WorldWideScience

Sample records for optical potential approach

  1. A variational approach to the modulational-oscillatory instability of Bose–Einstein condensates in an optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Sabari, S. [Department of Physics, Pondicherry University, Puducherry 605014 (India); Wamba, E. [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon); Porsezian, K., E-mail: ponzsol@gmail.com [Department of Physics, Pondicherry University, Puducherry 605014 (India); Mohamadou, A. [Condensed Matter Laboratory, Department of Physics, Faculty of Science, University of Douala, P.O. Box 24157, Douala (Cameroon); The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Strada Costiera 11, I-34014 Trieste (Italy); Kofané, T.C. [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon)

    2013-11-08

    We use the time-dependent variational approach to demonstrate how the modulational and oscillatory instabilities can be generated in Bose–Einstein condensates (BECs) trapped in a periodic optical lattice with weak driving harmonic potential. We derive and analyze the ordinary differential equations for the time evolution of the amplitude and phase of the modulational perturbation, and obtain the instability condition of the condensates through the effective potential. The effect of the optical potential on the dynamics of the BECs is shown. We perform direct numerical simulations to support our theoretical findings, and good agreement is found.

  2. Optical potential approach to the slow positron scattering from helium atom

    Directory of Open Access Journals (Sweden)

    Tančić Aleksandar R.

    2002-01-01

    Full Text Available We have extended our previous calculations to include the contribution of the random-phase approximation (RPA (improved optical potential to the low energy elastic scattering in the electron+He system. Our improved RPA calculations are shown to be in better agreement with the experimental values than other theoretical results.

  3. Optical potential from first principles

    CERN Document Server

    Rotureau, J; Hagen, G; Nunes, F; Papenbrock, T

    2016-01-01

    We develop a method to construct a microscopic optical potential from chiral interactions for nucleon-nucleus scattering at arbitrary energies. The optical potential is constructed by combining the Green's function approach with the coupled-cluster method. Using this approach, we perform a proof-of-principle calculation of the optical potential for the elastic neutron scattering on $^{16}{\\rm O}$. We verify the convergence of the optical potential and scattering phase shifts with respect to the model-space size and we also investigate the absorptive component of the optical potential. We find an almost negligible absorption at low-energies. To shed light on this result, we computed excited states of $^{16}{\\rm O}$ using equation-of-motion coupled-cluster with singles-and-doubles excitations and we found no low-lying excited states below 10~MeV. We conclude that the reduced absorption at low-energies can be attributed to a lack of correlations coming from the low-order cluster truncation in the employed couple...

  4. Pion-deuteron optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Afnan, I.R.; Stelbovics, A.T.

    1981-02-01

    The three-body approach to the single-scattering optical potential proposed by Tandy, Redish, and Bolle is tested in the context of ..pi..-d scattering where the various approximations are compared with the exact solution of the Faddeev equations. For ..pi..-d scattering we find that the integral equations derived for the Kerman-McManus-Thaler form of the single-scattering optical potential are markedly superior to those of the Watson form. Our analysis includes a study of the convergence properties of the various multiple-scattering series encountered.

  5. Global analysis of isospin dependent microscopic nucleon-nucleus optical potentials in a Dirac-Brueckner-Hartree-Fock approach

    Science.gov (United States)

    Xu, Ruirui; Ma, Zhongyu; Zhang, Yue; Tian, Yuan; van Dalen, E. N. E.; Müther, H.

    2016-09-01

    Background: For the study of exotic nuclei it is important to have an optical model potential that is reliable not only for stable nuclei but can also be extrapolated to nuclear systems with exotic numbers of protons and neutrons. An efficient way to obtain such a potential is to develop a microscopic optical potential (MOP) based on a fundamental theory with a minimal number of free parameters, which are adjusted to describe stable nuclei all over the nuclide chart. Purpose: The choice adopted in the present work is to develop the MOP within a relativistic scheme which provides a natural and consistent relation between the spin-orbit part and the central part of the potential. The Dirac-Brueckner-Hartree-Fock (DBHF) approach provides such a microscopic relativistic scheme, which is based on a realistic nucleon-nucleon interaction and reproduces the saturation properties of symmetric nuclear matter without any adjustable parameter. Its solution using the projection technique within the subtracted T -matrix representation provides a reliable extension to asymmetric nuclear matter, which is important to describe the features of isospin asymmetric nuclei. The present work performs a global analysis of the isospin dependent nucleon-nucleus MOP based on the DBHF calculation in symmetric and asymmetric nuclear matter. Methods: The DBHF approach is used to evaluate the relativistic structure of the nucleon self-energies in nuclear matter at various densities and asymmetries. The Schrödinger equivalent potentials of finite nuclei are derived from these Dirac components by a local density approximation (LDA). The density distributions of finite nuclei are taken from the Hartree-Fock-Bogoliubov approach with Gogny D1S force. An improved LDA approach (ILDA) is employed to get a better prediction of the scattering observables. A χ2 assessment system based on the global simulated annealing algorithm is developed to optimize the very few free components in this study. Results

  6. Pion-deuteron optical potential

    Science.gov (United States)

    Afnan, I. R.; Stelbovics, A. T.

    1981-02-01

    The three-body approach to the single-scattering optical potential proposed by Tandy, Redish, and Bollé is tested in the context of π-d scattering where the various approximations are compared with the exact solution of the Faddeev equations. For π-d scattering we find that the integral equations derived for the Kerman-McManus-Thaler form of the single-scattering optical potential are markedly superior to those of the Watson form. Our analysis includes a study of the convergence properties of the various multiple-scattering series encountered. NUCLEAR REACTIONS π-d optical potential; TRB, KMT, and Watson multiple-scattering series; Faddeev solution comparison.

  7. Non-local Optical Potentials

    Science.gov (United States)

    Thompson, Ian

    2010-11-01

    In all direct reactions to probe the structure of exotic nuclei at FRIB, optical potentials will be needed in the entrance and exit channels. At high energies Glauber approximations may be useful, but a low energies (5 to 20 MeV/nucleon) other approaches are required. Recent work of the UNEDF project [1] has shown that reaction cross sections at these energies can be accounted for by calculating all inelastic and transfer channels reachable by one particle-hole transitions from the elastic channel. In this model space, we may also calculate the two-step dynamic polarization potential (DPP) that adds to the bare folded potential to form the complex optical potential. Our calculations of the DPP, however, show that its non-localities are very significant, as well as the partial-wave dependence of both its real and imaginary components. The Perey factors (the wave function ratio to that from an equivalent local potential) are more than 20% different from unity, especially for partial waves inside grazing. These factors combine to suggest a reexamination of the validity of local and L-independent fitted optical potentials, especially for capture reactions that are dominated by low partial waves. Prepared by LLNL under Contract DE-AC52-07NA27344. [1] G.P.A. Nobre, F.S. Dietrich, J.E. Escher, I.J. Thompson, M. Dupuis, J. Terasaki and J. Engel, submitted to Phys. Rev. Letts., 2010.

  8. Study of Nonlocal Optical Potential

    Institute of Scientific and Technical Information of China (English)

    TIAN; Yuan

    2013-01-01

    It is generally known that nuclear optical potentials are theoretically expected to be non-local.The non-locality arises from the exchange of particles between the projectile and target and from coupling tonon-elastic channels.This non-locality was first introduced by Frahn and Lemmer,and developed further by Perey and Buck(PB).The kernel is of the form

  9. The Optical Potential on the Lattice

    CERN Document Server

    Agadjanov, Dimitri; Mai, Maxim; Meißner, Ulf-G; Rusetsky, Akaki

    2016-01-01

    The extraction of hadron-hadron scattering parameters from lattice data by using the L\\"uscher approach becomes increasingly complicated in the presence of inelastic channels. We propose a method for the direct extraction of the complex hadron-hadron optical potential on the lattice, which does not require the use of the multi-channel L\\"uscher formalism. Moreover, this method is applicable without modifications if some inelastic channels contain three or more particles.

  10. An expanded porphyrin approach toward transactinium chelation and the development of porphyrin-coated optical fibers as potential actinide sensors

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G. [Lawrence Berkeley Lab., CA (United States); Silva, R. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Characterization of the contamination at DOE waste sites and facilities is necessary during environmental restoration. Characterization of toxic waste in containers and storage tanks is needed for effective waste management. Therefore, analytical and monitoring systems are needed for real-time analysis and feedback. The development of in-situ methods to measure chemical properties by specialized instrumentation capable of real-time analysis, without sacrificing sensitivity, has been identified as an area of needed development. Absorption spectroscopy is widely used and considered to be one of the most reliable techniques available for the qualitative and quantitative determination of sample composition. With the advancements in fiber optic technology, using light for remote in-situ sensing of groundwater contaminants has become practical. Significant progress has been made in the area of fiber-optic chemical sensors as can be seen by the number of recent review articles. The objective of this work is to develop a remote sensor for real-time measurement of actinides and concentrations in environmental or process waters based on absorption spectroscopy using internal reflection spectroscopy. Porphyrin coated silica wafers were prepared and the sensitivity and selectivity to actinides was determined.

  11. The Folding Deuteron Optical Model Potentials

    CERN Document Server

    Li, Xiaohua; Cai, Chonghai

    2008-01-01

    For 52 target nuclei with deuteron as projectile, we calculate the reaction cross sections and elastic scattering angular distributions, as well as the $\\chi^2$ values for 11 kinds of deuteron optical model potentials: our global deuteron optical potentials and 10 folding optical potentials calculated with 2 phenomenological global nucleon optical potentials given by Koning \\textit{et al}(KD) and by Varner\\textit{et al}(CH89), and 8 microscopic nucleon optical potentials with the generalized Skyrme force parameters(GS1-6) and modified Skyrme force parameters(SKa, SKb). We find that for constructing the folding deuteron optical potential, both SKa and SKb are the best Skyrme force parameters of the microscopic nucleon optical potential proposed by Q. Shen \\textit{et al}.

  12. Microscopic Optical Potential of α-Nucleus Elastic Scattering

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The nucleon microscopic optical model potentials (OMP) in the nuclear medium are studied in the framework of the Dirac-Brueckner-Hartree-Fock approach, which are of density- and energy-dependence.

  13. Low-energy K- optical potentials: deep or shallow?

    Science.gov (United States)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K- optical potential in the nuclear medium is evaluated self consistently from a free-space K-Nt matrix constructed within a coupled-channel chiral approach. The fit of model parameters gives a good description of the low-energy data plus the available K- atomic data. The resulting optical potential is relatively `shallow' in contradiction to the potentials obtained from phenomenological analysis. The calculated (Kstop-,π) hypernuclear production rates are very sensitive to the details of kaonic bound state wave function. The (Kstop-,π) reaction could thus serve as a suitable tool to distinguish between shallow and deep K- optical potentials.

  14. Innovative approach towards understanding optics

    Science.gov (United States)

    Garg, Amit; Bharadwaj, Sadashiv Raj; Kumar, Raj; Shudhanshu, Avinash Kumar; Verma, Deepak Kumar

    2016-01-01

    Over the last few years, there has been a decline in the students’ interest towards Science and Optics. Use of technology in the form of various types of sensors and data acquisition systems has come as a saviour. Till date, manual routine tools and techniques are used to perform various experimental procedures in most of the science/optics laboratories in our country. The manual tools are cumbersome whereas the automated ones are costly. It does not enthuse young researchers towards the science laboratories. There is a need to develop applications which can be easily integrated, tailored at school and undergraduate level laboratories and are economical at the same time. Equipments with advanced technologies are available but they are uneconomical and have complicated working principle with a black box approach. The present work describes development of portable tools and applications which are user-friendly. This is being implemented using open-source physical computing platform based on a simple low cost microcontroller board and a development environment for writing software. The present paper reports the development of an automated spectrometer, an instrument used in almost all optics experiments at undergraduate level, and students’ response to this innovation. These tools will inspire young researchers towards science and facilitate development of advance low cost equipments making life easier for Indian as well as developing nations.

  15. Perspective and potential of smart optical materials

    Science.gov (United States)

    Choi, Sang H.; Duzik, Adam J.; Kim, Hyun-Jung; Park, Yeonjoon; Kim, Jaehwan; Ko, Hyun-U.; Kim, Hyun-Chan; Yun, Sungryul; Kyung, Ki-Uk

    2017-09-01

    The increasing requirements of hyperspectral imaging optics, electro/photo-chromic materials, negative refractive index metamaterial optics, and miniaturized optical components from micro-scale to quantum-scale optics have all contributed to new features and advancements in optics technology. Development of multifunctional capable optics has pushed the boundaries of optics into new fields that require new disciplines and materials to maximize the potential benefits. The purpose of this study is to understand and show the fundamental materials and fabrication technology for field-controlled spectrally active optics (referred to as smart optics) that are essential for future industrial, scientific, military, and space applications, such as membrane optics, filters, windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, and flat-panel displays. The proposed smart optics are based on the Stark and Zeeman effects in materials tailored with quantum dot arrays and thin films made from readily polarizable materials via ferroelectricity or ferromagnetism. Bound excitonic states of organic crystals are also capable of optical adaptability, tunability, and reconfigurability. To show the benefits of smart optics, this paper reviews spectral characteristics of smart optical materials and device technology. Experiments testing the quantum-confined Stark effect, arising from rare earth element doping effects in semiconductors, and applied electric field effects on spectral and refractive index are discussed. Other bulk and dopant materials were also discovered to have the same aspect of shifts in spectrum and refractive index. Other efforts focus on materials for creating field-controlled spectrally smart active optics on a selected spectral range. Surface plasmon polariton transmission of light through apertures is also discussed, along with potential applications. New breakthroughs in micro scale multiple zone plate optics as a micro

  16. Correlation expansion of the optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, D.J.; Londergan, J.T.; Miller, G.A.; Thaler, R.M.

    1977-08-01

    The multiple scattering theory for the optical potential is examined. This series is arranged according to the number of target particles struck in forming the optical potential. The term which involves two target particles is summed as a three-body problem. Explicit formulas for calculating the optical potential in the fixed scatterer approximation are presented. Corrections to the fixed scatterer approximation, one a correction to closure, another a correction due to nonlocality in the two-body interaction, are presented. The relation between this work and other formal,rearrangements of the multiple scattering series is presented.

  17. Optically-induced-potential-based image encryption.

    Science.gov (United States)

    Chen, Bing-Chu; Wang, He-Zhou

    2011-11-07

    We present a technique of nonlinear image encryption by use of virtual optics. The image to be encrypted is superposed on a random intensity image. And this superposed image propagates through a nonlinear medium and a 4-f system with single phase key. The image is encrypted to a stationary white noise. The decryption process is sensitive to the parameters of the encryption system and the phase key in 4-f system. This sensitivity makes attackers hard to access the phase key. In nonlinear medium, optically-induced potentials, which depend on intensity of optical wave, make the superposition principle frustrated. This nonlinearity based on optically induced potentials highly improves the secrecy level of image encryption. Resistance against attacks based on the phase retrieval technique proves that it has the high secrecy level. This nonlinear image encryption based on optically induced potentials is proposed and demonstrated for the first time.

  18. Potential alternative approaches to xenotransplantation.

    Science.gov (United States)

    Mou, Lisha; Chen, Fengjiao; Dai, Yifan; Cai, Zhiming; Cooper, David K C

    2015-11-01

    There is an increasing worldwide shortage of organs and cells for transplantation in patients with end-stage organ failure or cellular dysfunction. This shortage could be resolved by the transplantation of organs or cells from pigs into humans. What competing approaches might provide support for the patient with end-stage organ or cell failure? Four main approaches are receiving increasing attention - (i) implantable mechanical devices, although these are currently limited almost entirely to devices aimed at supporting or replacing the heart, (ii) stem cell technology, at present directed mainly to replace absent or failing cells, but which is also fundamental to progress in (iii) tissue engineering and regenerative medicine, in which the ultimate aim is to replace an entire organ. A final novel potential approach is (iv) blastocyst complementation. These potential alternative approaches are briefly reviewed, and comments added on their current status and whether they are now (or will soon become) realistic alternative therapies to xenotransplantation.

  19. Research of Microscopic Optical Potential for Deuteron

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The microscopic optical potential for deuteron is obtained by Green function method through nuclear matter approximation and local density approximation based on the effective Skyrme interaction. The radial

  20. Microscopic optical buffering in a harmonic potential

    CERN Document Server

    Sumetsky, M

    2015-01-01

    In the early days of quantum mechanics, Schr\\"odinger noticed that oscillations of a wave packet in a one-dimensional harmonic potential well are periodic and, in contrast to those in anharmonic potential wells, do not experience distortion over time. This original idea did not find applications up to now since an exact one-dimensional harmonic resonator does not exist in nature and has not been created artificially. However, an optical pulse propagating in a bottle microresonator (a dielectric cylinder with a nanoscale-high bump of the effective radius) can exactly imitate a quantum wave packet in the harmonic potential. Here, we propose a tuneable microresonator that can trap an optical pulse completely, hold it as long as the material losses permit, and release it without distortion. This result suggests the solution of the long standing problem of creating a microscopic optical buffer, the key element of the future optical signal processing devices.

  1. Digital reconstruction of optically-induced potentials.

    Science.gov (United States)

    Barsi, Christopher; Fleischer, Jason W

    2009-12-01

    The holographic reconstruction of optically-induced objects typically assumes that the object is axially thin. Here, we demonstrate a simple approach that works for axially thick objects which evolve dynamically. Results are verified by reconstructing linear scattering experiments in a self-defocusing photorefractive crystal.

  2. Nanothermodynamics: a subdivision potential approach

    Directory of Open Access Journals (Sweden)

    R. Moussavi

    2005-12-01

    Full Text Available  Classical thermodynamic laws and relations have been developed for macroscopic systems that satisfy the thermodynamic limit. These relations are challenged as the system size decreases to the scale of nano-systems, in which thermodynamic properties are overshadowed by system size, and the usual classical concepts of extensivity and intensivity are no longer valid. The challenges to the classical thermodynamics in relation to small systems are demonstrated, and via the approach introduced by Hill, the concept of sub-division potential is clarified in details. The fundamental thermodynamic relations are obtained using a rational-based method.

  3. Optical potentials in algebraic scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Levay, Peter [Institute of Theoretical Physics, Technical University of Budapest, Budapest (Hungary)

    1999-02-12

    Using the theory of induced representations new realizations for the Lie algebras of the groups SO(2, 1), SO(2, 2), SO(3, 2) are found. The eigenvalue problem of the Casimir operators yield Schroedinger equations with non-Hermitian interaction terms (i.e. optical potentials). For the group SO(2, 2) we have a two-parameter family of (matrix-valued) potentials containing terms of Poeschl-Teller and Gendenshtein type. We calculate the S-matrices for special values of this two-parameter family. In particular we also include a derivation of the S-matrix for the two-dimensional scattering problem on a complex Gendenshtein potential. The canonically transformed realization results in a non-local optical potential. (author)

  4. Study of chirally motivated low-energy K - optical potentials

    Science.gov (United States)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K - optical potential in the nuclear medium is evaluated self consistently from a free-space K -N t matrix constructed within a coupled-channel chiral approach to the low-energy K¯N data. The chiral-model parameters are fitted to a select subset of the low-energy data plus the K - atomic data throughout the periodic table. The resulting attractive K - optical potentials are relatively 'shallow', with central depth of the real part about 55 MeV, for a fairly reasonable reproduction of the atomic data with χ2/ N≈2.2. Relatively 'deep' attractive potentials of depth about 180 MeV, which result in other phenomenological approaches with χ2/ N≈1.5, are ruled out within chirally motivated models. Different physical data input is required to distinguish between shallow and deep K - optical potentials. The (K -stop, π) reaction could provide such a test, with exclusive rates differing by over a factor of three for the two classes of potentials. Finally, forward (K -,p) differential cross sections for the production of relatively narrow deeply bound K -nuclear states are evaluated for deep K - optical potentials, yielding values considerably lower than those estimated before.

  5. Visual optics: an engineering approach

    Science.gov (United States)

    Toadere, Florin

    2010-11-01

    The human eyes' visual system interprets the information from the visible light in order to build a representation of the world surrounding the body. It derives color by comparing the responses to light from the three types of photoreceptor cones in the eyes. These long medium and short cones are sensitive to blue, green and red portions of the visible spectrum. We simulate the color vision for the normal eyes. We see the effects of the dyes, filters, glasses and windows on color perception when the test image is illuminated with the D65 light sources. In addition to colors' perception, the human eyes can suffer from diseases and disorders. The eye can be seen as an optical instrument which has its own eye print. We present aspects of some nowadays methods and technologies which can capture and correct the human eyes' wavefront aberrations. We focus our attention to Siedel aberrations formula, Zenike polynomials, Shack-Hartmann Sensor, LASIK, interferograms fringes aberrations and Talbot effect.

  6. Integrated optics approach for advanced semiconductor lasers

    Science.gov (United States)

    Suematsu, Yasuharu; Arai, Shigehisa

    1987-11-01

    Recent advances in the field of semiconductor integrated optics are reviewed from the point of view of monolithic integration of semiconductor lasers and other optical components and/or devices. Emphasis is placed on dynamic-single-mode (DSM) lasers, such as DFB and DBR lasers, intended for highly stable single-wavelength light sources for such monolithic integration. The realization of high-performance DSM lasers and the fabrication techniques of monolithically integrated optical devices and circuits are briefly reviewed. A variety of potential applications is discussed.

  7. Field approach in the transformation optics concept

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Barkovsky, L. M.

    2012-01-01

    is equivalent to the conventional coordinate-transformation approach but is preferable when looking for specific field distribution. A set of example devices such as invisibility cloaks, concentrators, rotators, and transformation optics lenses capable of creating light beams with predetermined field...

  8. Multifocal visual evoked potential in optic neuritis, ischemic optic neuropathy and compressive optic neuropathy

    Directory of Open Access Journals (Sweden)

    Manju Jayaraman

    2014-01-01

    Full Text Available Purpose: To investigate the effect of optic neuritis (ON, ischemic optic neuropathy (ION and compressive optic neuropathy (CON on multifocal visual evoked potential (mfVEP amplitudes and latencies, and to compare the parameters among three optic nerve disorders. Materials and Methods: mfVEP was recorded for 71 eyes of controls and 48 eyes of optic nerve disorders with subgroups of optic neuritis (ON, n = 21 eyes, ischemic optic neuropathy (ION, n = 14 eyes, and compressive optic neuropathy (CON, n = 13 eyes. The size of defect in mfVEP amplitude probability plots and relative latency plots were analyzed. The pattern of the defect in amplitude probability plot was classified according to the visual field profile of optic neuritis treatment trail (ONTT. Results: Median of mfVEP amplitude (log SNR averaged across 60 sectors were reduced in ON (0.17 (0.13-0.33, ION (0.14 (0.12-0.21 and CON (0.21 (0.14-0.30 when compared to controls. The median mfVEP relative latencies compared to controls were significantly prolonged in ON and CON group of 10.53 (2.62-15.50 ms and 5.73 (2.67-14.14 ms respectively compared to ION group (2.06 (-4.09-13.02. The common mfVEP amplitude defects observed in probability plots were diffuse pattern in ON, inferior altitudinal defect in ION and temporal hemianopia in CON eyes. Conclusions: Optic nerve disorders cause reduction in mfVEP amplitudes. The extent of delayed latency noted in ischemic optic neuropathy was significantly lesser compared to subjects with optic neuritis and compressive optic neuropathy. mfVEP amplitudes can be used to objectively assess the topography of the visual field defect.

  9. Phenomenological dirac optical potential for neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Shin-ichi; Kitsuki, Hirohiko; Shigyo, Nobuhiro; Ishibashi, Kenji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-03-01

    Because of limitation on neutron-incident data, it is difficult to obtain global optical model potential for neutrons. In contrast, there are some global optical model potentials for proton in detail. It is interesting to convert the proton-incident global optical potentials into neutron-incident ones. In this study we introduce (N-Z)/A dependent symmetry potential terms into the global proton-incident optical potentials, and then obtain neutron-incident ones. The neutron potentials reproduce total cross sections in an acceptable degree. However, a comparison with potentials proposed by other authors brings about a confused situation in the sign of the symmetry terms. (author)

  10. Optical chirality in gyrotropic media: symmetry approach

    Science.gov (United States)

    Proskurin, Igor; Ovchinnikov, Alexander S.; Nosov, Pavel; Kishine, Jun-ichiro

    2017-06-01

    We discuss optical chirality in different types of gyrotropic media. Our analysis is based on the formalism of nongeometric symmetries of Maxwell’s equations in vacuum generalized to material media with given constituent relations. This approach enables us to directly derive conservation laws related to nongeometric symmetries. For isotropic chiral media, we demonstrate that like a free electromagnetic field, both duality and helicity generators belong to the basis set of nongeometric symmetries that guarantees the conservation of optical chirality. In gyrotropic crystals, which exhibit natural optical activity, the situation is quite different from the case of isotropic media. For light propagating along a certain crystallographic direction, there arises two distinct cases: (1) the duality is broken but the helicity is preserved, or (2) only the duality symmetry survives. We show that the existence of one of these symmetries (duality or helicity) is enough to define optical chirality. In addition, we present examples of low-symmetry media, where optical chirality cannot be defined.

  11. Separable Representation of Proton-Nucleus Optical Potentials

    CERN Document Server

    Hlophe, L; Elster, Ch; Nunes, F M; Arbanas, G; Escher, J E; Thompson, I J

    2014-01-01

    Recently, a new approach for solving the three-body problem for (d,p) reactions in the Coulomb-distorted basis in momentum space was proposed. Important input quantities for such calculations are the scattering matrix elements for proton- and neutron-nucleus scattering. We present a generalization of the Ernst-Shakin-Thaler scheme in which a momentum space separable representation of proton-nucleus scattering matrix elements can be calculated in the Coulomb basis. The viability of this method is demonstrated by comparing S-matrix elements obtained for p$+^{48}$Ca and p$+^{208}$Pb for a phenomenological optical potential with corresponding coordinate space calculations.

  12. New approaches in diffraction based optical metrology

    Science.gov (United States)

    Ebert, M.; Vanoppen, P.; Jak, M.; v. d. Zouw, G.; Cramer, H.; Nooitgedagt, T.; v. d. Laan, H.

    2016-03-01

    Requirements for on-product overlay, focus and CD uniformity continue to tighten in order to support the demands of 10nm and 7nm nodes. This results in the need for simultaneously accurate, robust and dense metrology data as input for closed-loop control solutions thereby enabling wafer-level control and high order corrections. In addition the use of opaque materials and stringent design rules drive the need for expansion of the available measurement wavelengths and metrology target design space. Diffraction based optical metrology has been established as the leading methodology for integrated as well as standalone optical metrology for overlay, focus and CD monitoring and control in state of the art chip manufacturing. We are presenting the new approaches to diffraction based optical metrology designed to meet the processing diffraction based metrology signals. In this paper we will present the new detection principle and its impact on key performance characteristics of overlay and focus measurements. We will also describe the wide range of applications of a newly introduced increased measurement spot size, enabling significant improvements to accuracy and process robustness of overlay and focus measurements. With the YS350E the optical CD measurement capability is also extended, to 10x10μm2 targets. We will discuss the performance and value of small targets in after-develop and after-etch applications.

  13. Isospin-dependent relativistic microscopic optical potential in the Dirac Brueckner-Hartree-Fock method

    Institute of Scientific and Technical Information of China (English)

    RONG; Jian; MA; Zhongyu

    2004-01-01

    The relativistic microscopic optical potential in the asymmetric nuclear matter is studied in the framework of the Dirac Brueckner-Hartree-Fock method. A new decomposition of the Dirac structure of the nuclear self-energy in nuclear matter is adopted. The self-energy of a nucleon with E> 0 in nuclear matter is calculated with the G matrix in the Hartree-Fock approach. The optical potential of a nucleon in the nuclear medium is identified with the nucleon self-energy. The energy and asymmetric parameter dependence of the relativistic optical potentials for proton and neutron are discussed. The resulting Schroedinger equivalent potentials have reasonable behaviors of the energy dependence. The asymmetric parameter dependence of relativistic optical potentials and Schroedinger potentials are emphasized.

  14. Separable Optical Potentials for (d,p) Reactions

    CERN Document Server

    Elster, Ch; Eremenko, V; Nunes, F M; Arbanas, G; Escher, J E; Thompson, I J

    2014-01-01

    An important ingredient for applications of nuclear physics to e.g. astrophysics or nuclear energy are the cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not possible, indirect methods like (d,p) reactions must be used instead. Those (d,p) reactions may be viewed as effective three-body reactions and described with Faddeev techniques. An additional challenge posed by (d,p) reactions involving heavier nuclei is the treatment of the Coulomb force. To avoid numerical complications in dealing with the screening of the Coulomb force, recently a new approach using the Coulomb distorted basis in momentum space was suggested. In order to implement this suggestion, one needs not only to derive a separable representation of neutron- and proton-nucleus optical potentials, but also compute the Coulomb distorted form factors in this basis.

  15. One-nucleon transfer reactions and the optical potential

    CERN Document Server

    Nunes, F M; Ross, A; Titus, L J; Charity, R J; Dickhoff, W H; Mahzoon, M H; Sarich, J; Wild, S M

    2015-01-01

    We provide a summary of new developments in the area of direct reaction theory with a particular focus on one-nucleon transfer reactions. We provide a status of the methods available for describing (d,p) reactions. We discuss the effects of nonlocality in the optical potential in transfer reactions. The results of a purely phenomenological potential and the optical potential obtained from the dispersive optical model are compared; both point toward the importance of including nonlocality in transfer reactions explicitly. Given the large ambiguities associated with optical potentials, we discuss some new developments toward the quantification of this uncertainty. We conclude with some general comments and a brief account of new advances that are in the pipeline.

  16. Helium-3 Microscopic Optical Model Potential Based on Skyrme Interaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The helium-3 microscopic optical potential is obtained by Green function method through nuclear matter approximation and local density approximation based on the effective Skyrme interaction. The reaction cross

  17. DSP Approach to the Design of Nonlinear Optical Devices

    Directory of Open Access Journals (Sweden)

    Steve Blair

    2005-06-01

    Full Text Available Discrete-time signal processing (DSP tools have been used to analyze numerous optical filter configurations in order to optimize their linear response. In this paper, we propose a DSP approach to design nonlinear optical devices by treating the desired nonlinear response in the weak perturbation limit as a discrete-time filter. Optimized discrete-time filters can be designed and then mapped onto a specific optical architecture to obtain the desired nonlinear response. This approach is systematic and intuitive for the design of nonlinear optical devices. We demonstrate this approach by designing autoregressive (AR and autoregressive moving average (ARMA lattice filters to obtain a nonlinear phase shift response.

  18. New approach to optical imaging of tumors

    Science.gov (United States)

    Achilefu, Samuel I.; Bugaj, Joseph E.; Dorshow, Richard B.; Jimenez, Hermo N.; Rajagopalan, Raghavan

    2001-07-01

    Site specific delivery of drugs and contrast agents to tumors protects normal tissues from the cytotoxic effect of drugs, and enhances the contrast between normal and diseased tissues. In optical medicine, biocompatible dyes can be used as phototherapeutics or as contrast agents. Previous studies have shown that the use of covalent or non-covalent dye conjugates of carriers such as antibiodies, liposomes, and polysaccharides improves the delivery of such molecules to tumors. However, large biomolecules can elicit adverse immunogenic reactions and also result in long blood clearance times, delaying visualization of target tissues. A viable alternative to this strategy is to use small bioactive molecule-dye conjugates. These molecules have several advantages over large biomolecules, including ease of synthesis of a variety of high purity compounds for combinatorial screening of new targets, enhanced diffusivity to solid tumors, and the ability to affect the pharmacokinetics of the conjugates by minor structural changes. Thus, we conjugated a near infrared absorbing dye to several bioactive peptides that specifically target overexpressed tumor receptors in established rat tumor lines. High tumor uptake of the conjugates was obtained without loss of either the peptide receptor affinity or the dye fluorescence. These findings demonstrate the efficacy of a small peptide-dye conjugate strategy for in vivo tumor imaging. Site-specific delivery of photodynamic therapy agents may also benefit from this approach.

  19. Dynamics of Bose-Einstein condensates in novel optical potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kueber, Johannes

    2014-07-21

    Matter wave interferometry offers a novel approach for high precision measurements, such as the determination of physical constants like the local gravity constant g or the fine-structure constant. Since its early demonstration, it has become an important tool in the fields of fundamental and applied physics. The present work covers the implementation of matter wave interferometers as well as the creation of novel guiding potentials for ultra-cold ensembles of atoms and Bose-Einstein condensates for this purpose. In addition, novel techniques for the manipulation of atoms with Bragg lattices are presented, serving as elements for interferometry. The measurements in this work are performed with a Bose-Einstein condensate of 25000 {sup 87}rubidium atoms created in a crossed optical dipole trap. The crossed optical dipole trap is loaded from a magneto-optical trap and allows a measurement every 25 s. This work introduces the novel technique of double Bragg diffraction as a tool for atom optics for the first time experimentally. The creation of beamsplitters and mirrors for advanced interferometric measurements is characterized. An in depth discussion on the momentum distribution of atomic clouds and its influence on double Bragg diffraction is given. Additionally experimental results for higher-order Bragg diffraction are explained and double Bragg diffraction is used to implement a full Ramsey-type interferometer. A second central result of this work is the implementation of novel guiding structures for ultra-cold atoms. These structures are created with conical refraction, an effect that occurs when light is guided along one of the optical axis of a bi-axial crystal. The conical refraction crystal used to operate the novel trapping geometries is a KGd(WO{sub 4}){sub 2} crystal that has been specifically cut orthogonal to one of the optical axis. Two regimes are discussed in detail: the creation of a toroidal matter wave guide and the implementation of a three

  20. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    Science.gov (United States)

    Baumbick, Robert

    1991-01-01

    The current Fiber Optic Control System Integration (FOCSI) program is reviewed and the potential role of IOCs in FOCSI applications is described. The program is intended for building, environmentally testing, and demonstrating operation in piggyback flight tests (no active control with optical sensors) of a representative sensor system for propulsion and flight control. The optical sensor systems are to be designed to fit alongside the bill-of-materials sensors for comparison. The sensors are to be connected to electrooptic architecture cards which will contain the optical sources and detectors to recover and process the modulated optical signals. The FOCSI program is to collect data on the behavior of passive optical sensor systems in a flight environment and provide valuable information on installation amd maintenance problems for this technology, as well as component survivability (light sources, connectors, optical fibers, etc.).

  1. Microscopic optical potentials for $^4$He scattering

    CERN Document Server

    Egashira, Kei; Toyokawa, Masakazu; Matsumoto, Takuma; Yahiro, Masanobu

    2014-01-01

    We present a reliable double-folding (DF) model for $^{4}$He-nucleus scattering, using the Melbourne $g$-matrix nucleon-nucleon interaction that explains nucleon-nucleus scattering with no adjustable parameter. In the DF model, only the target density is taken as the local density in the Melbourne $g$-matrix. For $^{4}$He elastic scattering from $^{58}$Ni and $^{208}$Pb targets in a wide range of incident energies from 20~MeV/nucleon to 200~MeV/nucleon, the DF model with the target-density approximation (TDA) yields much better agreement with the experimental data than the usual DF model with the frozen-density approximation in which the sum of projectile and target densities is taken as the local density. We also discuss the relation between the DF model with the TDA and the conventional folding model in which the nucleon-nucleus potential is folded with the $^{4}$He density.

  2. Optical Remote Sensing Potentials for Looting Detection

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-10-01

    Full Text Available Looting of archaeological sites is illegal and considered a major anthropogenic threat for cultural heritage, entailing undesirable and irreversible damage at several levels, such as landscape disturbance, heritage destruction, and adverse social impact. In recent years, the employment of remote sensing technologies using ground-based and/or space-based sensors has assisted in dealing with this issue. Novel remote sensing techniques have tackled heritage destruction occurring in war-conflicted areas, as well as illicit archeological activity in vast areas of archaeological interest with limited surveillance. The damage performed by illegal activities, as well as the scarcity of reliable information are some of the major concerns that local stakeholders are facing today. This study discusses the potential use of remote sensing technologies based on the results obtained for the archaeological landscape of Ayios Mnason in Politiko village, located in Nicosia district, Cyprus. In this area, more than ten looted tombs have been recorded in the last decade, indicating small-scale, but still systematic, looting. The image analysis, including vegetation indices, fusion, automatic extraction after object-oriented classification, etc., was based on high-resolution WorldView-2 multispectral satellite imagery and RGB high-resolution aerial orthorectified images. Google Earth© images were also used to map and diachronically observe the site. The current research also discusses the potential for wider application of the presented methodology, acting as an early warning system, in an effort to establish a systematic monitoring tool for archaeological areas in Cyprus facing similar threats.

  3. Separable Representation of Multichannel Nucleon-Nucleus Optical Potentials

    CERN Document Server

    Hlophe, Linda

    2016-01-01

    One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy-dependent. Including excitations of the nucleus in the calculation requires a multichannel optical potential. The purpose of this paper is to introduce a separable, energy-dependent multichannel representation of complex, energy-dependent optical potentials that contain excitations of the nucleus and that fulfill r...

  4. Potential roles of optical interconnections within broadband switching modules

    Science.gov (United States)

    Lalk, Gail R.; Habiby, Sarry F.; Hartman, Davis H.; Krchnavek, Robert R.; Wilson, Donald K.; Young, Kenneth C., Jr.

    1991-04-01

    An investigation of potential physical design bottlenecks in future broadband telecommunication switches has led to the identification of several areas where optical interconnections may play a role in the practical realization of required system performance. In the model used the speed and interconnection densities as well as requirements for ease-of-access and efficient power utilization challenge conventional partitioning and packaging strategies. Potential areas where optical interconnections may relieve some of the physical design bottlenecks include fiber management at the customer interface to the switch routing and distribution of high-density interconnections within the fabric of the switch and backplane interconnections to increase system throughput.

  5. Potential of OFDM for next generation optical access

    Science.gov (United States)

    Fritzsche, Daniel; Weis, Erik; Breuer, Dirk

    2011-01-01

    This paper shows the requirements for next generation optical access (NGOA) networks and analyzes the potential of OFDM (orthogonal frequency division multiplexing) for the use in such network scenarios. First, we show the motivation for NGOA systems based on the future requirements on FTTH access systems and list the advantages of OFDM in such scenarios. In the next part, the basics of OFDM and different methods to generate and detect optical OFDM signals are explained and analyzed. At the transmitter side the options include intensity modulation and the more advanced field modulation of the optical OFDM signal. At the receiver there is the choice between direct detection and coherent detection. As the result of this discussion we show our vision of the future use of OFDM in optical access networks.

  6. Optical calculation of potential fields for robotic path planning.

    Science.gov (United States)

    Reid, M B

    1994-02-10

    Experimental results of the optical calculation of potential-field maps suitable for mobile robot navigation are presented and described. The optical computation employs two write modes of a microchannel spatial light modulator. In one mode, written patterns expand spatially, and this characteristic is used to create an extended two-dimensional function representing the influence of the goal in a robot's workspace. Distinct obstacle patterns are written in a second, nonexpanding, mode. A model of the mechanisms determining microchannel spatial light modulator write-mode characteristics is developed and used to derive the optical calculation time for full potential-field maps. Field calculations at a few hertz are possible with current technology, and calculation time versus map size scales favorably in comparison with digital electronic computation.

  7. Hybrid silicon evanescent approach to optical interconnects

    OpenAIRE

    Liang, Di; Fang, Alexander W.; Chen, Hui-Wen; Sysak, Matthew N; Koch, Brian R.; Lively, Erica; Raday, Omri; Kuo, Ying-hao; Jones, Richard; Bowers, John E

    2009-01-01

    We discuss the recently developed hybrid silicon evanescent platform (HSEP), and its application as a promising candidate for optical interconnects in silicon. A number of key discrete components and a wafer-scale integration process are reviewed. The motivation behind this work is to realize silicon-based photonic integrated circuits possessing unique advantages of III–V materials and silicon-on-insulator waveguides simultaneously through a complementary metal-oxide semiconductor fabrication...

  8. Coherent transport of matter waves in disordered optical potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Robert

    2007-07-01

    The development of modern techniques for the cooling and the manipulation of atoms in recent years, and the possibility to create Bose-Einstein condensates and degenerate Fermi gases and to load them into regular optical lattices or disordered optical potentials, has evoked new interest for the disorder-induced localization of ultra-cold atoms. This work studies the transport properties of matter waves in disordered optical potentials, which are also known as speckle potentials. The effect of correlated disorder on localization is first studied numerically in the framework of the Anderson model. The relevant transport parameters in the configuration average over many different realizations of the speckle potential are then determined analytically, using self-consistent diagrammatic perturbation techniques. This allows to make predictions for a possible experimental observation of coherent transport phenomena for cold atoms in speckle potentials. Of particular importance are the spatial correlations of the speckle fluctuations, which are responsible for the anisotropic character of the single scattering processes in the effective medium. Coherent multiple scattering leads to quantum interference effects, which entail a renormalization of the diffusion constant as compared to the classical description. This so-called weak localization of matter waves is studied as the underlying mechanism for the disorder-driven transition to the Anderson-localization regime, explicitly taking into account the correlations of the speckle fluctuations. (orig.)

  9. Separable Representation of Energy-Dependent Optical Potentials

    CERN Document Server

    Hlophe, Linda

    2015-01-01

    Background. One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy-dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity e...

  10. Effective field theory approaches for tensor potentials

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Maximilian

    2016-11-14

    Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev

  11. Separable representation of energy-dependent optical potentials

    Science.gov (United States)

    Hlophe, L.; Elster, Ch.

    2016-03-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.

  12. Concurrent Application of TMS and Near-infrared Optical Imaging: Methodological Considerations and Potential Artifacts

    Directory of Open Access Journals (Sweden)

    Nathan A Parks

    2013-09-01

    Full Text Available The simultaneous application of transcranial magnetic stimulation (TMS with non-invasive neuroimaging provides a powerful method for investigating functional connectivity in the human brain and the causal relationships between areas in distributed brain networks. TMS has been combined with numerous neuroimaging techniques including, electroencephalography (EEG, functional magnetic resonance imaging (fMRI, and positron emission tomography (PET. Recent work has also demonstrated the feasibility and utility of combining TMS with non-invasive near-infrared optical imaging techniques, functional near-infrared spectroscopy (fNIRS and the event-related optical signal (EROS. Simultaneous TMS and optical imaging affords a number of advantages over other neuroimaging methods but also involves a unique set of methodological challenges and considerations. This paper describes the methodology of concurrently performing optical imaging during the administration of TMS, focusing on experimental design, potential artifacts, and approaches to controlling for these artifacts.

  13. Field approach in the transformation optics concept

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Barkovsky, L. M.

    2012-01-01

    distribution (e.g., Gaussian and sinusoidal) is studied to validate the effectiveness of the field-based formulation. As for the boundary conditions for the cloaked region the absence of the normal component of the Poynting vector is justified. In the frames of the field-based approach the physical reasons...

  14. Superluminal propagation and broadband omnidirectional antireflection in optical reflectionless potentials

    CERN Document Server

    Thekkekara, L V; Kasture, Sachin; Mulay, Gajendra; Gupta, S Dutta

    2013-01-01

    Reflectionless potentials (RPs) represent a class of potentials that offer total transmission in the context of one dimensional scattering. Optical realization of RPs in stratified medium can exhibit broadband omnidirectional antireflection property. In addition to the antireflection property, RPs are also expected to demonstrate negative delay. We designed refractive index profiles conforming to RPs and realize them in stratified media consisting of Al2O3 and TiO2 heterolayers. In these structures we observed < 1% reflection over the broad wavelength range of 350 nm to 2500 nm for angles of incidence 0 - 50 degrees. The observed reflection and transmission response of RPs are polarization independent. A negative delay of about 31 fsec with discernible pulse narrowing was observed in passage through two RPs. These RPs can be interesting for optical instrumentation as broadband, omni-directional antireflection coatings as well as in pulse control and transmission applications like delay lines.

  15. Neutron star equations of state with optical potential constraint

    Energy Technology Data Exchange (ETDEWEB)

    Antić, S., E-mail: S.Antic@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, Schlossgartenstraße 2, D-64289 Darmstadt (Germany); Typel, S., E-mail: S.Typel@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291 Darmstadt (Germany)

    2015-06-15

    Nuclear matter and neutron stars are studied in the framework of an extended relativistic mean-field (RMF) model with higher-order derivative and density dependent couplings of nucleons to the meson fields. The derivative couplings lead to an energy dependence of the scalar and vector self-energies of the nucleons. It can be adjusted to be consistent with experimental results for the optical potential in nuclear matter. Several parametrization, which give identical predictions for the saturation properties of nuclear matter, are presented for different forms of the derivative coupling functions. The stellar structure of spherical, non-rotating stars is calculated for these new equations of state (EoS). A substantial softening of the EoS and a reduction of the maximum mass of neutron stars is found if the optical potential constraint is satisfied.

  16. Optical approaches to macroscopic and microscopic engineering

    CERN Document Server

    Bartolo, P J D S

    2001-01-01

    This research investigates the theoretical basis of a new photo-fabrication system. By this system, optical and thermal effects are used, together or separately, to locally induce a phase change in a liquid resin. This phase change phenomena is used to 'write' three-dimensional shapes. In addition, a thermal-kinetic model has been developed to correctly simulate the physical and chemical changes that occur in the bulk (and surroundings) of the material directly exposed to radiation and/or heat, and the rates at which these changes occur. Through this model, the law of conservation of energy describing the heat transfer phenomena is coupled with a kinetic model describing in detail the cure kinetics in both chemical and diffusion-controlled regimes. The thermal-kinetic model has been implemented using the finite element method. Linear rectangular elements have been considered and the concept of isoparametric formulation used. The Cranck-Nicolson algorithm has been used to integrate the system of equations, res...

  17. High-throughput proteomics : optical approaches.

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, George S.

    2008-09-01

    Realistic cell models could greatly accelerate our ability to engineer biochemical pathways and the production of valuable organic products, which would be of great use in the development of biofuels, pharmaceuticals, and the crops for the next green revolution. However, this level of engineering will require a great deal more knowledge about the mechanisms of life than is currently available. In particular, we need to understand the interactome (which proteins interact) as it is situated in the three dimensional geometry of the cell (i.e., a situated interactome), and the regulation/dynamics of these interactions. Methods for optical proteomics have become available that allow the monitoring and even disruption/control of interacting proteins in living cells. Here, a range of these methods is reviewed with respect to their role in elucidating the interactome and the relevant spatial localizations. Development of these technologies and their integration into the core competencies of research organizations can position whole institutions and teams of researchers to lead in both the fundamental science and the engineering applications of cellular biology. That leadership could be particularly important with respect to problems of national urgency centered around security, biofuels, and healthcare.

  18. Hybrid silicon evanescent approach to optical interconnects

    Science.gov (United States)

    Liang, Di; Fang, Alexander W.; Chen, Hui-Wen; Sysak, Matthew N.; Koch, Brian R.; Lively, Erica; Raday, Omri; Kuo, Ying-Hao; Jones, Richard; Bowers, John E.

    2009-06-01

    We discuss the recently developed hybrid silicon evanescent platform (HSEP), and its application as a promising candidate for optical interconnects in silicon. A number of key discrete components and a wafer-scale integration process are reviewed. The motivation behind this work is to realize silicon-based photonic integrated circuits possessing unique advantages of III-V materials and silicon-on-insulator waveguides simultaneously through a complementary metal-oxide semiconductor fabrication process. Electrically pumped hybrid silicon distributed feedback and distributed Bragg reflector lasers with integrated hybrid silicon photodetectors are demonstrated coupled to SOI waveguides, serving as the reliable on-chip single-frequency light sources. For the external signal processing, Mach-Zehnder interferometer modulators are demonstrated, showing a resistance-capacitance-limited, 3 dB electrical bandwidth up to 8 GHz and a modulation efficiency of 1.5 V mm. The successful implementation of quantum well intermixing technique opens up the possibility to realize multiple III-V bandgaps in this platform. Sampled grating DBR devices integrated with electroabsorption modulators (EAM) are fabricated, where the bandgaps in gain, mirror, and EAM regions are 1520, 1440 and 1480 nm, respectively. The high-temperature operation characteristics of the HSEP are studied experimentally and theoretically. An overall characteristic temperature ( T 0) of 51°C, an above threshold characteristic temperature ( T 1) of 100°C, and a thermal impedance ( Z T ) of 41.8°C/W, which agrees with the theoretical prediction of 43.5°C/W, are extracted from the Fabry-Perot devices. Scaling this platform to larger dimensions is demonstrated up to 150 mm wafer diameter. A vertical outgassing channel design is developed to accomplish high-quality III-V epitaxial transfer to silicon in a timely and dimension-independent fashion.

  19. Parallel approach to MEMS and micro-optics interferometric testing

    Science.gov (United States)

    Kujawińska, M.; Beer, S.; Gastinger, K.; Gorecki, C.; Haugholt, K. H.; Józwik, M.; Lambelet, P.; Paris, R.; Styk, A.; Zeitner, U.

    2011-08-01

    The paper presents the novel approach to an interferometric, quantitative, massive parallel inspection of MicroElectroMechanicalSystems (MEMS), MicroOptoElectroMechanical Systems (MOEMS) and microoptics arrays. The basic idea is to adapt a micro-optical probing wafer to the M(O)EMS wafer under test. The probing wafer is exchangeable and contains one of the micro-optical interferometer arrays based on: (1) a low coherent interferometer array based on a Mirau configuration or (2) a laser interferometer array based on a Twyman-Green configuration. The optical, mechanical, and electro-optical design of the system and data analysis concept based on this approach is presented. The interferometer arrays are developed and integrated at a standard test station for micro-fabrication together with the illumination and imaging modules and special mechanics which includes scanning and electrostatic excitation systems. The smart-pixel approach is applied for massive parallel electro-optical detection and data reduction. The first results of functional tests of the system are presented. The concept is discussed in reference to the future M(O)EMS and microoptics manufacturers needs and requirements.

  20. Asymptotic iteration approach to supersymmetric bistable potentials

    Institute of Scientific and Technical Information of China (English)

    H. Ciftci; O. ozer; P. Roy

    2012-01-01

    We examine quasi exactly solvable bistable potentials and their supersymmetric partners within the framework of the asymptotic iteration method (AIM).It is shown that the AIM produces excellent approximate spectra and that sometimes it is found to be more useful to use the partner potential for computation. We also discuss the direct application of the AIM to the Fokker-Planck equation.

  1. Stochastic Approach to Phonon-Assisted Optical Absorption

    Science.gov (United States)

    Zacharias, Marios; Patrick, Christopher E.; Giustino, Feliciano

    2015-10-01

    We develop a first-principles theory of phonon-assisted optical absorption in semiconductors and insulators which incorporates the temperature dependence of the electronic structure. We show that the Hall-Bardeen-Blatt theory of indirect optical absorption and the Allen-Heine theory of temperature-dependent band structures can be derived from the present formalism by retaining only one-phonon processes. We demonstrate this method by calculating the optical absorption coefficient of silicon using an importance sampling Monte Carlo scheme, and we obtain temperature-dependent line shapes and band gaps in good agreement with experiment. The present approach opens the way to predictive calculations of the optical properties of solids at finite temperature.

  2. Coupled-channel optical model potential for rare earth nuclei

    CERN Document Server

    Herman, M; Palumbo, A; Dietrich, F S; Brown, D; Hoblit, S

    2013-01-01

    Inspired by the recent work by Dietrich et al., substantiating validity of the adiabatic assumption in coupled-channel calculations, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on statically deformed nuclei. The generalization consists in adding the coupling of the ground state rotational band, deforming the potential by introducing appropriate quadrupole and hexadecupole deformation and correcting the OMP radius to preserve volume integral of the spherical OMP. We choose isotopes of three rare-earth elements (W, Ho, Gd), which are known to be nearly perfect rotors, to perform a consistent test of our conjecture on integrated cross sections as well as on angular distributions for elastic and inelastic neutron scattering. When doing this we employ the well-established Koning-Delaroche global spherical potential and experimentally determined deformations without any adjustments. We observe a dramatically improved a...

  3. Algebraic approach to the Hulthen potential

    CERN Document Server

    Setare, Mohammad R

    2007-01-01

    In this paper the energy eigenvalues and the corresponding eigenfunctions are calculated for Hulthen potential. Then we obtain the ladder operators and show that these operators satisfy SU(2) commutation relation.

  4. MEMS: A new approach to micro-optics

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.J.

    1997-12-31

    MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlights polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.

  5. Optical Potential Parameters of Weakly Bound Nuclear System 17F+13C

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>It is well known that optical potential is a basic ingredient in the study of nucleus-nucleus collisions. With the application of radioactive ion beams (RIB), extracting the optical potential parameters for the

  6. A new approach for the verification of optical systems

    Science.gov (United States)

    Siddique, Umair; Aravantinos, Vincent; Tahar, Sofiène

    2013-09-01

    Optical systems are increasingly used in microsystems, telecommunication, aerospace and laser industry. Due to the complexity and sensitivity of optical systems, their verification poses many challenges to engineers. Tra­ditionally, the analysis of such systems has been carried out by paper-and-pencil based proofs and numerical computations. However, these techniques cannot provide perfectly accurate results due to the risk of human error and inherent approximations of numerical algorithms. In order to overcome these limitations, we propose to use theorem proving (i.e., a computer-based technique that allows to express mathematical expressions and reason about them by taking into account all the details of mathematical reasoning) as an alternative to computational and numerical approaches to improve optical system analysis in a comprehensive framework. In particular, this paper provides a higher-order logic (a language used to express mathematical theories) formalization of ray optics in the HOL Light theorem prover. Based on the multivariate analysis library of HOL Light, we formalize the notion of light ray and optical system (by defining medium interfaces, mirrors, lenses, etc.), i.e., we express these notions mathematically in the software. This allows us to derive general theorems about the behavior of light in such optical systems. In order to demonstrate the practical effectiveness, we present the stability analysis of a Fabry-Perot resonator.

  7. Reactions of Proton Halo Nuclei in a Relativistic Optical Potential

    CERN Document Server

    Rashdan, M

    2003-01-01

    The reaction cross section, sigma sub R; of the proton halo nuclei sup 1 sup 7 Ne and sup 1 sup 2 N on Si is calculated using an optical potential derived from the solution of the Dirac-Brueckner-Bethe-Goldstone equation, starting from the one-boson-exchange potential of Bonn. The nuclear densities are generated from self-consistent Hartree-Fock calculations using the recent Skyrme interaction SKRA. It is found that the enhancement in the reaction cross section found experimentally for the sup 1 sup 7 Ne + Si system in comparison to sup 1 sup 5 O + Si, where sup 1 sup 5 O has been considered as a core of sup 1 sup 7 Ne, is mainly due to the proton halo structure of sup 1 sup 7 Ne which increases the interaction, in the surface and tail regions. Glauber model calculations did not produce this enhancement in sigma sub R for proton halo nuclei

  8. Measuring spin correlations in optical lattices using superlattice potentials

    DEFF Research Database (Denmark)

    Pedersen, Kim Georg Lind; Andersen, Brian Møller; Bruun, Georg Morten;

    2011-01-01

    We suggest two experimental methods for probing both short- and long-range spin correlations of atoms in optical lattices using superlattice potentials. The first method involves an adiabatic doubling of the periodicity of the underlying lattice to probe neighboring singlet (triplet) correlations...... for fermions (bosons) by the occupation of the resulting vibrational ground state. The second method utilizes a time-dependent superlattice potential to generate spin-dependent transport by any number of prescribed lattice sites, and probes correlations by the resulting number of doubly occupied sites....... For experimentally relevant parameters, we demonstrate how both methods yield large signatures of antiferromagnetic correlations of strongly repulsive fermionic atoms in a single shot of the experiment. Lastly, we show how this method may also be applied to probe d-wave pairing, a possible ground-state candidate...

  9. Differences Between a Single- and a Double-Folding Nucleus-^{9}Be Optical Potential

    Science.gov (United States)

    Bonaccorso, A.; Carstoiu, F.; Charity, R. J.; Kumar, R.; Salvioni, G.

    2016-05-01

    We have recently constructed two very successful n-^9Be optical potentials (Bonaccorso and Charity in Phys Rev C89:024619, 2014). One by the Dispersive Optical Model (DOM) method and the other (AB) fully phenomenological. The two potentials have strong surface terms in common for both the real and the imaginary parts. This feature makes them particularly suitable to build a single-folded (light-) nucleus-^9Be optical potential by using ab-initio projectile densities such as those obtained with the VMC method (Wiringa http://www.phy.anl.gov/theory/research/density/). On the other hand, a VMC density together with experimental nucleon-nucleon cross-sections can be used also to obtain a neutron and/or proton-^9Be imaginary folding potential. We will use here an ab-initio VMC density (Wiringa http://www.phy.anl.gov/theory/research/density/) to obtain both a n-^9Be single-folded potential and a nucleus-nucleus double-folded potential. In this work we report on the cases of ^8B, ^8Li and ^8C projectiles. Our approach could be the basis for a systematic study of optical potentials for light exotic nuclei scattering on such light targets. Some of the projectiles studied are cores of other exotic nuclei for which neutron knockout has been used to extract spectroscopic information. For those cases, our study will serve to make a quantitative assessment of the core-target part of the reaction description, in particular its localization.

  10. Alternative approach of developing all-optical Fredkin and Toffoli gates

    Science.gov (United States)

    Mandal, Dhoumendra; Mandal, Sumana; Garai, Sisir Kumar

    2015-09-01

    Reversible logic gates show potential roles in communication technology, and it has a wide area of applicability such as in sequential and combinational circuit of optical computing, optical signal processing, multi-valued logic operations, etc. because of its advantageous aspects of data-recovering capabilities, low power consumption, least power dissipation, faster speed of processing, less hardware complexity, etc. In a reversible logic gate not only the outputs can be determined from the inputs, but also the inputs can be uniquely recovered from the outputs. In this article an alternative approach has been made to develop three-input-output Fredkin and Toffoli gates using the frequency conversion property of semiconductor optical amplifier (SOA) and frequency-based beam routing by optical multiplexers and demultiplexers. Simulation results show the feasibility of our proposed scheme.

  11. An Index-Mismatch Scattering Approach to Optical Limiting

    Energy Technology Data Exchange (ETDEWEB)

    Exarhos, Gregory J.; Ferris, Kim F.; Windisch, Charles F.; Bozlee, Brian J.; Risser, Steven M.; Van Swam, Simone L.

    2001-08-01

    A densely packed bed of alkaline earth fluoride particles percolated by a fluid medium has been investigated as a potential index-matched optical limiter in the spirit of a Christiansen-Shelyubskii filter. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-swtiched Nd: YAG laser was on the order of about 1 J/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. In this case, the mechanism of optical limiting is thought to be a nonlinear shift in the fluid index of refraction, resulting in an index mismatch between the disparate phases at high laser fluence.

  12. Mitigation Approaches for Optical Imaging through Clouds and Fog

    Science.gov (United States)

    2009-11-01

    communications, remote sensing, and imaging. The advantages of performing imaging in the optical band are manifold. Modern Lidar and Ladar systems are preferred...image, the area search rate is low for this approach. This method is widely used in LIDAR applications in clear weather conditions. One intermediate...the average. This can be done by forcing the expectation of the Froebenius norm of H to 1. The resulting receiving image at the photodetectors can be

  13. A new approach to stitching optical metrology data

    Science.gov (United States)

    King, Christopher W.

    The next generation of optical instruments, including telescopes and imaging apparatus, will generate an increased requirement for larger and more complex optical forms. A major limiting factor for the production of such optical components is the metrology: how do we measure such parts and with respect to what reference datum This metrology can be thought of as part of a complete cycle in the production of optical components and it is currently the most challenging aspect of production. This thesis investigates a new and complete approach to stitching optical metrology data to extend the effective aperture or, in future, the dynamic range of optical metrology instruments. A practical approach is used to build up a complete process for stitching on piano and spherical parts. The work forms a basis upon which a stitching system for aspheres might be developed in the future, which is inherently more complicated. Beginning with a historical perspective and a review of optical polishing and metrology, the work presented relates the commercially available metrology instruments to the stitching process developed. The stitching is then performed by a numerical optimization routine that seeks to join together overlapping sub-aperture measurements by consideration of the aberrations introduced by the measurement scenario, and by the overlap areas between measurements. The stitching is part of a larger project, the PPARC Optical Manipulation and Metrology project, and was to benefit from new wavefront sensing technology developed by a project partner, and to be used for the sub-aperture measurement. Difficult mathematical problems meant that such a wavefront sensor was not avail able for this work and a work-around was therefore developed using commercial instruments. The techniques developed can be adapted to work on commercial ma chine platforms, and in partuicular, the OMAM NPL/UCL swing-arm profilometer described in chapter 5, or the computer controlled polishing machines

  14. Thioborates: potential nonlinear optical materials with rich structural chemistry.

    Science.gov (United States)

    Lian, Yu-Kun; Wu, Li-Ming; Chen, Ling

    2017-03-27

    Nonlinear optical (NLO) crystal materials with good performance are urgently needed. Various compounds have been explored to date. Metal chalcogenides and borates are common sources of potential NLO materials with desirable properties, particularly in the IR and UV regions, respectively. However, these two types of crystals have their specific drawbacks. Thioborates, as an emerging system, have unique advantages by combining the merits of borates and sulfides, i.e., the high laser damage thresholds and rich structural diversity of borates with large optical nonlinearity and the favorable transparency range of sulfides. However, only a limited number of thioborates are known. This paper summarizes the known thioborates according to structural motifs that range from zero-dimension to three-dimension, most of which are formed by sharing corners of the basic building units (BS3)(3-) and (BS4)(5-). Although nearly one-third of the known thioborates are noncentrosymmetric, most of their properties, especially their NLO behaviors, are unexplored. Further attempts and additional investigations are required with respect to design syntheses, property improvements and micro-mechanism studies.

  15. Nucleon Spin Content in a Relativistic Quark Potential Model Approach

    Institute of Scientific and Technical Information of China (English)

    DONG YuBing; FENG QingGuo

    2002-01-01

    Based on a relativistic quark model approach with an effective potential U(r) = (ac/2)(1 + γ0)r2, the spin content of the nucleon is investigated. Pseudo-scalar interaction between quarks and Goldstone bosons is employed to calculate the couplings between the Goldstone bosons and the nucleon. Different approaches to deal with the center of mass correction in the relativistic quark potential model approach are discussed.

  16. Spectral Singularity in confined PT symmetric optical potential

    CERN Document Server

    Sinha, Anjana

    2013-01-01

    We present an analytical study for the scattering amplitudes (Reflection |R| and Transmission |T|), of the periodic PT symmetric optical potential V(x) = W_0 cos^2 x + i W_0 V_0 sin 2x confined within the region 0 0.5) scattering is found to be anomalous (|T|^2, |R|^2 not necessarily \\leq 1). Additionally, in this parameter regime of V_0, one observes infinite number of spectral singularities E_{SS} at different values of V_0. Furthermore, for L = 2n \\pi, the transition point V_0 = 0.5 shows unidirectional invisibility with zero reflection when the beam is incident from the absorptive side (Im[V(x)] 0), transmission being identically unity in both cases.

  17. Market potential for optical fiber sensors in the energy sector

    Science.gov (United States)

    Bosselmann, T.

    2007-07-01

    For a long time electric power was taken as a natural unlimited resource. With globalisation the demand for energy has risen. This has brought rising prices for fossil fuels, as well as a diversification of power generation. Besides conventional fossil, nuclear plants are coming up again. Renewable energy sources are gaining importance resulting in recent boom of wind energy plants. In the past reliability and availability and an extremely long lifetime were of paramount importance. Today this has been added by cost, due to the global competition and the high fuel costs. New designs of power components have increased efficiency using lesser material. Higher efficiency causes inevitably higher stress on the materials, of which the machines are built. As a reduction of lifetime is not acceptable and maintenance costs are expected to be at a minimum, condition monitoring systems are going to being used now. This offers potentials for fibre optic sensor application.

  18. New fiber-based approaches for optical biopsy (Conference Presentation)

    Science.gov (United States)

    Weber, Jessie R.; Rivière, Christophe; Proulx, Antoine; Gallant, Pascal; Mermut, Ozzy

    2017-02-01

    Optical biopsy of tissue using fiber optic probes has proven to be a powerful tool for non-invasive and minimally invasive diagnostics. However, there are still many challenges to improving diagnostic value and commercial translation of these techniques. Many fiber-based methods are limited by background noise, which impairs sensitivity and specificity. Aspects of quality control, such as adequacy of the target of interest sampled and validation of optical measurements with histopathology can be problematic. Complexity, cost, and disposability or sterilizability are roadblocks to widespread clinical use. Here, we present new approaches to using fibers for optical biopsy aimed at solving these problems. Specifically, the new concepts are designed with the goals of being simple and disposable, to improve control of light delivery and collection from the sample, and to inherently enable better quality control of the biopsy process. A concept-of-operation aimed at nearly zero impact to the work flow of the biopsy and standard pathology procedures will be outlined. Several concepts for fiber implementations will be presented. A trade-off analysis of the concepts used to select a first implementation for testing will be presented. Preliminary experimental validation in phantoms and tissue samples will be presented for the selected configuration.

  19. Spectral singularity in confined PT symmetric optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Anjana [Department of Instrumentation Science, Jadavpur University, Kolkata - 700 032 (India); Roychoudhury, R. [Department of Mathematics, Bethune College, Kolkata - 700 006, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata - 700075 (India)

    2013-11-15

    We present an analytical study for the scattering amplitudes (Reflection ‖R‖ and Transmission ‖T‖), of the periodic PT symmetric optical potential V(x)=W{sub 0}cos{sup 2}x+iV{sub 0}sin2x confined within the region 0 ⩽x⩽L, embedded in a homogeneous medium having uniform potential W{sub 0}. The confining length L is considered to be some integral multiple of the period π. We give some new and interesting results. Scattering is observed to be normal (‖T‖{sup 2}⩽ 1, ‖R‖{sup 2}⩽ 1) for V{sub 0}⩽ 0.5, when the above potential can be mapped to a Hermitian potential by a similarity transformation. Beyond this point (V{sub 0} > 0.5) scattering is found to be anomalous (‖T‖{sup 2}, ‖R‖{sup 2} not necessarily ⩽1). Additionally, in this parameter regime of V{sub 0}, one observes infinite number of spectral singularities E{sub SS} at different values of V{sub 0}. Furthermore, for L= 2nπ, the transition point V{sub 0}= 0.5 shows unidirectional invisibility with zero reflection when the beam is incident from the absorptive side (Im[V(x)] < 0) but with finite reflection when the beam is incident from the emissive side (Im[V(x)] > 0), transmission being identically unity in both cases. Finally, the scattering coefficients ‖R‖{sup 2} and ‖T‖{sup 2} always obey the generalized unitarity relation : ‖T|{sup 2}−1|=√(|R{sub R}|{sup 2}|R{sub L}|{sup 2}), where subscripts R and L stand for right and left incidence, respectively.

  20. Wave optics approach for incoherent imaging simulation through distributed turbulence

    Science.gov (United States)

    Underwood, Thomas A.; Voelz, David G.

    2013-09-01

    An approach is presented for numerically simulating incoherent imaging using coherent wave optics propagation methods. The approach employs averaging of irradiance from uncorrelated coherent waves to produce incoherent results. Novel aspects of the method include 1) the exploitation of a spatial windowing feature in the wave optics numerical propagator to limit the angular spread of the light and 2) a simple propagation scaling concept to avoid aliased field components after the focusing element. Classical linear systems theory is commonly used to simulate incoherent imaging when it is possible to incorporate aberrations and/or propagation medium characteristics into an optical transfer function (OTF). However, the technique presented here is useful for investigating situations such as "instantaneous" short-exposure imaging through distributed turbulence and phenomena like anisoplanatism that are not easily modeled with the typical linear systems theory. The relationships between simulation variables such as spatial sampling, source and aperture support, and intermediate focal plane are discussed and the requirement or benefits of choosing these in certain ways are demonstrated.

  1. Optical Approach for the Thermal Partition Function of Photons

    CERN Document Server

    Moretti, V; Moretti, Valter; Iellici, Devis

    1997-01-01

    The optical manifold method to compute the one-loop effective action in a static space-time is extended from the massless scalar field to the Maxwell field in any Feynman-like covariant gauge. The method applied in the case of the Rindler space obtaining the same results as the point-splitting procedure. The result is free from Kabat's surface terms which instead affect the manifold containing conical singularities. The relation between the optical method and the direct $\\zeta$-function approach on the Euclidean Rindler manifold is discussed both in the scalar and the photon case. Problems with the thermodynamic consistency of the results obtained from the point-splitting thermal stress tensor in the case of the Rindler space are pointed out.

  2. Computer Aided Interpretation Approach for Optical Tomographic Images

    CERN Document Server

    Klose, Christian D; Netz, Uwe; Beuthan, Juergen; Hielscher, Andreas H

    2010-01-01

    A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) of human finger joints in optical tomographic images. The image interpretation method employs a multi-variate signal detection analysis aided by a machine learning classification algorithm, called Self-Organizing Mapping (SOM). Unlike in previous studies, this allows for combining multiple physical image parameters, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging and inspection of optical tomographic images), were used as "ground truth"-benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities while...

  3. Optical resonance problem in metamaterial arrays: a lattice dynamics approach

    Science.gov (United States)

    Liu, Wanguo

    2016-11-01

    A systematic dynamic theory is established to deal with the optical collective resonance in metamaterial arrays. As a reference model, we consider an infinite split ring resonator (SRR) array illuminated by a linearly polarized wave and introduce an N-degree-of-freedom forced oscillator equation to simplify the coupled-mode vibration problem. We derive a strict formula of resonance frequency (RF) and its adjustable range from the steady-state response. Unlike a single SRR possesses invariant RF, it successfully explains the mechanism of RF shift effect in the SRR array when the incident angle changes. Instead of full wave analysis, only one or two adjacent resonance modes can give an accurate response line shape. Our approach is applicable for metallic arrays with any N-particle cell at all incident angles and well matched with numerical results. It provides a versatile way to study the vibration dynamics in optical periodic many-body systems.

  4. Approach to diagnosis and management of optic neuropathy

    Directory of Open Access Journals (Sweden)

    Sharik Mustafa

    2014-01-01

    Full Text Available Visual loss consequent to anterior visual pathway involvement can occur in a variety of clinical settings. In a tropical country like India, apart from the usual suspects, nutritional, infective, and toxic amblyopia have to be considered in the differential diagnosis. The mode of onset (acute/chronic, unilateral versus bilateral involvement, accompanying occular pain or the lack of it, and pattern of visual loss are some of the pointers which help to differentiate optic neuropathy clinically. The presence of concurrent neurological deficits, evidence of other systemic illnesses, and the results of serological and radiological investigations help to confirm the diagnosis. This article briefly describes the important causes of optic neuropathy in the Indian context and outlines a practical approach to management.

  5. Adaptive-optic approach to mitigating aero-optic disturbances for a forced shear layer

    Science.gov (United States)

    Nightingale, Alice M.

    Non-uniform, variable-density fields, resulting from compressibility effects in turbulent flows, are the source of aero-optical distortions which cause significant reductions in optical system performance. As a laser beam transverses through an optically active medium, containing index-of-refraction variations, several optical phenomena occur including beam wander, image distortion, and beam defocus. When encountering a variation in the index field, light waves refract causing an otherwise planar wavefront of a laser beam to become aberrated, contributing to the adverse effects mentioned above. Adaptive-Optics (AO) is a technique used to correct for such spatially and temporally varying aberrations on an optical beam by applying a conjugate waveform correction prior to the beams transmission through the flow. Conventional AO systems are bandwidth limited by real-time processing issues and wavefront sensor limitations. Therefore, an alternative to the conventional AO approach has been proposed, developed and evaluated with the goal of overcoming such bandwidth limitations. The alternative AO system, presented throughout this document, consists of two main features; feed-forward flow control and a phase-locked-loop AO control strategy. Initially irregular, unpredictable large-scale structures within a shear layer are regularized using flow control. Subsequently, the resulting optical wavefront, and corresponding optical signal, emerging from the regularized flow becomes more periodic and predictable effectively reducing the bandwidth necessary to make real-time corrections. A phase-lock-loop controller is then used to perform real-time corrections. Wavefront corrections are estimated based upon the regularized flow, while two small aperture laser beams provide a non-intrusive means of acquiring amplitude and phase error measurements. The phase-lock-loop controller uses these signals as feedback to synchronize the deformable mirror's waveform to that of the shear

  6. Subaperture approaches to finishing and testing astronomical optics

    Science.gov (United States)

    Forbes, Gregory W.; Tricard, Marc

    2004-07-01

    We describe the application of both stitching interferometry and magneto-rheological finishing (MRF) to the surface metrology and final figure correction of large optics. These particular subaperture technologies help to address the need for flexible systems that improve both overall manufacturing time and cost effectiveness. MRF can achieve high volumetric removal rates with a small-footprint tool that is perfectly conformable and highly stable. This tool is therefore well suited to finishing large optics (including aspheres) and correcting mid-spatial frequency errors. The system does not need vacuum, reduces microroughness to below one nm rms on most materials, and is able to meet the figure tolerance specs for astronomical optics. Such a technology is ideally complemented by a system for the stitching of interferometric subaperture data. Stitching inherently enables the testing of larger apertures with higher resolution and, thanks to the inbuilt calibration, even to higher accuracy in many situations. Moreover, given the low-order character of the dominant residual uncertainties in the stitched full-aperture data, such an approach is well suited to adaptive mirrors because the actuators correct precisely these deformations. While this approach enables the non-null testing of parts with greater aspheric departure and can lead to a significantly reduced non-common air path in the testing of long-radius concave parts, it is especially effective for convex optics. That is, stitching is particularly well suited to the testing of secondary mirrors and, alongside the testing of the off-axis primary segments, these are clearly critical challenges for extremely large telescope (ELT) projects.

  7. New approach to imaging spectroscopy using diffractive optics

    Science.gov (United States)

    Hinnrichs, Michele; Massie, Mark A.

    1997-10-01

    Over the past several years, Pacific Advanced Technology (PAT) has developed several hyperspectral imagers using diffractive optics as the dispersive media. This new approach has been patented and demonstrated in numerous field tests. PAT has developed hyperspectral cameras in the visible, mid-wave IR and is currently under contrast to the Air Force to develop a dual band hyperspectral lens for simultaneous spectral imaging in both the mid-wave and long- wave IR. The development of these cameras over the years have been sponsored by internal research and development, contracts from the Air Force Phillips Lab., Air Force Wright Labs Armament Division, BMDO and by the Office of Naval Research. Numerous papers have been presented in the past describing the performance of these various hyperspectral cameras. The purpose of this paper is to describe the theory behind the image multi-spectral sensing (IMSS) used in these hyperspectral cameras. IMSS utilizes a very simple optical design that enables a robust and low cost hyper-spectral imaging instrument. The IMSS is a dispersive spectrometer using a single diffractive optical element for both imaging and dispersion. The lens is tuned for a single wavelength giving maximum diffraction efficiency at that wavelength and high efficiency throughout the spectral band-pass of the camera. The diffractive optics disperse the light along the optical axis as opposed to perpendicular to the axis in conventional dispersive spectrometers. A detector array is used as the sensing medium and the spectral images are rad out electronically. POst processing is used to reduce spectral cross talk and to spatially sharpen the spectral images.

  8. Propolis and bee venom in diabetic wounds; a potential approach ...

    African Journals Online (AJOL)

    Propolis and bee venom in diabetic wounds; a potential approach that warrants ... in diabetes mellitus is a complex multi-stage process that requires the proper ... Bee products have various properties that make them an important addition to ...

  9. Implementation of Potential of the Transdisciplinary Approaches in Economic Studies

    Science.gov (United States)

    Stepanova, Tatiana E.; Manokhina, Nadeghda V.; Konovalova, Maria E.; Kuzmina, Olga Y.; Andryukhina, Lyudmila M.

    2016-01-01

    The relevance of the researched problem is caused by the increasing interest in using potential of transdisciplinary approaches, and mathematical methods, which include the game theory in analysis of public and economic processes. The aim of the article is studying a possibility of implementation of the transdisciplinary approaches in economic…

  10. Optical vortices as potential indicators of biophysical dynamics

    Science.gov (United States)

    Majumdar, Anindya; Kirkpatrick, Sean J.

    2017-03-01

    Laser speckle patterns are granular patterns produced as a result of random interference of light waves. Optical vortices (OVs) are phase singularities in such speckle fields, characterized by zero intensity and an undefined phase. Decorrelation of the speckle fields causes these OVs to move in both time and space. In this work, a variety of parameters of these OVs have been studied. The speckle fields were simulated to undergo three distinct decorrelation behaviors- Gaussian, Lorentzian and constant decorrelations. Different decorrelation behaviors represent different dynamics. For example, Lorentzian and Gaussian decorrelations represent Brownian and ordered motions, respectively. Typical dynamical systems in biophysics are generally argued to be a combination of these. For each of the decorrelation behaviors under study, the vortex trails were tracked while varying the rate of decorrelation. Parameters such as the decorrelation length, average trail length and the deviation of the vortices as they traversed in the speckle field, were studied. Empirical studies were also performed to define the distinction between trails arising from different speckle decorrelation behaviors. The initial studies under stationary speckle fields were followed up by similar studies on shifting fields. A new idea to employ Poincaŕe plots in speckle analysis has also been introduced. Our studies indicate that tracking OVs can be a potential method to study cell and tissue dynamics.

  11. The potential of optical coherence tomography for diagnosing meniscal pathology

    Science.gov (United States)

    Hang-Yin Ling, Carrie; Pozzi, Antonio; Thieman, Kelley M.; Tonks, Catherine A.; Guo, Shuguang; Xie, Huikai; Horodyski, MaryBeth

    2010-04-01

    Meniscal tears are often associated with anterior cruciate ligament (ACL) injury and may lead to pain and discomfort in humans. Maximal preservation of meniscal tissue is highly desirable to mitigate the progression of osteoarthritis. Guidelines of which meniscal tears are amenable to repair and what part of damaged tissues should be removed are elusive and lacking consensus. Images of microstructural changes in meniscus would potentially guide the surgeons to manage the meniscal tears better, but the resolution of current diagnostic techniques is limited for this application. In this study, we demonstrated the feasibility of using optical coherence tomography (OCT) for the diagnosis of meniscal pathology. Torn medial menisci were collected from dogs with ACL insufficiency. The torn meniscus was divided into three tissue samples and scanned by OCT and scanning electron microscopy (SEM). OCT and SEM images of torn menisci were compared. Each sample was evaluated for gross and microstructural abnormalities and reduction or loss of birefringence from the OCT images. The abnormalities detected with OCT were described for each type of tear. OCT holds promise in non-destructive and fast assessment of microstructural changes and tissue birefringence of meniscal tears. Future development of intraoperative OCT may help surgeons in the decision making of meniscal treatment.

  12. Towards a ^87Rb BEC apparatus with reconfigurable arbitrary optical potentials and artificial gauge fields

    Science.gov (United States)

    Niffenegger, Robert; Olson, Abraham; Chen, Yong P.

    2012-06-01

    We have constructed an all-optical ^87Rb BEC apparatus, which is currently creating condensates in a 1550nm cross beam optical dipole trap every 30s. We present experimental progress toward implementing reconfigurable arbitrary optical potentials and artificial gauge fields in our apparatus. Time-averaged, dynamically-reconfigurable, arbitrary-shaped optical potentials are generated using a dual-axis AOM controlled by a two-channel high-bandwidth arbitrary RF waveform generator. Using a blue-detuned 532nm laser, we have demonstrated various optical potential geometries such as a tilting wedge, checkerboard and elliptical barriers. Such arbitrary, reconfigurable optical potentials will be used to explore quantum phase transitions in superfluids. Our excellent optical access also allows the addition of Raman beams of various arrangements. Raman dressed states can be used to induce spin dependent artificial gauge fields for studying physics such as the spin Hall effect.

  13. Interrelationship of optical coherence tomography and multifocal visual-evoked potentials after optic neuritis.

    Science.gov (United States)

    Klistorner, Alexander; Arvind, Hemamalini; Garrick, Raymond; Graham, Stuart L; Paine, Mark; Yiannikas, Con

    2010-05-01

    Acute optic neuritis (ON) is often followed by recovery of visual function. Although this recovery is mainly attributable to resolution of the acute inflammation, the redistribution of ion channels along the demyelinated membrane, and subsequent remyelination, part of it may be the result of neural plasticity. In the present study, the interrelationship was examined between structural (retinal nerve fiber layer [RNFL] thickness) and functional (amplitude of multifocal visual evoked potentials [mfVEPs]) measures of the integrity of the visual pathway in the postacute stage of ON, to determine whether there was any evidence of ongoing neural reorganization. Twenty-five subjects with acute unilateral ON underwent serial RNFL thickness measurement and mfVEP recording. The inter-eye asymmetry of both measures was analyzed. In the period between 6 and 12 months, the subjects were considered free of optic disc edema, and that period was used to analyze the structure-function relationship. Twenty control subjects were also examined. There were significant but opposite changes in RNFL thickness and mfVEP amplitude. The average asymmetry of RNFL thickness between affected and fellow eyes increased from 17.5 +/- 11.5 to 21.1 +/- 12.8 microm (P = 0.0003), indicating progressive axonal loss, whereas mfVEP amplitude asymmetry decreased from 46.6 +/- 32.4 to 38.3 +/- 31.1 nV (P = 0.0015), indicating continuous functional recovery. In comparison to the 6-month results, the mfVEP amplitude in the ON eye improved by 17.8%, whereas RNFL thickness decreased by 20.8%. The result remained unchanged regardless of the degree of optic nerve remyelination. The finding of structural-functional discrepancy at the postinflammatory stage may support the concept that neural plasticity contributes to functional recovery after acute ON.

  14. Multidimensional Approach to Detecting Creative Potential in Managers

    Science.gov (United States)

    Caroff, Xavier; Lubart, Todd

    2012-01-01

    Creativity is increasingly recognized as a key component to success in the workplace. This article explores the detection of creative potential in managers. In a first part, creative potential is defined and a multivariate approach concerning the psychological resources for creativity is presented. Then, in a second part, an application of this…

  15. Optical trimer: A theoretical physics approach to waveguide couplers

    CERN Document Server

    Stoffel, A; Rodríguez-Lara, B M

    2016-01-01

    We study electromagnetic field propagation through an ideal, passive, triangular three-waveguide coupler using a symmetry based approach to take advantage of the underlying $SU(3)$ symmetry. The planar version of this platform has proven valuable in photonic circuit design providing optical sampling, filtering, modulating, multiplexing, and switching. We show that a group-theory approach can readily provide a starting point for design optimization of the triangular version. Our analysis is presented as a practical tutorial on the use of group theory to study photonic lattices for those not familiar with abstract algebra methods. In particular, we study the equilateral trimer to show the relation of pearl-necklace arrays with the Discrete Fourier Transform due to their cyclic group symmetry, and the isosceles trimer to show its relation with the golden ratio and its ability to provide stable output at a single waveguide. We also study the propagation dependent case of an equilateral trimer that linearly increa...

  16. A fiber optic approach for in vivo minimally invasive study of tissue optical properties

    Science.gov (United States)

    Ilev, Ilko K.; Waynant, Ronald W.; Byrnes, Kimberly R.; Anders, Juanita

    2004-06-01

    Based on a fiber-optic approach, we present a fundamental in vivo study of optical properties and light transmission characteristics of single and multiple tissue layers and blood in a Sprague Dawley rat model. In our experiments, we utilize either coherent laser sources with various energy and spectral characteristics or incoherent light sources in a broadband spectral range covering the visible and near-infrared (from 400 nm to 1200 nm). The measurement techniques are based on a simple minimally invasive fiber-optic light delivery system that provides an effective method for homogeneously and precisely controlling the light irradiation of the tissue medium as well as being a highly sensitive detector of the tissue's scattered light. The delivery-sensor probes are placed into different tissue layers (skin, sub-cutaneous connective and deep connective tissue, back muscle, bone and spinal cord) and blood, and broadband spectral transmission characteristics of these media are measured in vivo. The transmission spectra are analyzed in order to determine the specificity of interaction of different tissues with light. The main goal is to determine the most effective coherent or incoherent light sources and their optimal parameters that might be used for minimally invasive therapeutic and optical diagnostics techniques.

  17. Thin film detection of High Energy Materials: Optical Pumping Approach

    CERN Document Server

    Barthwal, Sachin

    2014-01-01

    We present our work on High Energy Material detection based on thin film of Lithium using the phenomenon of Optical Pumping. The Li atoms present in the thin film are optically pumped to one of the ground hyperfine energy levels so that they can no more absorb light from the resonant light source. Now in presence of a RF signal, which quantifies the ambient magnetic field, this polarized atomic system is again randomized thus making it reabsorb the resonant light. This gives a quantified measurement of the magnetic field surrounding the thin film detector. This is then mapped to the presence of magnetic HEM and hence the HEM are detected. Our approach in this regard starts with verifying the stability of Lithium atoms in various solvents so as to get a suitable liquid medium to form a thin film. In this regard, various UV-visible characterization spectra are presented to finally approach a stable system for the detection. We have worked on around 10 polar and non- polar solvents to see the stability criteria....

  18. Computational Approach for Studying Optical Properties of DNA Systems in Solution

    DEFF Research Database (Denmark)

    Nørby, Morten Steen; Svendsen, Casper Steinmann; Olsen, Jógvan Magnus Haugaard

    2016-01-01

    In this paper we present a study of the methodological aspects regarding calculations of optical properties for DNA systems in solution. Our computational approach will be built upon a fully polarizable QM/MM/Continuum model within a damped linear response theory framework. In this approach...... the environment is given a highly advanced description in terms of the electrostatic potential through the polarizable embedding model. Furthermore, bulk solvent effects are included in an efficient manner through a conductor-like screening model. With the aim of reducing the computational cost we develop a set...... of averaged partial charges and distributed isotropic dipole-dipole polarizabilities for DNA suitable for describing the classical region in ground-state and excited-state calculations. Calculations of the UV-spectrum of the 2-aminopurine optical probe embedded in a DNA double helical structure are presented...

  19. Density dependence of microscopic nucleon optical potential in first order Brueckner theory

    Science.gov (United States)

    Saliem, S. M.; Haider, W.

    2002-06-01

    In the present work we apply the lowest order Brueckner theory of infinite nuclear matter to obtain nucleon-nucleus optical potential for p-40Ca elastic scattering at 200 MeV using Urbana V14 soft core internucleon potential. We have investigated the effect of target density on the calculated nucleon-nucleus optical potential. We find that the calculated optical potentials depend quite sensitively on the density distribution of the target nucleus. The important feature is that the real part of calculated central optical potential for all densities shows a wine-bottle-bottom type behaviour at this energy. We also discuss the effect of our new radial dependent effective mass correction. Finally, we compare the prediction of our calculated nucleon optical potential using V14 with the prediction using older hard core Hamada-Johnston internucleon potential for p-40Ca elastic scattering at 200 MeV.

  20. Optophysiological approach to resolve neuronal action potentials with high spatial and temporal resolution in cultured neurons

    Directory of Open Access Journals (Sweden)

    Stephane ePages

    2011-10-01

    Full Text Available Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm. Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (> 10 % of fluorescence change for 100 mV depolarization and time response (submillisecond of the dye allows the robust detection of action potentials (APs even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms resolution and high spatial (µm resolution.

  1. Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential

    Science.gov (United States)

    Çakır, Bekir; Yakar, Yusuf; Özmen, Ayhan

    2015-02-01

    Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s2, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients.

  2. Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Bekir, E-mail: bcakir@selcuk.edu.tr [Physics Department, Faculty of Science, Selcuk University, Campus 42075, Konya (Turkey); Yakar, Yusuf, E-mail: yuyakar@yahoo.com [Physics Department, Faculty of Arts and Science, Aksaray University, Campus 68100, Aksaray (Turkey); Özmen, Ayhan [Physics Department, Faculty of Science, Selcuk University, Campus 42075, Konya (Turkey)

    2015-02-01

    Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s{sup 2}, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients.

  3. Polymer scaffolds bearing azobenzene - Potential for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, P.S.

    2001-01-01

    The fundamental optical storage mechanism of the laser light addressable azobenzene moiety is briefly introduced. A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularly spaced side chains. Thin films of these materials are particul......The fundamental optical storage mechanism of the laser light addressable azobenzene moiety is briefly introduced. A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularly spaced side chains. Thin films of these materials...

  4. Multistage optical smoke detection approach for smoke alarm systems

    Science.gov (United States)

    Nguyen, Truc Kim Thi; Kim, Jong-Myon

    2013-05-01

    We propose a novel multistage smoke detection algorithm based on inherent optical characteristics such as diffusion, color, and texture of smoke. Moving regions in a video frame are detected by an approximate median background subtraction method using the diffusion behavior of smoke. These moving regions are segmented by a fuzzy C-means (FCM) clustering algorithm that uses the hue and saturation components of moving pixels in the hue-saturation-intensity color space. A decision rule is used to select candidate smoke regions from smoke-colored FCM clusters. An object tracking approach is employed in the candidate smoke region to detect candidate smoke objects in the video frame, and image texture parameters are extracted from these objects using a gray level co-occurrence matrix (GLCM). The thirteen GLCM features are selected to constitute the feature vector by applying principal components analysis, resulting in high-accuracy smoke detection. Finally, a back propagation neural network is utilized as a classifier to discriminate smoke and nonsmoke using the selected feature vector. Experimental results using a standard experimental dataset of video clips demonstrate that the proposed approach outperforms state-of-the-art smoke detection approaches in terms of accuracy, making real-life implementation feasible.

  5. Computer-aided interpretation approach for optical tomographic images

    Science.gov (United States)

    Klose, Christian D.; Klose, Alexander D.; Netz, Uwe J.; Scheel, Alexander K.; Beuthan, Jürgen; Hielscher, Andreas H.

    2010-11-01

    A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous studies, this allows for combining multiple image features, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging, and inspection of optical tomographic images), were used to produce ground truth benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities, while others to higher specificities when compared to single parameter classifications employed in previous studies. Maximum performances are reached when combining the minimum/maximum ratio of the absorption coefficient and image variance. In this case, sensitivities and specificities over 0.9 can be achieved. These values are much higher than values obtained when only single parameter classifications were used, where sensitivities and specificities remained well below 0.8.

  6. Scattered Data Processing Approach Based on Optical Facial Motion Capture

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2013-01-01

    Full Text Available In recent years, animation reconstruction of facial expressions has become a popular research field in computer science and motion capture-based facial expression reconstruction is now emerging in this field. Based on the facial motion data obtained using a passive optical motion capture system, we propose a scattered data processing approach, which aims to solve the common problems of missing data and noise. To recover missing data, given the nonlinear relationships among neighbors with the current missing marker, we propose an improved version of a previous method, where we use the motion of three muscles rather than one to recover the missing data. To reduce the noise, we initially apply preprocessing to eliminate impulsive noise, before our proposed three-order quasi-uniform B-spline-based fitting method is used to reduce the remaining noise. Our experiments showed that the principles that underlie this method are simple and straightforward, and it delivered acceptable precision during reconstruction.

  7. Zeta-function approach to Casimir energy with singular potentials

    CERN Document Server

    Khusnutdinov, N R

    2006-01-01

    In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials is analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated and it is shown that the surface contribution appears. The renormalization of the effective action is discussed.

  8. Nonlinear Optical Properties of Organic and Polymeric Thin Film Materials of Potential for Microgravity Processing Studies

    Science.gov (United States)

    Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.

    1996-01-01

    In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.

  9. Testing Potential New Sites for Optical Telescopes in Australia

    CERN Document Server

    Hotan, Claire E; Glazebrook, Karl

    2012-01-01

    In coming years, Australia may find the need to build new optical telescopes to continue local programmes, contribute to global survey projects, and form a local multi-wavelength connection for the new radio telescopes being built. In this study, we refine possible locations for a new optical telescope by studying remotely sensed meteorological infrared data to ascertain expected cloud coverage rates across Australia, and combine these data with a Digital Elevation Model using a Geographic Information System. We find that the best sites within Australia for building optical telescopes are likely to be on the highest mountains in the Hamersley Range in Northwest Western Australia, while the MacDonnell Ranges in the Northern Territory may also be appropriate. We believe that similar seeing values to Siding Spring should be obtainable and with significantly more observing time at the identified sites. We expect to find twice as many clear nights as at current telescope sites. These sites are thus prime locations...

  10. Bayesian ensemble approach to error estimation of interatomic potentials

    DEFF Research Database (Denmark)

    Frederiksen, Søren Lund; Jacobsen, Karsten Wedel; Brown, K.S.;

    2004-01-01

    Using a Bayesian approach a general method is developed to assess error bars on predictions made by models fitted to data. The error bars are estimated from fluctuations in ensembles of models sampling the model-parameter space with a probability density set by the minimum cost. The method...... is applied to the development of interatomic potentials for molybdenum using various potential forms and databases based on atomic forces. The calculated error bars on elastic constants, gamma-surface energies, structural energies, and dislocation properties are shown to provide realistic estimates...... of the actual errors for the potentials....

  11. Close Approaches of Potentially Hazardous Asteroids during Two Centuries

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Asteroids are the most important small bodies in the solar system and the near-earth asteroids (NEAs) are of especial concern to the world. The reasonis that they will make close approaches to the earth in the near future. We usea reasonable dynamical model and an efficient computing method to calculate the orbits of over 160 Potentially Hazardous Asteroids (PHAs) for two centuries.

  12. Rapid determination of enantiomeric excess: a focus on optical approaches.

    Science.gov (United States)

    Leung, Diana; Kang, Sung Ok; Anslyn, Eric V

    2012-01-07

    High-throughput screening (HTS) methods are becoming increasingly essential in discovering chiral catalysts or auxiliaries for asymmetric transformations due to the advent of parallel synthesis and combinatorial chemistry. Both parallel synthesis and combinatorial chemistry can lead to the exploration of a range of structural candidates and reaction conditions as a means to obtain the highest enantiomeric excess (ee) of a desired transformation. One current bottleneck in these approaches to asymmetric reactions is the determination of ee, which has led researchers to explore a wide range of HTS techniques. To be truly high-throughput, it has been proposed that a technique that can analyse a thousand or more samples per day is needed. Many of the current approaches to this goal are based on optical methods because they allow for a rapid determination of ee due to quick data collection and their parallel analysis capabilities. In this critical review these techniques are reviewed with a discussion of their respective advantages and drawbacks, and with a contrast to chromatographic methods (180 references).

  13. An optical approach for non-invasive blood clot testing

    Science.gov (United States)

    Kalchenko, Vyacheslav; Brill, Alexander; Fine, Ilya; Harmelin, Alon

    2007-02-01

    Physiological blood coagulation is an essential biological process. Current tests for plasma coagulation (clotting) need to be performed ex vivo and require fresh blood sampling for every test. A recently published work describes a new, noninvasive, in vivo approach to assess blood coagulation status during mechanical occlusion1. For this purpose, we have tested this approach and applied a controlled laser beam to blood micro-vessels of the mouse ear during mechanical occlusion. Standard setup for intravital transillumination videomicroscopy and laser based imaging techniques were used for monitoring the blood clotting process. Temporal mechanical occlusion of blood vessels in the observed area was applied to ensure blood flow cessation. Subsequently, laser irradiation was used to induce vascular micro-injury. Changes in the vessel wall, as well as in the pattern of blood flow, predispose the area to vascular thrombosis, according to the paradigm of Virchow's triad. In our experiments, two elements of Virchow's triad were used to induce the process of clotting in vivo, and to assess it optically. We identified several parameters that can serve as markers of the blood clotting process in vivo. These include changes in light absorption in the area of illumination, as well as changes in the pattern of the red blood cells' micro-movement in the vessels where blood flow is completely arrested. Thus, our results indicate that blood coagulation status can be characterized by non-invasive, in vivo methodologies.

  14. A regularized tri-linear approach for optical interferometric imaging

    Science.gov (United States)

    Birdi, Jasleen; Repetti, Audrey; Wiaux, Yves

    2017-06-01

    In the context of optical interferometry, only undersampled power spectrum and bispectrum data are accessible. It poses an ill-posed inverse problem for image recovery. Recently, a tri-linear model was proposed for monochromatic imaging, leading to an alternated minimization problem. In that work, only a positivity constraint was considered, and the problem was solved by an approximated Gauss-Seidel method. In this paper, we propose to improve the approach on three fundamental aspects. First, we define the estimated image as a solution of a regularized minimization problem, promoting sparsity in a fixed dictionary using either an ℓ1 or a (re)weighted-ℓ1 regularization term. Secondly, we solve the resultant non-convex minimization problem using a block-coordinate forward-backward algorithm. This algorithm is able to deal both with smooth and non-smooth functions, and benefits from convergence guarantees even in a non-convex context. Finally, we generalize our model and algorithm to the hyperspectral case, promoting a joint sparsity prior through an ℓ2,1 regularization term. We present simulation results, both for monochromatic and hyperspectral cases, to validate the proposed approach.

  15. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2016-01-01

    Full Text Available Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized.

  16. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases

    Science.gov (United States)

    Mesentier-Louro, Louise A.; Zaverucha-do-Valle, Camila; Rosado-de-Castro, Paulo H.; Silva-Junior, Almir J.; Pimentel-Coelho, Pedro M.; Mendez-Otero, Rosalia; Santiago, Marcelo F.

    2016-01-01

    Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized. PMID:26649049

  17. Integrated Approach to Free Space Optical Communications in Strong Turbulence

    Science.gov (United States)

    2011-09-01

    24 EDFA erbium-doped fiber amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 APD...either optically or electrically. An erbium-doped fiber amplifier ( EDFA ), which optically enhances the signal but is susceptible to increased noise due to

  18. Infrared optical activity: electric field approaches in time domain.

    Science.gov (United States)

    Rhee, Hanju; Choi, Jun-Ho; Cho, Minhaeng

    2010-12-21

    Vibrational circular dichroism (VCD) spectroscopy provides detailed information about the absolute configurations of chiral molecules including biomolecules and synthetic drugs. This method is the infrared (IR) analogue of the more popular electronic CD spectroscopy that uses the ultraviolet and visible ranges of the electromagnetic spectrum. Because conventional electronic CD spectroscopy measures the difference in signal intensity, problems such as weak signal and low time-resolution can limit its utility. To overcome the difficulties associated with that approach, we have recently developed femtosecond IR optical activity (IOA) spectrometry, which directly measures the IOA free-induction-decay (FID), the impulsive chiroptical IR response that occurs over time. In this Account, we review the time-domain electric field measurement and calculation methods used to simultaneously characterize VCD and related vibrational optical rotatory dispersion (VORD) spectra. Although conventional methods measure the electric field intensity, this vibrational technique is based on a direct phase-and-amplitude measurement of the electric field of the chiroptical signal over time. This method uses a cross-polarization analyzer to carry out heterodyned spectral interferometry. The cross-polarization scheme enables us to selectively remove the achiral background signal, which is the dominant noise component present in differential intensity measurement techniques. Because we can detect the IOA FID signal in a phase-amplitude-sensitive manner, we can directly characterize the time-dependent electric dipole/magnetic dipole response function and the complex chiral susceptibility that contain information about the angular oscillations of charged particles. These parameters yield information about the VCD and VORD spectra. In parallel with such experimental developments, we have also calculated the IOA FID signal and the resulting VCD spectrum. These simulations use a quantum mechanical

  19. Visual Evoked Potential Recording in a Rat Model of Experimental Optic Nerve Demyelination.

    Science.gov (United States)

    You, Yuyi; Gupta, Vivek K; Chitranshi, Nitin; Reedman, Brittany; Klistorner, Alexander; Graham, Stuart L

    2015-07-29

    The visual evoked potential (VEP) recording is widely used in clinical practice to assess the severity of optic neuritis in its acute phase, and to monitor the disease course in the follow-up period. Changes in the VEP parameters closely correlate with pathological damage in the optic nerve. This protocol provides a detailed description about the rodent model of optic nerve microinjection, in which a partial demyelination lesion is produced in the optic nerve. VEP recording techniques are also discussed. Using skull implanted electrodes, we are able to acquire reproducible intra-session and between-session VEP traces. VEPs can be recorded on individual animals over a period of time to assess the functional changes in the optic nerve longitudinally. The optic nerve demyelination model, in conjunction with the VEP recording protocol, provides a tool to investigate the disease processes associated with demyelination and remyelination, and can potentially be employed to evaluate the effects of new remyelinating drugs or neuroprotective therapies.

  20. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond

    CERN Document Server

    Barry, J F; Schloss, J M; Glenn, D R; Song, Y; Lukin, M D; Park, H; Walsworth, R L

    2016-01-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential (AP) dynamics in whole organisms with single-neuron resolution. Here, we present a new approach to this problem: using nitrogen-vacancy (NV) quantum defects in diamond to measure the time-dependent magnetic fields produced by single-neuron APs. Our technique has a unique combination of features: (i) it is noninvasive, as the light that probes the NV sensors stays within the biocompatible diamond chip and does not enter the organism, enabling activity monitoring over extended periods; (ii) it is label-free and should be widely applicable to most organisms; (iii) it provides high spatial and temporal resolution, allowing precise measurement of the AP waveforms and conduction velocities of individual neurons; (iv) it directly determines AP propagation direction through the inherent sensitivity of NVs to the associated AP magnetic field vector; (v) it is applicable to neurons located within optically opaque tissue or whole org...

  1. A finite element approach to x-ray optics design

    Science.gov (United States)

    Honkanen, A. P.; Ferrero, C.; Guigay, J. P.; Mocella, V.

    2017-05-01

    Dynamical diffraction in a deformed (often bent) crystal is described by the Takagi equations 1 which, in general, have to be solved numerically on a regular 2-D grid of points representing a planar cross section of the crystal in which the diffraction of an incident X-ray wavefront occurs . Presently, the majority of numerical approaches are based on a finite difference solving scheme2-4 which can be easily implemented on a regular Cartesian grid but is not suitable for deformed meshes. In this case, the inner deformed crystal structure can be taken into account, but not the shape of the crystal surface if this differs substantially from a planar profile 5,6. Conversely, a finite element method (FEM) can be easily applied to a deformed mesh and serves very well to the purpose of modelling any incident wave on an arbitrarily shaped entrance surface 7 e.g. that of a bent crystal or a crystal submitted to a strong heat load 8-10. For instance, the cylindrical shape of the surface of a strongly bent crystal plate can easily be taken into account in a FEM calculation. Bent crystals are often used as focusing optical elements in Xray beamlines 11-13. In the following, we show the implementation of a general numerical framework for describing the propagation of X-rays inside a crystal based on the solution of the Takagi equations via the COMSOL Multiphysics FEM software package (www.comsol.com). A cylindrically bent crystal will be taken as an example to illustrate the capabilities of the new approach.

  2. Noise and signal interference in optical fiber transmission systems an optimum design approach

    CERN Document Server

    Bottacchi, Stefano

    2008-01-01

    A comprehensive reference to noise and signal interference in optical fiber communications Noise and Signal Interference in Optical Fiber Transmission Systems is a compendium on specific topics within optical fiber transmission and the optimization process of the system design. It offers comprehensive treatment of noise and intersymbol interference (ISI) components affecting optical fiber communications systems, containing coverage on noise from the light source, the fiber and the receiver. The ISI is modeled with a statistical approach, leading to new useful computational m

  3. A regularized tri-linear approach for optical interferometric imaging

    CERN Document Server

    Birdi, Jasleen; Wiaux, Yves

    2016-01-01

    In the context of optical interferometry, only under-sampled power spectrum and bispectrum data are accessible. It poses an ill-posed inverse problem for image recovery. Recently, a tri-linear model was proposed for monochromatic imaging, leading to an alternated minimization problem. In that work, only a positivity constraint was considered, and the problem was solved by an approximated Gauss-Seidel method. In this paper, we propose to improve the approach on three fundamental aspects. Firstly, we define the estimated image as a solution of a regularized minimization problem, promoting sparsity in a fixed dictionary using either an $\\ell_1$ or a weighted-$\\ell_1$ regularization term. Secondly, we solve the resultant non-convex minimization problem using a block-coordinate forward-backward algorithm. This algorithm is able to deal both with smooth and non-smooth functions, and benefits from convergence guarantees even in a non-convex context. Finally, we generalize our model and algorithm to the hyperspectral...

  4. Comparing Different Approaches to Visualizing Light Waves: An Experimental Study on Teaching Wave Optics

    Science.gov (United States)

    Mešic, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-01-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented…

  5. Electro-optical approach to pavement deflection management

    Science.gov (United States)

    Rish, Jeff W., III; Adcock, Avery D.; Tuan, Christopher Y.; Baker, Samuel L.; Welker, Hugh W., II; Johnson, Roger F.

    1995-07-01

    A prototype continuous deflection device, referred to as a rolling weight deflectometer (RWD), has been developed as a nondestructive evaluation tool for airfield pavements. The system consists of a rigid trailer equipped with specially designed optical triangulation pavement sensors, a high-speed data acquisition system, and a high-pressure tire/load platform assembly. Pavement sensors are mounted on a rigid box beam equipped with an internal sensor system that corrects, in real time, the relative pavement height position measurements for displacements induced in the beam by mechanical vibrations, changes in temperature, or nonuniform dynamic loads at points where the beam attaches to the frame. The device produces continuous deflection profiles that show pavement response to a moving loaded wheel along the path of travel. These deflection profiles, combined with multiple passes along a lane, provide a far more detailed picture of the pavement structural integrity than has ever before been possible, because existing evaluation tools only produce response information at discrete points. Preliminary results show deflections measured by the RWD are in general agreement with the expected pavement response for various loads. A discussion of the device configuration, preliminary data, and potential as a pavement management tool is presented.

  6. Stochastic approach to phonon-assisted optical absorption

    OpenAIRE

    Zacharias, Marios; Patrick, Christopher E.; Giustino, Feliciano

    2015-01-01

    We develop a first-principles theory of phonon-assisted optical absorption in semiconductors and insulators which incorporates the temperature dependence of the electronic structure. We show that the Hall-Bardeen-Blatt theory of indirect optical absorption and the Allen-Heine theory of temperature-dependent band structures can be derived from the present formalism by retaining only one-phonon processes. We demonstrate this method by calculating the optical absorption coefficient of silicon us...

  7. Iso-spin Dependent Microscopic Optical Model Potential Based on Dirac Bruckner Haretree Fock Method

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The microscopic optical model is investigated in the Dirac-Brueckner-Hartree-Fock (DBHF) framework with Bonn B meson exchange potential. Both real and imaginary parts of isospin-dependent self-energies are derived from a strict projection

  8. Numerical Green's functions in optical potential calculations for positron scattering from argon and neon

    Science.gov (United States)

    Bartschat, K.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    An optical potential method was applied to the calculation of positron scattering from the noble gases in order to determine the effect of open excitation channels on the shape of differential scattering cross sections.

  9. Model independent optical potential for protons at 155 MeV

    Science.gov (United States)

    Brissaud, I.

    1981-06-01

    Using the model independent procedure, 155 MeV proton optical potentials are deduced from the elastic scattering data. The nuclear interior of these potentials are less attractative than predicted by a phenomenological potentials. A comparison is done with a self consistent meson model.

  10. New Optical Evaluation Approach for Parabolic Trough Collectors: First-Principle OPTical Intercept Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, G.; Lewandowski, A.

    2012-11-01

    A new analytical method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is presented here for optical evaluation of trough collectors. It employs first-principle optical treatment of collector optical error sources and derives analytical mathematical formulae to calculate the intercept factor of a trough collector. A suite of MATLAB code is developed for FirstOPTIC and validated against theoretical/numerical solutions and ray-tracing results. It is shown that FirstOPTIC can provide fast and accurate calculation of intercept factors of trough collectors. The method makes it possible to carry out fast evaluation of trough collectors for design purposes. The FirstOPTIC techniques and analysis may be naturally extended to other types of CSP technologies such as linear-Fresnel collectors and central-receiver towers.

  11. Momentum-space optical potential SND elastic scattering calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, D.H.; Hynes, M.V.; Picklesimer, A.; Tandy, P.C.; Thaler, R.M.

    1983-01-01

    Initial results are presented for proton-nucleus elastic scattering observables calculated with a newly developed microscopic momentum-space code. This is the first phase of a program to treat elastic and inelastic scattering consistently via an integral equation approach. A number of microscopic features which are often approximated or ignored are quite amenable to exact treatment within this approach, e.g. non-local effects in elastic scattering, and inelastic effects which are non-linear in the NN t-matrix and target densities but nevertheless confined to one participating nucleon. 3 references.

  12. Momentum-space optical potential SND elastic scattering calculations

    Science.gov (United States)

    Wolfe, D. H.; Hynes, M. V.; Picklesimer, A.; Tandy, P. C.; Thaler, R. M.

    1983-03-01

    Initial results are presented for proton-nucleus elastic scattering observables calculated with a newly developed microscopic momentum-space code. This is the first phase of a program to treat elastic and inelastic scatterig consistently via an integral equation approach. A number of microscopic features which are often approximated or ignored are quite amenable to exact treatment within this approach, e.g. non-local effectss in elastic scattering, and inelastic effects which are non-linear in the NN t-matrix and target densities but nevertheless confined to one participating nucleon.

  13. A wave-optics approach to paraxial geometrical laws based on continuity at boundaries

    Science.gov (United States)

    Liñares, J.; Nistal, M. C.

    2011-09-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for several instructive cases and without using Fresnel diffraction theory. The primary aim is to provide a complementary insight into the standard axiomatic approach of paraxial geometrical optics and likewise to allow the introduction of some wave imaging concepts, such as the transmittance function, with a notable didactic interest for advanced subjects such as Fourier optics. This approach provides a more homogeneous vision of classical optics in which the use of the optical field continuity conditions at a boundary is a usual requirement as is clearly seen, for example, in the case of the derivation of Fresnel formulas. The work is particularly intended for university physics teachers and pregraduate and first year postgraduate students.

  14. Flat ATIR Optics Approach to CPV: December 3, 2009 - December 3, 2010 (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.

    2011-10-01

    An agglomeration of factors has stifled the economic promise of CPV technology. Foremost among these factors are: insufficient optical efficiency, misfit with existing solar infrastructure and production capabilities, and inadequate reliability of the optic-receiver pairing. These difficulties are largely driven by the choice of optics. The CPV industry is constrained in a paradigm of bulky reflective or refractive optics that operate best at either low concentration (2-5X) or high concentration (100X and above). Low concentration approaches are plagued by marginal economics, while high concentration approaches face heightened technical risks. High concentration systems inevitably face thermal management hurdles and often do not fit well with the existing solar infrastructure. Using Aggregated Total Internal Reflection (ATIR) as the optical mechanism for gathering light, a cost effective, line-focus optic can be produced at scale to provide superior optical efficiency in a flat profile and operate at a mid level of concentration to mitigate the tradeoff between economic benefit and adoptability. Substantiating this motivational premise behind the ATIR optics approach to CPV requires performance data. Foremost among the goals for establishing the viability of ATIR optics in solar is demonstrating optical efficiency. Banyan Energy performed an outdoor test of optical efficiency (OE) based on short circuit current using the line-focus Lens Step prototype.

  15. Scientific and methodical approaches to analysis of enterprise development potential

    Directory of Open Access Journals (Sweden)

    Hrechina Iryna V.

    2014-01-01

    Full Text Available The modern state of the Ukrainian economy urge enterprises to search for new possibilities of their development, which makes the study subject topical. The article systemises existing approaches to analysis of the potential of enterprise development and marks out two main scientific approaches: first is directed at analysis of prospects of self-development of the economic system; the second – at analysis of probability of possibilities of growth. In order to increase the quality of the process of formation of methods of analysis of potential of enterprise development, the article offers an organisation model of methods and characterises its main elements. It develops methods of analysis, in the basis of which there are indicators of potentialogical sustainability. Scientific novelty of the obtained results lies in a possibility of identification of main directions of enterprise development with the use of the enterprise development potential ration: self-development or probability of augmenting opportunities, which is traced through interconnection of resources and profit.

  16. Determination of the {\\eta}'-nucleus optical potential

    CERN Document Server

    Nanova, M; Paryev, E Ya; Bayadilov, D; Bantes, B; Beck, R; Beloglazov, Y A; Böse, S; Brinkmann, K -T; Challand, Th; Crede, V; Dahlke, T; Dietz, F; Drexler, P; Eberhardt, H; Elsner, D; Ewald, R; Fornet-Ponse, K; Friedrich, S; Frommberger, F; Funke, Ch; Gottschall, M; Gridnev, A; Grüner, M; Gutz, E; Hammann, Ch; Hammann, D; Hannappel, J; Hartmann, J; Hillert, W; Hoffmeister, P; Honisch, Ch; Jaegle, I; Kaiser, D; Kalinowsky, H; Kammer, S; Keshelashvili, I; Kleber, V; Klein, F; Klempt, E; Krusche, B; Lang, M; Lopatin, I V; Maghrbi, Y; Makonyi, K; Müller, J; Odenthal, T; Piontek, D; Schaepe, S; Schmidt, Ch; Schmieden, H; Schmitz, R; Seifen, T; Thiel, A; Thoma, U; van Pee, H; Walther, D; Wendel, Ch; Wiedner, U; Wilson, A; Winnebeck, A; Zenke, F

    2013-01-01

    The excitation function and momentum distribution of $\\eta^\\prime$ mesons have been measured in photon induced reactions on $^{12}{}$C in the energy range of 1250-2600 MeV. The experiment was performed with tagged photon beams from the ELSA electron accelerator using the Crystal Barrel and TAPS detectors. The data are compared to model calculations to extract information on the sign and magnitude of the real part of the $\\eta^\\prime$-nucleus potential. Within the model, the comparison indicates an attractive potential of -($37 \\pm 10(stat)\\pm10(syst)$) MeV depth at normal nuclear matter density. Since the modulus of this depth is larger than the modulus of the imaginary part of the $\\eta^\\prime$-nucleus potential of -($10\\pm2.5$) MeV, determined by transparency ratio measurements, a search for resolved $\\eta^\\prime$-bound states appears promising.

  17. Gulmarg, Kashmir, India: Potential Site for Optical Astronomical Observations

    Indian Academy of Sciences (India)

    Ajaz Ahmad Dar; Manzoor A. Malik

    2017-06-01

    The site characteristics of Gulmarg, Kashmir at an altitude of about 2743.2 m above sea level is based on analysis of meteorological conditions, cloud cover, temperature, wind speed, wind direction, relative humidity and atmospheric pressure, etc. Analysis and characterization of meteorological conditions suggest that Gulmarg, Kashmir is a potential site for carrying out photometric as well as spectroscopic observations of celestial objects.

  18. Note: A top-view optical approach for observing the coalescence of liquid drops

    Science.gov (United States)

    Wang, Luhai; Zhang, Guifu; Wu, Haiyi; Yang, Jiming; Zhu, Yujian

    2016-02-01

    We developed a new device that is capable of top-view optical examination of the coalescence of liquid drops. The device exhibits great potential for visualization, particularly for the early stage of liquid bridge expansion, owing to the use of a high-speed shadowgraph technique. The fluid densities of the two approaching drops and that of the ambient fluid are carefully selected to be negligibly different, which allows the size of the generated drops to be unlimitedly large in principle. The unique system design allows the point of coalescence between two drops to serve as an undisturbed optical pathway through which to image the coalescence process. The proposed technique extended the dimensionless initial finite radius of the liquid bridge to 0.001, in contrast to 0.01 obtained for conventional optical measurements. An examination of the growth of the bridge radius for a water and oil-tetrachloroethylene system provided results similar to Paulsen's power laws of the inertially limited viscous and inertial regimes. Furthermore, a miniscule shift in the center of the liquid bridge was detected at the point of crossover between the two regimes, which can be scarcely distinguished with conventional side-view techniques.

  19. Analysis of uncertainties in alpha-particle optical-potential assessment below the Coulomb barrier

    CERN Document Server

    Avrigeanu, V

    2016-01-01

    Background: Recent high-precision measurements of alpha-induced reaction data below the Coulomb barrier have pointed out questions of the alpha-particle optical-model potential (OMP) which are yet open within various mass ranges. Purpose: The applicability of a previous optical potential and eventual uncertainties and/or systematic errors of the OMP assessment at low energies can be further considered on this basis. Method: Nuclear model parameters based on the analysis of recent independent data, particularly gamma-ray strength functions, have been involved within statistical model calculation of the (alpha,x) reaction cross sections. Results: The above-mentioned potential provides a consistent description of the recent alpha-induced reaction data with no empirical rescaling factors of the and/or nucleon widths. Conclusions: A suitable assessment of alpha-particle optical potential below the Coulomb barrier should involve the statistical-model parameters beyond this potential on the basis of a former analysi...

  20. A Common Optical Potential for $^{4}$He+$^{12}$C at Intermediate Energies

    CERN Document Server

    Hu, Li-Yuan; Hou, Ying-Wei; Liu, Hui-Lan

    2016-01-01

    A common optical potential for $^4$He+$^{12}$C at intermediate bombarding energies, which is essential in analyzing exotic nuclei with $^4$He clusters, was obtained based on the S\\~{a}o Paulo potential (SPP). Among systematic optical potentials for $^4$He+$^{12}$C, this potential has the merit of using a fixed imaginary part of Woods-Saxon form. By optical-model calculations, this potential reproduced the experimental elastic scattering angular distributions of $^4$He+$^{12}$C well within the energy range of 26\\,$A$--60\\,$A$ MeV. It was also applied successfully in calculations of the breakup reactions of $^6$Li+$^{12}$C and $^6$He+$^{12}$C with a three-body continuum discretized coupled-channels method.

  1. Geometry of a Quantized Spacetime: The Quantum Potential Approach

    Science.gov (United States)

    Mirza, Babur M.

    2014-03-01

    Quantum dynamics in a curved spacetime can be studied using a modified Lagrangian approach directly in terms of the spacetime variables [Mirza, B.M., Quantum Dynamics in Black Hole Spacetimes, IC-MSQUARE 2012]. Here we investigate the converse problem of determining the nature of the background spacetime when quantum dynamics of a test particle is known. We employ the quantum potential formalism here to obtain the modifications introduced by the quantum effects to the background spacetime. This leads to a novel geometry for the spacetime in which a test particle modifies the spacetime via interaction through the quantum potential. We present here the case of a Gaussian wave packet, and a localized quantum soliton, representing the test particle, and determine the corresponding geometries that emerge.

  2. Thermally Stable Heterocyclic Imines as New Potential Nonlinear Optical Materials

    Science.gov (United States)

    Nesterov, Volodymyr V.; Antipin, Mikhail Y.; Nesterov, Vladimir N.; Moore, Craig E.; Cardelino, Beatriz H.; Timofeeva, Tatiana V.

    2004-01-01

    In the course of a search for new thermostable acentric nonlinear optical crystalline materials, several heterocyclic imine derivatives were designed, with the general structure D-pi-A(D'). Introduction of a donor amino group (D') into the acceptor moiety was expected to bring H-bonds into their crystal structures, and so to elevate their melting points and assist in an acentric molecular packing. Six heterocycle-containing compounds of this type were prepared, single crystals were grown for five of them, and these crystals were characterized by X-ray analysis. A significant melting temperature elevation was found for all of the synthesized compounds. Three of the compounds were also found to crystallize in acentric space groups. One of the acentric compounds is built as a three-dimensional H-bonded molecular network. In the other two compounds, with very similar molecular structure, the molecules form one-dimensional H-bonded head-to-head associates (chains). These chains are parallel in two different crystallographic directions and form very unusual interpenetrating chain patterns in an acentric crystal. Two of the compounds crystallized with centrosymmetric molecular packing.

  3. Asymmetry dependence of Gogny-based optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Blanchon, G.; Dupuis, M.; Bernard, R.N. [CEA, DAM, DIF, Arpajon (France); Arellano, H.F. [University of Chile, Department of Physics - FCFM, Santiago (Chile); CEA, DAM, DIF, Arpajon (France)

    2017-05-15

    An analysis of neutron and proton scattering off {sup 40,48}Ca has been carried out. Real and imaginary potentials have been generated using the Nuclear Structure Method (NSM) for scattering with the Gogny D1S nucleon-nucleon effective interaction. Observables are well described by NSM for neutron and proton elastic scattering off {sup 40}Ca and for neutron scattering off {sup 48}Ca. For proton scattering off {sup 48}Ca, NSM yields a lack of absorption. This discrepancy is attributed to two-fold charge exchange (p, n, p) contribution and coupling to Gamow-Teller mode which are not included in the present version of NSM. A recipe based on a Perey-Buck fit of the NSM imaginary potential and Lane model is proposed to overcome this issue in an approximate way. (orig.)

  4. Asymmetry dependence of Gogny-based optical potential

    Science.gov (United States)

    Blanchon, G.; Dupuis, M.; Bernard, R. N.; Arellano, H. F.

    2017-05-01

    An analysis of neutron and proton scattering off 40,48Ca has been carried out. Real and imaginary potentials have been generated using the Nuclear Structure Method (NSM) for scattering with the Gogny D1S nucleon-nucleon effective interaction. Observables are well described by NSM for neutron and proton elastic scattering off 40Ca and for neutron scattering off 48Ca . For proton scattering off 48Ca, NSM yields a lack of absorption. This discrepancy is attributed to two-fold charge exchange ( p, n, p) contribution and coupling to Gamow-Teller mode which are not included in the present version of NSM. A recipe based on a Perey-Buck fit of the NSM imaginary potential and Lane model is proposed to overcome this issue in an approximate way.

  5. Optical Stark decelerator for molecules with a traveling potential well

    Science.gov (United States)

    Deng, Lianzhong; Hou, Shunyong; Yin, Jianping

    2017-03-01

    We propose a versatile scheme to slow supersonically cooled molecules using a decelerating potential well, obtained by steering a focusing laser beam onto a pair of spinning reflective mirrors under a high-speed brake. The longitudinal motion of molecules in the moving red-detuned light field is analyzed and their corresponding phase-space stability is investigated. Trajectories of C H4 molecules under the influence of the potential well are simulated using the Monte Carlo method. For instance, with a laser beam of power 20 kW focused onto a spot of waist radius 40-100 μm, corresponding to a peak laser intensity on the order of ˜108W /c m2 , a C H4 molecule of ˜250 m /s can be decelerated to ˜10 m /s over a distance of a few centimeters on a time scale of hundreds of microseconds.

  6. Synthesis of optical spring potentials in optomechanical systems

    CERN Document Server

    Slatyer, Harry J; Cho, Young-Wook; Buchler, Ben C; Lam, Ping Koy

    2016-01-01

    We propose a method to tailor the potential experienced by a moveable end mirror in a cavity optomechanical system by specifying the spectral properties of the input field. We show that by engineering the power spectral density of the cavity input field a desired force function can be approximated, with the accuracy of the approximation limited only by the linewidth of the cavity. The very general technique presented here could have applications in many kinds of optomechanical systems, particularly those used for sensing and metrology. We demonstrate the method by applying it to improve the sensitivity of a particular gravity measurement.

  7. Assessment of some optical model potentials in predicting neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Young, P.G.; Chadwick, M.B.

    1998-03-01

    Optical model potential parameters play an important role in the evaluation of nuclear data for applied purposes. The IAEA Coordinated Research Program on {open_quotes}Reference Input Parameter Library for Evaluation of Nuclear Data for Application in Nuclear Technology{close_quotes} aims to release a reference input file of various types of parameters for the evaluation of nuclear cross sections using nuclear model codes. Included in the parameter files are a collection of optical model potentials that are available in the literature to evaluate these cross sections. As part of this research program we assess the applicability of these potentials over a range of target mass and projectile energy.

  8. Rapidity-dependent chemical potentials in a statistical approach

    Science.gov (United States)

    Broniowski, Wojciech; Biedroń, Bartłomiej

    2008-04-01

    We present a single-freeze-out model with thermal and geometric parameters dependent on the position within the fireball and use it to describe the rapidity distribution and transverse-momentum spectra of pions, kaons, protons and antiprotons measured at RHIC at \\sqrt{s_NN}=200\\,\\, GeV by BRAHMS. THERMINATOR is used to perform the necessary simulation, which includes all resonance decays. The result of the fit to the data is the expected growth of the baryon and strange chemical potentials with the spatial rapidity αpar. The value of the baryon chemical potential at αpar ~ 3 is about 200 MeV, i.e. it lies in the range of the highest SPS energies. The chosen geometry of the fireball has a decreasing transverse size as the magnitude of αpar is increased, which also corresponds to decreasing transverse flow. The strange chemical potential obtained from the fit to the K+/K- ratio is such that the local strangeness density in the fireball is compatible with zero. The resulting rapidity distribution of net protons are described qualitatively within the statistical approach. As a result of our study, the knowledge of the 'topography' of the fireball is acquired, allowing for other analyses and predictions. Research supported by the Polish Ministry of Education and Science, grants N202 034 32/0918 and 2 P03B 02828.

  9. Transformation optics approach for Goos-Hänchen shift enhancement at metamaterial interfaces

    Science.gov (United States)

    Lambrechts, Lieve; Ginis, Vincent; Danckaert, Jan; Tassin, Philippe

    2016-04-01

    Since its first observation in 1947, the Goos-Hänchen effect—an electromagnetic wave phenomenon where a totally reflected beam with finite cross section undergoes a lateral displacement from its position predicted by geometric optics—has been extensively investigated for various types of optical media such as dielectrics, metals and photonic crystals. Given their huge potential for guiding and sensing applications, the search for giant and tunable Goos-Hänchen shifts is still an open question in the field of optics and photonics. Metamaterials allow for unprecedented control over electromagnetic properties and thus provide an interesting platform in this quest for Goos-Hänchen shift enhancement. Over the last few years, the Goos-Hänchen effect has been investigated for specific metamaterial interfaces including graphene-on-dielectric surfaces, negative index materials and epsilon- near-zero materials. In this contribution, we generalize the approach for the investigation of the Goos-Hänchen effect based on the geometric formalism of transformation optics. Although this metamaterial design methodology is generally applied to manipulate the propagation of light through continuous media, we show how it can also be used to describe the reflections arising at the interface between a vacuum region and a transformed region with a metamaterial implementation. Furthermore, we establish an analytical model that relates the magnitude of the Goos-Hänchen shift to the underlying geometry of the transformed medium. This model shows how the dependence of the Goos-Hänchen shift on geometric parameters can be used to dramatically enhance the size of the shift by an appropriate choice of permittivity and permeability tensors. Numerical simulations of a beam with spatial Gaussian profile incident upon metamaterial interfaces verify the model and firmly establish a novel route towards Goos-Hänchen shift engineering using transformation optics.

  10. Chemical potential of water from measurements of optic axial angle of zeolites

    Science.gov (United States)

    Donald, Eberlein G.; Christ, C.L.

    1968-01-01

    Values of the uncorrected optic axial angle (2H??) of a crystal of the calcium zeolite stellerite (CaAl2Si7O 18 ?? 7H2O) immersed in calcium chloride solutions of known activity of water (aw) are directly proportional to log aw. A general relationship between the chemical potential of water in the crystal and the optic axial angle is obeyed.

  11. A possible approach on optical analogues of gravitational attractors

    KAUST Repository

    San-Román-Alerigi, Damián P.

    2013-04-01

    In this paper we report on the feasibility of light confinement in orbital geodesics on stationary, planar, and centro-symmetric refractive index mappings. Constrained to fabrication and [meta]material limitations, the refractive index, n, has been bounded to the range: 0.8 ? n(r) ? 3.5. Mappings are obtained through the inverse problem to the light geodesics equations, considering trappings by generalized orbit conditions defined a priori. Our simulation results show that the above mentioned refractive index distributions trap light in an open orbit manifold, both perennial and temporal, in regards to initial conditions. Moreover, due to their characteristics, these mappings could be advantageous to optical computing and telecommunications, for example, providing an on-demand time delay or optical memories. Furthermore, beyond their practical applications to photonics, these mappings set forth an attractive realm to construct a panoply of celestial mechanics analogies and experiments in the laboratory. © 2013 Optical Society of America.

  12. A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries

    Science.gov (United States)

    Linares, J.; Nistal, M. C.

    2011-01-01

    We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…

  13. Optical approach to design a beam-down heliostats plant

    Science.gov (United States)

    Fontani, Daniela; Sansoni, Paola; Francini, Franco; Jafrancesco, David

    2017-06-01

    The optical design development of beam-down heliostat fields is complex and timewasting. It requires the use of an optical design software package in order to evaluate the interactions between light and surfaces and the solar divergence effects. This paper proposes a three-step procedure devoted to design a beam-down heliostat field taking into account the actual technical constraints; in particular, the shaping of the field starts from the request to have a sufficient uniformity irradiance on the internal surfaces of the receiver. The procedure is applied to an effective field simulation in order to allow a better understanding of its different phases.

  14. The limits of nanomechanical applications of shape memory alloys: an optical approach

    Energy Technology Data Exchange (ETDEWEB)

    Kolloch, Andreas; Boneberg, Johannes; Leiderer, Paul [Universitaet Konstanz (Germany)

    2009-07-01

    Shape Memory Alloys (SMA), with their high strain and stress values for small temperature changes and their excellent durability against environmental influences, may prove to be ideal candidates for the driving force of nanomechanical devices. In spite of this promising potential, however, very little is known about the properties of SMA materials, and in particular thin films, on the nanoscale. Our work concentrates on the classic SMA, Nitinol, an intermetallic compound consisting of nickel and titanium. While it is completely reversible, the martensite-austenite transition of this material is accompanied by large strain and stress changes of up to 6-8% and 600 MPa, respectively. The project aims at employing an ultrafast thermo-optical approach to investigating whether there is a lower thickness limit of the martensitic phase transition in NiTi SMAs and what the transition speed for the phase change of these materials is.

  15. Optical dynamical processing: an approach using birefringent pupils.

    Science.gov (United States)

    Trivi, M; Sicre, E E; Rabal, H J; Garavaglia, M J

    1988-04-01

    A new technique is proposed to perform several image-processing operations with the same optical system. Each operation can easily be selected by properly loading a birefringent photoelastic plate, which acts as the spatial filter of the-system. Thus different pupil transmittance configurations can be achieved, each of which is associated with a certain image transformation.

  16. Separable Representation of Phenomenological Optical Potentials of Woods-Saxon Type

    CERN Document Server

    Hlophe, L; Johnson, R C; Upadhyay, N J; Nunes, F M; Arbanas, G; Eremenko, V; Escher, J E; Thompson, I J

    2013-01-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used.} Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. The purpose of this paper is to introduce a separable representation for complex phenomenological optical potentials of Woods-Saxon type. Results: Starting from a global optical potential, a separable representation thereof is introduced based...

  17. Stochastic resonance in periodic potentials realization in a dissipative optical lattice

    CERN Document Server

    Schiavoni, M; Sánchez-Palencia, L; Renzoni, F; Grynberg, G; Schiavoni, Michele; Carminati, Francois-Regis; Sanchez-Palencia, Laurent; Renzoni, Ferruccio; Proxy, Gilbert Grynberg; ccsd-00000107, ccsd

    2002-01-01

    We have observed the phenomenon of stochastic resonance on the Brillouin propagation modes of a dissipative optical lattice. Such a mode has been excited by applying a moving potential modulation with phase velocity equal to the velocity of the mode. Its amplitude has been characterized by the center-of-mass (CM) velocity of the atomic cloud. At Brillouin resonance, we studied the CM-velocity as a function of the optical pumping rate at a given depth of the potential wells. We have observed a resonant dependence of the CM velocity on the optical pumping rate, corresponding to the noise strength. This corresponds to the experimental observation of stochastic resonance in a periodic potential in the low-damping regime.

  18. Optical vortices: the concept of topological potential and analogies with two-dimensional electrostatics

    CERN Document Server

    Amaral, Anderson M; de Araújo, Cid B

    2015-01-01

    We show how the phase profile of a distribution of topological charges (TC) of an optical vortex (OV) can be described by a potential analogous to the Coulomb's potential for a distribution of electric charges in two-dimensional electrostatics. From what we call the Topological Potential (TP), the properties of TC multipoles and a 2D radial distribution were analyzed. The TC multipoles have a transverse profile that is topologically stable under propagation and may be exploited in optical communications; on the other hand, the 2D distributions can be used to tune the transverse forces in optical tweezers. Considering the analogies with the electrostatics formalism, it is also expected that the TP allows the tailoring of OV for specific applications.

  19. Effective and efficient optics inspection approach using machine learning algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Abdulla, G; Kegelmeyer, L; Liao, Z; Carr, W

    2010-11-02

    The Final Optics Damage Inspection (FODI) system automatically acquires and utilizes the Optics Inspection (OI) system to analyze images of the final optics at the National Ignition Facility (NIF). During each inspection cycle up to 1000 images acquired by FODI are examined by OI to identify and track damage sites on the optics. The process of tracking growing damage sites on the surface of an optic can be made more effective by identifying and removing signals associated with debris or reflections. The manual process to filter these false sites is daunting and time consuming. In this paper we discuss the use of machine learning tools and data mining techniques to help with this task. We describe the process to prepare a data set that can be used for training and identifying hardware reflections in the image data. In order to collect training data, the images are first automatically acquired and analyzed with existing software and then relevant features such as spatial, physical and luminosity measures are extracted for each site. A subset of these sites is 'truthed' or manually assigned a class to create training data. A supervised classification algorithm is used to test if the features can predict the class membership of new sites. A suite of self-configuring machine learning tools called 'Avatar Tools' is applied to classify all sites. To verify, we used 10-fold cross correlation and found the accuracy was above 99%. This substantially reduces the number of false alarms that would otherwise be sent for more extensive investigation.

  20. Review of Potential Characterization Techniques in Approaching Energy and Sustainability

    Directory of Open Access Journals (Sweden)

    David J. LePoire

    2014-03-01

    Full Text Available Societal prosperity is linked to sustainable energy and a healthy environment. However, tough global challenges include increased demand for fossil fuels, while approaching peak oil production and uncertainty in the environmental impacts of energy generation. Recently, energy use was identified as a major component of economic productivity, along with capital and labor. Other environmental resources and impacts may be nearing environmental thresholds, as indicated by nine planetary environmental boundaries, many of which are linked to energy production and use. Foresight techniques could be applied to guide future actions which include emphasis on (1 energy efficiency to bridge the transition to a renewable energy economy; (2 continued research, development, and assessment of new technologies; (3 improved understanding of environment impacts including natural capital use and degradation; (4 exploration of GDP alternative measures that include both economic production and environmental impacts; and (5 international cooperation and awareness of longer-term opportunities and their associated potential scenarios. Examples from the U.S. and the international community illustrate challenges and potential.

  1. Transformation optics and metamaterials

    Science.gov (United States)

    Chen, Huanyang; Chan, C. T.; Sheng, Ping

    2010-05-01

    Underpinned by the advent of metamaterials, transformation optics offers great versatility for controlling electromagnetic waves to create materials with specially designed properties. Here we review the potential of transformation optics to create functionalities in which the optical properties can be designed almost at will. This approach can be used to engineer various optical illusion effects, such as the invisibility cloak.

  2. K-Nucleus Elastic Scattering and Momentum-Dependent Optical Potentials

    Institute of Scientific and Technical Information of China (English)

    ZHONG Xian-Hui; LI Lei; CAI Chong-Hai; NING Ping-Zhi

    2004-01-01

    The K-nucleus differential elastic scattering cross section for 12C and 40 Ca at pκ = 800 Me V/c is calculated with three momentum-dependent optical potential models,which are density-dependent,relativistic mean field,and hybrid model,respectively.It is found that the forms of momentum-dependent optical potential models proposed by us are reasonable and gain success in the calculations and the momentum-dependent hybrid model is the best model for the K- nucleus elastic scattering.

  3. A 3D approach to reconstruct continuous optical images using lidar and MODIS

    Institute of Scientific and Technical Information of China (English)

    HuaGuo; Huang; Jun; Lian

    2015-01-01

    Background: Monitoring forest health and biomass for changes over time in the global environment requires the provision of continuous satellite images. However, optical images of land surfaces are generally contaminated when clouds are present or rain occurs.Methods: To estimate the actual reflectance of land surfaces masked by clouds and potential rain, 3D simulations by the RAPID radiative transfer model were proposed and conducted on a forest farm dominated by birch and larch in Genhe City, Da Xing’An Ling Mountain in Inner Mongolia, China. The canopy height model(CHM) from lidar data were used to extract individual tree structures(location, height, crown width). Field measurements related tree height to diameter of breast height(DBH), lowest branch height and leaf area index(LAI). Series of Landsat images were used to classify tree species and land cover. MODIS LAI products were used to estimate the LAI of individual trees. Combining all these input variables to drive RAPID, high-resolution optical remote sensing images were simulated and validated with available satellite images.Results: Evaluations on spatial texture, spectral values and directional reflectance were conducted to show comparable results.Conclusions: The study provides a proof-of-concept approach to link lidar and MODIS data in the parameterization of RAPID models for high temporal and spatial resolutions of image reconstruction in forest dominated areas.

  4. A 3D approach to reconstruct continuous optical images using lidar and MODIS

    Directory of Open Access Journals (Sweden)

    HuaGuo Huang

    2015-06-01

    Full Text Available Background Monitoring forest health and biomass for changes over time in the global environment requires the provision of continuous satellite images. However, optical images of land surfaces are generally contaminated when clouds are present or rain occurs. Methods To estimate the actual reflectance of land surfaces masked by clouds and potential rain, 3D simulations by the RAPID radiative transfer model were proposed and conducted on a forest farm dominated by birch and larch in Genhe City, DaXing’AnLing Mountain in Inner Mongolia, China. The canopy height model (CHM from lidar data were used to extract individual tree structures (location, height, crown width. Field measurements related tree height to diameter of breast height (DBH, lowest branch height and leaf area index (LAI. Series of Landsat images were used to classify tree species and land cover. MODIS LAI products were used to estimate the LAI of individual trees. Combining all these input variables to drive RAPID, high-resolution optical remote sensing images were simulated and validated with available satellite images. Results Evaluations on spatial texture, spectral values and directional reflectance were conducted to show comparable results. Conclusions The study provides a proof-of-concept approach to link lidar and MODIS data in the parameterization of RAPID models for high temporal and spatial resolutions of image reconstruction in forest dominated areas.

  5. Optical response of metallic and insulating VO{sub 2} calculated with the LDA approach

    Energy Technology Data Exchange (ETDEWEB)

    Mossanek, R J O; Abbate, M [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19081, 81531-990 Curitiba PR (Brazil)

    2007-08-29

    We calculated the optical response of metallic and insulating VO{sub 2} using the local density approximation (LDA) approach. The band structure calculation was based on the full-potential linear-muffin-tin method. The imaginary part of the dielectric function {epsilon}{sub 2}({omega}) is related to the different optical transitions. The Drude tail in the calculation of the metallic phase corresponds to intraband d-d transitions. The calculation in the insulating phase is characterized by the transitions to the d{sub parallel}* band. The low-frequency features, 0.0-5.0 eV, correspond to V 3d-V 3d transitions, whereas the high-frequency structures, 5.0-12 eV, are related to O 2p-V 3d transitions. The calculation helps to explain the imaginary part of the dielectric function {epsilon}{sub 2}({omega}), as well as the electron-energy-loss and reflectance spectra. The results reproduce not only the energy position and relative intensity of the features in the spectra, but also the main changes across the metal-insulator transition and the polarization dependence. The main difference is a shift of about 0.6 eV in the calculation of the insulating phase. This discrepancy arises because the LDA calculation underestimates the value of the band gap.

  6. A random optimization approach for inherent optic properties of nearshore waters

    Science.gov (United States)

    Zhou, Aijun; Hao, Yongshuai; Xu, Kuo; Zhou, Heng

    2016-10-01

    Traditional method of water quality sampling is time-consuming and highly cost. It can not meet the needs of social development. Hyperspectral remote sensing technology has well time resolution, spatial coverage and more general segment information on spectrum. It has a good potential in water quality supervision. Via the method of semi-analytical, remote sensing information can be related with the water quality. The inherent optical properties are used to quantify the water quality, and an optical model inside the water is established to analysis the features of water. By stochastic optimization algorithm Threshold Acceptance, a global optimization of the unknown model parameters can be determined to obtain the distribution of chlorophyll, organic solution and suspended particles in water. Via the improvement of the optimization algorithm in the search step, the processing time will be obviously reduced, and it will create more opportunity for the increasing the number of parameter. For the innovation definition of the optimization steps and standard, the whole inversion process become more targeted, thus improving the accuracy of inversion. According to the application result for simulated data given by IOCCG and field date provided by NASA, the approach model get continuous improvement and enhancement. Finally, a low-cost, effective retrieval model of water quality from hyper-spectral remote sensing can be achieved.

  7. Fourier synthesis of asymmetrical optical potentials for atoms; Fourier-Synthese von asymmetrischen optischen Potentialen fuer Atome

    Energy Technology Data Exchange (ETDEWEB)

    Ritt, G.

    2007-07-13

    In this work a dissipationless asymmetrical optical potential for cold atoms was produced. In a first step a new type of optical lattice was generated, whose spatial periodicity only corresponds to a quarter of the wavelength of the light used for the generation. This corresponds to the half of the periodicity of a conventional optical lattice, which is formed by the light of the same wavelength. The generation of this new type of optical lattice was reached by the use of two degenerated raman transitions. Virtual processes occur, in which four photons are involved. In conventional optical lattices however virtual two-photon processes occur. By spatially superimposing this optical lattice with a conventional optical lattice an asymmetrical optical potential could be formed. By diffraction of a Bose Einstein condensate of rubidium atoms at the transient activated asymmetrical potential the asymmetrical structure was proven. (orig.)

  8. Additive manufacturing: a new approach to realize complex and unconventional optical components

    Science.gov (United States)

    Heinrich, Andreas; Rank, Manuel; Suresh Nair, Sangeetha; Bauckhage, Y.; Maillard, Phillipe

    2017-02-01

    In recent years, additive manufacturing methods became more and more prominent. Thereby, these techniques are mainly used in order to realize mechanical components. But the additive manufacturing technology offers a high potential in the field of optics as well. Owing to new design possibilities, completely new solutions are possible. We report on the realization of complex freeform optics using standard 3D printers. We briefly point out the characteristics of 3D printing and its influence on the optical properties. Additionally we address the needed rework of 3D printed optical components. Therefore we apply two different methods - a robot-based fluid jet polishing and a coating method. The advantage of a 3D printed optic lies in its shape complexity. Thus different complex shaped optical elements are discussed. They are used for either metrology tasks or illumination tasks.

  9. Modeling of movement-related potentials using a fractal approach.

    Science.gov (United States)

    Uşakli, Ali Bülent

    2010-06-01

    In bio-signal applications, classification performance depends greatly on feature extraction, which is also the case for electroencephalogram (EEG) based applications. Feature extraction, and consequently classification of EEG signals is not an easy task due to their inherent low signal-to-noise ratios and artifacts. EEG signals can be treated as the output of a non-linear dynamical (chaotic) system in the human brain and therefore they can be modeled by their dimension values. In this study, the variance fractal dimension technique is suggested for the modeling of movement-related potentials (MRPs). Experimental data sets consist of EEG signals recorded during the movements of right foot up, lip pursing and a simultaneous execution of these two tasks. The experimental results and performance tests show that the proposed modeling method can efficiently be applied to MRPs especially in the binary approached brain computer interface applications aiming to assist severely disabled people such as amyotrophic lateral sclerosis patients in communication and/or controlling devices.

  10. Sphingolipids: A Potential Molecular Approach to Treat Allergic Inflammation

    Directory of Open Access Journals (Sweden)

    Wai Y. Sun

    2012-01-01

    Full Text Available Allergic inflammation is an immune response to foreign antigens, which begins within minutes of exposure to the allergen followed by a late phase leading to chronic inflammation. Prolonged allergic inflammation manifests in diseases such as urticaria and rhino-conjunctivitis, as well as chronic asthma and life-threatening anaphylaxis. The prevalence of allergic diseases is profound with 25% of the worldwide population affected and a rising trend across all ages, gender, and racial groups. The identification and avoidance of allergens can manage this disease, but this is not always possible with triggers being common foods, prevalent air-borne particles and only extremely low levels of allergen exposure required for sensitization. Patients who are sensitive to multiple allergens require prophylactic and symptomatic treatments. Current treatments are often suboptimal and associated with adverse effects, such as the interruption of cognition, sleep cycles, and endocrine homeostasis, all of which affect quality of life and are a financial burden to society. Clearly, a better therapeutic approach for allergic diseases is required. Herein, we review the current knowledge of allergic inflammation and discuss the role of sphingolipids as potential targets to regulate inflammatory development in vivo and in humans. We also discuss the benefits and risks of using sphingolipid inhibitors.

  11. Visual guidance based on optic flow: a biorobotic approach.

    Science.gov (United States)

    Franceschini, Nicolas

    2004-01-01

    This paper addresses some basic questions as to how vision links up with action and serves to guide locomotion in both biological and artificial creatures. The thorough knowledge gained during the past five decades on insects' sensory-motor abilities and the neuronal substrates involved has provided us with a rich source of inspiration for designing tomorrow's self-guided vehicles and micro-vehicles, which will be able to cope with unforeseen events on the ground, under water, in the air, in space, on other planets, and inside the human body. Insects can teach us some useful tricks for designing agile autonomous robots. Since constructing a "biorobot" first requires exactly formulating the biological principles presumably involved, it gives us a unique opportunity of checking the soundness and robustness of these principles by bringing them face to face with the real physical world. "Biorobotics" therefore goes one step beyond computer simulation. It leads to experimenting with real physical robots which have to pass the stringent test of the real world. Biorobotics provide us with a new tool, which can help neurobiologists and neuroethologists to identify and investigate worthwhile issues in the field of sensory-motor control. Here we describe some of the visually guided terrestrial and aerial robots we have developed since 1985 on the basis of our biological findings. All these robots behave in response to the optic flow, i.e., they work by measuring the slip speed of the retinal image. Optic flow is sensed on-board by miniature electro-optical velocity sensors. The very principle of these sensors was based on studies in which we recorded the responses of single identified neurons to single photoreceptor stimulation in a model visual system: the fly's compound eye.

  12. Vibrational mechanics in an optical lattice: controlling transport via potential renormalization.

    Science.gov (United States)

    Wickenbrock, A; Holz, P C; Wahab, N A Abdul; Phoonthong, P; Cubero, D; Renzoni, F

    2012-01-13

    We demonstrate theoretically and experimentally the phenomenon of vibrational resonance in a periodic potential, using cold atoms in an optical lattice as a model system. A high-frequency (HF) drive, with a frequency much larger than any characteristic frequency of the system, is applied by phase modulating one of the lattice beams. We show that the HF drive leads to the renormalization of the potential. We used transport measurements as a probe of the potential renormalization. The very same experiments also demonstrate that transport can be controlled by the HF drive via potential renormalization.

  13. Simplified approach for quantitative calculations of optical pumping

    Science.gov (United States)

    Atoneche, Fred; Kastberg, Anders

    2017-07-01

    We present a simple and pedagogical method for quickly calculating optical pumping processes based on linearised population rate equations. The method can easily be implemented on mathematical software run on modest personal computers, and can be generalised to any number of concrete situations. We also show that the method is still simple with realistic experimental complications taken into account, such as high level degeneracy, impure light polarisation, and an added external magnetic field. The method and the associated mathematical toolbox should be of value in advanced physics teaching, and can also facilitate the preparation of research tasks.

  14. Optical properties of a two-nanospheroid cluster: analytical approach

    CERN Document Server

    Guzatov, D V

    2010-01-01

    Optical properties of a plasmonic nano-antenna made of two metallic nanospheroids (prolate or oblate) are investigated analytically in quasistatic approximation. It is shown that in clusters of two nanospheroids, three types of plasmonic modes can be present. Two of them can be effectively excited by a plane electromagnetic wave, while the third one can be effectively excited only by a nanolocalized light source (an atom, a molecule, a quantum dot) placed in the gap between the nanoparticles. Analytical expressions for absorption and scattering cross-sections, enhancement of a local field, and radiative decay rate of a dipole source placed near such a nano-antenna are presented and analyzed.

  15. GEOMETRIC OPTICS FOR 3D-HARTREE-TYPE EQUATION WITH COULOMB POTENTIAL

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article considers a family of 3D-Hartree-type equation with Coulomb potential |x|-1, whose initial data oscillates so that a caustic appears. In the linear geometric optics case, by using the Lagrangian integrals, a uniform description of the solution outside the caustic, and near the caustic are obtained.

  16. Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency standards

    NARCIS (Netherlands)

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2011-01-01

    We explore the potential of the electric quadrupole transitions 7s (2)S(1/2)-(6)d (2)D(3/2), 6d (2)D(5/2) in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several

  17. Effective Hamiltonian approach to periodically perturbed quantum optical systems

    Energy Technology Data Exchange (ETDEWEB)

    Sainz, I. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon, 47460 Lagos de Moreno, Jal. (Mexico)]. E-mail: isa@culagos.udg.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410 Guadalajara, Jal. (Mexico)]. E-mail: klimov@cencar.udg.mx; Saavedra, C. [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)]. E-mail: csaaved@udec.cl

    2006-02-20

    We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found.

  18. New optical approaches to the quantitative characterization of crystal growth, segregation and defect formation

    Science.gov (United States)

    Carlson, D. J.; Wargo, M. J.; Cao, X. Z.; Witt, A. F.

    1991-01-01

    Elemental and compound semiconductors were characterized using new optical approach based on NIR microscopy in conjunction with computational image analysis and contrast enhancement. The approach made it possible to perform a quantitative microsegregation analysis of GaAs and InP. NIR dark file illumination in transmission mode makes it possible to detect submicron precipitates in semiinsulating GaAs.

  19. Theory of Atom Optics: Feynman's Path Integral Approach

    Institute of Scientific and Technical Information of China (English)

    DENG Lü-bi

    2006-01-01

    The present theory of atom optics is established mainly on the Schr(o)dinger equations or the matrix mechanics equation.The authors present a new theoretical formulation of atom optics: Feynman's path integral theory.Its advantage is that one can describe the diffraction and interference of atoms passing through slits (or grating),apertures,and standing wave laser field in Earth's gravitational field by using a type of wave function and calculation is simple.For this reason,we derive the wave functions of particles in the following configurations: single slit (and slit with the van der Waals interaction),double slit,N slit,rectangular aperture,circular aperture,the Mach-Zehndertype interferometer,the interferometer with the Raman beams,the Sagnac effect,the Aharonov-Casher effect,the Kapitza-Dirac diffraction effect,and the Aharonov-Bohm effect.The authors give a wave function of the state of particles on the screen in abovementioned configurations.Our formulas show good agreement with present experimental measurements.

  20. Bloch wave approach to the optics of crystals.

    Science.gov (United States)

    Ponti, S; Oldano, C; Becchi, M

    2001-08-01

    The Bloch wave method is used to find the effective permittivity tensor epsilon of periodic liquid crystals and artificial structures whose period p is short with respect to the light wavelength lambda and whose optical properties are defined by a permittivity field epsilon(r). The main role of the multiple scattering within the periodic medium is evidenced, and very general expressions of epsilon, based on expansions in ascending powers of the ratio p/lambda and of the light wave vector k, are found. Such expansions allow to discuss the general properties of epsilon, to clarify the role of the spatial dispersions, i.e., to separate the part of epsilon explicitly depending on k from its k-independent part, and to find some interesting properties of crystals that are (i) periodic in only one direction, or (ii) locally isotropic. Finally, the limits of validity of the macroscopic model are discussed. Within these limits only a few terms of the power expansions are required, and their expressions are explicitly given. The obtained results are also useful to better understand the macroscopic optical properties of solid crystals.

  1. Advanced free space optics (FSO) a systems approach

    CERN Document Server

    Majumdar, Arun K

    2015-01-01

    This book provides a comprehensive, unified tutorial covering the most recent advances in the technology of free-space optics (FSO). It is an all-inclusive source of information on the fundamentals of FSO as well as up-to-date information on the state-of-the-art in technologies available today. This text is intended for graduate students, and will also be useful for research scientists and engineers with an interest in the field. FSO communication is a practical solution for creating a three dimensional global broadband communications grid, offering bandwidths far beyond what is possible in the Radio Frequency (RF) range. However, the attributes of atmospheric turbulence and scattering impose perennial limitations on availability and reliability of FSO links. From a systems point-of-view, this groundbreaking book provides a thorough understanding of channel behavior, which can be used to design and evaluate optimum transmission techniques that operate under realistic atmospheric conditions. Topics addressed...

  2. Linear systems approach to simulation of optical diffraction.

    Science.gov (United States)

    Lambert, A J; Fraser, D

    1998-12-01

    The diffractive processes within an optical system can be simulated by computer to compute the diffraction-altered electric-field distribution at the output of the system from the electric-field distribution at the input. In the paraxial approximation the system can be described by an ABCD ray matrix whose elements in turn can be used to simplify the computation such that only a single computational step is required. We describe two rearrangements of such computations that allow the simulation to be expressed in a linear systems formulation, in particular using the fast-Fourier-transform algorithm. We investigate the sampling requirements for the kernel-modifying function or chirp that arises. We also use the special properties of the chirp to determine the spreading imposed by the diffraction. This knowledge can be used to reduce the computation if only a limited region of either the input or the output is of interest.

  3. Capacity-Approaching Superposition Coding for Optical Fiber Links

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Zibar, Darko; Tafur Monroy, Idelfonso

    2014-01-01

    We report on the first experimental demonstration of superposition coded modulation (SCM) for polarization-multiplexed coherent-detection optical fiber links. The proposed coded modulation scheme is combined with phase-shifted bit-to-symbol mapping (PSM) in order to achieve geometric and passive...... shaping of the signal's waveform. The output constellations in SCM-PSM exhibit nonbijective quasi-Gaussian statistical distributions that asymptotically reach the Shannon capacity limit, showing up to 0.7 dB sensitivity improvement for 256-ary SCM-PSM with respect to 256-ary quadrature amplitude...... modulation (QAM). The characteristic wave formation based on superposition of antipodal symbols and the lack of need for additional encoders for signal shaping, greatly reduces the transmitter and receiver processing complexity in comparison to conventional alternatives. Single-level coding strategy (SL-SCM...

  4. An artificial immune approach for optical image based vision inspection

    Institute of Scientific and Technical Information of China (English)

    Hong Zheng(郑宏); Nanfeng Xiao(肖南风); Jinhui Lan(蓝金辉)

    2003-01-01

    This paper presents a novel approach of visual inspection for texture surface defects. The approach usesartificial immune theory in learning the detection of texture defects. In this paper, texture defects areregards as non-self, and normal textures are regarded as self. Defect filters and segmentation thresholdsused for defect detection are regarded as antibodies. The clonal selection algorithm stemmed from thenatural immune system is employed to learn antibodies. Experimental results on textile image inspectionare presented to illustrate the merit and feasibility of the proposed method.

  5. Comparing different approaches to visualizing light waves: An experimental study on teaching wave optics

    Science.gov (United States)

    Mešić, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-06-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented by sinusoidal curves. The second teaching approach includes representing light waves by a series of static images, showing the oscillating electric field vectors at characteristic, subsequent instants of time. Within the third approach phasors are used for visualizing light waves. A total of N =85 secondary school students were randomly assigned to one of the three teaching approaches, each of which lasted a period of four class hours. Students who learned with phasors and students who learned from the series of static images outperformed the students learning according to the conventional approach, i.e., they showed a much better understanding of basic wave optics, as measured by a conceptual survey administered to the students one week after the treatment. Our results suggest that visualizing light waves with phasors or oscillating electric field vectors is a promising approach to developing a deeper understanding of wave optics for students enrolled in conceptual level physics courses.

  6. Generalized scattering-matrix approach for magneto-optics in periodically patterned multilayer systems

    CERN Document Server

    Caballero, B; Cuevas, J C

    2012-01-01

    We present here a generalization of the scattering-matrix approach for the description of the propagation of electromagnetic waves in nanostructured magneto-optical systems. Our formalism allows us to describe all the key magneto-optical effects in any configuration in periodically patterned multilayer structures. The method can also be applied to describe periodic multilayer systems comprising materials with any type of optical anisotropy. We illustrate the method with the analysis of a recent experiment in which the transverse magneto-optical Kerr effect was measured in a Fe film with a periodic array of subwavelength circular holes. We show, in agreement with the experiments, that the excitation of surface plasmon polaritons in this system leads to a resonant enhancement of the transverse magneto-optical Kerr effect.

  7. A variational approach to nonlinear evolution equations in optics

    Indian Academy of Sciences (India)

    D Anderson; M Lisak; A Berntson

    2001-11-01

    A tutorial review is presented of the use of direct variational methods based on RayleighRitz optimization for finding approximate solutions to various nonlinear evolution equations. The practical application of the approach is demonstrated by some illustrative examples in connection with the nonlinear Schrödinger equation.

  8. Redox Potentials of Ligands and Complexes – a DFT Approach

    African Journals Online (AJOL)

    NICO

    species to form a negative ion,1 while ionization potential (IP) is the energy ... experimental formal reduction potentials (E0') was found.6. Bateni et al. did an ..... 37 Cambridge Structural Database (CSD), version 5.31, November 2009 update.

  9. A novel optical calorimetry dosimetry approach applied to an HDR Brachytherapy source

    Science.gov (United States)

    Cavan, A.; Meyer, J.

    2013-06-01

    The technique of Digital Holographic Interferometry (DHI) is applied to the measurement of radiation absorbed dose distribution in water. An optical interferometer has been developed that captures the small variations in the refractive index of water due to the radiation induced temperature increase ΔT. The absorbed dose D is then determined with high temporal and spatial resolution using the calorimetric relation D=cΔT (where c is the specific heat capacity of water). The method is capable of time resolving 3D spatial calorimetry. As a proof-of-principle of the approach, a prototype DHI dosimeter was applied to the measurement of absorbed dose from a High Dose Rate (HDR) Brachytherapy source. Initial results are in agreement with modelled doses from the Brachyvision treatment planning system, demonstrating the viability of the system for high dose rate applications. Future work will focus on applying corrections for heat diffusion and geometric effects. The method has potential to contribute to the dosimetry of diverse high dose rate applications which require high spatial resolution such as microbeam radiotherapy (MRT) or small field proton beam dosimetry but may potentially also be useful for interface dosimetry.

  10. Microcomputer Simulation of a Fourier Approach to Optical Wave Propagation

    Science.gov (United States)

    1992-06-01

    efficient method to model such ultrasonic propagation has been developed by Guyomar and Powers [Refs. 2,3]. Relying upon linear systems theory and...the application of linear systems theory , and the mathematical derivation of the field solution utilizing the Fourier approach. Chapter III commences...the spatial impulse response. Guyomar and Powers’ view differs from Stepanishen’s work in that linear systems theory is used to point out the

  11. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    CERN Document Server

    Nobre, G P A; Dietrich, F S; Herman, M; Brown, D; Hoblit, S

    2014-01-01

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, we have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular dis...

  12. Analysis of hadron interferometry by means of laser optical approach

    Energy Technology Data Exchange (ETDEWEB)

    Biyajima, Minoru (Shinshu Univ., Matsumoto, Nagano (Japan))

    1990-11-01

    Study of the hadron interferometry, i.e., the HBT effect of identical pions and kaons, is one of current interests in high energy physics and nuclear reactions. Various theoretical formulas have been proposed for the estimation of the interaction region. The present report discusses several formulas that are currently available and points out that some data indicate dip structures. A new formula is derived to explain these dip structures. Thus, a formula based on laser optics is outlined first and the dip structures are discussed focusing on the formula proposed by Aihara et al. Then the report discusses a formula based on a color string model, Coulomb interaction, final state interaction, and a formula proposed by Bowler. Finally, a new formula is proposed. The final state interaction affects the Feyman-like diagram for identical pion production and also affects the short-range momentum transfer. Thus, the new formula is similar to the above formulas for Coulomb interaction and final state interaction. The new formula satisfies the BEC correlation and strong final state interaction between identical pions. It is applied to data obtained from the TPC Collaboration and preliminary data from the CDF Collaboration and found to be able to explain these data better than other formulas. (N.K.).

  13. Novel therapeutic approaches for Leber's hereditary optic neuropathy.

    Science.gov (United States)

    Iyer, Shilpa

    2013-03-01

    Many human childhood mitochondrial disorders result from abnormal mitochondrial DNA (mtDNA) and altered bioenergetics. These abnormalities span most of the mtDNA, demonstrating that there are no "unique" positions on the mitochondrial genome that when deleted or mutated produce a disease phenotype. This diversity implies that the relationship between mitochondrial genotype and clinical phenotype is very complex. The origins of clinical phenotypes are thus unclear, fundamentally difficult-to-treat, and are usually clinically devastating. Current treatment is largely supportive and the disorders progress relentlessly causing significant morbidity and mortality. Vitamin supplements and pharmacological agents have been used in isolated cases and clinical trials, but the efficacy of these interventions is unclear. In spite of recent advances in the understanding of the pathogenesis of mitochondrial diseases, a cure remains elusive. An optimal cure would be gene therapy, which involves introducing the missing gene(s) into the mitochondria to complement the defect. Our recent research results indicate the feasibility of an innovative protein-transduction ("protofection") technology, consisting of a recombinant mitochondrial transcription factor A (TFAM) that avidly binds mtDNA and permits efficient targeting into mitochondria in situ and in vivo. Thus, the development of gene therapy for treating mitochondrial disease offers promise, because it may circumvent the clinical abnormalities and the current inability to treat individual disorders in affected individuals. This review aims to focus on current treatment options and future therapeutics in mitochondrial disease treatment with a special emphasis on Leber's hereditary optic neuropathy.

  14. Approach to improve beam quality of inter-satellite optical communication system based on diffractive optical elements.

    Science.gov (United States)

    Tan, Liying; Yu, Jianjie; Ma, Jing; Yang, Yuqiang; Li, Mi; Jiang, Yijun; Liu, Jianfeng; Han, Qiqi

    2009-04-13

    For inter-satellite optical communication transmitter with reflective telescope of two-mirrors on axis, a large mount of the transmitted energy will be blocked by central obscuration of the secondary mirror. In this paper, a novel scheme based on diffractive optical element (DOE) is introduced to avoid it. This scheme includes one diffractive beam shaper and another diffractive phase corrector, which can diffract the obscured part of transmitted beam into the domain unobscured by the secondary mirror. The proposed approach is firstly researched with a fixed obscuration ratio of 1/4. Numerical simulation shows that the emission efficiency of new figuration is 99.99%; the beam divergence from the novel inter-satellite optical communication transmitter is unchanged; and the peak intensity of receiver plane is increased about 31% compared with the typical configuration. Then the intensy patterns of receiver plane are analyzed with various obscuration ratio, the corresponding numerical modelling reveals that the intensity patterns with various obscuration ratio are nearly identical, but the amplify of relative peak intensity is getting down with the growth of obscuration ratio. This work can improve the beam quality of inter-satellite optical communication system without affecting any other functionality.

  15. Effective mass approach for a Bose-Einstein condensate in an optical lattice

    Institute of Scientific and Technical Information of China (English)

    DUAN ZhengLu; STEEL M J; XU AiTing; ZHANG WeiPing

    2009-01-01

    We study the stationary and propagating solutions for a Bose-Einstein condensate (BEC) in a periodic optical potential with an additional confining optical or magnetic potential.Using an effective mass approximation we express the condensate wave function in terms of slowly-varying envelopes modulating the Bloch modes of the optical lattice.In the limit of a weak nonlinearity,we derive a nonlinear Schr(o)dinger equation for propagation of the envelope function which does not contain the rapid oscillation of the lattice.We then consider the ground state solutions in detail in the regime of weak,moderate and strong nonlinear interactions.We describe the form of solution which is appropriate in each regime,and place careful limits on the validity of each type of solution.Finally we extend the study to the propagating dynamics of a spinor atomic BEC in an optical lattice and some interesting phenomena are revealed.

  16. Approaches for targeted proteomics and its potential applications in neuroscience

    Indian Academy of Sciences (India)

    Sumit Sethi; Dipti Chourasia; Ishwar S Parhar

    2015-09-01

    An extensive guide on practicable and significant quantitative proteomic approaches in neuroscience research is important not only because of the existing overwhelming limitations but also for gaining valuable understanding into brain function and deciphering proteomics from the workbench to the bedside. Early methodologies to understand the functioning of biological systems are now improving with high-throughput technologies, which allow analysis of various samples concurrently, or of thousand of analytes in a particular sample. Quantitative proteomic approaches include both gel-based and non-gel-based methods that can be further divided into different labelling approaches. This review will emphasize the role of existing technologies, their advantages and disadvantages, as well as their applications in neuroscience. This review will also discuss advanced approaches for targeted proteomics using isotope-coded affinity tag (ICAT) coupled with laser capture microdissection (LCM) followed by liquid chromatography tandem mass spectrometric (LC-MS/MS) analysis. This technology can further be extended to single cell proteomics in other areas of biological sciences and can be combined with other ‘omics’ approaches to reveal the mechanism of a cellular alterations. This approach may lead to further investigation in basic biology, disease analysis and surveillance, as well as drug discovery. Although numerous challenges still exist, we are confident that this approach will increase the understanding of pathological mechanisms involved in neuroendocrinology, neuropsychiatric and neurodegenerative disorders by delivering protein biomarker signatures for brain dysfunction.

  17. Dual random phase encoding: a temporal approach for fiber optic applications.

    Science.gov (United States)

    Cuadrado-Laborde, Christian; Duchowicz, Ricardo; Torroba, Roberto; Sicre, Enrique E

    2008-04-10

    We analyze the dual random phase encoding technique in the temporal domain to evaluate its potential application for secure data transmission in fiber optic links. To take into account the optical fiber multiplexing capabilities, the noise content of the signal is restricted when multiple channels are transmitted over a single fiber optic link. We also discuss some mechanisms for producing encoded time-limited as well as bandwidth-limited signals and a comparison with another recently proposed technique is made. Numerical simulations have been carried out to analyze the system performance. The results indicate that this multiplexing encryption method could be a good alternative compared with other well-established methods.

  18. A Comparative Study of Two Counseling Approaches with Potential Dropouts

    Science.gov (United States)

    Lacy, Charles L.

    1970-01-01

    No statistically significant differences in dropout rate were noted between directive and nondirective counseling approaches. Suggests future use of different measure, such as self concept, average or attendance. (CJ)

  19. A Lane consistent optical model potential for nucleon scattering on actinide nuclei with extended coupling

    Science.gov (United States)

    Quesada, José Manuel; Capote, Roberto; Soukhovitski, Efrem S.; Chiba, Satoshi

    2016-03-01

    An extension for odd-A actinides of a previously derived dispersive coupledchannel optical model potential (OMP) for 238U and 232Th nuclei is presented. It is used to fit simultaneously all the available experimental databases including neutron strength functions for nucleon scattering on 232Th, 233,235,238U and 239Pu nuclei. Quasi-elastic (p,n) scattering data on 232Th and 238U to the isobaric analogue states of the target nucleus are also used to constrain the isovector part of the optical potential. For even-even (odd) actinides almost all low-lying collective levels below 1 MeV (0.5 MeV) of excitation energy are coupled. OMP parameters show a smooth energy dependence and energy independent geometry.

  20. [Optic neuritis--immunological approach to elucidate pathogenesis and develop innovative therapy].

    Science.gov (United States)

    Kezuka, Takeshi

    2013-03-01

    The pathogenesis of optic neuritis developed rapidly from the end of the 19th century to the beginning of the 20th century accompanying progress in morpho-anatomy and physiology. Thereafter, the pathology of the disease continues to be clarified with the advances in medicine and clinical peripheral devices. The analysis of optic neuritis is about to enter a new phase, triggered by the advent of molecular immunology and genetic engineering. This article describes the results of recent studies on the pathogenetic mechanism of optic neuritis and the potential of utilizing these new findings in the development of novel therapies. Studies revealed that optic neuritis associated with anti-aquaporin(AQP) 4 antibodies is refractory to steroid therapy and causes injuries to the optic nerve-optic chiasma-optic tract, resulting in a broad array of visual field abnormalities. Especially, the disease becomes severe in individuals who possess anti-AQP4 antibodies that target astrocytes, together with anti-myelin oligodendrocyte glycoprotein (MOG) antibodies that target myelin oligodendrocytes. Furthermore, measurement of glial fibrillary acidic protein (GFAP) levels in cerebrospinal fluid may be useful in the diagnosis of anti-AQP4 antibody positive optic neuritis. Studies using experimental autoimmune optic neuritis (EAON) models demonstrate two patterns: a pattern of myelin oligodendrocyte damage as in optic neuritis associated with multiple sclerosis, and a pattern of astrocyte damage as in anti-AQP4 antibody positive optic neuritis, which in optic neuritis associated with anti-AQP4 antibodies, incites IgG deposits in the optic nerve to damage astrocytes. In multiple sclerosis-associated optic neuritis models, visual acuity decreases first, followed by deposition of complements in the optic nerve and infiltration of microglia and inflammatory cells. Thereafter, the number of axons decreases and latency of visually evoked potential (VEP) is prolonged. The implication of these

  1. Optical tweezers as a new biomedical tool to measure zeta potential of stored red blood cells.

    Directory of Open Access Journals (Sweden)

    Diego C N Silva

    Full Text Available During storage, red blood cells (RBCs for transfusion purposes suffer progressive deterioration. Sialylated glycoproteins of the RBC membrane are responsible for a negatively charged surface which creates a repulsive electrical zeta potential. These charges help prevent the interaction between RBCs and other cells, and especially among each RBCs. Reports in the literature have stated that RBCs sialylated glycoproteins can be sensitive to enzymes released by leukocyte degranulation. Thus, the aim of this study was, by using an optical tweezers as a biomedical tool, to measure the zeta potential in standard RBCs units and in leukocyte reduced RBC units (collected in CPD-SAGM during storage. Optical tweezers is a sensitive tool that uses light for measuring cell biophysical properties which are important for clinical and research purposes. This is the first study to analyze RBCs membrane charges during storage. In addition, we herein also measured the elasticity of RBCs also collected in CPD-SAGM. In conclusion, the zeta potential decreased 42% and cells were 134% less deformable at the end of storage. The zeta potential from leukodepleted units had a similar profile when compared to units stored without leukoreduction, indicating that leukocyte lyses were not responsible for the zeta potential decay. Flow cytometry measurements of reactive oxygen species suggested that this decay is due to membrane oxidative damages. These results show that measurements of zeta potentials provide new insights about RBCs storage lesion for transfusion purposes.

  2. Iterative Shrinkage Approach to Restoration of Optical Imagery

    CERN Document Server

    Shaked, E

    2009-01-01

    The problem of reconstruction of digital images from their degraded measurements is regarded as a problem of central importance in various fields of engineering and imaging sciences. In such cases, the degradation is typically caused by the resolution limitations of an imaging device in use and/or by the destructive influence of measurement noise. Specifically, when the noise obeys a Poisson probability law, standard approaches to the problem of image reconstruction are based on using fixed-point algorithms which follow the methodology first proposed by Richardson and Lucy. The practice of using these methods, however, shows that their convergence properties tend to deteriorate at relatively high noise levels. Accordingly, in the present paper, a novel method for de-noising and/or de-blurring of digital images corrupted by Poisson noise is introduced. The proposed method is derived under the assumption that the image of interest can be sparsely represented in the domain of a linear transform. Consequently, a ...

  3. Optically induced effective mass renormalization: the case of graphite image potential states

    Science.gov (United States)

    Montagnese, M.; Pagliara, S.; Galimberti, G.; Dal Conte, S.; Ferrini, G.; van Loosdrecht, P. H. M.; Parmigiani, F.

    2016-10-01

    Many-body interactions with the underlying bulk electrons determine the properties of confined electronic states at the surface of a metal. Using momentum resolved nonlinear photoelectron spectroscopy we show that one can tailor these many-body interactions in graphite, leading to a strong renormalization of the dispersion and linewidth of the image potential state. These observations are interpreted in terms of a basic self-energy model, and may be considered as exemplary for optically induced many-body interactions.

  4. Proton-Proton On Shell Optical Potential at High Energies and the Grayness Effect

    CERN Document Server

    Arriola, Enrique Ruiz

    2016-01-01

    We analyze the usefulness of the optical potential as suggested by the double spectral Mandelstam representation at very high energies, such as in the proton-proton scattering at ISR and the LHC. Its particular meaning regarding the interpretation of the scattering data up to the maximum available measured energies is discussed. Our analysis suggests the onset of gray nucleons at the LHC and precludes convolution models at the attometer scale.

  5. A microscopic T-violating optical potential implications for neutron-transmission experiments

    CERN Document Server

    Engel, J; Hnizdo, V

    1994-01-01

    We derive a T-violating P-conserving optical potential for neutron-nucleus scattering, starting from a uniquely determined two-body \\rho-exchange interaction with the same symmetry. We then obtain limits on the T-violating \\rho-nucleon coupling \\overline{g}_{\\rho} from neutron-transmission experiments in ^{165}Ho. The limits may soon compete with those from measurements of atomic electric-dipole moments.

  6. A Realization of a Quasi-Random Walk for Atoms in Time-Dependent Optical Potentials

    Directory of Open Access Journals (Sweden)

    Torsten Hinkel

    2015-09-01

    Full Text Available We consider the time dependent dynamics of an atom in a two-color pumped cavity, longitudinally through a side mirror and transversally via direct driving of the atomic dipole. The beating of the two driving frequencies leads to a time dependent effective optical potential that forces the atom into a non-trivial motion, strongly resembling a discrete random walk behavior between lattice sites. We provide both numerical and analytical analysis of such a quasi-random walk behavior.

  7. Optically induced effective mass renormalization: the case of graphite image potential states.

    Science.gov (United States)

    Montagnese, M; Pagliara, S; Galimberti, G; Dal Conte, S; Ferrini, G; van Loosdrecht, P H M; Parmigiani, F

    2016-10-14

    Many-body interactions with the underlying bulk electrons determine the properties of confined electronic states at the surface of a metal. Using momentum resolved nonlinear photoelectron spectroscopy we show that one can tailor these many-body interactions in graphite, leading to a strong renormalization of the dispersion and linewidth of the image potential state. These observations are interpreted in terms of a basic self-energy model, and may be considered as exemplary for optically induced many-body interactions.

  8. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23

    Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the

  9. Delineation of groundwater potential zone: An AHP/ANP approach

    Indian Academy of Sciences (India)

    Etishree Agarwal; Rajat Agarwal; R D Garg; P K Garg

    2013-06-01

    The sustainable development and management of groundwater resource requires precise quantitative assessment based on scientific principle and modern techniques. In the present study, groundwater potential zone are delineated using remote sensing, geographical information system (GIS) and multi-criteria decision making (MCDM) techniques in Unnao district, Uttar Pradesh. The analytical network process (ANP) is a method that makes it possible for one to deal systematically, and includes the analytical hierarchy process (AHP) as a special case. The AHP and ANP are used to determine the weights of various themes and their classes for identifying the groundwater potential zone. These weights are applied in a linear combination to obtain five different groundwater potential zone in the study area, namely ‘very poor’, ‘poor’, ‘moderate’, ‘good’ and ‘very good’. It has been concluded that about 153.39 km2 area has very good groundwater potential which is only 3.37% of the total study area. However, the area having very poor groundwater potential is about 850 km2 which is about 19.63% of the study area. The area having good, moderate and poor groundwater potential is about 540.25, 1135.5, 1868.6 km2, respectively. The groundwater potential zone map was finally verified using the well yield data of 37 pumping wells, and the result was found satisfactory.

  10. Contrast improvement of continuous wave diffuse optical tomography reconstruction by hybrid approach using least square and genetic algorithm.

    Science.gov (United States)

    Patra, Rusha; Dutta, Pranab K

    2015-07-01

    Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10⁻³, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.

  11. High-precision optical systems with inexpensive hardware: a unified alignment and structural design approach

    Science.gov (United States)

    Winrow, Edward G.; Chavez, Victor H.

    2011-09-01

    High-precision opto-mechanical structures have historically been plagued by high costs for both hardware and the associated alignment and assembly process. This problem is especially true for space applications where only a few production units are produced. A methodology for optical alignment and optical structure design is presented which shifts the mechanism of maintaining precision from tightly toleranced, machined flight hardware to reusable, modular tooling. Using the proposed methodology, optical alignment error sources are reduced by the direct alignment of optics through their surface retroreflections (pips) as seen through a theodolite. Optical alignment adjustments are actualized through motorized, sub-micron precision actuators in 5 degrees of freedom. Optical structure hardware costs are reduced through the use of simple shapes (tubes, plates) and repeated components. This approach produces significantly cheaper hardware and more efficient assembly without sacrificing alignment precision or optical structure stability. The design, alignment plan and assembly of a 4" aperture, carbon fiber composite, Schmidt-Cassegrain concept telescope is presented.

  12. Introduction to semiconductor lasers for optical communications an applied approach

    CERN Document Server

    Klotzkin, David J

    2014-01-01

    This textbook provides a thorough and accessible treatment of semiconductor lasers from a design and engineering perspective. It includes both the physics of devices as well as the engineering, designing, and testing of practical lasers. The material is presented clearly with many examples provided. Readers of the book will come to understand the finer aspects of the theory, design, fabrication, and test of these devices and have an excellent background for further study of optoelectronics. This book also: ·         Provides a multi-faceted approach to explaining the theories behind semiconductor lasers, utilizing mathematical examples, illustrations, and written theoretical presentations ·         Offers a balance of relevant optoelectronic topics, with specific attention given to distributed feedback lasers, growth techniques, and waveguide cavity design ·         Provides a summary of every chapter, worked examples, and problems for readers to solve ·         Empasizes...

  13. Study of interaction in silica glass via model potential approach

    Science.gov (United States)

    Mann, Sarita; Rani, Pooja

    2016-05-01

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.

  14. Nuclear mean field and double-folding model of the nucleus-nucleus optical potential

    CERN Document Server

    Khoa, Dao T; Loan, Doan Thi; Loc, Bui Minh

    2016-01-01

    Realistic density dependent CDM3Yn versions of the M3Y interaction have been used in an extended Hartree-Fock (HF) calculation of nuclear matter (NM), with the nucleon single-particle potential determined from the total NM energy based on the Hugenholtz-van Hove theorem that gives rise naturally to a rearrangement term (RT). Using the RT of the single-nucleon potential obtained exactly at different NM densities, the density- and energy dependence of the CDM3Yn interactions was modified to account properly for both the RT and observed energy dependence of the nucleon optical potential. Based on a local density approximation, the double-folding model of the nucleus-nucleus optical potential has been extended to take into account consistently the rearrangement effect and energy dependence of the nuclear mean-field potential, using the modified CDM3Yn interactions. The extended double-folding model was applied to study the elastic $^{12}$C+$^{12}$C and $^{16}$O+$^{12}$C scattering at the refractive energies, wher...

  15. Determination of the ω- and η′-nucleus optical potential

    Directory of Open Access Journals (Sweden)

    Nanova M.

    2016-01-01

    Full Text Available The ω and η′-nucleus interaction has been studied in photoproduction reactions off C and Nb targets, using the CBELSA/TAPS detector system. Transparency ratio measurements provide information on the inelastic cross section and in-medium width of mesons and thereby on the imaginary part of the meson-nucleus potential. The real part of the optical potential can be deduced from measurements of the excitation function and momentum distribution which are sensitive to the sign and depth of the potential. Data taken on a C and Nb target have been analysed to determine the real and the imaginary part of the ω- and η′-nucleus optical potential. The momentum dependence of the imaginary part of both mesons is presented and discussed. The results are compared to previous experimental results and to model calculations assuming different scenarios. The data are consistent with a weakly attractive potential for both mesons. The relatively small in-medium width of the η′ meson encourages the search for η′ bound states.

  16. Development of Optically Active Nanostructures for Potential Applications in Sensing, Therapeutics and Imaging

    Science.gov (United States)

    Joshi, Padmanabh

    Materials at nanoscale are finding manifold applications in the various fields like sensing, plasmonics, therapeutics, to mention a few. Large amount of development has taken place regarding synthesis and exploring the novel applications of the various types of nanomaterials like organic, inorganic and hybrid of both. Yet, it is believed that the full potential of different nanomaterials is yet to be fully established stimulating researchers to explore more in the field of nanotechnology. Building on the same premise, in the following studies we have developed the nanomaterials in the class of optically active nanoparticles. First part of the study we have successfully designed, synthesized, and characterized Ag-Fe3O4 nanocomposite substrate for potential applications in quantitative Surface Enhanced Raman Scattering (SERS) measurements. Quantitative SERS-based detection of dopamine was performed successfully. In subsequent study, facile, single-step synthesis of polyethyleneimine (PEI) coated lanthanide based NaYF4 (Yb, Er) nanoparticles was developed and their application as potential photodynamic therapy agent was studied using excitations by light in near infra-red and visible region. In the following and last study, synthesis and characterization of the conjugated polymer nanoparticles was attempted successfully. Functionalization of the conjugated nanoparticles, which is a bottleneck for their potential applications, was successfully performed by encapsulating them in the silica nanoparticles, surface of which was then functionalized by amine group. Three types of optically active nanoparticles were developed for potential applications in sensing, therapeutics and imaging.

  17. Time-variable gravity potential components for optical clock comparisons and the definition of international time scales

    Science.gov (United States)

    Voigt, C.; Denker, H.; Timmen, L.

    2016-12-01

    The latest generation of optical atomic clocks is approaching the level of one part in 1018 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m2 s-2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 1018. The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m2 s-2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m2 s-2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m2 s-2, while the range of the potential between specific laboratories is 0.3 and 1.1 m2 s-2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10-17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10-18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage.

  18. Adapting advanced engineering design approaches to building design. Potential benefits

    NARCIS (Netherlands)

    Böhms, M.

    2006-01-01

    A number of industries continuously progress advancing their design approaches based on the changing market constraints. Examples such as car, ship and airplane manufacturing industries utilize process setups and techniques, that differ significantly from the processes and techniques used by the tra

  19. Adapting advanced engineering design approaches to building design. Potential benefits

    NARCIS (Netherlands)

    Böhms, M.

    2006-01-01

    A number of industries continuously progress advancing their design approaches based on the changing market constraints. Examples such as car, ship and airplane manufacturing industries utilize process setups and techniques, that differ significantly from the processes and techniques used by the

  20. The optimality of potential rescaling approaches in land data assimilation

    Science.gov (United States)

    It is well-known that systematic differences exist between modeled and observed realizations of hydrological variables like soil moisture. Prior to data assimilation, these differences must be removed in order to obtain an optimal analysis. A number of rescaling approaches have been proposed for rem...

  1. Practice-oriented optical thin film growth simulation via multiple scale approach

    Energy Technology Data Exchange (ETDEWEB)

    Turowski, Marcus, E-mail: m.turowski@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419 (Germany); Jupé, Marco [Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419 (Germany); QUEST: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Melzig, Thomas [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54e, Braunschweig 30108 (Germany); Moskovkin, Pavel [Research Centre for Physics of Matter and Radiation (PMR-LARN), University of Namur (FUNDP), 61 rue de Bruxelles, Namur 5000 (Belgium); Daniel, Alain [Centre for Research in Metallurgy, CRM, 21 Avenue du bois Saint Jean, Liège 4000 (Belgium); Pflug, Andreas [Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54e, Braunschweig 30108 (Germany); Lucas, Stéphane [Research Centre for Physics of Matter and Radiation (PMR-LARN), University of Namur (FUNDP), 61 rue de Bruxelles, Namur 5000 (Belgium); Ristau, Detlev [Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419 (Germany); QUEST: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany)

    2015-10-01

    Simulation of the coating process is a very promising approach for the understanding of thin film formation. Nevertheless, this complex matter cannot be covered by a single simulation technique. To consider all mechanisms and processes influencing the optical properties of the growing thin films, various common theoretical methods have been combined to a multi-scale model approach. The simulation techniques have been selected in order to describe all processes in the coating chamber, especially the various mechanisms of thin film growth, and to enable the analysis of the resulting structural as well as optical and electronic layer properties. All methods are merged with adapted communication interfaces to achieve optimum compatibility of the different approaches and to generate physically meaningful results. The present contribution offers an approach for the full simulation of an Ion Beam Sputtering (IBS) coating process combining direct simulation Monte Carlo, classical molecular dynamics, kinetic Monte Carlo, and density functional theory. The simulation is performed exemplary for an existing IBS-coating plant to achieve a validation of the developed multi-scale approach. Finally, the modeled results are compared to experimental data. - Highlights: • A model approach for simulating an Ion Beam Sputtering (IBS) process is presented. • In order to combine the different techniques, optimized interfaces are developed. • The transport of atomic species in the coating chamber is calculated. • We modeled structural and optical film properties based on simulated IBS parameter. • The modeled and the experimental refractive index data fit very well.

  2. Optical Spectroscopy Approach for the Predictive Assessment of Kidney Functional Recovery Following Ischemic Injury

    Energy Technology Data Exchange (ETDEWEB)

    Raman, R N; Pivetti, C D; Rubenchik, A M; Matthews, D L; Troppmann, C; Demos, S G

    2010-02-11

    Tissue that has undergone significant yet unknown amount of ischemic injury is frequently encountered in organ transplantation and trauma clinics. With no reliable real-time method of assessing the degree of injury incurred in tissue, surgeons generally rely on visual observation which is subjective. In this work, we investigate the use of optical spectroscopy methods as a potentially more reliable approach. Previous work by various groups was strongly suggestive that tissue autofluorescence from NADH obtained under UV excitation is sensitive to metabolic response changes. To test and expand upon this concept, we monitored autofluorescence and light scattering intensities of injured vs. uninjured rat kidneys via multimodal imaging under 355 nm, 325 nm, and 266 nm excitation as well as scattering under 500 nm illumination. 355 nm excitation was used to probe mainly NADH, a metabolite, while 266 nm excitation was used to probe mainly tryptophan to correct for non-metabolic signal artifacts. The ratio of autofluorescence intensities derived under these two excitation wavelengths was calculated and its temporal profile was fit to a relaxation model. Time constants were extracted, and longer time constants were associated with kidney dysfunction. Analysis of both the autofluorescence and light scattering images suggests that changes in microstructure tissue morphology, blood absorption spectral characteristics, and pH contribute to the behavior of the observed signal which may be used to obtain tissue functional information and offer predictive capability.

  3. A Method to Analyze the Potential of Optical Remote Sensing for Benthic Habitat Mapping

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Garcia

    2015-10-01

    Full Text Available Quantifying the number and type of benthic classes that are able to be spectrally identified in shallow water remote sensing is important in understanding its potential for habitat mapping. Factors that impact the effectiveness of shallow water habitat mapping include water column turbidity, depth, sensor and environmental noise, spectral resolution of the sensor and spectral variability of the benthic classes. In this paper, we present a simple hierarchical clustering method coupled with a shallow water forward model to generate water-column specific spectral libraries. This technique requires no prior decision on the number of classes to output: the resultant classes are optically separable above the spectral noise introduced by the sensor, image based radiometric corrections, the benthos’ natural spectral variability and the attenuating properties of a variable water column at depth. The modeling reveals the effect reducing the spectral resolution has on the number and type of classes that are optically distinct. We illustrate the potential of this clustering algorithm in an analysis of the conditions, including clustering accuracy, sensor spectral resolution and water column optical properties and depth that enabled the spectral distinction of the seagrass Amphibolis antartica from benthic algae.

  4. The role of Magnetic Resonance Imaging and Visual Evoked Potential in management of optic neuritis

    Science.gov (United States)

    Al-Eajailat, Suha Mikail; Al-Madani Senior, Mousa Victor

    2014-01-01

    Introduction To report our experience in management of patients with optic neuritis. The effects of brain magnetic resonance imaging and visual evoked potential on management were investigated Methods This is a four years clinical trial that included patients presenting with first attack of optic neuritis older than 16 years with visual acuity of less than 6/60 and presentation within first week of illness. Brain magnetic resonance imaging and visual evoked potentials were done for all patients. Patients were classified into three groups. First group received placebo, second received oral steroids and third received intravenous and oral steroids. Primary outcome measure was improvement in visual acuity. Results A total number of 150 patients were enrolled in the study. Ocular pain was seen 127 patients Relative afferent pupillary defect in 142 patients and color vision impairment in 131 patients. Abnormal MRI findings were seen in 84 patients. Pattern reversal VEP was abnormal in all patients. Using oral or intravenous steroid resulted in faster recovery but did not affect the final visual outcome. Recurrence rate was higher in patients with multiple MRI lesions and diminished VEP amplitude. Using intravenous steroids decreased recurrence rate in patients with three and more MRI lesions and non recordable VEP response. Conclusion MRI and pattern reversal VEP are recommended to be done in all patients presenting with optic neuritis. We advise to give intravenous methyl prednisolone in patients with multiple MRI white matter lesions and non recordable VEP at presentation. PMID:25018804

  5. Control of a Bose-Einstein condensate on a chip by external optical and magnetic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Maluckov, A. [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Petrovic, J., E-mail: jovanap@vin.bg.ac.rs [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, 50019 Firenze (Italy); Gligoric, G. [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Max-Planck-Institut fuer Physik Complexer Systeme, Noethnitzer St. 38, D-01187 Dresden (Germany); Hadzievski, Lj. [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Lombardi, P. [Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, 50019 Firenze (Italy); Dipartimento di Fisica e Astronomia, Universita di Firenze via Sansone 1, 50019 Sesto F.no (Italy); Schaefer, F. [Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, 50019 Firenze (Italy); Cataliotti, F.S. [Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, 50019 Firenze (Italy); Dipartimento di Energetica ' Sergio Stecco' , Universita di Firenze via S. Marta 3, 50139 Firenze (Italy)

    2012-09-15

    In this paper we explore the possibilities of control of a Bose-Einstein condensate on an atom chip by the use of potentials generated by photonic and magnetic components. We show that the fields produced by both types of components can be modelled by a generic exponential potential and derive analytic expressions that allow for an easy assessment of their impact on a trapped condensate. Using dynamical numerical simulations we study the transport of the condensate between the control structures on a chip. We study in detail different regimes of the condensate behaviour in an evanescent light potential generated by a photonic structure in the vicinity of the condensate and in magnetic potentials generated by a wire or a coil. The calculations are based on the reported parameters of atom chip setups and available photonic and magnetic components. Finally, the model is verified by an experiment with a condensate on an atom chip and a coil. - Highlights: Black-Right-Pointing-Pointer Generic potential used to describe both the optical evanescent and magnetic fields. Black-Right-Pointing-Pointer An analytic closed form solution found for the impact of a generic potential on a BEC. Black-Right-Pointing-Pointer BEC dynamics calculated for potential time sequences attainable in experiments. Black-Right-Pointing-Pointer Conditions for BEC transfer by an external field identified. Black-Right-Pointing-Pointer Exponential-potential model validated by a BEC-on-chip experiment.

  6. Influence of different deposition potential on the structural and optical properties of copper selenide nanowires

    Science.gov (United States)

    Kaur, Harmanmeet; Kaur, Jaskiran; Singh, Lakhwant

    2016-09-01

    In this paper, nanowires were successfully fabricated from the aqueous solution containing 0.2 M/l CuSO4.5H2O, 0.1 M/l SeO2, 1 g/l PVP and a few drops of H2SO4 in Milli-Q water using electrodeposition technique at room temperature. Influence of different deposition potential on structural and optical properties of copper selenide nanowires has been investigated here. Morphological, structural and optical properties were monitored through field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD) and UV-visible 1800 spectrophotometer. From the XRD analysis, it was found that the stoichiometric (CuSe) nanowires are formed at deposition potential (-0.6 V) and (+0.6 V). Band gap of nanowires were found to be maximum around 3.13 eV for deposition potential (-0.8 V) and minimum of 2.81 eV for deposition potential (-0.6 V).

  7. Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications

    DEFF Research Database (Denmark)

    Pavlov, Alexey K.; Granskog, Mats A.; Stedmon, Colin A.

    2015-01-01

    radiation (PAR, 400-700nm), but does result in notable differences in ultraviolet (UV) light penetration, with higher attenuation in the EGC. Future changes in the Arctic Ocean system will likely affect EGC through diminishing sea-ice cover and potentially increasing CDOM export due to increase in river......Underwater light regime is controlled by distribution and optical properties of colored dissolved organic matter (CDOM) and particulate matter. The Fram Strait is a region where two contrasting water masses are found. Polar water in the East Greenland Current (EGC) and Atlantic water in the West...... Spitsbergen Current (WSC) differ with regards to temperature, salinity and optical properties. We present data on absorption properties of CDOM and particles across the Fram Strait (along 79° N), comparing Polar and Atlantic surface waters in September 2009 and 2010. CDOM absorption of Polar water in the EGC...

  8. The potential of translational bioinformatics approaches for pharmacology research.

    Science.gov (United States)

    Li, Lang

    2015-10-01

    The field of bioinformatics has allowed the interpretation of massive amounts of biological data, ushering in the era of 'omics' to biomedical research. Its potential impact on pharmacology research is enormous and it has shown some emerging successes. A full realization of this potential, however, requires standardized data annotation for large health record databases and molecular data resources. Improved standardization will further stimulate the development of system pharmacology models, using translational bioinformatics methods. This new translational bioinformatics paradigm is highly complementary to current pharmacological research fields, such as personalized medicine, pharmacoepidemiology and drug discovery. In this review, I illustrate the application of transformational bioinformatics to research in numerous pharmacology subdisciplines. © 2015 The British Pharmacological Society.

  9. Volcanostratigraphic Approach for Evaluation of Geothermal Potential in Galunggung Volcano

    Science.gov (United States)

    Ramadhan, Q. S.; Sianipar, J. Y.; Pratopo, A. K.

    2016-09-01

    he geothermal systems in Indonesia are primarily associated with volcanoes. There are over 100 volcanoes located on Sumatra, Java, and in the eastern part of Indonesia. Volcanostratigraphy is one of the methods that is used in the early stage for the exploration of volcanic geothermal system to identify the characteristics of the volcano. The stratigraphy of Galunggung Volcano is identified based on 1:100.000 scale topographic map of Tasikmalaya sheet, 1:50.000 scale topographic map and also geological map. The schematic flowchart for evaluation of geothermal exploration is used to interpret and evaluate geothermal potential in volcanic regions. Volcanostratigraphy study has been done on Galunggung Volcano and Talaga Bodas Volcano, West Java, Indonesia. Based on the interpretation of topographic map and analysis of the dimension, rock composition, age and stress regime, we conclude that both Galunggung Volcano and Talaga Bodas Volcano have a geothermal resource potential that deserve further investigation.

  10. Imaging interferometric microscopy-approaching the linear systems limits of optical resolution.

    Science.gov (United States)

    Kuznetsova, Yuliya; Neumann, Alexander; Brueck, S R

    2007-05-28

    The linear systems optical resolution limit is a dense grating pattern at a lambda/2 pitch or a critical dimension (resolution) of lambda/4. However, conventional microscopy provides a (Rayleigh) resolution of only ~ 0.6lambda/NA, approaching lambda/1.67 as NA ?lambda1. A synthetic aperture approach to reaching the lambda/4 linear-systems limit, extending previous developments in imaginginterferometric microscopy, is presented. Resolution of non-periodic 180-nm features using 633-nm illumination (lambda/3.52) and of a 170-nm grating (lambda/3.72) is demonstrated. These results are achieved with a 0.4-NA optical system and retain the working distance, field-of-view, and depth-of-field advantages of low-NA systems while approaching ultimate resolution limits.

  11. Newer Approaches to Identify Potential Untoward Effects in Functional Foods.

    Science.gov (United States)

    Marone, Palma Ann; Birkenbach, Victoria L; Hayes, A Wallace

    2016-01-01

    Globalization has greatly accelerated the numbers and variety of food and beverage products available worldwide. The exchange among greater numbers of countries, manufacturers, and products in the United States and worldwide has necessitated enhanced quality measures for nutritional products for larger populations increasingly reliant on functionality. These functional foods, those that provide benefit beyond basic nutrition, are increasingly being used for their potential to alleviate food insufficiency while enhancing quality and longevity of life. In the United States alone, a steady import increase of greater than 15% per year or 24 million shipments, over 70% products of which are food related, is regulated under the Food and Drug Administration (FDA). This unparalleled growth has resulted in the need for faster, cheaper, and better safety and efficacy screening methods in the form of harmonized guidelines and recommendations for product standardization. In an effort to meet this need, the in vitro toxicology testing market has similarly grown with an anticipatory 15% increase between 2010 and 2015 of US$1.3 to US$2.7 billion. Although traditionally occupying a small fraction of the market behind pharmaceuticals and cosmetic/household products, the scope of functional food testing, including additives/supplements, ingredients, residues, contact/processing, and contaminants, is potentially expansive. Similarly, as functional food testing has progressed, so has the need to identify potential adverse factors that threaten the safety and quality of these products.

  12. Microscopic formulation of medium contributions to the first-order optical potential

    Science.gov (United States)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.

    1993-12-01

    A refinement of the first-order optical potential is introduced, consistent with multiple scattering theory and the spectator expansion. A systematic formalism is presented to treat medium contributions associated with the difference between the effective NN t matrix as required by multiple scattering theory and the free NN t matrix. A mean field potential is used to represent the action of the residual (A-1) nucleus upon the struck target nucleon (medium effects). We calculate elastic proton and neutron scattering from 40Ca, using the full Bonn interaction and two different mean field potentials taken from realistic and proven nuclear structure models. Results indicate that the medium contributions are insignificant at energies above 300 MeV and provide a significant improvement of the theoretical predictions for laboratory energies between 48 and 200 MeV.

  13. Microscopic formulation of medium contributions to the first-order optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, C.R. (Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States) Center for Computationally Intensive Physics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)); Elster, C. (Institute of Nuclear and Particle Physics and Department of Physics, Ohio University, Athens, Ohio 45701 (United States)); Thaler, R.M. (Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States) Case Western Reserve University, Cleveland, Ohio 44106 (United States))

    1993-12-01

    A refinement of the first-order optical potential is introduced, consistent with multiple scattering theory and the spectator expansion. A systematic formalism is presented to treat medium contributions associated with the difference between the effective [ital NN] [ital t] matrix as required by multiple scattering theory and the free [ital NN] [ital t] matrix. A mean field potential is used to represent the action of the residual ([ital A][minus]1) nucleus upon the struck target nucleon (medium effects). We calculate elastic proton and neutron scattering from [sup 40]Ca, using the full Bonn interaction and two different mean field potentials taken from realistic and proven nuclear structure models. Results indicate that the medium contributions are insignificant at energies above 300 MeV and provide a significant improvement of the theoretical predictions for laboratory energies between 48 and 200 MeV.

  14. Test of the notch technique for determining the radial sensitivity of the optical model potential

    CERN Document Server

    Yang, Lei; Jia, Hui-ming; Xu, Xin-Xing; Ma, Nan-Ru; Sun, Li-Jie; Yang, Feng; Zhang, Huan-Qiao; Li, Zu-Hua; Wang, Dong-Xi

    2015-01-01

    Detailed investigations on the notch technique are performed on the ideal data generated by the optical model potential parameters extracted from the 16O+208Pb system at the laboratory energy of 129.5 MeV, to study the sensitivities of this technique on the model parameters as well as the experimental data. It is found that, for the perturbation parameters, a sufficient large reduced fraction and an appropriate small perturbation width are necessary to determine the accurate radial sensitivity; while for the potential parameters, almost no dependence was observed. For the experimental measurements, the number of data points has little influence for the heavy target system, and the relative inner information of the nuclear potential can be derived when the measurement extended to a lower cross section.

  15. Full-field illumination approach with multiple speckle for optical-resolution photoacoustic microscopy (Conference Presentation)

    Science.gov (United States)

    Poisson, Florian; Bossy, Emmanuel

    2016-03-01

    Optical-resolution photoacoustic endomicroscopy (OR-PAE) allows going beyond the limited penetration depth of conventional optical-resolution photoacoustic systems. Recently, it has been shown that OR-PAE may be performed through minimally invasive multimode fibers, by raster scanning a focus spot with optical wavefront shaping [1]. Here we introduce for the first time an approach to perform OR-PAE through a multimode fiber with a full-field illumination approach. By using multiple known speckle patterns, we show that it is possible to obtain optical-diffraction limited photoacoustic images, with the same resolution as that obtained by raster scanning a focus spot, i.e that of the speckle grain size. The fluctuations patterns of the photoacoustic amplitude at each pixel in the sample plane with the series of multiple speckle illumination were used to encode each pixel. This approach with known speckle illumination requires an initial calibration stage, that consists in learn a set of fluctuation patterns pixel per pixel, which will encode patterns each pixel of the scanned area. A point-like absorber was scanned across the filed-of-view during the calibration stage to acquire the reference patterns. Image reconstruction may be carried out by cross-correlating the series of photoacoustic amplitude measured with the sample to the reference patterns obtained during the calibration stage. In this work, the approach above was carried out both theoretically with Monte-carlo simulations and experimentally through a multi-mode fiber with samples made of absorbing spheres. [1] Papadopoulos et al., " Optical-resolution photoacoustic microscopy by use of a multimode fiber", Appl. Phys. Lett., 102(21), 2013

  16. Experimental approaches to predict allergenic potential of novel food

    DEFF Research Database (Denmark)

    Madsen, Charlotte Bernhard; Kroghsbo, Stine; Bøgh, Katrine Lindholm

    2013-01-01

    ’t know under what circumstances oral tolerance develops. With all these unanswered questions, it is a big challenge to designan animal model that, with relatively few animals, is able to predict if a food protein is a potential allergen. An even larger challenge is to predict its potency, a prerequisite...... of understanding of the significance of dose for the development of food allergy or its counterpart oral tolerance makes risk assessment very difficult. In addition route of exposure and digestibility are relevant variables. Examples of the use and limitations of animal models for predicting the allergenicity...

  17. Iterative Fourier transform algorithm: different approaches to diffractive optical element design

    Science.gov (United States)

    Skeren, Marek; Richter, Ivan; Fiala, Pavel

    2002-10-01

    This contribution focuses on the study and comparison of different design approaches for designing phase-only diffractive optical elements (PDOEs) for different possible applications in laser beam shaping. Especially, new results and approaches, concerning the iterative Fourier transform algorithm, are analyzed, implemented, and compared. Namely, various approaches within the iterative Fourier transform algorithm (IFTA) are analyzed for the case of phase-only diffractive optical elements with quantizied phase levels (either binary or multilevel structures). First, the general scheme of the IFTA iterative approach with partial quantization is briefly presented and discussed. Then, the special assortment of the general IFTA scheme is given with respect to quantization constraint strategies. Based on such a special classification, the three practically interesting approaches are chosen, further-analyzed, and compared to eachother. The performance of these algorithms is compared in detail in terms of the signal-to-noise ratio characteristic developments with respect to the numberof iterations, for various input diffusive-type objects chose. Also, the performance is documented on the complex spectra developments for typical computer reconstruction results. The advantages and drawbacks of all approaches are discussed, and a brief guide on the choice of a particular approach for typical design tasks is given. Finally, the two ways of amplitude elimination within the design procedure are considered, namely the direct elimination and partial elimination of the amplitude of the complex hologram function.

  18. Antioxidant potential of orientin: A combined experimental and DFT approach

    Science.gov (United States)

    Praveena, R.; Sadasivam, K.; Deepha, V.; Sivakumar, Raman

    2014-03-01

    The antioxidant activity of the bioactive fractions obtained from the leaves of Rhynchosia capitata is evaluated for its capacity to reduce ferric ions. In vitro antihemolytic analysis for the separated erythrocytes of Wistar rat blood cells exhibits maximum inhibition value for ethyl acetate (1202.55 ± 9.46) than ethanol fraction (424.57 ± 12.04). Gas and solvent phase studies of structural and molecular characteristics of C-glycosyl flavonoid, orientin present in the bioactive fraction of R. capitata is investigated through hydrogen atom transfer mechanism (HAT) using DFT/B3LYP/6-311G(d,p) level of theory. Interestingly, the intramolecular hydrogen bonding formed between 3‧-O and 4‧-H makes 3‧-OH as the active site which is supported by its bond dissociation energy values. The computed values of the adiabatic ionization potential, electron affinity, hardness, softness, electronegativity and electrophilic index indicate that orientin possess good radical scavenging activity. In this study, role of molecular electrostatic potential and electron density distribution map in predicting the importance of B-ring are analyzed and reported. Spin density distribution analysis for the radicals is formed by summing of spin on rings A, B and C. The most active system able to transfer a hydrogen atom is orientin compared to vitexin and the bond dissociation enthalpy follows the order benzene > ethyl acetate > water.

  19. The optical model potential of the $\\Sigma$ hyperon in nuclear matter

    OpenAIRE

    Dabrowski, J; Rozynek, J.

    2009-01-01

    We present our attempts to determine the optical model potential $U_\\Sigma = V_\\Sigma -iW_\\Sigma$ of the $\\Sigma$ hyperon in nuclear matter. We analyze the following sources of information on $U_\\Sigma$: $\\Sigma N$ scattering, $\\Sigma^-$ atoms, and final state interaction of $\\Sigma$ hyperons in the $(\\pi,K^+)$ and $(K^-.\\pi)$ reactions on nuclear targets. We conclude that $V_\\Sigma$ is repulsive inside the nucleus and has a shallow a tractive pocket at the nuclear surface. These features of ...

  20. Proton-Proton On Shell Optical Potential at High Energies and the Hollowness Effect

    Science.gov (United States)

    Arriola, Enrique Ruiz; Broniowski, Wojciech

    2016-07-01

    We analyze the usefulness of the optical potential as suggested by the double spectral Mandelstam representation at very high energies, such as in the proton-proton scattering at ISR and the LHC. Its particular meaning regarding the interpretation of the scattering data up to the maximum available measured energies is discussed. Our analysis reconstructs 3D dynamics from the effective transverse 2D impact parameter representation and suggests that besides the onset of gray nucleons at the LHC there appears an inelasticity depletion (hollowness) which precludes convolution models at the attometer scale.

  1. Stability of trapped Bose-Einstein condensates in one-dimensional tilted optical lattice potential

    Institute of Scientific and Technical Information of China (English)

    Fang Jian-Shu; Liao Xiang-Ping

    2011-01-01

    Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose-Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable.

  2. Optical probing of MgZnO/ZnO heterointerface confinement potential energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Solovyev, V. V.; Van' kov, A. B.; Kukushkin, I. V. [Institute of Solid State Physics, RAS, Chernogolovka 142432 (Russian Federation); Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Falson, J.; Kozuka, Y. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); Zhang, D.; Smet, J. H. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Maryenko, D. [RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan); Tsukazaki, A. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency (JST), Tokyo 102-0075 (Japan); Kawasaki, M. [Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, Tokyo 113-8656 (Japan); RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198 (Japan)

    2015-02-23

    Low-temperature photoluminescence and reflectance measurements were employed to study the optical transitions present in two-dimensional electron systems confined at Mg{sub x}Zn{sub 1–x}O/ZnO heterojunctions. Transitions involving A- and B-holes and electrons from the two lowest subbands formed within the confinement potential are detected. In the studied density range of 2.0–6.5 × 10{sup 11 }cm{sup −2}, the inter-subband splitting is measured and the first excited electron subband is shown to be empty of electrons.

  3. Visual evoked potentials in optic nerve injury--does it merit to be mentioned?

    Directory of Open Access Journals (Sweden)

    Mahapatra A

    1991-01-01

    Full Text Available The value of Visual Evoked Potentials (VEP in the management of indirect optic nerve injury was prospectively studied in 78 patients. The initial VEPs were normal in 10, abnormal in 29 and absent in 39 patients. All 10 patients with normal VEP showed visual recovery. Amongst 29 patients with abnormal VEP, 26 (86.6% showed improvement. In 39 patients initial VEPs showed no wave, however, subsequent VEP recordings demonstrated wave formation. Thus in 31 patients repeated VEP recordings failed to demonstrate wave formation, and none of them improved. This study, thus brings out the high predictive value of both positive and negative VEPs.

  4. ELECTROSTATIC POTENTIAL OF STRONGLY NONLINEAR COMPOSITES: HOMOTOPY CONTINUATION APPROACH

    Institute of Scientific and Technical Information of China (English)

    Wei En-bo; Gu Guo-qing

    2000-01-01

    The homotopy continuation method is used to solve the electrostaticboundary-value problems of strongly nonlinear composite media, whichobey a current-field relation of J= E+ |E|2E. With the modeexpansion, the approximate analytical solutions of electric potential inhost and inclusion regions are obtained by solving a set of nonlinearordinary different equations, which are derived from the originalequations with homotopy method. As an example in dimension two, we applythe method to deal with a nonlinear cylindrical inclusion embedded in ahost. Comparing the approximate analytical solution of the potentialobtained by homotopy method with that of numerical method, we canobverse that the homotopy method is valid for solving boundary-valueproblems of weakly and strongly nonlinear media.

  5. Characterization of potential ionizing radiation biomarkers by a proteomic approach

    Energy Technology Data Exchange (ETDEWEB)

    Guipaud, O.; Vereycken-Holler, V.; Benderitter, M. [Institut de Radioprotection et de Surete Nucleaire, Lab. de Radiopathologie, 92 - Fontenay aux Roses (France); Royer, N.; Vinh, J. [Ecole Superieure de Physique et de Chimie Industrielles, 75 - Paris (France)

    2006-07-01

    Radio-induced lesions are tissue specific, hardly predictable, and can arise months or years later. The finding of prognostic bio-markers is of fundamental relevance for the settlement of therapeutic or preventive strategies. Using two-dimensional gel electrophoresis and mass spectrometry, a proteomic study was applied to look for differentially expressed proteins, i.e. potential bio-markers candidates, in mouse serums after a local irradiation of the dorsal skin. Our results clearly indicated that serum protein content was dynamically modified after a local skin irradiation. A set of specific proteins were early down- or up-regulated and could turn out to be good candidates as diagnostic or prognostic bio-markers. (author)

  6. Strongly Interacting Matter at Finite Chemical Potential: Hybrid Model Approach

    Science.gov (United States)

    Srivastava, P. K.; Singh, C. P.

    2013-06-01

    Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark-gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential (μB). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of μB and compare our results with the most recent results of lattice QCD calculation.

  7. Understanding the mechanism of hepatic fibrosis and potential therapeutic approaches

    Directory of Open Access Journals (Sweden)

    Areeba Ahmad

    2012-01-01

    Full Text Available Hepatic fibrosis (HF is a progressive condition with serious clinical complications arising from abnormal proliferation and amassing of tough fibrous scar tissue. This defiance of collagen fibers becomes fatal due to ultimate failure of liver functions. Participation of various cell types, interlinked cellular events, and large number of mediator molecules make the fibrotic process enormously complex and dynamic. However, with better appreciation of underlying cellular and molecular mechanisms of fibrosis, the assumption that HF cannot be cured is gradually changing. Recent findings have underlined the therapeutic potential of a number of synthetic compounds as well as plant derivatives for cessation or even the reversal of the processes that transforms the liver into fibrotic tissue. It is expected that future inputs will provide a conceptual framework to develop more specific strategies that would facilitate the assessment of risk factors, shortlist early diagnosis biomarkers, and eventually guide development of effective therapeutic alternatives.

  8. Simulation of Astronomical Images from Optical Survey Telescopes using a Comprehensive Photon Monte Carlo Approach

    CERN Document Server

    Peterson, J R; Kahn, S M; Rasmussen, A P; Peng, E; Ahmad, Z; Bankert, J; Chang, C; Claver, C; Gilmore, D K; Grace, E; Hannel, M; Hodge, M; Lorenz, S; Lupu, A; Meert, A; Nagarajan, S; Todd, N; Winans, A; Young, M

    2015-01-01

    We present a comprehensive methodology for the simulation of astronomical images from optical survey telescopes. We use a photon Monte Carlo approach to construct images by sampling photons from models of astronomical source populations, and then simulating those photons through the system as they interact with the atmosphere, telescope, and camera. We demonstrate that all physical effects for optical light that determine the shapes, locations, and brightnesses of individual stars and galaxies can be accurately represented in this formalism. By using large scale grid computing, modern processors, and an efficient implementation that can produce 400,000 photons/second, we demonstrate that even very large optical surveys can be now be simulated. We demonstrate that we are able to: 1) construct kilometer scale phase screens necessary for wide-field telescopes, 2) reproduce atmospheric point-spread-function moments using a fast novel hybrid geometric/Fourier technique for non-diffraction limited telescopes, 3) ac...

  9. Time-and-frequency domains approach to data processing in multiwavelength optical scatterometry of dielectric gratings

    KAUST Repository

    Granet, Gérard

    2013-01-01

    This paper focuses on scatterometry problems arising in lithography production of periodic gratings. Namely, the paper introduces a theoretical and numerical-modeling-oriented approach to scatterometry problems and discusses its capabilities. The approach allows for reliable detection of deviations in gratings\\' critical dimensions (CDs) during the manufacturing process. The core of the approach is the one-to-one correspondence between the electromagnetic (EM) characteristics and the geometric/material properties of gratings. The approach is based on highly accurate solutions of initial boundary-value problems describing EM waves\\' interaction on periodic gratings. The advantage of the approach is the ability to perform simultaneously and interactively both in frequency and time domains under conditions of possible resonant scattering of EM waves by infinite or finite gratings. This allows a detection of CDs for a wide range of gratings, and, thus is beneficial for the applied scatterometry. (C) 2013 Optical Society of America

  10. Displacement of optical centers in over-the-counter readers: a potential cause of diplopia.

    Science.gov (United States)

    West, Constance E; Hunter, David G

    2014-06-01

    Induced prism in spectacle lenses, which may result from inadvertent displacement of optical centers, may worsen an existing heterophoria or even cause diplopia, yet over-the-counter reading glasses (OTC readers) are not always assessed by clinicians when evaluating patients with diplopia or asthenopia. To gauge the magnitude of this potential problem, we used a focimeter and prescription aligner to assess the frequency and extent of clinically significant manufacturing variations in a random selection of 160 OTC readers. The optical centers were vertically displaced by ≥3 mm in 11%, with a maximum displacement of 7 mm in 1 pair. Average interpupillary distance was 64 mm (range, 58-74.5 mm), with interpupillary distance outside the normal range of 60-70 mm in 5%. Monocular pupillary distance was asymmetric by ≥5 mm in 4%. A 0.75 D power difference between lenses was measured in one pair of OTC readers. Some OTC readers have misaligned optical centers and other manufacturing defects that are of a magnitude sufficient to exacerbate a heterophoria and cause asthenopia or diplopia.

  11. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches

    Science.gov (United States)

    Cheng, Ning; Rho, Jong M.; Masino, Susan A.

    2017-01-01

    Autism spectrum disorder (ASD) is characterized by deficits in sociability and communication, and increased repetitive and/or restrictive behaviors. While the etio-pathogenesis of ASD is unknown, clinical manifestations are diverse and many possible genetic and environmental factors have been implicated. As such, it has been a great challenge to identify key neurobiological mechanisms and to develop effective treatments. Current therapies focus on co-morbid conditions (such as epileptic seizures and sleep disturbances) and there is no cure for the core symptoms. Recent studies have increasingly implicated mitochondrial dysfunction in ASD. The fact that mitochondria are an integral part of diverse cellular functions and are susceptible to many insults could explain how a wide range of factors can contribute to a consistent behavioral phenotype in ASD. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), used for nearly a century to treat medically intractable epilepsy, has been shown to enhance mitochondrial function through a multiplicity of mechanisms and affect additional molecular targets that may address symptoms and comorbidities of ASD. Here, we review the evidence for the use of metabolism-based therapies such as the KD in the treatment of ASD as well as emerging co-morbid models of epilepsy and autism. Future research directions aimed at validating such therapeutic approaches and identifying additional and novel mechanistic targets are also discussed. PMID:28270747

  12. Molecular Approaches to Understand Nutritional Potential of Coarse Cereals.

    Science.gov (United States)

    Singh, Amit Kumar; Singh, Rakesh; Subramani, Rajkumar; Kumar, Rajesh; Wankhede, Dhammaprakash P

    2016-06-01

    Coarse grains are important group of crops that constitutes staple food for large population residing primarily in the arid and semi-arid regions of the world. Coarse grains are designated as nutri-cereals as they are rich in essential amino acids, minerals and vitamins. In spite of having several nutritional virtues in coarse grain as mentioned above, there is still scope for improvement in quality parameters such as cooking qualities, modulation of nutritional constituents and reduction or elimination of anti-nutritional factors. Besides its use in traditional cooking, coarse grains have been used mainly in the weaning food preparation and other malted food production. Improvement in quality parameters will certainly increase consumer's preference for coarse grains and increase their demand. The overall genetic gain in quality traits of economic importance in the cultivated varieties will enhance their industrial value and simultaneously increase income of farmers growing these varieties. The urgent step for improvement of quality traits in coarse grains requires a detailed understanding of molecular mechanisms responsible for varied level of different nutritional contents in different genotypes of these crops. In this review we have discussed the progresses made in understanding of coarse grain biology with various omics tool coupled with modern breeding approaches and the current status with regard to our effort towards dissecting traits related to improvement of quality and nutritional constituents of grains.

  13. Metabolic Dysfunction Underlying Autism Spectrum Disorder and Potential Treatment Approaches.

    Science.gov (United States)

    Cheng, Ning; Rho, Jong M; Masino, Susan A

    2017-01-01

    Autism spectrum disorder (ASD) is characterized by deficits in sociability and communication, and increased repetitive and/or restrictive behaviors. While the etio-pathogenesis of ASD is unknown, clinical manifestations are diverse and many possible genetic and environmental factors have been implicated. As such, it has been a great challenge to identify key neurobiological mechanisms and to develop effective treatments. Current therapies focus on co-morbid conditions (such as epileptic seizures and sleep disturbances) and there is no cure for the core symptoms. Recent studies have increasingly implicated mitochondrial dysfunction in ASD. The fact that mitochondria are an integral part of diverse cellular functions and are susceptible to many insults could explain how a wide range of factors can contribute to a consistent behavioral phenotype in ASD. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), used for nearly a century to treat medically intractable epilepsy, has been shown to enhance mitochondrial function through a multiplicity of mechanisms and affect additional molecular targets that may address symptoms and comorbidities of ASD. Here, we review the evidence for the use of metabolism-based therapies such as the KD in the treatment of ASD as well as emerging co-morbid models of epilepsy and autism. Future research directions aimed at validating such therapeutic approaches and identifying additional and novel mechanistic targets are also discussed.

  14. Immunological Defects in Neonatal Sepsis and Potential Therapeutic Approaches

    Science.gov (United States)

    Raymond, Steven L.; Stortz, Julie A.; Mira, Juan C.; Larson, Shawn D.; Wynn, James L.; Moldawer, Lyle L.

    2017-01-01

    Despite advances in critical care medicine, neonatal sepsis remains a major cause of morbidity and mortality worldwide, with the greatest risk affecting very low birth weight, preterm neonates. The presentation of neonatal sepsis varies markedly from its presentation in adults, and there is no clear consensus definition of neonatal sepsis. Previous work has demonstrated that when neonates become septic, death can occur rapidly over a matter of hours or days and is generally associated with inflammation, organ injury, and respiratory failure. Studies of the transcriptomic response by neonates to infection and sepsis have led to unique insights into the early proinflammatory and host protective responses to sepsis. Paradoxically, this early inflammatory response in neonates, although lethal, is clearly less robust relative to children and adults. Similarly, the expression of genes involved in host protective immunity, particularly neutrophil function, is also markedly deficient. As a result, neonates have both a diminished inflammatory and protective immune response to infection which may explain their increased risk to infection, and their reduced ability to clear infections. Such studies imply that novel approaches unique to the neonate will be required for the development of both diagnostics and therapeutics in this high at-risk population. PMID:28224121

  15. Toward Best Practices For Assessing Near Surface Sensor Fouling: Potential Correction Approaches Using Underway Ferry Measurements

    Science.gov (United States)

    Sastri, A. R.; Dewey, R. K.; Pawlowicz, R.; Krogh, J.

    2016-02-01

    Data from long term deployments of sensors on autonomous, mobile and cabled observation platforms suffer potential quality issues associated with bio-fouling. This issue is of particular concern for optical sensors, such as fluorescence and/or absorbance-based instruments for which light emitting/receiving surfaces are prone to fouling due constant contact with the marine environment. Here we examine signal quality for backscatter, chlorophyll and CDOM fluorescence from a single triplet instrument installed in a ferry box system (nominal depth of 3m) operated by Ocean Networks Canada. The time series consists of 22 months of 8-10 daily transits across the productive waters of the Strait of Georgia, British Columbia, Canada (Nanaimo on Vancouver Island and Vancouver on mainland BC). Instruments were cleaned every 2 weeks since all three instruments experienced significant signal attenuation during that period throughout the year. We experimented with a variety of pre- and post-cleaning measurements in an effort to develop `correction factors' with which to account for the effects of fouling. We found that CDOM fluorescence was especially sensitive to fouling and that correction factors derived from measurements of the fluorescence of standardized solutions successfully accounted for fouling. Similar results were found for chlorophyll fluorescence. Here we present results from our measurements and assess the efficacy of each of these approaches using comparisons against additional instruments less prone to signal attenuation over short periods.

  16. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation.

    Science.gov (United States)

    He, Changyu; Kazanzides, Peter; Sen, Hasan Tutkun; Kim, Sungmin; Liu, Yue

    2015-07-08

    Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF) pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD) that integrates an optical tracking system (OTS) and inertial measurement unit (IMU). Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE) of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions.

  17. An Inertial and Optical Sensor Fusion Approach for Six Degree-of-Freedom Pose Estimation

    Directory of Open Access Journals (Sweden)

    Changyu He

    2015-07-01

    Full Text Available Optical tracking provides relatively high accuracy over a large workspace but requires line-of-sight between the camera and the markers, which may be difficult to maintain in actual applications. In contrast, inertial sensing does not require line-of-sight but is subject to drift, which may cause large cumulative errors, especially during the measurement of position. To handle cases where some or all of the markers are occluded, this paper proposes an inertial and optical sensor fusion approach in which the bias of the inertial sensors is estimated when the optical tracker provides full six degree-of-freedom (6-DOF pose information. As long as the position of at least one marker can be tracked by the optical system, the 3-DOF position can be combined with the orientation estimated from the inertial measurements to recover the full 6-DOF pose information. When all the markers are occluded, the position tracking relies on the inertial sensors that are bias-corrected by the optical tracking system. Experiments are performed with an augmented reality head-mounted display (ARHMD that integrates an optical tracking system (OTS and inertial measurement unit (IMU. Experimental results show that under partial occlusion conditions, the root mean square errors (RMSE of orientation and position are 0.04° and 0.134 mm, and under total occlusion conditions for 1 s, the orientation and position RMSE are 0.022° and 0.22 mm, respectively. Thus, the proposed sensor fusion approach can provide reliable 6-DOF pose under long-term partial occlusion and short-term total occlusion conditions.

  18. MRI of optic nerve and postchiasmal visual pathways and visual evoked potentials in secondary progressive multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.B.; Hawkins, C.P. [School of Postgraduate Medicine, Keele Univ. (United Kingdom)]|[Department of Neurology and Neurophysiology, Royal Infirmary, Stoke-on-Trent (United Kingdom); Williams, R. [MRI Unit Cornwall House, Stoke-on-Trent (United Kingdom); Haq, N. [Department of Neurology, North Staffordshire Hospital, Stoke-on-Trent (United Kingdom); Pelosi, L. [Department of Neurology and Neurophysiology, Royal Infirmary, Stoke-on-Trent (United Kingdom)

    1998-12-01

    We studied the relationship between abnormalities shown by MRI and functional disturbances in the visual pathway as assessed by the visual evoked potential (VEP) in 25 patients with established multiple sclerosis (MS); only 4 of whom had a history of acute optic neuritis. Optic nerve MRI was abnormal in 19 (76 %) and is thus useful in detecting subclinical disease. Optic nerve total lesion length and area on the STIR sequence was found to correlate significantly with prolongation of the VEP latency. This may reflect a predominantly demyelinating rather than inflammatory origin for the signal change in the optic nerve. (orig.) With 5 figs., 1 tab., 25 refs.

  19. How to actualize potential: a bioecological approach to talent development.

    Science.gov (United States)

    Ceci, Stephen J; Williams-Ceci, Sterling; Williams, Wendy M

    2016-08-01

    Bioecological theory posits three interacting principles to explain developmental outcomes such as fluctuating achievement levels and changing heritability coefficients. Here, we apply the theory to the domain of talent development, by reviewing short-term and long-term cognitive interventions. We argue that macro-level analyses of cultural practices (e.g., matrilineal inheritance and property ownership) and national systems of education are consistent with the bioecological theory; when the findings from these analyses are unpacked, the engines that drive them are so-called proximal processes. This finding has implications for the design and delivery of instruction and the development of talent. We argue that talent is fostered by the same three bioecological mechanisms that explain the actualization of genetic potential. We conclude by discussing several self-descriptions and personal narratives by gifted students in which they spontaneously refer to these bioecological mechanisms in their own talent-development processes. Similar testimonials have been documented by historic talent researchers such as Benjamin Bloom, noting the importance of continual adjustments in feedback. © 2016 New York Academy of Sciences.

  20. Biofertilizers: a potential approach for sustainable agriculture development.

    Science.gov (United States)

    Mahanty, Trishna; Bhattacharjee, Surajit; Goswami, Madhurankhi; Bhattacharyya, Purnita; Das, Bannhi; Ghosh, Abhrajyoti; Tribedi, Prosun

    2017-02-01

    The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.

  1. Targeting aldehyde dehydrogenase: a potential approach for cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, Ganesan [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)], E-mail: ganesan.v@duke.edu; Song, Haijing; Affleck, Donna; McDougald, Darryl L. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States); Storms, Robert W. [Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R.; Chin, Bennett B. [Department of Radiology, Duke University Medical Center, Box 3808, Durham, NC 27710 (United States)

    2009-11-15

    Introduction: To advance the science and clinical application of stem cell therapy, the availability of a highly sensitive, quantitative and translational method for tracking stem cells would be invaluable. Because hematopoetic stem cells express high levels of the cytosolic enzyme aldehyde dehydrogenase-1A1 (ALDH1), we sought to develop an agent that is specific to ALDH1 and thus to cells expressing the enzyme. Such an agent might be also helpful in identifying tumors that are resistant to cyclophosphomide chemotherapy because ALDH1 is known to be responsible for this resistance. Methods: We developed schemes for the synthesis of two radioiodinated aldehdyes - N-formylmethyl-5-[*I]iodopyridine-3-carboxamide ([*I]FMIC) and 4-diethylamino-3-[*I]iodobenzaldehyde ([*I]DEIBA)-at no-carrier-added levels from their respective tin precursors. These agents were evaluated using pure ALDH1 and tumor cells that expressed the enzyme. Results: The average radiochemical yields for the synthesis of [{sup 125}I]FMIC and [{sup 125}I]DEIBA were 70{+-}5% and 47{+-}14%, respectively. ALDH1 converted both compounds to respective acids suggesting their suitability as ALDH1 imaging agents. Although ability of ALDH1 within the cells to oxidize one of these substrates was shown, specific uptake in ALDH-expressing tumor cells could not be demonstrated. Conclusion: To pursue this approach for ALDH1 imaging, radiolabeled aldehydes need to be designed such that, in addition to being good substrates for ALDH1, the cognate products should be sufficiently polar so as to be retained within the cells.

  2. Potentialities of laser systems for remote sensing of the atmosphere at a wide variability of optical and physical characteristics: dimensionless-parametric modelling

    Science.gov (United States)

    Agishev, R. R.

    2017-02-01

    Within the framework of generalisation of different approaches to the modelling of atmospheric lidars, the methodology capabilities for dimensionless-parametric analysis are expanded. The developed approach simplifies the analysis of the signal-to-noise ratio and potential capabilities of existing and newly developed monitoring systems with a wide variability of atmospheric and optical conditions and a great variety of modern lidars. Its applicability to the problems of remote atmospheric sensing, environmental monitoring and lidar navigation in providing the eye safety, noise immunity and reliability is discussed.

  3. A Novel Analysis Approach for Ring-resonator Performance as Optical Filter

    Institute of Scientific and Technical Information of China (English)

    XU Jing-bo

    2008-01-01

    A novel attempt has been made in this paper for a different approach for determination of ring resonator transmittance with the help of delay line signal processing techniques and Totally Coded Method (TCM). A generalized approach for determination of transfer function in Z-domain of optical waveguide based ring resonator is introduced. Delay line signal processing technique is used to develop the signal flow graph of different ring resonator architectures, and a rule is implemented to determine its overall transmittance. The parameters describing the performance of optical filter can be directly estimated from the frequency response plot. A waveguide based double ring resonator (DRR) architecture is proposed, and its frequency response analysis is carried out.

  4. Self-consistent approach for Bose-condensed atoms in optical lattices

    Directory of Open Access Journals (Sweden)

    V.I. Yukalov

    2013-06-01

    Full Text Available Bose atoms in optical lattices are considered at low temperatures and weak interactions, when Bose-Einstein condensate is formed. A self-consistent approach, based on the use of a representative statistical ensemble, is employed, guaranteeing a gapless spectrum of collective excitations and the validity of conservation laws. In order to show that the approach is applicable to both weak and tight binding, the problem is treated in the Bloch as well as in the Wannier representations. Both these ways result in similar expressions that are compared for the self-consistent Hartree-Fock-Bogolubov approximation. A convenient general formula for the superfluid fraction of atoms in an optical lattice is derived.

  5. Proton Spectroscopic Factors Deduced from Helium-3 Global Phenomenological and Microscopic Optical Model Potentials

    Science.gov (United States)

    Jenny, Lee; Pang, Dan-Yang; Han, Yin-Lu; B. Tsang, M.

    2014-09-01

    Global phenomenological GDP08 and microscopic helium-3 optical model potentials have been recently derived. We evaluate these two potential sets by comparing the elastic scattering data of 25 MeV 3He on 16O, 18O, 19F, 23Na, 24Mg, 25Mg, 26Mg, 27Al, 28Si, 30Si, 31P, 32S, 34S, 35Cl, 37Cl, and 39K isotopes. Using the deuteron angular distributions calculated with the distorted wave Born approximation model, we extract the ground-state proton spectroscopic factors from (3He, d) reactions on the same set of nuclei. The extracted proton spectroscopic factors are compared with the large-basis shell-model calculations.

  6. Synthesis and characterization of silver nanoparticles from Alpinia calcarata by Green approach and its applications in bactericidal and nonlinear optics

    Science.gov (United States)

    Pugazhendhi, S.; Kirubha, E.; Palanisamy, P. K.; Gopalakrishnan, R.

    2015-12-01

    Development of green route for the synthesis of nanoparticles with plant extracts plays a very important role in nanotechnology without any toxicity chemicals. Herein we report a new approach to synthesize silver nanoparticles (AgNPs) using aqueous extract of Alpinia calcarata root as a reducing as well as stabilizing agent. The crystal structure and purity of the synthesized AgNPs were studied using Powder X-ray Diffraction analysis. The Surface Plasmon Resonance bands of synthesized silver nanoparticles have been obtained and monitored using UV-Visible spectrum. The morphologies of the AgNPs were analyzed using High resolution transmission electron microscopy (HRTEM). The elements present in the A. calcarata extract were determined by the inductively coupled plasma-optical emission Spectrometry (ICP-OES) and Fourier transform infrared spectroscopy (FTIR). Silver nanoparticles from A. calcarata possess very good antimicrobial activity which was confirmed by resazurin dye reduction assay method and thus it is a potential source of antimicrobial agent. The synthesized Ag nanoparticles exhibit good optical nonlinearity and the nonlinear optical studies have been carried out by Z-scan technique.

  7. Bragg diffraction of fermions at optical potentials; Braggbeugung von Fermionen an optischen Potentialen

    Energy Technology Data Exchange (ETDEWEB)

    Deh, Benjamin

    2008-10-27

    This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a {sup 6}Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 {mu}s. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)

  8. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential.

    Science.gov (United States)

    Piao, Hong Hua; Rajakumar, Dhanarajan; Kang, Bok Eum; Kim, Eun Ha; Baker, Bradley J

    2015-01-07

    ArcLight is a genetically encoded fluorescent voltage sensor using the voltage-sensing domain of the voltage-sensing phosphatase from Ciona intestinalis that gives a large but slow-responding optical signal in response to changes in membrane potential (Jin et al., 2012). Fluorescent voltage sensors using the voltage-sensing domain from other species give faster yet weaker optical signals (Baker et al., 2012; Han et al., 2013). Sequence alignment of voltage-sensing phosphatases from different species revealed conserved polar and charged residues at 7 aa intervals in the S1-S3 transmembrane segments of the voltage-sensing domain, suggesting potential coil-coil interactions. The contribution of these residues to the voltage-induced optical signal was tested using a cassette mutagenesis screen by flanking each transmembrane segment with unique restriction sites to allow for the testing of individual mutations in each transmembrane segment, as well as combinations in all four transmembrane segments. Addition of a counter charge in S2 improved the kinetics of the optical response. A double mutation in the S4 domain dramatically reduced the slow component of the optical signal seen in ArcLight. Combining that double S4 mutant with the mutation in the S2 domain yielded a probe with kinetics voltage-sensing domain could potentially lead to fluorescent sensors capable of optically resolving neuronal inhibition and subthreshold synaptic activity.

  9. An optical sensing approach for the noninvasive transdermal monitoring of cortisol

    Science.gov (United States)

    Hwang, Yongsoon; Gupta, Niraj K.; Ojha, Yagya R.; Cameron, Brent D.

    2016-03-01

    Cortisol, a biomarker of stress, has recently been shown to have potential in evaluating the physiological state of individuals diagnosed with stress-related conditions including chronic fatigue syndrome. Noninvasive techniques to extract biomarkers from the body are a topic of considerable interest. One such technique to achieve this is known as reverse iontophoresis (RI) which is capable of extracting biomolecules through the skin. Unfortunately, however, the extracted levels are often considerably lower in concentration than those found in blood, thereby requiring a very sensitive analytical method with a low limit of detection. A promising sensing approach, which is well suited to handle such samples, is Surface Plasmon Resonance (SPR) spectroscopy. When coupled with aptamer modified surfaces, such sensors can achieve both selectivity and the required sensitivity. In this study, fabrication and characterization of a RIbased SPR biosensor for the measurement of cortisol has been developed. The optical mount and diffusion cell were both fabricated through the use of 3D printing techniques. The SPR sensor was configured to employ a prism couplerbased arrangement with a laser generation module and CCD line sensor. Cortisol-specific DNA aptamers were immobilized onto a gold surface to achieve the necessary selectivity. For demonstration purposes, cortisol was extracted by the RI system using a skin phantom flow system capable of generating time dependent concentration profiles. The captured sample was then transported using a micro-fluidic platform from the RI collection site to the SPR sensor for real-time monitoring. Analysis and system control was accomplished within a developed LabVIEW® program.

  10. Polishing mechanism of light-initiated dental composite: Geometric optics approach.

    Science.gov (United States)

    Chiang, Yu-Chih; Lai, Eddie Hsiang-Hua; Kunzelmann, Karl-Heinz

    2016-12-01

    For light-initiated dental hybrid composites, reinforcing particles are much stiffer than the matrix, which makes the surface rugged after inadequate polish and favors bacterial adhesion and biofilm redevelopment. The aim of the study was to investigate the polishing mechanism via the geometric optics approach. We defined the polishing abilities of six instruments using the obtained gloss values through the geometric optics approach (micro-Tri-gloss with 20°, 60°, and 85° measurement angles). The surface texture was validated using a field emission scanning electron microscope (FE-SEM). Based on the gloss values, we sorted polishing tools into three abrasive levels, and proposed polishing sequences to test the hypothesis that similar abrasive levels would leave equivalent gloss levels on dental composites. The three proposed, tested polishing sequences included: S1, Sof-Lex XT coarse disc, Sof-Lex XT fine disc, and OccluBrush; S2, Sof-Lex XT coarse disc, Prisma Gloss polishing paste, and OccluBrush; and S3, Sof-Lex XT coarse disc, Enhance finishing cups, and OccluBrush. S1 demonstrated significantly higher surface gloss than the other procedures (p geometric optic approach is an efficient and nondestructive method to characterize the polished surface of dental composites. Copyright © 2015. Published by Elsevier B.V.

  11. Precursor polymer approach towards functional conjugated polymer networks and ultrathin film electro-optical applications

    Science.gov (United States)

    Taranekar, Prasad

    Conjugated polymers are organic semiconductors which are of interest to a wide variety of optical, electronic, opto-electronic, and sensory applications; including light emitting diodes, thin film transistors, photovoltaic cells, and chemical sensors. While conducting polymers have some similarities to conventional polymeric materials, it is clearly the extensive main chain pi-conjugated structure and its implicit electro-optical properties that make it distinct. The same structure, however, gives it "chain stiffness" that affects its physical behavior. As a direct consequence of this, virtually all unsubstituted conducting polymers are found to be intractable and insoluble. This dissertation details the issue of tailoring the electro-optical properties and processability of conjugated polymers via a novel "precursor polymer approach". In this approach, electroactive side group units of either similar or different kind are tethered to a polymeric backbone. This combination determines the eventual electro-optical and electrochemical properties of these polymers including their ability to form ultrathin films. Thus, the desired macroscopic property is transformed by designing new precursor polymer structures, manipulating polymer-based compositions and blends, and the exploration and exploitation of their electrochemical processing conditions. In Chapters 2, 3, and 4, we have used single or binary electroactive compositions of species such as pyrrole, thiophene, carbazole and terthiophene are tethered to a linear polymeric backbone. Besides, the linear approach, in Chapters 5 and 6, we have also explored the use of generational dendrimers as backbone with carbazole units attached as peripheral electroactive groups. These precursor polymers were then subjected to electrochemical cross-linking to generate high optical quality ultrathin films on a conducting substrate such as indium tin oxide (ITO) or Au surfaces. The reaction of such electroactive species inimically

  12. Analysis of the normal optical, Michel and molecular potentials on the $^{40}$Ca($^6$Li, d)$^{44}$ Ti reaction

    Indian Academy of Sciences (India)

    MAZUMDER UTTAM K; SOMADDER ANOCK; HOQUE ENAMUL; HAQUE YASMEEN; DAS SUSANTA K; SEN GUPTA H M

    2016-06-01

    Full finite-range (FFR) distorted-wave Born approximation (DWBA) method has been applied to analyse the angular distributions of cross-sections of the $^{40}$Ca($^{6}$Li, d)$^{44}$Ti reaction at 28 MeV incident energy for the 22 transitions involving both the bound and unbound states of $^{44}$Ti byusing the normal optical, Michel and molecular potentials. The extracted spectroscopic factors for the three optical potentials are compared with those of some previous studies of zero-range (ZR) calculations of the$^{40}$Ca($^{6}$Li, d)$^{44}$Ti reaction using the normal optical potential. The $\\chi^{2}$ values of all the levels are obtained for the three optical potentials to estimate the quality of the fits. Molecular and Michel potentials have been used for the first time to analyse the four-nucleon transfer reaction and it seems that the molecular potential fits the experimental data more satisfactorily for some of the states than the normal optical and Michel potentials.

  13. Multifocal visual evoked potential analysis of inflammatory or demyelinating optic neuritis.

    Science.gov (United States)

    Fraser, Clare L; Klistorner, Alexander; Graham, Stuart L; Garrick, Raymond; Billson, Francis A; Grigg, John R

    2006-02-01

    To determine the sensitivity of multifocal visual evoked potentials (mVEP) in optic neuritis of an inflammatory or demyelinating nature. Cross-sectional study. Sixty-four patients participated who had a confirmed diagnosis of optic neuritis (ON) (past and acute). Based on the McDonald multiple sclerosis (MS) criteria, 25 patients (27 eyes with ON) were deemed to have isolated optic neuritis and thus not have MS (i.e., the not-MS group), and 19 patients (24 eyes with ON) had a diagnosis of MS (i.e., the MS group). The remaining 20 patients (25 eyes with ON) were at a high risk of MS, but diagnostic evaluation was equivocal, and thus were classified as the possible MS group. A control group of 20 normal patients was enrolled. The mVEP test was performed using the Accumap. All ON patients had recent magnetic resonance imaging scans of the brain and spinal cord. Multifocal visual evoked potentials amplitude and latency values were analyzed within each group and were compared with the normal controls. No abnormality was recorded on mVEP in the control group. Of all the ON eyes, 74 (97.3%) were abnormal on mVEP testing. Amplitude values were abnormal in 92.6% of not-MS eyes, 92.0% of possible MS eyes, and 100% of those with MS, and latency was abnormal in 33.3%, 76.0%, and 100%, respectively. There was a significant difference in the mVEP latency z-scores among all ON groups (P<0.01; Kruskal-Wallis test). Although distribution graphs of latency z-scores in the not-MS and MS groups had single peaks and were clearly separate from each other, the latency z-score distribution within the possible MS group in postacute patients was bimodal, with each peak corresponding to the distribution of the not-MS and MS group, respectively. The mVEP latency z-scores had a sensitivity and specificity of 100% in detecting patients with ON due to MS when compared with normal patients. The mVEP test is a sensitive and specific tool for detecting optic neuritis. There was a significant

  14. The nonlinear optical rectification and second harmonic generation in asymmetrical Gaussian potential quantum well: Effects of hydrostatic pressure, temperature and magnetic field

    Science.gov (United States)

    Liu, Xin; Zou, LiLi; Liu, Chenglin; Zhang, Zhi-Hai; Yuan, Jian-Hui

    2016-03-01

    In the present work, the effects of hydrostatic pressure, temperature, and magnetic field on the nonlinear optical rectification (OR) and second-harmonic generation (SHG) in asymmetrical Gaussian potential quantum well (QW) have been investigated theoretically. Here, the expressions for the optical properties are calculated by the compact-density-matrix approach and iterative method. Simultaneously, the energy eigenvalues and their corresponding eigenfunctions have been obtained by using the finite difference method. The energy eigenvalues and the shape of the confined potential are modulated by the hydrostatic pressure, temperature, and magnetic field. So the results of a number of numerical experiments indicate that the nonlinear OR and SHG strongly depends on the hydrostatic pressure, temperature, and magnetic field. This gives a new degree of freedom in various device applications based on the intersubband transitions of electrons.

  15. Flash visual evoked potential monitoring of optic tract function during macroelectrode-based pallidotomy.

    Science.gov (United States)

    Bonaroti, E A; Rose, R D; Kondziolka, D; Baser, S; Lunsford, L D

    1997-03-15

    Posteroventral pallidotomy (PVP) has received renewed interest as an ablative procedure for the symptomatic treatment of Parkinson's disease. In previous reports, the proximity of the optic tract to the lesion target in the globus pallidus internus has resulted in the occurrence of visual field deficits in as much as 14% of patients. The authors have used intraoperative visual evoked potentials (VEPs) during PVP to reduce this risk. All procedures were performed in awake patients. Flash stimuli were delivered to each eye via fiberoptic sources. Baseline flash VEPs were recorded at O1/Cz (left visual cortex to vertex), Oz/Cz (midline visual cortex to vertex), and O2/Cz (right visual cortex to vertex) for OS, OU, and OD stimulation. Epochs were acquired before and after localization, after macroelectrode stimulation, after temporary thermal lesioning, and after permanent thermal lesioning. Forty-seven patients underwent a total of 59 procedures. Visual evoked potentials were recorded reproducibly in all patients. In 11 procedures, VEP changes were reported, including six amplitude changes (10-80%), six latency shifts (3-10 msec), and one report of "variability." In four procedures, VEP changes prompted a change in target coordinates. One false-positive and one false-negative VEP change were encountered. The only confirmed visual deficit was a superior quadrantanopsia, present on formal fields, but clinically asymptomatic. The authors conclude that VEPs may be useful for procedures performed in the awake patient because of the lack of anesthetic-induced variability. The 1.7% visual morbidity reported here (one in 59 patients) compares favorably with other series using microelectrodes. Visual evoked potentials may be a useful monitoring technique to reduce the incidence of clinically significant visual morbidity during pallidotomy, especially during formal lesioning of the ventral pallidum adjacent to the optic tract.

  16. A Novel Analytical Approach for Multi-Layer Diaphragm-Based Optical Microelectromechanical-System Pressure Sensors

    Institute of Scientific and Technical Information of China (English)

    LI Ming; WANG Ming; RONG Hua; LI Hong-Pu

    2006-01-01

    @@ An optical microelectromechanical-system (MEMS) pressure sensor based on multi-layer circular diaphragm is described and analysed by using the proposed novel analytical approach and the traditional transfer matrix method. The analytical expressions of the deflection of multi-layer diaphragm and absolute optical reflectance are derived respectively. The influence of residual stress on the deflection of diaphragm is also analysed. Simulation results given by the finite element method are consistent with the ones which are analysed by using the analytical approach. The analytical approach will be helpful to design and fabricate the optical MEMS pressure sensors with multi-layer diaphragm based on Fabry-Perot interferometry.

  17. Current and future potential of retinal optical coherence tomography in multiple sclerosis with and without optic neuritis.

    Science.gov (United States)

    Balk, Lisanne J; Petzold, Axel

    2014-01-01

    Multiple sclerosis (MS) is a disorder characterized by inflammation and neuroaxonal degeneration. The latter is held responsible for the irreversible disability in patients with MS. The eye is a unique window into the brain. With the advent of optical coherence tomography, accurate quantification of retinal layer thickness has become feasible. Neuroaxonal degeneration affecting the retinal layers is structurally and functionally related to pathology in the visual pathways, which is most severe following MS optic neuritis. This is relevant to recognize because MS optic neuritis may mask the subtle thinning of retinal layers associated with global CNS atrophy, which is also related to more global loss of neurological function. Taken together, optical coherence tomography stands at the brink of becoming a validated imaging biomarker for monitoring neurodegeneration in MS and to provide end points for clinical trials.

  18. Developmental impairment of compound action potential in the optic nerve of myelin mutant taiep rats.

    Science.gov (United States)

    Roncagliolo, Manuel; Schlageter, Carol; León, Claudia; Couve, Eduardo; Bonansco, Christian; Eguibar, José R

    2006-01-05

    The taiep rat is a myelin mutant with an initial hypomyelination, followed by a progressive demyelination of the CNS. The neurological correlates start with tremor, followed by ataxia, immobility episodes, epilepsy and paralysis. The optic nerve, an easily-isolable central tract fully myelinated by oligodendrocytes, is a suitable preparation to evaluate the developmental impairment of central myelin. We examined the ontogenic development of optic nerve compound action potentials (CAP) throughout the first 6 months of life of control and taiep rats. Control optic nerves (ON) develop CAPs characterized by three waves. Along the first month, the CAPs of taiep rats showed a delayed maturation, with lower amplitudes and longer latencies than controls; at P30, the conduction velocity has only a third of the normal value. Later, as demyelination proceeds, the conduction velocity of taiep ONs begins to decrease and CAPs undergo a gradual temporal dispersion. CAPs of control and taiep showed differences in their pharmacological sensitivity to TEA and 4-AP, two voltage dependent K+ channel-blockers. As compared with TEA, 4-AP induced a significant increase of the amplitudes and a remarkable broadening of CAPs. After P20, unlike controls, the greater sensitivity to 4-AP exhibited by taiep ONs correlates with the detachment and retraction of paranodal loops suggesting that potassium conductances could regulate the excitability as demyelination of CNS axons progresses. It is concluded that the taiep rat, a long-lived mutant, provides a useful model to study the consequences of partial demyelination and the mechanisms by which glial cells regulate the molecular organization and excitability of axonal membranes during development and disease.

  19. Dissolved Organic Carbon and Optical Properties as Indicators of Trihalomethane Formation Potential in an Agricultural Watershed

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Spencer, R. G.

    2006-12-01

    Elevated concentrations of dissolved organic carbon (DOC) in the Sacramento-San Joaquin Delta waters may result in the formation of high levels of carcinogenic disinfection byproducts such as trihalomethane during drinking water treatment. The importance of Central Valley agricultural lands as sources of DOC and THM- precursors upstream of the Delta is presently unknown. We are quantifying contributions of DOC and THM- precursors from the Willow Slough watershed, a 425 km2 agriculturally-dominated catchment. During 2006, water samples were collected weekly at the mouth of the watershed and analyzed for DOC concentrations, optical properties (UV absorbance and fluorescence), and trihalomethane formation potential (THMFP). Additional synoptic samples were collected seasonally (winter, spring, summer) from 16 watershed locations and analyzed for optical properties, DOC concentrations, and THMFP. DOC concentrations generally ranged from approximately 2 to 4 mg/L at the watershed outlet during winter and spring, but increased weekly to 8 mg/L following the onset of irrigation. The THMFP at the mouth of the water was correlated with DOC concentration (r2 = 0.87), with higher concentrations during high discharge events and lower concentrations during summer and prolonged rain-free periods. In addition, the species of THM varied between high and low-flow periods, with THM formation dominated by brominated species during low- flow periods and chlorinated species during rainfall-runoff events. Optical characterization of DOC via UV absorbance and fluorescence suggests changes in DOC composition between high- and low-flow periods, likely reflective of changing sources and flowpaths of runoff.

  20. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  1. Single-molecule approach to bacterial genomic comparisons via optical mapping.

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shiguo [Univ. Wisc.-Madison; Kile, A. [Univ. Wisc.-Madison; Bechner, M. [Univ. Wisc.-Madison; Kvikstad, E. [Univ. Wisc.-Madison; Deng, W. [Univ. Wisc.-Madison; Wei, J. [Univ. Wisc.-Madison; Severin, J. [Univ. Wisc.-Madison; Runnheim, R. [Univ. Wisc.-Madison; Churas, C. [Univ. Wisc.-Madison; Forrest, D. [Univ. Wisc.-Madison; Dimalanta, E. [Univ. Wisc.-Madison; Lamers, C. [Univ. Wisc.-Madison; Burland, V. [Univ. Wisc.-Madison; Blattner, F. R. [Univ. Wisc.-Madison; Schwartz, David C. [Univ. Wisc.-Madison

    2004-01-01

    Modern comparative genomics has been established, in part, by the sequencing and annotation of a broad range of microbial species. To gain further insights, new sequencing efforts are now dealing with the variety of strains or isolates that gives a species definition and range; however, this number vastly outstrips our ability to sequence them. Given the availability of a large number of microbial species, new whole genome approaches must be developed to fully leverage this information at the level of strain diversity that maximize discovery. Here, we describe how optical mapping, a single-molecule system, was used to identify and annotate chromosomal alterations between bacterial strains represented by several species. Since whole-genome optical maps are ordered restriction maps, sequenced strains of Shigella flexneri serotype 2a (2457T and 301), Yersinia pestis (CO 92 and KIM), and Escherichia coli were aligned as maps to identify regions of homology and to further characterize them as possible insertions, deletions, inversions, or translocations. Importantly, an unsequenced Shigella flexneri strain (serotype Y strain AMC[328Y]) was optically mapped and aligned with two sequenced ones to reveal one novel locus implicated in serotype conversion and several other loci containing insertion sequence elements or phage-related gene insertions. Our results suggest that genomic rearrangements and chromosomal breakpoints are readily identified and annotated against a prototypic sequenced strain by using the tools of optical mapping.

  2. Optical properties of correlated materials: Generalized Peierls approach and its application to VO2

    Science.gov (United States)

    Tomczak, Jan M.; Biermann, Silke

    2009-08-01

    The aim of this paper is to present a versatile scheme for the computation of optical properties of solids, with particular emphasis on realistic many-body calculations for correlated materials. Geared at the use with localized basis sets, we extend the commonly known lattice “Peierls substitution” approach to the case of multiatomic unit cells. We show in how far this generalization can be deployed as an approximation to the full Fermi-velocity matrix elements that enter the continuum description of the response of a solid to incident light. We further devise an upfolding scheme to incorporate optical transitions that involve high-energy orbitals that had been downfolded in the underlying many-body calculation of the electronic structure. As an application of the scheme, we present results on a material of longstanding interest, vanadium dioxide, VO2 . Using dynamical mean-field data of both, the metallic and the insulating phase, we calculate the corresponding optical conductivities, elucidate optical transitions and find good agreement with experimental results.

  3. Novel approach for simultaneous wireless transmission and evaluation of optical sensors

    Science.gov (United States)

    Neumann, Niels; Schuster, Tobias; Plettemeier, Dirk

    2014-11-01

    Optical sensors can be used to measure various quantities such as pressure, strain, temperature, refractive index, pH value and biochemical reactions. The interrogation of the sensor can be performed spectrally or using a simple power measurement. However, the evaluation of the sensor signal and the subsequent radio transmission of the results is complicated and costly. A sophisticated system setup comprising a huge number of electrooptical components as well as a complete radio module is required. This is not only expensive and unreliable but also impractical within harsh environment, in limited space and in inaccessible areas. Radio-over-Fiber (RoF) technology implies signals modulated on an electrical carrier being transmitted over fiber by using optical carriers. Combining RoF techniques and optical sensors, a new class of measurement devices readable by a radio interfaces is introduced in this paper. These sensors use a modulated input signal generated by a RoF transmitter that { after being influenced by the optical sensor-is directly converted into a radio signal and transmitted. This approach enables remote read-outs of the sensor by means of wireless evaluation. Thus, costly, voluminous, power hungry and sensitive equipment in the vicinity of the measurement location is avoided. The equipment can be concentrated in a central location supporting existing radio transmission schemes (e.g. WiFi).

  4. Space-time-wavelength mapping: a new approach for electronic control of optical tweezers

    CERN Document Server

    Rahman, Shah; Zhao, Qiancheng; Atasever, Tuva; Boyraz, Ozdal

    2015-01-01

    We present a new approach for electronic control of optical tweezers. The key technique, called 'space-time-wavelength mapping', involves time-domain modulation which is translated onto spatial domain by diffraction and enables direct control of location and polarity of force hot-spots created by Lorentz force (gradient force). In this study 150 fs optical pulses are dispersed in time and space to achieve a focused elliptical beam that is ~20 {\\mu}m long and ~2 {\\mu}m wide. In order to manipulate the intensity gradient along the beam at the focal spot, we use an electro-optic modulator to modulate power spectral distribution of the femtosecond beam after temporal dispersion. The electro-optic modulator is supplied with a chosen RF waveform that dictates the manipulation of the power spectral distribution. By choosing the appropriate RF waveform, it is possible to create force fields for cell stretching and compression as well as multiple hot spots (of > 200 pN force) for attractive or repulsive forces. We pre...

  5. A Stochastic Approach for Blurred Image Restoration and Optical Flow Computation on Field Image Sequence

    Institute of Scientific and Technical Information of China (English)

    高文; 陈熙霖

    1997-01-01

    The blur in target images caused by camera vibration due to robot motion or hand shaking and by object(s) moving in the background scene is different to deal with in the computer vision system.In this paper,the authors study the relation model between motion and blur in the case of object motion existing in video image sequence,and work on a practical computation algorithm for both motion analysis and blut image restoration.Combining the general optical flow and stochastic process,the paper presents and approach by which the motion velocity can be calculated from blurred images.On the other hand,the blurred image can also be restored using the obtained motion information.For solving a problem with small motion limitation on the general optical flow computation,a multiresolution optical flow algoritm based on MAP estimation is proposed. For restoring the blurred image ,an iteration algorithm and the obtained motion velocity are used.The experiment shows that the proposed approach for both motion velocity computation and blurred image restoration works well.

  6. An Aerial-Image Dense Matching Approach Based on Optical Flow Field

    Science.gov (United States)

    Yuan, Wei; Chen, Shiyu; Zhang, Yong; Gong, Jianya; Shibasaki, Ryosuke

    2016-06-01

    Dense matching plays an important role in many fields, such as DEM (digital evaluation model) producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching's requirements. The comparison experiments demonstrated that our approach's matching efficiency is higher than semi-global matching (SGM) and Patch-based multi-view stereo matching (PMVS) which verifies the feasibility and effectiveness of the algorithm.

  7. Coulomb excitation effects on alpha-particle optical potential below the Coulomb barrier

    CERN Document Server

    Avrigeanu, V; Mănăilescu, C

    2016-01-01

    A competition of the low-energy Coulomb excitation (CE) with the compound nucleus (CN) formation in alpha-induced reactions below the Coulomb barrier has recently been assumed in order to make possible the description of the latter as well as the alpha-particle emission by the same optical model (OM) potential. On the contrary, we show in the present work that the corresponding partial waves and integration radii provide evidence for the distinct account of the CE cross section and OM total-reaction cross section $\\sigma_R$. Thus the largest contribution to CE cross section comes by far from partial waves larger than the ones contributing to the $\\sigma_R$ values.

  8. Deformed optical potential anomaly in {open_quotes}soft{close_quotes} nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lubian, J.; Cabezas, R. [Center for Applied Studies to Nuclear Development, Havana (Cuba)

    1994-12-31

    An analysis of the low-energy neutron inelastic scattering in some {open_quotes}soft{close_quotes} nuclei is made in the region of medium atomic-weight nuclei. A combined use of the coupled channel method (CCM) and statistical Hauser-Feshbach theory is applied. As structural model of the target nucleus in the CCM calculation the Davydov-Chaban model (DCM) is used. It is observed that the lineal coefficient of the real part energy dependence of the deformed optical potential becomes unusual and increase with the {open_quotes}softness{close_quotes} of the nucleus. It is shown that in the frame of the DCM it is possible to describe adequately experimental differential, integral and total cross sections in the energy range 1-5 MeV and the structure of the low-lying collective states.

  9. The rising demand for energy: a potential for optical fiber sensors in the monitoring sector

    Science.gov (United States)

    Bosselmann, Thomas; Willsch, Michael; Ecke, Wolfgang

    2008-03-01

    For a long time electric power was taken as a natural unlimited resource. With globalization the demand for energy has risen. This has brought rising prices for fossil fuels, as well as a diversification of power generation. Besides conventional fossil, nuclear plants are coming up again. Renewable energy sources are gaining importance resulting in recent boom of wind energy plants. In the past reliability and availability and an extremely long lifetime were of paramount importance. Today this has been added by cost, due to the global competition and the high fuel costs. New designs of power components have increased efficiency using lesser material. Higher efficiency causes inevitably higher stress on the materials, of which the machines are built. As a reduction of lifetime is not acceptable and maintenance costs are expected to be at a minimum, condition monitoring systems are going to being used now. This offers potentials for fiber optic sensor applications.

  10. The microscopic (optical and SEM) examination of putrefaction fluid deposits (PFD). Potential interest in forensic anthropology.

    Science.gov (United States)

    Charlier, P; Georges, P; Bouchet, F; Huynh-Charlier, I; Carlier, R; Mazel, V; Richardin, P; Brun, L; Blondiaux, J; Lorin de la Grandmaison, G

    2008-10-01

    This article describes the potential interest in physical and forensic anthropology of the microscopic analysis of residues of putrefaction fluid, a calcified deposit frequently found associated with bone rests. Its sampling and analysis seem straightforward and relatively reproducible. Samples came from archeological material (Monterenzio Vecchia, an Etruscan necropolis from the north of Italy dated between the fifth and third century B.C.; body rests of Agnès Sorel, royal mistress died in 1450 A.D.; skull and grave of French King Louis the XI and Charlotte of Savoy dated from 1483 A.D.). All samples were studied by direct optical microscope and scanning electron microscopy. Many cytological, histological, and elemental analysis were possible, producing precious data for the identification of these remains and, in some cases, the cause of death.

  11. Multi-Rare-Earth Ions Codoped Tellurite Glasses for Potential Dual Wavelength Fibre-Optic Amplifiers

    Institute of Scientific and Technical Information of China (English)

    DAI Shi-Xun; YANG Jian-Hu; XU Shi-Qing; DAI Neng-Li; WEN Lei; HU Li-Li; JIANG Zhong-Hong

    2003-01-01

    A novel co-doping method of multi-rare-earth (RE) ions was demonstrated in tellurite glasses for fibre amplifiers. Fluorescence emissions at both 1.53 and 1.63 fj,m communication windows were Brstly observed from Er3+ /Yb3+ /Tm3+ -codoped tellurite glasses under a single wavelength pumping at 980 nm. The full width at half maximum of Suorescence at 1.53 and 1.63 [im are 55 nm and 50 urn, respectively. Tm's codoping method of three RE ions could be applied to other low photon energy glasses, which would be possibly used for potential dual wavelength fibre-optic amplifiers to broaden the communication windows.

  12. Extended object reconstruction in adaptive-optics imaging: the multiresolution approach

    CERN Document Server

    Gallé, Roberto Baena; Gladysz, Szymon

    2012-01-01

    We propose the application of multiresolution transforms, such as wavelets (WT) and curvelets (CT), to the reconstruction of images of extended objects that have been acquired with adaptive optics (AO) systems. Such multichannel approaches normally make use of probabilistic tools in order to distinguish significant structures from noise and reconstruction residuals. Furthermore, we aim to check the historical assumption that image-reconstruction algorithms using static PSFs are not suitable for AO imaging. We convolve an image of Saturn taken with the Hubble Space Telescope (HST) with AO PSFs from the 5-m Hale telescope at the Palomar Observatory and add both shot and readout noise. Subsequently, we apply different approaches to the blurred and noisy data in order to recover the original object. The approaches include multi-frame blind deconvolution (with the algorithm IDAC), myopic deconvolution with regularization (with MISTRAL) and wavelets- or curvelets-based static PSF deconvolution (AWMLE and ACMLE algo...

  13. A novel decoupling approach to an integrated optical-fiber proximity sensor for robots

    Institute of Scientific and Technical Information of China (English)

    LIU Guixiong; LI Xiani

    2007-01-01

    The structure and the working principle of a selfcompensational integrated optical-fiber proximity sensor that detects distance and orientation are introduced in this paper.The corresponding decoupling approach to the sensor is presented on the basis of multiscale characteristics.The decoupiing process can be divided into two parts:classifying the information on the basis of the multiscale degree and solving the coupling equation via the computational approximation methods with different precisions.Finally,the principle,the physical meaning,and the implementation process of the approach are discussed.They indicate that the proposed approach is real-time and accurate,and can be applied to other similar circumstances.

  14. Two-Photon Polarization Dependent Spectroscopy in Chirality: A Novel Experimental-Theoretical Approach to Study Optically Active Systems

    Directory of Open Access Journals (Sweden)

    Florencio E. Hernández

    2011-04-01

    Full Text Available Many phenomena, including life itself and its biochemical foundations are fundamentally rooted in chirality. Combinatorial methodologies for catalyst discovery and optimization remain an invaluable tool for gaining access to enantiomerically pure compounds in the development of pharmaceuticals, agrochemicals, and flavors. Some exotic metamaterials exhibiting negative refractive index at optical frequencies are based on chiral structures. Chiroptical activity is commonly quantified in terms of circular dichroism (CD and optical rotatory dispersion (ORD. However, the linear nature of these effects limits their application in the far and near-UV region in highly absorbing and scattering biological systems. In order to surmount this barrier, in recent years we made important advancements on a novel non linear, low-scatter, long-wavelength CD approach called two-photon absorption circular dichroism (TPACD. Herein we present a descriptive analysis of the optics principles behind the experimental measurement of TPACD, i.e., the double L-scan technique, and its significance using pulsed lasers. We also make an instructive examination and discuss the reliability of our theoretical-computational approach, which uses modern analytical response theory, within a Time-Dependent Density Functional Theory (TD-DFT approach. In order to illustrate the potential of this novel spectroscopic tool, we first present the experimental and theoretical results obtained in C2-symmetric, axially chiral R-(+-1,1'-bi(2-naphthol, R-BINOL, a molecule studied at the beginning of our investigation in this field. Next, we reveal some preliminary results obtained for (R-3,3′-diphenyl-2,2′-bi-1-naphthol, R-VANOL, and (R-2,2′-diphenyl-3,3′-(4-biphenanthrol, R-VAPOL. This family of optically active compounds has been proven to be a suitable model for the structure-property relationship study of TPACD, because its members are highly conjugated yet photo-stable, and easily

  15. Two-photon polarization dependent spectroscopy in chirality: a novel experimental-theoretical approach to study optically active systems.

    Science.gov (United States)

    Hernández, Florencio E; Rizzo, Antonio

    2011-04-18

    Many phenomena, including life itself and its biochemical foundations are fundamentally rooted in chirality. Combinatorial methodologies for catalyst discovery and optimization remain an invaluable tool for gaining access to enantiomerically pure compounds in the development of pharmaceuticals, agrochemicals, and flavors. Some exotic metamaterials exhibiting negative refractive index at optical frequencies are based on chiral structures. Chiroptical activity is commonly quantified in terms of circular dichroism (CD) and optical rotatory dispersion (ORD). However, the linear nature of these effects limits their application in the far and near-UV region in highly absorbing and scattering biological systems. In order to surmount this barrier, in recent years we made important advancements on a novel non linear, low-scatter, long-wavelength CD approach called two-photon absorption circular dichroism (TPACD). Herein we present a descriptive analysis of the optics principles behind the experimental measurement of TPACD, i.e., the double L-scan technique, and its significance using pulsed lasers. We also make an instructive examination and discuss the reliability of our theoretical-computational approach, which uses modern analytical response theory, within a Time-Dependent Density Functional Theory (TD-DFT) approach. In order to illustrate the potential of this novel spectroscopic tool, we first present the experimental and theoretical results obtained in C(2)-symmetric, axially chiral R-(+)-1,1'-bi(2-naphthol), R-BINOL, a molecule studied at the beginning of our investigation in this field. Next, we reveal some preliminary results obtained for (R)-3,3'-diphenyl-2,2'-bi-1-naphthol, R-VANOL, and (R)-2,2'-diphenyl-3,3'-(4-biphenanthrol), R-VAPOL. This family of optically active compounds has been proven to be a suitable model for the structure-property relationship study of TPACD, because its members are highly conjugated yet photo-stable, and easily derivatized at the 5

  16. Physics of Negative Refraction and Negative Index Materials Optical and Electronic Aspects and Diversified Approaches

    CERN Document Server

    Krowne, Clifford M

    2007-01-01

    This book deals with the subject of optical and electronic negative refraction (NR) and negative index materials NIM). Diverse approaches for achieving NR and NIM are covered, such as using photonic crystals, phononic crystals, split-ring resonators (SRRs) and continuous media, focusing of waves, guided-wave behavior, and nonlinear effects. Specific topics treated are polariton theory for LHMs (left handed materials), focusing of waves, guided-wave behavior, nonlinear optical effects, magnetic LHM composites, SRR-rod realizations, low-loss guided-wave bands using SRR-rods unit cells as LHMs, NR of electromagnetic and electronic waves in uniform media, field distributions in LHM guided-wave structures, dielectric and ferroelectric NR bicrystal heterostructures, LH metamaterial photonic-crystal lenses, subwavelength focusing of LHM/NR photonic crystals, focusing of sound with NR and NIMs, and LHM quasi-crystal materials for focusing.

  17. Quantum teleportation and entanglement. A hybrid approach to optical quantum information procesing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Tokyo Univ. (Japan). Dept. of Applied Physics; Loock, Peter van [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Optik

    2011-07-01

    Unique in that it is jointly written by an experimentalist and a theorist, this monograph presents universal quantum computation based on quantum teleportation as an elementary subroutine and multi-party entanglement as a universal resource. Optical approaches to measurement-based quantum computation are also described, including schemes for quantum error correction, with most of the experiments carried out by the authors themselves. Ranging from the theoretical background to the details of the experimental realization, the book describes results and advances in the field, backed by numerous illustrations of the authors' experimental setups. Aimed at researchers, physicists, and graduate and PhD students in physics, theoretical quantum optics, quantum mechanics, and quantum information. (orig.)

  18. Optical magnetic detection of single-neuron action potentials using NV-diamond

    Science.gov (United States)

    Turner, Matthew; Barry, John; Schloss, Jennifer; Glenn, David; Walsworth, Ron

    2016-05-01

    A key challenge for neuroscience is noninvasive, label-free sensing of action potential dynamics in whole organisms with single-neuron resolution. Here, we report a new approach to this problem: using nitrogen-vacancy (NV) color centers in diamond to measure the time-dependent magnetic fields produced by single-neuron action potentials. We demonstrate our method using excised single neurons from two invertebrate species, marine worm and squid; and then by single-neuron action potential magnetic sensing exterior to whole, live, opaque marine worms for extended periods with no adverse effect. The results lay the groundwork for real-time, noninvasive 3D magnetic mapping of functional mammalian neuronal networks.

  19. Optical tomography reconstruction algorithm with the finite element method: An optimal approach with regularization tools

    Energy Technology Data Exchange (ETDEWEB)

    Balima, O., E-mail: ofbalima@gmail.com [Département des Sciences Appliquées, Université du Québec à Chicoutimi, 555 bd de l’Université, Chicoutimi, QC, Canada G7H 2B1 (Canada); Favennec, Y. [LTN UMR CNRS 6607 – Polytech’ Nantes – La Chantrerie, Rue Christian Pauc, BP 50609 44 306 Nantes Cedex 3 (France); Rousse, D. [Chaire de recherche industrielle en technologies de l’énergie et en efficacité énergétique (t3e), École de technologie supérieure, 201 Boul. Mgr, Bourget Lévis, QC, Canada G6V 6Z3 (Canada)

    2013-10-15

    Highlights: •New strategies to improve the accuracy of the reconstruction through mesh and finite element parameterization. •Use of gradient filtering through an alternative inner product within the adjoint method. •An integral form of the cost function is used to make the reconstruction compatible with all finite element formulations, continuous and discontinuous. •Gradient-based algorithm with the adjoint method is used for the reconstruction. -- Abstract: Optical tomography is mathematically treated as a non-linear inverse problem where the optical properties of the probed medium are recovered through the minimization of the errors between the experimental measurements and their predictions with a numerical model at the locations of the detectors. According to the ill-posed behavior of the inverse problem, some regularization tools must be performed and the Tikhonov penalization type is the most commonly used in optical tomography applications. This paper introduces an optimized approach for optical tomography reconstruction with the finite element method. An integral form of the cost function is used to take into account the surfaces of the detectors and make the reconstruction compatible with all finite element formulations, continuous and discontinuous. Through a gradient-based algorithm where the adjoint method is used to compute the gradient of the cost function, an alternative inner product is employed for preconditioning the reconstruction algorithm. Moreover, appropriate re-parameterization of the optical properties is performed. These regularization strategies are compared with the classical Tikhonov penalization one. It is shown that both the re-parameterization and the use of the Sobolev cost function gradient are efficient for solving such an ill-posed inverse problem.

  20. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  1. Product derivation process and agile approaches:exploring the integration potential

    OpenAIRE

    O'Leary, Pádraig; Ali Babar, Muhammad; Thiel, Steffen; Richardson, Ita

    2007-01-01

    peer-reviewed Software Product Lines (SPL) and Agile practices have emerged as new paradigms for developing software. Both approaches share common goals; this provides the motivation for exploring the possibilities of integrating these two approaches. However, there has been little research on identifying the opportunities and challenges of such integration. We have been researching the potential of integrating Agile approaches in one of the key SPL process areas, product...

  2. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    Energy Technology Data Exchange (ETDEWEB)

    Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in [Department of Physics, Central University of Kerala, Riverside Transit Campus, Kasaragod, Kerala (India); Mathew, Thomas [Department of Physics, Central University of Kerala, Riverside Transit Campus, Kasaragod, Kerala (India); Department of Physics, St Pius X College Rajapuram, Kasaragod, Kerala (India)

    2016-05-06

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantly alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.

  3. Ferrofluid Based Deformable Mirrors - a New Approach to Adaptive Optics Using Liquid Mirrors

    CERN Document Server

    Laird, P; Berube, V; Borra, E F; Ritcey, A; Rioux, M; Robitaille, N; Thibault, S; Yockell-Lelievre, H

    2002-01-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems is driving the need for deformable mirrors with a large number of low cost actuators. Liquid mirrors have long been recognized a potential low cost alternative to conventional solid mirrors. By using a water or oil based ferrofluid we are able to benefit from a stronger magnetic response than is found in magnetic liquid metal amalgams and avoid the difficulty of passing a uniform current through a liquid. Depositing a thin silver colloid known as a metal liquid-like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We present experimental results obtained with a prototype deformable liquid mirror based on this combination.

  4. Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, S.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India); Jawahar, A. [Department of Chemistry, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)

    2015-06-24

    The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.

  5. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    Science.gov (United States)

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

  6. A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals.

    Science.gov (United States)

    Sinibaldi, Alberto; Rizzo, Riccardo; Figliozzi, Giovanni; Descrovi, Emiliano; Danz, Norbert; Munzert, Peter; Anopchenko, Aleksei; Michelotti, Francesco

    2013-10-07

    We report on the investigation on the resolution of optical sensors exploiting Bloch surface waves sustained by one dimensional photonic crystals. A figure of merit is introduced to quantitatively assess the performance of such sensors and its dependency on the geometry and materials of the photonic crystal. We show that the figure of merit and the resolution can be improved by adopting a full ellipsometric phase-sensitive approach. The theoretical predictions are confirmed by experiments in which, for the first time, such type of sensors are operated in the full ellipsometric scheme.

  7. Transformation Optics Approach to Plasmon-Exciton Strong Coupling in Nanocavities

    Science.gov (United States)

    Li, Rui-Qi; Hernángomez-Pérez, D.; García-Vidal, F. J.; Fernández-Domínguez, A. I.

    2016-09-01

    We investigate the conditions yielding plasmon-exciton strong coupling at the single emitter level in the gap between two metal nanoparticles. Inspired by transformation optics ideas, a quasianalytical approach is developed that makes possible a thorough exploration of this hybrid system incorporating the full richness of its plasmonic spectrum. This allows us to reveal that by placing the emitter away from the cavity center, its coupling to multipolar dark modes of both even and odd parity increases remarkably. This way, reversible dynamics in the population of the quantum emitter takes place in feasible implementations of this archetypal nanocavity.

  8. Calculation of three-body nuclear reactions with angular-momentum and parity-dependent optical potentials

    CERN Document Server

    Deltuva, A

    2016-01-01

    Angular-momentum or parity-dependent nonlocal optical potentials for nucleon-${}^{16}\\mathrm{O}$ scattering able to fit differential cross section data over the whole angular regime are developed and applied to the description of deuteron-${}^{16}\\mathrm{O}$ scattering in the framework of three-body Faddeev-type equations for transition operators. Differential cross sections and deuteron analyzing powers for elastic scattering and ${}^{16}\\mathrm{O}(d,p){}^{17}\\mathrm{O}$ transfer reactions are calculated using a number of local and nonlocal optical potentials and compared with experimental data. Angular-momentum or parity-dependence of the optical potential turns out to be quite irrelevant in the considered three-body reactions while nonlocality is essential for a successful description of the differential cross section data, especially in transfer reactions.

  9. Assessment of Effectiveness of Use of Intellectual Potential of a University: A Methodological Approach

    Science.gov (United States)

    Stukalova, Irina B.; Stukalova, Anastasia A.; Selyanskaya, Galina N.

    2016-01-01

    This article presents the results of theoretical analysis of existing approaches to the categories of the "intellectual capital" and "intellectual potential" of an organization. The authors identified the specific peculiarities of developing the intellectual potential of a university and propose their own view of its structure.…

  10. AN AERIAL-IMAGE DENSE MATCHING APPROACH BASED ON OPTICAL FLOW FIELD

    Directory of Open Access Journals (Sweden)

    W. Yuan

    2016-06-01

    Full Text Available Dense matching plays an important role in many fields, such as DEM (digital evaluation model producing, robot navigation and 3D environment reconstruction. Traditional approaches may meet the demand of accuracy. But the calculation time and out puts density is hardly be accepted. Focus on the matching efficiency and complex terrain surface matching feasibility an aerial image dense matching method based on optical flow field is proposed in this paper. First, some high accurate and uniformed control points are extracted by using the feature based matching method. Then the optical flow is calculated by using these control points, so as to determine the similar region between two images. Second, the optical flow field is interpolated by using the multi-level B-spline interpolation in the similar region and accomplished the pixel by pixel coarse matching. Final, the results related to the coarse matching refinement based on the combined constraint, which recognizes the same points between images. The experimental results have shown that our method can achieve per-pixel dense matching points, the matching accuracy achieves sub-pixel level, and fully meet the three-dimensional reconstruction and automatic generation of DSM-intensive matching’s requirements. The comparison experiments demonstrated that our approach’s matching efficiency is higher than semi-global matching (SGM and Patch-based multi-view stereo matching (PMVS which verifies the feasibility and effectiveness of the algorithm.

  11. Green approach for preparation of reduced graphene oxide decorated with gold nanoparticles and its optical and catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Šimšíková, M., E-mail: michaela.simsikova@ceitec.vutbr.cz [CEITEC BUT, Brno University of Technology, Technická 10, 616 69 Brno (Czech Republic); Bartoš, M. [CEITEC BUT, Brno University of Technology, Technická 10, 616 69 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic); Keša, P. [Department of Biochemistry, Faculty of Science, P.J. Šafárik University, Šrobárova 2, 041 54 Košice (Slovakia); Department of Biophysics, Institute of Experimental Physics, SAS, Watsonova 47, 040 01 Košice (Slovakia); Šikola, T. [CEITEC BUT, Brno University of Technology, Technická 10, 616 69 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno (Czech Republic)

    2016-07-01

    Graphene oxide (GO) was reduced and modified by gold nanoparticles using aqueous leaf extract of green tea. Successful formation of gold nanoparticles (AuNPs) on graphene oxide surface was determined by scanning electron microscopy (SEM). Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared analyses (FT-IR) have been used to demonstrate the behavior of complex of reduced graphene oxide with gold nanoparticles (rGO-AuNPs), the removal of oxygen-containing groups from the graphene, and subsequent formation of reduced graphene oxide (rGO). We also demonstrated the change of optical properties of GO after the reduction and formation of gold nanoparticles on its surface by UV–vis spectroscopy and fluorescence spectroscopy. The positive impact of rGO-AuNPs composite on safranin T reduction in the presence of NaBH{sub 4} without light irradiation was examined, as well. The dye decolorization was observed within 60 min which highlights the exceptional catalytic potential of the rGO-AuNPs. - Highlights: • Reduction of GO was performed by an environmentally friendly approach. • Gold nanoparticles were prepared by self-assembly on the graphene oxide surface. • Surface properties were enhanced after the formation of gold nanoparticles. • Optical properties have been changed after the graphene reduction and formation of gold nanoparticles. • The decolorization of safranin T was observed within 60 min.

  12. Diffraction model analysis of pion-12C elastic scattering at 800 MeV/c: Optical potential by inversion

    Indian Academy of Sciences (India)

    I Ahmad; M R Arafah

    2006-03-01

    Elastic scattering of 800 MeV/c pions by 12C has been studied in the diffraction model with a view to determine pion optical potential by the method of inversion. Finding an earlier diffraction model analysis to be deficient in some respects, we propose a Glauber model based parametrization for the elastic -matrix and show that it provides an exceedingly good fit to the pion-carbon data. The proposed elastic -matrix gives a closed expression for the pion-12C optical potential by the method of inversion in the high energy approximation.

  13. Overlapping double potential wells in a single optical microtube cavity with vernier-scale-like tuning effect

    Science.gov (United States)

    Madani, A.; Bolaños Quiñones, V. A.; Ma, L. B.; Miao, S. D.; Jorgensen, M. R.; Schmidt, O. G.

    2016-04-01

    Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.

  14. Investigation of electronic structure and optical properties of MgAl2O4: DFT approach

    Science.gov (United States)

    Reshak, A. H.; Khan, Saleem Ayaz; Alahmed, Z. A.

    2014-11-01

    The electronic band structure, electronic charge density distribution and optical properties of MgAl2O4 were calculated using the full potential linear augmented plane wave. The exchange correlation potential was solved by recently developed modified Becke Johnson potential in the framework of DFT. The band structure and partial density of states (PDOS) were calculated. The PDOS exhibit the role of orbital in bands formation and nature of the bonds. The calculated effective mass of electrons show high mobility of electrons in the conduction band minimum with respect to heavy and light holes. The calculated electron charge density confirm the existence of mixed ionic and covalent nature of the bonds. Mg-O show more ionicity because of greater electro-negativity difference than Al-O. Imaginary part of dielectric function ε2(ω) exhibit high transparency in the visible and infrared region. For further investigation of optical properties absorption coefficient I(ω), refractive index n(ω), reflectivity R(ω) and energy loss function L(ω) were calculated. We found reasonable agreement with the experimental data.

  15. Narrow-line magneto-optical trap for erbium: Simple approach for a complex atom

    CERN Document Server

    Frisch, A; Mark, M; Rietzler, A; Schindler, J; Zupanic, E; Grimm, R; Ferlaino, F

    2012-01-01

    We report on the experimental realization of a robust and efficient magneto-optical trap for erbium atoms, based on a narrow cooling transition at 583nm. We observe up to $N=2 \\times 10^{8}$ atoms at a temperature of about $T=15 \\mu K$. This simple scheme provides better starting conditions for direct loading of dipole traps as compared to approaches based on the strong cooling transition alone, or on a combination of a strong and a narrow kHz transition. Our results on Er point to a general, simple and efficient approach to laser cool samples of other lanthanide atoms (Ho, Dy, and Tm) for the production of quantum-degenerate samples.

  16. SIMULATION OF ASTRONOMICAL IMAGES FROM OPTICAL SURVEY TELESCOPES USING A COMPREHENSIVE PHOTON MONTE CARLO APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J. R.; Peng, E.; Ahmad, Z.; Bankert, J.; Grace, E.; Hannel, M.; Hodge, M.; Lorenz, S.; Lupu, A.; Meert, A.; Nagarajan, S.; Todd, N.; Winans, A.; Young, M. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Jernigan, J. G. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Kahn, S. M.; Rasmussen, A. P.; Chang, C.; Gilmore, D. K. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Claver, C., E-mail: peters11@purdue.edu [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States)

    2015-05-15

    We present a comprehensive methodology for the simulation of astronomical images from optical survey telescopes. We use a photon Monte Carlo approach to construct images by sampling photons from models of astronomical source populations, and then simulating those photons through the system as they interact with the atmosphere, telescope, and camera. We demonstrate that all physical effects for optical light that determine the shapes, locations, and brightnesses of individual stars and galaxies can be accurately represented in this formalism. By using large scale grid computing, modern processors, and an efficient implementation that can produce 400,000 photons s{sup −1}, we demonstrate that even very large optical surveys can be now be simulated. We demonstrate that we are able to (1) construct kilometer scale phase screens necessary for wide-field telescopes, (2) reproduce atmospheric point-spread function moments using a fast novel hybrid geometric/Fourier technique for non-diffraction limited telescopes, (3) accurately reproduce the expected spot diagrams for complex aspheric optical designs, and (4) recover system effective area predicted from analytic photometry integrals. This new code, the Photon Simulator (PhoSim), is publicly available. We have implemented the Large Synoptic Survey Telescope design, and it can be extended to other telescopes. We expect that because of the comprehensive physics implemented in PhoSim, it will be used by the community to plan future observations, interpret detailed existing observations, and quantify systematics related to various astronomical measurements. Future development and validation by comparisons with real data will continue to improve the fidelity and usability of the code.

  17. Shape memory polymeric composites sensing by optic fibre Bragg gratings: A very first approach

    Science.gov (United States)

    Quadrini, Fabrizio; Santo, Loredana; Ciminello, Monica; Concilio, Antonio; Volponi, Ruggero; Spena, Paola

    2016-05-01

    Shape memory polymer composites (SMPCs) have the potential for many applications in aerospace, spanning from self-repairing of structures to self-deploying of antennas, solar sails, or functional devices (e.g. for grabbing small space debris). In all these cases, it may be essential to have information about their configuration at different stages of shape recovery. In this study, the strain history of a prepreg carbon fibre system, cured with a shape memory polymer (SMP) interlayer, is monitored through a Fibre Bragg Grating (FBG), a fibre optic sensor device. SMPC has been manufactured by using traditional technologies for aerospace. After manufacturing cylindrical shape samples, an external fibre optic system is added to the composite structure; this system is especially suited for high temperatures which are necessary for SMP recovery and composite softening. Sensor functionality is checked before and after each strain history path. Optic fibre arrangement is optimized to avoid unwanted breakings whereas strains are limited by fibre collapsing, i.e. within nominal 2% of deformation. Dynamic information about shape recovery gives fundamental insights about strain evolution during time as well as its spatial distribution.

  18. Wavefront sensorless approaches to adaptive optics for in vivo fluorescence imaging of mouse retina

    Science.gov (United States)

    Wahl, Daniel J.; Bonora, Stefano; Mata, Oscar S.; Haunerland, Bengt K.; Zawadzki, Robert J.; Sarunic, Marinko V.; Jian, Yifan

    2016-03-01

    Adaptive optics (AO) is necessary to correct aberrations when imaging the mouse eye with high numerical aperture. In order to obtain cellular resolution, we have implemented wavefront sensorless adaptive optics for in vivo fluorescence imaging of mouse retina. Our approach includes a lens-based system and MEMS deformable mirror for aberration correction. The AO system was constructed with a reflectance channel for structural images and fluorescence channel for functional images. The structural imaging was used in real-time for navigation on the retina using landmarks such as blood vessels. We have also implemented a tunable liquid lens to select the retinal layer of interest at which to perform the optimization. At the desired location on the mouse retina, the optimization algorithm used the fluorescence image data to drive a modal hill-climbing algorithm using an intensity or sharpness image quality metric. The optimization requires ~30 seconds to complete a search up to the 20th Zernike mode. In this report, we have demonstrated the AO performance for high-resolution images of the capillaries in a fluorescence angiography. We have also made progress on an approach to AO with pupil segmentation as a possible sensorless technique suitable for small animal retinal imaging. Pupil segmentation AO was implemented on the same ophthalmic system and imaging performance was demonstrated on fluorescent beads with induced aberrations.

  19. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  20. A Multidisciplinary Approach to Educating Preschool Children with Optic Nerve Hypoplasia and Septo-Optic Nerve Dysplasia.

    Science.gov (United States)

    Bahar, Cheryl; Brody, Jill; McCann, Mary Ellen; Mendiola, Rosalinda; Slott, Gayle

    2003-01-01

    This article discusses the observations and experiences of a multidisciplinary team at the Blind Childrens Center in Los Angeles, which works specifically with children from birth to 5 years of age who have been diagnosed with optic nerve hypoplasia and may have septo-optic displasia. Strategies for educational interventions are explained.…

  1. Fiber optic probe enabled by surface-enhanced Raman scattering for early diagnosis of potential acute rejection of kidney transplant

    Science.gov (United States)

    Chi, Jingmao; Chen, Hui; Tolias, Peter; Du, Henry

    2014-06-01

    We have explored the use of a fiber-optic probe with surface-enhanced Raman scattering (SERS) sensing modality for early, noninvasive and, rapid diagnosis of potential renal acute rejection (AR) and other renal graft dysfunction of kidney transplant patients. Multimode silica optical fiber immobilized with colloidal Ag nanoparticles at the distal end was used for SERS measurements of as-collected urine samples at 632.8 nm excitation wavelength. All patients with abnormal renal graft function (3 AR episodes and 2 graft failure episodes) who were clinically diagnosed independently show common unique SERS spectral features in the urines collected just one day after transplant. SERS-based fiber-optic probe has excellent potential to be a bedside tool for early diagnosis of kidney transplant patients for timely medical intervention of patients at high risk of transplant dysfunction.

  2. Imaging of normal and pathologic joint synovium using nonlinear optical microscopy as a potential diagnostic tool

    Science.gov (United States)

    Tiwari, Nivedan; Chabra, Sanjay; Mehdi, Sheherbano; Sweet, Paula; Krasieva, Tatiana B.; Pool, Roy; Andrews, Brian; Peavy, George M.

    2010-09-01

    An estimated 1.3 million people in the United States suffer from rheumatoid arthritis (RA). RA causes profound changes in the synovial membrane of joints, and without early diagnosis and intervention, progresses to permanent alterations in joint structure and function. The purpose of this study is to determine if nonlinear optical microscopy (NLOM) can utilize the natural intrinsic fluorescence properties of tissue to generate images that would allow visualization of the structural and cellular composition of fresh, unfixed normal and pathologic synovial tissue. NLOM is performed on rabbit knee joint synovial samples using 730- and 800-nm excitation wavelengths. Less than 30 mW of excitation power delivered with a 40×, 0.8-NA water immersion objective is sufficient for the visualization of synovial structures to a maximum depth of 70 μm without tissue damage. NLOM imaging of normal and pathologic synovial tissue reveals the cellular structure, synoviocytes, adipocytes, collagen, vascular structures, and differential characteristics of inflammatory infiltrates without requiring tissue processing or staining. Further study to evaluate the ability of NLOM to assess the characteristics of pathologic synovial tissue and its potential role for the management of disease is warranted.

  3. Momentum dependence of the imaginary part of the $\\omega$- and $\\eta^\\prime$-nucleus optical potential

    CERN Document Server

    Friedrich, S; Metag, V; Afzal, F N; Bayadilov, D; Bantes, B; Beck, R; Becker, M; Böse, S; Brinkmann, K -T; Crede, V; Drexler, P; Eberhardt, H; Elsner, D; Frommberger, F; Funke, Ch; Gottschall, M; Grüner, M; Gutz, E; Hammann, Ch; Hannappel, J; Hartmann, J; Hillert, W; Hoffmeister, Ph; Honisch, Ch; Jude, T; Kaiser, D; Kalischewski, F; Keshelashvili, I; Klein, F; Koop, K; Krusche, B; Lang, M; Makonyi, K; Messi, F; Müller, J; Müllers, J; Piontek, D -M; Rostomyan, T; Schaab, D; Schmidt, Ch; Schmieden, H; Schmitz, R; Seifen, T; Sokhoyan, V; Sowa, C; Spieker, K; Thiel, A; Thoma, U; Triffterer, T; Urban, M; van Pee, H; Walther, D; Wendel, Ch; Werthmüller, D; Wiedner, U; Wilson, A; Witthauer, L; Wunderlich, Y; Zaunick, H -G

    2016-01-01

    The photoproduction of $\\omega$ and $\\eta^\\prime$ mesons off carbon and niobium nuclei has been measured as a function of the meson momentum for incident photon energies of 1.2-2.9 GeV at the electron accelerator ELSA. The mesons have been identified via the $\\omega \\rightarrow \\pi^0 \\gamma \\rightarrow 3 \\gamma$ and $\\eta^\\prime\\rightarrow \\pi^0 \\pi^0\\eta \\rightarrow 6 \\gamma$ decays, respectively, registered with the CBELSA/TAPS detector system. From the measured meson momentum distributions the momentum dependence of the transparency ratio has been determined for both mesons. Within a Glauber analysis the in-medium $\\omega$ and $\\eta^\\prime$ widths and the corresponding absorption cross sections have been deduced as a function of the meson momentum. The results are compared to recent theoretical predictions for the in-medium $\\omega$ width and $\\eta^\\prime$-N absorption cross sections. The energy dependence of the imaginary part of the $\\omega$- and $\\eta^\\prime$-nucleus optical potential has been extracted...

  4. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery

    Science.gov (United States)

    Hutchens, Thomas C.; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.; Fried, Nathaniel M.

    2012-06-01

    Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser's short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue.

  5. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery.

    Science.gov (United States)

    Hutchens, Thomas C; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N; Ying, Howard S; Astratov, Vasily N; Fried, Nathaniel M

    2012-06-01

    Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser's short optical penetration depth combined with the small spot diameters achieved with this fiber probe may provide more precise tissue removal. One-, three-, and five-microsphere chain structures were characterized, resulting in FWHM diameters of 67, 32, and 30 μm in air, respectively, with beam profiles comparable to simulations. Single Er:YAG pulses of 0.1 mJ and 75-μs duration produced ablation craters with average diameters of 44, 30, and 17 μm and depths of 26, 10, and 8 μm, for one-, three-, and five-sphere structures, respectively. Microsphere chains produced spatial filtering of the multimode Er:YAG laser beam and fiber, providing spot diameters not otherwise available with conventional fiber systems. Because of the extremely shallow treatment depth, compact focused beam, and contact mode operation, this probe may have potential for use in dissecting epiretinal membranes and other ophthalmic tissues without damaging adjacent retinal tissue.

  6. Intermolecular interaction potentials of methane-argon complex calculated using LDA approaches

    Institute of Scientific and Technical Information of China (English)

    Bai Yu-Lin; Chen Xiang-Rong; Zhou Xiao-Lin; Yang Xiang-Dong; Wang Hai-Yan

    2004-01-01

    The intermolecular interaction potential for methane-argon complex is calculated by local density approximation (LDA) approaches. The calculated potential has a minimum when the intermolecular distance of methane-argon complex is 6.75 a.u.; the corresponding depth of the potential is 0.0163eV which has good agreement with experimental data. We also have made a nonlinear fitting of our results for the Lennard-Jones (12-6) potential function and obtain that V(R) = 143794365.332/R12 - 3032.093/R6 (R in a.u. and V(R) in eV).

  7. A curvature based approach using long-gage fiber optic sensors

    Science.gov (United States)

    Kliewer, Kaitlyn; Glisic, Branko

    2016-04-01

    Fiber Bragg grating (FBG) sensors offer a significant advantage for structural health monitoring due to their ability to simultaneously monitor both static and dynamic strain while being durable, lightweight, capable of multiplexing, and immune to electro-magnetic interference. Drawing upon the benefits of FBG sensors, this research explores the use of a series of long-gage fiber optic sensors for damage detection of a structure through dynamic strain measurements and curvature analysis. Typically structural monitoring relies upon detecting structural changes through frequency and acceleration based analysis. However, curvature and strain based analysis may be a more reliable means for structural monitoring as they show more sensitivity to damage compared to modal parameters such as displacement mode shapes and natural frequency. Additionally, long gage FBG strain sensors offer a promising alternative to traditional dynamic measurement methods as the curvature can be computed directly from the FBG strain measurements without the need for numerical differentiation. Small scale experimental testing was performed using an aluminum beam instrumented with a series of FBG optical fiber sensors. Dynamic strain measurements were obtained as the aluminum beam was subjected to various loading and support conditions. From this, a novel normalized parameter based on the curvature from the dynamic strain measurements has been identified as a potential damage sensitive feature. Theoretical predictions and experimental data were compared and conclusions carried out. The results demonstrated the potential of the novel normalized parameter to facilitate dynamic monitoring at both the local and global scale, thus allowing assessment of the structures health.

  8. Some methods for determining the limit of potential image quality of optical systems of various complexities using the database

    Science.gov (United States)

    Bezdidko, S.

    2016-09-01

    In the article some methods for processing the information contained in a database are offered with the purpose of extraction of the knowledge, the experience and the intuition of the designers, coded in the database. It gives much attention to the methods for determinating limit potential image quality of optical systems of various complexities.

  9. Generalised analysis of the potential of an enterprise as a function of environmental parameters (theoretical approach

    Directory of Open Access Journals (Sweden)

    Karapeychik Igor M.

    2013-03-01

    Full Text Available Within the frameworks of the author’s concept of the potential of an enterprise as the ability to conduct its immanently appropriate activity and also the idea of presentation of the size of the potential in the form of potential function from parameters of the state of an enterprise and foreign economic environment the article develops a scientific and methodical approach to construction and analysis of the potential function of an enterprise. The offered approach envisages building an economic and mathematical model of an enterprise of the optimisation type with consideration of environmental factors, determination of the size of economic potential as a maximum possible (optimal with the set condition of an enterprise and external environment of net income, statistical test of the model with possible values of external parameters (formation of statistical sampling of the graph of the potential function of an enterprise and application of statistical methods including methods of correlation, factor and regression analysis, for the study of its properties. Operability of this approach is shown on the example of the study of properties of the potential function of a model enterprise. In the course of approbation the article demonstrates its ability to reveal specific features of impact of external factors on economic potential of an enterprise; establishes, as a common regularity, differential influence of various environmental factors, caused not only by the nature of these factors, but also production and economic specific features and specific state of an enterprise. The article shows that the quantitative values of the force of influence of the said factors upon the value of economic potential, obtained during statistical analysis of the potential function of an enterprise, could serve as an instrument of ranking these factors by the priority level in the goal setting tasks at the stage of formation of the strategy of enterprise development

  10. The potential for optical beam shaping of UV laser sources for mass scale quarantine disinfection applications

    Science.gov (United States)

    Lizotte, Todd

    2010-08-01

    Recent events concerning H1N1 "swine flu", have demonstrated to the world the significant potential of rapid increases in death and illness among all age groups and even among the healthy population [1] when a highly infectious influenza virus is introduced. In terms of mass casualties due to a pandemic, preparedness and response planning must be done. One course of action to prevent a pandemic outbreak or reduce the impact of a bioterrorist event is the use of isolation or quarantine facilities. The first level of isolation or quarantine is within the personal residence of the person exposed or infected. In the case where, the specific virus is extremely contagious and its onset of symptoms is rapid and severe, there will be a need for the deployment and setup of larger self contained quarantine facilities. Such facilities are used to house infectious individuals to minimize the exposure of susceptible individuals to contagious individuals, especially when specialized care or treatment is required and during the viral shedding period (5 to 7 days). These types of facilities require non-shared air conditioning, heating and ventilating systems where 100% of air is vented to the outside through a series of disinfection systems and staged filters. Although chemical disinfection is possible, there is a desire to incorporate intense UV radiation as a means to deactivate and disinfect airborne virus within hospital settings and isolated mass scale quarantine facilities. UV radiation is also being considered for disinfection of contaminated surfaces, such as table tops, walls and floors in hospitals and temporary quarantine facilities. In such applications the use of UV bulb technology can create many problems, for instance bulb technology requires numerous bulbs to treat a large volume of air, generates significant heat, uses significant power and does not produce large fluxes of UV light efficiently. This paper provides several methods of creating quarantine level

  11. Wronskian Approach and One-Dimensional Schrodinger Equation with Double-Well Potential

    Institute of Scientific and Technical Information of China (English)

    QIU Jian; SU Ru-Keng

    2003-01-01

    A Wronskian determinant approach is suggested to study the energy and the wave function for onedimensional Schrodinger equation. An integral equation and its corresponding Green function are constructed. As an example, we employed this approach to study the problem of double-well potential with strong coupling. A series of expansion of ground state energy up to the second order approximation of iterative procedure is given.

  12. A new approach to endocochlear potential and potassium ion concentration measures in mini pig models

    Institute of Scientific and Technical Information of China (English)

    Lili Ren a; Ling Zhang b; Weiwei Guo a; Wei Sun c; Shiming Yang a

    2014-01-01

    Mini pig models are large mammals and their ears are more similar with human beings in structure and development than other animals. However, the study on porcine ears is still in the initial stage and there is no description of an ideal operation approach to endocochlear potential and potassium ion concentration measurements. In this article, we describe a pre-auricular surgical approach to access the middle and inner ear for endocochlear potential and potassium ion concentration measures in mini pig models. Ten one-week old normal mini pigs were used in the study. The bulla of the temporal bone was accessed via a pre-auricular approach for endocochlear potential and potassium ion concentration measurements. The condition of the animals during the first posteexperiment 24 h was observed. One animal died during surgery. The pre-auricular approach improved protection and preservation of relevant nervous and vascular elements including the facial nerve and carotid ar-tery. So, the pre-auricular approach can be used for endocochlear potential and potassium ion concentration measurements with improved nerve and artery preservation mini pigs.

  13. Study of lattice QCD at finite chemical potential using canonical ensemble approach

    CERN Document Server

    Bornyakov, V G; Goy, V A; Molochkov, A V; Nakamura, Atsushi; Nikolaev, A A; Zakharov, V I

    2016-01-01

    New approach to computation of canonical partition functions in $N_f=2$ lattice QCD is presented. We compare results obtained by new method with results obtained by known method of hopping parameter expansion. We observe agreement between two methods indicating validity of the new method. We use results for the number density obtained in the confining and deconfining phases at imaginary chemical potential to determine the phase transition line at real chemical potential.

  14. Highly curved image sensors: a practical approach for improved optical performance

    Science.gov (United States)

    Guenter, Brian; Joshi, Neel; Stoakley, Richard; Keefe, Andrew; Geary, Kevin; Freeman, Ryan; Hundley, Jake; Patterson, Pamela; Hammon, David; Herrera, Guillermo; Sherman, Elena; Nowak, Andrew; Schubert, Randall; Brewer, Peter; Yang, Louis; Mott, Russell; McKnight, Geoff

    2017-06-01

    The significant optical and size benefits of using a curved focal surface for imaging systems have been well studied yet never brought to market for lack of a high-quality, mass-producible, curved image sensor. In this work we demonstrate that commercial silicon CMOS image sensors can be thinned and formed into accurate, highly curved optical surfaces with undiminished functionality. Our key development is a pneumatic forming process that avoids rigid mechanical constraints and suppresses wrinkling instabilities. A combination of forming-mold design, pressure membrane elastic properties, and controlled friction forces enables us to gradually contact the die at the corners and smoothly press the sensor into a spherical shape. Allowing the die to slide into the concave target shape enables a threefold increase in the spherical curvature over prior approaches having mechanical constraints that resist deformation, and create a high-stress, stretch-dominated state. Our process creates a bridge between the high precision and low-cost but planar CMOS process, and ideal non-planar component shapes such as spherical imagers for improved optical systems. We demonstrate these curved sensors in prototype cameras with custom lenses, measuring exceptional resolution of 3220 line-widths per picture height at an aperture of f/1.2 and nearly 100% relative illumination across the field. Though we use a 1/2.3" format image sensor in this report, we also show this process is generally compatible with many state of the art imaging sensor formats. By example, we report photogrammetry test data for an APS-C sized silicon die formed to a 30$^\\circ$ subtended spherical angle. These gains in sharpness and relative illumination enable a new generation of ultra-high performance, manufacturable, digital imaging systems for scientific, industrial, and artistic use.

  15. Exciton scattering approach for optical spectra calculations in branched conjugated macromolecules

    Science.gov (United States)

    Li, Hao; Wu, Chao; Malinin, Sergey V.; Tretiak, Sergei; Chernyak, Vladimir Y.

    2016-12-01

    The exciton scattering (ES) technique is a multiscale approach based on the concept of a particle in a box and developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, electronic excitations in molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph whose edges and nodes stand for the molecular linear segments and vertices, respectively. Exciton propagation on the linear segments is characterized by the exciton dispersion, whereas exciton scattering at the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized "particle in a box" problems on the graph that represents the molecule. Similarly, unique energy-dependent ES dipolar parameters permit calculations of the corresponding oscillator strengths, thus, completing optical spectra modeling. Both the energetic and dipolar parameters can be extracted from quantum-chemical computations in small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within a considered molecular family could be performed with negligible numerical effort. We demonstrate the ES method application to molecular families of branched conjugated phenylacetylenes and ladder poly-para-phenylenes, as well as structures with electron donor and acceptor chemical substituents. Time-dependent density functional theory (TD-DFT) is used as a reference model for electronic structure. The ES calculations accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  16. Dynamic assessment: an approach to assessing children's language-learning potential.

    Science.gov (United States)

    Gutiérrez-Clellen, V F

    2000-01-01

    Dynamic assessment represents an alternative approach to traditional language assessments. In dynamic assessment, the examiner attempts to assess the child's potential for language change or modifiability. This article discusses the development of this approach from its early psychological applications to current models of dynamic assessment as they apply to the assessment of child language. Dynamic assessment is particularly useful in addressing cultural differences that may influence children's assessment performance. The approach involves a test-teach-retest paradigm that includes mediated learning experiences, measures of test score gains, ratings of modifiability and language-learning strategies, as well as analyses of qualitative changes in children's responses.

  17. A cooperative function for multisensory stimuli in the induction of approach behavior of a potential mate

    Science.gov (United States)

    Ågmo, Anders

    2017-01-01

    Intrasexual competition is an important element of natural selection in which the most attractive conspecific has a considerable reproductive advantage over the others. The conspecifics that are approached first often become the preferred mate partners, and could thus from a biological perspective have a reproductive advantage. This underlines the importance of the initial approach and raises the question of what induces this approach, or what makes a conspecific attractive. Identification of the sensory modalities crucial for the activation of approach is necessary for elucidating the central nervous processes involved in the activation of sexual motivation and eventually copulatory behavior. The initial approach to a potential mate depends on distant stimuli in the modalities of audition, olfaction, vision, and other undefined characteristics. This study investigated the role of the different modalities and the combination of these modalities in the sexual incentive value of a female rat. This study provides evidence that the presence of a single-sensory stimulus with one modality (olfaction, vision, or ‘others’, but not audition) is sufficient to attenuate the preference for a social contact with a male rat. However, a multisensory stimulus of multiple modalities is necessary to induce preference for the stimulus over social contact to a level of an intact receptive female. The initial approach behavior, therefore, seems to be induced by the combination of at least two modalities among which olfaction is crucial. This suggests that there is a cooperative function for the different modalities in the induction of approach behavior of a potential mate. PMID:28306729

  18. Comparison of repulsive interatomic potentials calculated with an all-electron DFT approach with experimental data

    Science.gov (United States)

    Zinoviev, A. N.; Nordlund, K.

    2017-09-01

    The interatomic potential determines the nuclear stopping power in materials. Most ion irradiation simulation models are based on the universal Ziegler-Biersack-Littmark (ZBL) potential (Ziegler et al., 1983), which, however, is an average and hence may not describe the stopping of all ion-material combinations well. Here we consider pair-specific interatomic potentials determined experimentally and by density-functional theory simulations with DMol approach (DMol software, 1997) to choose basic wave functions. The interatomic potentials calculated using the DMol approach demonstrate an unexpectedly good agreement with experimental data. Differences are mainly observed for heavy atom systems, which suggests they can be improved by extending a basis set and more accurately considering the relativistic effects. Experimental data prove that the approach of determining interatomic potentials from quasielastic scattering can be successfully used for modeling collision cascades in ion-solids collisions. The data obtained clearly indicate that the use of any universal potential is limited to internuclear distances R < 7 af (af is the Firsov length).

  19. All-coupling polaron optical response: Analytic approaches beyond the adiabatic approximation

    Science.gov (United States)

    Klimin, S. N.; Tempere, J.; Devreese, J. T.

    2016-09-01

    In the present work, the problem of an all-coupling analytic description for the optical conductivity of the Fröhlich polaron is treated, with the goal being to bridge the gap in the validity range that exists between two complementary methods: on the one hand, the memory-function formalism and, on the other hand, the strong-coupling expansion based on the Franck-Condon picture for the polaron response. At intermediate coupling, both methods were found to fail as they do not reproduce diagrammatic quantum Monte Carlo results. To resolve this, we modify the memory-function formalism with respect to the Feynman-Hellwarth-Iddings-Platzman approach in order to take into account a nonquadratic interaction in a model system for the polaron. The strong-coupling expansion is extended beyond the adiabatic approximation by including in the treatment nonadiabatic transitions between excited polaron states. The polaron optical conductivity that we obtain at T =0 by combining the two extended methods agrees well, both qualitatively and quantitatively, with the diagrammatic quantum Monte Carlo results in the whole available range of the electron-phonon coupling strength.

  20. An improved least cost routing approach for WDM optical network without wavelength converters

    Science.gov (United States)

    Bonani, Luiz H.; Forghani-elahabad, Majid

    2016-12-01

    Routing and wavelength assignment (RWA) problem has been an attractive problem in optical networks, and consequently several algorithms have been proposed in the literature to solve this problem. The most known techniques for the dynamic routing subproblem are fixed routing, fixed-alternate routing, and adaptive routing methods. The first one leads to a high blocking probability (BP) and the last one includes a high computational complexity and requires immense backing from the control and management protocols. The second one suggests a trade-off between performance and complexity, and hence we consider it to improve in our work. In fact, considering the RWA problem in a wavelength routed optical network with no wavelength converter, an improved technique is proposed for the routing subproblem in order to decrease the BP of the network. Based on fixed-alternate approach, the first k shortest paths (SPs) between each node pair is determined. We then rearrange the SPs according to a newly defined cost for the links and paths. Upon arriving a connection request, the sorted paths are consecutively checked for an available wavelength according to the most-used technique. We implement our proposed algorithm and the least-hop fixed-alternate algorithm to show how the rearrangement of SPs contributes to a lower BP in the network. The numerical results demonstrate the efficiency of our proposed algorithm in comparison with the others, considering different number of available wavelengths.

  1. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    Science.gov (United States)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  2. Mask optimization approaches in optical lithography based on a vector imaging model.

    Science.gov (United States)

    Ma, Xu; Li, Yanqiu; Dong, Lisong

    2012-07-01

    Recently, a set of gradient-based optical proximity correction (OPC) and phase-shifting mask (PSM) optimization methods has been developed to solve for the inverse lithography problem under scalar imaging models, which are only accurate for numerical apertures (NAs) of less than approximately 0.4. However, as lithography technology enters the 45 nm realm, immersion lithography systems with hyper-NA (NA>1) are now extensively used in the semiconductor industry. For the hyper-NA lithography systems, the vector nature of the electromagnetic field must be taken into account, leading to the vector imaging models. Thus, the OPC and PSM optimization approaches developed under the scalar imaging models are inadequate to enhance the resolution in immersion lithography systems. This paper focuses on developing pixelated gradient-based OPC and PSM optimization algorithms under a vector imaging model. We first formulate the mask optimization framework, in which the imaging process of the optical lithography system is represented by an integrative and analytic vector imaging model. A gradient-based algorithm is then used to optimize the mask iteratively. Subsequently, a generalized wavelet penalty is proposed to keep a balance between the mask complexity and convergence errors. Finally, a set of methods is exploited to speed up the proposed algorithms.

  3. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    Science.gov (United States)

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  4. Realization of non-PT -symmetric optical potentials with all-real spectra in a coherent atomic system

    Science.gov (United States)

    Hang, Chao; Gabadadze, Gregory; Huang, Guoxiang

    2017-02-01

    We present a physical setup for realizing all-real-spectrum optical potentials with arbitrary gain-and-loss distributions in a coherent medium consisting of a cold three-level atomic gas driven by control and probe laser fields. We show that by the interference of Raman resonances and the Stark shift induced by a far-detuned laser field, tunable, non-parity-time (non-PT )-symmetric optical potentials with all-real spectra proposed recently by Nixon and Yang [Phys. Rev. A 93, 031802(R) (2016), 10.1103/PhysRevA.93.031802] can be actualized physically. We also show that when the real parts of the non-PT -symmetric optical potentials are tuned cross certain thresholds, phase transitions—where the eigenspectrum of the system changes from all real to complex—may occur and hence the stability of the probe-field propagation is altered. Our scheme can also be extended to high dimensions and to a nonlinear propagation regime, where stable optical solitons with power of the order of nano-Watts may be generated in the system.

  5. Efficient matrix approach to optical wave propagation and Linear Canonical Transforms.

    Science.gov (United States)

    Shakir, Sami A; Fried, David L; Pease, Edwin A; Brennan, Terry J; Dolash, Thomas M

    2015-10-01

    The Fresnel diffraction integral form of optical wave propagation and the more general Linear Canonical Transforms (LCT) are cast into a matrix transformation form. Taking advantage of recent efficient matrix multiply algorithms, this approach promises an efficient computational and analytical tool that is competitive with FFT based methods but offers better behavior in terms of aliasing, transparent boundary condition, and flexibility in number of sampling points and computational window sizes of the input and output planes being independent. This flexibility makes the method significantly faster than FFT based propagators when only a single point, as in Strehl metrics, or a limited number of points, as in power-in-the-bucket metrics, are needed in the output observation plane.

  6. Thermodynamic, electronic, and optical properties of graphene oxide: A statistical ab initio approach

    Science.gov (United States)

    Guilhon, I.; Bechstedt, F.; Botti, Silvana; Marques, M.; Teles, L. K.

    2017-06-01

    We study the incomplete oxidation of graphene or reduction of graphene oxide for hydroxyl and epoxy oxidant groups. While in wet oxidation hydroxyl groups are favorable, in a drier environment an oxygen atom can bridge two neighboring carbon atoms. We model composition variations and structural disorder within a statistical theory, the generalized quasichemical approximation, combined with density functional theory calculations of the local atomic geometries. A generalization of the statistical approach is developed to account for the antiparallel orientation of hydroxyl groups and a fourfold coordination of C atoms. The theoretical framework enables a thermodynamic treatment of graphene oxide as a function of oxygen content, allowing us to derive temperature-composition phase diagrams and investigate possible clustering and segregation. The resulting geometries, local and average electronic structures, and optical absorption spectra are discussed and compared with available experimental data.

  7. Interferometric approach to measuring band topology in 2D optical lattices.

    Science.gov (United States)

    Abanin, Dmitry A; Kitagawa, Takuya; Bloch, Immanuel; Demler, Eugene

    2013-04-19

    Recently, optical lattices with nonzero Berry's phases of Bloch bands have been realized. New approaches for measuring Berry's phases and topological properties of bands with experimental tools appropriate for ultracold atoms need to be developed. In this Letter, we propose an interferometric method for measuring Berry's phases of two-dimensional Bloch bands. The key idea is to use a combination of Ramsey interference and Bloch oscillations to measure Zak phases, i.e., Berry's phases for closed trajectories corresponding to reciprocal lattice vectors. We demonstrate that this technique can be used to measure the Berry curvature of Bloch bands, the π Berry's phase of Dirac points, and the first Chern number of topological bands. We discuss several experimentally feasible realizations of this technique, which make it robust against low-frequency magnetic noise.

  8. Parity-Even and Time-Reversal-Odd Neutron Optical Potential in Spinning Matter Induced by Gravitational Torsion

    CERN Document Server

    Ivanov, A N

    2016-01-01

    Recent theoretical work has shown that spin $1/2$ particles moving through unpolarized matter which sources torsion fields experience a new type of parity-even and time-reversal-odd optical potential if the matter is spinning in the lab frame. This new type of optical potential can be sought experimentally using the helicity dependence of the total cross sections for longitudinally polarized neutrons moving through a rotating cylindrical target. In combination with recent experimental constraints on short-range P--odd, T--even torsion interactions derived from polarized neutron spin rotation in matter one can derive separate constraints on the time components of scalar and pseudoscalar torsion fields in matter. We estimate the sensitivity achievable in such an experiment and briefly outline some of the potential sources of systematic error to be considered in any future experimental search for this effect.

  9. Parity-even and time-reversal-odd neutron optical potential in spinning matter induced by gravitational torsion

    Science.gov (United States)

    Ivanov, A. N.; Snow, W. M.

    2017-01-01

    Recent theoretical work has shown that spin 1/2 particles moving through unpolarized matter which sources torsion fields experience a new type of parity-even and time-reversal-odd optical potential if the matter is spinning in the lab frame. This new type of optical potential can be sought experimentally using the helicity dependence of the total cross sections for longitudinally polarized neutrons moving through a rotating cylindrical target. In combination with recent experimental constraints on short-range P-odd, T-even torsion interactions derived from polarized neutron spin rotation in matter one can derive separate constraints on the time components of scalar and pseudoscalar torsion fields in matter. We estimate the sensitivity achievable in such an experiment and briefly outline some of the potential sources of systematic error to be considered in any future experimental search for this effect.

  10. Early detection of breast cancer: a molecular optical imaging approach using novel estrogen conjugate fluorescent dye

    Science.gov (United States)

    Bhattacharjee, Shubhadeep; Jose, Iven

    2011-02-01

    Estrogen induced proliferation of mutant cells is widely understood to be the one of major risk determining factor in the development of breast cancer. Hence determination of the Estrogen Receptor[ER] status is of paramount importance if cancer pathogenesis is to be detected and rectified at an early stage. Near Infrared Fluorescence [NIRf] Molecular Optical Imaging is emerging as a powerful tool to monitor bio-molecular changes in living subjects. We discuss pre-clinical results in our efforts to develop an optical imaging diagnostic modality for the early detection of breast cancer. We have successfully carried out the synthesis and characterization of a novel target-specific NIRf dye conjugate aimed at measuring Estrogen Receptor[ER] status. The conjugate was synthesized by ester formation between 17-β estradiol and a hydrophilic derivative of Indocyanine Green (ICG) cyanine dye, bis-1,1-(4-sulfobutyl) indotricarbocyanine-5-carboxylic acid, sodium salt. In-vitro studies regarding specific binding and endocytocis of the dye performed on ER+ve [MCF-7] and control [MDA-MB-231] adenocarcinoma breast cancer cell lines clearly indicated nuclear localization of the dye for MCF-7 as compared to plasma level staining for MDA-MB-231. Furthermore, MCF-7 cells showed ~4.5-fold increase in fluorescence signal intensity compared to MDA-MB-231. A 3-D mesh model mimicking the human breast placed in a parallel-plate DOT Scanner is created to examine the in-vivo efficacy of the dye before proceeding with clinical trials. Photon migration and florescence flux intensity is modeled using the finite-element method with the coefficients (quantum yield, molar extinction co-efficient etc.) pertaining to the dye as obtained from photo-physical and in-vitro studies. We conclude by stating that this lipophilic dye can be potentially used as a target specific exogenous contrast agent in molecular optical imaging for early detection of breast cancer.

  11. A potential approach for low flow selection in water resource supply and management

    Science.gov (United States)

    Ouyang, Ying

    2012-08-01

    SummaryLow flow selections are essential to water resource management, water supply planning, and watershed ecosystem restoration. In this study, a new approach, namely the frequent-low (FL) approach (or frequent-low index), was developed based on the minimum frequent-low flow or level used in minimum flows and/or levels program in northeast Florida, USA. This FL approach was then compared to the conventional 7Q10 approach for low flow selections prior to its applications, using the USGS flow data from the freshwater environment (Big Sunflower River, Mississippi) as well as from the estuarine environment (St. Johns River, Florida). Unlike the FL approach that is associated with the biological and ecological impacts, the 7Q10 approach could lead to the selections of extremely low flows (e.g., near-zero flows) that may hinder its use for establishing criteria to prevent streams from significant harm to biological and ecological communities. Additionally, the 7Q10 approach could not be used when the period of data records is less than 10 years by definition while this may not the case for the FL approach. Results from both approaches showed that the low flows from the Big Sunflower River and the St. Johns River decreased as time elapsed, demonstrating that these two rivers have become drier during the last several decades with a potential of salted water intrusion to the St. Johns River. Results from the FL approach further revealed that the recurrence probability of low flow increased while the recurrence interval of low flow decreased as time elapsed in both rivers, indicating that low flows occurred more frequent in these rivers as time elapsed. This report suggests that the FL approach, developed in this study, is a useful alternative for low flow selections in addition to the 7Q10 approach.

  12. The effects of cortisol administration on approach-avoidance behavior: An event-related potential study

    NARCIS (Netherlands)

    Peer, J.M. van; Roelofs, K.; Rotteveel, M.; Dijk, J.G. van; Spinhoven, P.; Ridderinkhof, K.R.

    2007-01-01

    We investigated the effects of cortisol administration (50 mg) on approach and avoidance tendencies in low and high trait avoidant healthy young men. Event-related brain potentials (ERPs) were measured during a reaction time task, in which participants evaluated the emotional expression of photograp

  13. Geothermal potential assessment for a low carbon strategy : A new systematic approach applied in southern Italy

    NARCIS (Netherlands)

    Trumpy, E.; Botteghi, S.; Caiozzi, F.; Donato, A.; Gola, G.; Montanari, D.; Pluymaekers, M. P D; Santilano, A.; van Wees, J. D.; Manzella, A.

    2016-01-01

    In this study a new approach to geothermal potential assessment was set up and applied in four regions in southern Italy. Our procedure, VIGORThermoGIS, relies on the volume method of assessment and uses a 3D model of the subsurface to integrate thermal, geological and petro-physical data. The metho

  14. Geothermal potential assessment for a low carbon strategy : A new systematic approach applied in southern Italy

    NARCIS (Netherlands)

    Trumpy, E.; Botteghi, S.; Caiozzi, F.; Donato, A.; Gola, G.; Montanari, D.; Pluymaekers, M. P D; Santilano, A.; van Wees, J. D.; Manzella, A.

    2016-01-01

    In this study a new approach to geothermal potential assessment was set up and applied in four regions in southern Italy. Our procedure, VIGORThermoGIS, relies on the volume method of assessment and uses a 3D model of the subsurface to integrate thermal, geological and petro-physical data. The metho

  15. Geothermal potential assessment for a low carbon strategy: A new systematic approach applied in southern Italy

    NARCIS (Netherlands)

    Trumpy, E.; Botteghi, S.; Caiozzi, F.; Donato, A.; Gola, G.; Montanari, D.; Pluymaekers, M.P.D.; Santilano, A.; Wees, J.D. van; Manzella, A.

    2016-01-01

    In this study a new approach to geothermal potential assessment was set up and applied in four regions in southern Italy. Our procedure, VIGORThermoGIS, relies on the volume method of assessment and uses a 3D model of the subsurface to integrate thermal, geological and petro-physical data. The

  16. Geothermal potential assessment for a low carbon strategy : A new systematic approach applied in southern Italy

    NARCIS (Netherlands)

    Trumpy, E.; Botteghi, S.; Caiozzi, F.; Donato, A.; Gola, G.; Montanari, D.; Pluymaekers, M. P D; Santilano, A.; van Wees, J. D.; Manzella, A.

    2016-01-01

    In this study a new approach to geothermal potential assessment was set up and applied in four regions in southern Italy. Our procedure, VIGORThermoGIS, relies on the volume method of assessment and uses a 3D model of the subsurface to integrate thermal, geological and petro-physical data. The

  17. Programmable Colored Illumination Microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement

    Science.gov (United States)

    Zuo, Chao; Sun, Jiasong; Feng, Shijie; Hu, Yan; Chen, Qian

    2016-03-01

    Programmable colored illumination microscopy (PCIM) has been proposed as a flexible optical staining technique for microscopic contrast enhancement. In this method, we replace the condenser diaphragm of a conventional microscope with a programmable thin film transistor-liquid crystal display (TFT-LCD). By displaying different patterns on the LCD, numerous established imaging modalities can be realized, such as bright field, dark field, phase contrast, oblique illumination, and Rheinberg illuminations, which conventionally rely on intricate alterations in the respective microscope setups. Furthermore, the ease of modulating both the color and the intensity distribution at the aperture of the condenser opens the possibility to combine multiple microscopic techniques, or even realize completely new methods for optical color contrast staining, such as iridescent dark-field and iridescent phase-contrast imaging. The versatility and effectiveness of PCIM is demonstrated by imaging of several transparent colorless specimens, such as unstained lung cancer cells, diatom, textile fibers, and a cryosection of mouse kidney. Finally, the potentialities of PCIM for RGB-splitting imaging with stained samples are also explored by imaging stained red blood cells and a histological section.

  18. Self-Potential data inversion through the integration of spectral analysis and tomographic approaches

    Science.gov (United States)

    Di Maio, Rosa; Piegari, Ester; Rani, Payal; Avella, Adolfo

    2016-08-01

    An integrated approach to interpret Self-Potential (SP) anomalies based on spectral analysis and tomographic methods is presented. The Maximum Entropy Method (MEM) is used for providing accurate estimates of the depth of the anomaly source. The 2-D tomographic inversion technique, based on the underground charge occurrence probability (COP) function, is, then, used to fully characterize the anomalous body, as the MEM is not helpful in delineating the shape of the anomaly source. The proposed integrated approach is applied for the inversion of synthetic SP data generated by geometrically simple anomalous bodies, such as cylinders and inclined sheets. This numerical study has allowed the determination of mathematical relationships between zero lines of the COP distributions, the polarization angles and the positions along the profile of the causative sources, which have been of great help for interpreting the related SP anomalies. Finally, the analysis of field examples shows the high potential applicability of the proposed integrated approach for SP data inversion.

  19. An Optical / Wireless Integrated Approach to provide Multiple Gateways in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Raheel

    2012-03-01

    Full Text Available Wireless Mesh Network is an application technology different from the traditional peer-to-peer wireless bridge; it provides the multi-hop and multi-path connection to form a wireless environment of MESH framework so that the occurrence of single point failure can be prevented.WMNs are to provide high bandwidth broadband service to a large community of users through the use Internet Gateways which acts as a central point of internet attachment for the mesh routers, it is likely to be a potential bottleneck because of its limited wireless link capacity and security considerations of the Internet Gateways .By integrating Optical fiber network technologies with wireless mesh network we can achieve the Security and increase the capacity of the network, in this paper we define integration models with multiple gateways in the access network, which increases the capacity of wireless networks, increase security in network gateways, and decreases access point complexity through centralized management.

  20. Potential splitting approach to e–H and e–He+ scattering

    Science.gov (United States)

    Yarevsky, E.; Yakovlev, S. L.; Elander, N.

    2017-03-01

    An approach based on splitting the reaction potential into a finite range part and a long range tail part to describe few-body scattering in the case of a Coulombic interaction is proposed. The solution to the Schrödinger equation for the long range tail of the reaction potential is used as an incoming wave. This reformulation of the scattering problem into an inhomogeneous Schrödinger equation with asymptotic outgoing waves makes it suitable for solving with the exterior complex scaling technique. The validity of the approach is analyzed from a formal point of view and demonstrated numerically, where the calculations are performed with the finite element method. The method of splitting the potential in this way is illustrated with calculations of the electron scattering on the hydrogen atom and the positive helium ion in energy regions where resonances appear.

  1. Dual optical recordings for action potentials and calcium handling in induced pluripotent stem cell models of cardiac arrhythmias using genetically encoded fluorescent indicators.

    Science.gov (United States)

    Song, LouJin; Awari, Daniel W; Han, Elizabeth Y; Uche-Anya, Eugenia; Park, Seon-Hye E; Yabe, Yoko A; Chung, Wendy K; Yazawa, Masayuki

    2015-05-01

    Reprogramming of human somatic cells to pluripotency has been used to investigate disease mechanisms and to identify potential therapeutics. However, the methods used for reprogramming, in vitro differentiation, and phenotyping are still complicated, expensive, and time-consuming. To address the limitations, we first optimized a protocol for reprogramming of human fibroblasts and keratinocytes into pluripotency using single lipofection and the episomal vectors in a 24-well plate format. This method allowed us to generate multiple lines of integration-free and feeder-free induced pluripotent stem cells (iPSCs) from seven patients with cardiac diseases and three controls. Second, we differentiated human iPSCs derived from patients with Timothy syndrome into cardiomyocytes using a monolayer differentiation method. We found that Timothy syndrome cardiomyocytes showed slower, irregular contractions and abnormal calcium handling compared with the controls. The results are consistent with previous reports using a retroviral method for reprogramming and an embryoid body-based method for cardiac differentiation. Third, we developed an efficient approach for recording the action potentials and calcium transients simultaneously in control and patient cardiomyocytes using genetically encoded fluorescent indicators, ArcLight and R-GECO1. The dual optical recordings enabled us to observe prolonged action potentials and abnormal calcium handling in Timothy syndrome cardiomyocytes. We confirmed that roscovitine rescued the phenotypes in Timothy syndrome cardiomyocytes and that these findings were consistent with previous studies using conventional electrophysiological recordings and calcium imaging with dyes. The approaches using our optimized methods and dual optical recordings will improve iPSC applicability for disease modeling to investigate mechanisms underlying cardiac arrhythmias and to test potential therapeutics.

  2. A Potential Approach of Internet Worm Propagation Based on P2P

    Institute of Scientific and Technical Information of China (English)

    YAO Yu; LUO Xingrui; GAO Fuxiang; YU Ge

    2006-01-01

    Various kinds of active worms have been plunging into the network flows, which make the Internet security problem more serious. Our research on a potential propagation approach of active worms, P2P-based propagation approach, is given in this paper. To measure the propagating performance of our approach, the SEI (Susceptible-Exposed- Infected) propagation model is presented. It proves that with the idea of pure P2P architecture, worms can be hidden in the early stage of propagation, and then infect most of the hosts in a shorter period. By comparing our SEI propagation model with the Simple Epidemic Model, we observe that the size of a worm is a significant parameter which can affect the propagating performance. When the size of the worm becomes large, our approach can still show an excellent propagating performance.

  3. Model reduction of cavity nonlinear optics for photonic logic: a quasi-principal components approach

    Science.gov (United States)

    Shi, Zhan; Nurdin, Hendra I.

    2016-11-01

    Kerr nonlinear cavities displaying optical thresholding have been proposed for the realization of ultra-low power photonic logic gates. In the ultra-low photon number regime, corresponding to energy levels in the attojoule scale, quantum input-output models become important to study the effect of unavoidable quantum fluctuations on the performance of such logic gates. However, being a quantum anharmonic oscillator, a Kerr-cavity has an infinite dimensional Hilbert space spanned by the Fock states of the oscillator. This poses a challenge to simulate and analyze photonic logic gates and circuits composed of multiple Kerr nonlinearities. For simulation, the Hilbert of the oscillator is typically truncated to the span of only a finite number of Fock states. This paper develops a quasi-principal components approach to identify important subspaces of a Kerr-cavity Hilbert space and exploits it to construct an approximate reduced model of the Kerr-cavity on a smaller Hilbert space. Using this approach, we find a reduced dimension model with a Hilbert space dimension of 15 that can closely match the magnitudes of the mean transmitted and reflected output fields of a conventional truncated Fock state model of dimension 75, when driven by an input coherent field that switches between two levels. For the same input, the reduced model also closely matches the magnitudes of the mean output fields of Kerr-cavity-based AND and NOT gates and a NAND latch obtained from simulation of the full 75 dimension model.

  4. Linear and nonlinear optics of pyronin Y/flexible polymer substrate for flexible organic technology: New optical approach

    Science.gov (United States)

    Yahia, I. S.; Zahran, H. Y.; Alamri, F. H.

    2017-10-01

    Pyronin Y (PY) thin films of different thicknesses were deposited on a flexible polyacetate substrate by using the spin-coating method. Pyronin Y thin films have an amorphous structure as identified by X-ray diffraction method. The linear and nonlinear optical properties of PY thin films were studied in details as a function of wavelengths. Transmittance, absorbance and reflectance spectra of pyronin Y thin films were recorded in the wavelengths range from 300 to 2500 nm. The refractive and absorption indices have been computed from Fresnel's equation. The optical band gaps were calculated for the studied PY thin film of thicknesses 205, 140 and 95 nm. Both direct and indirect gaps were computed as a function of PY of different thicknesses. The dielectric constant, dielectric loss and dissipation factor were investigated for the studied material. Spectrophotometric data was used to determine the nonlinear refractive index and the third nonlinear optical susceptibility. Pyronin Y thin films/polymer flexible substrate can be used in many applications such as flexible optoelectronic/electronic devices and for nonlinear optics with specified band gap.

  5. Automated mapping of glacial overdeepenings beneath contemporary ice sheets: Approaches and potential applications

    Science.gov (United States)

    Patton, Henry; Swift, Darrel A.; Clark, Chris D.; Livingstone, Stephen J.; Cook, Simon J.; Hubbard, Alun

    2015-03-01

    Awareness is growing on the significance of overdeepenings in ice sheet systems. However, a complete understanding of overdeepening formation is lacking, meaning observations of overdeepening location and morphometry are urgently required to motivate process understanding. Subject to the development of appropriate mapping approaches, high resolution subglacial topography data sets covering the whole of Antarctica and Greenland offer significant potential to acquire such observations and to relate overdeepening characteristics to ice sheet parameters. We explore a possible method for mapping overdeepenings beneath the Antarctic and Greenland ice sheets and illustrate a potential application of this approach by testing a possible relationship between overdeepening elongation ratio and ice sheet flow velocity. We find that hydrological and terrain filtering approaches are unsuited to mapping overdeepenings and develop a novel rule-based GIS methodology that delineates overdeepening perimeters by analysis of closed-contour properties. We then develop GIS procedures that provide information on overdeepening morphology and topographic context. Limitations in the accuracy and resolution of bed-topography data sets mean that application to glaciological problems requires consideration of quality-control criteria to (a) remove potentially spurious depressions and (b) reduce uncertainties that arise from the inclusion of depressions of nonglacial origin, or those in regions where empirical data are sparse. To address the problem of overdeepening elongation, potential quality control criteria are introduced; and discussion of this example serves to highlight the limitations that mapping approaches - and applications of such approaches - must confront. We predict that improvements in bed-data quality will reduce the need for quality control procedures and facilitate increasingly robust insights from empirical data.

  6. Computational Approach to Identify Enzymes That Are Potential Therapeutic Candidates for Psoriasis

    Directory of Open Access Journals (Sweden)

    Daeui Park

    2011-01-01

    Full Text Available Psoriasis is well known as a chronic inflammatory dermatosis. The disease affects persons of all ages and is a burden worldwide. Psoriasis is associated with various diseases such as arthritis. The disease is characterized by well-demarcated lesions on the skin of the elbows and knees. Various genetic and environmental factors are related to the pathogenesis of psoriasis. In order to identify enzymes that are potential therapeutic targets for psoriasis, we utilized a computational approach, combining microarray analysis and protein interaction prediction. We found 6,437 genes (3,264 upregulated and 3,173 downregulated that have significant differences in expression between regions with and without lesions in psoriasis patients. We identified potential candidates through protein-protein interaction predictions made using various protein interaction resources. By analyzing the hub protein of the networks with metrics such as degree and centrality, we detected 32 potential therapeutic candidates. After filtering these candidates through the ENZYME nomenclature database, we selected 5 enzymes: DNA helicase (RUVBL2, proteasome endopeptidase complex (PSMA2, nonspecific protein-tyrosine kinase (ZAP70, I-kappa-B kinase (IKBKE, and receptor protein-tyrosine kinase (EGFR. We adopted a computational approach to detect potential therapeutic targets; this approach may become an effective strategy for the discovery of new drug targets for psoriasis.

  7. Sol-gels with fiber-optic chemical sensor potential: Effects of preparation, aging, and long-term storage

    Science.gov (United States)

    Badini, G. E.; Grattan, K. T. V.; Tseung, A. C. C.

    1995-08-01

    The features of sol-gels, incorporating pH-sensitive dyes, designed as potential substrates for fiber-optic chemical sensors, have been investigated in terms of a variety of characteristics resulting from the preparation methods used and following the storage of samples for a period of several years. These materials, organically doped sol-gels, have been used as the heart of a number of prototype chemical sensing instruments, and a key issue in their effective use in instrumentation is their long-term durability and stability. In this work, it has been shown that such aged gel substrates can withstand immersion in water, drying, and reimmersion without fragmenting. Such impregnated gels were shown to still exhibit strong fluorescence, although some changes to the gel structure, determined from microhardness measurements, were observed and reported, reflecting their potential for use in chemically sensitive fiber optic-based instruments.

  8. Approaches to diagnosis social and economic potential of regions as the basis for effective management strategies

    Directory of Open Access Journals (Sweden)

    N.V. Kuzminchuk

    2016-12-01

    Full Text Available The aim of article. The aim of article is development and justification of the directions of an effective strategy of regional development based on quantitative evaluation and analysis of the socio-economic potential of the region. The results of the analysis. In the article the methods of quantitative evaluation and analysis of the socio-economic potential of the region (in terms of regional resources, resulting in a set that is still no unified system of regional development and general methods of combining these indicators into one integrated quantitative index. All this creates problems when assessing and managing the development of the region. Based on the concept of socio-economic potential of the region, proposed the evaluation of regional resources to carry out the following blocks: human resources, property potential social potential. Summarizing the analysis of views of scientists on the possible assessment of the level of socio-economic potential of the region, we note that despite the constant improvement of definitions and study the factors that influence its components (human resources, property potential social potential scorecard is imperfect and methodical approach to determine the integral index of socio-economic potential – incomplete or representative. The value of the proposed approach is the ability to explore and comprehensively assess the current level of social and economic potential of the region at any given time. The proposed system of indicators to assess regional resources will solve the problem of lack of unity in the evaluation of selected indicators and provide an opportunity to determine the main direction of improvement of regional development based on the results. The main directions of effective strategy of regional development based on the results of quantitative assessment and analysis of the socio-economic potential of the region should increase national wealth by optimizing the use of resources in the

  9. Microsurgical training model for residents to approach to the orbit and the optic nerve in fresh cadaveric sheep cranium

    Directory of Open Access Journals (Sweden)

    M Emre Altunrende

    2014-01-01

    Full Text Available Background: Neurosurgery and ophthalmology residents need many years to improve microsurgical skills. Laboratory training models are very important for developing surgical skills before clinical application of microsurgery. A simple simulation model is needed for residents to learn how to handle microsurgical instruments and to perform safe dissection of intracranial or intraorbital nerves, vessels, and other structures. Materials and Methods: The simulation material consists of a one-year-old fresh cadaveric sheep cranium. Two parts (Part 1 and Part 2 were designed to approach structures of the orbit. Part 1 consisted of a 2-step approach to dissect intraorbital structures, and Part 2 consisted of a 3-step approach to dissect the optic nerve intracranially. Results: The model simulates standard microsurgical techniques using a variety of approaches to structures in and around the orbit and the optic nerve. Conclusions: This laboratory training model enables trainees to gain experience with an operating microscope, microsurgical instruments and orbital structures.

  10. Comparison of modeling approaches to prioritize chemicals based on estimates of exposure and exposure potential

    Science.gov (United States)

    Mitchell, Jade; Arnot, Jon A.; Jolliet, Olivier; Georgopoulos, Panos G.; Isukapalli, Sastry; Dasgupta, Surajit; Pandian, Muhilan; Wambaugh, John; Egeghy, Peter; Cohen Hubal, Elaine A.; Vallero, Daniel A.

    2014-01-01

    While only limited data are available to characterize the potential toxicity of over 8 million commercially available chemical substances, there is even less information available on the exposure and use-scenarios that are required to link potential toxicity to human and ecological health outcomes. Recent improvements and advances such as high throughput data gathering, high performance computational capabilities, and predictive chemical inherency methodology make this an opportune time to develop an exposure-based prioritization approach that can systematically utilize and link the asymmetrical bodies of knowledge for hazard and exposure. In response to the US EPA’s need to develop novel approaches and tools for rapidly prioritizing chemicals, a “Challenge” was issued to several exposure model developers to aid the understanding of current systems in a broader sense and to assist the US EPA’s effort to develop an approach comparable to other international efforts. A common set of chemicals were prioritized under each current approach. The results are presented herein along with a comparative analysis of the rankings of the chemicals based on metrics of exposure potential or actual exposure estimates. The analysis illustrates the similarities and differences across the domains of information incorporated in each modeling approach. The overall findings indicate a need to reconcile exposures from diffuse, indirect sources (far-field) with exposures from directly, applied chemicals in consumer products or resulting from the presence of a chemical in a microenvironment like a home or vehicle. Additionally, the exposure scenario, including the mode of entry into the environment (i.e. through air, water or sediment) appears to be an important determinant of the level of agreement between modeling approaches. PMID:23707726

  11. Alternative approach of conducting phase-modulated all-optical logic gates

    Science.gov (United States)

    Chakraborty, Bikash; Mukhopadhyay, Sourangshu

    2009-03-01

    It is well established that optical devices and components are more advantageous than their electronic counterparts because of inherent parallelism in optics. Basically electronics are found to be very unsuitable in high speed (above gigahertz) data processing systems whereas tremendous operational speed (in the range of terahertz) can be achieved with the help of optics. The parallelism of optics and the properties of low loss transmission make optics a powerful technology for digital computing and processing and in long-range communications. Again it is well established that logic gates are the basic building blocks of any computing or data processing system. Therefore, any optical data processor needs suitable optically run logic gates. A method of conducting phase-modulated all-optical logic gates is proposed. Here we will exploit the advantages of phase modulation not only in processing but also in encoding as well decoding also.

  12. A multi-approach to the optical depth of a contrail cirrus cluster

    Science.gov (United States)

    Vazquez-Navarro, Margarita; Bugliaro, Luca; Schumann, Ulrich; Strandgren, Johan; Wirth, Martin; Voigt, Christiane

    2017-04-01

    Amongst the individual aviation emissions, contrail cirrus contribute the largest fraction to the aviation effects on climate. To investigate the optical depth from contrail cirrus, we selected a cirrus and contrail cloud outbreak on the 10th April 2014 between the North Sea and Switzerland detected during the ML-CIRRUS experiment (Voigt et al., 2017). The outbreak was not forecast by weather prediction models. We describe its origin and evolution using a combination of in-situ measurements, remote sensing approaches and contrail prediction model prognosis. The in-situ and lidar measurements were carried out with the HALO aircraft, where the cirrus was first identified. Model predictions from the contrail prediction model CoCiP (Schumann et al., 2012) point to an anthropogenic origin. The satellite pictures from the SEVIRI imager on MSG combined with the use of a contrail cluster tracking algorithm enable the automatic assessment of the origin, displacement and growth of the cloud and the correct labeling of cluster pixels. The evolution of the optical depth and particle size of the selected cluster pixels were derived using the CiPS algorithm, a neural network primarily based on SEVIRI images. The CoCiP forecast of the cluster compared to the actual cluster tracking show that the model correctly predicts the occurrence of the cluster and its advection direction although the cluster spreads faster than simulated. The optical depth derived from CiPS and from the airborne high spectral resolution lidar WALES are compared and show a remarkably good agreement. This confirms that the new CiPS algorithm is a very powerful tool for the assessment of the optical depth of even optically thinner cirrus clouds. References: Schumann, U.: A contrail cirrus prediction model, Geosci. Model Dev., 5, 543-580, doi: 10.5194/gmd-5-543-2012, 2012. Voigt, C., Schumann, U., Minikin, A., Abdelmonem, A., Afchine, A., Borrmann, S., Boettcher, M., Buchholz, B., Bugliaro, L., Costa, A

  13. Raman fiber-optical method for colon cancer detection: Cross-validation and outlier identification approach

    Science.gov (United States)

    Petersen, D.; Naveed, P.; Ragheb, A.; Niedieker, D.; El-Mashtoly, S. F.; Brechmann, T.; Kötting, C.; Schmiegel, W. H.; Freier, E.; Pox, C.; Gerwert, K.

    2017-06-01

    Endoscopy plays a major role in early recognition of cancer which is not externally accessible and therewith in increasing the survival rate. Raman spectroscopic fiber-optical approaches can help to decrease the impact on the patient, increase objectivity in tissue characterization, reduce expenses and provide a significant time advantage in endoscopy. In gastroenterology an early recognition of malign and precursor lesions is relevant. Instantaneous and precise differentiation between adenomas as precursor lesions for cancer and hyperplastic polyps on the one hand and between high and low-risk alterations on the other hand is important. Raman fiber-optical measurements of colon biopsy samples taken during colonoscopy were carried out during a clinical study, and samples of adenocarcinoma (22), tubular adenomas (141), hyperplastic polyps (79) and normal tissue (101) from 151 patients were analyzed. This allows us to focus on the bioinformatic analysis and to set stage for Raman endoscopic measurements. Since spectral differences between normal and cancerous biopsy samples are small, special care has to be taken in data analysis. Using a leave-one-patient-out cross-validation scheme, three different outlier identification methods were investigated to decrease the influence of systematic errors, like a residual risk in misplacement of the sample and spectral dilution of marker bands (esp. cancerous tissue) and therewith optimize the experimental design. Furthermore other validations methods like leave-one-sample-out and leave-one-spectrum-out cross-validation schemes were compared with leave-one-patient-out cross-validation. High-risk lesions were differentiated from low-risk lesions with a sensitivity of 79%, specificity of 74% and an accuracy of 77%, cancer and normal tissue with a sensitivity of 79%, specificity of 83% and an accuracy of 81%. Additionally applied outlier identification enabled us to improve the recognition of neoplastic biopsy samples.

  14. Passive optical coherence elastography using a time-reversal approach (Conference Presentation)

    Science.gov (United States)

    Nguyen, Thu-Mai; Zorgani, Ali; Fink, Mathias; Catheline, Stefan; Boccara, A. Claude

    2017-02-01

    Background and motivation - Conventional Optical Coherence Elastography (OCE) methods consist in launching controlled shear waves in tissues, and measuring their propagation speed using an ultrafast imaging system. However, the use of external shear sources limits transfer to clinical practice, especially for ophthalmic applications. Here, we propose a totally passive OCE method for ocular tissues based on time-reversal of the natural vibrations. Methods - Experiments were first conducted on a tissue-mimicking phantom containing a stiff inclusion. Pulsatile motions were reproduced by stimulating the phantom surface with two piezoelectric actuators excited asynchronously at low frequencies (50-500 Hz). The resulting random displacements were tracked at 190 frames/sec using spectral-domain optical coherence tomography (SD-OCT), with a 10x5µm² resolution over a 3x2mm² field-of-view (lateral x depth). The shear wavefield was numerically refocused (i.e. time-reversed) at each pixel using noise-correlation algorithms. The focal spot size yields the shear wavelength. Results were validated by comparison with shear wave speed measurements obtained from conventional active OCE. In vivo tests were then conducted on anesthetized rats. Results - The stiff inclusion of the phantom was delineated on the wavelength map with a wavelength ratio between the inclusion and the background (1.6) consistent with the speed ratio (1.7). This validates the wavelength measurements. In vivo, natural shear waves were detected in the eye and wavelength maps of the anterior segment showed a clear elastic contrast between the cornea, the sclera and the iris. Conclusion - We validated the time-reversal approach for passive elastography using SD-OCT imaging at low frame-rate. This method could accelerate the clinical transfer of ocular elastography.

  15. Raman fiber-optical method for colon cancer detection: Cross-validation and outlier identification approach.

    Science.gov (United States)

    Petersen, D; Naveed, P; Ragheb, A; Niedieker, D; El-Mashtoly, S F; Brechmann, T; Kötting, C; Schmiegel, W H; Freier, E; Pox, C; Gerwert, K

    2017-06-15

    Endoscopy plays a major role in early recognition of cancer which is not externally accessible and therewith in increasing the survival rate. Raman spectroscopic fiber-optical approaches can help to decrease the impact on the patient, increase objectivity in tissue characterization, reduce expenses and provide a significant time advantage in endoscopy. In gastroenterology an early recognition of malign and precursor lesions is relevant. Instantaneous and precise differentiation between adenomas as precursor lesions for cancer and hyperplastic polyps on the one hand and between high and low-risk alterations on the other hand is important. Raman fiber-optical measurements of colon biopsy samples taken during colonoscopy were carried out during a clinical study, and samples of adenocarcinoma (22), tubular adenomas (141), hyperplastic polyps (79) and normal tissue (101) from 151 patients were analyzed. This allows us to focus on the bioinformatic analysis and to set stage for Raman endoscopic measurements. Since spectral differences between normal and cancerous biopsy samples are small, special care has to be taken in data analysis. Using a leave-one-patient-out cross-validation scheme, three different outlier identification methods were investigated to decrease the influence of systematic errors, like a residual risk in misplacement of the sample and spectral dilution of marker bands (esp. cancerous tissue) and therewith optimize the experimental design. Furthermore other validations methods like leave-one-sample-out and leave-one-spectrum-out cross-validation schemes were compared with leave-one-patient-out cross-validation. High-risk lesions were differentiated from low-risk lesions with a sensitivity of 79%, specificity of 74% and an accuracy of 77%, cancer and normal tissue with a sensitivity of 79%, specificity of 83% and an accuracy of 81%. Additionally applied outlier identification enabled us to improve the recognition of neoplastic biopsy samples. Copyright

  16. The 2H Electric Dipole Moment in a Separable Potential Approach

    Directory of Open Access Journals (Sweden)

    Afnan I.R.

    2010-04-01

    Full Text Available Measurement of the electric dipole moment (EDM of 2H or of 3He may well come prior to the coveted measurement of the neutron EDM. Exact model calculations for the deuteron are feasible, and we explore here the model dependence of such deuteron EDM calculations. We investigate in a separable potential approach the relationship of the full model calculation to the plane wave approximation, correct an error in an early potential model result, and examine the tensor force aspects of the model results as well as the effect of the short range repulsion found in the realistic, contemporary potential model calculations of Liu and Timmermans. We conclude that, because one-pion exchange dominates the EDM calculation, separable potential model calculations should provide an adequate picture of the 2H EDM until better than 10% measurements are achieved.

  17. The 2H Electric Dipole Moment in a Separable Potential Approach

    Science.gov (United States)

    Gibson, B. F.; Afnan, I. R.

    2010-04-01

    Measurement of the electric dipole moment (EDM) of 2H or of 3He may well come prior to the coveted measurement of the neutron EDM. Exact model calculations for the deuteron are feasible, and we explore here the model dependence of such deuteron EDM calculations. We investigate in a separable potential approach the relationship of the full model calculation to the plane wave approximation, correct an error in an early potential model result, and examine the tensor force aspects of the model results as well as the effect of the short range repulsion found in the realistic, contemporary potential model calculations of Liu and Timmermans. We conclude that, because one-pion exchange dominates the EDM calculation, separable potential model calculations should provide an adequate picture of the 2H EDM until better than 10% measurements are achieved.

  18. Position Dependent Mass Schroedinger Equation and Isospectral Potentials : Intertwining Operator approach

    CERN Document Server

    Midya, Bikashkali; Roychoudhury, Rajkumar

    2010-01-01

    Here we have studied first and second-order intertwining approach to generate isospectral partner potentials of position-dependent (effective) mass Schroedinger equation. The second-order intertwiner is constructed directly by taking it as second order linear differential operator with position depndent coefficients and the system of equations arising from the intertwining relationship is solved for the coefficients by taking an ansatz. A complete scheme for obtaining general solution is obtained which is valid for any arbitrary potential and mass function. The proposed technique allows us to generate isospectral potentials with the following spectral modifications: (i) to add new bound state(s), (ii) to remove bound state(s) and (iii) to leave the spectrum unaffected. To explain our findings with the help of an illustration, we have used point canonical transformation (PCT) to obtain the general solution of the position dependent mass Schrodinger equation corresponding to a potential and mass function. It is...

  19. A local chemical potential approach within the variable charge method formalism

    Science.gov (United States)

    Elsener, A.; Politano, O.; Derlet, P. M.; Van Swygenhoven, H.

    2008-03-01

    A new and computationally efficient implementation of the variable charge method of Streitz and Mintmire (1994 Phys. Rev. B 50 11996) is presented. In particular a local chemical potential approach that optimizes the charge on only those atoms expected to be ionic is developed. By doing so, the charge fluctuation problem experienced in regions far from any oxygen is solved, leading to a linear minimization problem of the electrostatic energy. In the dilute oxygen limit, such an approach can lead to at least an order of magnitude saving in computation.

  20. Neutron penetrabilities using an optical model potential (1963); Penetrabilites des neutrons selon le modele du potentiel optique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Mani, G.S.; Melkanoff, M.A.; Iori, I. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The neutron penetrabilities and reaction cross-sections are presented in these tables for the case of an optical model potential for the nucleus, for nuclei up to mass 230. (authors) [French] Les penetrabilites et les sections efficaces de reaction pour les neutrons sont donnees dans ces tables en utilisant le modele du potentiel optique, pour les noyaux cibles jusqu'a la masse 230. (auteurs)

  1. A Novel Approach to Obtain GeSbTe-Based High Speed Crystallizing Materials for Phase Change Optical Recording

    Science.gov (United States)

    2001-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012318 TITLE: A Novel Approach to Obtain GeSbTe -Based High Speed...UNCLASSIFIED Mat. Res. Soc. Symp. Proc. Vol. 674 © 2001 Materials Research Society A Novel Approach to Obtain GeSbTe -Based High Speed Crystallizing...fast crystallizing materials based on a conventional GeSbTe alloy for rewritable phase change optical data storage. By means of co-sputtering

  2. Vibrational spectroscopic, structural and nonlinear optical activity studies on 6-aminonicotinamide: A DFT approach

    Science.gov (United States)

    Asath, R. Mohamed; Premkumar, S.; Rekha, T. N.; Jawahar, A.; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The conformational analysis was carried out for 6-aminonicotinamide (ANA) using potential energy surface scan method and the most stable optimized conformer was predicted. The theoretical vibrational frequencies were calculated for the optimized geometry using DFT/B3LYP cc-pVQZ basis set by Gaussian 09 Program. The vibrational frequencies were assigned on the basis of potential energy distribution calculation using VEDA 4.0 program. The Mulliken atomic charge values were calculated. In the Frontier molecular orbitals analysis, the molecular reactivity, kinetic stability, intermolecular charge transfer studies and the related molecular properties were calculated. The ultraviolet-visible spectrum was simulated for both in the gas phase and liquid phase (ethanol) and the л to л* electronic transition was predicted. The nonlinear optical (NLO) activity was studied by means of the first order hyperpolarizability value, which was 8.61 times greater than the urea and the natural bond orbital analysis was also performed to confirm the NLO activity of the molecule. Hence, the ANA molecule is a promising candidate for the NLO materials.

  3. Synthesis and characterization of rare earth doped novel optical materials and their potential applications

    Science.gov (United States)

    Pokhrel, Madhab

    There are many application of photonic materials but selection of photonic materials are always constrained by number of factors such as cost, availability of materials, thermal and chemical stability, toxicity, size and more importantly ease of synthesis and processing along with the efficient emission. For example, quantum dots are efficient emitter but they are significantly toxic, whereas dyes are also efficient emitters but they are chemically unstable. On the other hand, display and LED requires the micron size particles but bio application requires the nano-sized particles. On the other hand, laser gain media requires the ceramics glass or single crystal not the nanoparticles. So, realization of practical optical systems critically depends on suitable materials that offer specific combinations of properties. Solid-state powders such as rare-earth ions doped nano and micron size phosphors are one of the most promising candidates for several photonic applications discussed above. In this dissertation, we investigate the upconversion (UC) fluorescence characteristics of rare earth (RE) doped M2O2S (M = Y, Gd, La) oxysulphide phosphors, for near-infrared to visible UC. Both nano and micron size phosphors were investigated depending on their applications of interest. This oxysulphide phosphor possesses several excellent properties such as chemical stability, low toxicity and can be easily mass produced at low cost. Mainly, Yb3+, Er3+, and Ho3+ were doped in the host lattice, resulting in bright red, green, blue and NIR emissions under 980 nm and 1550 nm excitation at various excitation power densities. Maximum UC quantum yields (QY) up to 6.2 %, 5.8%, and 4.6% were respectively achieved in Yb3+/Er3+ :La2O2S, Y2O2S, and Gd2O 2S. Comparisons have been made with respect to reported most efficient upconverting phosphors beta-NaYF4:20 % Yb/ 2% Er. We believe that present phosphors are the most efficient and lower excitation threshold upconverting phosphors at 980 and

  4. A novel approach for simulating the optical misalignment caused by satellite platform vibration in the ground test of satellite optical communication systems.

    Science.gov (United States)

    Wang, Qiang; Tan, Liying; Ma, Jing; Yu, Siyuan; Jiang, Yijun

    2012-01-16

    Satellite platform vibration causes the misalignment between incident direction of the beacon and optical axis of the satellite optical communication system, which also leads to the instability of the laser link and reduces the precision of the system. So how to simulate the satellite platform vibration is a very important work in the ground test of satellite optical communication systems. In general, a vibration device is used for simulating the satellite platform vibration, but the simulation effect is not ideal because of the limited randomness. An approach is reasonable, which uses a natural random process for simulating the satellite platform vibration. In this paper, we discuss feasibility of the concept that the effect of angle of arrival fluctuation is taken as an effective simulation of satellite platform vibration in the ground test of the satellite optical communication system. Spectrum characteristic of satellite platform vibration is introduced, referring to the model used by the European Space Agency (ESA) in the SILEX program and that given by National Aeronautics and Space Development Agency (NASDA) of Japan. Spectrum characteristic of angle of arrival fluctuation is analyzed based on the measured data from an 11.16km bi-directional free space laser transmission experiment. Spectrum characteristic of these two effects is compared. The results show that spectra of these two effects have similar variation trend with the variation of frequency and feasibility of the concept is proved by the comparison results. At last the procedure of this method is proposed, which uses the power spectra of angle of arrival fluctuation to simulate that of the satellite platform vibration. The new approach is good for the ground test of satellite optical communication systems.

  5. Simple and Practical Approaches for Upgrading Installed Electronic-Repeater-Based Fiber Systems to Optically Amplified Systems

    Institute of Scientific and Technical Information of China (English)

    Pasu; Kaewplung; Wadis; Kasantikul

    2003-01-01

    We propose simple and practical approaches to upgrade electronic-repeated systems by using optical amplifiers and zero-dispersion wavelength transmission. Possibility of increasing data rate from 560 Mbit/s to 80 Gbit/s in 1,318-km-long Thai-Malaysia system is demonstrated.

  6. X-point deformation potentials of III-V semiconductors in a tight-binding approach

    Science.gov (United States)

    Muñoz, M. C.; Armelles, G.

    1993-07-01

    The hydrostatic E1 and shear E2 deformation potentials of the III-V semiconductor compounds are calculated within a nearest-neighbor tight-binding approach. In the sp3s* parametrization, analytical expressions for both E1 and E2 are derived. The scaling law of the s*p interaction is modified in such a way that it provides deformation potentials at X in reasonable agreement with available experimental data. This phenomenological term takes into account the physical behavior of the actual excited states under strain and consequently, it allows us to describe accurately the dependence of the band-edge states under (001) biaxial strain.

  7. Microscopic meaning of grand potential resulting from combinatorial approach to a general system of particles

    Science.gov (United States)

    Fronczak, Agata

    2012-10-01

    We present an alternative approach to the problem of interacting fluids, which we believe may provide important insights into microscopic mechanisms that lead to the occurrence of phase transitions. The approach exploits enumerative properties and combinatorial meaning of Bell polynomials. We derive the exact formula for the probability of a general system of N particles at temperature T to consist of k weakly coupled clusters of various sizes. We also show that the grand potential of the system may be considered the exponential generating function for the number of internal states (thermodynamic probability) of these clusters. The microscopic interpretation of the grand potential is surprising, especially if one recalls that until now only the thermodynamic meaning of this free energy was known. We also derive an approximated expression for the density of states.

  8. The microscopic meaning of grand potential resulting from combinatorial approach to a general system of particles

    CERN Document Server

    Fronczak, Agata

    2012-01-01

    We present a completely new approach to the problem of interacting fluids, which we believe may provide important insights into microscopic mechanisms that lead to the occurrence of phase transitions. The approach exploits enumerative properties and combinatorial meaning of Bell polynomials. We derive the exact formula for probability of a general system of N particles at temperature T to consist of k weakly coupled clusters of various sizes. We also show that the grand potential of the system may be considered as the exponential generating function for the number of internal states (thermodynamic probability) of these clusters. The microscopic interpretation of the grand potential is novel and surprising, especially if one recalls that until now the only thermodynamic meaning of this free energy was known. We also derive an approximated expression for the density of states.

  9. Neighborhoods, Schools and Obesity: The Potential for Place-Based Approaches to Reduce Childhood Obesity.

    Directory of Open Access Journals (Sweden)

    Brian Elbel

    Full Text Available A common policy approach to reducing childhood obesity aims to shape the environment in which children spend most of their time: neighborhoods and schools. This paper uses richly detailed data on the body mass index (BMI of all New York City public school students in grades K-8 to assess the potential for place-based approaches to reduce child obesity. We document variation in the prevalence of obesity across NYC public schools and census tracts, and then estimate the extent to which this variation can be explained by differences in individual-level predictors (such as race and household income. Both unadjusted and adjusted variability across neighborhoods and schools suggest place-based policies have the potential to meaningfully reduce child obesity, but under most realistic scenarios the improvement would be modest.

  10. How Potential Employers Approach Disability: A Survey of Law Students in Georgia

    OpenAIRE

    2008-01-01

    When I set out to discover how potential employers of law students approach issues of disability in their interviews, I did not expect to find a great deal of published information on the topic. The result was even more sparse than I expected. I only found one somewhat relevant article, a transcript of a roundtable discussion on lawyers with disabilities. The roundtable participants, most of whom had a disability, recounted their own experiences. One attorney told of being asked in a job inte...

  11. The effects of cortisol administration on approach-avoidance behavior: an event-related potential study.

    Science.gov (United States)

    van Peer, Jacobien M; Roelofs, Karin; Rotteveel, Mark; van Dijk, J Gert; Spinhoven, Philip; Ridderinkhof, K Richard

    2007-10-01

    We investigated the effects of cortisol administration (50 mg) on approach and avoidance tendencies in low and high trait avoidant healthy young men. Event-related brain potentials (ERPs) were measured during a reaction time task, in which participants evaluated the emotional expression of photographs of happy and angry faces by making an approaching (flexion) or avoiding (extension) arm movement. The task consisted of an affect-congruent (approach happy faces and avoid angry faces) and an affect-incongruent (reversed instruction) condition. Behavioral and ERP analyses showed that cortisol enhanced congruency effects for angry faces in highly avoidant individuals only. The ERP effects involved an increase of both early (P150) and late (P3) positive amplitudes, indicative of increased processing of the angry faces in high avoidant subjects after cortisol administration. Together, these results suggest a context-specific effect of cortisol on processing of, and adaptive responses to, motivationally significant threat stimuli, particularly in participants highly sensitive to threat signals.

  12. N-1-Alkylated Pyrimidine Films as a New Potential Optical Data Storage Medium

    DEFF Research Database (Denmark)

    Lohse, Brian; Hvilsted, Søren; Berg, Rolf Henrik;

    2006-01-01

    We investigate several compounds of the type 1,1’-(a,w-alkanediyl)bis[pyrimidinej and 1-(w- bromoalkyl)uracil, which can undergo photoinduced (2jr + 2n) cycloaddition reactions on exposure to UV light at 254 and 257 nm, which have been synthesized for application in high capacity optical data...

  13. Dye-modified ZnO nanohybrids: optical properties of the potential solar cell nanocomposites

    Science.gov (United States)

    Ayinde, Wasiu B.; Dare, Enock O.; Bada, Damilola A.; Alayande, Samson O.; Oladoyinbo, Fatai O.; Idowu, Mopelola A.; Bolaji, Bukola. O.; Ezeh, Miriam I.; Osuji, Rose U.

    2017-06-01

    We report the hybridization of ZnO with natural dyes [Laali, Zobo] or synthetic dye [methyl red] forming ZnO-laali, ZnO-zobo and ZnO-methyl red nanocomposites in bright colours. The structural, optical and dye photosensitization influence of the hybrid nanocomposites were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Visible absorption spectroscopy and photoluminescence (PL). The surface plasmon absorption band of ZnO-laali and ZnO-zobo shifts towards red and blue, respectively, with significantly enhanced absorption intensities, indicating the interaction and optical influence of the respective dyes in photosensitization. Optical and absorption character of ZnO methyl red and bare ZnO are similar indicating the insignificant effect of methyl red on photosensitization. PL spectra of ZnO-laali and ZnO-zobo display enhanced UV light emission due not only to the surface electron transfer from their respective inherent isoplumbagin and anthocyanin to ZnO but also to the extension of the Fermi energy level to the ZnO. Dyes adopted influence the optical band gaps of the evolved hybrid nanocomposites.

  14. Potentiality of optical diffraction grating technology in the fabrication of miniaturized multicapillary chromatographic and electrophoresis columns.

    Science.gov (United States)

    Samsonov, Y N

    2001-10-01

    A possible way of fabricating miniaturized multicapillary columns for gas and liquid chromatographs or electrophoresis devices containing many thousands of identical channels with a width (or depth) of approximately 1-30 microm by means of industrial technology for the production of optical plane reflecting diffraction gratings is proposed.

  15. A Data Mining Approach to Predict In Situ Detoxification Potential of Chlorinated Ethenes.

    Science.gov (United States)

    Lee, Jaejin; Im, Jeongdae; Kim, Ungtae; Löffler, Frank E

    2016-05-17

    Despite advances in physicochemical remediation technologies, in situ bioremediation treatment based on Dehalococcoides mccartyi (Dhc) reductive dechlorination activity remains a cornerstone approach to remedy sites impacted with chlorinated ethenes. Selecting the best remedial strategy is challenging due to uncertainties and complexity associated with biological and geochemical factors influencing Dhc activity. Guidelines based on measurable biogeochemical parameters have been proposed, but contemporary efforts fall short of meaningfully integrating the available information. Extensive groundwater monitoring data sets have been collected for decades, but have not been systematically analyzed and used for developing tools to guide decision-making. In the present study, geochemical and microbial data sets collected from 35 wells at five contaminated sites were used to demonstrate that a data mining prediction model using the classification and regression tree (CART) algorithm can provide improved predictive understanding of a site's reductive dechlorination potential. The CART model successfully predicted the 3-month-ahead reductive dechlorination potential with 75.8% and 69.5% true positive rate (i.e., sensitivity) for the training set and the test set, respectively. The machine learning algorithm ranked parameters by relative importance for assessing in situ reductive dechlorination potential. The abundance of Dhc 16S rRNA genes, CH4, Fe(2+), NO3(-), NO2(-), and SO4(2-) concentrations, total organic carbon (TOC) amounts, and oxidation-reduction potential (ORP) displayed significant correlations (p data mining approaches lies in the ability to discern synergetic effects between multiple parameters that affect reductive dechlorination activity. Overall, these findings demonstrate that data mining techniques (e.g., machine learning algorithms) effectively utilize groundwater monitoring data to derive predictive understanding of contaminant degradation, and thus have

  16. Potential of a spectroscopic measurement method using adding-doubling to retrieve the bulk optical properties of dense microalgal media.

    Science.gov (United States)

    Bellini, Sarah; Bendoula, Ryad; Latrille, Eric; Roger, Jean-Michel

    2014-01-01

    In the context of algal mass cultivation, current techniques used for the characterization of algal cells require time-consuming sample preparation and a large amount of costly, standard instrumentation. As the physical and chemical properties of the algal cells strongly affect their optical properties, the optical characterization is seen as a promising method to provide an early diagnosis in the context of mass cultivation monitoring. This article explores the potential of a spectroscopic measurement method coupled with the inversion of the radiative transfer theory for the retrieval of the bulk optical properties of dense algal samples. Total transmittance and total reflectance measurements were performed over the 380-1020 nm range on dense algal samples with a double integrating sphere setup. The bulk absorption and scattering coefficients were thus extracted over the 380-1020 nm range by inverting the radiative transfer theory using inverse-adding-doubling computations. The experimental results are presented and discussed; the configuration of the optical setup remains a critical point. The absorption coefficients obtained for the four samples of this study appear not to be more informative about pigment composition than would be classical methods in analytical spectroscopy; however, there is a real added value in measuring the reduced scattering coefficient, as it appears to be strongly correlated to the size distribution of the algal cells.

  17. Generalized approach to design multi-layer stacks for enhanced optical detectability of ultrathin layers

    Science.gov (United States)

    Hutzler, A.; Matthus, C. D.; Rommel, M.; Frey, L.

    2017-01-01

    The optical detectability of ultrathin conductive films (down to one atomic layer) can be enhanced by choosing distinct layer-stacks. A simple analytical approach using the transfer matrix method is applied for calculating the reflectance of arbitrary multi-layer stack systems with and without the ultrathin layer of interest on top in a wide wavelength range, including both the visible spectrum and the ultraviolet spectrum. Then, the detectability defined by the Michelson contrast was calculated. Performing these calculations for thickness variations of the individual layers in the stack allows determining optimum layer thicknesses, e.g., maximum overall contrast or maximum contrast for a given wavelength. To demonstrate the validity of the methodology, two thin film stacks were investigated, which use p-type silicon as a substrate material and partially covered by a single-layer graphene as a top layer. For each stack, two samples with different layer thicknesses were fabricated and their experimentally determined reflectance was compared to the calculated values. The first system consists of a single SiO2 layer with a thickness of 147 nm and 304 nm, respectively, and the second is a double layer stack consisting of a Si3N4 layer with a thickness of 54 nm and 195 nm, respectively, on top of an 11 nm SiO2 film. The Michelson contrast of single-layer graphene flakes on the latter layer stacks becomes very high (absolute value of more than 0.3) in the visible wavelength range. Additionally, in the UV-B range a large difference in the reflection of selected SiO2 layer thicknesses on silicon substrates with and without single-layer graphene on top is found with a decrease in the measured reflectance of up to 33%. The measured and calculated values showed a high conformity suggesting this approach usable for the calculation of reflectance and transmittance properties of arbitrary layer stack systems including thin conductive layers.

  18. Intercomparison of the GOS approach, superposition T-matrix method, and laboratory measurements for black carbon optical properties during aging

    Science.gov (United States)

    He, Cenlin; Takano, Yoshi; Liou, Kuo-Nan; Yang, Ping; Li, Qinbin; Mackowski, Daniel W.

    2016-11-01

    We perform a comprehensive intercomparison of the geometric-optics surface-wave (GOS) approach, the superposition T-matrix method, and laboratory measurements for optical properties of fresh and coated/aged black carbon (BC) particles with complex structures. GOS and T-matrix calculations capture the measured optical (i.e., extinction, absorption, and scattering) cross sections of fresh BC aggregates, with 5-20% differences depending on particle size. We find that the T-matrix results tend to be lower than the measurements, due to uncertainty in theoretical approximations of realistic BC structures, particle property measurements, and numerical computations in the method. On the contrary, the GOS results are higher than the measurements (hence the T-matrix results) for BC radii 100 nm. We find good agreement (differences methods in asymmetry factors for various BC sizes and aggregating structures. For aged BC particles coated with sulfuric acid, GOS and T-matrix results closely match laboratory measurements of optical cross sections. Sensitivity calculations show that differences between the two methods in optical cross sections vary with coating structures for radii 100 nm. We find small deviations (≤10%) in asymmetry factors computed from the two methods for most BC coating structures and sizes, but several complex structures have 10-30% differences. This study provides the foundation for downstream application of the GOS approach in radiative transfer and climate studies.

  19. Nonnormal operators in physics, a singular-vectors approach: illustration in polarization optics.

    Science.gov (United States)

    Tudor, Tiberiu

    2016-04-20

    The singular-vectors analysis of a general nonnormal operator defined on a finite-dimensional complex vector space is given in the frame of a pure operatorial ("nonmatrix," "coordinate-free") approach, performed in a Dirac language. The general results are applied in the field of polarization optics, where the nonnormal operators are widespread as operators of various polarization devices. Two nonnormal polarization devices representative for the class of nonnormal and even pathological operators-the standard two-layer elliptical ideal polarizer (singular operator) and the three-layer ambidextrous ideal polarizer (singular and defective operator)-are analyzed in detail. It is pointed out that the unitary polar component of the operator exists and preserves, in such pathological case too, its role of converting the input singular basis of the operator in its output singular basis. It is shown that for any nonnormal ideal polarizer a complementary one exists, so that the tandem of their operators uniquely determines their (common) unitary polar component.

  20. New approach for mathematical problems of the optical tomography of highly scattering (biological) objects

    Science.gov (United States)

    Lyubimov, Vladimir V.; Kravtsenyuk, Olga V.; Murzin, Alexander G.

    1999-06-01

    We present a new method which we call the method of Photon Average Trajectory (PAT). This method provides an image reconstruction in real-time operation mode obtaining the images of superresolution quality. It is shown that time- resolved solutions of unsteady-state radiation transfer and diffusion equations permit to separate out in an explicit from the distribution function P for the probability density for a signal passage through various internal points of studied body while signal propagates from a source point to a detector point. The function P has a characteristic view of Baye's formula. Our analysis has allowed to establish a number of generalized rules of analytical derivation of the function P for highly scattering bodies of arbitrary shapes and for different measurement conditions. It is also shown that, the shadows at the body surface induced by internal macroinhomogeneities can be represented in terms of trajectory integral along the PAT. This approach for the optical tomography using multiply scattered light makes it similar to the conventional computer tomography. In this representation the integrated is the generalized distribution function of internal macroinhomogeneities averaged over the instantaneous values of the distribution P and normalized to the relative velocity of the center movement along the PAT of the distribution P.

  1. Multimodality approach to optical early detection and mapping of oral neoplasia

    Science.gov (United States)

    Ahn, Yeh-Chan; Chung, Jungrae; Wilder-Smith, Petra; Chen, Zhongping

    2011-07-01

    Early detection of cancer remains the best way to ensure patient survival and quality of life. Squamous cell carcinoma is usually preceded by dysplasia presenting as white, red, or mixed red and white epithelial lesions on the oral mucosa (leukoplakia, erythroplakia). Dysplastic lesions in the form of erythroplakia can carry a risk for malignant conversion of 90%. A noninvasive diagnostic modality would enable monitoring of these lesions at regular intervals and detection of treatment needs at a very early, relatively harmless stage. The specific aim of this work was to test a multimodality approach [three-dimensional optical coherence tomography (OCT) and polarimetry] to noninvasive diagnosis of oral premalignancy and malignancy using the hamster cheek pouch model (nine hamsters). The results were compared to tissue histopathology. During carcinogenesis, epithelial down grow, eventual loss of basement membrane integrity, and subepithelial invasion were clearly visible with OCT. Polarimetry techniques identified a four to five times increased retardance in sites with squamous cell carcinoma, and two to three times greater retardance in dysplastic sites than in normal tissues. These techniques were particularly useful for mapping areas of field cancerization with multiple lesions, as well as lesion margins.

  2. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches

    Science.gov (United States)

    De Pretto, Lucas Ramos; Yoshimura, Tania Mateus; Ribeiro, Martha Simões; Zanardi de Freitas, Anderson

    2016-08-01

    As diabetes causes millions of deaths worldwide every year, new methods for blood glucose monitoring are in demand. Noninvasive approaches may increase patient adherence to treatment while reducing costs, and optical coherence tomography (OCT) may be a feasible alternative to current invasive diagnostics. This study presents two methods for blood sugar monitoring with OCT in vitro. The first, based on spatial statistics, exploits changes in the light total attenuation coefficient caused by different concentrations of glucose in the sample using a 930-nm commercial OCT system. The second, based on temporal analysis, calculates differences in the decorrelation time of the speckle pattern in the OCT signal due to blood viscosity variations with the addition of glucose with data acquired by a custom built Swept Source 1325-nm OCT system. Samples consisted of heparinized mouse blood, phosphate buffer saline, and glucose. Additionally, further samples were prepared by diluting mouse blood with isotonic saline solution to verify the effect of higher multiple scattering components on the ability of the methods to differentiate glucose levels. Our results suggest a direct relationship between glucose concentration and both decorrelation rate and attenuation coefficient, with our systems being able to detect changes of 65 mg/dL in glucose concentration.

  3. Construction of KbarN potential and structure of Lambda(1405) based on chiral unitary approach

    CERN Document Server

    Miyahara, Kenta

    2015-01-01

    Based on chiral unitary approach, we construct the realistic KbarN local potential, which is useful for the quantitative calculation of Kbar-nuclei. Since the resonance pole structure of the KbarN system seems important for the Kbar-nuclei and the spacial structure of Lambda(1405), we establish the construction procedure of the local potential paying attention to the scattering amplitude in the complex energy plane. Furthermore, for the quantitative study of the Kbar-nuclei, we consider the constraint from the recent experimental data measured by SIDDHARTA, which significantly reduces the uncertainty of the KbarN amplitude. With this new local potential, we estimate the spacial structure of Lambda(1405) and obtain the result indicating the meson-baryon molecular state of Lambda(1405).

  4. Tight-binding approach to overdamped Brownian motion on a multidimensional tilted periodic potential.

    Science.gov (United States)

    Challis, K J; Jack, Michael W

    2013-05-01

    We present a theoretical treatment of overdamped Brownian motion on a multidimensional tilted periodic potential that is analogous to the tight-binding model of quantum mechanics. In our approach, we expand the continuous Smoluchowski equation in the localized Wannier states of the periodic potential to derive a discrete master equation. This master equation can be interpreted in terms of hopping within and between Bloch bands, and for weak tilting and long times we show that a single-band description is valid. In the limit of deep potential wells, we derive a simple functional dependence of the hopping rates and the lowest band eigenvalues on the tilt. We also derive formal expressions for the drift and diffusion in terms of the lowest band eigenvalues.

  5. Potential energy function from differential cross-section data: An inverse quantum scattering theory approach

    Science.gov (United States)

    Lemes, N. H. T.; Borges, E.; Sousa, R. V.; Braga, J. P.

    Important physical and chemical information can be extracted from scattering experiments data. This kind of problem is usually ill-posed in the sense that one of the three conditions, existence, uniqueness, and continuity, is not satisfied. For example, the inversion of intermolecular potential functions from scattering data, such as experimental cross section, is an ill-posed problem which can be modeled as a Fredholm integral equation. In this work, an inversion method based on recursive neural networks is proposed to solve this inverse quantum scattering problem within the Born approximation. As physical example, the repulsive component of the potential function for the interaction Ar-Ar is obtained from differential cross-section data. The sensitivity of the potential energy function to be inverted, in relation to the differential cross-section data, is also analyzed. The present approach is simple, general, and numerically stable.

  6. Intersubband optical transition energy in a CdTe/Zn{sub 0.2}Cd{sub 0.8}Te/ZnTe core/shell/shell spherical quantum dot with Smorodinsky–Winternitz confinement potential

    Energy Technology Data Exchange (ETDEWEB)

    Christina lily Jasmine, P. [Dept. of Physics, N.M.S. Sermathai Vasan College for Women, Madurai 625 012 (India); John Peter, A., E-mail: a.john.peter@gmail.com [P.G. and Research Dept. of Physics, Government Arts College, Melur, 625 106 Madurai (India); Lee, Chang Woo [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Gihung, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2015-05-01

    Highlights: • Optical properties of a hydrogenic donor impurity in CdTe/Zn{sub 0.2}Cd{sub 0.8}Te/ZnTe core/shell/shell dot are discussed. • Two parametrical potential of Smorodinsky–Winternitz are considered in this problem. • The dielectric mismatch is included in the Hamiltonian. • The position dependent effective mass is applied. • The intersubband optical absorption, oscillator strength and radiative life time are studied. - Abstract: Electronic and optical properties of a hydrogenic donor impurity in a CdTe/Zn{sub 0.2}Cd{sub 0.8}Te/ZnTe core/shell/shell quantum dot are discussed taking into consideration of geometrical confinement effect. The confining potentials on both the sides of the barrier are different and a two parametrical potential of Smorodinsky–Winternitz is considered in this problem. The dielectric mismatch is included in the Hamiltonian. The position dependent effective mass is applied. The electronic properties are studied using variational method and the optical properties are investigated using the density matrix approach. The intersubband optical absorption, the oscillator strength and the radiative life time between ground and the excited states are studied based on the wave functions and the confined energies with and without the impurity with various dot radii. The results show that the absorption wavelength in type-II core and shell semiconducting nanomaterials can be tuned over a wider range of wavelengths by altering their size and the composition.

  7. Transparent half metallic g-C4N3 nanotubes: potential multifunctional applications for spintronics and optical devices.

    Science.gov (United States)

    Hu, Tao; Hashmi, Arqum; Hong, Jisang

    2014-08-14

    Multifunctional material brings many interesting issues because of various potential device applications. Using first principles calculations, we predict that the graphitic carbon nitride (g-C4N3) nanotubes can display multifunctional properties for both spintronics and optical device applications. Very interestingly, armchair tubes (n, n) with n = 2, 3, 4, 5, 6 and (5, 0) zigzag tubes are found to be half metallic, while zigzag tubes (n, 0) with n = 4, 6 show an antiferromagnetic ground state with band gaps. However, larger zigzag tubes of (7, 0), (8, 0), and (10, 0) are turned out to be half metallic. Along with the half metallic behavior of the tubes, those tubes seem to be optically transparent in the visible range. Due to these magnetic and optical properties, we suggest that the g-C4N3 nanotubes (CNNTs) can be used for both ideal spintronics and transparent electrode materials. We also explored the stability of magnetic state and nanotube structure using ab initio molecular dynamics. The CNNTs were found to be thermally stable and the magnetic moment was robust against the structural deformation at 300 K. Overall, our theoretical prediction in one dimensional CNNTs may provide a new physics in spintronics and also in other device applications because of potential multifunctional properties.

  8. A genetic algorithm approach for assessing soil liquefaction potential based on reliability method

    Indian Academy of Sciences (India)

    M H Bagheripour; I Shooshpasha; M Afzalirad

    2012-02-01

    Deterministic approaches are unable to account for the variations in soil’s strength properties, earthquake loads, as well as source of errors in evaluations of liquefaction potential in sandy soils which make them questionable against other reliability concepts. Furthermore, deterministic approaches are incapable of precisely relating the probability of liquefaction and the factor of safety (FS). Therefore, the use of probabilistic approaches and especially, reliability analysis is considered since a complementary solution is needed to reach better engineering decisions. In this study, Advanced First-Order Second-Moment (AFOSM) technique associated with genetic algorithm (GA) and its corresponding sophisticated optimization techniques have been used to calculate the reliability index and the probability of liquefaction. The use of GA provides a reliable mechanism suitable for computer programming and fast convergence. A new relation is developed here, by which the liquefaction potential can be directly calculated based on the estimated probability of liquefaction (), cyclic stress ratio (CSR) and normalized standard penetration test (SPT) blow counts while containing a mean error of less than 10% from the observational data. The validity of the proposed concept is examined through comparison of the results obtained by the new relation and those predicted by other investigators. A further advantage of the proposed relation is that it relates and FS and hence it provides possibility of decision making based on the liquefaction risk and the use of deterministic approaches. This could be beneficial to geotechnical engineers who use the common methods of FS for evaluation of liquefaction. As an application, the city of Babolsar which is located on the southern coasts of Caspian Sea is investigated for liquefaction potential. The investigation is based primarily on in situ tests in which the results of SPT are analysed.

  9. An approach to the optical interconnect made in standard CMOS process

    Institute of Scientific and Technical Information of China (English)

    Yu Changliang; Mao Luhong; Xiao Xindong; Xie Sheng; Zhang Shilin

    2009-01-01

    A standard CMOS optical interconnect is proposed, including an octagonal-annular emitter, a field oxide,metal 1-PSG/BPSG-metal 2 dual waveguide, and an ultra high-sensitivity optical receiver integrated with a fingered P/N-well/P-sub dual photodiode detector. The optical interconnect is implemented in a Chartered 3.3-V 0.35-μm standard analog CMOS process with two schemes for the research of the substrate noise coupling effect on the optical interconnect performance: with or without a GND-guardring around the emitter. The experiment results show that the optical interconnect can work at 100 kHz, and it is feasible to implement optical interconnects in standard CMOS processes.

  10. Potential clinical utility of a fibre optic-coupled dosemeter for dose measurements in diagnostic radiology.

    Science.gov (United States)

    Jones, A Kyle; Hintenlang, David

    2008-01-01

    Many types of dosemeters have been investigated for absorbed dose measurements in diagnostic radiology, including ionisation chambers, metal-oxide semiconductor field-effect transistor dosemeters, thermoluminescent dosemeters, optically stimulated luminescence detectors, film and diodes. Each of the aforementioned dosemeters suffers from a critical limitation, either the need to interrogate, or read, the dosemeter to retrieve dose information or large size to achieve adequate sensitivity. This work presents an evaluation of a fibre optic-coupled dosemeter (FOCD) for use in diagnostic radiology dose measurement. This dosemeter is small, tissue-equivalent and capable of providing true real-time dose information. The FOCD has been evaluated for dose linearity, angular dependence, sensitivity and energy dependence at energies, beam qualities and beam quantities relevant to diagnostic radiology. The FOCD displayed excellent dose linearity and high sensitivity, while exhibiting minimal angular dependence of response. However, the dosemeter does exhibit positive energy dependence, and is subject to attenuation of response when bent.

  11. DFT Investigation of Osmium Terpyridinyl Complexes as Potential Optical Limiting Materials

    CERN Document Server

    Alok, Shashwat

    2015-01-01

    The development of optical power limiting materials is important to protect individuals or materials from intense laser irradiation. The photophysical behavior of Os(II) polypyridinyl complexes having aromatic hydrocarbon terpyridyl ligands has received considerable attention as systems exhibiting intramolecular energy transfer to yield a long excited states lifetime. Here we present a focused discussion to illustrate the photophysical behavior of transition metal complexes with modified terpyridyl ligands, utilizing density functional theory. Our DFT studies of the excited state behavior of Os(II) complexes containing pyrene-vinylene derived terpyridine (pyr-v-tpy) ligands can be applied to the development of optical limiting materials controlling the laser power at longer wavelength range.

  12. Linear and nonlinear optical investigations of nano-scale Si-doped ZnO thin films: spectroscopic approach

    Science.gov (United States)

    Jilani, Asim; Abdel-wahab, M. Sh.; Zahran, H. Y.; Yahia, I. S.; Al-Ghamdi, Attieh A.

    2016-09-01

    Pure and Si-doped ZnO (SZO) thin films at different concentration of Si (1.9 and 2.4 wt%) were deposited on highly cleaned glass substrate by radio frequency (DC/RF) magnetron sputtering. The morphological and structural investigations have been performed by atomic force electron microscope (AFM) and X-ray diffraction (XRD). The X-ray photoelectron spectroscopy was employed to study the composition and the change in the chemical state of Si-doped ZnO thin films. The optical observations like transmittance, energy band gap, extinction coefficient, refractive index, dielectric loss of pure and Si-doped ZnO thin films have been calculated. The linear optical susceptibility, nonlinear refractive index, and nonlinear optical susceptibility were also studied by the spectroscopic approach rather than conventional Z-scan method. The energy gap of Si-doped ZnO thin films was found to increase as compared to pure ZnO thin films. The crystallinity of the ZnO thin films was effected by the Si doping. The O1s spectra in pure and Si-doped ZnO revealed the bound between O-2 and Zn+2 ions and reduction in the surface oxygen with the Si doping. The chemical state analysis of Si 2p showed the conversation of Si to SiOx and SiO2. The increase in the first-order linear optical susceptibility χ (1) and third-order nonlinear optical susceptibility χ (3) was observed with the Si doping. The nonlinear studies gave some details about the applications of metal oxides in nonlinear optical devices. In short, this study showed that Si doping through sputtering has effected on the structural, surface and optical properties of ZnO thin films which could be quite useful for advanced applications such as metal-oxide-based optical devices.

  13. Thin As-Se-Sb Films as Potential Medium for Optics and Sensor Application

    Science.gov (United States)

    Ilcheva, Vania; Boev, V.; Petkova, T.; Petkov, Plamen; Petkov, Emil; Socol, G.; Mihailescu, I. N.

    Thin films have been deposited onto quartz substrates by the pulsed laser deposition (PLD) method from the corresponding glassy bulk As-Se-Sb chalcogenide materials. Photoinduced changes have been observed after illumination of the films with a Xe lamp. The transmission spectra of the thin films have been measured before and after irradiation and the optical constants have been derived by the Swanepoel method. The results suggest feasible applications of these materials for waveguide-sensors.

  14. Characterization of novel microsphere chain fiber optic tips for potential use in ophthalmic laser surgery

    OpenAIRE

    Hutchens, Thomas C.; Darafsheh, Arash; Fardad, Amir; Antoszyk, Andrew N.; Ying, Howard S.; Astratov, Vasily N.; Fried, Nathaniel M.

    2012-01-01

    Ophthalmic surgery may benefit from use of more precise fiber delivery systems during laser surgery. Some current ophthalmic surgical techniques rely on tedious mechanical dissection of tissue layers. In this study, chains of sapphire microspheres integrated into a hollow waveguide distal tip are used for erbium:YAG laser ablation studies in contact mode with ophthalmic tissues, ex vivo. The laser’s short optical penetration depth combined with the small spot diameters achieved with this fibe...

  15. Metric-space approach to potentials and its relevance to density-functional theory

    Science.gov (United States)

    Sharp, P. M.; D'Amico, I.

    2016-12-01

    External potentials play a crucial role in modeling quantum systems, since, for a given interparticle interaction, they define the system Hamiltonian. We use the metric-space approach to quantum mechanics to derive, from the energy conservation law, two natural metrics for potentials. We show that these metrics are well defined for physical potentials, regardless of whether the system is in an eigenstate or if the potential is bounded. In addition, we discuss the gauge freedom of potentials and how to ensure that the metrics preserve physical relevance. Our metrics for potentials, together with the metrics for wave functions and densities from I. D'Amico et al. [Phys. Rev. Lett. 106, 050401 (2011), 10.1103/PhysRevLett.106.050401] paves the way for a comprehensive study of the two fundamental theorems of density-functional theory. We explore these by analyzing two many-body systems for which the related exact Kohn-Sham systems can be derived. First we consider the information provided by each of the metrics, and we find that the density metric performs best in distinguishing two many-body systems. Next we study for the systems at hand the one-to-one relationships among potentials, ground-state wave functions, and ground-state densities defined by the Hohenberg-Kohn theorem as relationships in metric spaces. We find that, in metric space, these relationships are monotonic and incorporate regions of linearity, at least for the systems considered. Finally, we use the metrics for wave functions and potentials in order to assess quantitatively how close the many-body and Kohn-Sham systems are: We show that, at least for the systems analyzed, both metrics provide a consistent picture, and for large regions of the parameter space the error in approximating the many-body wave function with the Kohn-Sham wave function lies under a threshold of 10%.

  16. Potential of optical spectral transmission measurements for joint inflammation measurements in rheumatoid arthritis patients

    Science.gov (United States)

    Meier, A. J. Louise; Rensen, Wouter H. J.; de Bokx, Pieter K.; de Nijs, Ron N. J.

    2012-08-01

    Frequent monitoring of rheumatoid arthritis (RA) patients enables timely treatment adjustments and improved outcomes. Currently this is not feasible due to a shortage of rheumatologists. An optical spectral transmission device is presented for objective assessment of joint inflammation in RA patients, while improving diagnostic accuracy and clinical workflow. A cross-sectional, nonrandomized observational study was performed with this device. In the study, 77 proximal interphalangeal (PIP) joints in 67 patients have been analyzed. Inflammation of these PIP joints was also assessed by a rheumatologist with a score varying from 1 (not inflamed) to 5 (severely inflamed). Out of 77 measurements, 27 were performed in moderate to strongly inflamed PIP joints. Comparison between the clinical assessment and an optical measurement showed a correlation coefficient r=0.63, p<0.001, 95% CI [0.47, 0.75], and a ROC curve (AUC=0.88) that shows a relative good specificity and sensitivity. Optical spectral transmission measurements in a single joint correlate with clinical assessment of joint inflammation, and therefore might be useful in monitoring joint inflammation in RA patients.

  17. Optical coherence tomography findings in Huntington's disease: a potential biomarker of disease progression.

    Science.gov (United States)

    Kersten, Hannah M; Danesh-Meyer, Helen V; Kilfoyle, Dean H; Roxburgh, Richard H

    2015-11-01

    Previous reports of ocular abnormalities in Huntington's disease (HD) have detailed eye movement disorders. The objective of this case-control study was to investigate optic nerve and macular morphology in HD using optical coherence tomography (OCT). A total of 26 HD patients and 29 controls underwent a thorough ophthalmic examination including spectral domain OCT scans of the macula and peripapillary retinal nerve fibre layer (RNFL). Genetic testing results, disease duration, HD disease burden scores and Unified HD Rating Scale motor scores were acquired for HD patients. Temporal RNFL thickness was significantly reduced in the HD group (62.3 vs. 69.8 μm, p = 0.005), and there was a significant negative correlation between temporal RNFL thickness and disease duration (R (2) = -0.51, p = 0.04). Average peripapillary RNFL thickness was not significantly different between the HD and control groups. There was a significant negative correlation between macular volume and disease duration (R (2) = -0.71, p = 0.002), and motor scores (R (2) = -0.56, p = 0.01). Colour vision was significantly poorer in the HD group. Temporal RNFL is preferentially thinned in HD patients, possibly implicating mitochondrial dysfunction as the temporal RNFL is reduced in the patients with some mitochondrial disorders, including Leber's hereditary optic neuropathy. The correlation between the decrease in macular volume and temporal RNFL, and increasing disease severity suggests that OCT may be a useful biomarker for disease progression in HD. Larger, longitudinal studies are required.

  18. Analysis of proton scattering of stable and exotic light nuclei using an energy-dependent microscopic optical potential

    Directory of Open Access Journals (Sweden)

    Maridi H. M.

    2016-01-01

    Full Text Available The proton elastic scattering off the 9,10,11,12Be isotopes at a wide energy range from 3 to 200 MeV/nucleon is analyzed using the optical model with the partial-wave expansion method. The microscopic optical potential (OP is taken within the single-folding model. The density- and isospin-dependent M3YParis nucleon-nucleon (NN interaction is used for the real part and the NN-scattering amplitude of the highenergy approximation for the imaginary one. The cross-section data are reproduced well at energies up to 100 MeV/nucleon by use of the partial-wave expansion. For higher energies, the eikonal approximation is successfully used. The volume integrals of the OP parts have systematic energy dependencies and they can be parameterized as functions of energy. From these parametrization, an energy-dependent OP can be obtained.

  19. Challenges in Ecohydrological Monitoring at Soil-Vegetation Interfaces: Exploiting the Potential for Fibre Optic Technologies

    Science.gov (United States)

    Chalari, A.; Ciocca, F.; Krause, S.; Hannah, D. M.; Blaen, P.; Coleman, T. I.; Mondanos, M.

    2015-12-01

    The Birmingham Institute of Forestry Research (BIFoR) is using Free-Air Carbon Enrichment (FACE) experiments to quantify the long-term impact and resilience of forests into rising atmospheric CO2 concentrations. The FACE campaign critically relies on a successful monitoring and understanding of the large variety of ecohydrological processes occurring across many interfaces, from deep soil to above the tree canopy. At the land-atmosphere interface, soil moisture and temperature are key variables to determine the heat and water exchanges, crucial to the vegetation dynamics as well as to groundwater recharge. Traditional solutions for monitoring soil moisture and temperature such as remote techniques and point sensors show limitations in fast acquisition rates and spatial coverage, respectively. Hence, spatial patterns and temporal dynamics of heat and water fluxes at this interface can only be monitored to a certain degree, limiting deeper knowledge in dynamically evolving systems (e.g. in impact of growing vegetation). Fibre optics Distributed Temperature Sensors (DTS) can measure soil temperatures at high spatiotemporal resolutions and accuracy, along kilometers of optical cable buried in the soil. Heat pulse methods applied to electrical elements embedded in the optical cable can be used to obtain the soil moisture. In July 2015 a monitoring system based on DTS has been installed in a recently forested hillslope at BIFoR in order to quantify high-resolution spatial patterns and high-frequency temporal dynamics of soil heat fluxes and soil moisture conditions. Therefore, 1500m of optical cables have been carefully deployed in three overlapped loops at 0.05m, 0.25m and 0.4m from the soil surface and an electrical system to send heat pulses along the optical cable has been developed. This paper discussed both, installation and design details along with first results of the soil moisture and temperature monitoring carried out since July 2015. Moreover, interpretations

  20. Frequency-Dependent Streaming Potential of Porous Media—Part 1: Experimental Approaches and Apparatus Design

    Directory of Open Access Journals (Sweden)

    P. W. J. Glover

    2012-01-01

    Full Text Available Electrokinetic phenomena link fluid flow and electrical flow in porous and fractured media such that a hydraulic flow will generate an electrical current and vice versa. Such a link is likely to be extremely useful, especially in the development of the electroseismic method. However, surprisingly few experimental measurements have been carried out, particularly as a function of frequency because of their difficulty. Here we have considered six different approaches to make laboratory determinations of the frequency-dependent streaming potential coefficient. In each case, we have analyzed the mechanical, electrical, and other technical difficulties involved in each method. We conclude that the electromagnetic drive is currently the only approach that is practicable, while the piezoelectric drive may be useful for low permeability samples and at specified high frequencies. We have used the electro-magnetic drive approach to design, build, and test an apparatus for measuring the streaming potential coefficient of unconsolidated and disaggregated samples such as sands, gravels, and soils with a diameter of 25.4 mm and lengths between 50 mm and 300 mm.

  1. A revised study of the Li2+ alkali-dimer using a model potential approach

    Science.gov (United States)

    Rabli, Djamal; McCarroll, Ronald

    2017-04-01

    The model potential approach is well adapted to study atomic and molecular systems involving a single active electron. Such is the case of the alkali-dimer lithium cation Li2+ . However, a comparison of the model potential results of Magnier et al. (1999) and those based on ab initio techniques (Bouzouita et al., 2006; Jasik et al., 2007, Musial et al., 2015) raises a number of questions related to the existence of an important disagreement regarding several excited states,which are found to be repulsive by Magnier et al. (1999) but attractive when ab initio techniques are employed. In this paper, we propose to re-investigate the Li2+ system, using a model potential technique to compute the adiabatic energy curves and the molecular spectroscopic constants. Our aim is to clarify whether this disagreement between the ab initio and model potential methods originates from some conceptual defect of the model potential technique or whether there is some source of error in the calculations of Magnier et al. (1999).

  2. Modeling and mapping potential distribution of Crimean juniper (Juniperus excelsa Bieb.) using correlative approaches.

    Science.gov (United States)

    Özkan, Kürşad; Şentürk, Özdemir; Mert, Ahmet; Negiz, Mehmet Güvenç

    2015-01-01

    Modeling and mapping potential distribution of living organisms has become an important component of conservation planning and ecosystem management in recent years. Various correlative and mechanistic methods can be applied to build predictive distributions of living organisms in terrestrial and marine ecosystems. Correlative methods used to predict species' potential distribution have been described as either group discrimination techniques or profile techniques. We attempted to determine whether group discrimination techniques could perform as well as profile techniques for predicting species potential distributions, using elevation (ELVN), parent material (ROCK), slope (SLOP), radiation index (RI) and topographic position index (TPI)) as explanatory variables. We compared potential distribution predictions made for Crimean juniper (Juniperus excelsa Bieb.) in the Yukan Gokdere forest district of the Mediterranean region, Turkey, applying four group discrimination techniques (discriminate analysis (DA), logistic regression analysis (LR), generalized addictive model (GAM) and classification tree technique (CT)) and two profile techniques (a maximum entropy approach to species distribution modeling (MAXENT), the genetic algorithm for rule-set prediction (GARP)). Visual assessments of the potential distribution probability of the applied models for Crimean juniper were performed by using geographical information systems (GIS). Receiver-operating characteristic (ROC) curves were used to objectively assess model performance. The results suggested that group discrimination techniques are better than profile techniques and, among the group discrimination techniques, GAM indicated the best performance.

  3. Efficacy of nerve growth factor on the treatment of optic nerve contusion Evaluation with visual evoked potential

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Pattern- visual evoked potential (PVEP) can reflect the functional status of retinal ganglial cells (RGC) and visual cortex, and is an objective examination for visual pathway function. It is a unique method for objectively examining the optic nerve function of optic ganglion cells.OBJECTIVE: To observe the effects of nerve growth factor (NGF) on PVEF in the treatment of optic nerve contusion, evaluate the clinical efficacy of NGF, and make an efficacy comparison with vitamin B12.DESIGN: A randomly grouping, controlled observation.SETTING: Department of Ophthalmology, Tangshan Gongren Hospital Affiliated to Hebei Medical University.PARTICIPANTS: Forty patients with optic nerve contusion caused by eye trauma, who received the treatment in the Tangshan Worker Hospital Affiliated to Hebei Medical University between January 2006 and June 2007, were recruited in this study. The involved 40 patients, including 34 males and 6 females,were aged 14 - 59 years. They were confirmed to have optic nerve contusion by ophthalmologic consultation combined with history of disease and orbital CT examination. Informed consents of treatments and detected items were obtained from all the patients. The patients were randomly divided into 2 groups with 20 in each:NGF group and vitamin B12 group.METHODS: Conservative treatment was used in the two groups. In addition, patients in the NGF group were intramuscularly injected with NGF solution 18 μg/time, once a day. Those in the vitamin B12 group were injected by the same method with common vitamin B12 of 500 μg combined with vitamin B1 of 100 mg, once a day.MAIN OUTCOME MEASURES: PVEP examination was conducted in all the patients before, one and two weeks after treatment, and latency and amplitude at P100 were detected.RESULTS: Forty patients with optic nerve contusion participated in the final analysis. Before treatment,significant differences in the latency and amplitude at P100 were not found in patients between two groups

  4. Smoothing potential energy surface of proteins by hybrid coarse grained approach

    Science.gov (United States)

    Lu, Yukun; Zhou, Xin; OuYang, ZhongCan

    2017-05-01

    Coarse-grained (CG) simulations can more efficiently study large conformational changes of biological polymers but usually lose accuracies in the details. Lots of different hybrid models involving multiple different resolutions have been developed to overcome the difficulty. Here we propose a novel effective hybrid CG (hyCG) approach which mixes the fine-grained interaction and its average in CG space to form a more smoothing potential energy surface. The hyCG approximately reproduces the potential of mean force in the CG space, and multiple mixed potentials can be further combined together to form a single effective force field for achieving both high efficiency and high accuracy. We illustrate the hyCG method in Trp-cage and Villin headpiece proteins to exhibit the folding of proteins. The topology of the folding landscape and thus the folding paths are preserved, while the folding is boosted nearly one order of magnitude faster. It indicates that the hyCG approach could be applied as an efficient force field in proteins. Project supported by the National Basic Research Program of China (Grant No. 2013CB932803), the National Natural Science Foundation of China (Grant No. 11574310), and the Joint NSFC-ISF Research Program, jointly funded by the National Natural Science Foundation of China and the Israel Science Foundation (Grant No. 51561145002).

  5. Identifying Potential Areas for Siting Interim Nuclear Waste Facilities Using Map Algebra and Optimization Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A [ORNL; Liu, Cheng [ORNL; Cetiner, Sacit M [ORNL; Belles, Randy [ORNL; Mays, Gary T [ORNL; Tuttle, Mark A [ORNL

    2013-01-01

    The renewed interest in siting new nuclear power plants in the United States has brought to the center stage, the need to site interim facilities for long-term management of spent nuclear fuel (SNF). In this paper, a two-stage approach for identifying potential areas for siting interim SNF facilities is presented. In the first stage, the land area is discretized into grids of uniform size (e.g., 100m x 100m grids). For the continental United States, this process resulted in a data matrix of about 700 million cells. Each cell of the matrix is then characterized as a binary decision variable to indicate whether an exclusion criterion is satisfied or not. A binary data matrix is created for each of the 25 siting criteria considered in this study. Using map algebra approach, cells that satisfy all criteria are clustered and regarded as potential siting areas. In the second stage, an optimization problem is formulated as a p-median problem on a rail network such that the sum of the shortest distance between nuclear power plants with SNF and the potential storage sites from the first stage is minimized. The implications of obtained results for energy policies are presented and discussed.

  6. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2014-12-01

    Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra

  7. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, TX 77251 (United States)

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  8. Physical properties of asteroids derived from a novel approach to modeling of optical lightcurves and WISE thermalinfrared data

    Science.gov (United States)

    Durech, Josef; Hanus, Josef; Delbo, Marco; Ali-Lagoa, Victor; Carry, Benoit

    2014-11-01

    Convex shape models and spin vectors of asteroids are now routinely derived from their disk-integrated lightcurves by the lightcurve inversion method of Kaasalainen et al. (2001, Icarus 153, 37). These shape models can be then used in combination with thermal infrared data and a thermophysical model to derive other physical parameters - size, albedo, macroscopic roughness and thermal inertia of the surface. In this classical two-step approach, the shape and spin parameters are kept fixed during the thermophysical modeling when the emitted thermal flux is computed from the surface temperature, which is computed by solving a 1-D heat diffusion equation in sub-surface layers. A novel method of simultaneous inversion of optical and infrared data was presented by Durech et al. (2012, LPI Contribution No. 1667, id.6118). The new algorithm uses the same convex shape representation as the lightcurve inversion but optimizes all relevant physical parameters simultaneously (including the shape, size, rotation vector, thermal inertia, albedo, surface roughness, etc.), which leads to a better fit to the thermal data and a reliable estimation of model uncertainties. We applied this method to selected asteroids using their optical lightcurves from archives and thermal infrared data observed by the Wide-field Infrared Survey Explorer (WISE) satellite. We will (i) show several examples of how well our model fits both optical and infrared data, (ii) discuss the uncertainty of derived parameters (namely the thermal inertia), (iii) compare results obtained with the two-step approach with those obtained by our method, (iv) discuss the advantages of this simultaneous approach with respect to the classical two-step approach, and (v) advertise the possibility to use this approach to tens of thousands asteroids for which enough WISE and optical data exist.

  9. A novel approach to photonic generate microwave signals based on optical injection locking and four-wave mixing

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zheng, Jilin; Li, Yuandong

    2017-10-01

    In this paper, a novel approach for photonic generation of microwave signals based on frequency multiplication using an injected distributed-feedback (DFB) semiconductor laser is proposed and demonstrated by a proof-of-concept experiment. The proposed system is mainly made up of a dual-parallel Mach-Zehnder modulator (DPMZM) and an injected DFB laser. By properly setting the bias voltage of the DPMZM, ±2-order sidebands with carrier suppression are generated, which are then injected into the slave laser. Due to the optical sideband locking and four-wave mixing (FWM) nonlinearity in the slave laser, new sidebands are generated. Then these sidebands are sent to an optical notch filter where all the undesired sidebands are removed. Finally, after photodetector detection, frequency multiplied microwave signals can be generated. Thanks to the flexibility of the optical sideband locking and FWM, frequency octupling, 12-tupling, 14-tupling and 16-tupling can be obtained.

  10. Nuclear data evaluation of long-lived fission products: Microscopic vs. phenomenological optical potentials

    Directory of Open Access Journals (Sweden)

    Minato Futoshi

    2017-01-01

    Full Text Available Neutron-nucleus cross sections calculated by macroscopic potentials are compared with a microscopic one to study the performance for long-lived fission products. The macroscopic potentials show a good agreement with the microscopic one at higher energies, where neutron experimental data are scarce. Besides it, analyses of differential elastic cross sections at low energies also suggest that the macroscopic potentials are still effective and applicable enough for the long-lived fission products.

  11. Combination HIV prevention interventions: the potential of integrated behavioral and biomedical approaches.

    Science.gov (United States)

    Brown, Jennifer L; Sales, Jessica M; DiClemente, Ralph J

    2014-12-01

    Combination HIV prevention interventions that integrate efficacious behavioral and biomedical strategies offer the potential to reduce new HIV infections. We overview the efficacy data for three biomedical HIV prevention approaches, namely microbicides, pre-exposure prophylaxis (PrEP), and HIV vaccination; review factors associated with differential acceptability and uptake of these methods; and suggest strategies to optimize the effectiveness and dissemination of combination HIV prevention approaches. A narrative review was conducted highlighting key efficacy data for microbicides, PrEP, and an HIV vaccination and summarizing acceptability data for each of the three biomedical HIV prevention approaches. Recommendations for the integration and dissemination of combined behavioral and biomedical HIV prevention approaches are provided. To date, microbicides and an HIV vaccination have demonstrated limited efficacy for the prevention of HIV. However, PrEP has demonstrated efficacy in reducing HIV incident infections. A diverse array of factors influences both hypothetical willingness and actual usage of each biomedical prevention method. Strategies to effectively integrate and evaluate combination HIV prevention interventions are urgently needed.

  12. An enantioselective synthesis of optically pure azaferrocenyl anions - First general and practical approach to chiral azaferrocenes

    DEFF Research Database (Denmark)

    Seitzberg, Jimmi Gerner; Søtofte, Inger; Johannsen, Mogens

    2001-01-01

    Herein we report a very simple route that allows the construction of a variety of optically pure azaferrocenyl compounds. The key feature is the preparation of optically pure 2-azaferrocenyl anions, which can serve as precursors for the construction of novel chiral azaferrocenyl complexes....

  13. Difference, adapted physical activity and human development: potential contribution of capabilities approach.

    Science.gov (United States)

    Silva, Carla Filomena; Howe, P David

    2012-01-01

    This paper is a call to Adapted Physical Activity (APA) professionals to increase the reflexive nature of their practice. Drawing upon Foucault's concept of governmentality (1977) APA action may work against its own publicized goals of empowerment and self-determination. To highlight these inconsistencies, we will draw upon historical and social factors that explain the implicit dangers of practice not following policy. We propose that APA practitioners work according to ethical guidelines, based upon a capabilities approach (Nussbaum, 2006, 2011; Sen, 2009) to counteract possible adverse effects of APA practitioner action. A capabilities approach is conducive to the development of each individual's human potential, by holistically considering the consequences of physical activity (i.e., biological, cultural, social, and psychological dimensions). To conclude, this paper will offer suggestions that may lead to an ethical reflection aligned with the best interest of APA's users.

  14. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Zhernakova, Daria V.; Westra, Harm-Jan

    2015-01-01

    BACKGROUND: Obesity is a multi-factorial health problem in which genetic factors play an important role. Limited results have been obtained in single-gene studies using either genomic or transcriptomic data. RNA sequencing technology has shown its potential in gaining accurate knowledge about...... the transcriptome, and may reveal novel genes affecting complex diseases. Integration of genomic and transcriptomic variation (expression quantitative trait loci [eQTL] mapping) has identified causal variants that affect complex diseases. We integrated transcriptomic data from adipose tissue and genomic data from...... a porcine model to investigate the mechanisms involved in obesity using a systems genetics approach. METHODS: Using a selective gene expression profiling approach, we selected 36 animals based on a previously created genomic Obesity Index for RNA sequencing of subcutaneous adipose tissue. Differential...

  15. More Than a Potential Hazard—Approaching Risks from a Social-Ecological Perspective

    Directory of Open Access Journals (Sweden)

    Carolin Völker

    2017-06-01

    Full Text Available Risks have been classically understood as a probability of damage or a potential hazard resulting in appropriate management strategies. However, research on environmental issues such as pollutants in the aquatic environment or the impacts of climate change have shown that classical management approaches do not sufficiently cover these interactions between society and nature. There have been several attempts to develop interdisciplinary approaches to risk that include natural as well as social science contributions. In this paper, the authors aim at developing a social-ecological perspective on risk by drawing on the concept of societal relations to nature and the model of provisioning systems. This perspective is used to analyze four cases, pharmaceuticals, microplastics, semicentralized water infrastructures and forest management, with regard to risk identification, assessment and management. Finally, the paper aims at developing a perspective on risks which takes into account non-intended side-effects, system interdependencies and uncertainty.

  16. Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart

    Science.gov (United States)

    Sung, Derrick; Mills, Robert W.; Schettler, Jan; Narayan, Sanjiv M.; Omens, Jeffrey H.; McCulloch, Andrew D.; McCullough, A. D. (Principal Investigator)

    2003-01-01

    INTRODUCTION: Mechanical stimulation can induce electrophysiologic changes in cardiac myocytes, but how mechanoelectric feedback in the intact heart affects action potential propagation remains unclear. METHODS AND RESULTS: Changes in action potential propagation and repolarization with increased left ventricular end-diastolic pressure from 0 to 30 mmHg were investigated using optical mapping in isolated perfused rabbit hearts. With respect to 0 mmHg, epicardial strain at 30 mmHg in the anterior left ventricle averaged 0.040 +/- 0.004 in the muscle fiber direction and 0.032 +/- 0.006 in the cross-fiber direction. An increase in ventricular loading increased average epicardial activation time by 25%+/- 3% (P myocardial perfusion or the presence of an electromechanical decoupling agent (butanedione monoxime) during optical mapping. CONCLUSION: Acute loading of the left ventricle of the isolated rabbit heart decreased apparent epicardial conduction velocity and increased action potential duration by a load-dependent mechanism that may not involve stretch-activated channels.

  17. Computing the laser beam path in optical cavities: a geometric Newton's method based approach

    CERN Document Server

    Cuccato, Davide; Ortolan, Antonello; Beghi, Alessandro

    2015-01-01

    In the last decade, increasing attention has been drawn to high precision optical experiments, which push resolution and accuracy of the measured quantities beyond their current limits. This challenge requires to place optical elements (e.g. mirrors, lenses, etc.) and to steer light beams with sub-nanometer precision. Existing methods for beam direction computing in resonators, e.g. iterative ray tracing or generalized ray transfer matrices, are either computationally expensive or rely on overparametrized models of optical elements. By exploiting Fermat's principle, we develop a novel method to compute the steady-state beam configurations in resonant optical cavities formed by spherical mirrors, as a function of mirror positions and curvature radii. The proposed procedure is based on the geometric Newton method on matrix manifold, a tool with second order convergence rate that relies on a second order model of the cavity optical length. As we avoid coordinates to parametrize the beam position on mirror surfac...

  18. An approach for a comprehensive automation of electro-optical (EO) sensor characterization setups

    Science.gov (United States)

    Dave, Amit; Sharma, Jitendra; Sukheja, Anil; Kumar, Sumit; Mishra, Ashish; Goswami, D. R.

    2016-05-01

    Space Applications Centre develops various electro-optical (EO) sensors for space borne platforms and inter-planetary missions. Sensor complexities vary for different applications and therefore performance evaluation and characterization pose different challenges. Performance optimization tasks demand repeated measurements and characterization needs to be done under different phases of testing. It is difficult to meet such requirements in case of short sensor development lifecycles or tight schedules. Activities which are amenable to automation are identified and targeted to reduce the manual intervention and to avoid delays due to errors and to speed up the overall activity. Laboratory instruments, either in-house developed or COTS, play an important role in automating the test setup as they have different types of interfaces and have their own complications. In order to make an automated test setup, software intelligence need to be built based on the instrument feedback and the other check points based on the test sequence. A complete automation needs machine intelligence and sufficient amount of traceability, so that the process can be easily verified for confidence. Overall software architecture should be such that it allows connecting various types of instruments, decision making based on output of the device under test, complete traceability and fault tolerance. In this paper authors have identified the activities that can be automated for various EO sensor categories and approaches are discussed for automation with radiometric calibration, spectral response measurement and focusing as test cases. Also, software architecture is presented which allows uniform access to instruments, back-end database and macro level automation process.

  19. A Harmonic Potential Approach For Simultaneous Planning And Control Of A Generic UAV Platform

    OpenAIRE

    Masoud, Ahmad A.

    2016-01-01

    Simultaneous planning and control of a large variety of unmanned aerial vehicles (UAVs) is tackled using the harmonic potential field (HPF) approach. A dense reference velocity field generated from the gradient of an HPF is used to regulate the velocity of the UAV concerned in a manner that would propel the UAV to a target point while enforcing the constraints on behavior that were a priori encoded in the reference field. The regulation process is carried-out using a novel and simple concept ...

  20. Anharmonic-potential-effective-charge approach for computing Raman cross sections of a gas

    Science.gov (United States)

    Kutteh, Ramzi; van Zandt, L. L.

    1993-05-01

    An anharmonic-potential-effective-charge approach for computing relative Raman intensities of a gas is developed. The equations of motion are set up and solved for the driven anharmonic molecular vibrations. An explicit expression for the differential polarizability tensor is derived and its properties discussed. This expression is then used within the context of Placzek's theory [Handbuch der Radiologie (Akademische Verlagsgesellschaft, Leipzig, 1934), Vol. VI] to compute the Raman cross section and depolarization ratio of a gas. The computation is carried out for the small molecules CO2, CS2, SO2, and CCl4; results are compared with experimental measurements and discussed.

  1. A density functional theory-based chemical potential equalisation approach to molecular polarizability

    Indian Academy of Sciences (India)

    Amita Wadehra; Swapan K Ghosh

    2005-09-01

    The electron density changes in molecular systems in the presence of external electric fields are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few illustrative numerical calculations are shown to predict the molecular polarizabilities in good agreement with available results. The usefulness of the approach to the calculation of intermolecular interaction needed for computer simulation is highlighted.

  2. Dynamical potential approach to dissociation of H-C bond in HCO highly excited vibration

    Institute of Scientific and Technical Information of China (English)

    Fang Chao; Wu Guo-Zhen

    2009-01-01

    The highly excited vibrational levels of HCO in the electronic ground state, X1A', are employed to determine the coefficients of an algebraic Hamiltonian, by which the dynamical potential is derived and shown to be very useful for interpreting thc intramolecular vibrational relaxation (IVR) which operates via the HCO bending motion. The IVR inhibits the dissociation of H atom and enhances the stochastic degree of dynamical character. This approach is from a global viewpoint on a series of levels classified by the polyad number which is a constant of motion in a certain dynamical domain. In this way, the seemingly complicated level structure shows very regular picture, dynamically.

  3. Impulse Control Disorders in Parkinson’s Disease:Management, Controversies, and Potential Approaches

    Science.gov (United States)

    Samuel, M; Rodriguez-Oroz, M; Antonini, A; Brotchie, JM; Ray Chaudhuri, K; Brown, RG; Galpern, WR; Nirenberg, MJ; Okun, MS; Lang, AE

    2016-01-01

    Impulse control disorders in Parkinson’s disease are a group of impulsive behaviors most often associated with dopaminergic treatment. Presently, there is a lack of high quality evidence available to guide their management. This manuscript reviews current management strategies, before concentrating on the concept of dopamine agonist withdrawal syndrome and its implications for the management of impulse control disorders. Further, we focus on controversies including the role of more recently available anti-parkinsonian drugs, and potential future approaches involving routes of drug delivery, non-pharmacological treatments (such as cognitive behaviour therapy and deep brain stimulation), and other as yet experimental strategies. PMID:25607799

  4. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques

    Directory of Open Access Journals (Sweden)

    I.P. Senanayake

    2016-01-01

    Full Text Available The demand for fresh water in Hambantota District, Sri Lanka is rapidly increasing with the enormous amount of ongoing development projects in the region. Nevertheless, the district experiences periodic water stress conditions due to seasonal precipitation patterns and scarcity of surface water resources. Therefore, management of available groundwater resources is critical, to fulfil potable water requirements in the area. However, exploitation of groundwater should be carried out together with artificial recharging in order to maintain the long term sustainability of water resources. In this study, a GIS approach was used to delineate potential artificial recharge sites in Ambalantota area within Hambantota. Influential thematic layers such as rainfall, lineament, slope, drainage, land use/land cover, lithology, geomorphology and soil characteristics were integrated by using a weighted linear combination method. Results of the study reveal high to moderate groundwater recharge potential in approximately 49% of Ambalantota area.

  5. Dipole response in neutron-rich nuclei within self-consistent approaches using realistic potentials

    Directory of Open Access Journals (Sweden)

    Lo Iudice N.

    2015-01-01

    Full Text Available A nucleon-nucleon chiral potential with a corrective density dependent term simulating a three-body force is used in a self-consistent calculation of the dipole strength distribution in neutron-rich nuclei, with special attention to the low-lying spectra associated to the pygmy resonance. A Hartree-Fock-Bogoliubov basis is generated and adopted in Tamm-Dancoff and random-phase approximations and, then, in an equation of motion approach which includes a basis of two-phonon states. The direct use of the mentioned chiral potential improves the description of both giant and pygmy dipole modes with respect to other realistic interactions. Moreover, the inclusion of the two-phonon states induces a pronounced fragmentation of the giant resonance and enhances the density of the low-lying levels in the pygmy region in agreement with recent experiments.

  6. Extension of the source-sink potential (SSP) approach to multichannel quantum transport.

    Science.gov (United States)

    Rocheleau, Philippe; Ernzerhof, Matthias

    2012-11-07

    We present an extension of the single channel source-sink potential approach [F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104 (2007)] for molecular electronic devices (MEDs) to multiple channels. The proposed multichannel source-sink potential method relies on an eigenchannel description of conducting states of the MED which are obtained by a self-consistent algorithm. We use the newly developed model to examine the transport of the 1-phenyl-1,3-butadiene molecule connected to two coupled rows of atoms that act as contacts on the left and right sides. With an eigenchannel description of the wave function in the contacts, we determined that one of the eigenchannels is effectively closed by the interference effects of the side chain. Furthermore, we provide an example where we observe a complete inversion (from bonding to antibonding and vice versa) of the transverse character of the wave function upon passage through the molecule.

  7. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques

    Institute of Scientific and Technical Information of China (English)

    I.P. Senanayake; D.M.D.O.K. Dissanayake; B.B. Mayadunna; W.L. Weerasekera

    2016-01-01

    The demand for fresh water in Hambantota District, Sri Lanka is rapidly increasing with the enormous amount of ongoing development projects in the region. Nevertheless, the district experiences periodic water stress conditions due to seasonal precipitation patterns and scarcity of surface water resources. Therefore, management of available groundwater resources is critical, to fulfil potable water re-quirements in the area. However, exploitation of groundwater should be carried out together with artificial recharging in order to maintain the long term sustainability of water resources. In this study, a GIS approach was used to delineate potential artificial recharge sites in Ambalantota area within Ham-bantota. Influential thematic layers such as rainfall, lineament, slope, drainage, land use/land cover, li-thology, geomorphology and soil characteristics were integrated by using a weighted linear combination method. Results of the study reveal high to moderate groundwater recharge potential in approximately 49%of Ambalantota area.

  8. Educational games for brain health: revealing their unexplored potential through a neurocognitive approach

    Directory of Open Access Journals (Sweden)

    Patrick eFissler

    2015-07-01

    Full Text Available Educational games link the motivational nature of games with learning of knowledge and skills. Here, we go beyond effects on these learning outcomes. We review two lines of evidence which indicate the currently unexplored potential of educational games to promote brain health: First, gaming with specific neurocognitive demands (e.g., executive control, and second, educational learning experiences (e.g., studying foreign languages improve brain health markers. These markers include cognitive ability, brain function, and brain structure. As educational games allow the combination of specific neurocognitive demands with educational learning experiences, they seem to be optimally suited for promoting brain health. We propose a neurocognitive approach to reveal this unexplored potential of educational games in future research.

  9. Chemical potential dependence of particle ratios within a unified thermal approach

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, I., E-mail: inamhep@gmail.com; Nanda, H.; Uddin, S. [Central University, Department of Physics, Jamia Millia Islamia (India)

    2016-06-15

    A unified statistical thermal freeze-out model (USTFM) is used to study the chemical potential dependence of identified particle ratios at mid-rapidity in heavy-ion collisions. We successfully reproduce the experimental data ranging from SPS energies to LHC energies, suggesting the statistical nature of the particle production in these collisions and hence the validity of our approach. The behavior of the freeze-out temperature is studied with respect to chemical potential. The freeze-out temperature is found to be universal at the RHIC and LHC and is close to the QCD predicted phase transition temperature, suggesting that the chemical freeze-out occurs soon after the hadronization takes place.

  10. Chemical potential dependence of particle ratios within a unified thermal approach

    Science.gov (United States)

    Bashir, I.; Nanda, H.; Uddin, S.

    2016-06-01

    A unified statistical thermal freeze-out model (USTFM) is used to study the chemical potential dependence of identified particle ratios at mid-rapidity in heavy-ion collisions. We successfully reproduce the experimental data ranging from SPS energies to LHC energies, suggesting the statistical nature of the particle production in these collisions and hence the validity of our approach. The behavior of the freeze-out temperature is studied with respect to chemical potential. The freeze-out temperature is found to be universal at the RHIC and LHC and is close to the QCD predicted phase transition temperature, suggesting that the chemical freeze-out occurs soon after the hadronization takes place.

  11. Relativistic corrections to the central force problem in a generalized potential approach

    CERN Document Server

    Singh, Ashmeet

    2014-01-01

    We present a novel technique to obtain the relativistic corrections to the central force problem in the Lagrangian formulation, using a generalized potential energy. Throughout the paper, we focus on the attractive inverse square law central force. The generalised potential can be made a part of the regular classical lagrangian which can reproduce the relativistic force equation upto second order in $|\\vec{v}|/c$. We then go on to derive the relativistically corrected Hamiltonian from the Lagrangian and estimate the corrections to the total energy of the system. We employ our methodology to calculate the relativistic correction to the circular orbit in attractive gravitational force. We also estimate to the first order energy correction in the ground state of the hydrogen atom in the semi-classical approach. Our predictions in both problems give the reasonable agreement with the known results. Thus we feel that this work has pedagogical value and can be used by undergraduate students to better understand the ...

  12. Educational games for brain health: revealing their unexplored potential through a neurocognitive approach.

    Science.gov (United States)

    Fissler, Patrick; Kolassa, Iris-Tatjana; Schrader, Claudia

    2015-01-01

    Educational games link the motivational nature of games with learning of knowledge and skills. Here, we go beyond effects on these learning outcomes. We review two lines of evidence which indicate the currently unexplored potential of educational games to promote brain health: First, gaming with specific neurocognitive demands (e.g., executive control), and second, educational learning experiences (e.g., studying foreign languages) improve brain health markers. These markers include cognitive ability, brain function, and brain structure. As educational games allow the combination of specific neurocognitive demands with educational learning experiences, they seem to be optimally suited for promoting brain health. We propose a neurocognitive approach to reveal this unexplored potential of educational games in future research.

  13. Determination of the optical properties of vascular tissues: potential applications in vascular-targeting photodynamic therapy

    Science.gov (United States)

    Tian, Yongbin; Chen, Ping; Lin, Lie; Huang, Zheng; Tang, Guoqing; Xu, Heping

    2007-11-01

    It has been proven that photodynamic therapy (PDT) is effective in treating various malignant and non-malignant diseases. In the treatment of certain non-malignant vascular diseases, such as wet age-related macular degeneration (AMD) and port wine stains (PWS), unlike in the treatment of malignant solid tumors, light irradiation usually starts immediately after the intravenous (IV) injection of photosensitizers while the photosensitizers is mainly circulating inside blood vessels. Under such vascular-targeting action mode, photoreactions between photosensitizers and light can selectively destruct the vascular tissues. Light distribution is complex so that it is important to understand the optical properties of targeted vessels and surrounding tissues. To better determine the optical properties of vascular tissues, we developed a tissue-simulating phantom and adopted frequency-domain measurement of phase difference. Absorption and reduced scattering coefficients in blood vessels were estimated and light distribution was simulated by the Monte Carlo method. These determinations are essential for the implication of better light dosimetry models in clinical photodynamic therapy and vascular-targeting PDT, in particular.

  14. Potential Odor Intensity Grid Based UAV Path Planning Algorithm with Particle Swarm Optimization Approach

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available This paper proposes a potential odor intensity grid based optimization approach for unmanned aerial vehicle (UAV path planning with particle swarm optimization (PSO technique. Odor intensity is created to color the area in the searching space with highest probability where candidate particles may locate. A potential grid construction operator is designed for standard PSO based on different levels of odor intensity. The potential grid construction operator generates two potential location grids with highest odor intensity. Then the middle point will be seen as the final position in current particle dimension. The global optimum solution will be solved as the average. In addition, solution boundaries of searching space in each particle dimension are restricted based on properties of threats in the flying field to avoid prematurity. Objective function is redesigned by taking minimum direction angle to destination into account and a sampling method is introduced. A paired samples t-test is made and an index called straight line rate (SLR is used to evaluate the length of planned path. Experiments are made with other three heuristic evolutionary algorithms. The results demonstrate that the proposed method is capable of generating higher quality paths efficiently for UAV than any other tested optimization techniques.

  15. A numerical wave-optical approach for the simulation of analyzer-based x-ray imaging.

    Science.gov (United States)

    Bravin, A; Mocella, V; Coan, P; Astolfo, A; Ferrero, C

    2007-04-30

    An advanced wave-optical approach for simulating a monochromator-analyzer set-up in Bragg geometry with high accuracy is presented. The polychromaticity of the incident wave on the monochromator is accounted for by using a distribution of incoherent point sources along the surface of the crystal. The resulting diffracted amplitude is modified by the sample and can be well represented by a scalar representation of the optical field where the limitations of the usual 'weak object' approximation are removed. The subsequent diffraction mechanism on the analyzer is described by the convolution of the incoming wave with the Green-Riemann function of the analyzer. The free space propagation up to the detector position is well reproduced by a classical Fresnel-Kirchhoff integral. The preliminary results of this innovative approach show an excellent agreement with experimental data.

  16. Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9.

    Science.gov (United States)

    Shen, Hua; McHale, Cliona M; Smith, Martyn T; Zhang, Luoping

    2015-01-01

    Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide

  17. Diffractive Interface Theory: Nonlocal polarizability approach to the optics of metasurfaces

    CERN Document Server

    Roberts, Christopher M; Podolskiy, Viktor A

    2014-01-01

    We present a formalism for understanding the elecromagnetism of metasurfaces, optically thin composite films with engineered diffraction. The technique, diffractive interface theory (DIT), takes explicit advantage of the small optical thickness of a metasurface, eliminating the need for solving for light propagation inside the film and providing a direct link between the spatial profile of a metasurface and its diffractive properties. Predictions of DIT are compared with full-wave numerical solutions of Maxwell's equations, demonstrating DIT's validity and computational advantages for optically thin structures. Applications of the DIT range from understanding of fundamentals of light-matter interaction in metasurfaces to efficient analysis of generalized refraction to metasurface optimization.

  18. Diffractive interface theory: nonlocal susceptibility approach to the optics of metasurfaces.

    Science.gov (United States)

    Roberts, Christopher M; Inampudi, Sandeep; Podolskiy, Viktor A

    2015-02-09

    We present a formalism for understanding the electromagnetism of metasurfaces, optically thin composite films with engineered diffraction. The technique, diffractive interface theory (DIT), takes explicit advantage of the small optical thickness of a metasurface, eliminating the need for solving for light propagation inside the film and providing a direct link between the spatial profile of a metasurface and its diffractive properties. Predictions of DIT are compared with full-wave numerical solutions of Maxwell's equations, demonstrating DIT's validity and computational advantages for optically thin structures. Applications of the DIT range from understanding of fundamentals of light-matter interaction in metasurfaces to efficient analysis of generalized refraction to metasurface optimization.

  19. Mapping irrigation potential from renewable groundwater in Africa - a quantitative hydrological approach

    Science.gov (United States)

    Altchenko, Y.; Villholth, K. G.

    2015-02-01

    Groundwater provides an important buffer to climate variability in Africa. Yet, groundwater irrigation contributes only a relatively small share of cultivated land, approximately 1% (about 2 × 106 hectares) as compared to 14% in Asia. While groundwater is over-exploited for irrigation in many parts in Asia, previous assessments indicate an underutilized potential in parts of Africa. As opposed to previous country-based estimates, this paper derives a continent-wide, distributed (0.5° spatial resolution) map of groundwater irrigation potential, indicated in terms of fractions of cropland potentially irrigable with renewable groundwater. The method builds on an annual groundwater balance approach using 41 years of hydrological data, allocating only that fraction of groundwater recharge that is in excess after satisfying other present human needs and environmental requirements, while disregarding socio-economic and physical constraints in access to the resource. Due to high uncertainty of groundwater environmental needs, three scenarios, leaving 30, 50 and 70% of recharge for the environment, were implemented. Current dominating crops and cropping rotations and associated irrigation requirements in a zonal approach were applied in order to convert recharge excess to potential irrigated cropland. Results show an inhomogeneously distributed groundwater irrigation potential across the continent, even within individual countries, mainly reflecting recharge patterns and presence or absence of cultivated cropland. Results further show that average annual renewable groundwater availability for irrigation ranges from 692 to 1644 km3 depending on scenario. The total area of cropland irrigable with renewable groundwater ranges from 44.6 to 105.3 × 106 ha, corresponding to 20.5 to 48.6% of the cropland over the continent. In particular, significant potential exists in the semi-arid Sahel and eastern African regions which could support poverty alleviation if developed

  20. Optical Potential Parameters for Halo Nucleus System 6He+12C from Transfer Reaction11B (7Li, 6He) 12C

    Institute of Scientific and Technical Information of China (English)

    WU Zhen-Dong; XU Xin-Xing; BAI Chun-Lin; YU Ning; JIA Fei; LIN Cheng-Jian; ZHANG Huan-Qiao; LIU Zu-Hua; YANG Feng; AN Guang-Peng; ZHANG Chun-Lei; ZHANG Gao-Long; JIA Hui-Ming

    2009-01-01

    The optical potential parameters for the halo nucleus system 6He+12 C are extracted from fits to the measured angular distributions of 11B(7 Li, 6He)12C reaction at energies of 18.3 and 28.3 MeV with distorted-wave Born approximation analysis. The characters of the obtained optical potential parameters are basically consistent with the results extracted from the fits to the elastic-scattering angular distributions in the literature.

  1. Color vision versus pattern visual evoked potentials in the assessment of subclinical optic pathway involvement in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Fatih C Gundogan

    2013-01-01

    Full Text Available Background: Optic pathway involvement in multiple sclerosis is frequently the initial sign in the disease process. In most clinical applications, pattern visual evoked potential (PVEP is used in the assessment of optic pathway involvement. Objective: To question the value of PVEP against color vision assessment in the diagnosis of subclinical optic pathway involvement. Materials and Methods: This prospective, cross-sectional study included 20 multiple sclerosis patients without a history of optic neuritis, and 20 healthy control subjects. Farnsworth-Munsell (FM 100-Hue testing and PVEPs to 60-min arc and 15-min arc checks by using Roland-Consult RetiScan® system were performed. P 100 amplitude, P 100 latency in PVEP and total error scores (TES in FM 100-Hue test were assessed. Results: Expanded Disability Status Scale score and the time from diagnosis were 2.21 ± 2.53 (ranging from 0 to 7 and 4.1 ± 4.4 years. MS group showed significantly delayed P 100 latency for both checks (P 0.05 for all. 14 MS patients (70% had an increased TESs in FM-100 Hue, 11 (55% MS patients had delayed P 100 latency and 9 (45% had reduced P 100 amplitude. The areas under the ROC curves were 0.944 for FM-100 Hue test, 0.753 for P 100 latency, and 0.173 for P 100 amplitude. Conclusions: Color vision testing seems to be more sensitive than PVEP in detecting subclinical visual pathway involvement in MS.

  2. Determination of the real part of the {\\eta}'-Nb optical potential

    CERN Document Server

    Nanova, M; Metag, V; Paryev, E Ya; Afzal, F N; Bayadilov, D; Beck, R; Becker, M; Böse, S; Brinkmann, K -T; Crede, V; Elsner, D; Frommberger, F; Grtuner, M; Gutz, E; Hammann, Ch; Hannappel, J; Hartmann, J; Hillert, W; Hoffmeister, P; Honisch, Ch; Jude, T; Kalischewski, F; Keshelashvili, I; Klein, F; Koop, K; Krusche, B; Lang, M; Makonyi, K; Messi, F; Müller, J; Müllers, J; Piontek, D M; Rostomyan, T; Schaab, D; Schmidt, C; Schmieden, H; Schmitz, R; Seifen, T; Sowa, C; Spieker, K; Thiel, A; Thoma, U; Tristerer, T; Urban, M; van Pee, H; Walther, D; Wendel, C; Werthmüller, D; Wiedner, U; Wilson, A; Witthauer, L; Wunderlich, Y; Zaunick, H -G

    2016-01-01

    The excitation function and momentum distribution of {\\eta}' mesons have been measured in photoproduction off 93^Nb in the energy range of 1.2-2.9 GeV. The experiment has been performed with the combined Crystal Barrel and MiniTAPS detector system, using tagged photon beams from the ELSA electron accelerator. Information on the sign and magnitude of the real part of the {\\eta}'-Nb potential has been extracted from a comparison of the data with model calculations. An attractive potential of -(41 \\pm 10(stat) \\pm 15(syst)) MeV depth at normal nuclear matter density is deduced within model uncertainties. This value is consistent with the potential depth of -(37 \\pm 10(stat) \\pm 10(syst)) MeV obtained in an earlier measurement for a light nucleus (carbon). This relatively shallow {\\eta}'-nucleus potential will make the search for {\\eta}'-nucleus bound states more difficult.

  3. Estimating the remaining potential of the Reconcavo basin, Brazil: a basin modeling and material balance approach

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Thamy C.S.D.; Goncalves, Felix T.T.; Bedregal, Ricardo P.; Cuinas Filho, Elio P. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Modelagem de Bacias (LAB2M); Landau, Luiz [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Metodos Computacionais em Engenharia (LAMCE)

    2004-07-01

    The existence of a petroleum system requires a number of essential elements (traps and source, reservoir and seal rocks) and processes (HC generation and migration and trap formation) besides an adequate timing among the elements and processes and a positive balance between the HC generation and losses due to (re)migration. Due to the complexity of petroleum systems dynamics, the basin modeling technique is the only one that allows the integration of all geological, geophysical and geochemical data as well as the simulation of the involved phenomena in a physically consistent way, providing an integrated view of the geologic history of the processes and elements of the petroleum system. The main objectives of this work are to show a reconstruction of the thermal and maturity evolution of the sedimentary section of the Reconcavo Basin using a multi-1D (pseudo 3D) approach, to model petroleum generation and expulsion, and the evolution of the pod(s) of source rock through time and space using the pseudo 3D approach, simulate petroleum migration along the main carrier-beds, accumulation and remigration from the potential traps. The advanced exploratory stage (mature), the geologic context (an intracratonic rift that resembles a close system) and the availability of large amounts of public data, make the Reconcavo Basin an excellent place to perform a study that can provide basis to an estimate of the remaining petroleum potential in analogous petroleum systems. (author)

  4. A prodrug approach to the use of coumarins as potential therapeutics for superficial mycoses.

    Directory of Open Access Journals (Sweden)

    Derry K Mercer

    Full Text Available Superficial mycoses are fungal infections of the outer layers of the skin, hair and nails that affect 20-25% of the world's population, with increasing incidence. Treatment of superficial mycoses, predominantly caused by dermatophytes, is by topical and/or oral regimens. New therapeutic options with improved efficacy and/or safety profiles are desirable. There is renewed interest in natural product-based antimicrobials as alternatives to conventional treatments, including the treatment of superficial mycoses. We investigated the potential of coumarins as dermatophyte-specific antifungal agents and describe for the first time their potential utility as topical antifungals for superficial mycoses using a prodrug approach. Here we demonstrate that an inactive coumarin glycone, esculin, is hydrolysed to the antifungal coumarin aglycone, esculetin by dermatophytes. Esculin is hydrolysed to esculetin β-glucosidases. We demonstrate that β-glucosidases are produced by dermatophytes as well as members of the dermal microbiota, and that this activity is sufficient to hydrolyse esculin to esculetin with concomitant antifungal activity. A β-glucosidase inhibitor (conduritol B epoxide, inhibited antifungal activity by preventing esculin hydrolysis. Esculin demonstrates good aqueous solubility (<6 g/l and could be readily formulated and delivered topically as an inactive prodrug in a water-based gel or cream. This work demonstrates proof-of-principle for a therapeutic application of glycosylated coumarins as inactive prodrugs that could be converted to an active antifungal in situ. It is anticipated that this approach will be applicable to other coumarin glycones.

  5. Energy-optimised pharmacophore approach to identify potential hotspots during inhibition of Class II HDAC isoforms.

    Science.gov (United States)

    Ganai, Shabir Ahmad; Shanmugam, Karthi; Mahadevan, Vijayalakshmi

    2015-01-01

    Histone deacetylases (HDACs) are conjugated enzymes that modulate chromatin architecture by deacetylating lysine residues on the histone tails leading to transcriptional repression. Pharmacological interventions of these enzymes with small molecule inhibitors called Histone deacetylase inhibitors (HDACi) have shown enhanced acetylation of the genome and are hence emerging as potential targets at the clinic. Type-specific inhibition of Class II HDACs has shown enhanced therapeutic benefits against developmental and neurodegenerative disorders. However, the structural identity of class-specific isoforms limits the potential of their inhibitors in precise targeting of their enzymes. Diverse strategies have been implemented to recognise the features in HDAC enzymes which may help in identifying isoform specificity factors. This work attempts a computational approach that combines in silico docking and energy-optimised pharmacophore (E-pharmacophore) mapping of 18 known HDAC inhibitors and has identified structural variations that regulate their interactions against the six Class II HDAC enzymes considered for the study. This combined approach establishes that inhibitors possessing higher number of aromatic rings in different structural regions might function as potent inhibitors, while inhibitors with scarce ring structures might point to compromised potency. This would aid the rationale for chemical optimisation and design of isoform selective HDAC inhibitors with enhanced affinity and therapeutic efficiency.

  6. Reflectance confocal microscope for imaging oral tissues in vivo, potentially with line scanning as a low-cost approach for clinical use

    Science.gov (United States)

    Peterson, Gary; Abeytunge, Sanjeewa; Eastman, Zachary; Rajadhyaksha, Milind

    2012-02-01

    Reflectance confocal microscopy with a line scanning approach potentially offers a smaller, simpler and less expensive approach than traditional methods of point scanning for imaging in living tissues. With one moving mechanical element (galvanometric scanner), a linear array detector and off-the-shelf optics, we designed a compact (102x102x76mm) line scanning confocal reflectance microscope (LSCRM) for imaging human tissues in vivo in a clinical setting. Custom-designed electronics, based on field programmable gate array (FPGA) logic has been developed. With 405 nm illumination and a custom objective lens of numerical aperture 0.5, lateral resolution was measured to be 0.8 um (calculated 0.64 um). The calculated optical sectioning is 3.2 um. Preliminary imaging shows nuclear and cellular detail in human skin and oral epithelium in vivo. Blood flow is also visualized in the deeper connective tissue (lamina propria) in oral mucosa. Since a line is confocal only in one dimension (parallel) but not in the other, the detection is more sensitive to multiply scattered out of focus background noise than in the traditional point scanning configuration. Based on the results of our translational studies thus far, a simpler, smaller and lower-cost approach based on a LSCRM appears to be promising for clinical imaging.

  7. [Exploration of the optic and somatosensory pathways with cerebral evoked potentials].

    Science.gov (United States)

    Ghezzi, A; Zibetti, A

    1981-06-16

    Visual and somatosensorial evoked potentials are the electrical response, recorded on the scalp, that follows the presentation of visual and sensorial stimuli. After briefly mentioning the technical premises enabling evoked responses to be obtained from EEC activity, some cases are reported (demyelining, degenerative, compressive, ischaemic, anoxic pathology) where visual or sensory evoked potentials presented changes, proof of the usefulness of these techniques for the purposes of clinical documentation or for diagnosis in different fields of DNS pathology.

  8. Towards an optical potential for rare-earths through coupled channels

    CERN Document Server

    Nobre, G P A; Herman, M; Palumbo, A; Hoblit, S; Brown, D

    2013-01-01

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations, defined by nuclear deformations. Proper treatment of such excitations is often essential to the accurate description of reaction experimental data. Previous works have applied different models to specific nuclei with the purpose of determining angular-integrated cross sections. In this work, we present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions in a consistent manner for neutron-induced reactions on nuclei in the rare-earth region. This specific subset of the nuclide chart was chosen precisely because of a clear static deformation pattern. We analyze the convergence of the coupled-channel calculations regarding the number of states being explicitly coupled. Inspired by the work done by Dietrich \\emph{et al.}, a model for deforming the spherical Koning-Delaroche optical poten...

  9. Raised intraocular pressure as a potential risk factor for visual loss in Leber Hereditary Optic Neuropathy.

    Directory of Open Access Journals (Sweden)

    Anais Thouin

    Full Text Available Leber Hereditary Optic Neuropathy (LHON is an important cause of inherited mitochondrial blindness among young adults. The majority of patients carry one of three mitochondrial DNA (mtDNA point mutations: m.3460G>A, m.11778G>A and m.14484T>C, all of which affect critical complex I subunits of the mitochondrial respiratory chain. LHON is characterised by marked incomplete penetrance, clearly implying that the mtDNA mutation is insufficient on its own to trigger retinal ganglion cell dysfunction and visual loss. In this case series of three affected patients harbouring the m.11778G>A mutation, we provide evidence suggesting that raised intraocular pressure could be a risk factor triggering visual loss in at-risk LHON carriers.

  10. Raised intraocular pressure as a potential risk factor for visual loss in Leber Hereditary Optic Neuropathy.

    Science.gov (United States)

    Thouin, Anais; Griffiths, Philip G; Hudson, Gavin; Chinnery, Patrick F; Yu-Wai-Man, Patrick

    2013-01-01

    Leber Hereditary Optic Neuropathy (LHON) is an important cause of inherited mitochondrial blindness among young adults. The majority of patients carry one of three mitochondrial DNA (mtDNA) point mutations: m.3460G>A, m.11778G>A and m.14484T>C, all of which affect critical complex I subunits of the mitochondrial respiratory chain. LHON is characterised by marked incomplete penetrance, clearly implying that the mtDNA mutation is insufficient on its own to trigger retinal ganglion cell dysfunction and visual loss. In this case series of three affected patients harbouring the m.11778G>A mutation, we provide evidence suggesting that raised intraocular pressure could be a risk factor triggering visual loss in at-risk LHON carriers.

  11. Optical imaging for the diagnosis of oral cancer and oral potentially malignant disorders

    Science.gov (United States)

    Yoshida, K.

    2016-03-01

    Optical Imaging is being conducted as a therapeutic non-invasive. Many kinds of the light source are selected for this purpose. Recently the oral cancer screening is conducted by using light-induced tissue autofluorescence examination such as several kinds of handheld devices. However, the mechanism of its action is still not clear. Therefore basic experimental research was conducted. One of auto fluorescence Imaging (AFI) device, VELscopeTM and near-infrared (NIR) fluorescence imaging using ICG-labeled antibody as a probe were compared using oral squamous cell carcinoma (OSCC) mouse models. The experiments revealed that intracutaneous tumor was successfully visualized as low density image by VELscopeTM and high density image by NIR image. In addition, VELscopeTM showed higher sensitivity and lower specificity than that of NIR fluorescence imaging and the sensitivity of identification of carcinoma areas with the VELscopeTM was good results. However, further more studies were needed to enhance the screening and diagnostic uses, sensitivity and specificity for detecting malignant lesions and differentiation from premalignant or benign lesions. Therefore, additional studies were conducted using a new developed near infrared (NIR) fluorescence imaging method targeting podoplanine (PDPN) which consists of indocyanine green (ICG)-labeled anti-human podoplanin antibody as a probe and IVIS imaging system or a handy realtime ICG imaging device that is overexpressed in oral malignant neoplasm to improve imaging for detection of early oral malignant neoplasm. Then evaluated for its sensitivity and specificity for detection of oral malignant neoplasm in xenografted mice model and compared with VELscopeTM. The results revealed that ICG fluorescence imaging method and VELscopeTM had the almost the same sensitivity for detection of oral malignant neoplasm. The current topics of optical imaging about oral malignant neoplasm were reviewed.

  12. Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator.

    Directory of Open Access Journals (Sweden)

    André L Acosta

    Full Text Available The ecological impacts of alien species invasion are a major threat to global biodiversity. The increasing number of invasion events by alien species and the high cost and difficulty of eradicating invasive species once established require the development of new methods and tools for predicting the most susceptible areas to invasion. Invasive pollinators pose serious threats to biodiversity and human activity due to their close relationship with many plants (including crop species and high potential competitiveness for resources with native pollinators. Although at an early stage of expansion, the bumblebee species Bombus terrestris is becoming a representative case of pollinator invasion at a global scale, particularly given its high velocity of invasive spread and the increasing number of reports of its impacts on native bees and crops in many countries. We present here a methodological framework of habitat suitability modeling that integrates new approaches for detecting habitats that are susceptible to Bombus terrestris invasion at a global scale. Our approach did not include reported invaded locations in the modeling procedure; instead, those locations were used exclusively to evaluate the accuracy of the models in predicting suitability over regions already invaded. Moreover, a new and more intuitive approach was developed to select the models and evaluate different algorithms based on their performance and predictive convergence. Finally, we present a comprehensive global map of susceptibility to Bombus terrestris invasion that highlights priority areas for monitoring.

  13. Racioethnicity, community makeup, and potential employees' reactions to organizational diversity management approaches.

    Science.gov (United States)

    Olsen, Jesse E; Martins, Luis L

    2016-05-01

    We draw on the values literature from social psychology and the acculturation literature from cross-cultural psychology to develop and test a theory of how signals about an organization's diversity management (DM) approach affect perceptions of organizational attractiveness among potential employees. We examine the mediating effects of individuals' merit-based attributions about hiring decisions at the organization, as well as the moderating effects of their racioethnicity and the racioethnic composition of their home communities. We test our theory using a within-subject policy-capturing experimental design that simulates organizational DM approaches, supplemented with census data for the participants' home communities. Results of hierarchical linear modeling (HLM) analyses suggest that the manipulated instrumental value for diversity leads to higher perceptions of organizational attractiveness, in part through heightened expectations of merit-based hiring decisions. Further, the manipulated assimilative and integrative DM approach signals are positively related to organizational attractiveness and the effect of integrative DM is strongest for racioethnic minorities from communities with especially high proportions of Whites and Whites from communities with especially low proportions of Whites. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator

    Science.gov (United States)

    2016-01-01

    The ecological impacts of alien species invasion are a major threat to global biodiversity. The increasing number of invasion events by alien species and the high cost and difficulty of eradicating invasive species once established require the development of new methods and tools for predicting the most susceptible areas to invasion. Invasive pollinators pose serious threats to biodiversity and human activity due to their close relationship with many plants (including crop species) and high potential competitiveness for resources with native pollinators. Although at an early stage of expansion, the bumblebee species Bombus terrestris is becoming a representative case of pollinator invasion at a global scale, particularly given its high velocity of invasive spread and the increasing number of reports of its impacts on native bees and crops in many countries. We present here a methodological framework of habitat suitability modeling that integrates new approaches for detecting habitats that are susceptible to Bombus terrestris invasion at a global scale. Our approach did not include reported invaded locations in the modeling procedure; instead, those locations were used exclusively to evaluate the accuracy of the models in predicting suitability over regions already invaded. Moreover, a new and more intuitive approach was developed to select the models and evaluate different algorithms based on their performance and predictive convergence. Finally, we present a comprehensive global map of susceptibility to Bombus terrestris invasion that highlights priority areas for monitoring. PMID:26882479

  15. Biomechanical approaches to understanding the potentially injurious demands of gymnastic-style impact landings

    Directory of Open Access Journals (Sweden)

    Gittoes Marianne JR

    2012-01-01

    Full Text Available Abstract Gymnasts are exposed to a high incidence of impact landings due to the execution of repeated dismount performances. Biomechanical research can help inform recent discussions surrounding a proposed rule change in potentially injurious gymnastic dismounting. The review examines existing understanding of the mechanisms influencing the impact loads incurred in gymnastic-style landings achieved using biomechanical approaches. Laboratory-based and theoretical modelling research of inherent and regulatory mechanisms is appraised. The integration of the existing insights into injury prevention interventions studies is further considered in the appraisals. While laboratory-based studies have traditionally been favoured, the difficulty in controlling and isolating mechanisms of interest has partially restricted the understanding gained. An increase in the use of theoretical approaches has been evident over the past two decades, which has successfully enhanced insight into less readily modified mechanisms. For example, the important contribution of mass compositions and 'tuned' mass coupling responses to impact loading has been evidenced. While theoretical studies have advanced knowledge in impact landing mechanics, restrictions in the availability of laboratory-based input data have suppressed the benefits gained. The advantages of integrating laboratory-based and theoretical approaches in furthering scientific understanding of loading mechanisms have been recognised in the literature. Since a multi-mechanism contribution to impact loading has been evident, a deviation away from studies examining isolated mechanisms may be supported for the future. A further scientific understanding of the use of regulatory mechanisms in alleviating a performer's inherent injury predisposition may subsequently be gained and used to inform potential rule changes in gymnastics. While the use of controlled studies for providing scientific evidence for the

  16. An Ensemble Approach for Improved Short-to-Intermediate-Term Seismic Potential Evaluation

    Science.gov (United States)

    Yu, Huaizhong; Zhu, Qingyong; Zhou, Faren; Tian, Lei; Zhang, Yongxian

    2017-06-01

    Pattern informatics (PI), load/unload response ratio (LURR), state vector (SV), and accelerating moment release (AMR) are four previously unrelated subjects, which are sensitive, in varying ways, to the earthquake's source. Previous studies have indicated that the spatial extent of the stress perturbation caused by an earthquake scales with the moment of the event, allowing us to combine these methods for seismic hazard evaluation. The long-range earthquake forecasting method PI is applied to search for the seismic hotspots and identify the areas where large earthquake could be expected. And the LURR and SV methods are adopted to assess short-to-intermediate-term seismic potential in each of the critical regions derived from the PI hotspots, while the AMR method is used to provide us with asymptotic estimates of time and magnitude of the potential earthquakes. This new approach, by combining the LURR, SV and AMR methods with the choice of identified area of PI hotspots, is devised to augment current techniques for seismic hazard estimation. Using the approach, we tested the strong earthquakes occurred in Yunnan-Sichuan region, China between January 1, 2013 and December 31, 2014. We found that most of the large earthquakes, especially the earthquakes with magnitude greater than 6.0 occurred in the seismic hazard regions predicted. Similar results have been obtained in the prediction of annual earthquake tendency in Chinese mainland in 2014 and 2015. The studies evidenced that the ensemble approach could be a useful tool to detect short-to-intermediate-term precursory information of future large earthquakes.

  17. Real-time approach to the optical properties of solids and nanostructures: Time-dependent Bethe-Salpeter equation

    Science.gov (United States)

    Attaccalite, C.; Grüning, M.; Marini, A.

    2011-12-01

    Many-body effects are known to play a crucial role in the electronic and optical properties of solids and nanostructures. Nevertheless, the majority of theoretical and numerical approaches able to capture the influence of Coulomb correlations are restricted to the linear response regime. In this work, we introduce an approach based on a real-time solution of the electronic dynamics. The proposed approach reduces to the well-known Bethe-Salpeter equation in the linear limit regime and it makes it possible, at the same time, to investigate correlation effects in nonlinear phenomena. We show the flexibility and numerical stability of the proposed approach by calculating the dielectric constants and the effect of a strong pulse excitation in bulk h-BN.

  18. An Approach to Optical Network Design using General Heuristic Optimization Framework

    Directory of Open Access Journals (Sweden)

    Marko Lacković

    2010-12-01

    Full Text Available The article tackles the problem of optimization methods in optical network design process, based on optimal traffic routing with the goal to minimize the utilized network resources for given topology and traffic demands. An optimization framework Nyx has been developed with the focus on flexibility in solving optimization problems by implementing general heuristic search techniques. Nyx modular organization has been described, including coding types for solutions and genetic algorithm as the optimization method. Optimal routing has been implemented to demonstrate the use of Nyx in the optical network design process. Optimal routing procedure has been applied to Pan-European optical network with variations of routing procedures and the number of wavelengths. The analysis included no protection scenario, 1+1 protection and path restoration. The routing was performed using shortest path routing and optimal routing which minimizes the use of optical network resources, being network multiplexers, amplifiers and fibers.  

  19. Stark-potential evaporative cooling of polar molecules in a novel optical-access opened electrostatic trap

    Institute of Scientific and Technical Information of China (English)

    孙慧; 王振霞; 王琴; 李兴佳; 刘建平; 印建平

    2015-01-01

    We propose a novel optical-access opened electrostatic trap to study the Stark-potential evaporative cooling of polar molecules by using two charged disk electrodes with a central hole of radius r0=1.5 mm, and derive a set of new analytical equations to calculate the spatial distributions of the electrostatic field in the above charged-disk layout. Afterwards, we calculate the electric-field distributions of our electrostatic trap and the Stark potential for cold ND3 molecules, and analyze the dependences of both the electric field and the Stark potential on the geometric parameters of our charged-disk scheme, and find an optimal condition to form a desirable trap with the same trap depth in the x, y, and z directions. Also, we propose a desirable scheme to realize an efficient loading of cold polar molecules in the weak-field-seeking states, and investigate the dependences of the loading efficiency on both the initial forward velocity of the incident molecular beam and the loading time by Monte Carlo simulations. Our study shows that the maximal loading efficiency of our trap scheme can reach about 95%, and the corresponding temperature of the trapped cold molecules is about 28.8 mK. Finally, we study the Stark-potential evaporative cooling for cold polar molecules in our trap by the Monte Carlo method, and find that our simulated evaporative cooling results are consistent with our developed analytical model based on trapping-potential evaporative cooling.

  20. Transfer map approach to an optical effects of energy degraders on the perfomance of fragment separators.

    Energy Technology Data Exchange (ETDEWEB)

    Erdelyi, B.; Bandura, L.; Nolen, J.; Physics

    2009-01-01

    A second order analytical and an arbitrary order numerical procedure is developed for the computation of transfer maps of energy degraders. The incorporation of the wedges into the optics of fragment separators for next-generation exotic beam facilities, their optical effects, and the optimization of their performance is studied in detail. It is shown how to place and shape the degraders in the system such that aberrations are minimized and resolving powers are maximized.

  1. EVALUATION OF OPTIC AND VESTIBULOCOCHLEAR NERVE INVOLVEMENT IN TYPE 2 DIABETES MELLITUS PATIENTS BY USING EVOKED POTENTIAL

    Directory of Open Access Journals (Sweden)

    Arrthy S, Vinodha R, Saravanan S

    2015-09-01

    Full Text Available Background and Objectives: Cranial neuropathy is one of the common late complications of Diabetes Mellitus(DM, including distal symmetric sensory polyneuropathy and peripheral neuropathy(PN. Though many studies support the involvement of Cranial nerves III, VI and VII in diabetic patients, little was known about the involvement of II & VIII nerve. The goal of this study was to evaluate the involvement of optic nerve and vestibulocochlear nerve using Visual Evoked potential (VEP and Brainstem Auditary Evoked Potential (BAEP. Methods: Forty patients with 8 to 12 years duration of type 2 DM in 40 to 60 years age group (Group1 were selected from diabetic outpatient department in Thanjavur medical college hospital and compared with control group (Group 2 who were normal subjects and was age and sex matched. Physical examination and laboratory investigations including fasting glucose, renal functions were done in addition to VEP & BAEP for all groups. P100 latency using VEP and bilateral inter-peak latency IPL I-III, IPL III-V & IPL I-V using BAEP was evaluated and and analyzed for the study group and control group. Result: VEP P100 latency and BAEP bilateral inter-peak latency IPL I-III, IPL III-V & IPL I-V were prolonged in the study group compared to control group. Conclusion: This study concluded the involvement of optic and vestibulocochlear nerve in type 2 DM as the latency was prolonged.

  2. Optical micromachined ultrasound transducers (OMUT) - a new approach for high resolution imaging

    Science.gov (United States)

    Tadayon, M. A.; Ashkenazi, S.

    2013-03-01

    Piezoelectric ultrasound (US) transducers are at the heart of almost any ultrasonic medical imaging probe. However, their sensitivity and reliability severely degrade in applications requiring high frequency (>20 MHz) and small element size (construct micron-size air cavities capped by an elastic membrane. The membrane functions as the active ultrasound transmitter and receiver. We will describe the design and testing of prototype OMUT devices which implement a receive-only function. The cavity detector is an optical cavity which its top mirror is deflected under the application of pressure. The intensity of a reflected light beam is highly sensitive to displacement of the top membrane if the optical wavelength is at near-resonance condition. Therefore, US pulses can be detected by recording the reflected light intensity. The sensitivity of the device depends on the mechanical properties of the top membrane and optical characteristics of the optical cavity. The device was fabricated using SU8 as a structural material and gold as a mirror. We have developed a new bonding method to fabricate a sealed, low roughness, high quality optical cavity. The 60μm cavity with the 8.5 μm top membrane is tested in water with 25MHz ultrasound transducer. The NEP of the device for bandwidth of 28MHz was 9.25kPa. The optical cavity has a finesse of around 23.

  3. Medicinal plants growing in the Judea region: network approach for searching potential therapeutic targets

    Directory of Open Access Journals (Sweden)

    Arie Budovsky

    2012-09-01

    Full Text Available Plants growing in the Judea region are widely used in traditional medicine of the Levant region. Nevertheless, they have not so far been sufficiently analyzed and their medicinal potential has not been evaluated. This study is the first attempt to fill the gap in the knowledge of the plants growing in the region. Comprehensive data mining of online botanical databases and peer-reviewed scientific literature including ethno-pharmacological surveys from the Levant region was applied to compile a full list of plants growing in the Judea region, with the focus on their medicinal applications. Around 1300 plants growing in the Judea region were identified. Of them, 25% have medicinal applications which were analyzed in this study. Screening for chemical-protein interactions, together with the network-based analysis of potential targets, will facilitate discovery and therapeutic applications of the Judea region plants. Such an approach could also be applied as an integrative platform for further searching the potential therapeutic targets of plants growing in other regions of the world.

  4. Network analysis-based approach for exploring the potential diagnostic biomarkers of acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Jiaqi Chen

    2016-12-01

    Full Text Available Acute myocardial infarction (AMI is a severe cardiovascular disease that is a serious threat to human life. However, the specific diagnostic biomarkers have not been fully clarified and candidate regulatory targets for AMI have not been identified. In order to explore the potential diagnostic biomarkers and possible regulatory targets of AMI, we used a network analysis-based approach to analyze microarray expression profiling of peripheral blood in patients with AMI. The significant differentially-expressed genes (DEGs were screened by Limma and constructed a gene function regulatory network (GO-Tree to obtain the inherent affiliation of significant function terms. The pathway action network was constructed, and the signal transfer relationship between pathway terms was mined in order to investigate the impact of core pathway terms in AMI. Subsequently, constructed the transcription regulatory network of DEGs. Weighted gene co-expression network analysis (WGCNA was employed to identify significantly altered gene modules and hub genes in two groups. Subsequently, the transcription regulation network of DEGs was constructed. We found that specific gene modules may provide a better insight into the potential diagnostic biomarkers of AMI. Our findings revealed and verified that NCF4, AQP9, NFIL3, DYSF, GZMA, TBX21, PRF1 and PTGDR genes by RT-qPCR. TBX21 and PRF1 may be potential candidates for diagnostic biomarker and possible regulatory targets in AMI.

  5. Identifying potential ground movement as a landslide mitigation approach using resistivity method

    Science.gov (United States)

    Izzati, F. N.; Laksmana, Z. S.; Marcelina, B.; Hutabarat, S. S.; Widodo

    2017-07-01

    Landslide is defined as a form of ground movement in which land mass suddenly fails downward on a slope as aresult of gravitational pull. One of the mitigative approaches into investigating landslide is to identify a potential slip zone usingresistivity method. In this study, the array chosen to acquire the resistivity data was Wenner array as it provides a robust resolution in mapping lateral resistivity variations. This method will generate a contour map portraying thedistribution of resistivity values of the subsurface. Beforehand, a 2-dimensional forward modeling was conducted to acquire anexpected ideal result of possible potential slip zone. Landslides itself are affiliated with a low resistivity zone that is locatedbetween two high resistivity zones. This study is conducted in a ground slump in Jalan Citra Green, Northern Bandung which is comprised of mostly unconsolidated soil. By applying a least-square inversion to the resistivity data obtained, resistivity values of 10-200 Ωm is attained. Based on the inversion result, a low resistivity zone of 10-20 Ωm is identified spanning from the surface to approximately 10 meters deep. In conclusion, furtherinvestigations are needed to determine whether the low resistivity zone is associated with potential slip zone as our datais limited to a single line

  6. Accurate potential energy surfaces with a DFT+U(R) approach.

    Science.gov (United States)

    Kulik, Heather J; Marzari, Nicola

    2011-11-21

    We introduce an improvement to the Hubbard U augmented density functional approach known as DFT+U that incorporates variations in the value of self-consistently calculated, linear-response U with changes in geometry. This approach overcomes the one major shortcoming of previous DFT+U studies, i.e., the use of an averaged Hubbard U when comparing energies for different points along a potential energy surface is no longer required. While DFT+U is quite successful at providing accurate descriptions of localized electrons (e.g., d or f) by correcting self-interaction errors of standard exchange correlation functionals, we show several diatomic molecule examples where this position-dependent DFT+U(R) provides a significant two- to four-fold improvement over DFT+U predictions, when compared to accurate correlated quantum chemistry and experimental references. DFT+U(R) reduces errors in binding energies, frequencies, and equilibrium bond lengths by applying the linear-response, position-dependent U(R) at each configuration considered. This extension is most relevant where variations in U are large across the points being compared, as is the case with covalent diatomic molecules such as transition-metal oxides. We thus provide a tool for deciding whether a standard DFT+U approach is sufficient by determining the strength of the dependence of U on changes in coordinates. We also apply this approach to larger systems with greater degrees of freedom and demonstrate how DFT+U(R) may be applied automatically in relaxations, transition-state finding methods, and dynamics.

  7. Determination of the η{sup ′}-nucleus optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Nanova, M., E-mail: mariana.nanova@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Universität Gießen (Germany); Metag, V. [II. Physikalisches Institut, Universität Gießen (Germany); Paryev, E.Ya. [Institut of Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation); Bayadilov, D. [Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Bantes, B. [Physikalisches Institut, Universität Bonn (Germany); Beck, R. [Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn (Germany); Beloglazov, Y.A. [Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn (Germany); Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Böse, S. [Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn (Germany); Brinkmann, K.-T. [II. Physikalisches Institut, Universität Gießen (Germany); Challand, Th. [Physikalisches Institut, Universität Basel (Switzerland); Crede, V. [Department of Physics, Florida State University, Tallahassee, FL (United States); Dahlke, T. [Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn (Germany); Dietz, F.; Drexler, P. [II. Physikalisches Institut, Universität Gießen (Germany); and others

    2013-12-18

    The excitation function and momentum distribution of η{sup ′} mesons have been measured in photon induced reactions on {sup 12}C in the energy range of 1250–2600 MeV. The experiment was performed with tagged photon beams from the ELSA electron accelerator using the Crystal Barrel and TAPS detectors. The data are compared to model calculations to extract information on the sign and magnitude of the real part of the η{sup ′}-nucleus potential. Within the model, the comparison indicates an attractive potential of −(37±10(stat)±10(syst)) MeV depth at normal nuclear matter density. Since the modulus of this depth is larger than the modulus of the imaginary part of the η{sup ′}-nucleus potential of −(10±2.5) MeV, determined by transparency ratio measurements, a search for resolved η{sup ′}-bound states appears promising.

  8. Comparing the Ratchet Effects of Cold Atoms in Periodically Symmetric and Asymmetric Optical Potentials

    Directory of Open Access Journals (Sweden)

    Nkongho Ayuketang Arreyndip

    2015-01-01

    Full Text Available We consider a particle in a spatial symmetric/asymmetric potential driven by time periodic bichromatic AC fields of ratchet type. The associated time-dependent Schrödinger equation is conveniently tackled with the Floquet theory. We next proceed to investigate the ratchet effect induced by the driver, comparing the symmetric with the asymmetric cases. It turns out that the current in the asymmetric case is stronger than that of the symmetric one. Besides, we also investigate the case where the driver is a delta kicked acting on our spatial potential with more emphasis on its chaotic behaviour. Here we check that the current emerges as the phase space is mixed and that the system with asymmetric spatial potential becomes more chaotic than the symmetric one at low kicking strength.

  9. Assessing the adequacy of the bare optical potential in near-barrier fusion calculation

    Energy Technology Data Exchange (ETDEWEB)

    Canto, L.F. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, CP 68528, Rio de Janeiro (Brazil); Gomes, P.R.S.; Lubian, J. [Universidade Federal Fluminense, Instituto de Fisica, Niteroi, R.J. (Brazil); Hussein, M.S. [Universidade de Sao Paulo, Instituto de Estudos Avancados, C. P. 72012, Sao Paulo-SP (Brazil); Universidade de Sao Paulo, Instituto de Fisica, C. P. 66318, Sao Paulo (Brazil); Lotti, P. [INFN, Padova (Italy)

    2014-05-15

    We critically examine the differences among the different bare nuclear interactions used in near-barrier heavy-ion fusion analysis and coupled-channels calculations, and discuss the possibility of extracting the barrier parameters of the bare potential from above-barrier data. We show that the choice of the bare potential may be critical for the analysis of the fusion cross sections. Although this may seem trivial, several recent papers use different bare potentials and reach different conclusions, especially when weakly bound systems are considered and possible relatively small fusion cross section enhancements or suppressions are found. We show also that the barrier parameters taken from above-barrier data may be very wrong. (orig.)

  10. New potentialities for noninvasive optical investigation of microcirculation in extended space missions

    Science.gov (United States)

    Gurfinkel, Youri I.; Mikhailov, Valery M.

    2002-05-01

    Goals of the investigation were to analyze the spectrum of microcirculation parameters and collection of baseline data healthy subjects during extended isolation and relative hypokinesia as a model of mission to the International space station. There were investigated four healthy volunteers at the age of 37, 40, 41 and 48 during the baseline 240-d isolation period starting from July 3, 1999. With the regularity of 3 times a week each subject made records at the same time between 1 and 2 pm. Optical computerized capillaroscope for noninvasive measurement of the capillary diameters, blood flow velocity as well as the size of the perivascular zone and the number of the blood aggregates was used. About 1500 episodes were recorded on laser disks and analyzed. Parameters of microcirculation were compared with other physiological parameters monitored in the experiment. All subjects had wave-like variations in the microcirculation parameters within the minute, week, and month ranges. Mean blood flow velocity in the baseline period was lower than in the period of isolation. Results of the daily body mass measurement were found to correlate with the perivascular zone size, that could be explained as retention of body fluids in tissues. Computerized capillaroscopy is easy to perform, noninvasive, highly sensitive and informative. It enables analysis of the character of rhythmic processes, adaptability of organism to long-term experiments and, therefore, can be proposed for use in extended space missions.

  11. Reducing multisensor monthly mean aerosol optical depth uncertainty: 2. Optimal locations for potential ground observation deployments

    Science.gov (United States)

    Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki

    2017-04-01

    Surface remote sensing of aerosol properties provides "ground truth" for satellite and model validation and is an important component of aerosol observation system. Due to the different characteristics of background aerosol variability, information obtained at different locations usually has different spatial representativeness, implying that the location should be carefully chosen so that its measurement could be extended to a greater area. In this study, we present an objective observation array design technique that automatically determines the optimal locations with the highest spatial representativeness based on the Ensemble Kalman Filter (EnKF) theory. The ensemble is constructed using aerosol optical depth (AOD) products from five satellite sensors. The optimal locations are solved sequentially by minimizing the total analysis error variance, which means that observations at these locations will reduce the background error variance to the largest extent. The location determined by the algorithm is further verified to have larger spatial representativeness than some other arbitrary location. In addition to the existing active Aerosol Robotic Network (AERONET) sites, the 40 selected optimal locations are mostly concentrated on regions with both high AOD inhomogeneity and its spatial representativeness, namely, the Sahel, South Africa, East Asia, and North Pacific Islands. These places should be the focuses of establishing future AERONET sites in order to further reduce the uncertainty in the monthly mean AOD. Observations at these locations contribute to approximately 50% of the total background uncertainty reduction.

  12. An integrated approach to design and fabrication of a miniature endoscope using freeform optics

    Science.gov (United States)

    Li, Hui; Naples, Neil J.; Zhao, Xin; Yi, Allen Y.

    2016-08-01

    Endoscopes are important medical optical devices widely used in minimally invasive surgery. However, manufacturing issues such as tight packaging constraints and tolerance requirements hinder their development. These problems often result in high manufacturing cost or poor image quality. To cope with these issues, in this research, a novel endoscope utilizing an off-axis freeform optics is developed by using an integrated ultraprecision diamond machining process. The major optical components of this endoscope include a prism with two reflective surfaces and a freeform entrance surface. In addition, a doublet and a field lens were added to complete the system design. To validate the feasibility of the endoscope design, single-point diamond turning and rastering processes were utilized to machine the required components. After the lenses were machined, the geometry of the lenses was measured using a white light optical profilometer. The results show that their profiles have a manufacture error of ±2 μm along the optical axis. Lastly, the prototype was assembled and tested to evaluate its imaging performance, including measurement of its modulation transfer function.

  13. Capillary waveguide optrodes: an approach to optical sensing in medical diagnostics

    Science.gov (United States)

    Lippitsch, Max E.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, Hartmut; Weigl, Bernhard H.

    1996-07-01

    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. A capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Various detection schemes based on absorption, fluorescence intensity, or fluorescence lifetime are described. In absorption-based capillary waveguide optrodes the absorption in the sensor layer is analyte dependent; hence light transmission along the inhomogeneous waveguiding structure formed by the capillary wall and the sensing layer is a function of the analyte concentration. Similarly, in fluorescence-based capillary optrodes the fluorescence intensity or the fluorescence lifetime of an indicator dye fixed in the sensing layer is analyte dependent; thus the specific property of fluorescent light excited in the sensing layer and thereafter guided along the inhomogeneous waveguiding structure is a function of the analyte concentration. Both schemes are experimentally demonstrated, one with carbon dioxide as the analyte and the other one with oxygen. The device combines optical sensors with the standard glass capillaries usually applied to gather blood drops from fingertips, to yield a versatile diagnostic instrument, integrating the sample compartment, the optical sensor, and the light-collecting optics into a single piece. This ensures enhanced sensor performance as well as improved handling compared with other sensors. waveguide, blood gases, medical diagnostics.

  14. Fluorescence-enhanced optical spectroscopy using early arriving photons in transmission mode: a finite element approach

    Science.gov (United States)

    Piron, Vianney; L'Huillier, Jean-Pierre

    2012-06-01

    Optical imaging of turbid media is a challenging problem mainly due to the scattering process that reduces image contrast and degrades spatial resolution. The development of fluorescent probes has recently improved the noninvasive optical technique. In this paper, we are interested in the time gating fluorescence signals. The diffusion approximation is used in order to describe the light propagation of a laser pulse in a turbid media that mimics breast like biological tissue. A numerical model based on a finite element method is proposed. Fluorescence time dependent numerical simulations are performed in order to compute time-gated intensities resulting from line scans across partially absorbing and scattering slab configurations. Optical properties of embedded objects are chosen to be the same as optical properties of breast tumor. Tacking into account two hidden objects, we investigate the lateral resolution aimed by fluorescence modality, and we also compared the results to thus obtained by photon propagation. Different widths of the time gate are computed and it is demonstrated that both lateral localization of one inclusion, and resolution of two inclusions, are enhanced when the time-gate width (▵t) is decreased. The overall computations confirm that fluorescent time-gating technique is very sensitive to local variations in optical properties that are due to breast-like tumors in turbid media.

  15. Axonal electrovisiogram as an electrophysiological test to evaluate optic nerve and inner retina electrical potentials: findings in normal subjects

    Directory of Open Access Journals (Sweden)

    Wener Passarinho Cella

    2011-02-01

    Full Text Available PURPOSES: To standardize and validate the technique of axonal electrovisiogram (AxEvg, defining its normative values and parameters and characterizing its findings in normal individuals. METHODS: We enrolled 140 normal individuals (280 eyes divided into seven groups according to age, each one with 10 males and 10 females. The technique was based on monocular visual stimulation by a 0 dB intensity bright flash on Ganzfeld bowl at a presentation rate of 1.4 Hz. Golden cup electrodes were used and electrical waves were acquired after artifact rejection. For each amplitude and implicit time peak we calculated the mean, median, pattern deviation, minimum and maximum values and 95% confidence interval. RESULTS: Monocular visual stimulation with bright flash under mesopic conditions was the standard technical procedure established. The normal AxEvg waveform consists of an initial positive wave (named P1, with mean amplitude of 2.0 mV and mean implicit time peak of 23.1 ms followed by a negative wave (named N1, with mean amplitude of -3.9 mV and mean implicit time peak of 41.4 ms. No significant differences were observed between males and females or between right and left eyes, but there was an increased P1 and N1 implicit time peaks according to age. Implicit time characteristics suggest that P1 wave represents an optic nerve electrical potential and N1 wave represents an inner retinal layers potential. CONCLUSIONS: AxEvg can be considered a pre-chiasmatic visual evoked potential capable to reliably record the electrical activity of optic nerve and inner retina. The findings suggest that AxEvg may be useful as an electrophysiological test in the diagnosis of neuroretinal diseases.

  16. A novel approach to estimate the eruptive potential and probability in open conduit volcanoes.

    Science.gov (United States)

    De Gregorio, Sofia; Camarda, Marco

    2016-01-01

    In open conduit volcanoes, volatile-rich magma continuously enters into the feeding system nevertheless the eruptive activity occurs intermittently. From a practical perspective, the continuous steady input of magma in the feeding system is not able to produce eruptive events alone, but rather surplus of magma inputs are required to trigger the eruptive activity. The greater the amount of surplus of magma within the feeding system, the higher is the eruptive probability.Despite this observation, eruptive potential evaluations are commonly based on the regular magma supply, and in eruptive probability evaluations, generally any magma input has the same weight. Conversely, herein we present a novel approach based on the quantification of surplus of magma progressively intruded in the feeding system. To quantify the surplus of magma, we suggest to process temporal series of measurable parameters linked to the magma supply. We successfully performed a practical application on Mt Etna using the soil CO2 flux recorded over ten years.

  17. Development of a screening approach for exploring cell factory potential through metabolic flux analysis and physiology

    DEFF Research Database (Denmark)

    Knudsen, Peter Boldsen; Nielsen, Kristian Fog; Thykær, Jette

    2012-01-01

    The recent developments within the field of metabolic engineering have significantly increased the speed by which fungal recombinant strains are being constructed, pushing focus towards physiological characterisation and analysis. This raises demand for a tool for diligent analysis of the recombi...... and work-load connected with screening and selection of potential cell factories with attractive properties, compared with more “traditional” methodologies where metabolic flux analysis is applied at a much later state in the characterisation process.......The recent developments within the field of metabolic engineering have significantly increased the speed by which fungal recombinant strains are being constructed, pushing focus towards physiological characterisation and analysis. This raises demand for a tool for diligent analysis...... on a Hamilton robotic system. This method aimed at characterising physiology at two levels: (1) An approach focusing on the traditional growth related parameters, i.e. growth rate, yield coefficients and extracellular metabolites. (2) 13C-labelling experiments, where metabolic fluxes are quantified...

  18. Non-viral approaches for direct conversion into mesenchymal cell types: Potential application in tissue engineering.

    Science.gov (United States)

    Lee, Eun-Seo; Kim, Seung Hyun L; Lee, Hwajin; Hwang, Nathaniel S

    2016-05-01

    Acquiring adequate number of cells is one of the crucial factors to apply tissue engineering strategies in order to recover critical-sized defects. While the reprogramming technology used for inducing pluripotent stem cells (iPSCs) opened up a direct path for generating pluripotent stem cells, a direct conversion strategy may provide another possibility to obtain desired cells for tissue engineering. In order to convert a somatic cell into any other cell type, diverse approaches have been investigated. Conspicuously, in contrast to traditional viral transduction method, non-viral delivery of conversion factors has the merit of lowering immune responses and provides safer genetic manipulation, thus revolutionizing the generation of directly converted cells and its application in therapeutics. In addition, applying various microenvironmental modulations have potential to ameliorate the conversion of somatic cells into different lineages. In this review, we discuss the recent progress in direct conversion technologies, specifically focusing on generating mesenchymal cell types. © 2016 Wiley Periodicals, Inc.

  19. NOVEL APPROACH FOR ROBOT PATH PLANNING BASED ON NUMERICAL ARTIFICIAL POTENTIAL FIELD AND GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    WANG Weizhong; ZHAO Jie; GAO Yongsheng; CAI Hegao

    2006-01-01

    A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF)articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise fiom initial configuration until the goal configuration is attained. A simulation shows that the method can not only handle issues on path planning of the articulated robots in environment with complex obstacles, but also improve the efficiency and quality of path planning.

  20. An Alternative Approach for Registration of High-Resolution Satellite Optical Imagery and ICESat Laser Altimetry Data

    Directory of Open Access Journals (Sweden)

    Shijie Liu

    2016-11-01

    Full Text Available Satellite optical images and altimetry data are two major data sources used in Antarctic research. The integration use of these two datasets is expected to provide more accurate and higher quality products, during which data registration is the first issue that needs to be solved. This paper presents an alternative approach for the registration of high-resolution satellite optical images and ICESat (Ice, Cloud, and land Elevation Satellite laser altimetry data. Due to the sparse distribution characteristic of the ICESat laser point data, it is difficult and even impossible to find same-type conjugate features between ICESat data and satellite optical images. The method is implemented in a direct way to correct the point-to-line inconsistency in image space through 2D transformation between the projected terrain feature points and the corresponding 2D image lines, which is simpler than discrepancy correction in object space that requires stereo images for 3D model construction, and easier than the indirect way of image orientation correction via photogrammetric bundle adjustment. The correction parameters are further incorporated into imaging model through RPCs (Rational Polynomial Coefficients generation/regeneration for the convenience of photogrammetric applications. The experimental results by using the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer images and ZY-3 (Ziyuan-3 satellite images for registration with ICESat data showed that sub-pixel level registration accuracies were achieved after registration, which have validated the feasibility and effectiveness of the presented approach.