spectroscopy. It was found that the pulse-modulated EBEP has an excellent potential to reduce the plasma-induced thermal damage on a photoresist film on a substrate to get the uniform etching and the anisotropic SiO 2 etching in comparison with the conventional EBEP. The pulse-modulated EBEP enabled us to get the high etch rate of SiO 2 of 375 nm/min without any additional bias power supply. Furthermore, the microfabrication on the core area of optical fiber was realized. These results indicate that the pulse-modulated EBEP will be a powerful tool for the application to optical MEMS process

  20. Intense relativistic electron beam generation from KALI-5000 pulse accelerator

    International Nuclear Information System (INIS)

    Roy, A.; Mondal, J.; Mitra, S.; Durga Praveen Kumar, D.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    Intense Relativistic Electron Beam (IREB) with parameters 420 keV, 22 kA, 100 ns has been generated from indigenously developed pulse power system KALI- 5000. High current electron beam is generated from explosive field emission graphite cathodes. Studies have been conducted by changing the diameter of graphite cathode and also the anode cathode gap. In order to avoid prepulse effect it was concluded that anode cathode (AK) gap should be kept larger than estimated by the Child Langmuir relation. Beam voltage has been measured by a copper sulphate voltage divider, beam current by a self integrating Rogowski coil and B-dot probe. Electron beam diode Impedance and Perveance were obtained from the experimentally measured beam voltage and current. (author)

  1. Fast SMES for generation of high power pulses

    International Nuclear Information System (INIS)

    Juengst, K.P.; Salbert, H.

    1996-01-01

    A technique for generation of high power pulses based on a fast SMES has been developed and a model of a power modulator for linear accelerators was built. The basic function of the modulator that generates 2 ms long, approximately 1 MW power pulses at a repetition rate of 10 Hz is described in this paper. A modular construction of the SMES that consists of up to six coils has been chosen to meet the demands of several applications in high energy physics and energy distribution. The rate of change of magnetic field achieved during ramping of the magnet was more than 60 T/s without a quench. The magnet was designed with respect to the high AC losses during repetitive ramping of the SMES. The suitability of mixed matrix superconductors instead of more expensive net frequency wires for this kind of AC stress was investigated. The applied mixed matrix Cu/CuNi/NbTi wire and the construction of a single coil is described

  2. Ultrashort pulse-propagation effects in a semiconductor optical amplifier: Microscopic theory and experiment

    DEFF Research Database (Denmark)

    Hughes, S.; Borri, P.; Knorr, A.

    2001-01-01

    We present microscopic modeling and experimental measurements of femtosecond-pulse interactions in a semiconductor optical amplifier. Two novel nonlinear propagation effects are demonstrated: pulse breakup in the gain regime and pulse compression in the transparency regime. These propagation phen...... phenomena highlight the microscopic origin and important role of adiabatic following in semiconductor optical amplifiers. Fundamental light-matter interactions are discussed in detail and possible applications are highlighted....

  3. Magnetic Field Effect on Ultrashort Two-dimensional Optical Pulse Propagation in Silicon Nanotubes

    Science.gov (United States)

    Konobeeva, N. N.; Evdokimov, R. A.; Belonenko, M. B.

    2018-05-01

    The paper deals with the magnetic field effect which provides a stable propagation of ultrashort pulses in silicon nanotubes from the viewpoint of their waveform. The equation is derived for the electromagnetic field observed in silicon nanotubes with a glance to the magnetic field for two-dimensional optical pulses. The analysis is given to the dependence between the waveform of ultrashort optical pulses and the magnetic flux passing through the cross-sectional area of the nanotube.

  4. Generation and characterization of erbium-Raman noise-like pulses from a figure-eight fibre laser

    International Nuclear Information System (INIS)

    Santiago-Hernandez, H; Pottiez, O; Paez-Aguirre, R; Ibarra-Villalon, H E; Tenorio-Torres, A; Duran-Sanchez, M; Ibarra-Escamilla, B; Kuzin, E A; Hernandez-Garcia, J C

    2015-01-01

    We report an experimental study of the noise-like pulses generated by a ∼300 m long passively mode-locked erbium-doped figure-eight fibre laser. Non-self-starting mode locking yields the formation of ns scale bunches of sub-ps pulses. Depending on birefringence adjustments, noise-like pulses with a variety of temporal profiles and optical spectra are obtained. In particular, for some adjustments the Raman-enhanced spectrum reaches a 10 dB bandwidth of ∼130 nm. For the first time to our knowledge, we extract information on the inner structure of the noise-like pulses, using a birefringent Sagnac interferometer as a spectral filter and a nonlinear optical loop mirror as an intensity filter. In particular we show that the different spectral components of the bunch are homogeneously distributed within the temporal envelope of the bunch, whereas the amplitude and/or the density of the sub-pulses present substantial variations along the envelope. In some cases, the analysis reveals the existence of an intermediate level of organization in the structure of the noise-like pulse, between the ns bunch and the sub-ps inner pulses, suggesting that these objects may be even more complex than previously recognized. (paper)

  5. Shaping of pulses in optical grating-based laser systems for optimal control of electrons in laser plasma wake-field accelerator

    International Nuclear Information System (INIS)

    Toth, Cs.; Faure, J.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2003-01-01

    In typical chirped pulse amplification (CPA) laser systems, scanning the grating separation in the optical compressor causes the well know generation of linear chirp of frequency vs. time in a laser pulse, as well as a modification of all the higher order phase terms. By setting the compressor angle slightly different from the optimum value to generate the shortest pulse, a typical scan around this value will produce significant changes to the pulse shape. Such pulse shape changes can lead to significant differences in the interaction with plasmas such as used in laser wake-field accelerators. Strong electron yield dependence on laser pulse shape in laser plasma wake-field electron acceleration experiments have been observed in the L'OASIS Lab of LBNL [1]. These experiments show the importance of pulse skewness parameter, S, defined here on the basis of the ratio of the ''head-width-half-max'' (HWHM) and the ''tail-width-halfmax'' (TWHM), respectively

  6. Impact of initial pulse shape on the nonlinear spectral compression in optical fibre

    Science.gov (United States)

    Boscolo, Sonia; Chaussard, Frederic; Andresen, Esben; Rigneault, Hervé; Finot, Christophe

    2018-02-01

    We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear propagation spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.

  7. Reduced timing Sensitivity in all-optical switching using flat-top control pulses obtained by the optical fourier transform technique

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    into the time domain, referred to as the optical Fourier transform technique. A 3 ps flat-top pulse derived from a 3 nm wide square filter is obtained, and used to gate an all-optical OTDM demultiplexer, yielding an error-free timing jitter tolerance of 3 ps for 80 Gb/s and 160 Gb/s data signals.......For high-speed serial data, timing tolerance is crucial for switching and regeneration. We propose a novel scheme to generate flat-top pulses, for use as gating control pulses. The scheme relies on spectral shaping by a square-shaped filter, followed by a linear transformation of the spectral shape...

  8. Isolated sub-100-attosecond pulse generation via controlling electron dynamics

    OpenAIRE

    Lan, Pengfei; Lu, Peixiang; Cao, Wei; Li, Yuhua; Wang, Xinlin

    2007-01-01

    A new method to coherently control the electron dynamics is proposed using a few-cycle laser pulse in combination with a controlling field. It is shown that this method not only broadens the attosecond pulse bandwidth, but also reduces the chirp, then an isolated 80-as pulse is straightforwardly obtained and even shorter pulse is achievable by increasing the intensity of the controlling field. Such ultrashort pulses allow one to investigate ultrafast electronic processes which have never be a...

  9. Triboelectric-generator-driven pulse electrodeposition for micropatterning.

    Science.gov (United States)

    Zhu, Guang; Pan, Caofeng; Guo, Wenxi; Chen, Chih-Yen; Zhou, Yusheng; Yu, Ruomeng; Wang, Zhong Lin

    2012-09-12

    By converting ambient energy into electricity, energy harvesting is capable of at least offsetting, or even replacing, the reliance of small portable electronics on traditional power supplies, such as batteries. Here we demonstrate a novel and simple generator with extremely low cost for efficiently harvesting mechanical energy that is typically present in the form of vibrations and random displacements/deformation. Owing to the coupling of contact charging and electrostatic induction, electric generation was achieved with a cycled process of contact and separation between two polymer films. A detailed theory is developed for understanding the proposed mechanism. The instantaneous electric power density reached as high as 31.2 mW/cm(3) at a maximum open circuit voltage of 110 V. Furthermore, the generator was successfully used without electric storage as a direct power source for pulse electrodeposition (PED) of micro/nanocrystalline silver structure. The cathodic current efficiency reached up to 86.6%. Not only does this work present a new type of generator that is featured by simple fabrication, large electric output, excellent robustness, and extremely low cost, but also extends the application of energy-harvesting technology to the field of electrochemistry with further utilizations including, but not limited to, pollutant degradation, corrosion protection, and water splitting.

  10. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  11. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.

    2016-06-01

    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  12. 76 FR 64223 - Cardiovascular Devices; Reclassification of External Pacemaker Pulse Generator Devices

    Science.gov (United States)

    2011-10-17

    ... Drug Administration 21 CFR Part 870 Cardiovascular Devices; Reclassification of External Pacemaker... Special Controls Guidance Document: External Pacemaker Pulse Generator; Availability; Proposed Rule and... [Docket No. FDA-2011-N-0650] Cardiovascular Devices; Reclassification of External Pacemaker Pulse...

  13. Optical fiber array for the delivery of high peak-power laser pulses for fluid flow measurements

    International Nuclear Information System (INIS)

    Parry, Jonathan P.; Shephard, Jonathan D.; Thomson, Martin J.; Taghizadeh, Mohammad R.; Jones, Julian D. C.; Hand, Duncan P.

    2007-01-01

    Fiber delivery of 64.7 mJ laser pulses (∼6 ns duration) from a Q-switched Nd:YAG laseroperating at532 nm is demonstrated. A custom diffractive optical element was used toshape the laser beam and facilitate coupling into a linear fiber array. This launcharrangement achieves an improvement in launch efficiency compared with a circular fiberbundle evaluated in previous work and the delivery of higher pulse energies isdemonstrated. The bundle is capable of delivering light of sufficient pulse energy and,importantly, with suitable focusability, to generate a thin light sheet for the fluid flowmeasurement technique of particle image velocimetry (PIV). Fiber delivery offers anadvantage, in terms of optical access, for the application of PIV to enclosed measurementvolumes, such as the cylinder of a combustion engine

  14. Optical generation of radio-frequency power

    International Nuclear Information System (INIS)

    Hietala, V.M.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Meyer, W.J.

    1994-11-01

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100's of mW's at millimeter wave frequencies with a theoretical ''wall-plug'' efficiency approaching 34%

  15. Optical Third-Harmonic Generation in Graphene

    Directory of Open Access Journals (Sweden)

    Sung-Young Hong

    2013-06-01

    Full Text Available We report strong third-harmonic generation in monolayer graphene grown by chemical vapor deposition and transferred to an amorphous silica (glass substrate; the photon energy is in three-photon resonance with the exciton-shifted van Hove singularity at the M point of graphene. The polarization selection rules are derived and experimentally verified. In addition, our polarization- and azimuthal-rotation-dependent third-harmonic-generation measurements reveal in-plane isotropy as well as anisotropy between the in-plane and out-of-plane nonlinear optical responses of graphene. Since the third-harmonic signal exceeds that from bulk glass by more than 2 orders of magnitude, the signal contrast permits background-free scanning of graphene and provides insight into the structural properties of graphene.

  16. Modelling hot electron generation in short pulse target heating experiments

    Directory of Open Access Journals (Sweden)

    Sircombe N.J.

    2013-11-01

    Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  17. Energy concentration on S-300 pulsed power generator

    Energy Technology Data Exchange (ETDEWEB)

    Bakshaev, Yu Z; Chernenko, A S; Korolev, V D; Mizhiritskij, V I; Zazhivikhin, V V [Kurchatov Institute, Moscow (Russian Federation)

    1997-12-31

    Energy concentration in fast Z-pinch investigation experiments on an 8-module 10 TW pulsed power S-300 generator (1.3 MV, 45 ns FWHM, 0.15 Ohm) is realized by a 3-d vacuum energy concentrator. The concentrator was constructed on the basis of triplate MITLs connected in parallel at the central unit where the Z-pinch is formed. At some start-up experiments on the 8-module installation version at 700 kV incident wave amplitude on concentrator for a gas puff load current of 4 MA with rise time of about 60 ns was obtained. The efficiency or current transfer from the concentrator input to the load for both a gas liner and a short-circuited case was practically the same. (author). 4 figs., 4 refs.

  18. Neonatal testosterone suppresses a neuroendocrine pulse generator required for reproduction

    Science.gov (United States)

    Israel, Jean-Marc; Cabelguen, Jean-Marie; Le Masson, Gwendal; Oliet, Stéphane H.; Ciofi, Philippe

    2014-02-01

    The pituitary gland releases hormones in a pulsatile fashion guaranteeing signalling efficiency. The determinants of pulsatility are poorly circumscribed. Here we show in magnocellular hypothalamo-neurohypophyseal oxytocin (OT) neurons that the bursting activity underlying the neurohormonal pulses necessary for parturition and the milk-ejection reflex is entirely driven by a female-specific central pattern generator (CPG). Surprisingly, this CPG is active in both male and female neonates, but is inactivated in males after the first week of life. CPG activity can be restored in males by orchidectomy or silenced in females by exogenous testosterone. This steroid effect is aromatase and caspase dependent, and is mediated via oestrogen receptor-α. This indicates the apoptosis of the CPG network during hypothalamic sexual differentiation, explaining why OT neurons do not burst in adult males. This supports the view that stereotypic neuroendocrine pulsatility is governed by CPGs, some of which are subjected to gender-specific perinatal programming.

  19. Isolated sub-100-as pulse generation via controlling electron dynamics

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Li Yuhua; Wang Xinlin

    2007-01-01

    A method to coherently control electron dynamics is proposed using a few-cycle laser pulse in combination with a controlling field. It is shown that this method not only broadens the attosecond pulse bandwidth, but also reduces the chirp; thus an isolated 80-as pulse is straightforwardly obtained, and even shorter pulses are achievable by increasing the intensity of the controlling field. Such ultrashort pulses allow one to investigate ultrafast electronic processes. In addition, the few-cycle synthesized pulse is expected to be useful for manipulating a wide range of laser-atom interactions

  20. Securing information using optically generated biometric keys

    Science.gov (United States)

    Verma, Gaurav; Sinha, Aloka

    2016-11-01

    In this paper, we present a new technique to obtain biometric keys by using the fingerprint of a person for an optical image encryption system. The key generation scheme uses the fingerprint biometric information in terms of the amplitude mask (AM) and the phase mask (PM) of the reconstructed fingerprint image that is implemented using the digital holographic technique. Statistical tests have been conducted to check the randomness of the fingerprint PM key that enables its usage as an image encryption key. To explore the utility of the generated biometric keys, an optical image encryption system has been further demonstrated based on the phase retrieval algorithm and the double random phase encoding scheme in which keys for the encryption are used as the AM and the PM key. The advantage associated with the proposed scheme is that the biometric keys’ retrieval requires the simultaneous presence of the fingerprint hologram and the correct knowledge of the reconstruction parameters at the decryption stage, which not only verifies the authenticity of the person but also protects the valuable fingerprint biometric features of the keys. Numerical results are carried out to prove the feasibility and the effectiveness of the proposed encryption system.

  1. Optical generation of matter qubit graph states

    International Nuclear Information System (INIS)

    Benjamin, S C; Eisert, J; Stace, T M

    2005-01-01

    We present a scheme for rapidly entangling matter qubits in order to create graph states for one-way quantum computing. The qubits can be simple three-level systems in separate cavities. Coupling involves only local fields and a static (unswitched) linear optics network. Fusion of graph-state sections occurs with, in principle, zero probability of damaging the nascent graph state. We avoid the finite thresholds of other schemes by operating on two entangled pairs, so that each generates exactly one photon. We do not require the relatively slow single qubit local flips to be applied during the growth phase: growth of the graph state can then become a purely optical process. The scheme naturally generates graph states with vertices of high degree and so is easily able to construct minimal graph states, with consequent resource savings. The most efficient approach will be to create new graph-state edges even as qubits elsewhere are measured, in a 'just in time' approach. An error analysis indicates that the scheme is relatively robust against imperfections in the apparatus

  2. Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media

    International Nuclear Information System (INIS)

    Shi, L W; Chen, Y H; Xu, B; Wang, Z C; Jiao, Y H; Wang, Z G

    2007-01-01

    In this review, the potential of mode-locked lasers based on advanced quantum-dot (QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects. (topical review)

  3. Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser

    Science.gov (United States)

    He, Hong-Sen; Chen, Zhen; Li, Hong-Bin; Dong, Jun

    2018-05-01

    A high repetition rate, nanosecond, pulsed optical vortex beam has been generated in a Cr,Nd:YAG self-Q-switched microchip laser pumped by the annular-beam formed with a hollow focus lens. The lasing threshold for vortex pulses is 0.9 W. A pulse width of 6.5 ns and a repetition rate of over 330 kHz have been achieved. The average output power of 1 W and the slope efficiency of 46.6% have been obtained. The helicity of the optical vortices has been controlled by adjusting the tilted angle between Cr,Nd:YAG crystal and output coupler. The work provides a new method for developing pulsed optical vortices for potential applications on quantum communication and optical trapping.

  4. Copper vapour laser with an efficient semiconductor pump generator having comparable pump pulse and output pulse durations

    Energy Technology Data Exchange (ETDEWEB)

    Yurkin, A A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-03-31

    We report the results of experimental studies of a copper vapour laser with a semiconductor pump generator capable of forming virtually optimal pump pulses with a current rise steepness of about 40 A ns{sup -1} in a KULON LT-1.5CU active element. To maintain the operating temperature of the active element's channel, an additional heating pulsed oscillator is used. High efficiency of the pump generator is demonstrated. (lasers)

  5. Generation of spin waves by a train of fs-laser pulses: a novel approach for tuning magnon wavelength.

    Science.gov (United States)

    Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M

    2017-07-18

    Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.

  6. 100 GHz pulse waveform measurement based on electro-optic sampling

    Science.gov (United States)

    Feng, Zhigang; Zhao, Kejia; Yang, Zhijun; Miao, Jingyuan; Chen, He

    2018-05-01

    We present an ultrafast pulse waveform measurement system based on an electro-optic sampling technique at 1560 nm and prepare LiTaO3-based electro-optic modulators with a coplanar waveguide structure. The transmission and reflection characteristics of electrical pulses on a coplanar waveguide terminated with an open circuit and a resistor are investigated by analyzing the corresponding time-domain pulse waveforms. We measure the output electrical pulse waveform of a 100 GHz photodiode and the obtained rise times of the impulse and step responses are 2.5 and 3.4 ps, respectively.

  7. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    Science.gov (United States)

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  8. Ultrafast pulse generation in integrated arrays of anapole nanolasers

    KAUST Repository

    Gongora, J. S. Totero

    2017-11-02

    One of the main challenges in photonics is the integration of ultrafast coherent sources in silicon compatible platforms at the nanoscale [1]. Generally, the emission of ultra-short pulses is achieved by synchronizing the cavity modes of the system via external active components, such as, e.g., Q-switch or saturable absorbers. Consequently, the required optical setups are complex and difficult to integrate on-chip. To address these difficulties, we propose a novel type of integrated source based on the spontaneous synchronization of several near-field nanolasers. We design our near-field lasers by considering the nonlinear amplification of non-radiating Anapole modes [2]. Anapoles represent an intriguing non-conventional state of radiation, whose excitation is responsible for the formation of scattering suppression states in dielectric nanostructures [3]. Due to their inherent near-field emission properties, an ensemble of anapole-based nanolasers represent an ideal candidate to investigate and tailor spontaneous synchronization phenomena in a silicon-compatible framework. Additionally, their mutual non-linear interaction can be precisely controlled within standard nanofabrication tolerances.

  9. Generating high-quality single droplets for optical particle characterization with an easy setup

    Science.gov (United States)

    Xu, Jie; Ge, Baozhen; Meng, Rui

    2018-06-01

    The high-performance and micro-sized single droplet is significant for optical particle characterization. We develop a single-droplet generator (SDG) based on a piezoelectric inkjet technique with advantages of low cost and easy setup. By optimizing the pulse parameters, we achieve various size single droplets. Further investigations reveal that SDG generates single droplets of high quality, demonstrating good sphericity, monodispersity and a stable length of several millimeters.

  10. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator

    Science.gov (United States)

    Lamour, Tobias P.; Reid, Derryck T.

    2011-08-01

    Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

  11. High-power femtosecond pulse generation in a passively mode-locked Nd:SrLaAlO4 laser

    Science.gov (United States)

    Liu, Shan-De; Dong, Lu-Lu; Zheng, Li-He; Berkowski, Marek; Su, Liang-Bi; Ren, Ting-Qi; Peng, Yan-Dong; Hou, Jia; Zhang, Bai-Tao; He, Jing-Liang

    2016-07-01

    A high optical quality Nd:SrLaAlO4 (Nd:SLA) crystal was grown using the Czochralski method and showed broad fluorescence spectrum with a full width at half maximum value of 34 nm, which is beneficial for generating femtosecond laser pulses. A stable diode-pumped passively mode-locked femtosecond Nd:SLA laser with 458 fs pulse duration was achieved for the first time at a central wavelength of 1077.9 nm. The average output power of the continuous-wave mode-locked laser was 520 mW and the repetition rate was 78.5 MHz.

  12. Generation of an isolated sub-30 attosecond pulse in a two-color laser field and a static electric field

    International Nuclear Information System (INIS)

    Zhang Gang-Tai; Zhang Mei-Guang; Bai Ting-Ting

    2012-01-01

    We theoretically investigate high-order harmonic generation (HHG) from a helium ion model in a two-color laser field, which is synthesized by a fundamental pulse and its second harmonic pulse. It is shown that a supercontinuum spectrum can be generated in the two-color field. However, the spectral intensity is very low, limiting the application of the generated attosecond (as) pulse. By adding a static electric field to the synthesized two-color field, not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased, but also the quantum paths of the HHG can be significantly modulated. As a result, the extension and enhancement of the supercontinuum spectrum are achieved, producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV. In particular, we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Propagation of optical pulses in a resonantly absorbing medium: Observation of negative velocity in Rb vapor

    International Nuclear Information System (INIS)

    Tanaka, H.; Hayami, K.; Furue, S.; Nakayama, K.; Niwa, H.; Kohmoto, T.; Kunitomo, M.; Fukuda, Y.

    2003-01-01

    Propagation of optical pulses in a resonantly absorbing medium is studied. Propagation time of nanosecond pulses was measured for the Rb D 1 transition. At the center of two absorption lines, delay of the pulse peak which is about ten times as large as the pulse width was observed, where zero delay is defined for the propagation with the light velocity in vacuum. On the other hand, at the peak of an absorption line, negative delay was observed for large absorption, where the advance time is as large as 25% of the pulse width. Simulation including the effect of absorption and phase shift reproduced well the experimental results

  14. Modelling of the energy density deposition profiles of ultrashort laser pulses focused in optical media

    International Nuclear Information System (INIS)

    Vidal, F; Lavertu, P-L; Bigaouette, N; Moore, F; Brunette, I; Giguere, D; Kieffer, J-C; Olivie, G; Ozaki, T

    2007-01-01

    The propagation of ultrashort laser pulses in dense optical media is investigated theoretically by solving numerically the nonlinear Schroedinger equation. It is shown that the maximum energy density deposition as a function of the pulse energy presents a well-defined threshold that increases with the pulse duration. As a consequence of plasma defocusing, the maximum energy density deposition is generally smaller and the size of the energy deposition zone is generally larger for shorter pulses. Nevertheless, significant values of the energy density deposition can be obtained near threshold, i.e., at lower energy than for longer pulses

  15. Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, Mario, E-mail: mario@io.cfmac.csic.es; Siegel, Jan, E-mail: j.siegel@io.cfmac.csic.es; Hernandez-Rueda, Javier; Solis, Javier [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain)

    2014-09-21

    The interaction of high-power single 130 femtosecond (fs) laser pulses with the surface of Lithium Niobate is experimentally investigated in this work. The use of fs-resolution time-resolved microscopy allows us to separately observe the instantaneous optical Kerr effect induced by the pulse and the generation of a free electron plasma. The maximum electron density is reached 550 fs after the peak of the Kerr effect, confirming the presence of a delayed carrier generation mechanism. We have also observed the appearance of transient Newton rings during the ablation process, related to optical interference of the probe beam reflected at the front and back surface of the ablating layer. Finally, we have analyzed the dynamics of the photorefractive effect on a much longer time scale by measuring the evolution of the transmittance of the irradiated area for different fluences below the ablation threshold.

  16. Imaging the ultrafast Kerr effect, free carrier generation, relaxation and ablation dynamics of Lithium Niobate irradiated with femtosecond laser pulses

    International Nuclear Information System (INIS)

    Garcia-Lechuga, Mario; Siegel, Jan; Hernandez-Rueda, Javier; Solis, Javier

    2014-01-01

    The interaction of high-power single 130 femtosecond (fs) laser pulses with the surface of Lithium Niobate is experimentally investigated in this work. The use of fs-resolution time-resolved microscopy allows us to separately observe the instantaneous optical Kerr effect induced by the pulse and the generation of a free electron plasma. The maximum electron density is reached 550 fs after the peak of the Kerr effect, confirming the presence of a delayed carrier generation mechanism. We have also observed the appearance of transient Newton rings during the ablation process, related to optical interference of the probe beam reflected at the front and back surface of the ablating layer. Finally, we have analyzed the dynamics of the photorefractive effect on a much longer time scale by measuring the evolution of the transmittance of the irradiated area for different fluences below the ablation threshold.

  17. Pulsed laser manipulation of an optically trapped bead: Averaging thermal noise and measuring the pulsed force amplitude

    DEFF Research Database (Denmark)

    Lindballe, Thue Bjerring; Kristensen, Martin V. G.; Keiding, Søren Rud

    2013-01-01

    An experimental strategy for post-eliminating thermal noise on position measurements of optically trapped particles is presented. Using a nanosecond pulsed laser, synchronized to the detection system, to exert a periodic driving force on an optically trapped 10 polystyrene bead, the laser pulse-bead...... interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead...... is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our...

  18. Electrical and optical analysis of fast transient discharges in a pulsed corona pilot unit

    NARCIS (Netherlands)

    Blom, P.P.M.; Smulders, H.W.M.; Heesch, van E.J.M.; Laan, van der P.C.T.

    1997-01-01

    We give a detailed analysis of intense pulsed corona dis charges. CCD movies and current, voltage and energy in put measurements are the basis of the description. The discharges are generated in a 1.5 kW pilot unit, which cre ates pulsed corona discharges energized by 100 kV pulses of 200 us width,

  19. Efficient femtosecond mid-infrared pulse generation by dispersivewave radiation in bulk lithium niobate crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm.......We experimentally demonstrate efficient mid-infrared pulse generation by dispersive wave radiation in bulk lithium niobate crystal. Femtosecond mid-IR pulses centering from 2.8–2.92 µm are generated using the single pump wavelengths from 1.25–1.45 µm....

  20. Songbirds use pulse tone register in two voices to generate low-frequency sound

    DEFF Research Database (Denmark)

    Jensen, Kenneth Kragh; Cooper, Brenton G.; Larsen, Ole Næsbye

    2007-01-01

    , the syrinx, is unknown. We present the first high-speed video records of the intact syrinx during induced phonation. The syrinx of anaesthetized crows shows a vibration pattern of the labia similar to that of the human vocal fry register. Acoustic pulses result from short opening of the labia, and pulse...... generation alternates between the left and right sound sources. Spontaneously calling crows can also generate similar pulse characteristics with only one sound generator. Airflow recordings in zebra finches and starlings show that pulse tone sounds can be generated unilaterally, synchronously...

  1. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  2. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  3. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings

    OpenAIRE

    Cheng, Chung-Chieh; Wright, E. M.; Moloney, J. V.

    2000-01-01

    We present a model that elucidates the physics underlying the generation of an electromagnetic pulse from a femtosecond laser induced plasma channel. The radiation pressure force from the laser pulse spatially separates the ionized electrons from the heavier ions and the induced dipole moment subsequently oscillates at the plasma frequency and radiates an electromagnetic pulse.

  4. Characterization of Ultrafast Laser Pulses using a Low-dispersion Frequency Resolved Optical Grating Spectrometer

    Science.gov (United States)

    Whitelock, Hope; Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Berrah, Nora

    2016-05-01

    A low dispersion frequency-resolved optical gating (FROG) spectrometer was designed to characterize ultrashort (non-colinear optical parametric amplifier. This instrument splits a laser pulse into two replicas with a 90:10 intensity ratio using a thin pellicle beam-splitter and then recombines the pulses in a birefringent medium. The instrument detects a wavelength-sensitive change in polarization of the weak probe pulse in the presence of the stronger pump pulse inside the birefringent medium. Scanning the time delay between the two pulses and acquiring spectra allows for characterization of the frequency and time content of ultrafast laser pulses, that is needed for interpretation of experimental results obtained from these ultrafast laser systems. Funded by the DoE-BES, Grant No. DE-SC0012376.

  5. A 6.4 kV pulse generator with transformations

    International Nuclear Information System (INIS)

    Bastein, W.L.

    1989-01-01

    The possibility has been investigated to perform a pulse generator which generates pulse for the cathode of the injector of the NIKHEF electron accelerator, which generates pulses of 6.4 kV with sides of 100 ns a duration of 2 to 50 microseconds and a frequency of 2500 Hz. The voltage ripple should be smaller than frequency part and one for the high-frequency part, it is possible to generate a pulse which fulfills the requirements with regard to the sides. However installing an tuning of circuits in order to obtain a sufficiently flat pulse will cost much time. Moreover the losses are such high that it deserves recommendation to investigate the possibility ot generate the pulse with a number of MOSFets connected in series. (author). 8 refs.; 8 figs.; 14 photos; 1 tab

  6. A Test Bed for Short Pulse OA Detection of Optical Directors in Amphibious Operations

    National Research Council Canada - National Science Library

    Ertem, M

    1999-01-01

    ...) system to detect optical directors of potential threats in amphibious operations. The use of a short pulse duration allows discrimination of retroreflections from natural sources such as rock formations and vegetation...

  7. Extension of supercontinuum spectrum, generated in polarization-maintaining photonic crystal fiber, using chirped femtosecond pulses

    Science.gov (United States)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2018-01-01

    We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.

  8. Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi

    2017-03-01

    We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.

  9. Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast

    Directory of Open Access Journals (Sweden)

    Marco Hornung

    2015-12-01

    Full Text Available We report on the frequency doubling of femtosecond laser pulses at 1030 nm center wavelength generated from the fully diode-pumped laser system POLARIS. The newly generated pulses at a center wavelength of 515 nm have a pulse energy of 3 J with a pulse duration of 120 fs. On the basis of initially ultra-high contrast seed pulses we expect a temporal intensity contrast better 10 17 200 ps before the peak of the main pulse. We analyzed the temporal intensity contrast from milliseconds to femtoseconds with a dynamic range covering more than 20 orders of magnitude. The pulses were focussed with a f/2-focussing parabola resulting in a peak intensity exceeding 10 20 W / cm 2 . The peak power and intensity are to the best of our knowledge the highest values for 515 nm-laser-pulses achieved so far.

  10. Linear transformer driver for pulse generation with fifth harmonic

    Science.gov (United States)

    Mazarakis, Michael G.; Kim, Alexander A.; Sinebryukhov, Vadim A.; Volkov, Sergey N.; Kondratiev, Sergey S.; Alexeenko, Vitaly M.; Bayol, Frederic; Demol, Gauthier; Stygar, William A.; Leckbee, Joshua; Oliver, Bryan V.; Kiefer, Mark L.

    2017-03-21

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first, second, and third power delivery module. The first power delivery module sends a first energy in the form of a first pulse to the load. The second power delivery module sends a second energy in the form of a second pulse to the load. The third power delivery module sends a third energy in the form of a third pulse to the load. The linear transformer driver is configured to form a flat-top pulse by the superposition of the first, second, and third pulses. The first, second, and third pulses have different frequencies.

  11. Effect of group velocity mismatch on acousto-optic interaction of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Yushkov, K B; Molchanov, V Ya

    2011-01-01

    Equations describing acousto-optic diffraction of ultrashort laser pulses in an anisotropic medium are derived, taking into account the group velocity mismatch of optical eigenmodes. It is shown that the solution of the modified coupled-mode equations taking into account the group delay is characterised by an increase in the pulse duration, a decrease in diffraction efficiency, a change in the shape of the wave packet envelope, as well as by an increase in the width of the transmission function.

  12. Self-focusing of optical pulses in media with normal dispersion

    DEFF Research Database (Denmark)

    Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.

    1996-01-01

    The self-focusing of ultra short optical pulses in a nonlinear medium with normal (i.e., negative) group-velocity dispersion is investigated. By using a combination of various techniques like virial-type arguments and self-similar transformations, we obtain strong evidence suggesting that a pulse...

  13. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  14. Microsecond pulsed optical parametric oscillator pumped by a Q-switched fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Adel, P.; Auerbach, M.; Fallnich, C.; Gross, P.; Boller, Klaus J.

    2003-01-01

    We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-ms-long pulses from an actively Q-switched

  15. Propagation of few cycle optical pulses in marginal Fermi liquid and ADS/CFT correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Konobeeva, N.N., E-mail: yana_nn@inbox.ru [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Belonenko, M.B. [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Volgograd Institute of Business, Uzhno-ukrainskaya str., Volgograd 400048 (Russian Federation)

    2015-12-01

    Absract: The paper considers features of few cycle optical pulse propagation in marginal Fermi liquid. The Green functions whose poles are responsible for the dispersion law excitation states of the liquid have been derived within the framework of ADS/CFT correspondence. Marginal Fermi liquid parameters influence on the pulse shape was defined.

  16. Propagation of few cycle optical pulses in marginal Fermi liquid and ADS/CFT correspondence

    International Nuclear Information System (INIS)

    Konobeeva, N.N.; Belonenko, M.B.

    2015-01-01

    Absract: The paper considers features of few cycle optical pulse propagation in marginal Fermi liquid. The Green functions whose poles are responsible for the dispersion law excitation states of the liquid have been derived within the framework of ADS/CFT correspondence. Marginal Fermi liquid parameters influence on the pulse shape was defined.

  17. Optimization of an Optical Parametric Chirped Pulse Amplification System for the OMEGA EP Laser System

    International Nuclear Information System (INIS)

    Begishev, I.; Bagnoud, V.; Guardalben, M.; Waxer, L.; Puth, J.; Zuegel, J.

    2003-01-01

    OAK B204 We report on the experimental achievements of the optical parametric chirped-pulse amplification (OPCPA) system, including 29% pump-to-signal conversion efficiency and 107 gain using two LBO crystals configured as a single amplification stage. Temporal and spatial shaping of the pump laser pulse is required to achieve both high-gain and high-conversion efficiency

  18. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    Science.gov (United States)

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  19. Control of the electrode metal transfer by means of the welding current pulse generator

    Science.gov (United States)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.

    2016-04-01

    The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.

  20. Propagation delay of femtosecond pulses in an optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    of 2.6 THz, through a quantum-dot (QD) semiconductor amplifier (SOA) at room temperature. This extremely large bandwidth, on the other hand, is at the cost of a rather small group index change of ?ng=4*10-3. We have performed two types of femtosecond pulse slow-down and advancement experiments....... In the first experiment, we prepare a narrow peak or dip in the SOA gain spectrum by injection of a strong pump pulse4. The resulting dispersion feature is then probed by a weak pulse. In the second experiment, we measure self-slowdown or advancement as pulse energy isincreased5. In both cases, we perform...

  1. Pulse excitation experiment of a superconducting generator; chodendo hatsudenki no parusu reiki shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miyaike, K.; Iimura, T.; Nishimura, M.; Arata, M.; Takabatake, M. [Toshiba Ltd., Tokyo (Japan); Yamada, M.; Kanamori, Y.; Hasegawa, K. [Kansai Electric Power Co., Inc., Osaka (Japan)

    1999-11-10

    Efficiency improvement, improvement in the stability of electric power system it is miniaturization and weight reduction can be expected in comparison with the traditional-model generator superconducting generator. We produce the small superconducting generator for the experiment experimentally, and performance characteristics verification of the generator is carried out experimentally. This time, pulse excitation test of the superconducting generator was carried out, and the ac loss of the conductor by the pulse excitation investigated the effect on the quenching current. (NEDO)

  2. Optical pulse dynamics for quantum-dot logic operations in a photonic-crystal waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xun; John, Sajeev [Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7 Canada (Canada)

    2011-11-15

    We numerically demonstrate all-optical logic operations with quantum dots (QDs) embedded in a bimodal photonic-crystal waveguide using Maxwell-Bloch equations in a slowly varying envelope approximation (SVEA). The two-level QD excitation level is controlled by one or more femtojoule optical driving pulses passing through the waveguide. Specific logic operations depend on the relative pulse strengths and their detunings from an inhomogeneouslly broadened (about 1% for QD transitions centered at 1.5 {mu}m) QD transition. This excitation controlled two-level medium then determines passage of subsequent probe optical pulses. Envelope equations for electromagnetic waves in the linear dispersion and cutoff waveguide modes are derived to simplify solution of the coupled Maxwell-Bloch equations in the waveguide. These determine the quantum mechanical evolution of the QD excitation and its polarization, driven by classical electromagnetic (EM) pulses near a sharp discontinuity in the EM density of states of the bimodal waveguide. Different configurations of the driving pulses lead to distinctive relations between driving pulse strength and probe pulse passage, representing all-optical logic and, or, and not operations. Simulation results demonstrate that such operations can be done on picosecond time scales and within a waveguide length of about 10 {mu}m in a photonic-band-gap (PBG) optical microchip.

  3. Wavelet-Based Signal Processing of Electromagnetic Pulse Generated Waveforms

    National Research Council Canada - National Science Library

    Ardolino, Richard S

    2007-01-01

    This thesis investigated and compared alternative signal processing techniques that used wavelet-based methods instead of traditional frequency domain methods for processing measured electromagnetic pulse (EMP) waveforms...

  4. Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    Science.gov (United States)

    Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.

    2004-11-01

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

  5. Temperature measurement on neurological pulse generators during MR scans

    Directory of Open Access Journals (Sweden)

    Alesch François

    2002-09-01

    Full Text Available Abstract According to manufacturers of both magnetic resonance imaging (MRI machines, and implantable neurological pulse generators (IPGs, MRI is contraindicated for patients with IPGs. A major argument for this restriction is the risk to induce heat in the leads due to the electromagnetic field, which could be dangerous for the surrounding brain parenchyma. The temperature change on the surface of the case of an ITREL-III (Medtronic Inc., Minneapolis, MN and the lead tip during MRI was determined. An anatomical realistic and a cubic phantom, filled with phantom material mimicking human tissue, and a typical lead configuration were used to imitate a patient who carries an IPG for deep brain stimulation. The measurements were performed in a 1.5 T and a 3.0 T MRI. 2.1°C temperature increases at the lead tip uncovered the lead tip as the most critical part concerning heating problems in IPGs. Temperature increases in other locations were low compared to the one at the lead tip. The measured temperature increase of 2.1°C can not be considered as harmful to the patient. Comparison with the results of other studies revealed the avoidance of loops as a practical method to reduce heating during MRI procedures.

  6. Pulsed x-ray generation from a plasma focus device

    International Nuclear Information System (INIS)

    Zambra, M; Bruzzone, H; Sidelnikov, Y; Kies, W; Moreno, C; Sylvester, G; Silva, P; Moreno, J; Soto, L

    2003-01-01

    Dynamical pinches coupled to electrodes like the dense Z-pinch or the dense plasma focus have been intensively studied in the last four decades for their high fusion efficiency and their application potential. Though the expectations of the eighties of the last century, scaling these pinches up to fusion reactors, did not come true, the development of fast and powerful experiments resulted in new insights in pinch physics and paved the way for developing compact dynamical pinches as pulsed neutron and X-radiation sources for many applications. There is a permanent and growing interest in the research community for understanding and determining the generation properties of X-rays, neutrons and charged particles emitted from a high-temperature high-density plasmas, especially in the plasma focus configuration. The Plasma Physics and Plasma Technology Group of the CCHEN has developed the SPEED4 fast-plasma focus device, in collaboration with the Plasma Physics Group of the Dusseldorf University, in order to perform experimental studies such as X-ray and neutron emission, and electron and ion beam characterization (author)

  7. Gyromagnetic nonlinear transmission line generator of high voltage pulses modulated at 4 GHz frequency with 1000 Hz pulse repetition rate

    International Nuclear Information System (INIS)

    Ulmasculov, M R; Sharypov, K A; Shunailov, S A; Shpak, V G; Yalandin, M I; Pedos, M S; Rukin, S N

    2017-01-01

    Results of testing of a generator based on a solid-state drive and the parallel gyromagnetic nonlinear transmission lines with external bias are presented. Stable rf-modulated high-voltage nanosecond pulses were shaped in each of the four channels in 1 s packets with 1000 Hz repetition frequencies. Pulse amplitude reaches -175 kV, at a modulation depth of rf-oscillations to 50 % and the effective frequency ∼4 GHz. (paper)

  8. All-optical short pulse translation through cross-phase modulation in a VO₂ thin film.

    Science.gov (United States)

    Fardad, Shima; Das, Susobhan; Salandrino, Alessandro; Breckenfeld, Eric; Kim, Heungsoo; Wu, Judy; Hui, Rongqing

    2016-01-15

    VO2 is a promising material for reconfigurable photonic devices due to the ultrafast changes in electronic and optical properties associated with its dielectric-to-metal phase transition. Based on a fiber-optic, pump-probe setup at 1550 nm wavelength window, and by varying the pump-pulse duration, we show that the material phase transition is primarily caused by the pump-pulse energy. For the first time, we demonstrate that the instantaneous optical phase modulation of probe during pump leading edge can be utilized to create short optical pulses at probe wavelength, through optical frequency discrimination. This circumvents the impact of long recovery time well known for the phase transition of VO2.

  9. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Science.gov (United States)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Fulop, Jozsef A.; Farkas, Gyozo; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-08-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  10. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    International Nuclear Information System (INIS)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-01-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  11. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  12. Dynamic array generation and pattern formation for optical tweezers

    DEFF Research Database (Denmark)

    Mogensen, P.C.; Glückstad, J.

    2000-01-01

    The generalised phase contrast approach is used for the generation of optical arrays of arbitrary beam shape, suitable for applications in optical tweezers for the manipulation of biological specimens. This approach offers numerous advantages over current techniques involving the use of computer......-generated holograms or diffractive optical elements. We demonstrate a low-loss system for generating intensity patterns suitable for the trapping and manipulation of small particles or specimens....

  13. Construction of double discharge pulsed electron beam generator and its applications

    International Nuclear Information System (INIS)

    Goektas, H.

    2001-12-01

    Generation of fast pulsed electron beam by superposing DC and pulsed hollow cathode discharge is studied. The electrical characteristics and measurements of the electron beam generator are done dc glow discharge and for the pulsed one. The electron beam current, its density and magnetic field effect, pinch effect, have been studied. The dependence of the electron beam parameters with respect to pressure and magnetic field have been studied. The pulsing effect of the beam is reviewed. By using the generator, micron holes drilling and carbon deposition was done at the laboratory. As a target source for carbon deposition methane gas is used and for Hydrogen-free carbon deposition was graphite

  14. Generation of high harmonics and attosecond pulses with ultrashort ...

    Indian Academy of Sciences (India)

    input Gaussian pulse into a non-diffractive and non-dispersive conical wavepacket [4,5], source of secondary radiation [6], and remote actions to mention a few. ... gas before propagation of the ionizing pulse: NAr(t → −∞) = N0. e and me ...

  15. Picoseconds pulse generation and pulse width determination processes of a distributed feedback dye laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2004-08-01

    A mathematical model has been developed to describe the dynamic emission of Nd-glass, distributed feedback dye laser (DFDL), and periodical grating temperature. The suggested model allows the investigation of the time behavior of Nd-glass laser and DFDL pulsed. Moreover, it allows studying the effect of the laser input parameters of Nd-glass laser on the spectral characteristics of the output DFDL pulses such as pulse width, delay time, and time separation

  16. Experiments of a 100 kV-level pulse generator based on metal-oxide varistor

    Science.gov (United States)

    Cui, Yan-cheng; Wu, Qi-lin; Yang, Han-wu; Gao, Jing-ming; Li, Song; Shi, Cheng-yu

    2018-03-01

    This paper introduces the development and experiments of a 100 kV-level pulse generator based on a metal-oxide varistor (MOV). MOV has a high energy handling capacity and nonlinear voltage-current (V-I) characteristics, which makes it useful for high voltage pulse shaping. Circuit simulations based on the measured voltage-current characteristics of MOV verified the shaping concept and showed that a circuit containing a two-section pulse forming network (PFN) will result in better defined square pulse than a simple L-C discharging circuit. A reduced-scale experiment was carried out and the result agreed well with simulation prediction. Then a 100 kV-level pulse generator with multiple MOVs in a stack and a two-section pulse forming network (PFN) was experimented. A pulse with a voltage amplitude of 90 kV, rise time of about 50 ns, pulse width of 500 ns, and flat top of about 400 ns was obtained with a water dummy load of 50 Ω. The results reveal that the combination of PFN and MOV is a practical way to generate high voltage pulses with better flat top waveforms, and the load voltage is stable even if the load's impedance varies. Such pulse generator can be applied in many fields such as surface treatment, corona plasma generation, industrial dedusting, and medical disinfection.

  17. Efficient temporal compression of coherent nanosecond pulses in compact SBS generator-amplifier setup

    OpenAIRE

    Schiemann, S.; Ubachs, W.M.G.; Hogervorst, W.

    1997-01-01

    A pulse compressor based on stimulated Brillouin scattering (SBS) in liquids is experimentally and theoretically investigated. It allows for the compression of Fourier-transform limited nanosecond pulses of several hundreds of millijoules of energy with both high conversion efficiency and a high temporal compression factor. The two-cell generator-amplifier arrangement is of a compact design not requiring external attenuation of the generator cell input energy. Pulses from an injection-seeded,...

  18. Results and plans on the development of a pulsed neutron generator

    International Nuclear Information System (INIS)

    Sztaricskai, T.; Vasvary, L.; Petoe, G.

    1976-01-01

    Using the vacuum system of an old van de Graaff machine a new pulsed neutron generator has been developed. The block diagram, the scheme of generators arrangement and the electrode system of the ion bunching parts are shown

  19. Investigation of a diode-pumped intracavity optical parametric oscillator in pulsed and continuous wave operation

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Skettrup, Torben; Balle-Petersen, O.

    2001-01-01

    Summary form only given. CW and pulsed compact tunable laser sources in the infrared have widespread scientific, medical and industrial applications. Such a laser source can be obtained by use of a diode-pumped intracavity optical parametric oscillator (IOPO). We report on a IOPO based on a Yb......:YAG laser incorporating a periodically poled LiNbO3 (PPLN) crystal inside the laser cavity to take advantage of the high circulating intracavity field. The Yb:YAG crystal is pumped by a reliable 940 nm fibre-coupled diode laser. The IOPO consists of a Yb:YAG crystal coated for HR at 1030 nm, an intracavity...... lens to generate a beam waist in the PPLN crystal, a dichroic mirror to separate the laser and signal fields and two end mirrors...

  20. Generation of plasmas in water: utilization of a high-frequency, low-voltage bipolar pulse power supply with impedance control

    International Nuclear Information System (INIS)

    Baroch, P; Potocky, S; Saito, N

    2011-01-01

    Presented work focuses on the investigation and characterization of plasma discharges generated in water by newly developed bipolar pulse power supply. The main aim of our work was to solve and overcome problems with intensive arc discharge transition when the discharge is ignited and maintained by a low output impedance pulse power supply. For this purpose a novel type of bipolar pulse power supply was developed and tested. It was found that two distinguished stable modes of discharges generated in the water can be realized. Effects of water conductivity, pulse frequency and initial water temperature on the discharge properties were investigated. Optical emission spectroscopy was employed to study plasma parameters of the discharge and the correlation between the data obtained from the optical emission spectroscopy and the chemical species measured in the water was carried out.

  1. Generation of fast-rise time, repetitive, (sub) nanosecond, high-voltage pulses

    NARCIS (Netherlands)

    Huiskamp, T.; Pemen, A.J.M.

    2017-01-01

    In this contribution we present our fast-rise time nanosecond pulse generator, capable of generating up to 50 kV (positive and negative) rectangular pulses at a repetition rate of up to 1 kHz and with a rise time of less than 200 picoseconds. We focus on the general concepts involved in the design

  2. Generation of optical vortices with an adaptive helical mirror.

    Science.gov (United States)

    Ghai, Devinder Pal

    2011-04-01

    Generation of optical vortices using a new design of adaptive helical mirror (AHM) is reported. The new AHM is a reflective device that can generate an optical vortex of any desired topological charge, both positive and negative, within its breakdown limits. The most fascinating feature of the AHM is that the topological charge of the optical vortex generated with it can be changed in real time by varying the excitation voltage. Generation of optical vortices up to topological charge 4 has been demonstrated. The presence of a vortex in the optical field generated with the AHM is confirmed by producing both fork and spiral fringes in an interferometric setup. Various design improvements to further enhance the performance of the reported AHM are discussed. Some of the important applications of AHM are also listed. © 2011 Optical Society of America

  3. High-order harmonic and attosecond pulse generation for a few-cycle laser pulse in modulated hollow fibres

    International Nuclear Information System (INIS)

    Zhang Xiangyun; Sun Zhenrong; Wang Yufeng; Chen Guoliang; Wang Zugeng; Li Ruxin; Zeng Zhinan; Xu Zhizhan

    2007-01-01

    High harmonic generation from Ar and He atoms by a few-cycle laser pulse in periodic and chirped hollow fibres is investigated theoretically by a self-consistent model. Based on enhanced high harmonics in a periodic hollow fibre, a chirped hollow fibre is proposed to improve quasi-phase matching for the generated harmonics near the cutoff. The results show that the extended and enhanced harmonics near the cutoff are well phase-matched, and a single x-ray pulse with a duration of 279 as in Ar gas and 255 as in He gas can be achieved by frequency synthesizing of high harmonics in the well-selected cutoff bandwidth. The results show that this technique is a potential candidate to generate an intense isolated attosecond pulse in the 'water window' spectrum

  4. Note: Pulsed single longitudinal mode optical parametric oscillator for sub-Doppler spectroscopy of jet cooled transient species

    Science.gov (United States)

    Zhang, Qiang; Zhu, Boxing; Zhang, Deping; Gu, Jingwang; Zhao, Dongfeng; Chen, Yang

    2017-12-01

    We present a pulsed single longitudinal mode optical parametric oscillator that was recently constructed for sub-Doppler spectroscopic studies of transient species in a supersonic slit jet expansion environment. The system consists of a Littman-type grazing-incidence-grating resonator and a KTP crystal and is pumped at 532 nm. By spatially filtering the pump laser beam and employing an active cavity-length-stabilization scheme, a frequency down-conversion efficiency up to 18% and generation of Fourier-transform limited pulses with a typical pulse duration of ˜5.5 ns and a bandwidth less than 120 MHz have been achieved. In combination with a slit jet expansion, a sub-Doppler spectrum of SiC2 has been recorded at ˜498 nm, showing a spectral resolution of Δν/ν ≈ 6.2 × 10-7.

  5. High-power noise-like pulse generation using a 1.56-µm all-fiber laser system.

    Science.gov (United States)

    Lin, Shih-Shian; Hwang, Sheng-Kwang; Liu, Jia-Ming

    2015-07-13

    We demonstrated an all-fiber, high-power noise-like pulse laser system at the 1.56-µm wavelength. A low-power noise-like pulse train generated by a ring oscillator was amplified using a two-stage amplifier, where the performance of the second-stage amplifier determined the final output power level. The optical intensity in the second-stage amplifier was managed well to avoid not only the excessive spectral broadening induced by nonlinearities but also any damage to the device. On the other hand, the power conversion efficiency of the amplifier was optimized through proper control of its pump wavelength. The pump wavelength determines the pump absorption and therefore the power conversion efficiency of the gain fiber. Through this approach, the average power of the noise-like pulse train was amplified considerably to an output of 13.1 W, resulting in a power conversion efficiency of 36.1% and a pulse energy of 0.85 µJ. To the best of our knowledge, these amplified pulses have the highest average power and pulse energy for noise-like pulses in the 1.56-µm wavelength region. As a result, the net gain in the cascaded amplifier reached 30 dB. With peak and pedestal widths of 168 fs and 61.3 ps, respectively, for the amplified pulses, the pedestal-to-peak intensity ratio of the autocorrelation trace remains at the value of 0.5 required for truly noise-like pulses.

  6. Generation of ultrafast pulse via combined effects of stimulated ...

    Indian Academy of Sciences (India)

    1College of Mathematics and Physics, Hohai University, Nanjing 210098, ... fibre in the range of several metres is required to produce effective Raman gain,. 727 ... a result, it is difficult for optics integration in modern optics communications.

  7. Femtosecond pulse generation and amplification in Yb-doped fibre ...

    Indian Academy of Sciences (India)

    remained a challenge as it requires the careful optimization of dispersion, nonlinearity, gain and ASE ... power is obtained from the fibre oscillator–amplifier system at a repetition rate of 43 ..... ing to 53% optical-to-optical conversion efficiency.

  8. Thin film beam splitter multiple short pulse generation for enhanced Ni-like Ag x-ray laser emission.

    Science.gov (United States)

    Cojocaru, Gabriel V; Ungureanu, Razvan G; Banici, Romeo A; Ursescu, Daniel; Delmas, Olivier; Pittman, Moana; Guilbaud, Olivier; Kazamias, Sophie; Cassou, Kevin; Demailly, Julien; Neveu, Olivier; Baynard, Elsa; Ros, David

    2014-04-15

    An alternative, novel multiple pulse generation scheme was implemented directly after the optical compressor output of an x-ray pump laser. The new method uses a polarization sensitive thin film beam splitter and a half-wavelength wave plate for tuning the energy ratio in the multiple short pulses. Based on this method, an extensive study was made of the running parameters for a grazing incidence pumped silver x-ray laser (XRL) pumped with a long pulse of 145 mJ in 6 ns at 532 nm and up to 1.45 J in few picoseconds at 810 nm. Fivefold enhancement in the emission of the silver XRL was demonstrated using the new pump method.

  9. Excitation of random intense single-cycle light-pulse chains in optical fiber

    International Nuclear Information System (INIS)

    Ding, Y C; Zhang, F L; Gao, J B; Chen, Z Y; Lin, C Y; Yu, M Y

    2014-01-01

    Excitation of intense periodic single-cycle light pulses in a stochastic background arising from continuous wave stimulated Brillouin scattering (SBS) in a long optical fiber with weak optical feedback is found experimentally and modeled theoretically. Such intense light-pulse chains occur randomly and the optical feedback is a requirement for their excitation. The probability of these forms, among the large number of experimental output signals with identifiable waveforms, appearing is only about 3%, with the remainder exhibiting regular SBS characteristics. It is also found that pulses with low period numbers appear more frequently and the probability distribution for their occurrence in terms of the pulse power is roughly L-shaped, like that for rogue waves. The results from a three-wave-coupling model for SBS including feedback phase control agree well qualitatively with the observed phenomena. (paper)

  10. Optical fiber link for transmission of 1-nJ femtosecond laser pulses at 1550 nm

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Olsson, Rasmus Kjelsmark; Buron, Jonas Christian Due

    2010-01-01

    We report on numerical and experimental characterization of the performance of a fiber link optimized for the delivery of sub-100-fs laser pulses at 1550 nm over several meters of fiber. We investigate the power handling capacity of the link, and demonstrate all-fiber delivery of 1-nJ pulses over...... a distance of 5.3 m. The fiber link consists of dispersion-compensating fiber (DCF) and standard single-mode fiber. The optical pulses at different positions in the fiber link are measured using frequency-resolved optical gating (FROG). The results are compared with numerical simulations of the pulse...... propagation based on the generalized nonlinear Schrödinger equation. The high input power capacity of the fiber link allows the splitting and distribution of femtosecond pulses to an array of fibers with applications in multi-channel fiber-coupled terahertz time-domain spectroscopy and imaging systems. We...

  11. Improvement of chirped pulse contrast using electro-optic birefringence scanning filter method

    International Nuclear Information System (INIS)

    Zeng Shuguang; Wang Xianglin; Wang Qishan; Zhang Bin; Sun Nianchun; Wang Fei

    2013-01-01

    A method using scanning filter to improve the contrast of chirped pulse is proposed, and the principle of this method is analyzed. The scanning filter is compared with the existing pulse-picking technique and nonlinear filtering technique. The scanning filter is a temporal gate that is independent on the intensity of the pulses, but on the instantaneous wavelengths of light. Taking the electro-optic birefringence scanning filter as an example, the application of scanning filter methods is illustrated. Based on numerical simulation and experimental research, it is found that the electro-optic birefringence scanning filter can eliminate a prepulse which is several hundred picoseconds before the main pulse, and the main pulse can maintain a high transmissivity. (authors)

  12. Diffractive optics for reduction of hot cracking in pulsed mode Nd:YAG laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olesen, Søren; Roos, Sven-Olov

    2001-01-01

    In order to reduce the susceptibility to hot cracking in pulsed mode laser welding of austenitic stainless steel, an optical system for reduction of the cooling rate is sought developed. Based on intensive numerical simulations, an optical system producing three focused spots is made. In a number...

  13. Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns

    NARCIS (Netherlands)

    Resink, Steffen; Steenbergen, Wiendelt

    2015-01-01

    Recently we presented acousto-optic (AO) probing of scattering media using addition or subtraction of speckle patterns due to tandem nanosecond pulses. Here we present a theoretical framework for ideal (polarized, noise-free) speckle patterns with unity contrast that links ultrasound-induced optical

  14. Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics

    Science.gov (United States)

    Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.

    2013-12-01

    In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.

  15. Higher order harmonic generation in the intense laser pulse

    International Nuclear Information System (INIS)

    Parvizi, R.; Bahrampour, A.; Karimi, M.

    2006-01-01

    The high intensity pulse of laser field ionizes the atoms and electrons are going to the continuum states of atoms. electrons absorb energy from the strong laser field. The back ground electromagnetic field causes to come back the electrons to ground states of atoms and the absorbed energy is emitted as a high order odd harmonics of incident light. The intensity of emitted harmonics depends on the material atoms and the laser pulse shape. I this paper the effects of step pulse duration on the high order harmonic radiated by the Argon, Helium, and Hydrogen atoms are reported.

  16. Electrical and optical characteristics of dielectric-barrier discharge driven by high voltage nanosecond generator

    International Nuclear Information System (INIS)

    Ahmadeev, V.V.; Kost'yuchenko, S.V.; Kudryavtsev, N.N.; Kurkin, G.A.; Vasilyak, L.M.

    1998-01-01

    Electrical and optical characteristics of the dielectric-barrier discharge in the pressure range of 10-400 Torr were investigated experimentally, particular attention being paid to the discharge homogeneity and to the energy dissipation in the discharge volume. The discharge was driven by a high-voltage pulse generator producing nanosecond high-voltage pulses with an amplitude of 20-30 kV. Air, nitrogen, and helium were used as working gases. The discharge was found to be homogeneous within a wide range of gas pressure. A power density of up to 250 mW/cm 3 has been achieved. (J.U.)

  17. General analysis of group velocity effects in collinear optical parametric amplifiers and generators.

    Science.gov (United States)

    Arisholm, Gunnar

    2007-05-14

    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  18. Micro-pulses generation in ECR breakdown stimulated by gyrotron radiation at 37,5 GHz

    International Nuclear Information System (INIS)

    Skalyga, V.; Zorin, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Vodopyanov, A.

    2012-01-01

    The present work is devoted to experimental and theoretical investigation of the creation of short pulsed (< 100 μs) multicharged ion beams. The possibility of quasi-stationary generation of short pulsed beams under conditions of quasi-gasdynamic plasma confinement was shown in recent experiments. Later another way of such beams creation based on the Pre-glow effect was proposed. In present work it was demonstrated that in the case when duration of microwave (MW) pulse is less than formation time of Pre-glow peak, realization of a regime when ion current is negligible during MW pulse and intense multicharged ions flux appears only when MW ends could be possible. Such pulses after the end of MW were called micro-pulses. In the present work the generation of micro-pulses was observed in experiments with ECR discharge stimulated by gyrotron radiation at 37,5 GHz, 100 kW. In this case pulses with duration less than 30 μs were obtained. Probably the same effect was observed in GANIL where 14 GHz radiation was used and pulses with duration about 2 ms were registered. In present work it was shown that the intensity of such micro-pulse could be higher than intensity of Pre-glow peak at the same conditions but with longer MW pulse. The generation of micro-pulses of nitrogen and argon multicharged ions with current of a few mA and length about 30 μs after MW pulse with duration of 30-100 μs was demonstrated. The low level of impurities, high current density and rather high average charge make possible to consider such micro-pulse regime as a possibility for the creation of a short pulsed ion source. The paper is followed by the slides of the presentation. (authors)

  19. Human Heart Pulse Wave Responses Measured Simultaneously at Several Sensor Placements by Two MR-Compatible Fibre Optic Methods

    Directory of Open Access Journals (Sweden)

    Teemu Myllylä

    2012-01-01

    Full Text Available This paper presents experimental measurements conducted using two noninvasive fibre optic methods for detecting heart pulse waves in the human body. Both methods can be used in conjunction with magnetic resonance imaging (MRI. For comparison, the paper also performs an MRI-compatible electrocardiogram (ECG measurement. By the simultaneous use of different measurement methods, the propagation of pressure waves generated by each heart pulse can be sensed extensively in different areas of the human body and at different depths, for example, on the chest and forehead and at the fingertip. An accurate determination of a pulse wave allows calculating the pulse transit time (PTT of a particular heart pulse in different parts of the human body. This result can then be used to estimate the pulse wave velocity of blood flow in different places. Both measurement methods are realized using magnetic resonance-compatible fibres, which makes the methods applicable to the MRI environment. One of the developed sensors is an extraordinary accelerometer sensor, while the other one is a more common sensor based on photoplethysmography. All measurements, involving several test patients, were performed both inside and outside an MRI room. Measurements inside the MRI room were conducted using a 3-Tesla strength closed MRI scanner in the Department of Diagnostic Radiology at the Oulu University Hospital.

  20. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation

    Science.gov (United States)

    2009-09-01

    Introduction This presentation summarizes recent activity in monitoring spacecraft health status using passive remote optical nonimaging ...Approved for public release; distribution is unlimited. Space Object Radiometric Modeling for Hardbody Optical Signature Database Generation...It is beneficial to the observer/analyst to understand the fundamental optical signature variability associated with these detection and

  1. Revisiting Bragg's X-ray microscope: scatter based optical transient grating detection of pulsed ionising radiation.

    Science.gov (United States)

    Fullagar, Wilfred K; Paganin, David M; Hall, Chris J

    2011-06-01

    Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Apparatus and method for generating high density pulses of electrons

    International Nuclear Information System (INIS)

    Lee, C.; Oettinger, P.E.

    1981-01-01

    An apparatus and method are described for the production of high density pulses of electrons using a laser energized emitter. Caesium atoms from a low pressure vapour atmosphere are absorbed on and migrate from a metallic target rapidly heated by a laser to a high temperature. Due to this heating time being short compared with the residence time of the caesium atoms adsorbed on the target surface, copious electrons are emitted which form a high current density pulse. (U.K.)

  3. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  4. Multiplex CARS imaging with spectral notch shaped laser pulses delivered by optical fibers.

    Science.gov (United States)

    Oh, Seung Ryeol; Park, Joo Hyun; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2017-12-11

    We present an experimental demonstration of single-pulse coherent anti-Stokes Raman spectroscopy (CARS) using a spectrally shaped broadband laser that is delivered by an optical fiber to a sample at its distal end. The optical fiber consists of a fiber Bragg grating component to serve as a narrowband notch filter and a combined large-mode-area fiber to transmit such shaped ultrashort laser pulses without spectral distortion in a long distance. Experimentally, our implementation showed a capability to measure CARS spectra of various samples with molecular vibrations in the fingerprint region. Furthermore, CARS imaging of poly(methyl methacrylate) bead samples was carried out successfully under epi-CARS geometry in which backward-scattered CARS signals were collected into a multimode optical fiber. A compatibility of single-pulse CARS scheme with fiber optics, verified in this study, implies a potential for future realization of compact all-fiber CARS spectroscopic imaging systems.

  5. Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection

    International Nuclear Information System (INIS)

    Yamauchi, Kunihito; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-01-01

    Preliminary experimental results of pulsed neutron source based on a discharge-type beam fusion called Inertial Electrostatic Confinement Fusion (IECF) for landmine detection are presented. In Japan, a research and development project for constructing an advanced anti-personnel landmine detection system by using IECF, which is effective not only for metal landmines but also for plastic ones, is now in progress. This project consists of some R and D topics, and one of them is R and D of a high-voltage pulse generator system specialized for landmine detection, which can be used in the severe environment such as that in the field in Afghanistan. Thus a prototype of the system for landmine detection was designed and fabricated in consideration of compactness, lightness, cooling performance, dustproof and robustness. By using this prototype pulse generator system, a conventional IECF device was operated as a preliminary experiment. As a result, it was confirmed that the suggested pulse generator system is suitable for landmine detection system, and the results follow the empirical law obtained by the previous experiments. The maximum neutron production rate of 2.0x10 8 n/s was obtained at a pulsed discharge of -51 kV, 7.3 A

  6. Multiplex Outputs ns Grade High-voltage Fast Pulse Generator Study

    International Nuclear Information System (INIS)

    Wang Xin; Chen Kenan

    2009-01-01

    Using a double-grid hydrogen thyratron, a fast pulse generator with four outputs, high-voltage, low jitter, was made to use at special occasion.In this paper, the basic structure of pulser, switching theory and double-grid driving of hydrogen thyratron was introduced, and also, the effects of grids driving pulses characteristics, the delay between too grids driving, the reservoir heater voltage and cathode heater voltage on the output are carefully examined in experiments. The pulse generator with four outputs was made to producing pulses with amplitude up to 4 kV, rise-time less than 15 ns and jitter less than 3 ns. (authors)

  7. LASER PLASMA: Experimental confirmation of the erosion origin of pulsed low-threshold surface optical breakdown of air

    Science.gov (United States)

    Min'ko, L. Ya; Chumakou, A. N.; Chivel', Yu A.

    1988-08-01

    Nanosecond kinetic spectroscopy techniques were used to identify the erosion origin of pulsed low-threshold surface optical breakdown of air as a result of interaction of microsecond neodymium and CO2 laser pulses with some metals (indium, lead).

  8. Optical trapping with Bessel beams generated from semiconductor lasers

    International Nuclear Information System (INIS)

    Sokolovskii, G S; Dudelev, V V; Losev, S N; Soboleva, K K; Deryagin, A G; Kuchinskii, V I; Sibbett, W; Rafailov, E U

    2014-01-01

    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M 2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations

  9. The wavelength dependence of gold nanorod-mediated optical breakdown during infrared ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Davletshin, Yevgeniy R.; Kumaradas, J. Carl [Department of Physics, Ryerson University, Toronto, ON (Canada)

    2017-04-15

    This paper investigates the wavelength dependence of the threshold of gold nanorod-mediated optical breakdown during picosecond and femtosecond near infrared optical pulses. It was found that the wavelength dependence in the picosecond regime is governed solely by the changes of a nanorod's optical properties. On the other hand, the optical breakdown threshold during femtosecond pulse exposure falls within one of two regimes. When the ratio of the maximum electric field from the outside to the inside of the nanorod is less then 7 (the absorption regime) the seed electrons are initiated by photo-thermal emission, and the wavelength dependence in the threshold of optical breakdown is the result of optical properties of the nanoparticle. When the ratio is greater than 7 (the near-field regime) more seed electrons are initiated by multiphoton ionization, and the wavelength dependence of the threshold of optical breakdown results from a combination of nanorod's optical properties and transitions in the order of multiphoton ionization. The findings of this study can guide the design of nanoparticle based optical breakdown applications. This analysis also deepens the understanding of nanoparticle-mediated laser induced breakdown for picosecond and femtosecond pulses at near infrared wavelengths. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Accuracy of Analog Fiber-Optic Links in Pulsed Radiation Environments

    International Nuclear Information System (INIS)

    E K Miller; G S Macrum; I J McKenna

    2007-01-01

    Interferometric fiber-optic links used in pulsed-power experiments are evaluated for accuracy in the presence of radiation fields which alter fiber transmission. Amplitude-modulated format (e.g., Mach-Zehnder) and phase-modulated formats are compared. Historically, studies of radiation effects on optical fibers have focused on degradation and recovery of the fibers transmission properties; such work is either in the context of survivability of fibers in catastrophic conditions or suitability of fibers installed for command and control systems within an experimental facility [1], [2]. In this work, we consider links used to transmit realtime diagnostic data, and we analyze the error introduced by radiation effects during the drive pulse. The result is increased uncertainties in key parameters required to unfold the sinusoidal transfer function. Two types of modulation are considered: amplitude modulation typical of a Mach-Zehnder (M-Z) modulator [3], and phase modulation, which offers more flexible demodulation options but relies on the spatiotemporal coherence of the light in the fiber. The M-Z link is shown schematically in Fig. 1, and the phase-modulated link is shown in Fig. 2. We present data from two experimental environments: one with intense, controlled radiation fields to simulate conditions expected at the next generation of pulsed-power facilities, and the second with radiation effects below the noise level of the recording system. In the first case, we intentionally expose three types of single-mode fiber (SMF) to ionizing radiation and study the response by simultaneously monitoring phase and amplitude of the transmitted light. The phase and amplitude effects are evidently dominated by different physical phenomena, as their recovery dynamics are markedly different; both effects, though, show similar short-term behavior during exposure, integrating the dose at the dose levels studied, from 1 to 300 kRad, over the exposure times of 50 ps and 30 ns. In the

  11. The obtaining of giant laser pulses by optical pumping

    International Nuclear Information System (INIS)

    Briquet, Georges

    1970-12-01

    From coherent pumping studies a laser of short pulse duration was developed. Further study of laser effects in organic substances was envisaged. The first part of the work yielded awaited results, and led to the development of a single mode emitter (due to the small dimensions of the cavity). The principles of laser action were enumerated and the relative parameters defined. Various methods of obtaining pulses were discussed; the reasons behind the particular choice mode were given. A theoretical study was then made leading to the establishment of the fundamental equations defining the pulse formation process. An important part of the test deals with technical implications and the experimental results, which have arisen. The conclusion reviews possible applications. (author) [fr

  12. Visible continuum pulses based on enhanced dispersive wave generation for endogenous fluorescence imaging.

    Science.gov (United States)

    Cui, Quan; Chen, Zhongyun; Liu, Qian; Zhang, Zhihong; Luo, Qingming; Fu, Ling

    2017-09-01

    In this study, we demonstrate endogenous fluorescence imaging using visible continuum pulses based on 100-fs Ti:sapphire oscillator and a nonlinear photonic crystal fiber. Broadband (500-700 nm) and high-power (150 mW) continuum pulses are generated through enhanced dispersive wave generation by pumping femtosecond pulses at the anomalous dispersion region near zero-dispersion wavelength of high-nonlinear photonic crystal fibers. We also minimize the continuum pulse width by determining the proper fiber length. The visible-wavelength two-photon microscopy produces NADH and tryptophan images of mice tissues simultaneously. Our 500-700 nm continuum pulses support extending nonlinear microscopy to visible wavelength range that is inaccessible to 100-fs Ti:sapphire oscillators and other applications requiring visible laser pulses.

  13. MOSFET-based high voltage double square-wave pulse generator with an inductive adder configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Qiaogen, E-mail: hvzhang@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Long, Jinghua [College of Physics, Shenzhen University, Shenzhen 518060 (China); Lei, Yunfei; Liu, Jinyuan [Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China)

    2015-09-01

    This paper presents a fast MOSFET-based solid-state pulse generator for high voltage double square-wave pulses. The generator consists mainly of an inductive adder system stacked of 20 solid-state modules. Each of the modules has 18 power MOSFETs in parallel, which are triggered by individual drive circuits; these drive circuits themselves are synchronously triggered by a signal from avalanche transistors. Our experiments demonstrate that the output pulses with amplitude of 8.1 kV and peak current of about 405 A are available at a load impedance of 20 Ω. The pulse has a double square-wave form with a rise and fall time of 40 ns and 26 ns, respectively and bottom flatness better than 12%. The interval time of the double square-wave pulses can be adjustable by varying the interval time of the trigger pulses.

  14. MOSFET-based high voltage short pulse generator for ultrasonic transducer excitation

    Science.gov (United States)

    Hidayat, Darmawan; Setianto, Syafei, Nendi Suhendi; Wibawa, Bambang Mukti

    2018-02-01

    This paper presents the generation of a high-voltage short pulse for the excitation of high frequency ultrasonic transducers. This is highly required in the purpose of various ultrasonic-based evaluations, particularly when high resolution measurement is necessary. A high voltage (+760 V) DC voltage source was pulsated by an ultrafast switching MOSFET which was driven by a pulse generator circuit consisting of an astable multivibrator, a one-shot multivibrator with Schmitt trigger input and a high current MOSFET driver. The generated pulses excited a 200-kHz and a 1-MHz ultrasonic transducers and tested in the transmission mode propagation to evaluate the performances of the generated pulse. The test results showed the generator were able to produce negative spike pulses up to -760 V voltage with the shortest time-width of 107.1 nanosecond. The transmission-received ultrasonic waves show frequency oscillation at 200 and 961 kHz and their amplitudes varied with the voltage of excitation pulse. These results conclude that the developed pulse generator is applicable to excite transducer for the generation of high frequency ultrasonic waves.

  15. Few-cycle Optical Parametric Chirped Pulse Amplification

    Science.gov (United States)

    2007-01-08

    silicon - 150mm suprasi1300 Figure 10. Stretcher-compressor unit: group delay 5 -45mm TeO2 (ordinary) (GD) of 30mm silicon, 150mm suprasil300, 45mm CL 0...cycle pulse characterization: 840 -Measured raw 2DSI 20 °OA- traces for pulse (a) before 02. -and (b) after dispersion D 0 by glass plate; (c) so...fused silica plateJ19] see Fig. 15(a), along with the extracted spectral group delays. The chirp introduced by the glass plate is reflected in the

  16. Generation of an incident focused light pulse in FDTD.

    Science.gov (United States)

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2008-11-10

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.

  17. Ultrafast two-photon absorption optical thresholding of spectrally coded pulses

    Science.gov (United States)

    Zheng, Z.; Shen, S.; Sardesai, H.; Chang, C.-C.; Marsh, J. H.; Karkhanehchi, M. M.; Weiner, A. M.

    1999-08-01

    We report studies on two-photon absorption (TPA) GaAs p-i-n waveguide photodetectors as optical thresholders for proposed ultrashort pulse optical code-division multiple-access (CDMA) systems. For either chirped optical pulses or spectrally phase coded pseudonoise bursts, the TPA photocurrent response reveals a strong pulseshape dependence and shows good agreement with theoretical predictions and results from conventional SHG measurements. The performance limits of the TPA optical thresholders set by the encoded bandwidth in the spectral encoding-decoding process are also discussed based on numerical simulations. Our results show the feasibility of applying such devices as nonlinear intensity discriminators in ultrahigh-speed optical network applications.

  18. Solid-state pulse modulator using Marx generator for a medical linac electron-gun

    Science.gov (United States)

    Lim, Heuijin; Hyeok Jeong, Dong; Lee, Manwoo; Lee, Mujin; Yi, Jungyu; Yang, Kwangmo; Ro, Sung Chae

    2016-04-01

    A medical linac is used for the cancer treatment and consists of an accelerating column, waveguide components, a magnetron, an electron-gun, a pulse modulator, and an irradiation system. The pulse modulator based on hydrogen thyratron-switched pulse-forming network is commonly used in linac. As the improvement of the high power semiconductors in switching speed, voltage rating, and current rating, an insulated gate bipolar transistor has become the more popular device used for pulsed power systems. We propose a solid-state pulse modulator to generator high voltage by multi-stacked storage-switch stages based on the Marx generator. The advantage of our modulator comes from the use of two semiconductors to control charging and discharging of the storage capacitor at each stage and it allows to generate the pulse with various amplitudes, widths, and shapes. In addition, a gate driver for two semiconductors is designed to reduce the control channels and to protect the circuits. It is developed for providing the pulsed power to a medical linac electron-gun that requires 25 kV and 1 A as the first application. In order to improve the power efficiency and achieve the compactness modulator, a capacitor charging power supply, a Marx pulse generator, and an electron-gun heater isolated transformer are constructed and integrated. This technology is also being developed to extend the high power pulsed system with > 1 MW and also other applications such as a plasma immersed ion implantation and a micro pulse electrostatic precipitator which especially require variable pulse shape and high repetition rate > 1 kHz. The paper describes the design features and the construction of this solid-state pulse modulator. Also shown are the performance results into the linac electron-gun.

  19. Principles and techniques of radiation hardening. Volume 3. Electromagnetic pulse (EMP) and system generated EMP

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 3 deals with the following topics: selected fundamentals of electromagnetic theory; EMP induced currents on antennas and cables; the EMP response of electronics; EMP hardening; EMP testing; injection currents; internal electromagnetic pulse (IEMP); replacement currents; and system generated electromagnetic pulse (SGEMP) hardening

  20. Preliminary design of a 100 Hz, 350 kV short pulse generator

    International Nuclear Information System (INIS)

    Rohwein, G.J.; Buttram, M.T.

    1977-06-01

    This report describes a 350 kV pulser designed to generate 100 ns square pulses with 300 joules total energy at a pulse repetition frequency of 100 per second. This design incorporates a transformer charged helical coaxial pulse forming line. The considerations leading to this design are presented together with results from prototype experiments. The pulser which is presently in the construction and testing phase is described in detail. The pulser will be used for electron beam acceleration