WorldWideScience

Sample records for optical parametric oscillators

  1. Airy beam optical parametric oscillator.

    Science.gov (United States)

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-05-04

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  2. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    S Das

    2010-11-01

    Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grating and etalon in combination, grazing angle of incidence, entangled cavity configuration and type-II phase matching have been discussed for generating tunable narrow linewidth radiation by singly resonant optical parametric oscillation process.

  3. Diode-pumped optical parametric oscillator.

    Science.gov (United States)

    Geiger, A R; Hemmati, H; Farr, W H; Prasad, N S

    1996-02-01

    Diode-pumped optical parametric oscillation has been demonstrated for the first time to our knowledge in a single Nd:MgO:LiNbO(3) nonlinear crystal. The crystal is pumped by a semiconductor diode laser array at 812 nm. The Nd(3+) ions absorb the 812-nm radiation to generate 1084-nm laser oscillation. On internal Q switching the 1084-nm radiation pumps the LiNbO(3) host crystal that is angle cut at 46.5 degrees and generates optical parametric oscillation. The oscillation threshold that is due to the 1084-nm laser pump with a pulse length of 80 ns in a 1-mm-diameter beam was measured to be approximately 1 mJ and produced 0.5-mJ output at 3400-nm signal wavelength.

  4. Normal dispersion femtosecond fiber optical parametric oscillator.

    Science.gov (United States)

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  5. Spatiotemporal structures in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We analyze pattern formation in doubly resonant second-harmonic generation in the presence of a competing parametric process, also named the internally pumped optical parametric oscillator. Different scenarios are established where either the up- or down-conversion processes dominate the spatiote...... patterns and gray solitons. Estimates of the thresholds for pattern formation under experimentally relevant conditions are given....

  6. Spiral intensity patterns in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...

  7. Quantum correlation in degenerate optical parametric oscillators with mutual injections

    CERN Document Server

    Takata, Kenta

    2015-01-01

    We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive $P$ representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections are simulated, and their quantum states are investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes $\\hat{p}$ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, and the entanglement between the intracavity subharmonic fields. When with a small loss of the injection path, each oscillator around the phase transition point forms macroscopic superposition for a small pump noise. It suggests that the low-loss injection path works as a sq...

  8. Singly-resonant optical parametric oscillator based on KTA crystal

    Indian Academy of Sciences (India)

    S Das; S Gangopadhyay; C Ghosh; G C Bhar

    2005-01-01

    Tunable mid-infra-red radiation by singly resonant optical parametric oscillation based on KTA crystal pumped by multi-axial Gaussian shape beam from Q-switched Nd:YAG laser has been demonstrated. Threshold energy of oscillation at different idler wavelengths for different cavity length has been demonstrated. Single pass conversion efficiency of incident pump energy to infra-red wavelength has also been measured.

  9. Raman-Suppressing Coupling for Optical Parametric Oscillator

    Science.gov (United States)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico

    2007-01-01

    A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.

  10. Tunable optical frequency division using a phase-locked optical parametric oscillator.

    Science.gov (United States)

    Lee, D; Wong, N C

    1992-01-01

    We report the experimental demonstration of a novel optical parametric oscillator approach to tunable optical frequency division. The beat frequency of the signal and idler subharmonic outputs of a tunable cw KTP optical parametric oscillator was phase locked to a microwave reference frequency source, which thus permitted precise determination of the output frequencies at approximately half the input pump frequency.

  11. A Coherent Ising Machine Based On Degenerate Optical Parametric Oscillators

    Science.gov (United States)

    Wang, Zhe; Marandi, Alireza; Wen, Kai; Byer, Robert L.; Yamamoto, Yoshihisa

    2014-03-01

    A degenerate optical parametric oscillator network is proposed to solve the NP-hard problem of finding a ground state of the Ising model. The underlying operating mechanism originates from the bistable output phase of each oscillator and the inherent preference of the network in selecting oscillation modes with the minimum photon decay rate. Computational experiments are performed on all instances reducible to the NP-hard MAX-CUT problems on cubic graphs of order up to 20. The numerical results reasonably suggest the effectiveness of the proposed network. This project is supported by the FIRST program of Japanese Government. Zhe Wang is also grateful for the support from Stanford Graduate Fellowship.

  12. Fiber-optic parametric amplifier and oscillator based on intracavity parametric pump technique.

    Science.gov (United States)

    Luo, Zhengqian; Zhong, Wen-De; Tang, Ming; Cai, Zhiping; Ye, Chenchun; Xiao, Xiaosheng

    2009-01-15

    A cost-effective fiber optical parametric amplifier (FOPA) based on the laser intracavity pump technique has been proposed and demonstrated experimentally. The parametric process is realized by inserting a 1 km highly nonlinear dispersion-shifted fiber (HNL-DSF) into a fiber ring-laser cavity that consists of a high-power erbium-doped fiber (EDF) amplifier and two highly reflective fiber Bragg gratings. Compared with the conventional parametric pump schemes, the proposed pumping technique is free from a tunable semiconductor laser as the pump source and also the pump phase modulation. When the oscillating power of 530 mW in the EDF laser cavity is achieved to pump the HNL-DSF, a peak parametric gain of 27.5 dB and a net gain over 45 nm are obtained. Moreover, a widely tunable fiber-optic parametric oscillator is further developed using the FOPA as a gain medium.

  13. Effect of idler absorption in pulsed optical parametric oscillators.

    Science.gov (United States)

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  14. Wavelength Conversion by Cascaded FWM in a Fiber Optical Parametric Oscillator

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Lund-Hansen, Toke; Rishøj, Lars Søgaard

    2011-01-01

    We report on a continuous-wave fiber optical parametric oscillator utilizing selective filtering on cascade four wave mixing (CFWM). Oscillations of distinct CFWM terms are obtained, extending wavelength conversion outside the parametric gain region.......We report on a continuous-wave fiber optical parametric oscillator utilizing selective filtering on cascade four wave mixing (CFWM). Oscillations of distinct CFWM terms are obtained, extending wavelength conversion outside the parametric gain region....

  15. An on-chip diamond optical parametric oscillator

    CERN Document Server

    Hausmann, B J M; Venkataraman, V; Deotare, P; Loncar, M

    2013-01-01

    Efficient, on-chip optical nonlinear processes are of great interest for the development of compact, robust, low-power consuming systems for applications in spectroscopy, metrology, sensing and classical and quantum optical information processing. Diamond holds promise for these applications, owing to its exceptional properties. However, although significant progress has been made in the development of an integrated diamond photonics platform, optical nonlinearities in diamond have not been explored much apart from Raman processes in bulk samples. Here, we demonstrate optical parametric oscillations (OPO) via four wave mixing (FWM) in single crystal diamond (SCD) optical networks on-chip consisting of waveguide-coupled microring resonators. Threshold powers as low as 20mW are enabled by ultra-high quality factor (1*10^6) diamond ring resonators operating at telecom wavelengths, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the inferred nonlinear refractive index...

  16. Ultra-Broad-Band Optical Parametric Amplifier or Oscillator

    Science.gov (United States)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute

    2009-01-01

    A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter

  17. Modeling of Self-Pumped Singly Resonant Optical Parametric Oscillator

    CERN Document Server

    Deng, Chengxian

    2016-01-01

    A model of the steady-state operating, self-pumped singly resonant optical parametric oscillator (SPSRO) has been developed. The characteristics of quasi three-level laser gain medium pumped longitudinally have been taken into account. The characteristics of standing wave cavity, reabsorption losses, focusing Gaussian beams of the pump laser, fundamental laser and signal wave have been considered in the analyses. Furthermore, The power characteristics of threshold and efficiency have been analyzed, employing a Yb3+-doped periodically poled lithium niobate co-doped with MgO (Yb3+:MgO:PPLN) as the medium of laser gain and second-order nonlinear crystal.

  18. Entanglement in the above-threshold optical parametric oscillator

    CERN Document Server

    Villar, A S; Dechoum, K; Khoury, A Z; Martinelli, M; Nussenzveig, P; Cassemiro, Katiuscia N.; Dechoum, Kaled; Khoury, Antonio Z.; Martinelli, Marcelo; Nussenzveig, Paulo; Villar, Alessandro S.

    2006-01-01

    We investigate entanglement in the above-threshold Optical Parametric Oscillator, both theoretically and experimentally, and discuss its potential applications to quantum information. The fluctuations measured in the subtraction of signal and idler amplitude quadratures are $\\Delta^2 \\hat p_-=0.50(1)$, or $-3.01(9)$ dB, and in the sum of phase quadratures are $\\Delta^2 \\hatq_+=0.73(1)$, or $-1.37(6)$ dB. A detailed experimental study of the noise behavior as a function of pump power is presented, and discrepancies with theory are discussed.

  19. Synchronously pumped femtosecond optical parametric oscillator with broadband chirped mirrors

    Science.gov (United States)

    Stankevičiūte, Karolina; Melnikas, Simas; Kičas, Simonas; Trišauskas, Lukas; Vengelis, Julius; Grigonis, Rimantas; Vengris, Mikas; Sirutkaitis, Valdas

    2015-05-01

    We present results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) with broadband complementary chirped mirror pairs (CMP). The SPOPO based on β-BBO nonlinear crystal is pumped by second harmonic of femtosecond Yb:KGW laser and provides signal pulses tunable over spectral range from 625 to 980 nm. More than 500 mW are generated in the signal beam, giving up to 27 % pump power to signal power conversion efficiency. The plane SPOPO cavity mirror pairs were specially designed to provide 99 % reflection in broad spectral range corresponding to signal wavelength tuning (630-1030 nm) and to suppress group delay dispersion (GDD) oscillations down to +/-10 fs2. Dispersion properties of designed mirrors were tested with white light interferometer (WLI) and attributed to the SPOPO tuning behaviour.

  20. Investigation of coupled optical parametric oscillators for novel applications

    Science.gov (United States)

    Ding, Yujie J.

    2016-03-01

    In this proceedings article, we summarize our previous results on the novel applications using the coupled optical parametric oscillators (OPO's). In a conventional OPO, a single pump wavelength is capable of generating a pair of the signal and idler beams by placing a bulk nonlinear crystal inside an OPO cavity. When a nonlinear crystal composite consisting of periodically-inverted KTiOPO4 (KTP) plates bonded together by the adhesive-free-bonded (AFB) technique is used instead of the bulk nonlinear crystal, the optical parametric oscillation takes place at two sets of the new wavelengths for the signal and idler beams due to the phase shifts occurring at the interfaces of the adjacent domains making up the composite. These two sets of the signal and idler waves are effectively generated by the two OPO's being coupled to each other. These signals and idlers exhibit ultrastability in terms of their frequency separation. We review the progress made by us on the applications being realized by using such coupled OPO's such as THz generation and restoration of the blurred images after propagating through a distortion plate and a phase plate simulating atmospheric turbulence.

  1. Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Skettrup, Torben; Petersen, O.B.;

    2002-01-01

    An intracavity optical parametric oscillator is investigated in pulsed and continuous-wave operation. The intracavity optical parametric oscillator is based on Yb:YAG as the laser material and a periodically poled lithium niobate crystal as the nonlinear material. Tuneable idler output powers above...

  2. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  3. Frequency comb metrology with an optical parametric oscillator.

    Science.gov (United States)

    Balskus, K; Schilt, S; Wittwer, V J; Brochard, P; Ploetzing, T; Jornod, N; McCracken, R A; Zhang, Z; Bartels, A; Reid, D T; Südmeyer, T

    2016-04-18

    We report on the first demonstration of absolute frequency comb metrology with an optical parametric oscillator (OPO) frequency comb. The synchronously-pumped OPO operated in the 1.5-µm spectral region and was referenced to an H-maser atomic clock. Using different techniques, we thoroughly characterized the frequency noise power spectral density (PSD) of the repetition rate frep, of the carrier-envelope offset frequency fCEO, and of an optical comb line νN. The comb mode optical linewidth at 1557 nm was determined to be ~70 kHz for an observation time of 1 s from the measured frequency noise PSD, and was limited by the stability of the microwave frequency standard available for the stabilization of the comb repetition rate. We achieved a tight lock of the carrier envelope offset frequency with only ~300 mrad residual integrated phase noise, which makes its contribution to the optical linewidth negligible. The OPO comb was used to measure the absolute optical frequency of a near-infrared laser whose second-harmonic component was locked to the F = 2→3 transition of the 87Rb D2 line at 780 nm, leading to a measured transition frequency of νRb = 384,228,115,346 ± 16 kHz. We performed the same measurement with a commercial fiber-laser comb operating in the 1.5-µm region. Both the OPO comb and the commercial fiber comb achieved similar performance. The measurement accuracy was limited by interferometric noise in the fibered setup of the Rb-stabilized laser.

  4. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission

    CERN Document Server

    Longhi, Stefano

    2016-01-01

    Optical parametric amplification/oscillation provide a powerful tool for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency {\\it down-conversion} process, and thus it can not be realized for signal waves at a frequency $\\omega_3$ {\\it higher} than the frequency of the pump wave $\\omega_1$. In this work we suggest a route toward the realization of {\\it up-conversion} optical parametric amplification and oscillation, i.e. amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of up-conversion optical parametric oscillation at $\\lambda_3=465$ nm are given for a periodically-poled lithium-niobate (PPLN) crystal doped with Nd$^{3+}$ ions.

  5. Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz.

    Science.gov (United States)

    Mörz, Florian; Steinle, Tobias; Steinmann, Andy; Giessen, Harald

    2015-09-07

    We present a high repetition rate mid-infrared optical parametric master oscillator power amplifier (MOPA) scheme, which is tunable from 1370 to 4120nm. Up to 4.3W average output power are generated at 1370nm, corresponding to a photon conversion efficiency of 78%. Bandwidths of 6 to 12nm with pulse durations between 250 and 400fs have been measured. Strong conversion saturation over the whole signal range is observed, resulting in excellent power stability. The system consists of a fiber-feedback optical parametric oscillator that seeds an optical parametric power amplifier. Both systems are pumped by the same Yb:KGW femtosecond oscillator.

  6. Acquisition of a Nd-Yag Pumped MOPO (Master Oscillator/Power Oscillator) Optical Parametric Oscillator

    Science.gov (United States)

    1997-09-30

    SEP 1997 2. REPORT TYPE 3. DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Acquisition of a Nd-Yag Pumped MOPO (Master Oscillator...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 ACQUISITION OF A ND-YAG PUMPED MOPO (MASTER OSCILLATOR / POWER OSCILLATOR) OPTICAL...instrument is configured in a master oscillator/power oscillator configuration, hence the designation MOPO . The MOPO will be used in conjunction

  7. Beam divergence effects on high power optical parametric oscillation

    Institute of Scientific and Technical Information of China (English)

    Li Hui-Qing; Geng Ai-Cong; Bo Yong; Wu Ling-An; Cui Da-Fu; Xu Zu-Yan

    2005-01-01

    The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviation of real laser beams from ideal phase matching conditions. Our theoretical model is based on the decomposition of the Gaussian beam and assumes each component has a single deviation angle and thus a Particular wave vector mismatch. We take into account the variable intensity profile in the spatial and temporal domains of the Gaussian beam, the pump depletion effects for large-signal processes as well as the oscillatory effects of the three waves. Two nonlinear crystals β-BaB2O4 (BBO) and LiB3O5 (LBO) have been investigated in detail. The results indicate that the degree of beam divergence strongly influences the maximum pump intensity, optimum crystal length and OPO conversion efficiency.The impact of beam divergence is much more severe in the case of critical phase-matching for BBO than in the case of non-critical phase-matching for LBO. The results provide a way to choose the optimum parameters for a high power ns OPO such as the nonlinear material, the crystal length and the pump intensity, etc. Good agreement is obtained with our experimental results.

  8. Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Skettrup, Torben; Petersen, O.B.;

    2002-01-01

    An intracavity optical parametric oscillator is investigated in pulsed and continuous-wave operation. The intracavity optical parametric oscillator is based on Yb:YAG as the laser material and a periodically poled lithium niobate crystal as the nonlinear material. Tuneable idler output powers above...... 200 mW are obtained in both modes of operation with 13.5 W of incident diode pump power. The idler output was tuned in the wavelength range 3820-4570 nm....

  9. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.;

    2010-01-01

    efficient optical frequency conversion. Our analysis of the phase-matching conditions for optical parametric down-conversion (PDC) in a spherical WGM resonator shows their direct relation to the sum rules for photons' angular momenta and predicts a very low parametric oscillation threshold. We realized...... such an optical parametric oscillator (OPO) based on naturally phase-matched PDC in lithium niobate. We demonstrated a single-mode, strongly nondegenerate OPO with a threshold of 6.7  μW and linewidth under 10 MHz. This work demonstrates the remarkable capabilities of WGM-based OPOs....

  10. Specifics of short-wavelength generation in a continuous wave fiber optical parametric oscillator

    Science.gov (United States)

    Zlobina, E. A.; Mishra, V.; Kablukov, S. I.; Singh, S. P.; Varshney, S. K.; Babin, S. A.

    2016-11-01

    We investigate factors limiting short-wavelength generation and therefore tuning range of the continuous wave all-fiber optical parametric oscillator based on birefringent photonic crystal fiber pumped by a tunable linearly polarized ytterbium-doped fiber laser. Influence of the longitudinal dispersion fluctuations in the fiber on the threshold of the fiber optical parametric oscillators is numerically studied. It is shown that even low fluctuations (<0.5 nm) of the zero dispersion wavelength in 18 m-long fiber result in a significant increase of the threshold at large parametric shifts.

  11. Body-centered cubic dissipative crystal formation in a dispersive and diffractive optical parametric oscillator.

    Science.gov (United States)

    Tlidi, M; Pieroux, D; Mandel, Paul

    2003-09-15

    We show that coupling diffraction and chromatic dispersion lead to body-centered cubic and hexagonally packed cylinders of dissipative optical crystals in a degenerate optical parametric oscillator. The stabilization of these crystals is a direct consequence of the interaction between the modulational and the quasi-neutral modes.

  12. Stable integrated hyper-parametric oscillator based on coupled optical microcavities

    CERN Document Server

    Armaroli, Andrea; Dumeige, Yannick

    2015-01-01

    We propose a flexible scheme based on three coupled optical microcavities which permits to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find the different dynamical regimes (soft and hard excitation) to affect the oscillation intensity but not their period. This configuration may permit to implement compact hyper-parametric sources on an integrated optical circuit, with interesting applications in communications, sensing and metrology.

  13. All-Optical Quantum Random Bit Generation from Intrinsically Binary Phase of Parametric Oscillators

    CERN Document Server

    Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L

    2012-01-01

    True random number generators (RNGs) are desirable for applications ranging from cryptogra- phy to computer simulations. Quantum phenomena prove to be attractive for physical RNGs due to their fundamental randomness and immunity to attack [1]- [5]. Optical parametric down conversion is an essential element in most quantum optical experiments including optical squeezing [9], and generation of entangled photons [10]. In an optical parametric oscillator (OPO), photons generated through spontaneous down conversion of the pump initiate the oscillation in the absence of other inputs [11, 12]. This quantum process is the dominant effect during the oscillation build-up, leading to selection of one of the two possible phase states above threshold in a degenerate OPO [13]. Building on this, we demonstrate a novel all-optical quantum RNG in which the photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We implement a synchronously pumped twin degenerate O...

  14. Investigation of a diode-pumped intracavity optical parametric oscillator in pulsed and continuous wave operation

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Skettrup, Torben; Balle-Petersen, O.;

    2001-01-01

    Summary form only given. CW and pulsed compact tunable laser sources in the infrared have widespread scientific, medical and industrial applications. Such a laser source can be obtained by use of a diode-pumped intracavity optical parametric oscillator (IOPO). We report on a IOPO based on a Yb...

  15. Thermal self-frequency locking of doubly-resonant optical parametric oscillator

    DEFF Research Database (Denmark)

    Hansen, P.L.; Buchhave, Preben

    1997-01-01

    The increase in the circulating signal and idler fields that occurs in a high-Q doubly resonant optical parametric oscillator (OPO) as it approaches resonance results in a small increase in the crystal temperature owing to absorption of the generated fields. The temperature change affects...

  16. Microsecond pulsed optical parametric oscillator pumped by a Q-switched fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Adel, P.; Auerbach, M.; Fallnich, C.; Gross, P.; Boller, Klaus J.

    2003-01-01

    We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-ms-long pulses from an actively Q-switched Y

  17. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  18. Spectral characterization of a frequency comb based on cascaded quadratic nonlinearities inside an optical parametric oscillator

    CERN Document Server

    Ulvila, Ville; Halonen, Lauri; Vainio, Markku

    2015-01-01

    We present an experimental study of optical frequency comb generation based on cascaded quadratic nonlinearities inside a continuous-wave-pumped optical parametric oscillator. We demonstrate comb states which produce narrow-linewidth intermode beat note signals, and we verify the mode spacing uniformity of the comb at the Hz level. We also show that spectral quality of the comb can be improved by modulating the parametric gain at a frequency that corresponds to the comb mode spacing. We have reached a high average output power of over 4 W in the near-infrared region, at ~2 {\\mu}m.

  19. Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave

    Science.gov (United States)

    Xiong-Hua, Zheng; Bao-Fu, Zhang; Zhong-Xing, Jiao; Biao, Wang

    2016-01-01

    We present a continuous-wave singly-resonant optical parametric oscillator with 1.5% output coupling of the resonant signal wave, based on an angle-polished MgO-doped periodically poled lithium niobate (MgO:PPLN), pumped by a commercial Nd:YVO4 laser at 1064 nm. The output-coupled optical parametric oscillator delivers a maximum total output power of 4.19 W with 42.8% extraction efficiency, across a tuning range of 1717 nm in the near- and mid-infrared region. This indicates improvements of 1.87 W in output power, 19.1% in extraction efficiency and 213 nm in tuning range extension in comparison with the optical parametric oscillator with no output coupling, while at the expense of increasing the oscillation threshold by a factor of ˜ 2. Moreover, it is confirmed that the finite output coupling also contributes to the reduction of the thermal effects in crystal. Project supported by the National Natural Science Foundation of China (Grant Nos. 61308056, 11204044, 11232015, and 11072271), the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120171110005 and 20130171130003), the Fundamental Research Funds for the Central Universities of China (Grant No. 14lgpy07), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201203).

  20. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  1. Cauchy-Schwarz characterization of tripartite quantum correlations in an optical parametric oscillator

    CERN Document Server

    Dechoum, K; Khoury, A Z; 10.1103/PhysRevA.83.063843

    2011-01-01

    We analyze the three-mode correlation properties of the electromagnetic field in a optical parametric oscillator below threshold. We employ a perturbative expansion of the It\\^o equations derived from the positive-P representation of the density matrix. Using the generalized Cauchy-Schwarz inequality, we investigate the genuine quantum nature of the triple correlations between the interacting fields, since in this case continuous variable entanglement is not detected by the van Loock-Furusawa criterion [Phys. Rev. A {\\bf 67}, 052315 (2003)]. Although not being a necessary condition, these triple correlations are a sufficient evidence of tripartite entanglement. Of course, our characterization of the quantum correlations is applicable to non-Gaussian states, which we show to be the case of the optical parametric oscillator below threshold, provided nonlinear quantum fluctuations are properly taken into account.

  2. High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator.

    Science.gov (United States)

    Kienle, Florian; Teh, Peh Siong; Lin, Dejiao; Alam, Shaif-Ul; Price, Jonathan H V; Hanna, D C; Richardson, David J; Shepherd, David P

    2012-03-26

    We report on a picosecond, green-pumped, lithium triborate optical parametric oscillator with record-high output power. It was synchronously pumped by a frequency-doubled (530 nm), pulse-compressed (4.4 ps), high-repetition-rate (230 MHz), fiber-amplified gain-switched laser diode. For a pump power of 17 W, a maximum signal and idler power of 3.7 W and 1.8 W was obtained from the optical parametric oscillator. A signal pulse duration of ~3.2 ps was measured and wide tunability from 651 nm to 1040 nm for the signal and from 1081 nm to 2851 nm for the idler was achieved.

  3. Fabrication of periodically poled lithium niobate chips for optical parametric oscillators

    Indian Academy of Sciences (India)

    Ashok Kaul; Ajay Mishra

    2010-11-01

    An electric-field poling process was established that yielded uniform periodically poled lithium niobate (PPLN) in 0.5 mm thick lithium niobate substrate. We have fabricated 50 mm long fanned as well as multigrating PPLNs having period variations from 25 m to 32 m. These PPLNs are required for quasi-phase-matched (QPM) optical parametric oscillator (OPO) applications. We have also configured a bench-top OPO set-up based on these PPLNs.

  4. Computational Principle and Performance Evaluation of Coherent Ising Machine Based on Degenerate Optical Parametric Oscillator Network

    Directory of Open Access Journals (Sweden)

    Yoshitaka Haribara

    2016-04-01

    Full Text Available We present the operational principle of a coherent Ising machine (CIM based on a degenerate optical parametric oscillator (DOPO network. A quantum theory of CIM is formulated, and the computational ability of CIM is evaluated by numerical simulation based on c-number stochastic differential equations. We also discuss the advanced CIM with quantum measurement-feedback control and various problems which can be solved by CIM.

  5. Experimental study of the spatial distribution of quantum correlations in a confocal Optical Parametric Oscillator

    CERN Document Server

    Martinelli, M; Ducci, S; Gigan, S; Maitre, A; Fabre, C; Martinelli, Marcello; Treps, Nicolas; Ducci, Sara; Gigan, Sylvain; Maitre, Agnes; Fabre, Claude

    2003-01-01

    We study experimentally the spatial distribution of quantum noise in the twin beams produced by a type II Optical Parametric Oscillator operating in a confocal cavity above threshold. The measured intensity correlations are at the same time below the standard quantum limit and not uniformly distributed inside the beams. We show that this feature is an unambiguous evidence for the multimode and nonclassical character of the quantum state generated by the device.

  6. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  7. Optical parametric oscillators in isotropic photonic crystals and cavities: 3D time domain analysis

    OpenAIRE

    Conti, Claudio; Di Falco, Andrea; Assanto, Gaetano

    2004-01-01

    We investigate optical parametric oscillations through four-wave mixing in resonant cavities and photonic crystals. The theoretical analysis underlines the relevant features of the phenomenon and the role of the density of states. Using fully vectorial 3D time-domain simulations, including both dispersion and nonlinear polarization, for the first time we address this process in a face centered cubic lattice and in a photonic crystal slab. The results lead the way to the development of novel p...

  8. Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators

    CERN Document Server

    Beckmann, T; Steigerwald, H; Sturman, B; Haertle, D; Buse, K; Breunig, I

    2010-01-01

    Tunability of optical parametric oscillation in a radially structured whispering gallery resonator made of lithium niobate is investigated experimentally and theoretically. With a 1.04-\\mu m pump wave, the signal and idler waves are tuned from 1.78 to 2.5 \\mu m -- including the point of degeneracy -- by varying the temperature between 20 and 62{\\deg}C. A weak off-centering of the radial domain structure extends considerably the tuning capabilities. The oscillation threshold lies in the mW-power range.

  9. Synchronously pumped CdSe optical parametric oscillator in the 9-10 microm region.

    Science.gov (United States)

    Watson, M A; O'Connor, M V; Shepherd, D P; Hanna, D C

    2003-10-15

    Continuous mode-locked operation of a singly resonant, synchronously pumped optical parametric oscillator (SPOPO) based on CdSe has produced idler output tuned over the range of 9.1-9.7 microm, the longest wavelength generated so far to our knowledge from a SPOPO. Average idler powers as high as approximately 70 mW are generated in the crystal. Tandem pumping with a diffraction-grating-tuned parametric oscillator in periodically poled lithium niobate provides a convenient and agile means of tuning the noncritically phase-matched CdSe device. The absence of any detrimental thermal effects in the CdSe crystal suggests that significant further power scaling should be possible, with idler tuning ranges extendable to cover 8-12 microm.

  10. An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing

    Energy Technology Data Exchange (ETDEWEB)

    Stefszky, Michael; Buchler, Ben C; Symul, Thomas; Lam, Ping Koy [Quantum Optics Group, Department of Quantum Science, The Australian National University, ACT 0200 (Australia); Mow-Lowry, Conor M; McKenzie, Kirk; Chua, Sheon; McClelland, David E, E-mail: michael.stefszky@anu.edu.au [Centre for Gravitational Physics, Department of Quantum Science, The Australian National University, ACT 0200 (Australia)

    2011-01-14

    A squeezed light source requires properties such as high squeezing amplitude, high bandwidth and stability over time, ideally using as few resources, such as laser power, as possible. We compare three nonlinear materials, two of which have not been well characterized for squeezed state production, and also investigate the viability of doubly-resonant optical parametric oscillator cavities in achieving these requirements. A model is produced that provides a new way of looking at the construction of an optical parametric oscillator/optical parametric amplifier setup where second harmonic power is treated as a limited resource. The well-characterized periodically poled potassium titanyl phosphate (PPKTP) is compared in an essentially identical setup to two relatively new materials, periodically poled stoichiometric lithium tantalate (PPSLT) and 1.7% magnesium oxide doped periodically poled stoichiometric lithium niobate (PPSLN). Although from the literature PPSLT and PPSLN present advantages such as a higher damage threshold and a higher nonlinearity, respectively, PPKTP was still found to have the most desirable properties. With PPKTP, 5.8 dB of squeezing below the shot noise limit was achieved. With PPSLT, 5.0 dB of squeezing was observed but the power required to see this squeezing was much higher than expected. A technical problem with the PPSLN limited the observed squeezing to around 1.0 dB. This problem is discussed.

  11. Generation of 2.1 m wavelength from degenerate high gray track resistant potassium titanyl phosphate optical parametric oscillator

    Indian Academy of Sciences (India)

    S Verma; C Mishra; V Kumar; M Yadav; K C Bahuguna; N S Vasan; S P Gaba

    2014-02-01

    This paper presents the experimental results of degenerate optical parametric generation using a high gray track resistant potassium titanyl phosphate (HGTR KTP) optical parametric oscillator (OPO). An average output power of 7 W at 10 kHz has been achieved that includes both signal and idler powers near degeneracy using 20Waverage power from a 1064 nm Nd:YVO4 pump source corresponding to an optical conversion efficiency of 35%.

  12. Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL).

    Science.gov (United States)

    Stothard, D J M; Hopkins, J-M; Burns, D; Dunn, M H

    2009-06-22

    We report relaxation oscillation free, true continuous-wave operation of a singly-resonant, intracavity optical parametric oscillator (OPO) based upon periodically-poled, MgO-doped LiNbO3 and pumped internal to the cavity of a compact, optically-excited semiconductor disk laser (or VECSEL). The very short upper-laser-state lifetime of this laser gain medium, coupled with the enhancing effect of the high-finesse pump laser cavity in which the OPO is located, enables a low threshold, high efficiency intracavity device to be operated free of relaxation oscillations in continuous-wave mode. By optimizing for low-power operation, parametric threshold was achieved at a diode-laser power of only 1.4 W. At 8.5 W of diode-laser power, 205 mW of idler power was extracted, indicating a total down-converted power of 1.25 W, and hence a down-conversion efficiency of 83%.

  13. Pattern formation without diffraction matching in optical parametric oscillators with a metamaterial.

    Science.gov (United States)

    Tassin, Philippe; Van der Sande, Guy; Veretennicoff, Irina; Kockaert, Pascal; Tlidi, Mustapha

    2009-05-25

    We consider a degenerate optical parametric oscillator containing a left-handed material. We show that the inclusion of a left-handed material layer allows for controlling the strength and sign of the diffraction coefficient at either the pump or the signal frequency. Subsequently, we demonstrate the existence of stable dissipative structures without diffraction matching, i.e., without the usual relationship between the diffraction coefficients of the signal and pump fields. Finally, we investigate the size scaling of these light structures with decreasing diffraction strength.

  14. Single-frequency mid-infrared optical parametric oscillator source for coherent laser radar.

    Science.gov (United States)

    Hanson, F; Poirier, P; Arbore, M A

    2001-11-15

    We report on the design and characterization of a highly coherent mid-IR source at 3.57mum based on a single-frequency optical parametric oscillator. Detailed frequency and amplitude noise spectra have been measured. The rms intensity noise from 1.2 to 1000 Hz was 0.03%, and a rms frequency drift of 8 kHz in 1 ms was observed. We have also demonstrated the utility of this source for coherent laser radar applications by measuring micro-Doppler spectra from vibrating targets.

  15. Stretchable polymeric modulator for intracavity spectroscopic broadening of femtosecond optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimeng; Zhang, Xinping, E-mail: Zhangxinping@bjut.edu.cn; Zhang, Jian; Liu, Hongmei [Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China)

    2014-07-07

    We investigate stretching-induced microscopic deformations spatially distributed in a flexible plate of polydimethylsiloxane (PDMS) and their applications in the broadening of the output spectrum of a femtosecond optical parametric oscillator. The hologram of the stretched PDMS plate was used to evaluate indirectly the microscopic deformations. The experimental results show that these deformations exhibit weak scattering and diffraction of light and induce negligible cavity loss, ensuring practical applications of the PDMS plate as an intracavity device for lasers. In combination with the thickness reduction of the PDMS plate through stretching, the distributed deformations enable smooth tuning of the output spectrum.

  16. Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview

    Science.gov (United States)

    Brustlein, Sophie; Ferrand, Patrick; Walther, Nico; Brasselet, Sophie; Billaudeau, Cyrille; Marguet, Didier; Rigneault, Hervé

    2011-02-01

    We present the assets and constraints of using optical parametric oscillators (OPOs) to perform point scanning nonlinear microscopy and spectroscopy with special emphasis on coherent Raman spectroscopy. The difterent possible configurations starting with one OPO and two OPOs are described in detail and with comments that are intended to be practically useful for the user. Explicit examples on test samples such as nonlinear organic crystal, polystyrene beads, and fresh mouse tissues are given. Special emphasis is given to background-free coherent Raman anti-Stokes scattering (CARS) imaging, including CARS hyperspectral imaging in a fully automated mode with commercial OPOs.

  17. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator.

    Science.gov (United States)

    Zhang, Zhaowei; Gardiner, Tom; Reid, Derryck T

    2013-08-15

    We present the first implementation of mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Methane absorption spectroscopy was demonstrated with a resolution of 0.2 cm(-1) (5 GHz) at an acquisition time of ~10.4 ms over a spectral coverage at 2900-3050 cm(-1). The average power from each individual mid-infrared comb line was ~1 μW, representing a power level much greater than typical difference-frequency-generation sources. Mid-infrared dual-comb spectroscopy opens up unique opportunities to perform broadband spectroscopic measurements with high resolution, high requisition rate, and high detection sensitivity.

  18. Phase synchronization and anti-phase synchronization of chaos for degenerate optical parametric oscillator

    Institute of Scientific and Technical Information of China (English)

    Feng Xiu-Qin; Shen Ke

    2005-01-01

    We have investigated chaotic synchronization in the generalized sense for the degenerate optical parametric oscillator (DOPO). The numerical results show that two unidirectional coupling DOPOs in chaos can be completely phase synchronization or anti-phase synchronization with a suitable coupling coefficient under which the maximum condition Lyapunov exponent (MCLE) is negative. Phase synchronization and anti-phase synchronization of chaos can be realized through positive and negative coupling. On the other hand, the different synchronization states depend on the coupling types used in the DOPO systems.

  19. Passively Q -Switched 1.57- m Intracavity Optical Parametric Oscillator

    Science.gov (United States)

    Yashkir, Yuri; van Driel, Henry M.

    1999-04-01

    We demonstrate an eye-safe KTP-based optical parametric oscillator (OPO) driven intracavity by a diode-pumped 1064-nm Nd:YAG laser, passively Q -switched by a Cr 4 :YAG crystal. The characteristics of this system, which operates at 1570 nm with a repetition rate as high as 50 Hz, are studied as a function of Cr 4 :YAG optical density. Under optimum conditions the OPO generates 1.5-mJ, 3.4 0.1-ns pulses in a single transverse mode. For a Cr 4 :YAG Q -switch element with an optical density of 0.5 the conversion efficiency of the intracavity energy is 45% with the ratio of OPO to Nd:YAG peak-pulse intensity exceeding unity. These and other OPO characteristics compare favorably with a simple rate equation model of the OPO dynamics.

  20. Passively Q-switched 1.57-microm intracavity optical parametric oscillator.

    Science.gov (United States)

    Yashkir, Y; van Driel, H M

    1999-04-20

    We demonstrate an eye-safe KTP-based optical parametric oscillator (OPO) driven intracavity by a diode-pumped 1064-nm Nd:YAG laser, passively Q-switched by a Cr4+:YAG crystal. The characteristics of this system, which operates at 1570 nm with a repetition rate as high as 50 Hz, are studied as a function of Cr4+:YAG optical density. Under optimum conditions the OPO generates 1.5-mJ, 3.4 +/- 0.1-ns pulses in a single transverse mode. For a Cr4+:YAG Q-switch element with an optical density of 0.5 the conversion efficiency of the intracavity energy is approximately 45% with the ratio of OPO to Nd:YAG peak-pulse intensity exceeding unity. These and other OPO characteristics compare favorably with a simple rate equation model of the OPO dynamics.

  1. Tuning characteristics of femtosecond optical parametric oscillator with broadband chirped mirrors

    Science.gov (United States)

    Stankevičiūtė, Karolina; Vengris, Mikas; Melnikas, Simas; Kičas, Simonas; Grigonis, Rimantas; Sirutkaitis, Valdas

    2015-12-01

    We present the investigation of a synchronously pumped optical parametric oscillator (SPOPO) based on beta barium borate (BBO) nonlinear crystal with broadband complementary chirped mirror pairs (CMPs). Three SPOPO cavity configurations with slightly different intracavity dispersion were explored. Dispersion properties of cavity mirrors were characterized using a white light interferometer and found to be the key factor determining the gap-free tuning range as well as simultaneous multiwavelength generation. The SPOPO is pumped by the second harmonic of a Yb:KGW oscillator and provides signal pulses tunable over a spectral range from 625 to 980 nm. Signal pulse duration ranges from 102 to 268 fs in various intracavity dispersion regimes. In addition, signal beam power in excess of 500 mW is demonstrated, corresponding to 27% conversion efficiency from pump to signal wave.

  2. Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator.

    Science.gov (United States)

    Samanta, G K; Ebrahim-Zadeh, M

    2011-08-15

    We report a cw optical parametric oscillator (OPO) in a novel architecture comprising two nonlinear crystals in a single cavity, providing two independently tunable pairs of signal and idler wavelengths. Based on a singly resonant oscillator design, the device permits access to arbitrary signal and idler wavelength combinations within the parametric gain bandwidth and reflectivity of the OPO cavity mirrors. Using two identical 30 mm long MgO:sPPLT crystals in a compact four-mirror ring resonator pumped at 532 nm, we generate two pairs of signal and idler wavelengths with arbitrary tuning across 850-1430 nm, and demonstrate a frequency separation in the resonant signal waves down to 0.55 THz. Moreover, near wavelength-matched condition, coherent energy coupling between the resonant signal waves, results in reduced operation threshold and increased output power. A total output power >2.8 W with peak-to-peak power stability of 16% over 2 h is obtained. © 2011 Optical Society of America

  3. Large-scale Ising spin network based on degenerate optical parametric oscillators

    CERN Document Server

    Inagaki, Takahiro; Hamerly, Ryan; Inoue, Kyo; Yamamoto, Yoshihisa; Takesue, Hiroki

    2016-01-01

    Simulating a network of Ising spins with physical systems is now emerging as a promising approach for solving mathematically intractable problems. Here we report a large-scale network of artificial spins based on degenerate optical parametric oscillators (DOPO), paving the way towards a photonic Ising machine capable of solving difficult combinatorial optimization problems. We generated >10,000 time-division-multiplexed DOPOs using dual-pump four-wave mixing (FWM) in a highly nonlinear fibre (HNLF) placed in a fibre cavity. Using those DOPOs, a one-dimensional (1D) Ising model was simulated by introducing nearest-neighbour optical coupling. We observed the formation of spin domains and found that the domain size diverged near the DOPO threshold, which suggests that the DOPO network can simulate the behavior of low-temperature Ising spins.

  4. Exploiting vibrational strong coupling to make an optical parametric oscillator out of a Raman laser

    CERN Document Server

    del Pino, Javier; Feist, Johannes

    2016-01-01

    When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this work we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the mid-infrared.

  5. Exploiting Vibrational Strong Coupling to Make an Optical Parametric Oscillator Out of a Raman Laser

    Science.gov (United States)

    del Pino, Javier; Garcia-Vidal, Francisco J.; Feist, Johannes

    2016-12-01

    When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this Letter, we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the midinfrared.

  6. Fiber optical parametric oscillator based on highly nonlinear dispersion-shifted fiber

    Institute of Scientific and Technical Information of China (English)

    Sigang YANG; Kenneth K. Y. WONG; Minghua CHEN; Shizhong XIE

    2013-01-01

    The development of fiber optical parametric oscillators (FOPO) based on highly nonlinear dispersion- shifted fiber is reviewed in this paper. Firstly, the background and motivation are introduced, and it is pointed out that the FOPO is promising to act as optical source in non-conventional wavelength bands. Subsequently, the context focuses principally on the problem of inherent multiple-longitudinal-mode characteristic of FOPO and the corresponding solutions to it. The primary technique is by locking the phase of multiple longitudinal modes. The first reported actively mode locked FOPO is also presented in this article. However, it is not probable to realize passively mode locked FOPO because of the random phase dithering of the pump required for suppressing stimulated Brillouin scattering. Furthermore, a regeneratively mode locked FOPO is demonstrated, which can generate wide band tunable radiation in non- conventional wavelengths. Besides mode locked FOPO, the single-longitudinal-mode FOPO is also introduced. Finally, potential future directions are discussed.

  7. Period and temperature tuning of cascaded optical parametric oscillator based on periodically poled LiNbO3

    Institute of Scientific and Technical Information of China (English)

    林学春; 李瑞宁; 姚爱云; 毕勇; 崔大复; 许祖彦

    2003-01-01

    We report the broadly tunable source by a cascaded optical parametric oscillator in the periodically poled LiNbO3(PPLN) with domain grating period and temperature tuning. The optical parametric oscillator was pumped by a passive Q-switched Nd:YVO4 laser. Multi-wavelength outputs from visible to infrared were obtained. The temperature of the PPLN crystal changed within the range of 70-150℃ with different periods of PPLN. The tunable range covered from 433 to 1657nm.

  8. Ultra-Low Threshold Power On-Chip Optical Parametric Oscillation in AlGaAs-On-Insulator Microresonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2015-01-01

    We present a record-low threshold power of 7 mW at ~1.55 µm for on-chip optical parametric oscillation using a high quality factor micro-ring-resonator in a new nonlinear photonics platform: AlGaAs-on-insulator......We present a record-low threshold power of 7 mW at ~1.55 µm for on-chip optical parametric oscillation using a high quality factor micro-ring-resonator in a new nonlinear photonics platform: AlGaAs-on-insulator...

  9. Continuous-wave, two-crystal, singly-resonant optical parametric oscillator: theory and experiment.

    Science.gov (United States)

    Samanta, G K; Aadhi, A; Ebrahim-Zadeh, M

    2013-04-22

    We present theoretical and experimental study of a continuous-wave, two-crystal, singly-resonant optical parametric oscillator (T-SRO) comprising two identical 30-mm-long crystals of MgO:sPPLT in a four- mirror ring cavity and pumped with two separate pump beams in the green. The idler beam after each crystal is completely out-coupled, while the signal radiation is resonant inside the cavity. Solving the coupled amplitude equations under undepleted pump approximation, we calculate the maximum threshold reduction, parametric gain acceptance bandwidth and closest possible attainable wavelength separation in arbitrary dual-wavelength generation and compare with the experimental results. Although the T-SRO has two identical crystals, the acceptance bandwidth of the device is equal to that of a single-crystal SRO. Due to the division of pump power in two crystals, the T-SRO can handle higher total pump power while lowering crystal damage risk and thermal effects. We also experimentally verify the high power performance of such scheme, providing a total output power of 6.5 W for 16.2 W of green power at 532 nm. We verified coherent energy coupling between the intra-cavity resonant signal waves resulting Raman spectral lines. Based on the T-SRO scheme, we also report a new technique to measure the temperature acceptance bandwidth of the single-pass parametric amplifier across the OPO tuning range.

  10. Quantum State Engineering of Light with Continuous-wave Optical Parametric Oscillators

    Science.gov (United States)

    Morin, Olivier; Liu, Jianli; Huang, Kun; Barbosa, Felippe; Fabre, Claude; Laurat, Julien

    2014-01-01

    Engineering non-classical states of the electromagnetic field is a central quest for quantum optics1,2. Beyond their fundamental significance, such states are indeed the resources for implementing various protocols, ranging from enhanced metrology to quantum communication and computing. A variety of devices can be used to generate non-classical states, such as single emitters, light-matter interfaces or non-linear systems3. We focus here on the use of a continuous-wave optical parametric oscillator3,4. This system is based on a non-linear χ2 crystal inserted inside an optical cavity and it is now well-known as a very efficient source of non-classical light, such as single-mode or two-mode squeezed vacuum depending on the crystal phase matching. Squeezed vacuum is a Gaussian state as its quadrature distributions follow a Gaussian statistics. However, it has been shown that number of protocols require non-Gaussian states5. Generating directly such states is a difficult task and would require strong χ3 non-linearities. Another procedure, probabilistic but heralded, consists in using a measurement-induced non-linearity via a conditional preparation technique operated on Gaussian states. Here, we detail this generation protocol for two non-Gaussian states, the single-photon state and a superposition of coherent states, using two differently phase-matched parametric oscillators as primary resources. This technique enables achievement of a high fidelity with the targeted state and generation of the state in a well-controlled spatiotemporal mode. PMID:24961685

  11. Usefulness of a wavelength tunable optical parametric oscillator laser on photodynamic therapy

    Science.gov (United States)

    Nishiwaki, Yoshiro; Yoshida, Takato O.; Nakamura, Satoshi; Baba, Shozo; Matsusawa, Eiji; Suzuki, Hideo; Hirano, Toru

    1995-03-01

    By rotating the optical axis of a nonlinear optical crystal ((beta) -BaB2O4), a tunable laser beam could be obtained from an optical parametric oscillator (OPO) laser. When the crystal was optically pumped by the third harmonics of the 1064 nm Nd:YAG laser, we had a coherent beam from 410 nm through 2550 nm continuously without changing the optical cavity. We compared photodynamic therapy (PDT) effects of two photosensitizers, phenophorbide a(Phd) and Photosan-3(Ph-3, hematoporphyrin-polyester), on Wistar rat liver. Twenty-four hours after sensitization (5 mg/kg i.v.), 670 nm and 630 nm light (75 mW/cm2) was irradiated for Phd and Ph-3 respectively at energy doses of 25, 50, and 100 J/cm2. The rats were sacrificed 24 hours after laser irradiation and analyzed pathologically. Phd produced more severe necrosis than Ph-3. Twenty-five J/cm2 of Phd was identical with 100 J/cm2 of Ph-3. Next, we treated HeLa cell tumors of nude mice by Phd 670 nm PDT and Ph-3 630 nm PDT. The PDT effects of the two photosensitizers on HeLa cell tumors were similar to those on normal liver tissue. In conclusion the OPO laser could make it possible to compare PDT effects of photosensitizers by activating them with their matched wavelengths.

  12. Efficient monolithic MgO:LiNbO3 singly resonant optical parametric oscillator

    Science.gov (United States)

    Kozlovsky, W. J.; Gustafson, E. K.; Eckardt, R. C.; Byer, R. L.

    1988-01-01

    A monolithic MgO:LiNbO3 singly resonant optical parametric oscillator (OPO) was operated as both a standing-wave and a ring-geometry resonator. The OPO was pumped by the second harmonic of an amplified single-mode diode-laser-pumped Nd:YAG laser. Pump depletions of greater than 60 percent were observed when pumping four times greater than the 35-W threshold. The OPO output at the resonant signal tuned with temperature from 834 to 958 nm, while the corresponding idler tuned from 1.47 to 1.2 microns. The spectral characteristics of the OPO signal output and the relative merits of a standing wave versus a ring geometry are discussed.

  13. High efficiency terahertz-wave photonic crystal fiber optical parametric oscillator.

    Science.gov (United States)

    Li, Shaopeng; Liu, Hongjun; Huang, Nan; Sun, Qibing; Li, Xuefeng

    2012-08-01

    We theoretically propose phase matched terahertz (THz)-wave generation via degenerate four-wave mixing (FWM) in a fiber optical parametric oscillator (FOPO) with our newly designed photonic crystal fiber (PCF). Perfect phase matching is realized when we locate the pump wavelength in the normal group-velocity dispersion (GVD) regime. The generated THz-wave can be tuned from 4.7578 to 5.9015 THz by varying the pump wavelength. Moreover, peak power of 27.38 W at 5.9015 THz with conversion efficiency of 1.37% is realized when the pump peak power of 2000 W is at 4.675 μm in our FOPO.

  14. Off-axis QEPAS using a pulsed nanosecond Mid-Infrared Optical Parametric Oscillator

    CERN Document Server

    Lassen, Mikael; Feng, Yuyang; peremans, Andre; Petersen, Jan C

    2016-01-01

    A trace gas sensor, based on quartz-enhanced photoacoustic spectroscopy (QEPAS), consisting of two acoustically coupled micro-resonators (mR) with an o?-axis 20 kHz quartz tuning fork (QTF) is demonstrated. The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). The sensor is used for spectroscopic measurements on methane in the 3.1 um to 3.5 um wavelength region with a resolution bandwidth of 1 cm^-1 and a detection limit of 0.8 ppm. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s and that the background noise is solely due to the thermal noise of the QTF.

  15. High-Power Blue Light Generation by External Frequency Doubling of an Optical Parametric Oscillator

    Institute of Scientific and Technical Information of China (English)

    毕勇; 张鸿博; 孙志培; 包照日格图; 李惠清; 孔宇鹏; 林学春; 王桂玲; 张杰; 侯玮; 李瑞宁; 崔大复; 许祖彦; 宋立维; 章萍; 崔建峰; 樊仲维

    2003-01-01

    We report on an all-solid-state high-power quasi-continuous blue light source by the frequency doubling of a signal wave from an optical parametric oscillator(OPO).A 50-mm-long LiB3O5(LBO)crystal is used for the OPO,which is pumped by a diode-pumped Nd:YAG green laser(10kHz,50ns).Tunable blue emission in a new nonlinear crystal BiB3O6(BiBO)is obtained with a wavelength range from 450 to 495 nm.The average power of the signal output is as high as 9.3 W from 924 to 970nm.The maximum output of the blue laser with the second harmonic walk-off compensation is 1.3 W average power at 470nm for 6.2 W of OPO signal light at 940nm.

  16. Three-photon absorption in optical parametric oscillators based on OP-GaAs

    Science.gov (United States)

    Heckl, Oliver H.; Bjork, Bryce J.; Winkler, Georg; Bryan Changala, P.; Spaun, Ben; Porat, Gil; Bui, Thinh Q.; Lee, Kevin F.; Jiang, Jie; Fermann, Martin E.; Schunemann, Peter G.; Ye, Jun

    2016-11-01

    We report on the first singly-resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 ${\\mu}$m within ~3 dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs. We discovered strong three photon absorption with a coefficient of 0.35 ${\\pm}$ 0.06 cm${^3}$/GW${^2}$ for our OP-GaAs sample, which limits the output power of these OPOs as mid-IR light sources. We present a detailed study of the three photon loss on the performance of both the SR and DR-OPOs, and compare them to those without this loss mechanism.

  17. Three Photon Absorption in Optical Parametric Oscillators Based on OP-GaAs

    CERN Document Server

    Heckl, Oliver H; Winkler, Georg; Changala, P Bryan; Spaun, Ben; Porat, 1 Gil; Bui, Thinh Q; Lee, Kevin F; Jiang, Jie; Fermann, Martin; Schunemann, Peter G; Ye, Jun

    2016-01-01

    We report on the first singly-resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 ${\\mu}$m within ~3 dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs. We discovered strong three photon absorption with a coefficient of 0.35 ${\\pm}$ 0.06 cm${^3}$/GW${^2}$ for our OP-GaAs sample, which limits the output power of these OPOs as mid-IR light sources. We present a detailed study of the three photon loss on the performance of both the SR and DR-OPOs, and compare them to those without this loss mechanism.

  18. Yellow nanosecond sum-frequency generating optical parametric oscillator using periodically poled LiNbO3

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Bruun-Larsen, M.; Balle-Petersen, O.;

    2008-01-01

    Nanosecond yellow light has been generated through simultaneously phase matched sum-frequency generation and optical parametric oscillation in a periodically poled LiNbO3 crystal. 300 mW of yellow light at a wavelength of 586 nm has been generated from 1.3 W of laser power from a Q-switched Yb...

  19. Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator

    NARCIS (Netherlands)

    Verbraak, H.; Ngai, A.K.Y.; Persijn, S.T.; Harren, F.J.M.; Linnartz, H.

    2007-01-01

    A sensitive infrared detection scheme is presented in which continuous wave cavity ring down spectroscopy is used to record rovibrational spectra of molecular ions in direct absorption through supersonically expanding planar plasma. A cw optical parametric oscillator is used as a light source and

  20. Broadband Continuous-Wave Multi-Harmonic Optical Comb Based on a Frequency Division-by-Three Optical Parametric Oscillator

    Directory of Open Access Journals (Sweden)

    Yen-Yin Lin

    2014-11-01

    Full Text Available We report a multi-watt broadband continuous-wave multi-harmonic optical comb based on a frequency division-by-three singly-resonant optical parametric oscillator. This cw optical comb is frequency-stabilized with the help of a beat signal derived from the signal and frequency-doubled idler waves. The measured frequency fluctuation in one standard deviation is ~437 kHz. This is comparable to the linewidth of the pump laser which is a master-oscillator seeded Yb:doped fiber amplifier at ~1064 nm. The measured powers of the fundamental wave and the harmonic waves up to the 6th harmonic wave are 1.64 W, 0.77 W, 3.9 W, 0.78 W, 0.17 W, and 0.11 W, respectively. The total spectral width covered by this multi-harmonic comb is ~470 THz. When properly phased, this multi-harmonic optical comb can be expected to produce by Fourier synthesis a light source consisting of periodic optical field waveforms that have an envelope full-width at half-maximum of 1.59 fs in each period.

  1. Vernier effect within a versatile femtosecond optical parametric oscillator for broad-tunable, high-repetition-rate oscillator

    CERN Document Server

    Jin, Yuwei; Harren, Frans J M; Mandon, Julien

    2015-01-01

    Within a synchronously pumped optical parametric oscillator (SPOPO), the inherent synchronism between the pump and the resonating signal is the magic to partly transfer the coherence property of the pump to the signal. In our demonstration, Vernier effect is observed within a femtosecond SPOPO by simply detuning the FSR of the cavity, generating signal pulses at tunable repetition rate from several GHz to 1 THz with a maximum 22.58 nm full width half maximum (FWHM) bandwidth supporting 160 fs pulses covering the C- and L-bands of the telecom wavelength region. This technique offers a simple method of active ?filtering of dense frequency comb lines instead of using Fabry-P?erot (FP) cavities with complex locking system for astro-comb generation. Beside, as a promising source for frequency combs with tunable and large comb-spacing, it offers potential opportunities for applications such as high speed coherent data transmission, line-by-line pulse shaping, optical clocks and precision metrology.

  2. Large-scale Ising spin network based on degenerate optical parametric oscillators

    Science.gov (United States)

    Inagaki, Takahiro; Inaba, Kensuke; Hamerly, Ryan; Inoue, Kyo; Yamamoto, Yoshihisa; Takesue, Hiroki

    2016-06-01

    Solving combinatorial optimization problems is becoming increasingly important in modern society, where the analysis and optimization of unprecedentedly complex systems are required. Many such problems can be mapped onto the ground-state-search problem of the Ising Hamiltonian, and simulating the Ising spins with physical systems is now emerging as a promising approach for tackling such problems. Here, we report a large-scale network of artificial spins based on degenerate optical parametric oscillators (DOPOs), paving the way towards a photonic Ising machine capable of solving difficult combinatorial optimization problems. We generate >10,000 time-division-multiplexed DOPOs using dual-pump four-wave mixing in a highly nonlinear fibre placed in a cavity. Using those DOPOs, a one-dimensional Ising model is simulated by introducing nearest-neighbour optical coupling. We observe the formation of spin domains and find that the domain size diverges near the DOPO threshold, which suggests that the DOPO network can simulate the behaviour of low-temperature Ising spins.

  3. Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator.

    Science.gov (United States)

    Kokabee, O; Esteban-Martin, A; Ebrahim-Zadeh, M

    2010-10-01

    We report a high-power picosecond optical parametric oscillator (OPO) synchronously pumped by a Yb fiber laser at 1.064 μm, providing 11.7 W of total average power in the near to mid-IR at 73% extraction efficiency. The OPO, based on a 50 mm MgO:PPLN crystal, is pumped by 20.8 ps pulses at 81.1 MHz and can simultaneously deliver 7.1 W of signal at 1.56 μm and 4.6 W of idler at 3.33 μm for 16 W of pump power. The oscillator has a threshold of 740 mW, with maximum signal power of 7.4 W at 1.47 μm and idler power of 4.9 W at 3.08 μm at slope efficiencies of 51% and 31%, respectively. Wavelength coverage across 1.43-1.63 μm (signal) and 4.16-3.06 μm (idler) is obtained, with a total power of ~11 W and an extraction efficiency of ~68%, with pump depletion of ~78% maintained over most of the tuning range. The signal and idler output have a single-mode spatial profile and a peak-to-peak power stability of ±1.8% and ±2.9% over 1 h at the highest power, respectively. A signal pulse duration of 17.3 ps with a clean single-peak spectrum results in a time-bandwidth product of ~1.72, more than four times below the input pump pulses.

  4. Nearly-Noncritical Phase Matching in MgO:LiNbO3 Optical Parametric Oscillators

    Institute of Scientific and Technical Information of China (English)

    姚建铨; 于意仲; 王鹏; 王涛; 张百钢; 丁欣; 陈进; H.J.Peng; H.S.Kwok

    2001-01-01

    We have proposed and demonstrated a nearly-noncritical phase-matched (NCPM) optical parametric oscillation (OPO) in an MgO:LiNbO3 crystal with 5 mol% MgO by temperature tuning. By giving up perfect NCPM, the practical tuning range for the OPO is increased by two times. For the crystal, the operated temperature decreases with the phase-matching angle at degeneracy. With a cutting angle of 82° instead of the noncritical case of 90°, the tuning range was increased. In order to obtain a sufficiently high output pulse energy for both signal and idler throughout the entire tuning range, five sets of mirrors were used for the resonator. The tuning range of the OPO was 800 - 1700 nm with temperatures tuning from 83°C to 224.2°C. The output energy was about 6.45 mJ with a conversion efficiency of nearly 13%. The bandwidth of the output was 1.0 - L1 nm.

  5. Massively parallel dual-comb molecular detection with subharmonic optical parametric oscillators

    CERN Document Server

    Smolski, Viktor O; Xu, Jia; Vodopyanov, Konstantin L

    2016-01-01

    Mid-infrared (mid-IR) spectroscopy offers unparalleled sensitivity for the detection of trace gases, solids and liquids, which is based on the existence of strong telltale vibrational bands in this part of the spectrum. It was shown more than a decade ago that a dual-comb Fourier spectroscopy could provide superior spectral coverage combined with high resolution and extremely fast data acquisition. Capabilities of this method were limited because of difficulty of producing twins of mutually coherent frequency combs in the mid- IR. Here we report a phase-coherent and broadband dual-comb system that is based on a pair of subharmonic (frequency-divide-by-two) optical parametric oscillators, pumped in turn by two phase-locked thulium fiber lasers at 2-micron wavelength. We demonstrate simultaneous detection of multiple molecular species in the whole band of 3.2-5.3 microns (frequency span 1200 cm^{-1}) augmented by the pump laser band of 1.85-2 microns (span 400 cm^{-1}), with spectral resolution 0.01-0.07 cm^{-1...

  6. Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz

    Science.gov (United States)

    Aadhi, A.; Sharma, Varun; Chaitanya, N. Apurv; Samanta, G. K.

    2017-01-01

    We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz. PMID:28262823

  7. Fiber-laser-based green-pumped picosecond MgO:sPPLT optical parametric oscillator.

    Science.gov (United States)

    Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2013-12-15

    We report a stable, high-power, picosecond optical parametric oscillator (OPO) at 160 MHz repetition rate synchronously pumped by a frequency-doubled mode-locked Yb-fiber laser at 532 nm and tunable in the near-infrared, across 874-1008 nm (signal) and 1126-1359 nm (idler). Using a 30-mm-long MgO:sPPLT crystal, the OPO provides average output power up to 780 mW in the signal at 918.58 nm and 600 mW in the idler at 1242 nm. The device operates stably over many days, even close to degeneracy, exhibiting passive long-term power stability better than 1.8% rms in the signal and 2.4% rms in the idler over 2.5 h at a temperature of 55°C. We investigate spectral and temporal characteristics of the signal pulses under different conditions and demonstrate cavity-length tuning enabled by the dispersion properties of MgO:sPPLT. The output signal pulses have a duration of 2.4 ps at 967 nm.

  8. Development of Optical Parametric Oscillator Tunable in the Range 970-1460 nm

    Directory of Open Access Journals (Sweden)

    S. P. Singh

    2011-07-01

    Full Text Available Optical parametric oscillator (OPO tunable in the range 970-1460 nm has been developed using bet barium borate (BBO crystal as the gain medium and second harmonic of Nd:YAG laser as pump source. Two sets of resonators were used to cover the range; first was nearly degenerate (970-1180 nm and the second was nondegenerate (1240-1460 nm. The measured threshold pump pulse energy was nearly 8 mJ. Maximum signal pulse energy of about 14 mJ was obtained for pump pulse energy of nearly 31 mJ. Power scaling efficiency was about 70 per cent. The signal pulse width was ~5 ns corresponding to the pump pulse width of ~ 9 ns. OPO signal beam quality was Gaussian although the pump beam was top-hat multimode.Defence Science Journal, 2011, 61(4, pp.377-382, DOI:http://dx.doi.org/10.14429/dsj.61.562

  9. A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases

    Science.gov (United States)

    Robinson, Iain; Jack, James W.; Rae, Cameron F.; Moncrieff, John B.

    2015-10-01

    We report the development of a differential absorption lidar instrument (DIAL) designed and built specifically for the measurement of anthropogenic greenhouse gases in the atmosphere. The DIAL is integrated into a commercial astronomical telescope to provide high-quality receiver optics and enable automated scanning for three-dimensional lidar acquisition. The instrument is portable and can be set up within a few hours in the field. The laser source is a pulsed optical parametric oscillator (OPO) which outputs light at a wavelength tunable near 1.6 μm. This wavelength region, which is also used in telecommunications devices, provides access to absorption lines in both carbon dioxide at 1573 nm and methane at 1646 nm. To achieve the critical temperature stability required for a laserbased field instrument the four-mirror OPO cavity is machined from a single aluminium block. A piezoactuator adjusts the cavity length to achieve resonance and this is maintained over temperature changes through the use of a feedback loop. The laser output is continuously monitored with pyroelectric detectors and a custom-built wavemeter. The OPO is injection seeded by a temperature-stabilized distributed feedback laser diode (DFB-LD) with a wavelength locked to the absorption line centre (on-line) using a gas cell containing pure carbon dioxide. A second DFB-LD is tuned to a nearby wavelength (off-line) to provide the reference required for differential absorption measurements. A similar system has been designed and built to provide the injection seeding wavelengths for methane. The system integrates the DFB-LDs, drivers, locking electronics, gas cell and balanced photodetectors. The results of test measurements of carbon dioxide are presented and the development of the system is discussed, including the adaptation required for the measurement of methane.

  10. Mid-infrared generation based on a periodically poled LiNbO3 optical parametric oscillator

    Institute of Scientific and Technical Information of China (English)

    Lin Xue-Chun; Wu Ling-An; Xu Zu-Yan; Kong Yu-Peng; Zhang Ying; Zhang Jie; Yao Ai-Yun; Bi Yong; Sun Zhi-Pei; Cui Da-Fu; Li Rui-Ning

    2004-01-01

    We report a nanosecond Nd:YVO4-pumped optical parametric oscillator (OPO) based on periodically poled LiNbOs (PPLN). Tuning is achieved in this experiment by varying the temperature and period of the PPLN. The design of double-pass singly resonant oscillator (DSRO) and confocal cavity enables the OPO threshold to be lowered considerably, resulting in a simple, compact, all-solid-state configuration with the mid-infrared idler powers of up to 466mW at 3.41μm.

  11. Measurements of pattern formation in a confocal optical parametrical oscillator with applications in quantum optics

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Buchhave, Preben

    We describe simultaneous measurements of signal/idler near field and far field patterns of a 2nd order nonlinear multi-mode parametric downconverter. We also describe the use of auto- and cross correlation techniques to obtain statistical data.......We describe simultaneous measurements of signal/idler near field and far field patterns of a 2nd order nonlinear multi-mode parametric downconverter. We also describe the use of auto- and cross correlation techniques to obtain statistical data....

  12. Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal

    Science.gov (United States)

    Huo, Meiru; Qin, Jiliang; Yan, Zhihui; Jia, Xiaojun; Peng, Kunchi

    2016-11-01

    As important members of nonclassical states of light, squeezed states and entangled states are basic resources for realizing quantum measurements and constructing quantum information networks. We experimentally demonstrate that the two types of nonclassical optical states can be generated from an optical parametric oscillator (OPO) involving a periodically poled KTiOPO4 crystal with a domain-inversion period of 51.7 μm, by changing the polarization of the pump laser. When a vertically polarized 671 nm laser is used to pump the OPO, the intra-cavity frequency-down-conversion with type-0 quasi-phase matching is realized and the output optical beam is a quadrature amplitude squeezed state of light at the wavelength of 1342 nm with the fluctuation of quadrature component of 3.17 dB below the quantum noise limit (QNL). If the pump laser is horizontally polarized, the condition of the type-II quasi-phase matching is satisfied and the output optical beam becomes Einstein-Podolsky-Rosen entangled state of light with correlation variances of both quadrature amplitude-sum and quadrature phase-difference of 2.2 dB below the corresponding QNL.

  13. Cascaded Orientation-Patterned Gallium Arsenide Optical Parametric Oscillator for Improved Longwave Infrared Conversion Efficiency

    Science.gov (United States)

    Feaver, Ryan K.

    Optical parametric oscillators (OPOs) utilizing quasi-phase matched materials offer an appealing alternative to direct laser sources. Quasi-phase matched materials provide a useful alternative to traditional birefringent nonlinear optical materials and through material engineering, higher nonlinear coefficients can now be accessed. Orientation patterned gallium arsenide (OPGaAs) is an ideal material because of its broad IR transmission and large nonlinear coefficient. In contrast to ferroelectric materials, such as lithium niobate, where the pattern is fabricated through electric poling, zincblende materials, like OPGaAs, are grown epitaxially with the designed pattern. Generating longwave output from a much shorter pump wavelength, however, is relatively inefficiency due to the large quantum defect when compared to similar devices operating in the 3 - 5 mum regime. One method to increase pump to idler conversion efficiency is to recycle the undesired and higher energy signal photons into additional idler photons via a second nonlinear stage. An external amplifier stage can be utilized, where the signal and idler from the OPO are sent to a second nonlinear crystal in which the idler is amplified at the expense of the signal. Alternatively, the second crystal can be placed within the original OPO cavity where the signal from the first-stage acts as the pump for the second crystal and the resonant intensity of the signal is higher. Pumping the second crystal within the OPO should lead to higher conversion efficiency into the longwave idler. The grating period needed for the second crystal to use the signal from the first crystal to produce additional idler has the fortuitous advantage that it will not phase match to the original pump wavelength, avoiding unwanted nonlinear interactions. Therefore, a simple linear cavity can be utilized where the pump from the first-stage will simply propagate through the second crystal without undesired results. Without this feature

  14. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  15. Low-Threshold Mid-Infrared Optical Parametric Oscillator Using Periodically Poled LiNbO3

    Institute of Scientific and Technical Information of China (English)

    林学春; 张瑛; 孔宇鹏; 张杰; 姚爱云; 侯玮; 崔大复; 李瑞宁; 许祖彦; 李健

    2004-01-01

    We report the generation of tunable mid-infrared optical pulses using all-solid-state pumped optical parametric oscillator in a periodically poled lithium niobate. Several ways were used to lower the threshold, resulting in a mean threshold as low as 6.5m W and an achievement of wavelength conversion in the 2.77-4.04μm spectral range. Continuous tuning range from 2.97 to 3.25 μm was achieved. The maximum idler output power of 466 m W at the wavelength of 3.41 μm was obtained, which represents an optical-to-optical conversion efficiency of 19%from incident pump power to the idler output.

  16. Reduced models and design principles for half-harmonic generation in synchronously-pumped optical parametric oscillators

    CERN Document Server

    Hamerly, Ryan; Jankowski, Marc; Fejer, Martin M; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-01-01

    We develop reduced models that describe half-harmonic generation in a synchronously-pumped optical parametric oscillator above threshold, where nonlinearity, dispersion, and group-velocity mismatch are all relevant. These models are based on (1) an eigenmode expansion for low pump powers, (2) a simulton-like sech-pulse ansatz for intermediate powers, and (3) dispersionless box-shaped pulses for high powers. Analytic formulas for pulse compression, degenerate vs. nondegenerate operation, and stability are derived and compared to numerical and experimental results.

  17. Frequency stabilization of the non resonant wave of a continuous-wave singly resonant optical parametric oscillator

    CERN Document Server

    Ly, Aliou; Bretenaker, Fabien

    2015-01-01

    We present an experimental technique allowing to stabilize the frequency of the non resonant wave in a singly resonant optical parametric oscillator (SRO) down to the kHz level, much below the pump frequency noise level. By comparing the frequency of the non resonant wave with a reference cavity, the pump frequency noise is imposed to the frequency of the resonant wave, and is thus subtracted from the frequency of the non resonant wave. This permits the non resonant wave obtained from such a SRO to be simultaneously powerful and frequency stable, which is usually impossible to obtain when the resonant wave frequency is stabilized.

  18. Highly Efficient Continuous-Wave Mid-Infrared Intracavity Singly Resonant Optical Parametric Oscillator Based on MgO:PPLN

    Institute of Scientific and Technical Information of China (English)

    YAN Bo-Xia; CHENG Hua; BI Yong; ZHOU Mi; WANG Dong-Dong; QI Yan; FANG Tao; WANG Bin; WANG Yan-Wei; ZHENG Guang

    2010-01-01

    @@ We present a compact all-solid-state cw mid-infrared intracavity singly resonant optical parametric oscillator(OPO)that is based on a self-fabricated 1-mm-thick 40-mm-long doped MgO periodically poled lithium niobate(MgO:PPLN).At a diode pump power of 15.6W.the compact intracavity Nd:YVO4/MgO:PPLN OPO produced 1.9 W output power at 3.19 μm,corresponding to conversion efficiency of 12.2% from the laser diode pump to OPO idler output.

  19. Optical frequency comb spectroscopy at 3-5.4 {\\mu}m with a doubly resonant optical parametric oscillator

    CERN Document Server

    Khodabakhsh, Amir; Rutkowski, Lucile; Johansson, Alexandra C; Lee, Kevin F; Jiang, Jie; Mohr, Christian; Fermann, Martin E; Foltynowicz, Aleksandra

    2016-01-01

    We present a versatile mid-infrared frequency comb spectroscopy system based on a doubly resonant optical parametric oscillator tunable in the 3-5.4 {\\mu}m range and two detection methods, a Fourier transform spectrometer (FTS) and a Vernier spectrometer. Using the FTS with a multipass cell we measure high-precision broadband absorption spectra of CH$_4$ and NO at ~3.3 {\\mu}m and ~5.2 {\\mu}m, respectively, and of atmospheric species (CH$_4$, CO, CO$_2$ and H$_2$O) in air in the signal and idler wavelength range. The figure of merit of the system is on the order of 10$^{-8}$ cm$^{-1}$ Hz$^{-1/2}$ per spectral element, and multiline fitting yields minimum detectable concentrations of 10-20 ppb Hz$^{-1/2}$ for CH$_4$, NO and CO. For the first time in the mid-infrared, we perform continuous-filtering Vernier spectroscopy using a low finesse enhancement cavity, a grating and a single detector, and measure the absorption spectrum of CH$_4$ and H$_2$O in ambient air at ~3.3 {\\mu}m.

  20. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light

    Energy Technology Data Exchange (ETDEWEB)

    Wade, A. R.; Mansell, G. L.; McRae, T. G., E-mail: Terry.Mcrae@anu.edu.au; Yap, M. J.; Ward, R. L.; Slagmolen, B. J. J.; Shaddock, D. A.; McClelland, D. E. [Centre for Gravitational Physics, Department of Quantum Science, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia); Chua, S. S. Y. [Laboratorie Kastler Brosssel, UPMC-Sorbonne Universites, CNRS, ENS-PSL Research University, College de France, Paris (France)

    2016-06-15

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10{sup −6} mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

  1. Optomechanical design and construction of a vacuum-compatible optical parametric oscillator for generation of squeezed light.

    Science.gov (United States)

    Wade, A R; Mansell, G L; McRae, T G; Chua, S S Y; Yap, M J; Ward, R L; Slagmolen, B J J; Shaddock, D A; McClelland, D E

    2016-06-01

    With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.

  2. Determination of blue-light-induced infrared absorption based on mode-matching efficiency in an optical parametric oscillator

    Science.gov (United States)

    Wang, Yajun; Yang, Wenhai; Li, Zhixiu; Zheng, Yaohui

    2017-02-01

    Non-classical squeezed states of light at a compatible atomic wavelength have a potential application in quantum information protocols for quantum states delaying or storaging. An optical parametric oscillator (OPO) with periodically poled potassium titanyl phosphate (PPKTP) is the most effective method for generating this squeezed state. However, it is a challege for the nonlinear interaction in PPKTP crystal at the D1 line of rubidium atomic, due to a strong blue-light-induced infrared absorption (BLIIRA). In this paper, we report an indirect measurement method for the BLIIRA through measuring the mode-matching efficiency in an optical parametric oscillator. In contrast to previous works, our method is not limited by the absolute power variation induced from the change of frequency conversion loss and the impedance matching originated from the change of absorption loss. Therefore, the measurement process is performed at the phase-matching condition. The measured results show that BLIIRA coefficient is quadratic dependence of blue light intensity below 1 kW per square centimeter in our PPKTP device, which will provide important basis for optimizing squeezed state generation at 795 nm.

  3. Fast, precise, and widely tunable frequency control of an optical parametric oscillator referenced to a frequency comb

    Science.gov (United States)

    Prehn, Alexander; Glöckner, Rosa; Rempe, Gerhard; Zeppenfeld, Martin

    2017-03-01

    Optical frequency combs (OFCs) provide a convenient reference for the frequency stabilization of continuous-wave lasers. We demonstrate a frequency control method relying on tracking over a wide range and stabilizing the beat note between the laser and the OFC. The approach combines fast frequency ramps on a millisecond timescale in the entire mode-hop free tuning range of the laser and precise stabilization to single frequencies. We apply it to a commercially available optical parametric oscillator (OPO) and demonstrate tuning over more than 60 GHz with a ramping speed up to 3 GHz/ms. Frequency ramps spanning 15 GHz are performed in less than 10 ms, with the OPO instantly relocked to the OFC after the ramp at any desired frequency. The developed control hardware and software are able to stabilize the OPO to sub-MHz precision and to perform sequences of fast frequency ramps automatically.

  4. Numerical modeling of mid-infrared fiber optical parametric oscillator based on the degenerated FWM of tellurite photonic crystal fiber.

    Science.gov (United States)

    Cheng, Huihui; Luo, Zhengqian; Ye, Chenchun; Huang, Yizhong; Liu, Chun; Cai, Zhiping

    2013-01-20

    Mid-infrared fiber optical parametric oscillators (MIR FOPOs) based on the degenerate four-wave mixing (DFWM) of tellurite photonic crystal fibers (PCFs) are proposed and modeled for the first time. Using the DFWM coupled-wave equations, numerical simulations are performed to analyze the effects of tellurite PCFs, single-resonant cavity, and pump source on the MIR FOPO performances. The numerical results show that: (1) although a longer tellurite PCF can decrease the pump threshold of MIR FOPOs to a few watts only, the high conversion-efficiency of MIR idler usually requires a short-length optimum PCF with low loss; (2) compared with the single-pass DFWM configurations of the MIR fiber sources published previously, the stable oscillation of signal light in single-resonant cavity can significantly promote the MIR idler output efficiency. With a suggested tellurite PCF as parametric gain medium, the theoretical prediction indicates that such a MIR FOPO could obtain a wide MIR-tunable range and a high conversion efficiency of more than 10%.

  5. High-power widely tunable all-fiber thulium-assisted optical parametric oscillator at SWIR band.

    Science.gov (United States)

    Li, Can; Chen, Nan; Wei, Xiaoming; Kang, Jiqiang; Li, Bowen; Tan, Sisi; Song, Liang; Wong, Kenneth K Y

    2016-11-15

    A novel short-wave infrared (SWIR) all-fiber thulium-assisted optical parametric oscillator (TAOPO) that exploits jointly optical parametric conversion and thulium amplification in a highly nonlinear fiber (HNLF) and thulium-doped fiber (TDF) is demonstrated. This is implemented through constructing a joint fiber line by directly fusion splicing 50 m HNLF with 1.5 m TDF. Incorporating a bidirectional-pumping scheme, i.e., forward-pumped by a step-tuned C-band pulsed laser, and simultaneously backward-pumped by an L-band continuous-wave laser, this TAOPO produces a pulsed SWIR laser at output power higher than 200 mW, signal-to-noise ratio over 40 dB, and wavelength tuning range beyond 150 nm from 1815 to 1968 nm. Via separate characterization of the HNLF and TDF joint fiber line, the tunability of the current TAOPO to shorter wavelength is only limited by the employed fiber components, while higher power could be realized by increasing the backward pump power. This TAOPO could be a promising platform for the generation of a highly functional SWIR source that facilitates applications such as bond-selective imaging of deep tissue.

  6. Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection

    Science.gov (United States)

    Ngai, A. K. Y.; Persijn, S. T.; von Basum, G.; Harren, F. J. M.

    2006-11-01

    We present a high-power (2.75 W), broadly tunable (2.75-3.83 μm) continuous-wave optical parametric oscillator based on MgO-doped periodically poled lithium niobate. Automated tuning of the pump laser, etalon and crystal temperature results in a continuous wavelength coverage up to 450 cm-1 per poling period at water in human breath were measured using photoacoustics. Methane (at 3.2 μm) and ethane (at 3.3 μm) were detected using cavity ring-down spectroscopy with detection limits of 0.16 and 0.07 parts per billion by volume, respectively. A recording of 12CH4 and 13CH4 isotopes of methane shows the ability to detect both species simultaneously at similar sensitivities.

  7. Topological defect formation in 1D and 2D spin chains realized by network of optical parametric oscillators

    CERN Document Server

    Hamerly, Ryan; Inagaki, Takahiro; Takesue, Hiroki; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-01-01

    A network of optical parametric oscillators is used to simulate classical Ising and XY spin chains. The collective nonlinear dynamics of this network, driven by quantum noise rather than thermal fluctuations, seeks out the Ising / XY ground state as the system transitions from below to above the lasing threshold. We study the behavior of this "Ising machine" for three canonical problems: a 1D ferromagnetic spin chain, a 2D square lattice, and problems where next-nearest-neighbor couplings give rise to frustration. If the pump turn-on time is finite, topological defects form (domain walls for the Ising model, winding number and vortices for XY) and their density can be predicted from a numerical model involving a linear "growth stage" and a nonlinear "saturation stage". These predictions are compared against recent data for a 10,000-spin 1D Ising machine.

  8. Single-frequency and tunable operation of a continuous intracavity-frequency-doubled singly resonant optical parametric oscillator.

    Science.gov (United States)

    My, Thu-Hien; Drag, Cyril; Bretenaker, Fabien

    2008-07-01

    A widely tunable continuous intracavity-frequency-doubled singly resonant optical parametric oscillator based on MgO-doped periodically poled stoichiometric lithium tantalate crystal is described. The idler radiation resonating in the cavity is frequency doubled by an intracavity BBO crystal. Pumped in the green, this system can provide up to 485 mW of single-frequency orange radiation. The system is continuously temperature tunable between 1170 and 1355 nm for the idler, 876 and 975 nm for the signal, and between 585 and 678 nm for the doubled idler. The free-running power and frequency stability of the system have been observed to be better than those for a single-mode dye laser.

  9. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator.

    Science.gov (United States)

    Fan, Jintao; Gu, Chenglin; Wang, Chingyue; Hu, Minglie

    2016-06-13

    We experimentally demonstrate a compact tunable, high average power femtosecond laser source in the ultraviolet (UV) regime. The laser source is based on intra-cavity frequency doubling of a temperature-tuned lithium tribotate (LBO) optical parametric oscillator (OPO), synchronously pumped at 520 nm by a frequency-doubled, Yb-fiber femtosecond laser amplifier system. By adjusting crystal temperature, the OPO can provide tunable visible to near-infrared (NIR) signal pulse, which have a wide spectral tuning range from 660 to 884 nm. Using a β-barium borate (BBO) crystal for intra-cavity frequency doubling, tunable femtosecond UV pulse are generated across 330~442 nm with up to 364 mW at 402 nm.

  10. Synchronously Pumped Femtosecond Optical Parametric Oscillator Based on MgO-Doped Periodically Poled LiNbO3

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiang-Feng; ZHONG Xin; TENG Hao; SUN Jing-Hua; WEI Zhi-Yi

    2007-01-01

    We report a femtosecond optical parametric oscillator based on MgO-doped PPLN synchronously pumped by a mode-locked Ti:sapphire laser. The wavelengths of the signal and idler are continuously tuned from 1100 to 1300 nm and from 2080 to 2930 nm, respectively, by changing the pump wavelength and the OPO cavity length.The maximum signal output power of 130 mW at the wavelength of 1225 nm is obtained, pumped by 900 mW of 800nm laser radiation. This corresponds to a total conversion efficiency of 22.1%. The signal pulse duration is measured to be 167fs by intensity autocorrelation with chirped mirrors for intracavity dispersion compensation.

  11. Threshold characteristic of intracavity optical parametric oscillator pumped by all-solid-state Q-switched laser

    Institute of Scientific and Technical Information of China (English)

    Yuye Wang; Degang Xu; Yizhong Yu; Wuqi Wen; Xifu Li; Jianquan Yao

    2008-01-01

    We derive the threshold pump intensity for a singly resonant intracavity optical parametric oscillator (IOPO)based on a temporal coupled field model.Particular attention is Paid to the dependence of the intracavity singly resonant OPO(SRO)threshold intensity on the signal wave output coupling.Meanwhile,a Nd:YAG laser pumped KTiOPO4(KTP)IOPO for eye-safe laser output is studied experimentally.The experiment is performed with four signal wave output reflectivities of 60%,70%,80%,and 90%,respectively.The measured values are in good agreement with the theoretical results.With an output coupler reflectivity of 80%,a peak power of 70 kW at 1572 nm has been obtained at a repetition rate of 3.5 kHz.The pulse width is 4.9 ns.Such investigation is helpful to identifying suitable operational regime of low pump intensity.

  12. High-peak-power, high-repetition-rate intracavity optical parametric oscillator at 1.57μm

    Institute of Scientific and Technical Information of China (English)

    Yuye Wang; Degang Xu; Yizhong Yu; Wuqi Wen; Jingping Xiong; Peng Wang; Jianquan Yao

    2007-01-01

    We report a high-peak-power, high-repetition-rate diode-side-pumped Nd:YAG Q-switched intracavity optical parametric oscillator (IOPO) at 1.57μm with a type-Ⅱ non-critically phase-matched x-cut KTP crystal. The average power of 1.15 W at 1.57μm is obtained at 4.3-kHz repetition rate. The peak power of the pulses amounts to 33.4 kW with 8-ns duration. The average conversion efficiency from Q-switched 1.064-μm-wavelength input power to OPO signal output power is up to 10.5%.

  13. Topological defect formation in 1D and 2D spin chains realized by network of optical parametric oscillators

    Science.gov (United States)

    Hamerly, Ryan; Inaba, Kensuke; Inagaki, Takahiro; Takesue, Hiroki; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-09-01

    A network of optical parametric oscillators (OPOs) is used to simulate classical Ising and XY spin chains. The collective nonlinear dynamics of this network, driven by quantum noise rather than thermal fluctuations, seeks out the Ising/XY ground state as the system transitions from below to above the lasing threshold. We study the behavior of this “Ising machine” for three canonical problems: a 1D ferromagnetic spin chain, a 2D square lattice and problems where next-nearest-neighbor couplings give rise to frustration. If the pump turn-on time is finite, topological defects form (domain walls for the Ising model, winding number and vortices for XY) and their density can be predicted from a numerical model involving a linear “growth stage” and a nonlinear “saturation stage”. These predictions are compared against recent data for a 10,000-spin 1D Ising machine.

  14. 10  GHz clock time-multiplexed degenerate optical parametric oscillators for a photonic Ising spin network.

    Science.gov (United States)

    Takesue, Hiroki; Inagaki, Takahiro

    2016-09-15

    A coherent Ising machine based on degenerate optical parametric oscillators (DOPOs) is drawing attention as a way to find a solution to the ground-state search problem of the Ising model. Here we report the generation of time-multiplexed DOPOs at a 10 GHz clock frequency. We successfully generated >50,000 DOPOs using dual-pump four-wave mixing in a highly nonlinear fiber that formed a 1 km cavity, and observed phase bifurcation of the DOPOs, which suggests that the DOPOs can be used as stable artificial spins. In addition, we demonstrated the generation of more than 1 million DOPOs by extending the cavity length to 21 km. We also confirmed that the binary numbers obtained from the DOPO phase-difference measurement passed the NIST random number test, which suggests that we can obtain unbiased artificial spins.

  15. PUMP-TUNING KTP OPTICAL PARAMETRIC OSCILLATOR WITH CONTINUOUS OUTPUT WAVELENGTH PUMPED BY A PULSED TUNABLE Ti:SAPPHIRE LASER

    Institute of Scientific and Technical Information of China (English)

    DING XIN; YAO JIAN-QUAN; YU YI-ZHONG; YU XUAN-YI; XU JING-JUN; ZHANG GUANG-YIN

    2001-01-01

    We report on the implementation of a KTP optical parametric oscillator pumped by a pulsed tunable Ti:sapphire laser. Two major improvements were achieved, including the connection of the signal and idler tuning ranges and the high-output conversion efficiency through the signal and idler tuning ranges. Both in the signal and idler, the continuous output wavelength from 1.261 to 2.532μm was obtained by varying the pump wavelength from 0.7 to 0.98μm. The maximum output pulse energy was 27.2mJ and the maximum conversion efficiency was 35.7% at 1.311μm (signal).

  16. Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals

    Science.gov (United States)

    Kaucikas, M.; Warren, M.; Michailovas, A.; Antanavicius, R.; van Thor, J. J.

    2013-02-01

    This paper describes the investigation of an optical parametric oscillator (OPO) set-up based on two beta barium borate (BBO) crystals, where the interplay between the crystal orientations, cut angles and air dispersion substantially influenced the OPO performance, and especially the angular spectrum of the output beam. Theory suggests that if two BBO crystals are used in this type of design, they should be of different cuts. This paper aims to provide an experimental manifestation of this fact. Furthermore, it has been shown that air dispersion produces similar effects and should be taken into account. An x-ray crystallographic indexing of the crystals was performed as an independent test of the above conclusions.

  17. A CrTmHo:YAG laser pumped ZnGeP2 optical parametric oscillator for mid-infrared spectroscopy

    NARCIS (Netherlands)

    Nieuwenhuis, Ab F.; Lee, Chris J.; Slot, van der Peter J.M.; Lindsay, Ian D.; Gross, Petra; Boller, K.-J.; Powers, Peter E.

    2008-01-01

    We report a singly resonant optical parametric oscillator (SRO) based on a ZnGeP2 crystal directly-pumped by a lamp-pumped Q-switched CrTmHo:YAG laser. The IR wavelength was tuneable from 4.7 μm to 7.8 μm via crystal angle tuning. A maximum optical to optical efficiency of 56% was obtained from pump

  18. A CrTmHo:YAG laser pumped ZnGeP2 optical parametric oscillator for mid-infrared spectroscopy

    NARCIS (Netherlands)

    Nieuwenhuis, Albert F.; van der Slot, Petrus J.M.; Lee, Christopher James; Lindsay, I.D.; Gross, P.; Boller, Klaus J.; Powers, Peter E.

    2008-01-01

    We report a singly resonant optical parametric oscillator (SRO) based on a ZnGeP2 crystal directly-pumped by a lamp-pumped Q-switched CrTmHo:YAG laser. The IR wavelength was tuneable from 4.7 μm to 7.8 μm via crystal angle tuning. A maximum optical to optical efficiency of 56% was obtained from pump

  19. One-Watt level mid-IR output, singly resonant, continuous-wave optical parametric oscillator pumped by a monolithic diode laser

    NARCIS (Netherlands)

    Nieuwenhuis, Albert F.; Lee, Christopher James; Sumpf, Bernd; van der Slot, Petrus J.M.; Erbert, Götz; Boller, Klaus J.

    2010-01-01

    We report more than 1.1 Watt of idler power at 3373 nm in a singly resonant optical parametric oscillator (SRO), directly pumped by a single-frequency monolithic tapered diode laser. The SRO is based on a periodically poled MgO:LiNbO3 crystal in a four mirror cavity and is excited by 8.05 W of 1062

  20. Optical parametric oscillators synchronously pumped by fundamental and second harmonic radiation of femtosecond Yb:KGW laser

    Science.gov (United States)

    StankevičiÅ«tÄ--, K.; PipinytÄ--, I.; Vengelis, J.; MarcinkevičiÅ«tÄ--, A.; Å uminas, R.; Grigonis, R.; Eckardt, R. C.; Sirutkaitis, V.

    2013-09-01

    We present experimental data obtained during investigation of synchronously pumped optical parametric oscillators (SPOPO's) pumped by fundamental (1030 nm) and second harmonic (515 nm) radiation of mode-locked Yb:KGW laser, providing 105 fs pulses at 76 MHz repetition rate with an average power of 4 W. Different nonlinear crystals such as beta barium borate (BBO), and periodically poled lithium niobate (PPLN) and MgO doped PPLN (MgO:PPLN) were tested to estimate wavelength tuning capabilities and SPOPO's efficiency. Rotation of BBO nonlinear crystal and SPOPO's cavity length variation and, in the case of SPOPO based on PPLN, change of grating period and cavity length allowed signal wavelength tuning in 630 - 1030 nm and 1350 - 1700 nm spectral ranges, respectively. Parametric light conversion from pump power to signal power efficiency was as high as 25 %. Including the idler pulses the tuning ranges were from 630 to 2400 nm and from 1350 to 4000 nm in case of BBO and PPLN crystals, respectively. SPOPO based on BBO wsithout intracavity group velocity dispersion (GVD) compensation generates longer than transform limited pulses, so SPOPO based on BBO with dispersive prisms were investigated.

  1. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    E Kh Akhmedov

    2000-01-01

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we review the parametric resonance of neutrino oscillations in matter. In particular, physical interpretation of the effect and the prospects of its experimental observation in oscillations of solar and atmospheric neutrinos in the earth are discussed.

  2. High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT.

    Science.gov (United States)

    Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2011-07-01

    We report a stable, high-power, cw, mid-IR optical parametric oscillator using MgO-doped stoichiometric periodically poled LiTaO₃ (MgO:sPPLT) pumped by a Yb fiber laser at 1064 nm. The singly resonant oscillator (SRO), based on a 30 mm long crystal, is tunable over 430 nm from 3032 to 3462 nm and can generate as much as 5.5 W of mid-IR output power, with >4 W of over 60% of the tuning range and under reduced thermal effects, enabling room temperature operation. Idler power scaling measurements at ~3.3 μm are compared with an MgO-doped periodically poled LiNbO₃ cw SRO, confirming that MgO:sPPLT is an attractive material for multiwatt mid-IR generation. The idler output at 3299 nm exhibits a peak-to-peak power stability better than 12.8% over 5 h and frequency stability of ~1 GHz, while operating close to room temperature, and has a linewidth of ~0.2 nm, limited by the resolution of the wavemeter. The corresponding signal linewidth at 1570 nm is ~21 MHz.

  3. Thermal lensing in silver gallium selenide parametric oscillator crystals.

    Science.gov (United States)

    Marquardt, C L; Cooper, D G; Budni, P A; Knights, M G; Schepler, K L; Dedomenico, R; Catella, G C

    1994-05-20

    We performed an experimental investigation of thermal lensing in silver gallium selenide (AgGaSe(2)) optical parametric oscillator crystals pumped by a 2-µm laser at ambient temperature. We determined an empirical expression for the effective thermal focusing power in terms of the pump power, beam diameter, crystal length, and absorption coefficient. This relation may be used to estimate average power limitations in designing AgGaSe(2) optical parametric oscillators. We also demonstrated an 18% slope efficiency from a 2-µm pumped AgGaSe(2) optical parametric oscillator operated at 77 K, at which temperature thermal lensing is substantially reduced because of an increase in the thermal conductivity and a decrease in the thermal index gradient dn/dT. Cryogenic cooling may provide an additional option for scaling up the average power capability of a 2-µm pumped AgGaSe(2) optical parametric oscillator.

  4. Parametrization of the driven betatron oscillation

    Directory of Open Access Journals (Sweden)

    R. Miyamoto

    2008-08-01

    Full Text Available An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent transverse beam oscillations in a synchrotron. By observing this driven coherent oscillation, the linear optical parameters can be directly measured at locations of the beam position monitors. The driven oscillations induced by an AC dipole will generate a phase space ellipse which differs from that of free oscillations. If not properly accounted for, this difference can lead to misinterpretations of the actual optical parameters, for instance, 6% or more in the cases of the Tevatron, RHIC, or LHC. This paper shows that the effect of an AC dipole on the observed linear optics is identical to that of a thin lens quadrupole. By introducing a new amplitude function to describe this new phase space ellipse, the motion produced by an AC dipole becomes easier to interpret. The introduction of this new amplitude function also helps measurements of the normal Courant-Snyder parameters based on beam position data taken under the influence of an AC dipole. This new parametrization of driven oscillations is presented and is used to interpret data taken in the FNAL Tevatron using an AC dipole.

  5. Study and realisation of a miniature optical parametric oscillator; Etude et realisation d`un oscillateur parametrique optique miniature

    Energy Technology Data Exchange (ETDEWEB)

    Fulop, L.

    1998-10-09

    We used micro-chip lasers developed in LETI to pump a miniature Optical Parametric Oscillator (OPO). The micro-chip lasers can be fabricated at very low cost, using collective fabrication processes. The micro-chip lasers we used are Nd:YAG lasers, passively Q-switched by a Cr{sup 4+}:YAG saturable absorber. They are pumped with 1 W standard laser diodes and emit pulses which characteristics are a few {mu}J energies and several kHz repetition rates. The main problem in pumping an OPO with such a micro-chip laser is to reach its oscillation threshold. We are calculated this threshold and showed that it will be impossible to pump an extra-cavity OPO with a micro-chip laser. We first worked with an extra-cavity OPO based on the non-critical-phase-matching conversion 1.064 {mu}m{yields}1.572 {mu}m + 3.293 {mu}m in a KTP crystal, pumped with a mJ energy laser. In spite of good results (low thresholds of 200 {mu}J) and as we have calculated, it was not be possible to pump such an OPO with our micro-chip lasers (10{mu}J maximum energies). We developed an intracavity micro-chip OPO (with the OPO inside the laser cavity). In this configuration, the OPO benefits from the intracavity laser intensity to reach the oscillation threshold. The micro-chip OPO emits about 10 ns pulses at 1.572 {mu}m with a few {mu}J energy at several kHz repetition rate. To our knowledge, we realised the first micro-chip-OPO using a 1 W standard diode pumped, passively Q-switched micro-chip laser. In order to improve the performances of the intracavity micro-chip-OPO, we developed a software for numerical modelling its operation. (author) 80 refs.

  6. Few-cycle, Broadband, Mid-infrared Optical Parametric Oscillator Pumped by a 20-fs Ti:sapphire Laser

    CERN Document Server

    Kumar, Suddapalli Chaitanya; Ideguchi, Takuro; Yan, Ming; Holzner, Simon; Hänsch, Theodor W; Picqué, Nathalie; Ebrahim-Zadeh, Majid

    2014-01-01

    We report a few-cycle, broadband, singly-resonant optical parametric oscillator (OPO) for the mid-infrared based on MgO-doped periodically-poled LiNbO3 (MgO:PPLN), synchronously pumped by a 20-fs Ti:sapphire laser. By using crystal interaction lengths as short as 250 um, and careful dispersion management of input pump pulses and the OPO resonator, near-transform-limited, few-cycle idler pulses tunable across the mid-infrared have been generated, with as few as 3.7 optical cycles at 2682 nm. The OPO can be continuously tuned over 2179-3732 nm by cavity delay tuning, providing up to 33 mW of output power at 3723 nm. The idler spectra exhibit stable broadband profiles with bandwidths spaning over 422 nm (FWHM) recorded at 3732 nm. We investigate the effect of crystal length on spectral bandwidth and pulse duration at a fixed wavelength, confirming near-transform-limited idler pulses for all grating interaction lengths. By locking the repetition frequency of the pump laser to a radio-frequency reference, and with...

  7. Mid-infrared optical parametric oscillator based on ZnGeP2 pumped by 2-μm laser

    Institute of Scientific and Technical Information of China (English)

    Yuefeng Peng; Xingbin Wei; Weimin Wang

    2011-01-01

    @@ We present a 3-5 μm optical parametric oscillator (OPO) based on ZGP pumped by KTP OPO 2.1-μm laser.The tuning curves of ZGP OPO are calculated.The 8 ×6 ×18 (mm) ZGP crystal, whose end faces are antirefiection coated at 2.1 and 3.7-4.6 μm, is cut as θ=53.5°, φ=0°.When the pump power of 2.1-μm polarized laser is 15 W at 8 kHz, 5.7-W output power and 46.6% slope efficiency are obtained with a ZGP type Ⅰ phase match.Central wavelengths of the signal and idler lasers are 4.10 and 4.32 μm, respectively.Pulse duration is about 27 ns.Beam quality factor M2 is better than 1.8.The tunability of 3-5 μm can be achieved by changing the angle of the ZGP crystal.%We present a 3-5 μm optical parametric oscillator (OPO) based on ZGP pumped by KTP OPO 2.1-μm laser. The tuning curves of ZGP OPO are calculated. The 8 ×6 ×18 (mm) ZGP crystal, whose end faces are antireflection coated at 2.1 and 3.7-4.6 μm, is cut as θ=53.5°, φ=0°. When the pump power of 2.1-μm polarized laser is 15 W at 8 kHz, 5.7-W output power and 46.6% slope efficiency are obtained with a ZGP type Ⅰ phase match. Central wavelengths of the signal and idler lasers are 4.10 and 4.32 μm, respectively.Pulse duration is about 27 ns. Beam quality factor M2 is better than 1.8. The tunability of 3-5 μm can be achieved by changing the angle of the ZGP crystal.

  8. Development of an ultra-widely tunable DFG-THz source with switching between organic nonlinear crystals pumped with a dual-wavelength BBO optical parametric oscillator.

    Science.gov (United States)

    Notake, Takashi; Nawata, Kouji; Kawamata, Hiroshi; Matsukawa, Takeshi; Qi, Feng; Minamide, Hiroaki

    2012-11-01

    We developed a difference frequency generation (DFG) source with an organic nonlinear optical crystal of DAST or BNA selectively excited by a dual-wavelength β-BaB(2)O(4) optical parametric oscillator (BBO-OPO). The dual-wavelength BBO-OPO can independently oscillate two lights with different wavelengths from 800 to 1800 nm in a cavity. THz-wave generation by using each organic crystal covers ultrawide range from 1 to 30 THz with inherent intensity dips by crystal absorption modes. The reduced outputs can be improved by switching over the crystals with adequately tuned pump wavelengths of the BBO-OPO.

  9. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    Science.gov (United States)

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied.

  10. Optimally efficient, high power, Yb:fiber laser pumped, near- to mid-infrared picosecond optical parametric oscillator

    CERN Document Server

    Kokabee, Omid

    2014-01-01

    Absolute output power optimization and performance of a near- to mid-infrared picosecond optical parametric oscillator (OPO) is studied at two high pump powers using a widely-tunable output coupling (OC) technique which provides 15% to 68% OC. The MgO:PPLN-based OPO is synchronously pumped at 81.1 MHz by an Yb:fiber laser with double-peak spectrum. At 2 W pump power, maximum signal (at 1.46 $\\mu$m) and idler (at 3.92 $\\mu$m) power of 670 mW and 270 mW are obtained at 27% OC at 47% total extraction efficiency and 58% pump power depletion where at 15.5 W pump power, 7.4 W signal and 2.7 W idler power are extracted at 53% OC at 65% total extraction efficiency and 80% pump depletion. With respect to non-optimum points, OPO provides signal pulses with narrower single-peak spectrum, smaller time-bandwidth product, much better circular single-mode TEM00 spatial profile and passive peak-to-peak power stability of $\\pm$4.6% at 2 W and $\\pm$1% at 15.5 W pump power in optimum power extraction points.

  11. High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT.

    Science.gov (United States)

    Kumar, S Chaitanya; Ebrahim-Zadeh, M

    2011-12-19

    We report a stable, high-power, mid-infrared synchronously-pumped optical parametric oscillator (SPOPO) based on MgO:sPPLT, pumped by a 1064 nm, picosecond Yb-fiber laser operating at a repetition rate of 81.1 MHz. The singly resonant SPOPO is tunable over 1531-1642 nm (111 nm) in the near-infrared signal and 3022-3488 nm (466 nm) in the mid-infrared idler, providing a total tuning range of 577 nm. Careful optimization of output coupling results in a signal output power as high as 4.3 W at 1593 nm and a mid-infrared idler power of 2 W at 3204 nm for 13.4 W of pump power at a total extraction efficiency of 47%. The SPOPO can be operated near room temperature, down to 30 °C, and exhibits passive peak-to-peak power stability better than 8.6% at 1568 nm (signal) and 8.2% at 3310 nm (idler) over 13 hours at full power. The output signal pulses have duration of 17.5 ps, with a FWHM spectral bandwidth of 1.4 nm centered at 1568 nm.

  12. A quantum parametric oscillator with trapped ions

    CERN Document Server

    Ding, Shiqian; Hablutzel, Roland; Loh, Huanqian; Matsukevich, Dzmitry

    2015-01-01

    A system of harmonic oscillators coupled via nonlinear interaction is a fundamental model in many branches of physics, from biophysics to electronics and condensed matter physics. In quantum optics, weak nonlinear interaction between light modes has enabled, for example, the preparation of squeezed states of light and generation of entangled photon pairs. While strong nonlinear interaction between the modes has been realized in circuit QED systems, achieving significant interaction strength on the level of single quanta in other physical systems remains a challenge. Here we experimentally demonstrate such interaction that is equivalent to photon up- and down-conversion using normal modes of motion in a system of two Yb ions. The nonlinearity is induced by the intrinsic anharmonicity of the Coulomb interaction between the ions and can be used to simulate fully quantum operation of a degenerate optical parametric oscillator. We exploit this interaction to directly measure the parity and Wigner functions of ion ...

  13. Mid-infrared ZGP optical parametric oscillator directly pumped by a lamp-pumped, Q-switched Cr,Tm,Ho:YAG laser

    NARCIS (Netherlands)

    Nieuwenhuis, Ab F.; Lee, Chris J.; Slot, van der Peter J.M.; Gross, Petra; Boller, Klaus-Jochen; Powers, Peter E.

    2007-01-01

    We generate mid-infrared pulsed light tunable between 5.6 μm and 6.6 μm using an optical parametric oscillator (OPO) directly pumped by a Cr,Tm,Ho:YAG, Q -switched laser operating at 2.1 μm. The Holmium laser uses a RTP Q -switch to produce pulses shorter than 100 ns and energies of up to 42 mJ in a

  14. Mid-Infrared ZGP optical parametric oscillator directly pumped by a lamp-pumped, Q-switched Cr,Tm,Ho:YAG laser

    NARCIS (Netherlands)

    Nieuwenhuis, Albert F.; Lee, Christopher James; van der Slot, Petrus J.M.; Gross, P.; Boller, Klaus J.; Powers, Peter E.

    2007-01-01

    We generate mid-infrared pulsed light tunable between 5.6 μm and 6.6 μm using an optical parametric oscillator (OPO) directly pumped by a Cr,Tm,Ho:YAG, Q -switched laser operating at 2.1 μm. The Holmium laser uses a RTP Q -switch to produce pulses shorter than 100 ns and energies of up to 42 mJ in a

  15. Continuous-wave optical parametric oscillation tunable up to 8 μm wavelength

    Science.gov (United States)

    Breunig, Ingo; Fürst, Josef Urban; Hanka, Kevin; Buse, Karsten

    2017-06-01

    We demonstrate the first cw OPO emitting mid-infrared light at wavelengths up to 8 μm. This device is based on a 3.5-mm-diameter whispering gallery resonator made of silver gallium selenide (AgGaSe2) pumped by a compact distributed feedback laser diode emitting light at 1.57 μm wavelength. Phase-matching is achieved for a c-cut resonator disk pumped with extraordinarily polarized light at this wavelength. The oscillation thresholds are in the mW region, while the output power ranges from 10 to 800 μW. Wavelength tuning is achieved via changing the radial mode number of the pump wave and by changing the resonator temperature. Simulations predict that whispering gallery OPOs based on AgGaSe2 with diameters around 2 mm can generate idler waves exceeding 10 μm wavelength.

  16. Cr:ZnS laser-pumped subharmonic GaAs optical parametric oscillator with the spectrum spanning 3.6-5.6  μm.

    Science.gov (United States)

    Smolski, V O; Vasilyev, S; Schunemann, P G; Mirov, S B; Vodopyanov, K L

    2015-06-15

    Using a subharmonic optical parametric oscillator (OPO) based on orientation-patterned GaAs, we produced a broadband instantaneous output that spans 3.6-5.6 μm at 50-dB level (4.4-5.2 μm at 3 dB level), has 110 mW of average power, and is suitable for producing wideband-frequency combs in the mid-infrared. The OPO was synchronously pumped by a compact Kerr-lens mode-locked femtosecond Cr:ZnS oscillator with the central wavelength 2.38 μm and pulse repetition frequency 175 MHz.

  17. Compact and tunable mid-infrared source based on a 2μm dual-wavelength KTiOPO4 intracavity optical parametric oscillator

    Institute of Scientific and Technical Information of China (English)

    Geng You-Fu; Tan Xiao-Ling; Li Xue-Jin; Yao Jian-Quan

    2010-01-01

    Using a double resonant KTiOPO4(KTP)intracavity optical parametric oscillator operating at degenerated point of 2 μm,we demonstrate a unique mid-infrared source based on difference frequency generation in GaSe crystal.The output tuning range is 8.42-19.52 μm,and a peak power of 834 W for type-Ⅰ phase matching scheme and 730 W for type-Ⅱ phase matching scheme are achieved.Experimental results show that this oscillator is a good alternative to the generator of a compact and tabletop mid-infrared radiation with a widely tunable range.

  18. Degenerate parametric oscillation in quantum membrane optomechanics

    Science.gov (United States)

    Benito, Mónica; Sánchez Muñoz, Carlos; Navarrete-Benlloch, Carlos

    2016-02-01

    The promise of innovative applications has triggered the development of many modern technologies capable of exploiting quantum effects. But in addition to future applications, such quantum technologies have already provided us with the possibility of accessing quantum-mechanical scenarios that seemed unreachable just a few decades ago. With this spirit, in this work we show that modern optomechanical setups are mature enough to implement one of the most elusive models in the field of open system dynamics: degenerate parametric oscillation. Introduced in the eighties and motivated by its alleged implementability in nonlinear optical resonators, it rapidly became a paradigm for the study of dissipative phase transitions whose corresponding spontaneously broken symmetry is discrete. However, it was found that the intrinsic multimode nature of optical cavities makes it impossible to experimentally study the model all the way through its phase transition. In contrast, here we show that this long-awaited model can be implemented in the motion of a mechanical object dispersively coupled to the light contained in a cavity, when the latter is properly driven with multichromatic laser light. We focus on membranes as the mechanical element, showing that the main signatures of the degenerate parametric oscillation model can be studied in state-of-the-art setups, thus opening the possibility of analyzing spontaneous symmetry breaking and enhanced metrology in one of the cleanest dissipative phase transitions. In addition, the ideas put forward in this work would allow for the dissipative preparation of squeezed mechanical states.

  19. Highly efficient single-longitudinal-mode {beta}-BaB{sub 2}O{sub 4} optical parametric oscillator with a new cavity design

    Energy Technology Data Exchange (ETDEWEB)

    Boon-Engering, J.M. [Nederlands Centrum voor Laser Research b.v., Postbus 2662, 7500 CR Enschede (Netherlands)]|[Department of Physics and Astronomy, Laser Centre Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Gloster, L.A.W. [Laser Photonics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); van der Veer, W.E. [Nederlands Centrum voor Laser Research b.v., Postbus 2662, 7500 CR Enschede (Netherlands)]|[Department of Physics and Astronomy, Laser Centre Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); McKinnie, I.T. [Laser Photonics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)]|[Department of Physics, University of Otago, P.O. Box 56, Dunedin (New Zealand); King, T.A. [Laser Photonics Group, Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Hogervorst, W. [Department of Physics and Astronomy, Laser Centre Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands)

    1995-10-15

    A new coupled-cavity design for single-longitudinal-mode operation of an optical parametric oscillator (OPO) is presented. The OPO is based on a {beta}-BaB{sub 2}O{sub 4} crystal and is pumped by the third harmonic of a Nd:YAG laser. With this design, we achieved single-longitudinal-mode operation of the OPO with a decrease in the threshold and an increase in external efficiency compared with those of a conventional grazing-incidence OPO. A mathematical model that describes the mode spacings for this cavity is given. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

  20. Chaos control of parametric driven Duffing oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Leisheng; Mei, Jie; Li, Lijie, E-mail: L.Li@swansea.ac.uk [College of Engineering, Swansea University, Swansea SA2 8PP (United Kingdom)

    2014-03-31

    Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.

  1. Upper quantum Lyapunov exponent and parametric oscillators

    Science.gov (United States)

    Jauslin, H. R.; Sapin, O.; Guérin, S.; Wreszinski, W. F.

    2004-11-01

    We introduce a definition of upper Lyapunov exponent for quantum systems in the Heisenberg representation, and apply it to parametric quantum oscillators. We provide a simple proof that the upper quantum Lyapunov exponent ranges from zero to a positive value, as the parameters range from the classical system's region of stability to the instability region. It is also proved that in the instability region the parametric quantum oscillator satisfies the discrete quantum Anosov relations defined by Emch, Narnhofer, Sewell, and Thirring.

  2. Chaos control of parametric driven Duffing oscillators

    Science.gov (United States)

    Jin, Leisheng; Mei, Jie; Li, Lijie

    2014-03-01

    Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.

  3. 30-Hz-linewidth Watt output power 1.65-$\\mu$m continuous-wave singly resonant optical parametric oscillator

    CERN Document Server

    LY, Aliou; Bretenaker, Fabien

    2016-01-01

    We build a 1-Watt cw singly resonant optical parametric oscillator operating at an idler wavelength of 1.65-$\\mu$m for application to quantum interfaces. The non resonant idler is frequency stabilized by side-fringe locking on a relatively high-finesse Fabry-Perot cavity, and the influence of intensity noise is carefully analyzed. A relative linewidth down to the sub-kHz level (about 30 Hz over 2 s) is achieved. A very good long term stability is obtained for both frequency and intensity.

  4. Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator.

    Science.gov (United States)

    Vodopyanov, K L; Sorokin, E; Sorokina, I T; Schunemann, P G

    2011-06-15

    Broadband mid-IR output suitable for producing 1000-nm-wide frequency combs centered at 4.9 μm was achieved in a degenerate subharmonic optical parametric oscillator (OPO) based on 500-μm-long Brewster-angled orientation-patterned GaAs crystal. The OPO was synchronously pumped at 182 MHz repetition rate by 100 fs pulses from a Cr²⁺:ZnSe laser with the central wavelength of 2.45 μm and the average power of 100 mW.

  5. Molecular fingerprint-region spectroscopy from 5 to 12  μm using an orientation-patterned gallium phosphide optical parametric oscillator.

    Science.gov (United States)

    Maidment, Luke; Schunemann, Peter G; Reid, Derryck T

    2016-09-15

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation-patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 μm with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.

  6. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator

    Science.gov (United States)

    Maidment, Luke; Schunemann, Peter G.; Reid, Derryck T.

    2016-09-01

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 \\mu m with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.

  7. Molecular fingerprint-region spectroscopy from 5-12 \\mu m using an orientation-patterned gallium phosphide optical parametric oscillator

    CERN Document Server

    Maidment, Luke; Reid, Derryck T

    2016-01-01

    We report a femtosecond optical parametric oscillator (OPO) based on the new semiconductor gain material orientation patterned gallium phosphide (OP-GaP), which enables the production of high-repetition-rate femtosecond pulses spanning 5-12 \\mu m with average powers in the few to tens of milliwatts range. This is the first example of a broadband OPO operating across the molecular fingerprint region, and we demonstrate its potential by conducting broadband Fourier-transform spectroscopy using water vapor and a polystyrene reference standard.

  8. One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator

    Science.gov (United States)

    Alexander, Rafael N.; Wang, Pei; Sridhar, Niranjan; Chen, Moran; Pfister, Olivier; Menicucci, Nicolas C.

    2016-09-01

    One-way quantum computing is experimentally appealing because it requires only local measurements on an entangled resource called a cluster state. Record-size, but nonuniversal, continuous-variable cluster states were recently demonstrated separately in the time and frequency domains. We propose to combine these approaches into a scalable architecture in which a single optical parametric oscillator and simple interferometer entangle up to (3 ×103 frequencies) × (unlimited number of temporal modes) into a computationally universal continuous-variable cluster state. We introduce a generalized measurement protocol to enable improved computational performance on this entanglement resource.

  9. Experimental investigation of the spectro-temporal dynamics of the light pulses of Q-switched Nd:YAG lasers and nanosecond optical parametric oscillators

    Science.gov (United States)

    Anstett, G.; Wallenstein, R.

    2004-11-01

    We report an experimental investigation of the spectro-temporal dynamics of the pulse formation in Q-switched Nd:YAG lasers and in nanosecond optical parametric oscillators (OPOs). The temporal evolution of the spectral intensity distribution of the light pulses was measured with a 1-m Czerny Turner spectrometer in combination with a fast streak camera. This detection system allows the analysis of temporal changes in the spectrum of single nanosecond pulses. The measurements were performed for a flashlamp-pumped, Q-switched Nd:YAG laser and for an unseeded as well as for a seeded singly-resonant nanosecond OPO. The laser output spectrum varies strongly from pulse to pulse and even within a single pulse due to mode beating. In an unseeded OPO, individual spectral modes start to oscillate statistically from the parametric noise for pump powers close to the OPO threshold. With increasing pump power a strong modulation in the spectral formation of the pulse is observed, resulting from a strong interaction of parametric conversion and back conversion of signal and idler radiation into pump radiation. By means of injection seeding, the starting condition was controlled for a single mode. Due to the seed radiation, the seeded mode starts sooner than the unseeded modes. These are suppressed completely in the case of sufficient seed power and moderate pump power. The observations are in good agreement with results of corresponding numerical simulations.

  10. Simple optical parametric oscillator-amplifier in unitary crystal, tunable over the visible range of spectrum and its application for two-photon spectroscopy

    Science.gov (United States)

    Klimentov, Sergei M.; Garnov, Serge V.; Epifanov, Alexander S.; Manenkov, Alexander A.

    1994-06-01

    For application of optical parametric oscillator (OPO) to investigation of nonlinear interaction of laser radiation with matter the factor of importance is stability of light spatial distribution and spotsize position on a target through a tuning range. Collinear temperature tunable schemes show an advantage for these purposes, in particular, for small pump beam diameters. A simple and efficient visible range parametric converter can be realized using two-pass configuration, where parametric luminescence is excited on the first pass through a nonlinear crystal and amplified on the second pass after spatial filtering. Lack of resonator simplifies high power UV pumping and getting of relatively narrow emission spectrum. Using such an approach, we have made the oscillator-amplifier system temperature tunable in the range of 440 to 670 nm employing 4-cm-length ADP crystal pumped by 266 nm radiation from the single-mode YAG:Nd laser. The output energy of 3 mJ in about 1-ns pulsewidth has been achieved with total conversion efficiency of 10%. A spatial profile of the output beam kept its shape within the branch of the tuning curve. This allowed us to use the device as a proper tool for investigation of two-photon excitation in undoped CsI and KI single crystals. The OPO signal output was used to record photoconductivity spectra in these materials.

  11. Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 μm allows real-time monitoring of the respiration of small insects

    Science.gov (United States)

    van Herpen, M. M. J. W.; Ngai, A. K. Y.; Bisson, S. E.; Hackstein, J. H. P.; Woltering, E. J.; Harren, F. J. M.

    2006-03-01

    A continuous wave, single frequency and continuously tunable optical parametric oscillator is used in combination with photoacoustic spectroscopy to detect trace emissions of CO2 from insects under atmospheric conditions. The optical parametric oscillator (OPO) contains a periodically poled lithium niobate crystal and is tunable over the 3.9 to 4.8 μm infrared wavelength region. With the strong rotational-vibrational absorption band of CO2 at 4.23 μm, it is possible to detect CO2 down to 7 parts per billion volume using 20 mW of the OPO beam. This detection sensitivity was achieved by adding 4% of SF6 gas to the atmospheric gas mixture to overcome the slow vibrational relaxation of the excited CO2 levels. The usefulness of this system is demonstrated by real-time measuring of the fluctuations of the CO2 concentration in the breath of a single ant (Lasius niger) and individual fruit flies (Drosophila melanogaster).

  12. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  13. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  14. Investigation of narrow-band semiconductor quantum well structures using a synchronously-pumped optical parametric oscillator

    CERN Document Server

    Marsden, P A

    2001-01-01

    Measurements of spin relaxation processes were made in the technologically interesting InGaAs/lnP quantum wells system. The first non-linear pump and probe measurements were performed in a single 80A lattice-matched InGaAs/lnP quantum well layer. To make these measurements a synchronously-pumped parametric oscillator was constructed, using periodically-poled lithium niobate as its non-linear element. Spin relaxation measurements on InGaAs/lnP quantum wells at low (4K) temperature reveal spin-lifetimes of order 50ps, similar to those measured in the wider-gap GaAs/AIGaAs system. At room temperature the spin-lifetimes were measured to be 5ps, an order of magnitude faster than those for GaAs/AIGaAs or InGaAs/lnAIAs quantum wells of similar specification. Investigations of dominant carrier species and their associated spin relaxation were made as a function of temperature. A model was constructed for comparison to the experimental data showing the dominance of excitons at low temperature, with un-bound electron-h...

  15. Falsifying Oscillation Properties of Parametric Biological Models

    Directory of Open Access Journals (Sweden)

    Thao Dang

    2013-08-01

    Full Text Available We propose an approach to falsification of oscillation properties of parametric biological models, based on the recently developed techniques for testing continuous and hybrid systems. In this approach, an oscillation property can be specified using a hybrid automaton, which is then used to guide the exploration in the state and input spaces to search for the behaviors that do not satisfy the property. We illustrate the approach with the Laub-Loomis model for spontaneous oscillations during the aggregation stage of Dictyostelium.

  16. Intracavity optical parametric oscillator at 1.5-7-μm wavelength pumped by passive Q-switched Nd:GdVO4 laser

    Institute of Scientific and Technical Information of China (English)

    Mingwei Gao; Chunqing Gao; Kun Tang; Zhifeng Lin; Xiuyong Zhang

    2008-01-01

    A high-repetition-rate eye-safe optical parametric oscillator(OPO),using a non-critically phase-matched KTP crystal intracavity pumped by a passively Q-switched Nd:GdVO4/Cr4+:YAG laser,is experimentally demonstrated.The conversion efficiency for the average power is 7% from pump diode input to OPO signal output and the slope efficiency is up to 10.3%.With an incident pump power of 7.3 W.the compact intracavity OPO(IOPO)cavity,operating at 15 kHz,produces an average power of 0.57 W at 1570 nm with a pulse width as short as 6 ns.The peak power at 1570 nm is higher than 6.3 kW.

  17. Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3.

    Science.gov (United States)

    Ishizuki, Hideki; Taira, Takunori

    2012-08-27

    We present a next generation of large-aperture periodically poled Mg-doped LiNbO3 (PPMgLN) device with 10-mm thickness. Efficient optical parametric oscillation with 540 mJ output energy at 709 mJ pumping by 1.064 µm laser in 10 nanoseconds operation could be demonstrated using the 10-mm-thick PPMgLN with an inversion period of 32.2 µm at total conversion efficiency > 76%. We also confirmed that degradation effect of conversion-efficiency distribution by wedged-inversion structures, which is inevitable in current poling condition of the large-aperture PPMgLN, can be ignored in high-intensity operation.

  18. High-efficiency mid-infrared ZnGeP2 optical parametric oscillator directly pumped by a lamp-pumped, Q-switched CrTmHo:YAG laser

    NARCIS (Netherlands)

    Nieuwenhuis, Albert F.; Lee, Christopher James; van der Slot, Petrus J.M.; Lindsay, I.D.; Gross, P.; Boller, Klaus J.

    2008-01-01

    We report a singly resonant optical parametric oscillator (SRO) based on a ZnGeP2 crystal directly pumped by a lamp-pumped Q-switched CrTmHo:YAG laser. The IR was tunable from 4.7 to 7.8 μm via crystal angle tuning. A maximum optical to optical efficiency of 56% was obtained from the pump (2.09 μm)

  19. Parametrically Driven Nonlinear Oscillators with an Impurity

    Institute of Scientific and Technical Information of China (English)

    张卓; 唐翌

    2002-01-01

    By virtue of the method of multiple scales, we study a chain of parametrically driven nonlinear oscillators with a mass impurity. An equation is presented to describe the nonlinear wave of small amplitude in the chain.In our derivation, the equation is applicable to any eigenmode of coupled pendulum. Our result shows that a nonpropagation soliton emerges as the lowest or highest eigenmode of coupled pendulum is excited, and the impurity tends to pin the nonpropagation soliton excitation.

  20. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    Science.gov (United States)

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  1. Measurements of intensity correlations in the transverse plane of the output from a confocal optical parametric oscillator

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Buchhave, Preben

    We describe simultaneous measurements of signal/idler near field and far field patterns of a 2nd order nonlinear multi-mode parametric downconverter. We also describe the use of auto- and cross correlation techniques to obtain statistical data.......We describe simultaneous measurements of signal/idler near field and far field patterns of a 2nd order nonlinear multi-mode parametric downconverter. We also describe the use of auto- and cross correlation techniques to obtain statistical data....

  2. Longitudinal, degenerate, and transversal parametric oscillation in a photorefractive media

    DEFF Research Database (Denmark)

    Pedersen, H.C.; Johansen, P.M.

    1996-01-01

    We present a theoretical model of photorefractive parametric oscillation that covers, for the first time, to our knowledge, the occurrence of the whole spectrum of parametric processes from transversal over degenerate to longitudinal parametric oscillation. It is shown that inclusion of so......-called noneigenwaves is essential for completing the model. We report on the first experiment that shows the transition from transversal over degenerate to longitudinal parametric oscillation. The experimental observations agree well with the theoretical predictions....

  3. Adjusting the properties of the photon generated via an optical parametric oscillator by using a pulse pumped laser

    Institute of Scientific and Technical Information of China (English)

    Chen Song; Shi Bao-Sen; Guo Guang-Can

    2011-01-01

    The cavity-enhanced spontaneous parametric down-conversion far below threshold can be used to generate a narrow-band photon pair efficiently. Previous experiments on the cavity-enhanced spontaneous parametric downconversion almost always utilize continuous wave pump light,but the pulse pumped case is rarely reported. One disadvantage of the continuous wave case is that the photon pair is produced randomly within the coherence time of the pump,which limits its application in the quantum information realm.However,a pulse pump can help to solve this problem.In this paper,we theoretically analyze pulse pumped cavity-enhanced spontaneous parametric downconversion in detail and show how the pump pulse affects the multi-photon interference visibility,two-photon waveform,joint spectrum and spectral brightness.

  4. Output radiation from a degenerate parametric oscillator

    CERN Document Server

    Tesfa, S

    2007-01-01

    We study the squeezing as well as the statistical properties of the output radiation from a degenerate parametric oscillator coupled to a squeezed vacuum reservoir employing the stochastic differential equations associated with the normal ordering. It is found that the degree of squeezing of the output radiation is less than the corresponding cavity radiation. However, for output radiation the correlation of the quadrature operators evaluated at different times also exhibits squeezing, which is the reason for quenching of the overall noise in one of the quadrature components of the squeezing spectrum even when the oscillator is coupled to a vacuum reservoir. Moreover, coupling the oscillator to the squeezed vacuum reservoir enhances the squeezing exponentially and it also increases the mean photon number.

  5. Simultaneous measurement of patterns in the signal and idler near and far fields from a confocal optical parametrical oscillator with applications in quantum optics

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Tidemand-Lichtenberg, Peter; Buchhave, Preben

    2005-01-01

    investigation of quantum correlations in the transverse plane. We describe the experimental setup for simultaneous measurements of signal and idler near- and far-field patterns and analyze the effects of various experimental complications such as walk-off and thermal index changes on the generated patterns. We...... also show that the oscillator can be stabilized by optical feedback, indicating a possible route for controlling the generated intensity patterns....

  6. Design and Development of Intracavity Optical Parametric Oscillator-based Eye Safe Laser Operating at 20 Hz without Forced Air Cooling

    Directory of Open Access Journals (Sweden)

    Atul Bhardwaj

    2013-12-01

    Full Text Available In this paper we report the design and development of an electro-optically Q-switched diode pumped Nd:YAG laser with intracavity optical parametric oscillator, generating ~ 5 ns laser pulses of ~8 mJ energy at eye safe wavelength of 1534 nm. A Z-shaped laser resonator has been designed with porro prism end reflector in Q-switch arm containing RTP Q-Switch and a suitably oriented waveplate. The gain arm consists of a Ø3 x 72 mm Nd: YAG laser rod, pumped from one side by 3 x 5 bar laser diode array stack emitting total optical peak power of 740 W at 804 nm at 38 °C. Thermoelectric coolers (TECs have been employed to maintain the optimum temperature of laser diode arrays and the combined heat load from the pump chamber and TECs is distributed over the system base plate with embedded heat pipes. Such cooling mechanism has eliminated the requirement of fins and fans in the laser system. Eye safe radiation is out-coupled through intra cavity KTA OPO (5 x 5 x 20 mm3 placed in the gain arm. Laser was operated at 20 Hz for several duty cycles of 10 min on and 10 min off and output energy remained stable within ±0.5 mJ without any forced air/liquid cooling.Defence Science Journal, 2013, 63(6, pp.599-605, DOI:http://dx.doi.org/10.14429/dsj.63.5759

  7. Performance evaluation of ZnGeP2 optical parametric oscillator pumped by a Q-switched Tm,Ho:GdVO4 laser

    Institute of Scientific and Technical Information of China (English)

    Baoquan Yao; Youlun Ju; Yuezhu Wang; Wanjun He

    2008-01-01

    A doubly resonant ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a novel Tm,Ho:GdVO4 laser was demonstrated. Cryogenic Tm(5 at.-%), Ho(0.5 at.-%):GdVO4 laser with high pulse repetition frequency (PRF) of 10 kHz at 2.05 μm was employed as pumping source of ZGP OPO. The 15-mm-long ZGP crystal, 55° cut for I-type phase-matching with low absorption coefficient less than 0.05 cm-1 at 2-μm, was placed in a plano-plano cavity with resonator length of 30 mm. The ZGP OPO generated a total combined output power of 1.2 W at 3.75 and 4.52 μm under pumping power of 5.3 W, corresponding to slope efficiency of 40% from incident 2-μm laser power to mid-infrared (Mid-IR) output. A widely tunable range from 3.0 to 6.5 μm was achieved by changing the crystal angle only 3.5 .

  8. A fiber laser pumped dual-wavelength mid-infrared laser based on optical parametric oscillation and intracavity difference frequency generation

    Science.gov (United States)

    Wang, Peng; Shang, Yaping; Li, Xiao; Shen, Meili; Xu, Xiaojun

    2017-02-01

    We report a dual-wavelength mid-infrared laser based on intracavity difference frequency generation (DFG) in an MgO-doped periodically poled LiNbO3, which was pumped by a dual-wavelength fiber MOPA consisting of two parts: a dual-wavelength seed and a power amplifier. The maximum pump power was 74.1 W and the wavelengths were 1060 nm and 1090 nm. The wavelengths of the mid-infrared output were 3.1 µm and 3.4 µm under maximum pump power with a total idler power of 6.57 W. The corresponding pump-to-idler slope efficiency reached 12%. The contrast for the peak intensity of the emissions for the two idlers was 0.6. A power preamplifier was added in a further experiment to enhance the contrast. The idler output reached 4.45 W under the maximum pump power of 70 W, which was lower than before. However, the contrast for the idler emission peak intensity was increased to 1.18. The signal wave generated in the experiment only had a single wavelength around 1.6 µm, indicating that two kinds of nonlinear processes occurred in the experiment, namely optical parametric oscillation and intracavity DFG.

  9. 光参变振荡器的红外光谱研究%Study on Infrared Spectrum of Optical Parametric Oscillator

    Institute of Scientific and Technical Information of China (English)

    颜彩繁; 王宏杰; 金帅; 张光寅

    2011-01-01

    A experimental study of widely tunable periodically poled MgO:LiNbO3 (PPMgLN) optical parametric oscillator (0P0) is presented. The laser diode (LD) end-pumped acousto-optically (A-0) Q-switched Nd:YVO< laser was used as the pump source of 0P0. The 0P0 resonator consisted of a two CaF2 concave mirror linear cavity. By varying temperature (30~80 X^) and poling periods (29.0~31.5 ^m) of PPMgLN crystal, the signal wavelength was tunable in the range of 1450-1700 nm as well as the idle wavelength was tuned from 2849.0~3989.4 nm. The measured full width at half maximum ( FWHM) of the output signal and idler ware were about 0.58 and 4 nm or less, respectively. The results indicate that the experimental data agrees well with the calculated tuning curve.%对宽调谐周期极化掺镁铌酸锂光参变振荡器(OPO)进行了实验研究,OPO的抽运源采用的是激光二极管端面抽运的声光调Q Nd:YVO4激光器,其谐振腔由两个凹面镜构成了简单的线性腔,凹面镜的衬底材料选用氟化钙.通过改变周期极化掺镁铌酸锂晶体的温度(30~80℃)和极化周期(29.0~31.5 μm),OPO实现了信号光波长在1450~1700 nm和闲频光波长在2849.0~3989.4 nm范围内的宽调谐输出.对OPO输出的光谱进行了测量,信号光光谱的半峰全宽均小于0.58 nm,闲频光光谱的半峰全宽小于4 nm.实验结果表明,实测的信号光与闲频光的波长调谐曲线与理论模拟结果非常吻合.

  10. Parametric excitation of plasma oscillations in Josephson Junctions

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm; Særmark, Knud

    1973-01-01

    A theory is presented for parametric excitation of plasma oscillations in a Josephson junction biased in the zero voltage mode. A threshold curve for the onset of the parametric excitation is deduced via the stability properties of a Mathieu differential equation obtained by a self...

  11. Optimal Parametric Feedback Excitation of Nonlinear Oscillators

    Science.gov (United States)

    Braun, David J.

    2016-01-01

    An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is shown to provide an adaptive resonance condition that enables unprecedentedly robust movement generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model information, signal processing, and control computation. The observed behavior dramatically differs from the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties in model information and nonlinear effects inevitably present in real world applications.

  12. Polychromatic optical Bloch oscillations.

    Science.gov (United States)

    Longhi, Stefano

    2009-07-15

    Bloch oscillations (BOs) of polychromatic beams in circularly curved optical waveguide arrays are smeared out owing to the dependence of the BO spatial period on the wavelength. Here it is shown that restoring of the self-imaging property of the array and approximate BOs over relatively broad spectral ranges can be achieved by the insertion of suitable lumped phase slips uniformly applied across the array.

  13. Discrete Parametric Oscillation and Nondiffracting Beams in a Glauber-Fock Oscillator

    CERN Document Server

    Oztas, Z

    2016-01-01

    We consider a Glauber-Fock oscillator and show that diffraction can be managed. We show how to design arrays of waveguides where light beams experience zero diffraction. We find an exact analytical family of nondiffracting localized solution. We predict discrete parametric oscillation in the Glauber-Fock oscillator.

  14. Signal-to-noise ratio in parametrically driven oscillators.

    Science.gov (United States)

    Batista, Adriano A; Moreira, Raoni S N

    2011-12-01

    We report a theoretical model based on Green's functions and averaging techniques that gives analytical estimates to the signal-to-noise ratio (SNR) near the first parametric instability zone in parametrically driven oscillators in the presence of added ac drive and added thermal noise. The signal term is given by the response of the parametrically driven oscillator to the added ac drive, while the noise term has two different measures: one is dc and the other is ac. The dc measure of noise is given by a time average of the statistically averaged fluctuations of the displacement from equilibrium in the parametric oscillator due to thermal noise. The ac measure of noise is given by the amplitude of the statistically averaged fluctuations at the frequency of the parametric pump. We observe a strong dependence of the SNR on the phase between the external drive and the parametric pump. For some range of the phase there is a high SNR, while for other values of phase the SNR remains flat or decreases with increasing pump amplitude. Very good agreement between analytical estimates and numerical results is achieved.

  15. Parametric excitation of plasma oscillations in a Josephson tunnel junction

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig

    1975-01-01

    Experimental evidence for subharmonic parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson−tunnel junction biased in the zero−voltage state to a finite−volt......−voltage state. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  16. Parametric Amplification For Detecting Weak Optical Signals

    Science.gov (United States)

    Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash

    1996-01-01

    Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.

  17. Direct and parametric synchronization of a graphene self-oscillator

    Science.gov (United States)

    Houri, S.; Cartamil-Bueno, S. J.; Poot, M.; Steeneken, P. G.; van der Zant, H. S. J.; Venstra, W. J.

    2017-02-01

    We explore the dynamics of a graphene nanomechanical oscillator coupled to a reference oscillator. Circular graphene drums are forced into self-oscillation, at a frequency f osc , by means of photothermal feedback induced by illuminating the drum with a continuous-wave red laser beam. Synchronization to a reference signal, at a frequency f sync , is achieved by shining a power-modulated blue laser onto the structure. We investigate two regimes of synchronization as a function of both detuning and signal strength for direct ( f sync ≈ f o s c ) and parametric locking ( f sync ≈ 2 f osc ) . We detect a regime of phase resonance, where the phase of the oscillator behaves as an underdamped second-order system, with the natural frequency of the phase resonance showing a clear power-law dependence on the locking signal strength. The phase resonance is qualitatively reproduced using a forced van der Pol-Duffing-Mathieu equation.

  18. Parametric oscillators from factorizations employing a constant-shifted Riccati solution of the classical harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, H.C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosi, S.L.P. (Mexico); Khmelnytskaya, K.V. [Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas s/n, C.P. 76010 Santiago de Queretaro, Qro. (Mexico)

    2011-09-19

    We determine the kind of parametric oscillators that are generated in the usual factorization procedure of second-order linear differential equations when one introduces a constant shift of the Riccati solution of the classical harmonic oscillator. The mathematical results show that some of these oscillators could be of physical nature. We give the solutions of the obtained second-order differential equations and the values of the shift parameter providing strictly periodic and antiperiodic solutions. We also notice that this simple problem presents parity-time (PT) symmetry. Possible applications are mentioned. -- Highlights: → A particular Riccati solution of the classical harmonic oscillator is shifted by a constant. → Such a solution is used in the factorization brackets to get different equations of motion. → The properties of the parametric oscillators obtained in this way are examined.

  19. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    Science.gov (United States)

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  20. Bifurcations of a parametrically excited oscillator with strong nonlinearity

    Institute of Scientific and Technical Information of China (English)

    唐驾时; 符文彬; 李克安

    2002-01-01

    A parametrically excited oscillator with strong nonlinearity, including van der Poi and Duffing types, is studied for static bifurcations. The applicable range of the modified Lindstedt-Poincaré method is extended to 1/2 subharmonic resonance systems. The bifurcation equation of a strongly nonlinear oscillator, which is transformed into a small parameter system, is determined by the multiple scales method. On the basis of the singularity theory, the transition set and the bifurcation diagram in various regions of the parameter plane are analysed.

  1. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  2. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    Lin Xiao-Gang; Liu Wen-Jun; Lei Ming

    2016-03-01

    Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  3. Parametric Optomechanical Oscillations in Two-dimensional Slot-type High-Q Photonic Crystal Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zheng J.; Stein A.; Li, Y.; Aras, M.S.; Shepard, K.L.; Wong, C.W.

    2012-05-22

    We experimentally demonstrate an optomechanical cavity based on an air-slot photonic crystal cavity with optical quality factor Q{sub o} = 4.2 x 10{sup 4} and a small modal volume of 0.05 cubic wavelengths. The optical mode is coupled with the in-plane mechanical modes with frequencies up to hundreds of MHz. The fundamental mechanical mode shows a frequency of 65 MHz and a mechanical quality factor of 376. The optical spring effect, optical damping, and amplification are observed with a large experimental optomechanical coupling rate g{sub om}/2{pi} of 154 GHz/nm, corresponding to a vacuum optomechanical coupling rate g*/2{pi} of 707 kHz. With sub-mW or less input power levels, the cavity exhibits strong parametric oscillations. The phase noise of the photonic crystal optomechanical oscillator is also measured.

  4. 光参量振荡器阈值的研究%The study of the threshold for optical parametric oscillator

    Institute of Scientific and Technical Information of China (English)

    薛竣文; 裴雪丹; 苏秉华; 孙鲁; 赵慧元

    2012-01-01

    In order to obtain the high efficiency operation of optical parametric oscillator(OPO),it is very important to decrease the threshold of OPO especially for the case of low power pump.The ways of decreasing the threshold are obtained by studying the factors which affected threshold.The ways include choosing crystal which has bigger effective nonlinear coefficient,choosing longer crystal when walk-off being satisfied,increasing mode matching factor of pumping and signal beam,double-way pumping,choosing shorter cavity of OPO and choosing shorter pumping pulse width,decreasing loss of signal light in the cavity,choosing proper reflectivity of the output mirror etc.And the importance of study is placed on the mode matching of the pumping and signal beam.The general calculating method of mode matching in any place of the double-concave cavity is derived.When the radius of curvature of the cavity mirror is infinity,the results will transform to plano-plano or plano-concave cavity.And low power intra-cavity OPO is realized at last.%为获得光参量振荡器(OPO)的高效率运转,尤其是在小功率泵浦的情况下,降低它的阈值成为研究的重要内容。通过分析影响OPO阈值的因素,得到了通过以下手段来降低阈值的方法:选择有效非线性系数大的晶体,选择满足走离条件下较长的晶体,增大泵浦光与信号光模式匹配因子,双程泵浦,短的OPO的腔长和泵浦光脉冲,降低信号光在腔内往返损耗,选择合适的输出镜强度反射率等。并重点对影响阈值因素中的泵浦光与信号光模式匹配因子进行了研究,得到了双凹腔结构腔内任意位置的模式匹配计算的一般方法,当腔镜曲率半径趋于无穷时,该结果可以过渡到平平腔或平凹腔的特殊结构,并在实验上实现了小功率腔内OPO的运转。

  5. Parametric oscillators from factorizations employing a constant-shifted Riccati solution of the classical harmonic oscillator

    Science.gov (United States)

    Rosu, H. C.; Khmelnytskaya, K. V.

    2011-09-01

    We determine the kind of parametric oscillators that are generated in the usual factorization procedure of second-order linear differential equations when one introduces a constant shift of the Riccati solution of the classical harmonic oscillator. The mathematical results show that some of these oscillators could be of physical nature. We give the solutions of the obtained second-order differential equations and the values of the shift parameter providing strictly periodic and antiperiodic solutions. We also notice that this simple problem presents parity-time (PT) symmetry. Possible applications are mentioned.

  6. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    Science.gov (United States)

    Isaienko, Oleksandr; Robel, István

    2016-03-01

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.

  7. Constant matter neutrino oscillations in a parametrization-free formulation

    Science.gov (United States)

    Flores, L. J.; Miranda, O. G.

    2016-02-01

    Neutrino oscillations are now a well-established and deeply studied phenomena. Their mixing parameters, except for the C P phase, are measured with good accuracy. The three-neutrino oscillation picture in matter is currently of great interest due to the different long-baseline neutrino experiments that are already running or under construction. In this work, we reanalyze the exact expression for the neutrino probabilities (in a constant density medium) and introduce an approximate formula. Our results are shown in a formulation that is independent of the parametrization and could be useful for unitary tests of the leptonic mixing matrix. We illustrate how the approximation, besides being simple, can reproduce the neutrino probabilities with good accuracy.

  8. Constant matter neutrino oscillations in a parametrization-free formulation

    CERN Document Server

    Flores, L J

    2015-01-01

    Neutrino oscillations are now a well stablished and deeply studied phenomena. Its mixing parameters, except for the CP-phase, are measured with good accuracy. Three neutrino oscillation picture in matter is currently of great interest due to the different long baseline neutrino experiments that are already running or under construction. In this work we re-analyze the exact expression for the neutrino probabilities (in a constant density medium) and introduce an approximate formula. Our results are showed in a formulation that is independent of the parametrization and could be useful for unitary tests of the leptonic mixing matrix. We illustrate how the approximation, besides being simple, can reproduce the neutrino probabilities with good accuracy.

  9. 基于MgO:APLN的1.57µm/3.84µm连续波内腔多光参量振荡器研究∗%Continuous-wave 1.57 µm/3.84 µm intra-cavity multiple optical parametric oscillator based on MgO:APLN

    Institute of Scientific and Technical Information of China (English)

    于永吉; 陈薪羽; 成丽波; 王超; 吴春婷; 董渊; 李述涛; 金光勇

    2015-01-01

    Continuous-wave (CW) coherent sources emitting two wavelengths of 1.57 µm and 3.84 µm have aroused much interest of scientists due to their many applications such as military multiband composite guidance, remote monitoring of the special environment, etc. Quasi-phase matching (QPM) optical parametric oscillator (OPO) device with periodically inverted structure of nonlinear coefficient can implement an efficient and wavelength conversion at arbitrary wavelength in the transparent range of the QPM material. Nowadays, using MgO:PPLN for QPM, various MgO:PPLN-OPOs pumped by conventional 1.06 µm laser source can produce 1.57 µm and 3.84 µm laser and also achieve good results. But as a result of the limitation of momentum conservation condition and periodically poled structure, 1.57 µm and 3.84 µm laser can only meet a single band. To obtain the two-wavelength laser output at the same time, the MgO:PPLN-OPO could not be applied. In this paper, a CW 1.57 µm and 3.84 µm intra-cavity multiple optical parametric oscillator based on MgO:APLN is reported. The cross period parameter light is obtained by using a folded type doubly cavity which consists of 1064 nm resonator and multiple optical parametric oscillator. Considering both its thermal stability under high power pump and the light spot mode matching of multiple optical parametric oscillation process, through numerical simulation and theoretical analysis of two sub cavities, the optimum parameters of the cavity structure are determined. On this basis, the influences of output coupler transmittance on oscillation threshold, the down-conversion efficiency, output power stability are investigated in experiment. With T =10% at 1.47 µm and 3.3 µm output coupler used, the maximum output powers of 3.13 W at 1.57 µm and 0.85 W at 3.84 µm are obtained, corresponding to slope efficiencies of 6.8% and 1.9%, respectively. The power stabilities are better than 1.8% and 3% at the maximum output power in half an hour. The

  10. 基于周期极化钽酸锂晶体的光参变振荡器技术研究%Research on Optical Parametric Oscillator Based on Periodically Poled LiTaO3 Crystal

    Institute of Scientific and Technical Information of China (English)

    魏星斌; 彭跃峰; 王卫民; 陈兴无; 王春华; 谢刚

    2011-01-01

    对基于周期极化钽酸锂(PPLT)晶体的光参变振荡器(OPO)技术进行了理论分析和实验研究,通过三波混频耦合波方程组,计算了PPLT-OPO的波长调谐曲线.分别研究了信号光单谐振结构(SSRO)和闲频光单谐振结构(ISRO)下,PPLT-OPO的中红外激光输出特性.当Nd:YAG激光器输出的1.064 μm激光抽运功率为48 W,重复频率为5 kHz时.SSRO和ISRO输出的3.9 μm中红外激光功率分别为5.78 W和5.07 W,相应的转换效率分别为12%和10.6%,ISRO输出的3.9μm激光的近场光斑分布和光束质量优于SSRO的输出结果.%The theoretical analysis and experimental research of the optical parametric oscillator (OPO) based on periodically poled LiTaO3 (PPLT) crystal are presented. The wavelength tuning curves of PPLT-OPO are calculated through the coupling equations of the three-wave mixing. The output characters of signal singly resonant oscillator (SSRO) and idler singly resonant oscillator (ISRO) are studied. When the pump power of the Nd: YAG 1. 064μm laser is 48 W with a repetition rate of 5 kHz, the output powers of 3.9 μm laser from SSRO and ISRO are 5.78 W and 5.07 W, and corresponding conversion efficiencies are 12 % and 10.6 % respectively. The near-field distribution and beam quality of the 3.9 μm laser from ISRO are better than those from SSRO.

  11. Near Infrared (NIR) Imaging Techniques Using Lasers and Nonlinear Crystal Optical Parametric Oscillator/Amplifier (OPO/OPA) Imaging and Transferred Electron (TE) Photocathode Image Intensifiers

    Energy Technology Data Exchange (ETDEWEB)

    YATES,GEORGE J.; MCDONALD,THOMAS E. JR.; BLISS,DAVID E.; CAMERON,STEWART M.; GREIVES,KENNETH H.; ZUTAVERN,FRED J.

    2000-12-20

    Laboratory experiments utilizing different near-infrared (NIR) sensitive imaging techniques for LADAR range gated imaging at eye-safe wavelengths are presented. An OPO/OPA configuration incorporating a nonlinear crystal for wavelength conversion of 1.56 micron probe or broadcast laser light to 807 nm light by utilizing a second pump laser at 532 nm for gating and gain, was evaluated for sensitivity, resolution, and general image quality. These data are presented with similar test results obtained from an image intensifier based upon a transferred electron (TE) photocathode with high quantum efficiency (QE) in the 1-2 micron range, with a P-20 phosphor output screen. Data presented include range-gated imaging performance in a cloud chamber with varying optical attenuation of laser reflectance images.

  12. 200 TW 45 fs laser based on optical parametric chirped pulse amplification.

    Science.gov (United States)

    Lozhkarev, V V; Freidman, G I; Ginzburg, V N; Katin, E V; Khazanov, E A; Kirsanov, A V; Luchinin, G A; Mal'shakov, A N; Martyanov, M A; Palashov, O V; Poteomkin, A K; Sergeev, A M; Shaykin, A A; Yakovlev, I V; Garanin, S G; Sukharev, S A; Rukavishnikov, N N; Charukhchev, A V; Gerke, R R; Yashin, V E

    2006-01-01

    200 TW peak power has been achieved experimentally using a Cr:forsterite master oscillator at 1250 nm, a stretcher, three optical parametrical amplifiers based on KD*P (DKDP) crystals providing 14.5 J energy in the chirped pulse at 910 nm central wavelength, and a vacuum compressor. The final parametrical amplifier and the compressor are described in detail. Scaling of such architecture to multipetawatt power is discussed.

  13. Longitudinal parametric oscillation in photorefractive sillenites: Comparison between theory and experiment

    DEFF Research Database (Denmark)

    Pedersen, H.C.; Johansen, P.M.; Webb, D.J.;

    1999-01-01

    By using an alternative setup for photorefractive parametric oscillation in which wave mixing between the recording beams is avoided it has become possible to make more detailed comparisons with the space-charge wave theory. In the present paper we compare the experimental features of longitudinal...... parametric oscillation observed in a crystal of Bi12SiO20 with the theoretical predictions....

  14. Degenerate optomechanical parametric oscillators: cooling in the vicinity of a critical point

    CERN Document Server

    Degenfeld-Schonburg, Peter; Hartmann, Michael J; Navarrete-Benlloch, Carlos

    2015-01-01

    Degenerate optomechanical parametric oscillators are optical resonators in which a mechanical degree of freedom is coupled to a cavity mode that is nonlinearly amplified via parametric down-conversion of an external pumping laser. Below a critical pumping power the down-converted field is purely quantum-mechanical, making the theoretical description of such systems very challenging. Here we introduce a theoretical approach that is capable of describing this regime, even at the critical point itself. We find that the down-converted field can induce significant mechanical cooling and identify the process responsible of this as a "cooling by heating" mechanism. Moreover, we show that, contrary to naive expectations and semi-classical predictions, cooling is not optimal at the critical point, where the photon number is largest. Our approach opens the possibility for analyzing further hybrid dissipative quantum systems in the vicinity of critical points.

  15. Optical realization of the dissipative quantum oscillator

    CERN Document Server

    Longhi, Stefano

    2016-01-01

    An optical realization of the damped quantum oscillator, based on transverse light dynamics in an optical resonator with slowly-moving mirrors, is theoretically suggested. The optical resonator setting provides a simple implementation of the time-dependent Caldirola-Kanai Hamiltonian of the dissipative quantum oscillator, and enables to visualize the effects of damped oscillations in the classical (ray optics) limit and wave packet collapse in the quantum (wave optics) regime.

  16. Transversal parametric oscillation and its external stability in photorefractive sillenite crystals

    DEFF Research Database (Denmark)

    Podivilov, E.V.; Pedersen, H.C.; Johansen, P.M.

    1998-01-01

    We develop the nonlinear theory of transversal parametric oscillation in photorefractive sillenite crystals. The theory is nonlinear in the sense that the nonlinear feedback from the parametric space-charge field waves, above threshold of their excitation, is taken into account. In this manner...... of transversal parametric oscillation is stable within certain regions of external and internal parameters. This is opposed to the degenerate case (K/2 subharmonic generation), which is unstable....

  17. Microdroplet oscillations during optical pulling

    CERN Document Server

    Ellingsen, Simen Å

    2011-01-01

    It was recently shown theoretically that it is possible to pull a spherical dielectric body towards the source of a laser beam [Nature Photonics {\\bf 5}, 531 (2011)], a result with immediate consequences to optical manipulation of small droplets. Optical pulling can be realised e.g.\\ using a diffraction free Bessel beam, and is expected to be of great importance in manipulation of microscopic droplets in micro- and nanofluidics. Compared to conventional optical pushing, however, the radio of optical net force to stress acting on a droplet is much smaller, increasing the importance of oscillations. We describe the time-dependent surface deformations of a water microdroplet under optical pulling to linear order in the deformation. Shape oscillations have a lifetime in the order of microseconds for droplet radii of a few micrometers. The force density acting on the initially spherical droplet is strongly peaked near the poles on the beam axis, causing the deformations to take the form of jet-like protrusions.

  18. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification

    NARCIS (Netherlands)

    Witte, S.; Zinkstok, R.T.; Hogervorst, W.; Eikema, K.S.E.

    2005-01-01

    We demonstrate the generation of 9.8 +/- 0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti: Sapphire oscillator to

  19. Gain Characteristics of Fiber Optical Parametric Amplifier

    Institute of Scientific and Technical Information of China (English)

    高明义; 姜淳; 胡卫生

    2004-01-01

    The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics of one-pump and two-pump FOPA. The results show that for one-pump FOPA, when pump wavelength is near to fiber zero-dispersion wavelength(ZDW), the gain flatness is better, and with the increase of the pump power, fiber length and its nonlinear coefficient, the gain value will increase while the gain bandwidth will become narrow. For two-pump FOPA, when the pump central wavelength is near to fiber ZDW, the gain flatness is better. Moreover, by decreasing the space of two pumps wavelength, the gain flatness can be improved. Finally, some problems existing in FOPA were addressed.

  20. Optical Vortex Solitons in Parametric Wave Mixing

    CERN Document Server

    Alexander, T J; Buryak, A V; Sammut, R A; Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.

    2000-01-01

    We analyze two-component spatial optical vortex solitons supported by degenerate three- or four-wave mixing in a nonlinear bulk medium. We study two distinct cases of such solitons, namely, parametric vortex solitons due to phase-matched second-harmonic generation in a optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a `halo-vortex', consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a `ring-vortex' soliton which is a vortex in a harmonic field that guides a bright localized ring-like mode of a fundamental frequency field.

  1. High-Frequency RIN Transfer in Fibre Optic Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Kang, Ning

    2011-01-01

    ibre optic parametric amplifiers (FOPAs) are versatile devices for amplification at arbitrary wavelengths, as well as a wide range of optical signal processing applications, including switching, wavelength conversion, regeneration, pulse generation etc [1]. Transfer of intensity fluctuations from...

  2. A Theoretical Evaluation of Optical Parametric Amplification in BBO Crystal

    Institute of Scientific and Technical Information of China (English)

    邵敏; 薛绍林; 林尊琪

    2005-01-01

    The noncollinear optical parametric amplification in BBO crystal is theoretically investigated. The phase matching angle, gain bandwidth, optimal noncollinear angle and conversion efficiency for both type-Ⅰ and type-Ⅱ BBO are simulated. The numerical simulation results are important to the practical optical parametric amplification experiments with BBO crystal.

  3. All-optical Photonic Oscillator with High-Q Whispering Gallery Mode Resonators

    Science.gov (United States)

    Savchenkov, Anatoliy A.; Matsko, Andrey B.; Strekalov, Dmitry; Mohageg, Makan; Iltchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We demonstrated low threshold optical photonic hyper-parametric oscillator in a high-Q 10(exp 10) CaF2 whispering gallery mode resonator which generates stable 8.5 GHz signal. The oscillations result from the resonantly enhanced four wave mixing occurring due to Kerr nonlinearity of the material.

  4. Parametric frequency transformation in a superconducting waveguide line with an integrated Josephson oscillator

    Science.gov (United States)

    Denisenko, M. V.; Munyaev, V. O.; Satanin, A. M.

    2016-11-01

    The parametric frequency division in a coplanar waveguide line with an integrated single-contact rf SQUID (Josephson oscillator) is discussed. It is assumed that the oscillator is excited by pump pulses whose carrier frequency can be a multiple of the plasma frequency of the oscillator. It is shown that the Josephson oscillator excited at the pump frequency can induce frequency division by emitting subharmonics that are multiples of the fundamental frequency (fractional resonances). Parameters for which parametric frequency transformation occurs are determined. The possible generalization of this effect to the quantum case in which correlated microwave photons (entangled photon states) can be generated is discussed.

  5. Observation of Three Mode Parametric Interactions in Long Optical Cavities

    CERN Document Server

    Zhao, C; Fan, Y; Slagmolen, S Gras B J J; Miao, H; Blair, P Barriga D G; Hosken, D J; Brooks, A F; Veitch, P J; Mudge, D; Munch, J

    2008-01-01

    We report the first observation of three-mode opto-acoustic parametric interactions of the type predicted to cause parametric instabilities in an 80 m long, high optical power cavity that uses suspended sapphire mirrors. Resonant interaction occurs between two distinct optical modes and an acoustic mode of one mirror when the difference in frequency between the two optical cavity modes is close to the frequency of the acoustic mode. Experimental results validate the theory of parametric instability in high power optical cavities.

  6. Design criteria for ultrafast optical parametric amplifiers

    Science.gov (United States)

    Manzoni, C.; Cerullo, G.

    2016-10-01

    Optical parametric amplifiers (OPAs) exploit second-order nonlinearity to transfer energy from a fixed frequency pump pulse to a variable frequency signal pulse, and represent an easy way of tuning over a broad range the frequency of an otherwise fixed femtosecond laser system. OPAs can also act as broadband amplifiers, transferring energy from a narrowband pump to a broadband signal and thus considerably shortening the duration of the pump pulse. Due to these unique properties, OPAs are nowadays ubiquitous in ultrafast laser laboratories, and are employed by many users, such as solid state physicists, atomic/molecular physicists, chemists and biologists, who are not experts in ultrafast optics. This tutorial paper aims at providing the non-specialist reader with a self-consistent guide to the physical foundations of OPAs, deriving the main equations describing their performance and discussing how they can be used to understand their most important working parameters (frequency tunability, bandwidth, pulse energy/repetition rate scalability, control over the carrier-envelope phase of the generated pulses). Based on this analysis, we derive practical design criteria for OPAs, showing how their performance depends on the type of the nonlinear interaction (crystal type, phase-matching configuration, crystal length), on the characteristics of the pump pulse (frequency, duration, energy, repetition rate) and on the OPA architecture.

  7. Parametric instability of linear oscillators with colored time-dependent noise

    CERN Document Server

    Izrailev, F M; Krokhin, A A; Tessieri, L

    2004-01-01

    The goal of this paper is to discuss the link between the quantum phenomenon of Anderson localization on the one hand, and the parametric instability of classical linear oscillators with stochastic frequency on the other. We show that these two problems are closely related to each other. On the base of analytical and numerical results we predict under which conditions colored parametric noise suppresses the instability of linear oscillators.

  8. Analytical and Numerical Studies for Chaotic Dynamics of a Duffing Oscillator with a Parametric Force

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The chaotic dynamics of a Duffing oscillator with a parametric force is investigated. By using the direct perturbation technique, we analytically obtain the general solution of the 1st-order equation. Through the boundedness condition of the general solution we get the famous Melnikov function predicting the onset of chaos. When the parametric and external forces are strong, numerical simulations show that increasing the amplitude of the parametric or external force can lead the system into chaos via period doubling.

  9. Fiber optical parametric amplifiers in optical communication systems

    DEFF Research Database (Denmark)

    Marhic, Michel E.; Andrekson, Peter A.; Petropoulos, Periklis

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-...... in excess of 14,000 Tb/s x km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed.......The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time......-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512Gb/s have been transmitted over 6,000km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products...

  10. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  11. Optical analogue of electronic Bloch oscillations.

    Science.gov (United States)

    Sapienza, Riccardo; Costantino, Paola; Wiersma, Diederik; Ghulinyan, Mher; Oton, Claudio J; Pavesi, Lorenzo

    2003-12-31

    We report on the observation of Bloch oscillations in light transport through periodic dielectric systems. By introducing a linear refractive index gradient along the propagation direction the optical equivalent of a Wannier-Stark ladder was obtained. Bloch oscillations were observed as time-resolved oscillations in transmission, in direct analogy to electronic Bloch oscillations in conducting crystals where the Wannier-Stark ladder is obtained via an external electric field. The observed oscillatory behavior is in excellent agreement with transfer matrix calculations.

  12. Studies of nondegenerate, quasi-phase-matched optical parametric amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2004-03-18

    We have performed extensive numerical studies of quasi-phase-matched optical parametric amplification with the aim to improve its nondegenerate spectral bandwidth. Our multi-section fan-out design calculations indicate a 35-fold increase in spectral bandwidth.

  13. Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator

    Science.gov (United States)

    Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas

    2016-05-01

    We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185+/-15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing.

  14. Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator

    Science.gov (United States)

    Krantz, Philip; Bengtsson, Andreas; Simoen, Michaël; Gustavsson, Simon; Shumeiko, Vitaly; Oliver, W. D.; Wilson, C. M.; Delsing, Per; Bylander, Jonas

    2016-01-01

    We propose and demonstrate a read-out technique for a superconducting qubit by dispersively coupling it with a Josephson parametric oscillator. We employ a tunable quarter wavelength superconducting resonator and modulate its resonant frequency at twice its value with an amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillation: one oscillating state, with 185±15 photons in the resonator, and one with zero oscillation amplitude. This high contrast obviates a following quantum-limited amplifier. We demonstrate proof-of-principle, single-shot read-out performance, and present an error budget indicating that this method can surpass the fidelity threshold required for quantum computing. PMID:27156732

  15. Optical stochastic cooling for RHIC using optical parametric amplification

    Directory of Open Access Journals (Sweden)

    M. Babzien

    2004-01-01

    Full Text Available We propose using an optical parametric amplifier, with a ∼12   μm wavelength, for optical-stochastic cooling of ^{79}Au ions in the Relativistic Heavy Ion Collider. While the bandwidth of this amplifier is comparable to that of a Ti:sapphire laser, it has a higher average output power. Its wavelength is longer than that of the laser amplifiers previously considered for such an application. This longer wavelength permits a longer undulator period and higher magnetic field, thereby generating a larger signal from the pickup undulator and ensuring a more efficient interaction in the kicker undulator, both being essential elements in cooling moderately relativistic ions. The transition to a longer wavelength also relaxes the requirements for stability of the path length during ion-beam transport between pickup and kicker undulators.

  16. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  17. Optical Parametric Technology for Methane Measurements

    Science.gov (United States)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  18. Optical parametric technology for methane measurements

    Science.gov (United States)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-09-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 μJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  19. Enhancement of Available Conversion Efficiency of Optical Parametric Amplifier in a Cascaded Photonic Crystal Structure

    Institute of Scientific and Technical Information of China (English)

    LI Wen-Hui; CHEN Li-Xue; TANG Dong-Hua; DING Wei-Qiang; LIU Shu-Tian

    2005-01-01

    @@ Using the cascaded structure of a linear and a second-order nonlinear photonic crystals, we realize a high-efficiency optical parametric amplifier in the case of exact phase matching. This proposal is verified using the slow-envelope nonlinear finite difference time domain numerical method. Compared with the case of the individual nonlinear photonic crystal structure, the oscillation threshold is decreased obviously, and the peak power amplification factor of the transmitted signal is enhanced more than 20 times.

  20. Self-tuning bistable parametric feedback oscillator: Near-optimal amplitude maximization without model information

    Science.gov (United States)

    Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu

    2017-01-01

    Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.

  1. Ultrasensitive hysteretic force sensing with parametric nonlinear oscillators

    Science.gov (United States)

    Papariello, Luca; Zilberberg, Oded; Eichler, Alexander; Chitra, R.

    2016-08-01

    We propose a method for linear detection of weak forces using parametrically driven nonlinear resonators. The method is based on a peculiar feature in the response of the resonator to a near resonant periodic external force. This feature stems from a complex interplay among the parametric drive, external force, and nonlinearities. For weak parametric drive, the response exhibits the standard Duffing-like single jump hysteresis. For stronger drive amplitudes, we find a qualitatively new double jump hysteresis which arises from stable solutions generated by the cubic Duffing nonlinearity. The additional jump exists only if the external force is present and the frequency at which it occurs depends linearly on the amplitude of the external force, permitting a straightforward ultrasensitive detection of weak forces. With state-of-the-art nanomechanical resonators, our scheme should permit force detection in the attonewton range.

  2. Bloch oscillations in optical dissipative lattices.

    Science.gov (United States)

    Efremidis, Nikolaos K; Christodoulides, Demetrios N

    2004-11-01

    We show that Bloch oscillations are possible in dissipative optical waveguide lattices with a linearly varying propagation constant. These oscillations occur in spite of the fact that the Bloch wave packet experiences coupling gain and (or) loss. Experimentally, this process can be observed in different settings, such as in laser arrays and lattices of semiconductor optical amplifiers. In addition, we demonstrate that these systems can suppress instabilities arising from preferential mode noise growth.

  3. Fiber optical parametric amplifiers in optical communication systems.

    Science.gov (United States)

    Marhic, Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. [Formula: see text].

  4. Generation of entanglement in quantum parametric oscillators using phase control.

    Science.gov (United States)

    Gonzalez-Henao, J C; Pugliese, E; Euzzor, S; Abdalah, S F; Meucci, R; Roversi, J A

    2015-08-19

    The control of quantum entanglement in systems in contact with environment plays an important role in information processing, cryptography and quantum computing. However, interactions with the environment, even when very weak, entail decoherence in the system with consequent loss of entanglement. Here we consider a system of two coupled oscillators in contact with a common heat bath and with a time dependent oscillation frequency. The possibility to control the entanglement of the oscillators by means of an external sinusoidal perturbation applied to the oscillation frequency has been theoretically explored. We demonstrate that the oscillators become entangled exactly in the region where the classical counterpart is unstable, otherwise when the classical system is stable, entanglement is not possible. Therefore, we can control the entanglement swapping from stable to unstable regions by adjusting amplitude and phase of our external controller. We also show that the entanglement rate is approximately proportional to the real part of the Floquet coefficient of the classical counterpart of the oscillators. Our results have the intriguing peculiarity of manipulating quantum information operating on a classical system.

  5. Decomposing a pulsed optical parametric amplifier into independent squeezers

    CERN Document Server

    Lvovsky, A I; Banaszek, K

    2006-01-01

    We discuss the concept of characteristic squeezing modes applied to a travelling-wave optical parametric amplifier pumped by an ultrashort pulse. The characteristic modes undergo decoupled single-mode squeezing transformations, and therefore they form a useful basis to describe the evolution of the entire multimode system. This provides an elegant and intuitive picture of quantum statistical properties of parametric fluorescence. We analyse the efficiency of detecting quadrature squeezing, and present results of numerical calculations for a realistic nonlinear medium.

  6. Activation barrier scaling and crossover for noise-induced switching in micromechanical parametric oscillators.

    Science.gov (United States)

    Chan, H B; Stambaugh, C

    2007-08-10

    We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscillators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.

  7. Femtosecond Optical Parametric Amplifier for Petawatt Nd:Glass Lasers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Min; QIAN Lie-Jia; YUAN Peng; LUO Hang; ZHU He-Yuan; ZHU Qi-Hua; WEI Xiao-Feng; FAN Dian-Yuan

    2006-01-01

    @@ We study a femtosecond Ti:sapphire laser pumped optical parametric amplifier (OPA) at 1053nm. The OPA generates stable signal pulses with duration smaller than 100 fs, wavelength drift smaller than 0.5nm, and pulse-to-pulse fluctuation of about ±4%, by employing an external seeder. In a terawatt laser pumped large-aperture LiNbO3 OPA, pulse energy at signal has been scaled up to 4mJ. This m J-class femtosecond OPA at 1053nm presents a feasible alternative to optical parametric chirped-pulse amplification, and is ready to be applied to petawatt lasers.

  8. Global chaos synchronization of the parametrically excited Duffing oscillators by linear state error feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiaofeng [Center for Control and Optimizations, South China University of Technology, Guangzhou 510640 (China) and Guangzhou Naval Academy, Guangzhou 510430 (China)], E-mail: wuxiaof@21cn.com; Cai Jianping [Department of Applied Mechanics and Engineering, Zhongshan University, Guangzhou 510275 (China); Wang Muhong [Guangzhou Naval Academy, Guangzhou 510430 (China)

    2008-04-15

    The paper deals with a linear state error feedback control technique which is utilized to synchronize two parametrically excited non-autonomous Duffing oscillators. Some sufficient criteria for global chaos synchronization are obtained by means of Lyapunov's direct method. A few examples are illustrated to verify the proposed theoretical results.

  9. Experimental investigation on parametric excitation of plasma oscillations in Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Kofoed, Bent; Pedersen, Niels Falsig;

    1975-01-01

    Experimental evidence for subharmonic, parametric excitation of plasma oscillations in Josephson tunnel junctions is presented. The experiments described are performed by measuring the microwave power necessary to switch a Josephson tunnel junction biased in the zero voltage state to a finite...

  10. Semiconductor-Superlattice Parametric Oscillator as a Subterahertz and Possible Terahertz Radiation Source

    Directory of Open Access Journals (Sweden)

    Karl F. Renk

    2007-01-01

    Full Text Available We describe the operation of a semiconductor-superlattice parametric oscillator (SPO at a subterahertz frequency (near 300 GHz. The oscillator is driven by a microwave source (frequency near 100 GHz. We also present an analysis indicating that operation at frequencies above 1 THz should be possible. The SPO is based on the ability of conduction electrons in a superlattice to perform Bloch oscillations. Broadband tunability as well as the monochromacy of a driving microwave field are transferred to the SPO.

  11. High-Energy Optical Parametric Waveform Synthesizer

    OpenAIRE

    Muecke, Oliver D.; Cirmi, G.; Fang, S.; Rossi, G. M.; Chia, Shih-Hsuan; Kärtner, F. X.; Manzoni, C.; Farinello, P.; Cerullo, and G.

    2014-01-01

    We discuss the ongoing development of a phase-stable, multi-mJ 3-channel parametric waveform synthesizer generating a 2-octave-wide spectrum (0.52-2.4μm). After two amplification stages, the combined >125-μJ output supports 1.9-fs waveforms. First preliminary FROG-characterization results of the second-stage outputs demonstrate the feasibility to recompress all three channels simultaneously close to the Fourier limit. Energy scaling to ~2 mJ is achieved after three amplification stages. The f...

  12. Parametrics Resonances of a Forced Modified Rayleigh-Duffing Oscillator

    CERN Document Server

    Miwadinou, C H; Chabi, J B

    2013-01-01

    We investigate in this paper the superharmonic and subharmonic resonances of forced modified Rayleigh-Duffing oscillator. We analyse this equation by method of multiple scales and we obtain superharmonic and subharmonic resonances order-two and order-three. We obtain also regions where steady-state subharmonic responses exist. Finally, we use the amplitude-frequency curve for demonstrate the effect of various parameters on the response of the system.

  13. Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [College of Mechanical Engineering, Beijing University of Technology, Beijing 100022 (China)] e-mail: sandyzhang0@yahoo.com

    2005-11-01

    This paper presents an analysis of the chaotic motion and its control for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. A new method of controlling chaotic motion for the nonlinear nonplanar oscillations of the cantilever beam, refereed as to the force control approach, is proposed for the first time. The governing nonlinear equations of nonplanar motion under combined parametric and external excitations are obtained. The Galerkin procedure is applied to the governing equation to obtain a two-degree-of-freedom nonlinear system under combined parametric and forcing excitations for the in-plane and out-of-plane modes. The work is focused on the case of 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance-primary resonance for the out-of-plane mode. The method of multiple scales is used to transform the parametrically and externally excited system to the averaged equations which have a constant perturbation force. Based on the averaged equations obtained here, numerical simulation is utilized to discover the periodic and chaotic motions for the nonlinear nonplanar oscillations of the cantilever beam. The numerical results indicate that the transverse excitation in the z direction at the free end can control the chaotic motion to a period n motion or a static state for the nonlinear nonplanar oscillations of the cantilever beam. The methodology of controlling chaotic motion by using the transverse excitation is proposed. The transverse excitation in the z direction at the free end may be thought about to be an open-loop control. For the problem investigated in this paper, this approach is an effective methodology of controlling chaotic motion to a period n motion or a static state for the nonlinear nonplanar oscillations of the cantilever beam.

  14. Parametric resonance in neutrino oscillation: A guide to control the effects of inhomogeneous matter density

    Science.gov (United States)

    Koike, Masafumi; Ota, Toshihiko; Saito, Masako; Sato, Joe

    2016-08-01

    Effects of the inhomogeneous matter density on the three-generation neutrino oscillation probability are analyzed. Realistic profile of the matter density is expanded into a Fourier series. Taking in the Fourier modes one by one, we demonstrate that each mode has its corresponding target energy. The high Fourier mode selectively modifies the oscillation probability of the low-energy region. This rule is well described by the parametric resonance between the neutrino oscillation and the matter effect. The Fourier analysis gives a simple guideline to systematically control the uncertainty of the oscillation probability caused by the uncertain density of matter. Precise analysis of the oscillation probability down to the low-energy region requires accurate evaluation of the Fourier coefficients of the matter density up to the corresponding high modes.

  15. Parametric Resonance in Neutrino Oscillation: A Guide to Control the Effects of Inhomogeneous Matter Density

    CERN Document Server

    Koike, Masafumi; Saito, Masako; Sato, Joe

    2016-01-01

    Effects of the inhomogeneous matter density on the three-generation neutrino oscillation probability are analyzed. Realistic profile of the matter density is expanded into a Fourier series. Taking in the Fourier modes one by one, we demonstrate that each mode has its corresponding target energy. The high Fourier mode selectively modifies the oscillation probability of the low-energy region. This rule is well described by the parametric resonance between the neutrino oscillation and the matter effect. The Fourier analysis gives a simple guideline to systematically control the uncertainty of the oscillation probability caused by the uncertain density of matter. Precise analysis of the oscillation probability down to the low-energy region requires accurate evaluation of the Fourier coefficients of the matter density up to the corresponding high modes.

  16. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

    CERN Document Server

    Liu, Xiaoping; Vlasov, Yurii A; Green, William M J

    2010-01-01

    All-optical signal processing is envisioned as an approach to dramatically decrease power consumption and speed up performance of next-generation optical telecommunications networks. Nonlinear optical effects, such as four-wave mixing (FWM) and parametric gain, have long been explored to realize all-optical functions in glass fibers. An alternative approach is to employ nanoscale engineering of silicon waveguides to enhance the optical nonlinearities by up to five orders of magnitude, enabling integrated chip-scale all-optical signal processing. Previously, strong two-photon absorption (TPA) of the telecom-band pump has been a fundamental and unavoidable obstacle, limiting parametric gain to values on the order of a few dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic TPA-related absorption vanishes. This gain is high enough to comp...

  17. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    Science.gov (United States)

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  18. Gain characteristics of a saturated fiber optic parametric amplifier

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny

    2008-01-01

    In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....

  19. Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael

    2012-01-01

    We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion...

  20. Active Control of the Parametric Resonance in the Modified Rayleigh-Duffing Oscillator

    CERN Document Server

    Miwadinou, C H; Orou, J B Chabi

    2013-01-01

    The present paper examines the active control of parametric resonance in modified Rayleigh-Duffing oscillator. We used the method of averaging to obtain steady-state solutions. We have found the critical value of the parametrical amplitude which indicates the boundary layer where the control is efficient in reducing the amplitude vibration. We find also the effects of excitation parameters and time-delay on dynamical of this system with the principal parametric resonance. We obtain also for this oscillators the Hopf bifurcation or saddle-node bifurcation for certains values of parametric parameters and time-delay and we have studied the influence of parameter $k_2$ which is one parameter which modify the ordinary Rayleigh-Duffing oscillator. We have discussed the appropriate choice of the time-delay and control gain. We finally studied the stability of fixed point and it is found that the appropriate choice of the time-delay can broaden the stable region of the non-trivial steady-state solutions enhance the c...

  1. Parametric dependence of energy harvesting performance with an oscillating hydrofoil

    Science.gov (United States)

    Strom, Benjamin; Kim, Daegyoum; Mandre, Shreyas; Breuer, Kenneth

    2014-11-01

    We report on experiments on tidal energy conversion from a open channel water flow using an oscillating hydrofoil. The hydrofoil is operated at high angles of attack such that the formation and capture of a leading edge vortex greatly enhances the energy conversion efficiency. A computer-controlled pitch and heave system allows for arbitrary position profiles to be imposed. Force and torque measurements are used to determine the energy harvesting efficiency as a function of Reynolds number, pitch and heave amplitudes, phase shift, the location of the pitching axis, position profile, and the cross sectional shape of the hydrofoil. PIV measurements are used to capture the vortex dynamics and these results are compared to the computational results of Frank and Franck (2013). Efficiency was found to be most sensitive to pitch amplitude, pitching axis and phase shift with relatively little dependence on Reynolds number, heave amplitude, and foil shape. Work supported by DOE-ARPAe.

  2. Parametrically excited oscillation of stay cable and its control in cable-stayed bridges

    Institute of Scientific and Technical Information of China (English)

    孙炳楠; 汪至刚; 高赞明; 倪一清

    2003-01-01

    This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the stay cable are considered in the model, based on which, the oscillation mechanism and dynamic response characteristics of this kind of vibration are analyzed through numerical calculation. It is noted that parametrically excited oscillation of a stay cable with certain sag, inclination angle and initial static tension force may occur in cable-stayed bridges due to deck vibration under the condition that the natural frequency of a cable approaches to about half of the first model frequency of the bridge deck system. A new vibration control system installed on the cable anchorage is proposed as a possible damping system to suppress the cable parametric oscillation. The numerical calculation results showed that with the use of this damping system, the cable oscillation due to the vibration of the deck and/or towers will be considerably reduced.

  3. Parametrically excited oscillation of stay cable and its control in cable-stayed bridges"

    Institute of Scientific and Technical Information of China (English)

    孙炳楠; 汪至刚; 高赞明; 倪一清

    2003-01-01

    This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the stay cable are considered in the model, based on which, the oscillation mechanism and dynamic response characteristics of this kind of vibration are analyzed through numerical calculation. It is noted that parametrically excited oscillation of a stay cable with certain sag, inclination angle and initial static tension force may occur in cable-stayed bridges due to deck vibration under the condition that the natural frequency of a cable approaches to about half of the first model frequency of the bridge deck system. A new vibration control system installed on the cable anchorage is proposed as a possible damping system to suppress the cable parametric oscillation. The numerical calculation results showed that with the use of this damping system, the cable oscillation due to the vibration of the deck and/or towers will be considerably reduced.

  4. Numerical Modelling of Spontaneous Emission in Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Ulrik Lund; Rottwitt, Karsten

    2013-01-01

    Fiber optical parametric processes offer a wide range of applications including phase sensitive as well as phase insensitive amplification, wavelength conversion and signal regeneration. One of the difficult challenges is any of these applications is to predict their associated noise performance....... However, it is well accepted that one contribution to the noise performance originates from vacuum fluctuations. In this work we show a novel approach to predict the spontaneous radiation from a parametric amplifier. In the approach the propagating fields are treated as a sum of a classical mean field...

  5. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification.

    Science.gov (United States)

    Witte, S; Zinkstok, R; Hogervorst, W; Eikema, K

    2005-06-27

    We demonstrate the generation of 9.8+/-0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti:Sapphire oscillator to 23 mJ/pulse, resulting in 10.5 mJ/pulse after compression while amplified fluorescence is kept below 1%. We employ grating-based stretching and compression in combination with an LCD phase-shaper, allowing compression close to the Fourier limit of 9.3 fs.

  6. Electric field tuning characteristic of multiple optical parametric oscillator based on MgO:QPLN%基于MgO:QPLN的多光参量振荡器电场调谐特性理论与实验研究∗

    Institute of Scientific and Technical Information of China (English)

    于永吉; 陈薪羽; 成丽波; 王超; 吴春婷; 董渊; 李述涛; 金光勇

    2015-01-01

    The quasi-phase matching optical parametric oscillator tuning methods, i.e. grating period tuning, temperature tuning, pumping wavelength tuning, and angle tuning are more simple and convenient than the traditional mechanical tuning which requires inserting the frequency selective element into the cavity. However, itneed to be improved for wavelength tuning in quick response and high-accuracy control. In this paper, the tunability of multiple optical parametric oscillator (MOPO) based on MgO:QPLN has been studied under an applied electric field. Based on the linear electro-optic effect of LiNbO3, we theoretically analyze the feasibility of achieving parametric light wavelengths tuning by applying electric field of particular direction on the z-direction of LiNbO3. We study the relationships between the ability of electric field tuning and the polarization structure parameters, and analyze the feasibility of MgO:QPLN with high positive and negative superlattice domain ratio for electric field tuning. The relationship of output wavelength and loading voltage is achieved by simulation. Simulation results show that the tuning rates of 1.57 µm signal light and 3.84 µm idler light are about 0.27 and 0.93 nm/kV, respectively. By reasonably controlling the temperature of MgO:QPLN crystal, tuning sections of the parametric light electric field could be linked orderly, and the output wavelength of parametric lights could be turned continuously in a wide range, which greatly expands the spectral bandwidth of the electric field tuning. In the experiment, a high-repetition-rate acousto-optic Q-switched Nd:YVO4 laser at 1064 nm is applied as the pumping source. The laser works at 200 kHz with a pulse width of 9.756 ns and its maximumouput power is 22.8 W on average. When the temperature of MgO:QPLN is stable at 20◦C, the average output power of 1.57 µm signal light and 3.84 µm idler light are 1.7 and 0.72 W, respectively, and the corresponding pulse width of the two

  7. PRINCIPAL RESPONSE OF VAN DER POL-DUFFING OSCILLATOR UNDER COMBINED DETERMINISTIC AND RANDOM PARAMETRIC EXCITATION

    Institute of Scientific and Technical Information of China (English)

    戎海武; 徐伟; 王向东; 孟光; 方同

    2002-01-01

    The principal resonance of Van der Pol-Duffing oscillator to combined determin istic and random parametric excitations is investigated. The method of multiple scales was used to determine the equations of modulation of amplitude and phase. The behavior, stability and bifurcation of steady state response were studied. Jumps were shown to occur under some conditions. The effects of damping, detuning , bandwidth, and magnitudes of deterministic and random excitations are analyzed. The theoretical analysis were verified by numerical results.

  8. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier.

    Science.gov (United States)

    Wnuk, Paweł; Stepanenko, Yuriy; Radzewicz, Czesław

    2010-04-12

    We report on a high gain amplification of broadband ultraviolet femtosecond pulses in an optical parametric chirped pulse amplifier. Broadband ultraviolet seed pulses were obtained by an achromatic frequency doubling of the output from a femtosecond Ti:Sapphire oscillator. Stretched seed pulses were amplified in a multipass parametric amplifier with a single BBO crystal pumped by a ns frequency quadrupled Nd:YAG laser. A noncollinear configuration was used for a broadband amplification. The total (after compression) amplification of 2.510(5) was achieved, with compressed pulse energy of 30 microJ and pulse duration of 24 fs. We found that the measured gain was limited by thermal effects induced by the absorption of the pump laser by color centers created in the BBO crystal.

  9. Heating and thermal squeezing in parametrically driven oscillators with added noise.

    Science.gov (United States)

    Batista, Adriano A

    2012-11-01

    In this paper we report a theoretical model based on Green's functions, Floquet theory, and averaging techniques up to second order that describes the dynamics of parametrically driven oscillators with added thermal noise. Quantitative estimates for heating and quadrature thermal noise squeezing near and below the transition line of the first parametric instability zone of the oscillator are given. Furthermore, we give an intuitive explanation as to why heating and thermal squeezing occur. For small amplitudes of the parametric pump the Floquet multipliers are complex conjugate of each other with a constant magnitude. As the pump amplitude is increased past a threshold value in the stable zone near the first parametric instability, the two Floquet multipliers become real and have different magnitudes. This creates two different effective dissipation rates (one smaller and the other larger than the real dissipation rate) along the stable manifolds of the first-return Poincaré map. We also show that the statistical average of the input power due to thermal noise is constant and independent of the pump amplitude and frequency. The combination of these effects causes most of heating and thermal squeezing. Very good agreement between analytical and numerical estimates of the thermal fluctuations is achieved.

  10. Magnus Expansion Approach to Parametric Oscillator Systems in a Thermal Bath

    Science.gov (United States)

    Zhu, Beilei; Rexin, Tobias; Mathey, Ludwig

    2016-10-01

    We develop a Magnus formalism for periodically driven systems which provides an expansion both in the driving term and in the inverse driving frequency, applicable to isolated and dissipative systems. We derive explicit formulas for a driving term with a cosine dependence on time, up to fourth order. We apply these to the steady state of a classical parametric oscillator coupled to a thermal bath, which we solve numerically for comparison. Beyond dynamical stabilisation at second order, we find that the higher orders further renormalise the oscillator frequency, and additionally create a weakly renormalised effective temperature. The renormalised oscillator frequency is quantitatively accurate almost up to the parametric instability, as we confirm numerically. Additionally, a cut-off dependent term is generated, which indicates the break down of the hierarchy of time scales of the system, as a precursor to the instability. Finally, we apply this formalism to a parametrically driven chain, as an example for the control of the dispersion of a many-body system.

  11. The supersymmetric parametric oscillators originating from a constant shift of the harmonic oscillator Riccati solution

    CERN Document Server

    Rosu, H C

    2010-01-01

    Previous research made us consider a simple but curious problem related to the kind of oscillators that are produced in the usual supersymmetric scheme when one introduces a constant shift of the Riccati solution R(t)=-omega _0 tan(omega _0t) of the classical harmonic oscillator. The corresponding mathematical scheme is presented in detail showing that at least some of these oscillators could be of physical nature. We give the solutions of the resulting second-order differential equations obtaining the values of the shift parameter providing strictly periodic and antiperiodic solutions. We also notice that this simple problem presents parity-time (PT) symmetry

  12. Parametric and scattering characterization of PDMS membranes for optical applications

    Science.gov (United States)

    Santiago-Alvarado, A.; Vazquez Montiel, S.; Munoz-Lopez, J.; Castro-Ramos, J.; Delgado Atencio, J. A.

    2009-08-01

    Today elastic membranes are being used more frequent as optical surfaces in the science or in the industry. This due to the advantages that they display in their handling and in their cost of production. These characteristics make them ideals to apply them in micro-optical components and Tunable Focus Liquid Filled Length Lens (TFLFLL). In order to know if a membrane of PDMS (PDMS Sylgard 184) is feasible for a specific application within the field of the optics, it is necessary to know its mechanical, optical and chemical properties. In this work the parametric membrane characterization is reported for an optical application. An important factor in the performance of these membranes is related with their scattering factor that is produced due to the roughness and impurities (micro-bubbles or dust particles). These membranes are used as refractive surface in TFLFLL. Experimental results of the characterization process and device performance are presented.

  13. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    Science.gov (United States)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  14. Fiber-Optical Parametric Amplification of Sub-Picosecond Pulses for High-Speed Optical Communications

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Cristofori, Valentina; Rottwitt, Karsten

    2015-01-01

    This article reviews recent results of amplification of short optical pulses using fiber-optical parametric amplifiers. This includes chirped-pulse amplification of 400 fs pulses, error-free amplification of a 640-Gbit/s optical time-division multiplexed signal with less than a 1-dB power penalty...

  15. Modulation-mediated unlocking of a parametrically phase-locked spin torque oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Dürrenfeld, P.; Iacocca, E. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, KTH-Royal Institute of Technology, School of ICT, Electrum 229, 164 40 Kista (Sweden); Muduli, P. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Department of Physics, Indian Institute of Technology, Delhi, 110016 New Delhi (India)

    2014-12-22

    Modulation of an oscillator is crucial for its application in communication devices. While the output power and linewidth of single magnetic tunnel junction-based spin-torque oscillators (MTJ-STO) are not yet adequate for practical uses, the synchronization of such devices can overcome these limitations. Here, we investigate the modulation behavior of a parametrically synchronized MTJ-STO and show experimentally that modulation of the synchronized state preserves synchronization as long as the modulation frequency, f{sub mod}, is above a characteristic frequency, f{sub unlock}. The unlocking frequency increases with the modulation amplitude in agreement with analytical estimates and numerical simulations. These phenomena are described as a non-resonant unlocking mechanism, whose characteristics are directly related to inherent parameters of the oscillator.

  16. Optical detection of terahertz using nonlinear parametric upconversion.

    Science.gov (United States)

    Khan, M Jalal; Chen, Jerry C; Kaushik, Sumanth

    2008-12-01

    We extend our work to perform sensitive, room-temperature optical detection of terahertz (THz) by using nonlinear parametric upconversion. THz radiation at 700 GHz is mixed with pump light at 1,550 nm in a bulk GaAs crystal to generate an idler wave at 1,555.6 nm. The idler is separated, coupled into optical fiber, and detected using a gated Geiger-mode avalanche photodiode. The resulting THz detector has a power sensitivity of 4.5 pW/Hz and a timing resolution of 1 ns.

  17. Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity.

    Science.gov (United States)

    Zeng, Xiaoge; Popović, Miloš A

    2014-06-30

    We propose optimal designs for triply-resonant optical parametric oscillators (OPOs) based on degenerate four-wave mixing (FWM) in microcavities. We show that optimal designs in general call for different external coupling to pump and signal/idler resonances. We provide a number of normalized performance metrics including threshold pump power and maximum achievable conversion efficiency for OPOs with and without two-photon (TPA) and free-carrier absorption (FCA). We find that the maximum achievable conversion efficiency is bound to an upper limit by nonlinear and free-carrier losses independent of pump power, while linear losses only increase the pump power required to achieve a certain conversion efficiency. The results of this work suggest unique advantages in on-chip implementations that allow explicit engineering of resonances, mode field overlaps, dispersion, and wavelength-and mode-selective coupling. We provide universal design curves that yield optimum designs, and give example designs of microring-resonator-based OPOs in silicon at the wavelengths 1.55 μm (with TPA) and 2.3 μm (no TPA) as well as in silicon nitride (Si(3)N(4)) at 1.55 μm. For typical microcavity quality factor of 10(6), we show that the oscillation threshold in excitation bus can be well into the sub-mW regime for silicon microrings and a few mW for silicon nitride microrings. The conversion efficiency can be a few percent when pumped at 10 times of the threshold. Next, based on our results, we suggest a family of synthetic "photonic molecule"-like, coupled-cavity systems to implement optimum FWM, where structure design for control of resonant wavelengths can be separated from that of optimizing nonlinear conversion efficiency, and where furthermore pump, signal, and idler coupling to bus waveguides can be controlled independently, using interferometric cavity supermode coupling as an example. Finally, consideration of these complex geometries calls for a generalization of the nonlinear

  18. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator.

    Science.gov (United States)

    Yang, Yong; Jiang, Xuefeng; Kasumie, Sho; Zhao, Guangming; Xu, Linhua; Ward, Jonathan M; Yang, Lan; Chormaic, Síle Nic

    2016-11-15

    Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this Letter, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO2 laser beam technique. By decreasing the wall thickness of the MBR to 1.4 μm, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical Q-factor of the MBR modes being greater than 107, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.

  19. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator

    CERN Document Server

    Yang, Yong; Kasumie, Sho; Zhao, Guangming; Xu, Linhua; Ward, Jonathan; Yang, Lan; Chormaic, Síle Nic

    2016-01-01

    Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this work, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO$_2$ laser beam technique. By decreasing the wall thickness of the MBR down to 1.4 $\\mu$m, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical \\textit{Q}-factor of the MBR modes being greater than $10^7$, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.

  20. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  1. The Theory and Applications of Parametric Excitation and Suppression of Oscillations in Continua: State of the Art

    CERN Document Server

    Kazachkov, Ivan V

    2015-01-01

    The results by development of physical, mathematical and numerical models for parametric excitation and suppression of oscillations on the interfaces separating continuous media, for carrying out computing, physical and natural experiments by revealing the new phenomena and parametric effects, and for their use in improvement the existing and creation the perspective highly efficient technological processes are presented. Scientific novelty of this work consists in development of the theory and applications of parametric excitation and suppression of oscillations on the boundaries of continua on the samples of three tasks classes: flat and radial spreading film flows of viscous incompressible liquids, conductive as well as non-conductive ones; surfaces of phase transition from a liquid state into a solid one; and heterogeneous granular media. The external actions considered are: alternating electromagnetic, vibration, acoustic and thermal fields. Along with linear the non-linear parametric oscillations are in...

  2. Ultra-low phase noise 10 GHz oscillator to pump the parametric transducers of the Mario Schenberg gravitational wave detector

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luiz A [Divisao de Materiais, Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP 12201-970 (Brazil); Costa, Cesar A [Divisao de Astrofisica, Instituto Nacional de Pesquisas Espaciais, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Aguiar, Odylio D [Divisao de Astrofisica, Instituto Nacional de Pesquisas Espaciais, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Frajuca, Carlos [Centro Federal de Educacao Tecnologica de Sao Paulo, Rua Pedro Vicente 625, SP 01109-010 (Brazil); Mosso, Marbey M [CETUC, Centro de Estudos em Telecomunicacoes, PUC-RJ, Rio de Janeiro, RJ (Brazil); Podcameni, Abelardo [CETUC, Centro de Estudos em Telecomunicacoes, PUC-RJ, Rio de Janeiro, RJ (Brazil); Silva, Henrique J P P da [CETUC, Centro de Estudos em Telecomunicacoes, PUC-RJ, Rio de Janeiro, RJ (Brazil); Magalhaes, Nadja S [Instituto Tecnologica de Aeronautica, Departamento de FIsica, Praca Marechal Eduardo Gomes, 50, Sao Jose dos Campos, SP 12228-900 (Brazil)

    2004-03-07

    We developed a 10 GHz feedback oscillator with ultra-low phase noise. The oscillator was constructed to operate as the pump for the parametric transducers of the Mario Schenberg gravitational wave detector. We calculated the performance of the detector with this pump oscillator and determined how much improvement in phase noise would be necessary in order to reach the standard quantum limit in sensitivity.

  3. Optical parametric chirped pulse amplifier at 1600 nm with all-optical synchronization

    Directory of Open Access Journals (Sweden)

    Leitenstorfer Alfred

    2013-03-01

    Full Text Available We demonstrate the amplification of 1.6 μm pulses by a KTA optical parametric chirped-pulse amplifier based on an all-optical synchronization scheme as a scalable approach to generation of high power tunable mid infrared.

  4. Matter neutrino oscillations, an approximation in a parametrization-free framework

    CERN Document Server

    Flores, L J

    2016-01-01

    Neutrino oscillations are one of the most studied and successful phenomena since the establishment of the solar neutrino problem in late 1960's. In this work we discuss the exact expressions for the probability P_{\\alpha\\beta} in a constant density medium, in terms of the standard vacuum parameters and the medium density. Besides of being compact, these expressions are independent of any particular parametrization, which could be helpful in the application of unitary tests of the mixing matrix. In addition, we introduce a new approximation on P_{\\alpha\\beta} and compare it with the most commonly used, discussing their main differences.

  5. Analysis and estimation of the threshold for a microwave "pellicle mirror" parametric oscillator, via energy conservation

    CERN Document Server

    Chiao, Raymond Y

    2012-01-01

    An experiment is proposed to observe the dynamical Casimir effect by means of two tandem, high Q, superconducting microwave cavities, which are separated from each other by only a very thin wall consisting of a flexible superconducting membrane that can be driven into motion by means of resonant "pump" microwaves injected into the left cavity. Degenerate "signal" and "idler" microwave signals can then be generated by the exponential amplification of vacuum fluctuations in the initially empty right cavity, above a certain threshold. The purpose of this paper is calculate the threshold for this novel kind of opto-mechanical parametric oscillation, using energy considerations.

  6. Time-delayed quantum coherent Pyragas feedback control of photon squeezing in a degenerate parametric oscillator

    Science.gov (United States)

    Kraft, Manuel; Hein, Sven M.; Lehnert, Judith; Schöll, Eckehard; Hughes, Stephen; Knorr, Andreas

    2016-08-01

    Quantum coherent feedback control is a measurement-free control method fully preserving quantum coherence. In this paper we show how time-delayed quantum coherent feedback can be used to control the degree of squeezing in the output field of a cavity containing a degenerate parametric oscillator. We focus on the specific situation of Pyragas-type feedback control where time-delayed signals are fed back directly into the quantum system. Our results show how time-delayed feedback can enhance or decrease the degree of squeezing as a function of time delay and feedback strength.

  7. Matter neutrino oscillations, an approximation in a parametrization-free framework

    Science.gov (United States)

    Flores, L. J.; Miranda, O. G.

    2016-10-01

    Neutrino oscillations are one of the most studied and successful phenomena since the establishment of the solar neutrino problem in late 1960’s. In this work we discuss the exact expressions for the probability Pαβ in a constant density medium, in terms of the standard vacuum parameters and the medium density. Besides of being compact, these expressions are independent of any particular parametrization, which could be helpful in the application of unitary tests of the mixing matrix. In addition, we introduce a new approximation on Pαβ and compare it with the most commonly used, discussing their main differences.

  8. Highly efficient optical parametric generation in proton exchanged PPLN waveguides

    CERN Document Server

    Chanvillard, L; Baldi, P; De Micheli, M; Ostrowsky, D B; Huang, L; Bamford, G

    1999-01-01

    Summary form only given. Parametric fluorescence, amplification, and oscillation in PPLN waveguides have already been demonstrated. In all previous experiments, the measured efficiencies were smaller than the theoretically predicted values since the waveguide fabrication process utilized, annealed proton exchange (APE) can reduce or even destroy the nonlinear coefficient and/or the periodic domain orientation in a portion of the guiding structure. In the experiment reported here, we used a 2 cm long, Z-cut PPLN with a 18 mu m domain inversion period. The waveguides are created using a direct proton exchange process in a highly diluted melt, which induces no crystallographic phase transition. This allows preserving both the nonlinear coefficient and the domain orientation while fully benefiting from the power confinement associated with the guided wave configuration. (4 refs).

  9. Astigmatism transfer phenomena in the optical parametric amplification process

    Science.gov (United States)

    Li, Wenkai; Chen, Yun; Li, Yanyan; Xu, Yi; Guo, Xiaoyang; Lu, Jun; Leng, Yuxin

    2017-01-01

    We numerically and experimentally investigate the astigmatism transfer phenomena in femtosecond optical parametric amplification (OPA). We model the OPA process based on the coupled second-order three-wave nonlinear propagation equations. The numerical and experimental results support that the input pump pulse astigmatism can be transferred into the idler pulse but not the signal pulse, and the idler pulse astigmatism originating from spatial walk-off is less than the idler pulse astigmatism received from the pump. Thus, we can provide a clear understanding of astigmatism transfer mechanisms in the OPA process, and make better use of broadband tunable OPA sources.

  10. Spontaneous parametric processes in optical fibers: a comparison

    CERN Document Server

    Garay-Palmett, Karina; U'Ren, Alfred

    2013-01-01

    We study the processes of spontaneous four wave mixing and of third-order spontaneous parametric downconversion in optical fibers, as the basis for the implementation of photon-pair and photon-triplet sources. We present a comparative analysis of the two processes including expressions for the respective quantum states and plots of the joint spectral intensity, a discussion of phasematching characteristics, and expressions for the conversion efficiency. We have also included a comparative study based on numerical results for the conversion efficiency for the two sources, as a function of several key experimental parameters.

  11. System approach in the investigation of coolant parametrical oscillations in passive safety injection systems (PSIS)

    Energy Technology Data Exchange (ETDEWEB)

    Proskouriakov, K.N. [Moskovskij Ehnergeticheskij Inst., Moscow (Russian Federation)

    2001-07-01

    The use of thermal-hydraulic computer codes is an important part of the work programme for activities in the field of nuclear power plants (NPP) Safety Research as it will enable to define better the test configuration and parameter range extensions and to extrapolate the results of the small scale experiments towards full scale reactor applications. The CATHARE2, RELAP5, the WCOBRA/TRAC, and APROS codes are the estimate thermal hydraulic codes for the evaluation of large and small break loss of coolant accidents (LOCA). The relatively good agreement experimental data with the calculations have been presented. There was shown also some big mistakes in predicting distribution of flow when two phase are present. Model of parametrical oscillation (P.O.) worked out gives explanation for flow oscillations and indicates that the phenomenon of P.O. appears under certain combination of thermal-hydraulic parameters and structure of heat-removal system. (orig.)

  12. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators.

    Science.gov (United States)

    Savchenkov, Anatoliy A; Rubiola, Enrico; Matsko, Andrey B; Ilchenko, Vladimir S; Maleki, Lute

    2008-03-17

    We report on the experimental study of phase noise properties of a high frequency photonic microwave oscillator based on four wave mixing in calcium fluoride whispering gallery mode resonators. Specifically, the oscillator generates approximately 8.5 GHz signals with -120 dBc/Hz at 100 kHz from the carrier. The floor of the phase noise is limited by the shot noise of the signal received at the photodetector. We argue that the performance of the oscillator can be significantly improved if one uses extremely high finesse resonators, increases the input optical power, supersaturates the oscillator, and suppresses the residual stimulated Raman scattering in the resonator. We also disclose a method of extremely sensitive measurement of the integral dispersion of millimeter scale dielectric resonators.

  13. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    and can operate with a potentially low noise figure with respect to erbium-doped fiber amplifiers and Raman amplifiers, when working in phase-sensitive configurations. A characterization of the signal distortion mechanisms introduced by FOPAs is relevant for investigating the applicability of FOPAs......Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...

  14. Phase mismatched optical parametric generation in semiconductor magnetoplasma

    Science.gov (United States)

    Dubey, Swati; Ghosh, S.; Jain, Kamal

    2017-05-01

    Optical parametric generation involves the interaction of pump, signal, and idler waves satisfying law of conservation of energy. Phase mismatch parameter plays important role for the spatial distribution of the field along the medium. In this paper instead of exactly matching wave vector, a small mismatch is admitted with a degree of phase velocity mismatch between these waves. Hence the medium must possess certain finite coherence length. This wave mixing process is well explained by coupled mode theory and one dimensional hydrodynamic model. Based on this scheme, expressions for threshold pump field and transmitted intensity have been derived. It is observed that the threshold pump intensity and transmitted intensity can be manipulated by varying doping concentration and magnetic field under phase mismatched condition. A compound semiconductor crystal of n-InSb is assumed to be shined at 77 K by a 10.6μm CO2 laser with photon energy well below band gap energy of the crystal, so that only free charge carrier influence the optical properties of the medium for the I.R. parametric generation in a semiconductor plasma medium. Favorable parameters were explored to incite the said process keeping in mind the cost effectiveness and conversion efficiency of the process.

  15. RESPONSE OF PARAMETRICALLY EXCITED DUFFING-VAN DER POL OSCILLATOR WITH DELAYED FEEDBACK

    Institute of Scientific and Technical Information of China (English)

    LI Xin-ye; CHEN Yu-shu; WU Zhi-qiang; SONG Tao

    2006-01-01

    The dynamical behaviour of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay is concerned.By means of the method of averaging together with truncation of Taylor expansions, two slow-flow equations on the amplitude and phase of response were derived for the case of principal parametric resonance. It is shown that the stability condition for the trivial solution is only associated with the linear terms in the original systems besides the amplitude and frequency of parametric excitation. And the trivial solution can be stabilized by appreciate choice of gains and time delay in feedback control. Different from the case of the trivial solution, the stability condition for nontrivial solutions is also associated with nonlinear terms besides linear terms in the original system. It is demonstrated that nontrivial steady state responses may lose their stability by saddle-node (SN) or Hopf bifurcation (HB) as parameters vary. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.

  16. Development of optical parametric chirped-pulse amplifiers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuhisa

    2006-11-21

    In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA) has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared (NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to achieve by existing techniques of pulse amplification based on standard laser gain media followed by external compression. Potential applications of few-cycle pulses in the IR have also been demonstrated. The NIR OPCPA system produces 0.5-terawatt (10 fs,5 mJ) pulses by use of noncollinearly phase-matched optical parametric amplification and a down-chirping stretcher and up-chirping compressor pair. An IR OPCPA system was also developed which produces 20-gigawatt (20 fs,350 {mu}J) pulses at 2.1 {mu}m. The IR seed pulse is generated by optical rectification of a broadband pulse and therefore it exhibits a self-stabilized carrier-envelope phase (CEP). In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an inherent sub-picosecond optical synchronization between the two pulses. This was achieved by use of a custom-built Nd:YLF picosecond pump pulse amplifier that is directly seeded with optical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between the pump and seed pulses is critical for efficient and stable amplification. Two spectroscopic applications which utilize these unique sources have been demonstrated. First, the visible supercontinuum was generated in a solid-state media by the infrared optical pulses and through which the carrier-envelope phase (CEP) of the driving pulse was measured with an f-to-3f interferometer. This measurement confirms the self-stabilization mechanism of the CEP in a difference frequency generation process and the preservation of the CEP during optical parametric amplification. Second, high-order harmonics with energies extending beyond 200 eV were generated with the few

  17. Generating 2 micron continuous-wave ytterbium-doped fiber laser-based optical parametric effect

    Science.gov (United States)

    Paul, M. C.; Latiff, A. A.; Hisyam, M. B.; Rusdi, M. F. M.; Harun, S. W.

    2016-10-01

    We report an efficient method for generating a 2 micron laser based on an optical parametric oscillator (OPO). It uses a long piece of a newly developed double-clad ytterbium-doped fiber (YDF), which is obtained by doping multi-elements of ZrO2, CeO2 and CaO in a phospho-alumina-silica glass as a gain medium. The efficient 2 micron laser generation is successful due to the presence of partially crystalline Yb-doped ZrO2 nano-particles that serve as a nonlinear material in a linear cavity configuration and high watt-level pump power. Stable self-wavelength double lasing at 2122 nm with an efficiency of 7.15% is successfully recorded. At a maximum pump power of 4.1 W, the output power is about 201 mW.

  18. Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier.

    Science.gov (United States)

    Brida, D; Marangoni, M; Manzoni, C; Silvestri, S De; Cerullo, G

    2008-12-15

    Ultrabroadband mid IR pulses with energy as high as 2 microJ and tunability from 2 to 5 microm are generated as the idler beam of an 800 nm pumped optical parametric amplifier in periodically poled stoichiometric lithium tantalate. After bulk compression in a Ge plate and frequency-resolved-opticle-gating characterization, a pulse duration as low as 25 fs was measured, corresponding to two optical cycles of the 3.6 microm carrier wavelength.

  19. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  20. High-power terahertz radiation from surface-emitted THz-wave parametric oscillator

    Institute of Scientific and Technical Information of China (English)

    Li Zhong-Yang; Yao Jian-Quan; Xu De-Gang; Zhong Kai; Wang Jing-Li; Bing Pi-Bin

    2011-01-01

    We report a pulsed surface-emitted THz-wave parametric oscillator based on two MgO:LiNbC>3 crystals pumped by a multi-longitudinal mode Q-switched Nd:YAG laser. Through varying the phase matching angle, the tunable THz wave output from 0.79 THz to 2.84 THz is realized. The maximum THz-wave output was 193.2 nJ/pulse at 1.84 THz as the pump power density was 212.5 MW/cm2, corresponding to the energy conversion efficiency of 2.42 ×10-6 and the photon conversion efficiency of about 0.037%. When the pump power density changed from 123 MW/cm2 to 148 MW/cm2 and 164 MW/cm2, the maximum output of the THz-wave moved to the high frequency band. We give a reasonable explanation for this phenomenon.

  1. Modelling Solar Oscillation Power Spectra: II. Parametric Model of Spectral Lines Observed in Doppler Velocity Measurements

    CERN Document Server

    Vorontsov, Sergei V

    2013-01-01

    We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements and extends naturally to the analysis of high-frequency pseudo modes (interference peaks at frequencies above the atmospheric acoustic cutoff).

  2. Photon BLOCH oscillations in porous silicon optical superlattices.

    Science.gov (United States)

    Agarwal, V; del Río, J A; Malpuech, G; Zamfirescu, M; Kavokin, A; Coquillat, D; Scalbert, D; Vladimirova, M; Gil, B

    2004-03-01

    We report the first observation of oscillations of the electromagnetic field in an optical superlattice based on porous silicon. These oscillations are an optical equivalent of well-known electronic Bloch oscillations in crystals. Elementary cells of our structure are composed by microcavities whose coupling gives rise to the extended collective modes forming optical minigaps and minibands. By varying thicknesses of the cavities along the structure axis, we have created an effective electric field for photons. A very high quality factor of the confined optical state of the Wannier-Stark ladder may allow lasing in porous silicon-based superlattices.

  3. A parametric study of strength reduction factors for elasto-plastic oscillators

    Indian Academy of Sciences (India)

    Debasis Karmakar; Vinay K Gupta

    2006-08-01

    Strength reduction factors (SRFs) continue to play a key role in obtaining design forces from elastic design spectra (via response modification factors) in ductility-based earthquake-resistant design. Despite several years of sustained research efforts, it has not been conclusively shown how SRF for a given single-degree-of-freedom structural system depends on various source and site parameters. A parametric study is carried out here for the explicit dependence of SRF spectrum (describing variation of SRF with system period for a given ductility demand) on strong motion duration, earthquake magnitude, geological site conditions, and epicentral distance in case of (non-degrading) elasto-plastic oscillators. For this, scaled response spectra are considered for different combinations of earthquake magnitude, site conditions and epicentral distance, and SRF spectra are generated from 1274 accelerograms recorded in western USA after making those compatible with each of these spectra. It is shown that there is no clear and significant dependence of SRF spectrum on strong motion duration. Further, the parametric dependence on earthquake magnitude, site conditions, and epicentral distance broadly conforms to the trends reported by earlier investigations. In particular, this study confirms that the dependence of SRF spectra on earthquake magnitude should not be ignored.

  4. Energy-Level of Some Singular Harmonic Oscillators and Parametric Amplifiers with Singular Potential Derived via IEO Method

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; TANG Xu-Bing

    2007-01-01

    We employ the invariant eigen-operator (IEO) method to find the invariant eigen-operators of N-body singular oscillators' Hamiltonians and then derive their energy gaps. The Hamiltonians of parametric amplifiers with singular potential are also discussed in this way.

  5. Synchronously Pumped Optical Parametric Oscillator with Intracavity Difference Frequency Mixing

    Science.gov (United States)

    1998-06-29

    25. DATE 7 MAY 98 26. MPF OFFICIAL (Typed Name, and Grade) P. A. POSEY, MSGT, USAF SUPT, PERSONNEL EMPLOYMT/RELOCATNS 27 . SIGNATURE OF MPF...departing from the Rrpubbc of Panama when traveling on official orders." * "De eonfortnidad con el Parrafo 5u) del Articulo XVII del Acuerdo para U...phasematching technique employs the d33 coefficient which is given by d33 ~ 27 pm/V. With birefringent phasematching the d3i coefficient must be used

  6. Modelling a singly resonant, intracavity ring optical parametric oscillator

    DEFF Research Database (Denmark)

    Buchhave, Preben; Tidemand-Lichtenberg, Peter; Wei, Hou;

    2003-01-01

    We study theoretically and experimentally the dynamics of a single-frequency, unidirectional ring laser with an intracavity nonlinear singly resonant OPO-crystal in a coupled resonator. We find for a range of operating conditions good agreement between model results and measurements of the laser ...

  7. Optical-parametric-amplification applications to complex images

    Science.gov (United States)

    Vaughan, Peter M.

    2011-12-01

    Ultrafast optical pulses have many useful features. One in particular is their ability to exploit nonlinear processes due to their extremely short durations. We have used ultrafast optical pulses, primarily focused on the nonlinear processes of Polarization Gating and of Optical Parametric Amplification, one for measurement and the other for imaging purposes. For measurement, we have demonstrated a robust method of measurement to simultaneously measure both optical pulses used in a pump-probe type configuration. In these measurements, no initial information beyond the nonlinear interaction between the pulses is required. We refer to this method of pulse measurement as Double-Blind Polarization Gating FROG[1]. We have demonstrated this single-shot method for measuring two unknown pulses using one device. We have demonstrated this technique on three separate pulse pairs. We measured two Gaussian pulses with different amounts of chirp. We measured two double pulses with different pulse separations, and we have measured two extremely different pulses, where one was simple Gaussian and the other was a pulse train produced by an etalon. This method has no non-trivial ambiguities, has a reliable algorithm, and is automatically phase matched for all spectral bandwidths. In simulations[2], this method has proven to be extremely robust, measuring very complicated pulses with TBPs of ˜100 even in the presence of noise. In addition to pulse measurement, we have demonstrated the processes of Optical Parametric Amplification (OPA) applicability to imaging of complex objects[3]. We have done this where the Fourier transform plane is used during the interaction. We have amplified and wavelength converted a complex image. We report imaging of spatial features from 1.1 to 10.1 line pairs/millimeter (lp/mm) in the vertical dimension and from 2.0 to 16.0 lp/mm in the horizontal dimension. We observe a gain of ˜100, and, although our images were averaged over many shots, we used a

  8. 基于掺镁周期极化铌酸锂晶体的内腔单共振连续可调谐光参量振荡器%Intra-cavity singly resonant optical parametric oscillator based on magnesium-doped periodically poled lithium niobate

    Institute of Scientific and Technical Information of China (English)

    苏辉; 李志平; 段延敏; 王小蕾; 朱海永

    2013-01-01

    为了用简单、紧凑的谐振腔获得稳定的激光输出,大的调谐范围和转换效率,设计了信号光单共振V型光学参量振荡(OPO)腔,采用内腔式抽运周期极化掺镁铌酸锂晶体(PPMgLN)的光学参量振荡技术获得了连续中红外宽波段调谐激光的输出.用808 nm半导体激光抽运Nd:YVO4晶体产生的1 064 nm激光作为光参量振荡的基频光,通过V型腔灵活控制激光光斑并改变PPMgLN的极化周期和控制温度实现了2 249~3 706 nm中红外的连续宽波段调谐激光输出.在半导体激光抽运功率为10.5W,极化周期为29.98μm,控制温度为411 K的情况下获得了最高650 mW的中红外激光输出,对应的中心波长为3 466 nm,线宽为2.6 nm,具有较好的单色性.在7.5W的入射功率下,最高808 nm抽运光到闲频光的转化效率达7.73%,对应输出功率为580 mW.%To obtain stable laser outputs,bigger turning ranges and higher transfer efficiencies by a simple and compact resonance cavity,a V-type Optical Parametric Oscillator (OPO) pumped by a 1064 nm Nd:YVO4 laser is designed,and broadband wavelength-tunable,continuous-wave (CW)mid-infrared laser sources are obtained.The Nd:YVO4 laser crystal is pumped by a 808 nm semiconductor laser to generate a 1 064 nm laser as the fundamental frequency light,and the V-type cavity is used to control laser spots and to change the grating period and temperature of the PPMgLN to obtain the 2 249 to 3 706 nm tunable idler output.With an 808-nm pump power of 10.5 W and a polarized period of 29.98 μm,a maximum idler output power up to 650 mW at 3 466 nm is achieved under the PPMgLN to be set at 411 K,which shows a better monochromaticity and is corresponding to a center wavelength of 3 466 nm and line width of 2.6 nm.Moreover,when 808 nm pump power is 7.5 W,the maximum optical-to-optical conversion efficiency can be up to 7.73% and the corresponding output power is 580 mW.

  9. Optical parametric amplification beyond the slowly varying amplitude approximation

    Indian Academy of Sciences (India)

    M Hosseini Farzad

    2007-09-01

    The coupled-wave equations describing optical parametric amplification (OPA) are usually solved in the slowly varying amplitude (SVA) approximation regime, in which the second-order derivatives of the signal and idler amplitudes are ignored and in fact the electromagnetic effects due to exit face of the medium is not involved. Here, an analytical plane-wave solution of these coupled-wave equations in a non-absorbing medium is presented. The solutions are derived beyond the SVA approximation up to order of = (coupling constant over the wave number). The intensity distributions of the signal and the idler waves show a periodic behavior about their corresponding distributions of SVA-adapted solution. This behavior can be explained by the interference of the forward propagating signal (idler) wave and the corresponding backward one resulted from the reflection by the end face of the medium. Furthermore, this interference pattern in the medium can in turn serve as a periodic source for the next generations of the signal and idler waves. Therefore, the superposition of the waves, generated from different points of this periodic source, at the exit face of the medium shows an oscillatory behavior of the transmitted signal (idler) wave in terms of normalized coupling constant, . This study also shows that this effect is more considerable for high intensity pump beam, high relative refractive index and short length of the nonlinear medium.

  10. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a

  11. Two mode coupling in a single ion oscillator via parametric resonance

    CERN Document Server

    Gorman, Dylan J; Selvarajan, Sankaranarayanan; Daniilidis, Nikos; Häffner, Hartmut

    2014-01-01

    Atomic ions, confined in radio-frequency Paul ion traps, are a promising candidate to host a future quantum information processor. In this letter, we demonstrate a method to couple two motional modes of a single trapped ion, where the coupling mechanism is based on applying electric fields rather than coupling the ion's motion to a light field. This reduces the design constraints on the experimental apparatus considerably. As an application of this mechanism, we cool a motional mode close to its ground state without accessing it optically. As a next step, we apply this technique to measure the mode's heating rate, a crucial parameter determining the trap quality. In principle, this method can be used to realize a two-mode quantum parametric amplifier.

  12. Critical fluctuations and the rates of interstate switching near the excitation threshold of a quantum parametric oscillator.

    Science.gov (United States)

    Lin, Z R; Nakamura, Y; Dykman, M I

    2015-08-01

    We study the dynamics of a nonlinear oscillator near the critical point where period-two vibrations are first excited with the increasing amplitude of parametric driving. Above the threshold, quantum fluctuations induce transitions between the period-two states over the quasienergy barrier. We find the effective quantum activation energies for such transitions and their scaling with the difference of the driving amplitude from its critical value. We also find the scaling of the fluctuation correlation time with the quantum noise parameters in the critical region near the threshold. The results are extended to oscillators with nonlinear friction.

  13. Critical fluctuations and the rates of interstate switching near the excitation threshold of a quantum parametric oscillator

    Science.gov (United States)

    Lin, Z. R.; Nakamura, Y.; Dykman, M. I.

    2015-08-01

    We study the dynamics of a nonlinear oscillator near the critical point where period-two vibrations are first excited with the increasing amplitude of parametric driving. Above the threshold, quantum fluctuations induce transitions between the period-two states over the quasienergy barrier. We find the effective quantum activation energies for such transitions and their scaling with the difference of the driving amplitude from its critical value. We also find the scaling of the fluctuation correlation time with the quantum noise parameters in the critical region near the threshold. The results are extended to oscillators with nonlinear friction.

  14. Parametric Optical Signal Processing in Silicon Waveguides with Reverse-biased p-i-n Junctions

    DEFF Research Database (Denmark)

    Peucheret, C.; Da Ros, Francesco; Vukovic, Dragana;

    2014-01-01

    The use of silicon-on-insulator waveguides with free carriers removal using a reverse-biased p-i-n junction for parametric optical signal processing is reviewed. High-efficiency wavelength conversion and phase-sensitive regeneration are reported.......The use of silicon-on-insulator waveguides with free carriers removal using a reverse-biased p-i-n junction for parametric optical signal processing is reviewed. High-efficiency wavelength conversion and phase-sensitive regeneration are reported....

  15. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  16. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  17. Asymmetric Gain-Saturated Spectrum in One-pump Fiber Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael

    2011-01-01

    The effect of third-order dispersion on the saturated-gain in fiber optical parametric amplifiers is experimentally demonstrated. A possible interpretation in terms of dispersive waves, which change the power transfer to the signal, is presented.......The effect of third-order dispersion on the saturated-gain in fiber optical parametric amplifiers is experimentally demonstrated. A possible interpretation in terms of dispersive waves, which change the power transfer to the signal, is presented....

  18. Parametric excitation of relaxation oscillations at the subharmonic of the external modulating signal in a ring Nd : YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G; Chekina, S N [D.V. Skobel' tsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2012-08-31

    The dynamics of solid-state ring laser (SSRL) radiation with periodic pump modulation is studied experimentally and simulated numerically in the case of parametric excitation of relaxation oscillations at the subharmonic of a modulating signal. Parametric processes are investigated by modulating the pump in two regimes of the SSRL operation: steady-state regime of unidirectional lasing and self-modulation regime of the first kind. Significant differences in the dynamics of radiation for these regimes are found. It is established that when the laser operates in the self-modulation regime, a first-order parametric instability can result in the appearance of the dynamic chaos regime. (control of laser radiation parameters)

  19. Lie transformation method on quantum state evolution of a general time-dependent driven and damped parametric oscillator

    Science.gov (United States)

    Zhang, Lin; Zhang, Weiping

    2016-10-01

    A variety of dynamics in nature and society can be approximately treated as a driven and damped parametric oscillator. An intensive investigation of this time-dependent model from an algebraic point of view provides a consistent method to resolve the classical dynamics and the quantum evolution in order to understand the time-dependent phenomena that occur not only in the macroscopic classical scale for the synchronized behaviors but also in the microscopic quantum scale for a coherent state evolution. By using a Floquet U-transformation on a general time-dependent quadratic Hamiltonian, we exactly solve the dynamic behaviors of a driven and damped parametric oscillator to obtain the optimal solutions by means of invariant parameters of Ks to combine with Lewis-Riesenfeld invariant method. This approach can discriminate the external dynamics from the internal evolution of a wave packet by producing independent parametric equations that dramatically facilitate the parametric control on the quantum state evolution in a dissipative system. In order to show the advantages of this method, several time-dependent models proposed in the quantum control field are analyzed in detail.

  20. Fiber-optic parametric amplifiers: Their advantages and limitations

    Science.gov (United States)

    Yaman, Fatih

    Fiber-optic parametric amplifiers (FOPAs) can be used in lightwave systems for several signal-processing applications including optical amplification, phase conjugation, and wavelength conversion. In principle, FOPAs can provide high gain uniform over a wide wavelength range (> 100 nm). What is more, FOPAs add little noise to the amplified signal. FOPAs can have noise figure as low as 0 dB when operated in the phase-sensitive mode and 3 dB in the phase insensitive mode. However, in practice, these advantages of FOPAs are compromised. In this work, I investigate several factors that limit the performance of FOPAs, and propose practical schemes to minimize those limitations. FOPAs can provide a relatively large gain bandwidth because the gain spectrum of FOPAs is not determined by material resonances but by the phase-matching condition. For the same reason, FOPAs are very sensitive to perturbations stemming from fiber irregularities. One such irregularity is that fiber dispersion varies randomly along the fiber length. My numerical modeling showed that, because of such variations, FOPA gain spectrum cannot maintain its flatness and also that FOPA gain profile changes from one fiber to the other. Using stochastic methods, an analytic theory is developed that can predict an "average gain spectrum." This analytic theory can be used to show that flatness of FOPA gain is recovered at the expense of reducing the gain bandwidth. Another fiber irregularity that affects FOPA gain spectrum is the residual birefringence. During the fiber-drawing process, the cross section of fiber core inevitably deviates from perfect circular symmetry. As a result, all non-polarization maintaining fibers exhibit residual birefringence. Both the magnitude of birefringence and the direction of its principal axis vary along the fiber length as well as in time. Because of residual birefringence, state of polarizations of the propagating fields change randomly also. Since the underlying four

  1. Optical simulation of neutrino oscillations in binary waveguide arrays.

    Science.gov (United States)

    Marini, Andrea; Longhi, Stefano; Biancalana, Fabio

    2014-10-10

    We theoretically propose and investigate an optical analogue of neutrino oscillations in a pair of vertically displaced binary waveguide arrays with longitudinally modulated effective refractive index. Optical propagation is modeled through coupled-mode equations, which in the continuous limit converge to two coupled Dirac equations for fermionic particles with different mass states, analogously to neutrinos. In addition to simulating neutrino oscillation in the noninteracting regime, our optical setting enables us to explore neutrino interactions in extreme regimes that are expected to play an important role in massive supernova stars. In particular, we predict the quenching of neutrino oscillations and the existence of topological defects, i.e., neutrino solitons, which in our photonic simulator should be observable as excitation of optical gap solitons propagating along the binary arrays at high excitation intensities.

  2. Near-Nyquist optical pulse generation with fiber optical parametric amplification.

    Science.gov (United States)

    Vedadi, Armand; Shoaie, Mohammad Amin; Brès, Camille-Sophie

    2012-12-10

    A novel method using optical fiber parametric amplification and phase modulation is proposed in order to generate Nyquist pulses. Using parabolic pulses as a pump, we show theoretically that it is possible to generate Nyquist pulses. Furthermore, we show that by using a sinusoidal pump (pump intensity modulated by an RF tone), it is possible to obtain pulses with characteristics that are close to Nyquist limited pulses. We demonstrate experimentally the generation of bandwidth limited pulses with full width half maximum of 14 ps at 10 GHz repetition rate. We also discuss limitations of this method and means to overcome these limitations.

  3. PT-symmetric quantum oscillator in an optical cavity

    CERN Document Server

    Longhi, Stefano

    2016-01-01

    The quantum harmonic oscillator with parity-time ($\\mathcal{PT}$) symmetry, obtained from the ordinary (Hermitian) quantum harmonic oscillator by an imaginary displacement of the spatial coordinate, provides an important and exactly-solvable model to investigate non-Hermitian extension of the Ehrenfest theorem. Here it is shown that transverse light dynamics in an optical resonator with off-axis longitudinal pumping can emulate a $\\mathcal{PT}$-symmetric quantum harmonic oscillator, providing an experimentally accessible system to investigate non-Hermitian coherent state propagation.

  4. Synthetic electrophysiology: optically controlled oscillators in an engineered bioelectric tissue

    Science.gov (United States)

    McNamara, Harold; Zhang, Hongkang; Werley, Christopher; Cohen, Adam

    Multicellular electrical dynamics underlie crucial physiological functions, but the complexity of natural bioelectricity can obscure the relation of individual components (proteins, cells) to emergent system-level dynamics. Here we introduce optopatch-spiking HEK(OS-HEK) tissue, a minimal synthetic bioelectric tissue with 4 transgenic components that supports optical initiation of propagating electrical waves as well direct optical voltage readout. In conjunction with a home-built inverted microscope capable of patterned illumination, we use this tissue to probe the biophysical attributes of this excitable bioelectric medium, including dispersion relations, curvature-dependent wavefront propagation, electrotonic coupling, and effects of boundaries. We then used chemical patterning to define cellular circuits that support controllable oscillations and which retain memory for more than 2 hours (corresponding to 104 oscillations), constituting a substrate for binary bioelectric data storage. Finally, we use optical patterning of boundary conditions in a physically homogeneous tissue to design dynamically reconfigurable oscillators.

  5. Inverse four-wave-mixing and self-parametric amplification effect in optical fibre.

    Science.gov (United States)

    Turitsyn, Sergei K; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Papernyi, Serguei B; Clements, Wallace R L

    2015-09-01

    An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics.

  6. Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier

    Science.gov (United States)

    Cai-yun, Zhang; Hu, Li; Gui-xia, Pan; Zong-qiang, Sheng

    2016-07-01

    A scheme to generate entanglement in a cavity optomechanical system filled with an optical parametric amplifier is proposed. With the help of the optical parametric amplifier, the stationary macroscopic entanglement between the movable mirror and the cavity field can be notably enhanced, and the entanglement increases when the parametric gain increases. Moreover, for a given parametric gain, the degree of entanglement of the cavity optomechanical system increases with increasing input laser power. Project supported by the National Natural Science Foundation of China (Grant No. 11247001), the Scientific Research Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2012A083), and the Doctor (Master) Fund of Anhui University of Science and Technology, China.

  7. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  8. Polarization-insensitive fiber optical parametric amplifier based on polarization diversity technique with dual parallel pumps

    Institute of Scientific and Technical Information of China (English)

    YIN Lu; SANG Xin-zhu; ZHANG Qi; XIN Xiang-jun; YU Chong-xiu; Da-xiong

    2011-01-01

    By analyzing the principle of dual-pump parametric amplification and the polarization dependent gain of fiber optical parametric amplifier (FOPA), a polarization-insensitive FOPA based on polarization-diversity technique with dual parallel pumps is presented. The performances of polarization-insensitivity, gain and BER are theoretically analyzed and numerically simulated by comparing the proposed scheme with parallel pump solution and orthogonal pump solution. The presented solution can reduce the complexity of state of polarization (SoP) of pumps.

  9. Optical simulation of neutrino oscillations in binary waveguide arrays

    CERN Document Server

    Marini, Andrea; Biancalana, Fabio

    2014-01-01

    We theoretically propose and investigate an optical analogue of neutrino oscillations in a pair of vertically displaced binary waveguide arrays with longitudinally modulated effective refractive index. Optical propagation is modelled through coupled-mode equations, which in the continuous limit lead to two coupled Dirac equations for fermionic particles with different mass states, i.e. neutrinos. We demonstrate that neutrino oscillations can be quenched by nonlinear effects, and we predict the existence of neutrino solitons. Incidentally, these phenomena are expected to play an important role in massive supernova stars. Our results pave the way for using binary waveguide arrays as a classical laboratory for predicting exotic effects in particle physics and astrophysics.

  10. Unidirectional optical Bloch oscillations in asymmetric waveguide arrays.

    Science.gov (United States)

    Kumar, Pradeep; Levy, Miguel

    2011-11-15

    We present an analytical proof of the existence of unidirectional optical Bloch oscillations in a waveguide array system. It is shown that the presence of nonreciprocity in the system allows for a complete normal-mode dephasing in one of the propagation directions, resulting in a unidirectional breakdown in Bloch oscillations. A model system consisting of an array of transversely magnetized asymmetric Si/SiO2 waveguides with a magneto-optic cover layer is presented. Large index contrasts between film and cover are critical for practical realizations.

  11. Demonstration of an All-Optical 2-to-4 Level Encoder Based on an Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Yu Liang

    2009-01-01

    Full Text Available We demonstrated a novel technique for all-optical 2-to-4 level amplitude-shift keying (ASK coding based on a fiber optical parametric amplifier. A 20-Gb/s signal is realized by multiplexing two 10-Gb/s data streams.

  12. Experimental and Theoretical Analysis of Nondegenerate Ultrabroadband Chirped Pulse Optical Parametric Amplification

    Institute of Scientific and Technical Information of China (English)

    刘红军; 赵卫; 陈国夫; 王屹山; 于连君; 阮驰; 卢克清

    2004-01-01

    Experimental investigations of nondegenerate ultrabroadband chirped pulse optical parametric amplification have been carried out. The general mathematical expressions for evaluating parametric bandwidth, gain and gain bandwidth for arbitrary three-wave mixing parametric amplifiers are presented. In our experiments, a type-I noncollinear phase-matched optical parametric amplifier based on lithium triborate, which was pumped by a 5-ns second harmonic pulses from a Q-switched Nd:YAG operating at 10 Hz, seeded by a 14-rs Ti:sapphire laser at 800nm, was presented. The 0.85nJ energy of input chirped signal pulse with 57-FWHM has been amplified to 3.1 μJ at pump intensity 3 G W/cm2, the corresponding parametric gain reached 3.6 × 103, the 53 nm-FWHM gain spectrum bandwidth of output signal has been obtained. The large gain and broad gain bandwidth, which have been confirmed experimentally, provide great potentials to amplify efficiently the broad bandwidth femtosecond light pulses to generate new extremes in power, intensity, and pulse duration using optical parametric chirped pulse amplifiers pumped by powerful nanosecond systems.

  13. Quantum phase fluctuations of coherent and thermal light coupled to a non-degenerate parametric oscillator beyond rotating wave approximation

    Science.gov (United States)

    Alam, Mohosin; Mandal, Swapan; Wahiddin, Mohamed Ridza

    2017-09-01

    The essence of the rotating wave approximation (RWA) is to eliminate the non-conserving energy terms from the interaction Hamiltonian. The cost of using RWA is heavy if the frequency of the input radiation field is low (e.g. below optical region). The well known Bloch-Siegert effect is the out come of the inclusion of the terms which are normally neglected under RWA. We investigate the fluctuations of the quantum phase of the coherent light and the thermal light coupled to a nondegenerate parametric oscillator (NDPO). The Hamiltonian and hence the equations of motion involving the signal and idler modes are framed by using the strong (classical) pump condition. These differential equations are nonlinear in nature and are found coupled to each other. Without using the RWA, we obtain the analytical solutions for the signal and idler fields. These solutions are obtained up to the second orders in dimensionless coupling constants. The analytical expressions for the quantum phase fluctuation parameters due to Carruther's and Nieto are obtained in terms of the coupling constants and the initial photon numbers of the input radiation field. Moreover, we keep ourselves confined to the Pegg-Barnett formalism for measured phase operators. With and without using the RWA, we compare the quantum phase fluctuations for coherent and thermal light coupled to the NDPO. In spite of the significant departures (quantitative), the qualitative features of the phase fluctuation parameters for the input thermal light are identical for NDPO with and without RWA. On the other hand, we report some interesting results of input coherent light coupled to the NDPO which are substantially different from their RWA counterpart. In spite of the various quantum optical phenomena in a NDPO, we claim that it is the first effort where the complete analytical approach towards the solutions and hence the quantum phase fluctuations of input radiation fields coupled to it are obtained beyond rotating wave

  14. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Bliss, D.E.

    1997-02-01

    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  15. Toward practical application of fiber optical parametric amplifiers in optical communication systems

    Science.gov (United States)

    Wong, Kin-Yip

    One of the most powerful techniques in fiber optical communication systems is wave-length division multiplexing (WDM). By utilizing the large (˜300 nm), low-loss (0.2--0.4 dB/km) transmission bandwidth, a single fiber can transmit many wavelengths. One fiber can potentially support transmission of tens of terabits per second of information over thousands of kilometers, to meet the exponentially-growing capacity demand. One of the key components for WDM systems is the optical amplifier; currently the most widely used optical amplifier is the erbium-doped fiber amplifier (EDFA). However, its bandwidth and operating wavelength are limited. To mitigate the bandwidth limitation of EDFAs, alternative optical amplifiers have been investigated, and one of the most promising candidates is the fiber optical parametric amplifier (OPA). Fiber OPAs are based on the third-order nonlinear susceptibility chi (3) in fiber. They can exhibit large bandwidth, and may find applications as optical amplifiers for WDM transmission. They also generate another wavelength, called idler, which contains the same modulation information as the input signal, with an inverted spectrum. This phase-conjugated idler can be used not only for wavelength conversion in WDM networks, but also for mid-span spectral inversion (MSSI) which can combat fiber dispersion, and even some of the detrimental fiber nonlinearities. In this dissertation, a record high-performance fiber OPA with 60 dB signal gain, and a parametric wavelength converter with 40 dB of conversion gain and 3.8 dB of noise figure are experimentally demonstrated. An OPA with 92% pump depletion is analyzed theoretically and demonstrated experimentally. Polarization-independent OPA, both in one-pump and two-pump configurations are investigated. The differences between the two configurations are discussed and other solutions are also proposed to address some issues of linear orthogonal two-pump OPA. In addition, the applications of OPA: as a

  16. Stochastic stabilization of first-passage failure of Rayleigh oscillator under Gaussian White-Noise parametric excitations

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiaorui [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); School of Statistics, Xi' an University of Finance and Economics, Xi' an 710061 (China); E-mail: Jiaoruili@mail.nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2005-12-01

    Stochastic stabilization of first-passage failure of Rayleigh oscillator under Gaussian White-Noise parametric excitation is studied. The equation of motion of the system is first reduced to an averaged Ito stochastic differential equation by using the stochastic averaging method. Then, a backward Kolmogorov equation governing the conditional reliability function of first-passage failure is established. The conditional reliability function, and the conditional probability density are obtained by solving the backward Kolmogorov equation with boundary conditions. Finally, the cost function and optimal control forces are determined by the requirements of stabilizing the system by evaluating the maximal Lyapunov exponent. The numerical results show that the procedure is effective and efficiency.

  17. Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation

    CERN Document Server

    Lipphardt, Burghard; Weyers, Stefan

    2016-01-01

    We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary caesium fountain clocks. Because of its superior phase noise properties, the new scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the fountain clock frequency instability limitations given by the previously utilized quartz oscillator based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of weeks. The utilization of the twofold stabilization scheme on the one hand ensures referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables quantum projection noise limited fountain fre...

  18. All-optical coherent control of vacuum Rabi oscillations

    CERN Document Server

    Bose, Ranojoy; Choudhury, Kaushik Roy; Solomon, Glenn S; Waks, Edo

    2014-01-01

    When an atom strongly couples to a cavity, it can undergo coherent vacuum Rabi oscillations. Controlling these oscillatory dynamics quickly relative to the vacuum Rabi frequency enables remarkable capabilities such as Fock state generation and deterministic synthesis of quantum states of light, as demonstrated using microwave frequency devices. At optical frequencies, however, dynamical control of single-atom vacuum Rabi oscillations remains challenging. Here, we demonstrate coherent transfer of optical frequency excitation between a single quantum dot and a cavity by controlling vacuum Rabi oscillations. We utilize a photonic molecule to simultaneously attain strong coupling and a cavity-enhanced AC Stark shift. The Stark shift modulates the detuning between the two systems on picosecond timescales, faster than the vacuum Rabi frequency. We demonstrate the ability to add and remove excitation from the cavity, and perform coherent control of light-matter states. These results enable ultra-fast control of atom...

  19. Topological optical Bloch oscillations in a deformed slab waveguide.

    Science.gov (United States)

    Longhi, Stefano

    2007-09-15

    Spatial Bloch oscillations of light waves of purely topological origin are theoretically shown to exist in weakly deformed slab waveguides. As the optical rays trapped in the deformed waveguide can roll freely, wave diffraction is strongly affected by the topology of the deformed surface, which can be tailored to simulate the effect of a tilted periodic refractive index.

  20. Investigation of pump-wavelength dependence of terahertz-wave parametric oscillator based on LiNbO3

    Institute of Scientific and Technical Information of China (English)

    Sun Bo; Liu Jin-Song; Li En-Bang; Yao Jian-Quan

    2009-01-01

    This paper investigates the performances of terahertz-wave parametric oscillators (TPOs) based on the LiNbO3 crystal at different pump wavelengths. The calculated results show that TPO characteristics, including the frequency tuning range, the THz-wave gain and the stability of THz-wave output direction based on the Si-prism coupler, can be significantly improved by using a short-wavelength pump. It also demonstrates that a long-wavelength-pump allows the employment of a short TPO cavity due to an enlarged phase-matching angle, that is, an increased angular separation between the pump and oscillated Stokes beams under the THz-wave generation at a specific frequency. The study provides an useful guide and a theoretical basis for the further improvement of TPO systems.

  1. Fiber laser master oscillators for optical synchronization systems

    Energy Technology Data Exchange (ETDEWEB)

    Winter, A.

    2008-04-15

    New X-ray free electron lasers (e.g. the European XFEL) require a new generation of synchronization system to achieve a stability of the FEL pulse, such that pump-probe experiments can fully utilize the ultra-short pulse duration (50 fs). An optical synchronization system has been developed based on the distribution of sub-ps optical pulses in length-stabilized fiber links. The synchronization information is contained in the precise repetition frequency of the optical pulses. In this thesis, the design and characterization of the laser serving as laser master oscillator is presented. An erbium-doped mode-locked fiber laser was chosen. Amplitude and phase noise were measured and record-low values of 0.03 % and 10 fs for the frequency range of 1 kHz to the Nyquist frequency were obtained. Furthermore, an initial proof-of-principle experiment for the optical synchronization system was performed in an accelerator environment. In this experiment, the fiber laser wase phase-locked to a microwave reference oscillator and a 500 meter long fiber link was stabilized to 12 fs rms over a range of 0.1 Hz to 20 kHz. RF signals were obtained from a photodetector without significant degradation at the end of the link. Furthermore, the laser master oscillator for FLASH was designed and is presently in fabrication and the initial infrastructure for the optical synchronization system was setup. (orig.)

  2. Localization without recurrence and pseudo-Bloch oscillations in optics

    CERN Document Server

    Longhi, Stefano

    2015-01-01

    Dynamical localization, i.e. the absence of secular spreading of a quantum or classical wave packet, is usually associated to Hamiltonians with purely point spectrum, i.e. with a normalizable and complete set of eigenstates, which show quasi-periodic dynamics (recurrence). Here we show rather counter-intuitively that dynamical localization can be observed in Hamiltonians with absolutely continuous spectrum, where recurrence effects are forbidden. An optical realization of such an Hamiltonian is proposed based on beam propagation in a self-imaging optical resonator with a phase grating. Localization without recurrence in this system is explained in terms of pseudo-Bloch optical oscillations.

  3. Localization without recurrence and pseudo-Bloch oscillations in optics.

    Science.gov (United States)

    Longhi, Stefano

    2015-10-15

    Dynamical localization, i.e., the absence of secular spreading of a quantum or classical wave packet, is usually associated with Hamiltonians by the pure point spectrum, i.e., with a normalizable and complete set of eigenstates. Such systems always show quasi-periodic dynamics (recurrence). Here, we show, rather counter-intuitively, that dynamical localization can be observed in Hamiltonians with an absolutely continuous spectrum, where recurrence effects are forbidden. An optical realization of such a Hamiltonian is proposed based on beam propagation in a self-imaging optical resonator with a phase grating. Localization without recurrence in this system is explained in terms of pseudo-Bloch optical oscillations.

  4. BBO晶体光参量放大研究%A Theoretical Evaluation of Optical Parametric Amplification in BBO Crystal

    Institute of Scientific and Technical Information of China (English)

    SHAO Min; XUE Shao-lin; LIN Zun-qi

    2005-01-01

    The noncollinear optical parametric amplification in BBO crystal is theoretically investigated. The phase matching angle, gain bandwidth, optimal noncollinear angle and conversion efficiency for both type-Ⅰ and type-Ⅱ BBO are simulated. The numerical simulation results are important to the practical optical parametric amplification experiments with BBO crystal.

  5. Surface optical Bloch oscillations in semi-infinite waveguide arrays.

    Science.gov (United States)

    Chremmos, I D; Efremidis, N K

    2012-06-01

    We predict that surface optical Bloch oscillations can exist in semi-infinite waveguide arrays with a linear index variation, if the array parameters close to the boundary are appropriately perturbed. The perturbation is such that the surface states obtain the Wannier-Stark ladder eigenvalues of the unperturbed infinite array. The number of waveguides, whose parameters need to be controlled, decreases with increasing ratio of index gradient over coupling. The configuration can find applications as a "matched" termination of waveguide arrays to eliminate the distortion of Bloch oscillations due to reflection on the boundaries.

  6. Optical BLOCH oscillations and Zener tunneling with nonclassical light.

    Science.gov (United States)

    Longhi, Stefano

    2008-11-01

    A quantum theory of optical Bloch oscillations and Zener tunneling (ZT) in arrays of coupled waveguides is theoretically presented, and the particlelike behavior of photons undergoing ZT is highlighted. In singly-periodic arrays excited by a photon-number-state input beam, each photon behaves as a classical particle which independently undergoes a coin-toss ZT event with a probability described by classical Zener theory. In binary arrays, excitation with two tilted beams enables us to observe the Hong-Ou-Mandel interference for two photons undergoing Bloch-Zener oscillations.

  7. Highly Efficient Tabletop Optical Parametric Chirped Pulse Amplifier at 1 (micron)m

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, I.; Ebbers, C.A.; Comaskey, B.J.; Bonner, R.A.; Morse, E.C.

    2001-12-04

    Optical parametric chirped pulse amplification (OPCPA) is a scalable technology, for ultrashort pulse amplification. Its major advantages include design simplicity, broad bandwidth, tunability, low B-integral, high contrast, and high beam quality. OPCPA is suitable both for scaling to high peak power as well as high average power. We describe the amplification of stretched 100 fs oscillator pulses in a three-stage OPCPA system pumped by a commercial, single-longitudinal-mode, Q-switched Nd:YAG laser. The stretched pulses were centered around 1054 nm with a FWHM bandwidth of 16.5 nm and had an energy of 0.5 nJ. Using our OPCPA system, we obtained an amplified pulse energy of up to 31 mJ at a 10 Hz repetition rate. The overall conversion efficiency from pump to signal is 6%, which is the highest efficiency obtained With a commercial tabletop pump laser to date. The overall conversion efficiency is limited due to the finite temporal overlap of the seed (3 ns) with respect to the duration of the pump (8.5 ns). Within the temporal window of the seed pulse the pump to signal conversion efficiency exceeds 20%. Recompression of the amplified signal was demonstrated to 310 fs, limited by the aberrations initially present in the low energy seed imparted by the pulse stretcher. The maximum gain in our OPCPA system is 6 x 10{sup 7}, obtained through single passing of 40 mm of beta-barium borate. We present data on the beam quality obtained from our system (M{sup 2}=1.1). This relatively simple system replaces a significantly more complex Ti:sapphire regenerative amplifier based CPA system used in the front end of a high energy short pulse laser. Future improvement will include obtaining shorter amplified pulses and higher average power.

  8. Polarization dependent dispersion and its impact on optical parametric process in high nonlinear microstructure fibre

    Institute of Scientific and Technical Information of China (English)

    Xiao Li; Zhang Wei; Huang Yi-Dong; Peng Jiang-De

    2008-01-01

    High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency dctunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift.

  9. Prospects of obtaining terawatt class infrared pulses using standard optical parametric amplification

    Science.gov (United States)

    Guo, Xiaoyang; Tokita, Shigeki; Tu, Xiaoniu; Zheng, Yanqing; Kawanaka, Junji

    2017-02-01

    We conceptually propose a standard optical parametric amplification system based on YCOB crystal to achieve terawatt (TW) class infrared (IR) pulses with 100 mJ level energy, which would be one order of magnitude more energetic and powerful than currently available IR pulses and suitable to generate high photon flux water window x-rays.

  10. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We show a first-time demonstration of amplification of 400 fs pulses in a fiber optical parametric amplifier. The 400 fs signal is stretched in time, amplified by 26 dB and compressed back to 500 fs. A significant broadening of the pulses is experimentally shown due to dispersion and limited gain...

  11. Generation of Squeezing in Higher Order Hermite-Gaussian Modes with an Optical Parametric Amplifier

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Delaubert, Vincent; Harb, Charles C.;

    2006-01-01

    We demonstrate quantum correlations in the transverse plane of continuous wave light beams by producing -4.0 dB, -2.6 dB and -1.5 dB of squeezing in the TEM_{00}, TEM_{10} and TEM_{20} Hermite-Gauss modes with an optical parametric amplifier, respectively. This has potential applications in quant...

  12. Parametric interaction of optical modes in fiber-optic light guide

    Science.gov (United States)

    Stirzhevskiy, V. L.; Fonmaniy, V. A.; Yashkir, Yu. N.

    1987-10-01

    Parametric interaction of optical modes in an arbitrary fiber-optic structure with quadratically nonlinear susceptibility is analyzed, assuming propagation of natural modes along the fiber axis and a known transverse field distribution. Generation of a sum-frequency wave by interaction of a pump wave and an infrared signal wave is considered, for specificity, assuming that the amplitudes of all three fields vary slowly as functions of the longitudinal coordinate. The corresponding system of integro-differential equations is solved for TEM modes, in standard shorthand notation, with the mathematical apparatus of Bessel and Hankel functions. The solution yields the overlap integral and the Umov-Poynting vector. On this basis we calculate the dependence of the conversion efficiency on the fiber radius and on the half-width of the Gaussian pump-power distribution over modes in a fiber of given radius, this half-width being normalized to the number of the highest-order mode still propagating at the pump wavelength and being proportional to the angular width of the laser beam at the fiber entrance.

  13. Frequency-resolved noise figure measurements of phase (in)sensitive fiber optical parametric amplifiers.

    Science.gov (United States)

    Malik, R; Kumpera, A; Lorences-Riesgo, A; Andrekson, P A; Karlsson, M

    2014-11-17

    We measure the frequency-resolved noise figure of fiber optical parametric amplifiers both in phase-insensitive and phase-sensitive modes in the frequency range from 0.03 to 3 GHz. We also measure the variation in noise figure due to the degradation in pump optical signal to noise ratio and also as a function of the input signal powers. Noise figure degradation due to stimulated Brillouin scattering is observed.

  14. Parametric study of combustion oscillation in a single-side expansion scramjet combustor

    Science.gov (United States)

    Ouyang, Hao; Liu, Weidong; Sun, Mingbo

    2016-10-01

    As a promising candidate for future air-breathing systems, the viability and efficiency of scramjet propulsion is challenged by a variety of factors including the combustion oscillation in scramjet combustor. A series of comparative experiments focusing on the combustion oscillation issue has been carried out in the present work. The obtained experimental results show that as the global equivalence ratio increases, the combustion oscillation becomes more regular and frequent which is the most intensive in the vicinity of the fuel jet and the periodic combustion oscillation is more possible when the injectors and flame-holding cavity are mounted on the expansion-side wall. In order to avoid the combustion oscillation in scramjet combustor, distributed injection scheme is an effective method which can induce two parts interacting stable flame. In addition, the results reveal that the varying fuel including hydrogen, ethylene and kerosene with different chemical kinetics has a significant effect on the reaction process in scramjet combustor, which can result in stable combustion, periodic oscillation and failed ignition respectively on the same operating condition of this paper. We believe that the present work is helpful to the designing of scramjet propulsion device.

  15. Nonreciprocal Bloch oscillations in magneto-optic waveguide arrays.

    Science.gov (United States)

    Levy, Miguel; Kumar, Pradeep

    2010-09-15

    We show that nonreciprocal optical Bloch-like oscillations can emerge in transversely magnetized waveguide arrays in the presence of an effective index step between the waveguides. Normal modes of the system are shown to acquire different wavenumbers in opposite propagation directions. Significant differences in phase coherence and decoherence between these normal modes are presented and discussed. Nonreciprocity is established by imposing unequal vertical refractive index gradients at the substrate/core and core/cover interfaces in the presence of transverse magnetization.

  16. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  17. Quasi-BLOCH oscillations in curved coupled optical waveguides.

    Science.gov (United States)

    Joushaghani, Arash; Iyer, Rajiv; Poon, Joyce K S; Aitchison, J Stewart; de Sterke, C Martijn; Wan, Jun; Dignam, Marc M

    2009-10-01

    We report the observation of quasi-Bloch oscillations, a recently proposed, new type of dynamic localization in the spatial evolution of light in a curved coupled optical waveguide array. By spatially resolving the optical intensity at various propagation distances, we show the delocalization and final relocalization of the beam in the waveguide array. Through comparisons with other structures, we show that this dynamic localization is robust beyond the nearest-neighbor tight-binding approximation and exhibits a wavelength dependence different from conventional dynamic localization.

  18. Trapped ions in optical lattices for probing oscillator chain models

    CERN Document Server

    Pruttivarasin, Thaned; Talukdar, Ishan; Kreuter, Axel; Haeffner, Hartmut

    2011-01-01

    We show that a chain of trapped ions embedded in microtraps generated by an optical lattice can be used to study oscillator models related to dry friction and energy transport. Numerical calculations with realistic experimental parameters demonstrate that both static and dynamic properties of the ion chain change significantly as the optical lattice power is varied. Finally, we lay out an experimental scheme to use the spin degree of freedom to probe the phase space structure and quantum critical behavior of the ion chain.

  19. Shocks, singularities and oscillations in nonlinear optics and fluid mechanics

    CERN Document Server

    Santo, Daniele; Lannes, David

    2017-01-01

    The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .

  20. Output Enhancement of a THz Wave Based on a Surface-Emitted THz-Wave Parametric Oscillator

    Institute of Scientific and Technical Information of China (English)

    LI Zhong-Yang; YAO Jian-Quan; XU De-Gang; BING Pi-Bin; ZHONG Kai

    2011-01-01

    High-power nanosecond pulsed THz-wave radiation is achieved via a surface-emitted THz-wave parametric oscillator.One MgO:LiNbO3 crystal with large volume is used as the gain medium.THz-wave radiation from 1.084 THz to 2.654 THz is obtained.The maximum THz-wave average power is 5.8 μ W at 1.93 THz when the pump energy is 84 m J,corresponding to a energy conversion efficiency of 6.9 × 10-6.The polarization characteristics of THz wave are analyzed.During the experiments the radiations of the first-order and the second-order Stokes wave are observed.The THz wave has great scientific research value and wide applications in imaging,material detection,environmental monitoring,communication,astronomy,life sciences,national defense security and so on.[1-4] THz-wave parametric oscillators (TPOs)based on stimulated polariton scattering have many advantages,such as high efficient,coherent,tuning,narrow linewidth,compactness and room-temperature operation.[5-7] In recent years,TPOs have been developed rapidly.Stothard et al.[8] reported on a line-narrowed and widely tunable intracavity TPO,in which the linewidth of the THz wave is about 1 GHz,the tunning range is from 1 to 3 THz,and the peak power of the THz wave is about 3W.Wu et al.[9]reported on a TPO with recycled pump beam,and their experiment results show that the THz-wave out-put power increases almost four times in magnitude.%High-power nanosecond pulsed THz-wave radiation is achieved via a surface-emitted THz-wave parametric oscillator. One MgO:LiNbO3 crystal with large volume is used as the gain medium. THz-wave radiation from 1.084THz to 2.654THz is obtained. The maximum THz-wave average power is 5.8μW at 1.93THz when the pump energy is 84mJ, corresponding to a energy conversion efficiency of 6.9×10-6. The polarization characteristics of THz wave are analyzed. During the experiments the radiations of the first-order and the second-order Stokes wave are observed.

  1. Miniature Optical Atomic Clock: Stabilization of a Kerr Comb Oscillator

    CERN Document Server

    Savchenkov, A A; Liang, W; Ilchenko, V S; Byrd, J; Matsko, A B; Seidel, D; Maleki, L

    2013-01-01

    Mechanical clocks consist of a pendulum and a clockwork that translates the pendulum period to displayed time. The most advanced clocks utilize optical transitions in atoms in place of the pendulum and an optical frequency comb generated by a femtosecond laser as the clockwork. The comb must be stabilized at two points along its frequency spectrum: one with a laser to lock a comb line to a transition in the atom, and another through self referencing to stabilize the frequency interval between the comb lines. This approach requires advanced techniques, so optical atomic clocks are currently laboratory devices in specialized labs. In this paper we leverage unique properties of Kerr comb oscillators for realization of optical atomic clocks in miniature form factors. In particular, we describe a clock based on D1 transition of 87Rb that fits in the palm of the hand, and can be further miniaturized to chip scale.

  2. Robust entanglement between a movable mirror and a cavity field system with an optical parametric amplifier

    Science.gov (United States)

    Mi, Xianwu; Bai, Jiangxiang; Ke-hui, Song

    2013-06-01

    Robust entanglement created between an optical cavity field mode and a macroscopic vibrating mirror with an optical parametric amplifier is shown. Increasing the gain of the optical parametric amplifier makes the line of the logarithmic negativity E N move to the range of the larger detuning and higher temperature. Such optomechanical entanglement can be generated even at room temperature with current experimental parameters. Compared with other proposals, we have considered the one-to-one correspondence between the detuning and the input power, which is reasonable with the fact that the mean shift of the cavity frequency is determined by the radiation pressure which is related to the input power. Such consideration may be valuable to current experiments.

  3. Emergence of chaos in starlike networks of dissipative nonlinear oscillators by localized parametric excitations

    Science.gov (United States)

    Chacón, R.; García-Hoz, A. Martínez; Martínez, J. A.

    2017-05-01

    We study the effectiveness of locally controlling the impulse transmitted by parametric periodic excitations at inducing and suppressing chaos in starlike networks of driven damped pendula, leading to asynchronous chaotic states and equilibria, respectively. We found that the inducing (suppressor) effect of increasing (decreasing) the impulse transmitted by the parametric excitations acting on particular nodes depends strongly on their number and degree of connectivity as well as the coupling strength. Additionally, we provide a theoretical analysis explaining the basic physical mechanisms of the emergence and suppression of chaos as well as the main features of the chaos-control scenario. Our findings constitute proof of the impulse-induced control of chaos in a simple model of complex networks, thus opening the way to its application to real-world networks.

  4. Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators

    CERN Document Server

    Alexeeva, N V; Tsironis, G P

    2000-01-01

    Chains of parametrically driven, damped pendula are known to support soliton-like clusters of in-phase motion which become unstable and seed spatiotemporal chaos for sufficiently large driving amplitudes. We show that the pinning of the soliton on a "long" impurity (a longer pendulum) expands dramatically its stability region whereas "short" defects simply repel solitons producing effective partition of the chain. We also show that defects may spontaneously nucleate solitons.

  5. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  6. Parametric Analysis of Fiber Non-Linearity in Optical systems

    Directory of Open Access Journals (Sweden)

    Abhishek Anand

    2013-06-01

    Full Text Available With the advent of technology Wavelength Division Multiplexing (WDM is always an area of interest in the field of optical communication. When combined with Erbium Doped Fiber Amplifier (EDFA, it provides high data transmission rate and low attenuation. But due to fiber non-linearity such as Self Phase Modulation (SPM and Cross Phase Modulation (XPM the system performance has degraded. This non-linearity depends on different parameters of an optical system such as channel spacing, power of the channel and length of the fiber section. The degradation can be seen in terms of phase deviation and Bit Error Rate (BER performance. Even after dispersion compensation at the fiber end, residual pulse broadening still exists due to cross talk penalty.

  7. Four-Wave Optical Parametric Amplification in a Raman-Active Gas

    Directory of Open Access Journals (Sweden)

    Yuichiro Kida

    2015-08-01

    Full Text Available Four-wave optical parametric amplification (FWOPA in a Raman-active medium is experimentally investigated by use of an air-filled hollow fiber. A femtosecond pump pulse shorter than the period of molecular motion excites the coherent molecular motion of the Raman-active molecules during the parametric amplification of a signal pulse. The excited coherent motion modulates the frequency of the signal pulse during the parametric amplification, and shifts it to lower frequencies. The magnitude of the frequency redshift depends on the pump intensity, resulting in intensity-dependent spectral characteristics that are different from those in the FWOPA induced in a noble-gas-filled hollow fiber.

  8. Parametric optimization of optical devices based on strong photonic localization

    Science.gov (United States)

    Gui, Minmin; Yang, Xiangbo

    2017-07-01

    Symmetric two-segment-connected triangular defect waveguide networks (STSCTDWNs) can produce strong photonic localization, which is useful for designing highly efficient energy storage devices, high power superluminescent light emitting diodes, all-optical switches, and more. Although STSCTDWNs have been studied in previous works, in this paper we systematically optimize the parameters of STSCTDWNs to further enhance photonic localization so that the function of optical devices based on strong photonic localization can be improved. When optimizing the parameters, we find a linear relationship between the logarithm of photonic localization and the broken degree of networks. Furthermore, the slope and intercept of the linear relationship are larger than previous results. This means that the increasing speed of photonic localization is improved. The largest intensity of photonic localizations can reach 1036, which is 16 orders of magnitude larger than previous reported results. These optimized networks provide practical solutions for all optical devices based on strong photonic localization in the low frequency range, such as nanostructured devices.

  9. Generation of synchronized signal and pump pulses for an optical parametric chirped pulse amplification based multi-terawatt Nd:glass laser system

    Indian Academy of Sciences (India)

    M Raghuramaiah; R K Patidar; R A Joshi; P A Naik; P D Gupta

    2010-11-01

    Synchronized signal (650 ps) and pump (1.3 ns) pulses were generated using 4-pass geometry in a grating pair based pulse stretcher unit. The pump pulse has been further amplified in a high gain regenerative amplifier. This amplified pulse was used as the pump in an optical parametric chirped pulse amplification based Nd:glass laser system. As the chirped signal pulse and the pump pulse originated from the same oscillator, the time jitter between the pump pulse and the signal pulse can be <50 ps.

  10. Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2011-01-01

    Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source.

  11. Bloch-Zener oscillations in a tunable optical honeycomb lattice

    Energy Technology Data Exchange (ETDEWEB)

    Uehlinger, Thomas; Greif, Daniel; Jotzu, Gregor; Esslinger, Tilman [Institute for Quantum Electronics, ETH Zurich, 8093 Zurich (Switzerland); Tarruell, Leticia [Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland and LP2N, Universite Bordeaux 1, IOGS, CNRS, 351 cours de la Liberation, 33405 Talence (France)

    2013-12-04

    Ultracold gases in optical lattices have proved to be a flexible tool to simulate many different phenomena of solid state physics [1, 2]. Recently, optical lattices with complex geometries have been realized [3, 4, 5, 6, 7], paving the way to simulating more realistic systems. The honeycomb structure has recently become accessible in an optical lattice composed of mutually perpendicular laser beams. This lattice structure exhibits topological features in its band structure – the Dirac points. At these points, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In optical lattices, Bloch oscillations [8] resolved both in time and in quasi-momentum space can be directly observed. We make use of such Bloch-Zener oscillations to probe the vanishing energy gap at the Dirac points as well as their position in the band structure. In small band gap regions, we observe Landau-Zener tunneling [7, 9] to the second band and the regions of maximum transfer can be identified with the position of the Dirac points.

  12. Optically Controlled Oscillators in an Engineered Bioelectric Tissue

    Science.gov (United States)

    McNamara, Harold M.; Zhang, Hongkang; Werley, Christopher A.; Cohen, Adam E.

    2016-07-01

    Complex electrical dynamics in excitable tissues occur throughout biology, but the roles of individual ion channels can be difficult to determine due to the complex nonlinear interactions in native tissue. Here, we ask whether we can engineer a tissue capable of basic information storage and processing, where all functional components are known and well understood. We develop a cell line with four transgenic components: two to enable collective propagation of electrical waves and two to enable optical perturbation and optical readout of membrane potential. We pattern the cell growth to define simple cellular ring oscillators that run stably for >2 h (˜104 cycles ) and that can store data encoded in the direction of electrical circulation. Using patterned optogenetic stimulation, we probe the biophysical attributes of this synthetic excitable tissue in detail, including dispersion relations, curvature-dependent wave front propagation, electrotonic coupling, and boundary effects. We then apply the biophysical characterization to develop an optically reconfigurable bioelectric oscillator. These results demonstrate the feasibility of engineering bioelectric tissues capable of complex information processing with optical input and output.

  13. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    Science.gov (United States)

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  14. Phase matched parametric amplification via four-wave mixing in optical microfibers.

    Science.gov (United States)

    Abdul Khudus, Muhammad I M; De Lucia, Francesco; Corbari, Costantino; Lee, Timothy; Horak, Peter; Sazio, Pier; Brambilla, Gilberto

    2016-02-15

    Four-wave mixing (FWM) based parametric amplification in optical microfibers (OMFs) is demonstrated over a wavelength range of over 1000 nm by exploiting their tailorable dispersion characteristics to achieve phase matching. Simulations indicate that for any set of wavelengths satisfying the FWM energy conservation condition there are two diameters at which phase matching in the fundamental mode can occur. Experiments with a high-power pulsed source working in conjunction with a periodically poled silica fiber (PPSF), producing both fundamental and second harmonic signals, are undertaken to investigate the possibility of FWM parametric amplification in OMFs. Large increases of idler output power at the third harmonic wavelength were recorded for diameters close to the two phase matching diameters. A total amplification of more than 25 dB from the initial signal was observed in a 6 mm long optical microfiber, after accounting for the thermal drift of the PPSF and other losses in the system.

  15. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    Science.gov (United States)

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  16. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  17. Sub-two-cycle light pulses at 1.6 microm from an optical parametric amplifier.

    Science.gov (United States)

    Brida, D; Cirmi, G; Manzoni, C; Bonora, S; Villoresi, P; De Silvestri, S; Cerullo, G

    2008-04-01

    We generate ultrabroadband pulses, spanning the 1200-2100 nm wavelength range, from an 800 nm pumped optical parametric amplifier (OPA) working at degeneracy. We compress the microjoule-level energy pulses to nearly transform-limited 8.5 fs duration by an adaptive system employing a deformable mirror. To our knowledge, these are the shortest light pulses generated at 1.6 microm.

  18. Generation of broadband mid-infrared pulses from an optical parametric amplifier.

    Science.gov (United States)

    Brida, D; Manzoni, C; Cirmi, G; Marangoni, M; De Silvestri, S; Cerullo, G

    2007-11-12

    We report on the direct generation of broadband mid-IR pulses from an optical parametric amplifier. Several crystals with extended IR transparency, when pumped at 800 nm, display a broad phase-matching bandwidth around 1 mum, allowing for the generation of idler pulses spanning the 3-5 mum wavelength range. Using LiIO(3), we produce 2muJ pulses tunable in the 3-4 mum range with bandwidth supporting 30-fs transform-limited duration.

  19. 13.5 nm High Harmonic Generation Driven by a Visible Noncollinear Optical Parametric Amplifier

    Science.gov (United States)

    2011-11-11

    light source. We build a high energy tunable visible Optical Parametric Amplifier, and drive High Harmonic Generation in Argon and Helium . We study how...wavelength of 13.5 nm. The results agree well with a previously developed theoretical model. We predict that using a 630-nm driver in Helium could have a...light on the photo resist. Current techniques are capable of producing sub-100-nm features by using UV light at 193 nm from excimer lasers, but for

  20. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    Science.gov (United States)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  1. Quasi-Optical Cavity Virtual Cathode Oscillator for Microwave Generation

    Institute of Scientific and Technical Information of China (English)

    凌根深; 陈波; 周津娟

    2003-01-01

    A new configuration of a virtual cathode oscillator(VCO),i.e.,a quasi-optical cavity VCO,is proposed for highpower microwave generation.The analysis and simulation are carried out to investigate the characteristics of this configuration.In the numerical simulation,the microwave output power of 2.93 GW is obtained with an electron beam of 610 keV in electron energy and 26.7kA in the beam current.The beam-to-microwave power efficiency is 18%.The frequency is 17.5 GHz,and the output microwave mode is TEM10.

  2. Classical and quantum interference in multiband optical Bloch oscillations

    CERN Document Server

    Longhi, S

    2010-01-01

    Classical and quantum interference of light propagating in arrays of coupled waveguides and undergoing multiband optical Bloch oscillations (BOs) with negligible Zener tunneling is theoretically investigated. In particular, it is shown that Mach-Zehnder-like interference effects spontaneously arise in multiband BOs owing to beam splitting and subsequent beam recombination occurring in one BO cycle. As a noteworthy example of quantum interference, we discuss the doubling of interference fringes in photon counting rates for a correlated photon pair undergoing two-band BOs, a phenomenon analogous to the manifestation of the de Broglie wavelength of an entangled biphoton state observed in quantum Mach-Zehnder interferometry.

  3. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    Science.gov (United States)

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  4. Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Rahul C [Los Alamos National Laboratory; Johnson, Randall P [Los Alamos National Laboratory; Shimada, Tsutomu [Los Alamos National Laboratory; Hegelich, Bjorn M [Los Alamos National Laboratory

    2008-01-01

    To address few-shot pulse contrast measurement, we present a correlator coupling the high gain of an optical parametric amplification scheme with large pulse tilt. This combination enables a low sensitivity charge coupled device (CCD) to observe features in the pulse intensity within a 50 ps single-shot window with inter-window dynamic range > 10{sup 7} and < 0.5 mJ input energy. Partitioning of the single window with optical densities to boost the CCD dynamic range is considered.

  5. Dissipative parametric modulation instability and pattern formation in nonlinear optical systems

    Science.gov (United States)

    Perego, A. M.; Tarasov, N.; Churkin, D. V.; Turitsyn, S. K.; Staliunas, K.

    2016-04-01

    We present the essential features of the dissipative parametric instability, in the universal complex Ginzburg- Landau equation. Dissipative parametric instability is excited through a parametric modulation of frequency dependent losses in a zig-zag fashion in the spectral domain. Such damping is introduced respectively for spectral components in the +ΔF and in the -ΔF region in alternating fashion, where F can represent wavenumber or temporal frequency depending on the applications. Such a spectral modulation can destabilize the homogeneous stationary solution of the system leading to growth of spectral sidebands and to the consequent pattern formation: both stable and unstable patterns in one- and in two-dimensional systems can be excited. The dissipative parametric instability provides an useful and interesting tool for the control of pattern formation in nonlinear optical systems with potentially interesting applications in technological applications, like the design of mode- locked lasers emitting pulse trains with tunable repetition rate; but it could also find realizations in nanophotonics circuits or in dissipative polaritonic Bose-Einstein condensates.

  6. Ultra-wideband fiber optical parametric amplifier for spectrally-encoded microscopy (Conference Presentation)

    Science.gov (United States)

    Wei, Xiaoming; Tan, Sisi; Mussot, Arnaud; Kudlinski, Alexandre; Tsia, Kevin K.; Wong, Kenneth

    2016-03-01

    Fiber optical parametric amplifier (FOPA) has gained its popularity in the telecommunication systems at the 1.5-um window for its gain, bandwidth etc. Unfortunately, its practical application at the bio-favorable window, i.e. 1.0 um, still requires substantial efforts. Thus, here we report a versatile all-fiber optical parametric amplifier for life-science (OPALS) at 1.0 um as an add-on module for optical imaging system. The parametric gain fiber (photonic-crystal fiber (PCF), 110 m in length) is specially designed to reduce the longitudinal dispersion fluctuation, which yields a superior figure of merit, i.e. a total insertion loss of ~2.5 dB and a nonlinear coefficient of 34 /(W•km). Our OPALS delivers a superior performance in terms of gain (~158,000), bandwidth (>100 nm) and gain flatness (Experimentally, we show that: 1) a wavelength-varying quasi-monochrome pump achieves a 52-dB gain and 160-nm bandwidth, but at the expense of a larger gain-spectrum ripple, i.e. a bell-shaped; 2) the birefringence of the parametric gain medium, i.e. PCF in this case, can be utilized to improve the gain-spectrum flatness of OPALS by 10.5 dB, meanwhile a 100-nm bandwidth can be guaranteed; 3) the gain-spectrum flatness of OPALS can be further flattened by using a high-speed wavelength-sweeping pump, which exhibits a 110-nm flat gain spectrum with ripple less than 3 dB. Finally, we employ this versatile all-fiber OPALS as an add-on module to enhance the sensitivity of a spectrally-encoded microscope by 47 dB over an ultra-wide spectral range.

  7. Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate.

    Science.gov (United States)

    Liao, Zhi M; Jovanovic, Igor; Ebbers, Chris A; Fei, Yiting; Chai, Bruce

    2006-05-01

    Optical parametric chirped-pulse amplification (OPCPA) in nonlinear crystals has the potential to produce extremes of peak and average power but is limited either in energy by crystal growth issues or in average power by crystal thermo-optic characteristics. Recently, large (7.5 cm diameter x 25 cm length) crystals of yttrium calcium oxyborate (YCOB) have been grown and utilized for high-average-power second-harmonic generation. Further, YCOB has the necessary thermo-optic properties required for scaling OPCPA systems to high peak and average power operation for wavelengths near 1 microm. We report what is believed to be the first use of YCOB for OPCPA. Scalability to higher peak and average power is addressed.

  8. Fibre Optical Parametric Amplification in Defect Bragg Fibres with Zero Dispersion Slow Light Effect

    Institute of Scientific and Technical Information of China (English)

    XIAO Li; ZHANG Wei; HUANG Yi-Dong; PENG Jiang-De; ZHAO Hong; YANG Ke-Wu

    2008-01-01

    Nonfinearity enhancement by slow light effect and strong light confinement in defect Bragg fibres is demonstrated and analysed in applications of fibre optical parametric amplifiers. Broadband low group velocity and zero dispersion as well as the strong light confinement by band gap enhances the nonlinear coefficient up to more than one order than the conventional high nonlinear fibres.Moreover,the zero dispersion wavelength of coupled core mode can be designed arbitrarily,under which the phase-matching bandwidth of the nonlinear process can be extended.

  9. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  10. General analysis of group velocity effects in collinear optical parametric amplifiers and generators.

    Science.gov (United States)

    Arisholm, Gunnar

    2007-05-14

    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  11. Investigation on bismuth-oxide photonic crystal fiber for optical parametric amplification

    Institute of Scientific and Technical Information of China (English)

    JIN Cang; RAO Lan; YUAN Jin-hui; SHEN Xiang-wei; YU Chong-xiu

    2011-01-01

    A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity. This simulation and calculation results show that the bismuth-oxide photonic crystal fiber (Bi-PCF) has near zero dispersion around 1550 nm. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model field distribution are obtained. Compared with the experimental results by SiO-PCF, it can be seen that the Bi-PCF shows excellent characteristics for the optical parametric amplification (OPA).

  12. Few-cycle pulse generation from noncollinear optical parametric amplifier with static dispersion compensation

    Science.gov (United States)

    Adachi, Shunsuke; Watanabe, Yuya; Sudo, Yuki; Suzuki, Toshinori

    2017-09-01

    We present a novel design of a few-cycle noncollinear optical parametric amplifier (NOPA) pumped by the second harmonic of a Ti:sapphire laser. A quasi-transform-limited sub-6 fs pulse width was realized by static dispersion compensation with commercially available chirped mirrors. The performance of the NOPA was tested by performing transient absorption spectroscopy on sensory rhodopsin II, and we observe short-lived oscillatory components that are associated with the vibrational coherence from the isomerizing molecule in the excited electronic state.

  13. Alleviation of additional phase noise in fiber optical parametric amplifier based signal regenerator.

    Science.gov (United States)

    Jin, Lei; Xu, Bo; Yamashita, Shinji

    2012-11-19

    We theoretically and numerically explain the power saturation and the additional phase noise brought by the fiber optical parametric amplifier (FOPA). An equation to calculate an approximation to the saturated signal output power is presented. We also propose a scheme for alleviating the phase noise brought by the FOPA at the saturated state. In simulation, by controlling the decisive factor dispersion difference term Δk of the FOPA, amplitude-noise and additional phase noise reduction of quadrature phase shift keying (QPSK) based on the saturated FOPA is studied, which can provide promising performance to deal with PSK signals.

  14. Optical spectrophotometry of oscillations and flickering in AE Aquarii

    Science.gov (United States)

    Welsh, William F.; Horne, Keith; Oke, J. B.

    1993-01-01

    We observed rapid variations in the nova-like cataclysmic variable AE Aquarii for 1.7 hr with 4.3 s time resolution using the 30-channel (3227-10494 A) spectrophotometer on the Hale 5 m telescope. The 16.5 and 33.0 s oscillations show a featureless blue spectrum that can be represented by a blackbody with temperature and area much smaller than the accretion disk. Models consisting of the sum of a K star spectrum and a hydrogen slab in LTE at T = 6000-10,000 K can fit the spectrum of AE Aquarii reasonably well. The spectrum of a flare indicates optically thin gas with T = 8000-12,000 K. The energy released by the flare is large compared to typical stellar flares.

  15. High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification.

    Science.gov (United States)

    Metzger, Thomas; Schwarz, Alexander; Teisset, Catherine Yuriko; Sutter, Dirk; Killi, Alexander; Kienberger, Reinhard; Krausz, Ferenc

    2009-07-15

    We report an optically synchronized picosecond pump laser for optical parametric amplifiers based on an Yb:YAG thin-disk amplifier. At 3 kHz repetition rate, pulse energies of 25 mJ with 1.6 ps pulse duration were achieved with an rms fluctuation in pulse energy of pumped regenerative amplifier.

  16. A Cs-Based Optical Frequency Measurement Using Cross-Linked Optical and Microwave Oscillators

    CERN Document Server

    Tamm, Chr; Lipphardt, B; Gerginov, V; Nemitz, N; Kazda, M; Weyers, S; Peik, E

    2013-01-01

    We describe a measurement of the frequency of the 2S1/2(F = 0) - 2D3/2(F' = 2) transition of 171Yb+ at the wavelength 436 nm (frequency 688 THz), using a single Yb+ ion confined in a Paul trap and two caesium fountains as references. In one of the fountains, the frequency of the microwave oscillator that interrogates the caesium atoms is stabilized by the laser that excites the Yb+ reference transition with a linewidth in the hertz range. The stability is transferred to the microwave oscillator with the use of a fiber laser based optical frequency comb generator that also provides the frequency conversion for the absolute frequency measurement. The frequency comb generator is configured as a transfer oscillator so that fluctuations of the pulse repetition rate and of the carrier offset frequency do not degrade the stability of the frequency conversion. The phase noise level of the generated ultrastable microwave signal is comparable to that of a cryogenic sapphire oscillator. For fountain operation with optic...

  17. Ground Demonstration of Planetary Gas Lidar Based on Optical Parametric Amplifier

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2012-01-01

    We report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OPA output has high spectral purity and is widely tunable both at near-infrared and mid-infrared wavelengths, with an optical-optica1 conversion efficiency of up to approx 39 %. Using this laser source, we demonstrated open-path measurements of CH4 (3291 nm and 1651 nm), CO2 (1573 nm), H2O (1652 nm), and CO (4764 nm) on the ground. The simplicity, tunability. and power scalability of the OPA make it a strong candidate for general planetary lidar instruments, which will offer important information on the origins of the planet's geology, atmosphere, and potential for biology,

  18. Widely tunable picosecond optical parametric generation and amplification in BiB(3)O(6).

    Science.gov (United States)

    Sun, Zhipei; Ghotbi, Masood; Zadeh, Majid E

    2007-04-02

    Efficient generation of widely tunable picosecond pulses from the visible to near-infrared is demonstrated by optical parametric generation and amplification in BiB(3)O(6). Pumped by the second harmonic of an amplified mode-locked Nd:YAG laser at 532 nm, also generated in BiB(3)O(6), a signal and idler tuning range of 740-1893 nm has been achieved with angle tuning under type I (o?e+e) phase-matching in the optical yz-plane. With 40-ps pump pulses of 420-muJ energy, single-pass signal pulse energies of up to 48.6 muJ have been obtained at total OPA pump to signal and idler conversion efficiency as high as 30%. Significant temperature tuning under type I (o?e+e) noncritical interaction along the optical z-axis is also demonstrated, extending the signal tuning range from 740 nm down to 676 nm and idler tuning range from 1893 nm up to 2497 nm. Using second harmonic generation of the amplified signal pulses, also in BiB(3)O(6),wavelength extension to 370-500 nm has been achieved at 24% conversion efficiency, providing 10-muJ pulses across the tuning range. Optical parametric generation and amplification in BiB(3)O(6) under strong two-photon absorption pumped by 210-muJ pulses at 355 nm is also reported, providing amplified signal pulse energies of 14.2 muJ at OPA conversion efficiency as high as 21% and a spectral coverage across 450-1674 nm.

  19. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode

    CERN Document Server

    Verhagen, E; Weis, S; Schliesser, A; Kippenberg, T J

    2011-01-01

    Quantum control of engineered mechanical oscillators can be achieved by coupling the oscillator to an auxiliary degree of freedom, provided that the coherent rate of energy exchange exceeds the decoherence rate of each of the two sub-systems. We achieve such quantum-coherent coupling between the mechanical and optical modes of a micro-optomechanical system. Simultaneously, the mechanical oscillator is cooled to an average occupancy of n = 1.7 \\pm 0.1 motional quanta. Pulsed optical excitation reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. These results provide a route towards the realization of efficient quantum interfaces between mechanical oscillators and optical fields.

  20. Instability Parameters of Optical Oscillation Frequency in Plasma Central Discharge and Periphery Region

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhu-Wen; M.A.LIEBERMAN; Sungjin KIM

    2006-01-01

    @@ We have observed relaxation oscillations in a capacitive discharge in Ar gas, connected to a peripheral ground chamber. The plasma oscillations observed from time-varying optical emission from the main discharge chamber show, for example, a high frequency (75.37kHz) relaxation oscillation, at 100mTorr and 8 W absorbed power,and a low frequency (2.72 Hz) relaxation oscillation, 100mTorr and 325 W absorbed power. Time-varying optical emission intensity and plasma density are also detected with a Langmuir probe. The theoretical result agrees well with experiments.

  1. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization.

    Science.gov (United States)

    Lavrov, Roman; Peil, Michael; Jacquot, Maxime; Larger, Laurent; Udaltsov, Vladimir; Dudley, John

    2009-08-01

    We demonstrate experimentally how nonlinear optical phase dynamics can be generated with an electro-optic delay oscillator. The presented architecture consists of a linear phase modulator, followed by a delay line, and a differential phase-shift keying demodulator (DPSK-d). The latter represents the nonlinear element of the oscillator effecting a nonlinear transformation. This nonlinearity is considered as nonlocal in time since it is ruled by an intrinsic differential delay, which is significantly greater than the typical phase variations. To study the effect of this specific nonlinearity, we characterize the dynamics in terms of the dependence of the relevant feedback gain parameter. Our results reveal the occurrence of regular GHz oscillations (approximately half of the DPSK-d free spectral range), as well as a pronounced broadband phase-chaotic dynamics. Beyond this, the observed dynamical phenomena offer potential for applications in the field of microwave photonics and, in particular, for the realization of novel chaos communication systems. High quality and broadband phase-chaos synchronization is also reported with an emitter-receiver pair of the setup.

  2. Broadening and Amplification of an Infrared Femtosecond Pulse for Optical Parametric Chirped-Pulse Amplification

    Institute of Scientific and Technical Information of China (English)

    WANG He-Lin; YANG Ai-Jun; LENG Yu-Xin

    2011-01-01

    A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA).The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically.By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity,the pre-stretching pulse from an (O)ffner stretcher is further broadened to above 200ps,which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system.The bandwidth of the amplified pulse is 1.5 nm,and an output energy of 2mJ is achieved at a repetition rate of 10 Hz.Optical parametric chirped pulse amplification (OPCPA)[1-4] has attracted a great deal of attention as the most promising technique for generating ultrashort ultrahigh-peak-power laser pulses because of its very broad gain bandwidth,negligible thermal load on the nonlinear crystal,and extremely high singlepass gain as compared to amplifiers based on laser gain media.For efficient amplification and high fidelity of dispersion compensation in OPCPA,a femtosecond seed pulse is first stretched to several tens of picoseconds with a bulk grating stretcher or a fiber stretcher.%A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA). The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically. By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity, the pre-stretching pulse from an (O)finer stretcher is further broadened to above 200 ps, which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system. The bandwidth of the amplified pulse is 1.5 nm, and an

  3. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  4. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  5. Label-free imaging of thick tissue at 1550 nm using a femtosecond optical parametric generator.

    Science.gov (United States)

    Trägårdh, Johanna; Robb, Gillian; Gadalla, Kamal K E; Cobb, Stuart; Travis, Christopher; Oppo, Gian-Luca; McConnell, Gail

    2015-08-01

    We have developed a simple wavelength-tunable optical parametric generator (OPG), emitting broadband ultrashort pulses with peak wavelengths at 1530-1790 nm, for nonlinear label-free microscopy. The OPG consists of a periodically poled lithium niobate crystal, pumped at 1064 nm by a ultrafast Yb:fiber laser with high pulse energy. We demonstrate that this OPG can be used for label-free imaging, by third-harmonic generation, of nuclei of brain cells and blood vessels in a >150 μm thick brain tissue section, with very little decay of intensity with imaging depth and no visible damage to the tissue at an incident average power of 15 mW.

  6. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, C. J.

    2013-01-01

    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase......-sensitive amplifiers. We show that the model agrees with earlier fully quantum approaches in the linear gain regime, whereas in the saturated gain regime, in which the classical equations are valid, we predict that the amplifier increases the signal-to-noise ratio by generating an amplitude-squeezed state of light....... Also, in the same process, we analyze the quantum noise properties of the pump, which is difficult using standard quantum approaches, and we discover that the pump displays complicated dynamics in both the linear and the nonlinear gain regimes....

  7. Mid-IR fiber optic light source around 6 micron through parametric wavelength translation

    CERN Document Server

    Barh, A; Varshney, R K; Pal, B P; Sanghera, J; Shaw, L B; Aggarwal, I D

    2014-01-01

    We report numerically designed highly nonlinear all glass chalcogenide microstructured optical fiber for efficient generation of light around 6 micron through degenerate four wave mixing by considering continuous wave CO laser of 5 to 10 Watts power emitting at 5.6 micron as the pump. By tuning the pump wavelength, pump power, fiber dispersion and nonlinear properties, narrow and broad band mid-IR all-fiber light source could be realized. Parametric amplification of more than 20 decibel is achievable for the narrow band source at 6.46 micron with a maximum power conversion efficiency of 33 percent while amplification of 22 decibel is achievable for a B-band source over the wavelength range of 5 to 6.3 micron with a conversion efficiency of 40 percent.

  8. Investigating macroscopic quantum superpositions and the quantum-to-classical transition by optical parametric amplification

    CERN Document Server

    De Martini, Francesco

    2012-01-01

    The present work reports on an extended research endeavor focused on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. As it is well known, this intriguing, fundamental quantum condition is at the core of a famous argument conceived by Erwin Schroedinger, back in 1935. The main experimental challenge to the actual realization of this object resides generally on the unavoidable and uncontrolled interactions with the environment, i.e. the decoherence leading to the cancellation of any evidence of the quantum features associated with the macroscopic system. The present scheme is based on a nonlinear process, the "quantum injected optical parametric amplification", that maps by a linearized cloning process the quantum coherence of a single - particle state, i.e. a Micro - qubit, into a Macro - qubit, consisting in a large number M of photons in quantum superposition. Since the adopted scheme was found resilient to decoherence, the MQS\\ demonstration wa...

  9. Demonstration of a chip-based optical isolator with parametric amplification

    Science.gov (United States)

    Hua, Shiyue; Wen, Jianming; Jiang, Xiaoshun; Hua, Qian; Jiang, Liang; Xiao, Min

    2016-11-01

    Despite being fundamentally challenging in integrated (nano)photonics, achieving chip-based light non-reciprocity becomes increasingly urgent in signal processing and optical communications. Because of material incompatibilities in conventional approaches based on the Faraday effect, alternative solutions have resorted to nonlinear processes to obtain one-way transmission. However, dynamic reciprocity in a recent theoretical analysis has pinned down the functionalities of these nonlinear isolators. To bypass such dynamic reciprocity, we here demonstrate an optical isolator on a silicon chip enforced by phase-matched parametric amplification in four-wave mixing. Using a high-Q microtoroid resonator, we realize highly non-reciprocal transport at the 1,550 nm wavelength when waves are injected from both directions in two different operating configurations. Our design, compatible with current complementary metal-oxide-semiconductor (CMOS) techniques, yields convincing isolation performance with sufficiently low insertion loss for a wide range of input power levels. Moreover, our work demonstrates the possibility of designing chip-based magnetic-free optical isolators for information processing and laser protection.

  10. Parametric studies of magnetic-optic imaging using finite-element models

    Science.gov (United States)

    Chao, C.; Udpa, L.; Xuan, L.; Fitzpatrick, G.; Thorne, D.; Shih, W.

    2000-05-01

    Magneto-optic imaging is a relatively new sensor application of bubble memory technology to NDI. The Magneto-Optic Imager (MOI) uses a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The flux leakage is produced by eddy current induction techniques in nonferrous metals and magnetic yokes are used in ferromagnetic materials. The technique has gained acceptance in the aircraft maintenance industry for use to detect surface-breaking cracks and corrosion. Until recently, much of the MOI development has been empirical in nature since the electromagnetic processes that produce images are rather complex. The availability of finite element techniques to numerically solve Maxwell's equations, in conjunction with MOI observations, allows greater understanding of the capabilities of the instrument. In this paper, we present a systematic set of finite element calculations along with MOI measurements on specific defects to quantify the current capability of the MOI as well as its desired performance. Parametric studies including effects of liftoff and proximity of edges are also studied.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order #IA013 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  11. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Ozolins, Oskars; An, Yi

    2012-01-01

    The performance of cascaded single-pump fiber optical parametric amplifiers (FOPAs) is experimentally studied for the first time using recirculating loop transmission with 80-km dispersion managed spans. Error-free performance has been achieved over 320 km for 40-Gbit/s CSRZ-OOK and CSRZ...

  12. Experimental Investigation of Pump-to-Signal Noise Transfer in One-Pump Phase Insensitive Fibre Optic Parametric Amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lund-Hansen, Toke; Peucheret, Christophe

    2011-01-01

    This paper presents a detailed experimental characterization of the relative intensity noise (RIN) transferred from the pump to the signal in one-pump phase insensitive fibre optic parametric amplifiers. We extend an existing experimental and theoretical work towards higher frequencies, showing...

  13. Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2009-01-01

    An increased gain in a fibre-optical parametric amplifier through suppression of stimulated Brillouin scattering is demonstrated by applying a temperature distribution along the fibre for a fixed phase modulation of the pump. The temperature distribution slightly impacts the gain spectrum....

  14. 300 microJ noncollinear optical parametric amplifier in the visible at 1 kHz repetition rate.

    Science.gov (United States)

    Tzankov, Pancho; Zheng, Jiaan; Mero, Mark; Polli, Dario; Manzoni, Cristian; Cerullo, Giulio

    2006-12-15

    We demonstrate an order-of-magnitude energy scaling of a white-light seeded noncollinear optical parametric amplifier in the visible. The generated pulses, tunable between 520 and 650 nm with sub-25-fs duration, had energies up to 310 microJ with 20% blue-pump-to-signal energy conversion efficiency at 540 nm. This new ultrafast source will make possible numerous extreme nonlinear optics applications. As a first application, we demonstrate the generation of tunable vacuum ultraviolet pulses.

  15. High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers.

    Science.gov (United States)

    Klingebiel, Sandro; Wandt, Christoph; Skrobol, Christoph; Ahmad, Izhar; Trushin, Sergei A; Major, Zsuzsanna; Krausz, Ferenc; Karsch, Stefan

    2011-03-14

    We present a chirped pulse amplification (CPA) system based on diode-pumped Yb:YAG. The stretched ns-pulses are amplified and have been compressed to less than 900 fs with an energy of 200 mJ and a repetition rate of 10 Hz. This system is optically synchronized with a broadband seed laser and therefore ideally suited for pumping optical parametric chirped pulse amplification (OPCPA) stages on a ps-timescale.

  16. Optomechanical coupling between two optical cavities: cooling of a micro-mirror and parametric normal mode splitting

    CERN Document Server

    Kumar, Tarun; ManMohan,

    2011-01-01

    We propose a technique aimed at cooling a harmonically oscillating mirror mechanically coupled to another vibrating mirror to its quantum mechanical ground state. Our method involves optmechanical coupling between two optical cavities. We show that the cooling can be controlled by the mechanical coupling strength between the two movable mirrors, the phase difference between the mechanical modes of the two oscillating mirrors and the photon number in each cavity. We also show that both mechanical and optical cooling can be achieved by transferring energy from one cavity to the other. We also analyze the occurrence of normal-mode splitting (NMS). We find that a hybridization of the two oscillating mirrors with the fluctuations of the two driving optical fields occurs and leads to a splitting of the mechanical and optical fluctuation spectra.

  17. Oscillating bubbles at the tips of optical fibers in liquid nitrogen

    Science.gov (United States)

    MacDonald, K. F.; Fedotov, V. A.; Pochon, S.; Soares, B. F.; Zheludev, N. I.; Guignard, C.; Mihaescu, A.; Besnard, P.

    2003-08-01

    We report that a bubble with a radius of a few micrometers may be created at a precise location on a metal-coated optical fiber tip immersed in liquid nitrogen by microsecond optical pulses with peak powers of less than 20 mW. Dynamic optical measurements reveal that after termination of the optical pulse the bubble exhibits stable oscillations for several tens of microseconds, at frequencies up to several megahertz, as it slowly collapses.

  18. Low Noise Optically Pre-amplified Lightwave Receivers and Other Applications of Fiber Optic Parametric Amplifiers

    Science.gov (United States)

    2010-07-27

    noise performance, optical gain bandwidth, and power efficiency. An interesting alternative to the mature Erbium-doped fiber amplifier ( EDFA ) is the...fibers (HNLF) and high power booster EDFAs . The FOPA can provide a very wide gain bandwidth [2], very high gain (70 dB was demonstrated in [3]), and...amplified spontaneous emission (ASE) noise in EDFAs is also generated. It is sometimes referred to as amplified quantum noise. Maximum gain (at the gain

  19. Quantum information tapping using a fiber optical parametric amplifier with noise figure improved by correlated inputs.

    Science.gov (United States)

    Guo, Xueshi; Li, Xiaoying; Liu, Nannan; Ou, Z Y

    2016-07-26

    One of the important functions in a communication network is the distribution of information. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7 ± 0.1 dB and 0.84 ± 0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti = 1.5 ± 0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network for quantum information distribution.

  20. Quantum information tapping using a fiber optical parametric amplifier with noise figure improved by correlated inputs

    Science.gov (United States)

    Guo, Xueshi; Li, Xiaoying; Liu, Nannan; Ou, Z. Y.

    2016-07-01

    One of the important functions in a communication network is the distribution of information. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7 ± 0.1 dB and 0.84 ± 0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti = 1.5 ± 0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network for quantum information distribution.

  1. Calibrating oscillation response of a piezo-stage using optical tweezers.

    Science.gov (United States)

    Zhou, Jin-Hua; Li, Di; Hu, Xin-Yao; Zhong, Min-Cheng; Wang, Zi-Qiang; Gong, Lei; Liu, Wei-Wei; Li, Yin-Mei

    2015-09-21

    In optical tweezers, a piezo-stage (PZT) is widely used to precisely position samples for force clamp, calibrating optical trap and stretching DNA. For a trapped bead in solution, the oscillation response of PZT is vital for all kinds of applications. A coupling ratio, actual amplitude to nominal amplitude, can be calibrated by power spectral density during sinusoidal oscillations. With oscillation frequency increasing, coupling ratio decreases in both x- and y-directions, which is also confirmed by the calibration with light scattering of scanning two aligned beads on slide. Those oscillation responses are related with deformability of chamber and the intrinsic characteristics of PZT. If we take nominal amplitude as actual amplitude for sinusoidal oscillations at 50 Hz, the amplitude is overestimated ~2 times in x-direction and ~3 times in y-direction. That will lead to huge errors for subsequent calibrations.

  2. Parametrically Amplified Bright-state Polariton of Four- and Six-wave Mixing in an Optical Ring Cavity

    Science.gov (United States)

    Chen, Haixia; Zhang, Yiqi; Yao, Xin; Wu, Zhenkun; Zhang, Xun; Zhang, Yanpeng; Xiao, Min

    2014-01-01

    We report experimental studies of bright-state polaritons of four-wave mixing (FWM) and six-wave mixing (SWM) signals through cascade nonlinear optical parametric amplification processes in an atom-cavity composite system for the first time. Also, the coexisting cavity transmission modes of parametrically amplified FWM and SWM signals are observed. Finally, electromagnetically induced absorption by the FWM cavity modes in the probe beam is investigated. The investigations can find potential applications in multi-channel narrow-band long-distance quantum communication. PMID:24401795

  3. ARTICLES: Some features of parametric conversion of infrared radiation in a system generating a difference frequency

    Science.gov (United States)

    Galaĭchuk, Yu A.; Strizhevskiĭ, V. L.; Yashkir, Yu N.

    1984-11-01

    A fluctuation theory is developed for the parametric conversion of infrared radiation utilizing four-photon difference frequency generation processes. An analysis is made of some features of optical parametric oscillation in this system allowing for sum frequency generation. Parametric "conversion" of quantum fluctuations to the frequency range of the infrared signal is discussed and it is shown that this effect increases the noise level.

  4. Experimental investigation of optical parametric generation enhancement in nonlinear photonic crystal of LiTaO3

    Science.gov (United States)

    Chikh-Touami, Hocine; Kremer, Régis; Lee, Hsin-Jung; Lee, Min Won; Peng, Lung-Han; Boudrioua, Azzedine

    2017-06-01

    We investigated angle-resolved optical parametric generation (OPG) in 2D periodically poled lithium tantalate (PPLT) with a 8.52 μm square lattice structure. Substantial parametric gain was observed at two specific incident angles of {0.8}\\circ and {1.6}\\circ , with the signal/idler wave propagating collinearly/non-collinearly to a 532 nm pump. These phenomena are due to simultaneous quasi-phase-matching OPG processes involved contribution from the reciprocal lattice vectors of ({{K}}{1,{0}} and {{K}}{1,{1}}) or ({{K}}{1,{0}} and {{K}}{1,{2}}), respectively. These configurations raise the parametric gain to comparable to that of the 1D QPM structure.

  5. Remote Optical Imagery of Obscured Objects in Low-Visibility Environments Using Parametric Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Asher, R.B.; Bliss, D.E.; Cameron, S.M.; Hamil, R.A.

    1998-10-14

    The development of unconventional active optical sensors to remotely detect and spatially resolve suspected threats obscured by low-visibility observation conditions (adverse weather, clouds, dust, smoke, precipitation, etc.) is fundamental to maintaining tactical supremacy in the battlespace. In this report, the authors describe an innovative frequency-agile image intensifier technology based on time-gated optical parametic amplification (OPA) for enhanced light-based remote sensing through pervasive scattering and/or turbulent environments. Improved dynamic range characteristics derived from the amplified passband of the OPA receiver combined with temporal discrimination in the image capture process will offset radiant power extinction losses, while defeating the deugradative effects & multipath dispersion and ,diffuse backscatter noise along the line-of-sight on resultant image contrast and range resolution. Our approach extends the operational utility of the detection channel in existing laser radar systems by increasing sensitivity to low-level target reffectivities, adding ballistic rejection of scatter and clutter in the range coordinate, and introducing multispectral and polarization discrimination capability in a wavelen~h-tunable, high gain nonlinear optical component with strong potential for source miniaturization. A key advantage of integrating amplification and tlequency up-conversion functions within a phasematched three-wave mixing parametric device is the ability to petiorm background-free imaging with eye-safe or longer inilared illumination wavelengths (idler) less susceptible to scatter without sacrificing quantum efficiency in the detection process at the corresponding signal wavelength. We report benchmark laboratory experiments in which the OPA gating process has been successfidly demonstrated in both transillumination and reflection test geometries with extended pathlengths representative of realistic coastal sea water and cumulus cloud

  6. Bubbling effect in the electro-optic delayed feedback oscillator coupled network

    Science.gov (United States)

    Liu, Lingfeng; Lin, Jun; Miao, Suoxia

    2017-03-01

    Synchronization in the optical systems coupled network always suffers from bubbling events. In this paper, we numerically investigate the statistical properties of the synchronization characteristics and bubbling effects in the electro-optic delayed feedback oscillator coupled network with different coupling strength, delay time and gain coefficient. Furthermore, we compare our results with the synchronization properties of semiconductor laser (SL) coupled network, which indicates that the electro-optic delayed feedback oscillator can be better to suppress the bubbling effects in the synchronization of coupled network under the same conditions.

  7. Atomic Bloch-Zener oscillations and Stückelberg interferometry in optical lattices.

    Science.gov (United States)

    Kling, Sebastian; Salger, Tobias; Grossert, Christopher; Weitz, Martin

    2010-11-19

    We report on experiments investigating quantum transport and band interferometry of an atomic Bose-Einstein condensate in an optical lattice with a two-band miniband structure, realized with a Fourier-synthesized optical lattice potential. Bloch-Zener oscillations, the coherent superposition of Bloch oscillations and Landau-Zener tunneling between the two bands, are observed. When the relative phase between paths in different bands is varied, an interference signal is observed, demonstrating the coherence of the dynamics in the miniband system. Measured fringe patterns of this Stückelberg interferometer allow us to interferometrically map out the band structure of the optical lattice over the full Brillouin zone.

  8. Compact dual-crystal optical parametric amplification for broadband IR pulse generation using a collinear geometry.

    Science.gov (United States)

    Hong, Zuofei; Zhang, Qingbin; Lu, Peixiang

    2013-04-22

    A novel compact dual-crystal optical parametric amplification (DOPA) scheme, collinearly pumped by a Ti:sapphire laser (0.8 μm), is theoretically investigated for efficiently generating broadband IR pulses at non-degenerate wavelengths (1.2 μm~1.4 μm and 1.8 μm~2.1 μm). By inserting a pair of barium fluoride (BaF(2)) wedges between two thin β-barium borate (BBO) crystals, the group velocity mismatch (GVM) between the three interacting pulses can be compensated simultaneously. In this case, the obtained signal spectrum centered at 1.3 μm is nearly 20% broader and the conversion efficiency is increased, but also the pulse contrast and beam quality are improved due to the better temporal overlap. Furthermore, sub-two-cycle idler pulses with carrier-envelope phase (CEP) fluctuation of sub-100-mrad root mean square (RMS) can be generated. Because a tunable few-cycle IR pulse with millijoule energy is attainable in this scheme, it will contribute to ultrafast community and be particularly useful as a driving or controlling field for the generation of ultrafast coherent x-ray supercontinuum.

  9. Transmission Performance Analysis of Fiber Optical Parametric Amplifiers for WDM System

    Directory of Open Access Journals (Sweden)

    Xiaohong Jiang

    2009-01-01

    Full Text Available A numerical analysis is presented on the long-haul wavelength-division multiplexing (WDM transmission system employing fiber-optic parametric amplifier (FOPA cascades based on one-pump FOPA model with Raman Effect taken into account. The end-to-end equalization scheme is applied to optimize the system features in terms of proper output powers and signal-to-noise ratios (SNRs in all the channels. The numerical results show that—through adjusting the fiber spans along with the number of FOPAs as well as the channel powers at the terminals in a prescribed way—the transmission distance and system performance can be optimized. By comparing the results generated by different lengths of fiber span, we come to the optimal span length to achieve the best transmission performance. Furthermore, we make a comparison among the long-haul WDM transmission systems employing different inline amplifiers, namely, FOPA, erbium-doped fiber amplifier (EDFA, and Fiber Raman Amplifier (FRA. FOPA demonstrates its advantage over the other two in terms of system features.

  10. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Science.gov (United States)

    Cirmi, G.; Lai, C.-J.; Huang, S.-W.; Granados, E.; Sell, A.; Moses, J.; Hong, K.-H.; Keathley, P.; Kärtner, F. X.

    2013-03-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ-5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  11. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Keathley P.

    2013-03-01

    Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  12. Light squeezing in optical parametric amplification beyond the slowly-varying amplitude approximation

    Indian Academy of Sciences (India)

    M Hosseini Farzad

    2012-04-01

    Optical parametric amplification (OPA) described usually by the coupled-wave equations with the first-order derivatives of the signal and idler waves, is solved under the slowly-varying amplitude approximation (SVA). In this article, by keeping the second-order derivatives in the coupled-wave equations, we obtained an analytical solution for the output signal and idler waves up to the first order of (/)1; the ratio of coupling constant to the wave number. Furthermore, here the signal and the idler waves are distinguished only by their polarizations with the same frequency. Light squeezing is observed in normally ordered variances of the two quadrature operators of the output combined mode when plotted against , where is the coupling constant and the interaction length. The variances have different signs for a range of values of and their variations are in opposite directions. We also show that this property is strongly dependent on the relative refractive index of the medium (). It is worth mentioning that the relative index dependency is not an explicit feature in squeezing of OPA under SVA approximation. Furthermore, the squeezing vanishes when → 1 and / → 0.

  13. Quantum optics. Quantum harmonic oscillator state synthesis by reservoir engineering.

    Science.gov (United States)

    Kienzler, D; Lo, H-Y; Keitch, B; de Clercq, L; Leupold, F; Lindenfelser, F; Marinelli, M; Negnevitsky, V; Home, J P

    2015-01-02

    The robust generation of quantum states in the presence of decoherence is a primary challenge for explorations of quantum mechanics at larger scales. Using the mechanical motion of a single trapped ion, we utilize reservoir engineering to generate squeezed, coherent, and displaced-squeezed states as steady states in the presence of noise. We verify the created state by generating two-state correlated spin-motion Rabi oscillations, resulting in high-contrast measurements. For both cooling and measurement, we use spin-oscillator couplings that provide transitions between oscillator states in an engineered Fock state basis. Our approach should facilitate studies of entanglement, quantum computation, and open-system quantum simulations in a wide range of physical systems. Copyright © 2015, American Association for the Advancement of Science.

  14. Optical Oscillator Strengths of Hydrogen Bromide in the 4.5-20 eV Excitation Energy Region

    Institute of Scientific and Technical Information of China (English)

    李文斌; 朱林繁; 刘小井; 苑震生; 孙建敏; 成华东; 徐克尊

    2004-01-01

    The absolute optical oscillator strength density spectrum of HBr in the valence shell energy region of 4.5-20 eV has been determined by a high-resolution fast electron energy loss spectrometer. The optical oscillator strengths reported. It has been manifested clearly that the optical oscillator strengths of some transitions for the previous photoabsorption method are subject to severe line-saturation effects.

  15. Build up of off-diagonal long-range order in microcavity exciton-polaritons across the parametric threshold

    DEFF Research Database (Denmark)

    Spano, R.; Cuadra, J.; Lingg, C.

    2013-01-01

    We report an experimental study of the spontaneous spatial and temporal coherence of polariton condensates generated in the optical parametric oscillator configuration, below and at the parametric threshold, and as a function of condensate area. Above the threshold we obtain very long coherence t...

  16. Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry

    Science.gov (United States)

    Dereux, A.; Hassan, K.; Weeber, J.-C.; Djellali, N.; Bozhevolnyi, S. I.; Tsilipakos, O.; Pitilakis, A.; Kriezis, E.; Papaioannou, S.; Vyrsokinos, K.; Pleros, N.; Tekin, T.; Baus, M.; Kalavrouziotis, D.; Giannoulis, G.; Avramopoulos, H.

    2011-01-01

    Surface plasmons polaritons are electromagnetic waves propagating along the surface of a conductor. Surface plasmons photonics is a promising candidate to satisfy the constraints of miniaturization of optical interconnects. This contribution reviews an experimental parametric study of dielectric loaded surface plasmon waveguides ring resonators and add-drop filters within the perspective of the recently suggested hybrid technology merging plasmonic and silicon photonics on a single board (European FP7 project PLATON "Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing in optical interconnects"). Conclusions relevant for dielectric loaded surface plasmon switches to be integrated in silicon photonic circuitry will be drawn. They rely on the opportunity offered by plasmonic circuitry to carry optical signals and electric currents through the same thin metal circuitry. The heating of the dielectric loading by the electric current enables to design low foot-print thermo-optical switches driving the optical signal flow.

  17. Generation of high-energy self-phase-stabilized pulses by difference-frequency generation followed by optical parametric amplification.

    Science.gov (United States)

    Manzoni, C; Vozzi, C; Benedetti, E; Sansone, G; Stagira, S; Svelto, O; De Silvestri, S; Nisoli, M; Cerullo, G

    2006-04-01

    We produce ultrabroadband self-phase-stabilized near-IR pulses by a novel approach where a seed pulse, obtained by difference-frequency generation of a hollow-fiber broadened supercontinuum, is amplified by a two-stage optical parametric amplifier. Energies up to 20 microJ with a pulse spectrum extending from 1.2 to 1.6 microm are demonstrated, and a route for substantial energy scaling is indicated.

  18. Rabi oscillations of two-photon states in nonlinear optical resonators

    Science.gov (United States)

    Sherkunov, Y.; Whittaker, David M.; Fal'ko, Vladimir

    2016-02-01

    We demonstrate that four-wave mixing processes in high-quality nonlinear resonators can lead to Rabi-like oscillations in photon occupation numbers and second-order correlation functions, being a characteristic feature of the presence of entangled photon pairs in the optical signal. In the case of a system driven by a continuous coherent pump, the oscillations occur in the transient regime. We show that driving the system with pulsed coherent pumping would generate strongly antibunched photon states.

  19. Bloch Oscillations of Two-Component Bose-Einstein Condensates in Optical Lattices

    Institute of Scientific and Technical Information of China (English)

    GU Huai-Qiang; WANG Zhi-Cheng; JIN Kang; TAN Lei

    2006-01-01

    @@ We study the Bloch oscillations of two-component Bose-Einstein condensates trapped in spin-dependent optical lattices. The influence of the intercomponent atom interaction on the system is discussed in detail Accelerated breakdown of the Bloch oscillations and revival phenomena are found respectively for the repulsive and attractive case. For both the cases, the system will finally be set in a quantum self-trapping state due to dynamical instability.

  20. 730-nm optical parametric conversion from near- to short-wave infrared band

    DEFF Research Database (Denmark)

    Boggio, J.M.C.; Windmiller, J.R.; Knutzen, M.;

    2008-01-01

    A record 730 nm parametric conversion in silica fiber from the near-infrared to the short-wave infrared band is reported and analyzed. A parametric gain in excess of 30 dB was measured for a signal at 1300 nm (with corresponding idler at 2030 nm). This conversion was performed in a travelling...

  1. All optical wavelength conversion and parametric amplification in Ti:PPLN channel waveguides for telecommunication applications

    Energy Technology Data Exchange (ETDEWEB)

    Nouroozi, Rahman

    2010-10-19

    Efficient ultra-fast integrated all-optical wavelength converters and parametric amplifiers transparent to the polarization, phase, and modulation-level and -format are investigated. The devices take advantage of the optical nonlinearity of Ti:PPLN waveguides exploiting difference frequency generation (DFG). In a DFG, the signal ({lambda}{sub s}) is mixed with a pump ({lambda}{sub p}) to generate a wavelength shifted idler (1/{lambda}{sub i}=1/{lambda}{sub p}-1/{lambda}{sub s}). Efficient generation of the pump in Ti:PPLN channel guides is investigated using different approaches. In the waveguide resonators, first a resonance of the fundamental wave alone is considered. It is shown that the maximum power enhancement of the fundamental wave, and therefore the maximum second-harmonic generation (SHG) efficiency, can be achieved with low loss matched resonators. By this way, SHG efficiency of {proportional_to}10300%/W (10.3 %/mW) has been achieved in a 65 mm long waveguide resonator. Its operation for cSHG/DFG requires narrowband reflector for fundamental wave only. Thus, the SH (pump) wave resonator is investigated. The SH-wave resonator enhances the intracavity SH power only. Based on this scheme, an improvement of {proportional_to}10 dB for cSHG/DFG based wavelength conversion efficiency has been achieved with 50 mW of coupled fundamental power in a 30 mm long Ti:PPLN. However, operation was limited to relatively small fundamental power levels (<50 mW) due to the onset of photorefractive instabilities destroying the cavity stabilization. The cSHG/DFG efficiency can be considerably improved by using a double-pass configuration in which all the interacting waves were reflected by a broadband dielectric mirror deposited on the one endface of the waveguide. Three different approaches are investigated and up to 9 dB improvement of the wavelength conversion efficiency in comparison with the single-pass configuration is achieved. Polarization-insensitive wavelength

  2. Millijoule-level picosecond mid-infrared optical parametric amplifier based on MgO-doped periodically poled lithium niobate.

    Science.gov (United States)

    Xu, Hongyan; Yang, Feng; Chen, Ying; Liu, Ke; Du, Shifeng; Zong, Nan; Yang, Jing; Bo, Yong; Peng, Qinjun; Zhang, Jingyuan; Cui, Dafu; Xu, Zuyan

    2015-03-20

    A millijoule-level high pulse energy picosecond (ps) mid-infrared (MIR) optical parametric amplifier (OPA) at 3.9 μm based on large-aperture MgO-doped periodically poled lithium niobate (MgO:PPLN) crystal was demonstrated for the first time, to the best of our knowledge. The MIR OPA was pumped by a 30 ps 1064 nm Nd:YAG laser at 10 Hz and injected by an energy-adjustable near-infrared seed based on a barium boron oxide (BBO) optical parametric generator/optical parametric amplifier (OPG/OPA) with double-pass geometry. Output energy of 1.14 mJ at 3.9 μm has been obtained at pump energy of 15.2 mJ. Furthermore, the performance of MIR OPG in MgO:PPLN was also investigated for comparing with the seeded OPA.

  3. The Optical Bloch oscillation in chirped one-dimensional superconducting photonic crystal

    Science.gov (United States)

    Zhang, Zhengren; Long, Yang; Zhang, Liwei; Yin, Pengfei; Xue, Chunhua

    2017-09-01

    We exploit theoretically the propagation properties of electromagnetic waves in nanoscale one-dimensional superconducting photonic crystal. The Wannier Stark ladders can be formed in the photonic crystal by varying the thickness of the dielectric layers linearly across the structure. The dynamics behavior of a Gaussian pulse transmitting through the structure is simulated theoretically. We find that photons undergo Bloch oscillations inside tilted photonic bands and the Bloch oscillations are sensitive to the change of temperature in the range of 3-8 K. It is demonstrated that our structure is possible to realize tunable optical Bloch oscillations by controlling the temperature of superconducting material.

  4. Optomechanical oscillator pumped and probed by optically two isolated photonic crystal cavity systems.

    Science.gov (United States)

    Tian, Feng; Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Takiguchi, Masato; Notomi, Masaya

    2016-11-28

    Optomechanical control of on-chip emitters is an important topic related to integrated all-optical circuits. However, there is neither a realization nor a suitable optomechanical structure for this control. The biggest obstacle is that the emission signal can hardly be distinguished from the pump light because of the several orders' power difference. In this study, we designed and experimentally verified an optomechanical oscillation system, in which a lumped mechanical oscillator connected two optically isolated pairs of coupled one-dimensional photonic crystal cavities. As a functional device, the two pairs of coupled cavities were respectively used as an optomechanical pump for the lumped oscillator (cavity pair II, wavelengths were designed to be within a 1.5 μm band) and a modulation target of the lumped oscillator (cavity pair I, wavelengths were designed to be within a 1.2 μm band). By conducting finite element method simulations, we found that the lumped-oscillator-supported configurations of both cavity pairs enhance the optomechanical interactions, especially for higher order optical modes, compared with their respective conventional side-clamped configurations. Besides the desired first-order in-plane antiphase mechanical mode, other mechanical modes of the lumped oscillator were investigated and found to possibly have optomechanical applications with a versatile degree of freedom. In experiments, the oscillator's RF spectra were probed using both cavity pairs I and II, and the results matched those of the simulations. Dynamic detuning of the optical spectrum of cavity pair I was then implemented with a pumped lumped oscillator. This was the first demonstration of an optomechanical lumped oscillator connecting two optically isolated pairs of coupled cavities, whose biggest advantage is that one cavity pair can be modulated with an lumped oscillator without interference from the pump light in the other cavity pair. Thus, the oscillator is a suitable

  5. Multi-wavelength injection seeded mid-infrared optical parametric oscillator for DIAL

    Energy Technology Data Exchange (ETDEWEB)

    Webb, M.S.; Stanion, K.B.; Deane, D.J. [and others

    1996-01-27

    We have constructed and fielded a multi-wavelength injection seeded mid-IR OPO source for DIAL. This OPO system was built for ground based remote sensing measurements of species with both broad (300 cm{sup -1}) and narrow absorption bandwidths (0.07 cm{sup -1} FWHM). The OPO utilizes a single frequency tunable diode laser for the injection seeded signal wavelength in the region from 6400 to 6700 cm{sup -1} and an angle phase-matched 5 cm LiNbO3 crystal to provide large tuning excursions on a slow time scale. The pump was a diode pumped Nd:YAG MOPA (9398 cm{sup -1}) running at 180 Hz. This pump source was repeatedly injection seeded with a different wavelength on each of film sequential shots forming a set of three pulses having wavelength separations on the order of 0.4 cm{sup -1} at a three color set repetition rate of 60 Hz. This combination of OPO signal and pump source produced a set of three time staggered idler wavelengths separated by 0.4 cm{sup -1} with the center wavelength tunable from 2700 to 3000 cm{sup -1}. This OPO system was used in field test experiments to detect the release of chemicals from a standoff distance of 3.3 Km. We present key OPO design criteria, performance data, and numerical simulations that agree with our observations of pump induced spectral impurities in the OPO output.

  6. An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing

    NARCIS (Netherlands)

    Stefszky, Michael; Mow-Lowry, Conor M.; McKenzie, Kirk; Chua, Sheon; Buchler, Ben C.; Symul, Thomas; McClelland, David E.; Lam, Ping Koy

    2011-01-01

    A squeezed light source requires properties such as high squeezing amplitude, high bandwidth and stability over time, ideally using as few resources, such as laser power, as possible. We compare three nonlinear materials, two of which have not been well characterized for squeezed state production,

  7. Fiber Optical Parametric Oscillator for High Power, High Efficiency Short-Wavelength Generation

    Science.gov (United States)

    2010-12-05

    integrals. Thus, it should now be possible to avoid SRS, despite a drop to 1 3 of the intrinsic FWM interaction strength with crossed polarizations, relative...10) The wavelengths, λj , are the resonance wavelengths at which the specific medium absorbs light, while the constants, Bj , indicate the strength of...commercial fibers have been investigated within the project. Among these are the Sumit- omo highly-nonlinear fiber (HNLF), the Corning SMF28 fiber and

  8. An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing

    NARCIS (Netherlands)

    Stefszky, Michael; Mow-Lowry, Conor M.; McKenzie, Kirk; Chua, Sheon; Buchler, Ben C.; Symul, Thomas; McClelland, David E.; Lam, Ping Koy

    2011-01-01

    A squeezed light source requires properties such as high squeezing amplitude, high bandwidth and stability over time, ideally using as few resources, such as laser power, as possible. We compare three nonlinear materials, two of which have not been well characterized for squeezed state production, a

  9. Parametrically Excited Oscillations of Second-Order Functional Differential Equations and Application to Duffing Equations with Time Delay Feedback

    Directory of Open Access Journals (Sweden)

    Mervan Pašić

    2014-01-01

    Full Text Available We study oscillatory behaviour of a large class of second-order functional differential equations with three freedom real nonnegative parameters. According to a new oscillation criterion, we show that if at least one of these three parameters is large enough, then the main equation must be oscillatory. As an application, we study a class of Duffing type quasilinear equations with nonlinear time delayed feedback and their oscillations excited by the control gain parameter or amplitude of forcing term. Finally, some open questions and comments are given for the purpose of further study on this topic.

  10. Saturation Effect on Pump-to-Signal Intensity Modulation Transfer in Single-Pump Phase-Insensitive Fibre Optic Parametric Amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2011-01-01

    A numerical and experimental characterization of how signal gain saturation affects the transfer of the intensity modulation of the pump to the signal in single-pump phaseinsensitive fibre optic parametric amplifiers is presented.......A numerical and experimental characterization of how signal gain saturation affects the transfer of the intensity modulation of the pump to the signal in single-pump phaseinsensitive fibre optic parametric amplifiers is presented....

  11. Experimental and theoretical investigations of absolute optical oscillator strengths for valence excitations of nitric oxide

    Institute of Scientific and Technical Information of China (English)

    朱林繁; 钟志萍; 苑震生; 张卫华; 刘小井; 江锡满; 徐克尊; 李家明

    2002-01-01

    The absolute optical oscillator strength density spectra of nitric oxide in the energy region of 5.0-22.0 eV havebeen measured by a high-resolution fast-electron energy loss spectrometer. With the calculated results obtained by themultiscattering self-consistent-field method and channel characteristics, the strongly overlapped spectra in the energyregion of 7.5-9.3 eV have been analysed and the corresponding partially vibrationally resolved optical oscillator strengthshave been estimated from the experimental spectra.

  12. Analysis of ultra-broadband high-energy optical parametric chirped pulse amplifier based on YCOB crystal

    Institute of Scientific and Technical Information of China (English)

    Meizhi Sun; Lailin Ji; Qunyu Bi; Nannan Wang; Jun Kang; Xinglong Xie; Zunqi Lin

    2011-01-01

    A new type of optical parametric chirped pulse amplifier is designed and analyzed for the amplification of pulse centered at 808 nm.A novel crystal,yttrium calcium oxyborate YCa4O(BO3)3 (YCOB),is utilized in the power amplification stage of optical parametric amplification (OPA).Noncollinear phase matching parameters in the xoz principle plane of YCOB,compared with those in BBO and DKDP,are analyzed by numerical simulation.The results show that YCOB rather than DKDP can be used in the power amplification stage of OPA to realize the amplification of chirped pulse to several joules with a gain bandwidth exceeding 100 nm.This can be used to gain a high intensity pulse of ~10 fs after the compressor.The amplification of the femtosecond pulse is an important branch of ultra-intense laser technology,with Ti:sapphire as the medium for its large gain bandwidth.From the perspective of technical features and applications,such femtosecond pulses are used to study high field physics and other related areas in ultrashort time[1,2];however,the pursuit of higher energy femtosecond pulse should not be abandoned.Optical parametric chirped pulse amplification (OPCPA) has been successfully used in the front end of high intensity lasers[3-8],indicating the possibility of femtosecond pulse amplification.This has been verified by an increasing number of fine crystals being invented,such as YCa4O(BO3)3 (YCOB)[9-12].%A new type of optical parametric chirped pulse amplifier is designed and analyzed for the amplification of pulse centered at 808 nm. A novel crystal, yttrium calcium oxyborate YCa4O(BO3)3 (YCOB), is utilized in the power amplification stage of optical parametric amplification (OPA). Noncollinear phase matching parameters in the xoz principle plane of YCOB, compared with those in BBO and DKDP, are analyzed by numerical simulation. The results show that YCOB rather than DKDP can be used in the power amplification stage of OPA to realize the amplification of chirped pulse to

  13. Trace Gas Measurements on Mars and Earth Using Optical Parametric Generation

    Science.gov (United States)

    Numata, Kenji; Haris, Riris; Li, Steve; Sun, Xiaoli; Abshire, James Brice

    2010-01-01

    Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. We have developed an active sensing instrument for the remote measurement of trace gases in planetary atmospheres (including Earth). The technique uses widely tunable, seeded optical parametric generation (OPG) to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planets. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but recent observations indicate that methane levels may be on the rise. Increasing methane concentrations may trigger a positive feedback loop and a subsequent runaway greenhouse effect, where increasing temperatures result in increasing methane levels. The NRC Decadal Survey recognized the importance of global observations of greenhouse gases and called for simultaneous CH4, CO, and CO2 measurements but also underlined the technological limitations for these observations. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can identify and localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. It can identify the dynamics of methane generation over time and latitude and identify future lander mission sites

  14. Microstructure-Fibre-Based Optical Parametric Amplification in Telecom Band with Ultra-High Gain Slope

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; XIAO Li; ZHANG Lei; HUANG Yi-Dong; PENG Jiang-De

    2006-01-01

    @@ We report a microstructure-fibre-based parametric amplification experiment in telecom band with ultra-high gain slope. A peak on-off gain of 52.3 dB is achieved using 25 m high nonlinear microstructure fibre (MF) and only 5.3 W pump power. The parametric gain slope is up to 580dBW-1 km-1. From the experimental data, the linear coefficient of the MF is estimated to be about 66. 7 W-1 km-1. The experiment shows the great potential of MFs in practical fibre parametric amplifiers.

  15. A comparison of nonlinear media for parametric all-optical signal processing

    DEFF Research Database (Denmark)

    Martinez Diaz, Jordi; Bohigas Nadal, Jaume; Vukovic, Dragana;

    2013-01-01

    We systematically compare nonlinear media for parametric signal processing by determining the minimum pump power that is required for a given conversion efficiency in a degenerate four-wave mixing process, including the effect of nonlinear loss....

  16. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  17. Dynamic range enhancement and amplitude regeneration in single pump fibre optic parametric amplifiers using DPSK modulation

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2008-01-01

    Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain.......Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain....

  18. Quantum and Raman Noise in a Depleted Fiber Optical Parametric Amplifier

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, Colin J.

    2013-01-01

    The noise properties of both phase-sensitive and phase-insensitive saturated parametric amplifiers are studied using a semi-classical approach. Vacuum fluctuations as well as spontaneous Raman scattering are included in the analysis.......The noise properties of both phase-sensitive and phase-insensitive saturated parametric amplifiers are studied using a semi-classical approach. Vacuum fluctuations as well as spontaneous Raman scattering are included in the analysis....

  19. Visualization of two-photon Rabi oscillations in evanescently coupled optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ornigotti, M; Valle, G Della; Fernandez, T Toney; Laporta, P; Longhi, S [Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie del CNR, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano (Italy); Coppa, A; Foglietti, V [Istituto di Fotonica e Nanotecnologie del CNR, sezione di Roma, Via Cineto Romano 42, 00156 Roma (Italy)], E-mail: longhi@fisi.polimi.it

    2008-04-28

    An optical analogue of two-photon Rabi oscillations, occurring in a three-level atomic or molecular system coherently driven by two detuned laser fields, is theoretically proposed and experimentally demonstrated using three evanescently coupled optical waveguides realized on an active glass substrate. The optical analogue stems from the formal analogy between spatial propagation of light waves in the three-waveguide structure and the coherent temporal evolution of populations in a three-level atomic medium driven by two laser fields under two-photon resonance. In our optical experiment, two-photon Rabi oscillations are thus visualized as a slow spatial oscillatory exchange of light power between the two outer waveguides of the structure with a small excitation of the central waveguide.

  20. Tunable hybridization at midzone and anomalous Bloch-Zener oscillations in optical waveguide ladders.

    Science.gov (United States)

    Zheng, Ming Jie; Wang, Gang; Yu, Kin Wah

    2010-12-01

    We have studied the optical oscillation and tunneling of light waves in optical waveguide ladders (OWLs) formed by two coupled planar optical waveguide arrays. For the band structure, a midzone gap is formed owing to band hybridization, and its wavenumber position can be tuned throughout the whole Brillouin zone, which is different from the Bragg gap. By imposing a gradient in the propagation constant in each array, Bloch-Zener oscillation (BZO) is realized with Zener tunneling between the bands occurring at the midzone, which is contrary to the common BZO with tunneling at the center or edge of the Brillouin zone. The occurrence of BZO is demonstrated by using the field-evolution analysis. The tunable hybridization at the midzone enhances the tunability of BZO in the OWLs. This Letter may offer new insights into the coherent phenomena in optical lattices.

  1. Nonlinear optical interactions in silicon waveguides

    Science.gov (United States)

    Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.

    2017-03-01

    The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  2. Si-prism-array coupled terahertz-wave parametric oscillator with pump light totally reflected at the terahertz-wave exit surface.

    Science.gov (United States)

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Liu, Chuang; Chen, Zhenlei

    2016-09-01

    A Si-prism-array coupled terahertz (THz)-wave parametric oscillator with the pump totally reflected at the THz-wave exit surface (PR-Si-TPO) is demonstrated by manufacturing an 800 nm air gap between the crystal and the Si-prism array. Influence on the total reflection of the pump from the Si prisms is eliminated and efficient coupling of the THz wave is ensured by using this air gap. When the THz-wave frequency varies from 1.8 to 2.3 THz, compared with a Si-prism-array coupled TPO (Si-TPO) with the pump transmitting through the crystal directly, the THz-wave output energy is enhanced by 20-50 times, and the oscillating threshold is reduced by 10%-35%. Furthermore, the high end of the THz-wave frequency tuning range of the PR-Si-TPO is expanded to 3.66 THz compared with 2.5 THz for the Si-TPO.

  3. New compact and efficient local oscillator optic system for the KSTAR electron cyclotron emission imaging system

    Science.gov (United States)

    Nam, Y. B.; Lee, D. J.; Lee, J.; Kim, C.; Yun, G. S.; Lee, W.; Park, H. K.

    2016-11-01

    Electron cyclotron emission imaging (ECEI) diagnostic on Korean Superconducting Tokamak Advanced Research utilizes quasi-optical heterodyne-detection method to measure 2D (vertical and radial) Te fluctuations from two toroidally separated poloidal cross section of the plasma. A cylindrical lens local oscillator (LO) optics with optical path length (OPL) 2-2.5 m has been used in the current ECEI system to couple the LO source to the 24 vertically aligned array of ECE detectors. For efficient and compact LO optics employing the Powell lens is proposed so that the OPL of the LO source is significantly reduced from ˜2.0 m to 0.4 m with new optics. The coupling efficiency of the LO source is expected to be improved especially at the edge channels. Results from the optical simulation together with the laboratory test of the prototype optics will be discussed in this paper.

  4. Comprehensive Numerical Modelling of a Low-Gain Optical Parametric Amplifier as a Front-End Contrast Enhancement Unit

    CERN Document Server

    Sharba, A B; Zepf, M; Borghesi, M; Sarri, G

    2016-01-01

    We present a comprehensive model for predicting the full performance of a second harmonic generationoptical parametric amplification system that aims at enhancing the temporal contrast of laser pulses. The model simultaneously takes into account all the main parameters at play in the system such as the group velocity mismatch, the beam divergence, the spectral content, the pump depletion, and the length of the nonlinear crystals. We monitor the influence of the initial parameters of the input pulse and the interdependence of the two related non-linear processes on the performance of the system and show its optimum configuration. The influence of the initial beam divergence on the spectral and the temporal characteristics of the generated pulse is discussed. In addition, we show that using a crystal slightly longer than the optimum length and introducing small delay between the seed and the pump ensures maximum efficiency and compensates for the spectral shift in the optical parametric amplification stage in c...

  5. Non-destructive monitoring of Bloch oscillations in an optical cavity

    CERN Document Server

    Keßler, H; Venkatesh, B P; Georges, Ch; Hemmerich, A

    2016-01-01

    Bloch oscillations are a hallmark of coherent wave dynamics in periodic potentials. They occur as the response of quantum mechanical particles in a lattice if a weak force is applied. In optical lattices with their perfect periodic structure they can be readily observed and employed as a quantum mechanical force sensor, for example, for precise measurements of the gravitational acceleration. However, the destructive character of the measurement process in previous experimental implementations poses serious limitations for the precision of such measurements. In this article we show that the use of an optical cavity operating in the regime of strong cooperative coupling allows one to directly monitor Bloch oscillations of a cloud of cold atoms in the light leaking out of the cavity. Hence, with a single atomic sample the Bloch oscillation dynamics can be mapped out, while in previous experiments, each data point required the preparation of a new atom cloud. The use of a cavity-based monitor should greatly impro...

  6. On the suitability of fibre optical parametric amplifiers for use in all-optical agile photonic networks

    Science.gov (United States)

    Gryspolakis, Nikolaos

    The objective of this thesis is to investigate the suitability of fibre optical parametric amplifiers (FOPAs) for use in multi-channel, dynamic networks. First, we investigate their quasi-static behaviour in such an environment. We study the behaviour of a FOPA under realistic conditions and we examine the impact on the gain spectrum of channel addition for several different operating conditions and regimes. In particular, we examine the impact of surviving channel(s) position, input power and channel spacing. We see how these parameters affect the gain tilt as well as its dynamic characteristics, namely the generation of under or over-shoots at the transition point, possible dependence of rise and fall times on any of the aforementioned parameters and how the gain excursions depend on those parameters. For these studies we assume continuous wave operation for all signals. We observe that the gain spectrum changes are a function of the position and the spacing of the channels. We also find that the gain excursion can reach several dBs (up to 5 dB) in the case of channel add/drop and are heavily dependent on the position of the surviving channels. The channels located in the middle of the transmission band are more prone to channel add/drop-induced gain changes. Moreover, we investigate for the first time the FOPA dynamic behaviour in a packet switching scenario. This part of the study assumes that all but one channels normally vary in a packet-switched fashion. The remaining channel (probe channel) is expected to undergo gain variations due to the perturbation of the system experienced by the other channels. Furthermore, we consider several different scenarios for which the channels spacing, per channel input power (PCIP), variance of the power fluctuation and position of the probe channel will change. We find that when the FOPA operates near saturation the target gain is not achieved more than 50% of the time while the peak-to-peak gain excursions can exceed 1 d

  7. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping

    Science.gov (United States)

    Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-04-01

    We present an approach for both efficient generation and amplification of 4-12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8-4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr2+:ZnSe/ZnS laser, enabling the generation of  Terawatt-level 4-12 μm pulses with an available large-aperture ZGP. Furthermore, the 4-12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4-4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4-12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser.

  8. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer

    Science.gov (United States)

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-08-01

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  9. High-resolution dipole (e, e) study for optical oscillator strengths of helium

    Institute of Scientific and Technical Information of China (English)

    凤任飞; 杨炳忻; 武淑兰; 邢士林; 张芳; 钟志萍; 郭学哲; 徐克尊

    1996-01-01

    The optical oscillator strengths of helium have been studied by a high-resolution dipole (e, e) method on the recently built high-resolution fast-electron energy-loss spectrometer. The difficulties of optical measurement have been avoided and the experimental precision has been improved by using this method. The optical oscillator strength density spectrum corresponding to the 1S n’P transitions and ionization of helium has been measured in the energy loss range of 21 - 26 eV. And the same work corresponding to the autoionization resonance region has been done in energy loss ranges of 59-67 eV and 69-74 eV. The above results have also been compared with those of the previous work.

  10. On-chip optical isolation via unidirectional Bloch oscillations in a waveguide array.

    Science.gov (United States)

    Kumar, Pradeep; Levy, Miguel

    2012-09-15

    We propose to use the unidirectionality of the optical Bloch oscillation phenomenon achievable in a magneto-optic asymmetric waveguide array to achieve optical isolation. At the 1.55 μm telecommunication wavelength, our isolator design exhibits an isolation ratio of 36 dB between forward- and backward-propagating waves. The proposed design consists of a waveguide array made in a silicon-on-insulator substrate with a magnetic garnet cover layer. A key role is played by the transverse-magnetic mode nonreciprocal phase shift effect.

  11. Efficient 1 kHz femtosecond optical parametric amplification in BiB(3)O(6) pumped at 800 nm.

    Science.gov (United States)

    Ghotbi, Masood; Ebrahim-Zadeh, Majid; Petrov, Valentin; Tzankov, Pancho; Noack, Frank

    2006-10-30

    We demonstrate efficient operation of a tunable femtosecond optical parametric amplifier based on BiB(3)O(6) pumped at 800 nm by a 1 kHz Ti:sapphire regenerative amplifier. The idler wavelength coverage extends to beyond 3 mum and the pulse duration at this wavelength is of the order of 110 fs. This new nonlinear borate crystal offers exceptionally high nonlinearity, making it a very promising candidate for power scaling of such frequency converters in the near-IR.

  12. Optical parametric chirped pulse amplification and spectral shaping of a continuum generated in a photonic band gap fiber.

    Science.gov (United States)

    Hugonnot, E; Somekh, M; Villate, D; Salin, F; Freysz, E

    2004-05-31

    A chirped pulse, spectrally broadened in a photonic bandgap optical fiber by 120 fs Ti:Sapphire laser pulses, is parametrically amplified in a BBO crystal pumped by a frequency doubled nanosecond Nd:YAG laser pulse. Without changing the frequency of the Ti:Sapphire, a spectral tunability of the amplified pulses is demonstrated. The possibility to achieve broader spectral range amplification is confirmed for a non-collinear pump-signal interaction geometry. For optimal non-collinear interaction geometry, the pulse duration of the original and amplified pulse are similar. Finally, we demonstrate that the combination of two BBO crystals makes it possible to spectrally shape the amplified pulses.

  13. Generation of <7 fs pulses at 800 nm from a blue-pumped optical parametric amplifier at degeneracy.

    Science.gov (United States)

    Siddiqui, A M; Cirmi, G; Brida, D; Kärtner, F X; Cerullo, G

    2009-11-15

    We generate ultrabroadband pulses at 800 nm from an optical parametric amplifier (OPA) pumped by the second harmonic of a Ti:sapphire system and working at degeneracy. The OPA is seeded by a white-light continuum generated from a near-IR OPA pumped by the same laser. Nearly transform-limited <7 fs pulses, fully characterized in amplitude and phase, are obtained with a chirped mirror compressor. The system fills the gap around 800 nm for broadband continuum seeded OPAs pumped by Ti:sapphire-based sources.

  14. Photothermal Fluctuations as a Fundamental Limit to Low-Frequency Squeezing in a Degenerate Optical Parametric Amplifier

    CERN Document Server

    Goda, K; Mikhailov, E E; Lam, P K; McClelland, D; Mavalvala, N; Goda, Keisuke; Kenzie, Kirk Mc; Mikhailov, Eugeniy E.; Lam, Ping Koy; Clelland, David Mc; Mavalvala, Nergis

    2005-01-01

    We study the effect of photothermal fluctuations on squeezed states of light through the photo-refractive effect and thermal expansion in a degenerate optical parametric amplifier (OPA). We also discuss the effect of the photothermal noise in various cases and how to minimize its undesirable consequences. We find that the photothermal noise in the OPA introduces a significant amount of noise on phase squeezed beams, making them less than ideal for low frequency applications such as gravitational wave (GW) interferometers, whereas amplitude squeezed beams are relatively immune to the photothermal noise and may represent the best choice for application in GW interferometers.

  15. Navy Precision Optical Interferometer Measurements of 10 Stellar Oscillators

    Science.gov (United States)

    2014-02-01

    Kornilov et al. (1991), Eggen (1968), Johnson et al. (1966), Cutri et al. (2003), and Gezari et al. (1993) as well as spectrophotometry from Glushneva...Two Micron All Sky Survey infrared measure- ments are as reported in Cutri et al. (2003), and an uncertainty of 0.05 mag was assigned to the optical...makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing

  16. Suppression of WDM four-wave mixing crosstalk in fibre optic parametric amplifier using Raman-assisted pumping.

    Science.gov (United States)

    Redyuk, A; Stephens, M F C; Doran, N J

    2015-10-19

    We perform an extensive numerical analysis of Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPA) in the context of WDM QPSK signal amplification. A detailed comparison of the conventional FOPA and RA-FOPA is reported and the important advantages offered by the Raman pumping are clarified. We assess the impact of pump power ratios, channel count, and highly nonlinear fibre (HNLF) length on crosstalk levels at different amplifier gains. We show that for a fixed 200 m HNLF length, maximum crosstalk can be reduced by up to 7 dB when amplifying 10x58Gb/s QPSK signals at 20 dB net-gain using a Raman pump of 37 dBm and parametric pump of 28.5 dBm in comparison to a standard single-pump FOPA using 33.4 dBm pump power. It is shown that a significant reduction in four-wave mixing crosstalk is also obtained by reducing the highly nonlinear fibre interaction length. The trend is shown to be generally valid for different net-gain conditions and channel grid size. Crosstalk levels are additionally shown to strongly depend on the Raman/parametric pump power ratio, with a reduction in crosstalk seen for increased Raman pump power contribution.

  17. Schrodinger cat states prepared by Bloch oscillation in a spin-dependent optical lattice

    CERN Document Server

    Wu, B J

    2011-01-01

    We propose to use Bloch oscillation of ultra-cold atoms in a spin-dependent optical lattice to prepare schrodinger cat states. Depending on its internal state, an atom feels different periodic potentials and thus has different energy band structures for its center-of-mass motion. Consequently, under the same gravity force, the wave packets associated with different internal states perform Bloch oscillation of different amplitudes in space and in particular they can be macroscopically displaced with respect to each other. In this way, a cat state can be prepared.

  18. Phase-matching loci and angular acceptance of non-collinear optical parametric amplification.

    Science.gov (United States)

    Trophème, Benoît; Boulanger, Benoit; Mennerat, Gabriel

    2012-11-19

    A general study of phase-matching loci and associated angular acceptances is performed in the case of non-collinear parametric amplification. Numerical and analytical calculations, as well as measurements, are described for the uniaxial BBO crystal and the biaxial LBO crystal.

  19. A parametric study of the output of the optically pumped continuous wave CF4 laser

    NARCIS (Netherlands)

    Hartemink, M.; Godfried, H.P.

    1993-01-01

    A parametric study of laser output versus CF4 pressure and temperature was performed and correlated with a model for the gain in the system, which includes the relevant relaxation processes. Lasing in CF4 was observed at temperatures below 170 K. Cooling the CF4 gas, the output power of the laser in

  20. Integrable nonlinear parity-time symmetric optical oscillator

    CERN Document Server

    Hassan, Absar U; Miri, Mohammad-Ali; Khajavikhan, Mercedeh; Christodoulides, Demetrios N

    2016-01-01

    The nonlinear dynamics of a balanced parity-time symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain-thus establishing integrability. Our analysis indicates the existence of two regimes of oscillatory dynamics and frequency locking, both of which are analogous to those expected in linear parity-time symmetric systems. Unlike other saturable parity time symmetric systems considered before, the model studied in this work first operates in the symmetric regime and then enters the broken parity-time phase.

  1. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer

    CERN Document Server

    Naruse, Makoto; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-01-01

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (R...

  2. Search for global oscillations on Jupiter with a double-cell sodium magneto-optical filter

    Science.gov (United States)

    Cacciani, A.; Dolci, M.; Moretti, P. F.; D'Alessio, F.; Giuliani, C.; Micolucci, E.; Di Cianno, A.

    2001-06-01

    Doppler observations on Jupiter are presented and discussed. A two-cells Magneto-Optical Filter (MOF), able to obtain two separate signals, Red and Blue, on the opposite wings of the Sodium D-lines, along with a continuum reference signal, has been used. This set of data permits to discriminate between real oscillations and albedo ``modes" by means of the two algorithms D=(B-R)/(B+R) and S=(B+R)/continuum. No unambiguous oscillation modes were detected with amplitudes above the 1-sigma level of ~ 1.2 m s-1 in the range between 0.5 and 0.7 mHz. However, using refined analysis for signal recovery in a noisy background we notice an increase of power also in the region of the solar 5 min oscillations. The albedo variations on the Jupiter's surface and instrumental effects are addressed to be responsible for the spurious signals.

  3. Analysis of the generation of amplitude-squeezed light with Gaussian-beam degenerate optical parametric amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Koprulu, Kahraman G.; Aytur, Orhan

    2001-06-01

    We investigate the generation of amplitude-squeezed states with degenerate optical parametric amplifiers that are pumped by focused Gaussian beams. We present a model that facilitates the calculation of the squeezing level for an experimentally realistic configuration in which there is a Gaussian input signal beam that has the same confocal parameter and waist location as the Gaussian pump beam, with no restriction on the interaction length-to-confocal parameter ratio. We show that the 3-dB squeezing limit that was thought to be imposed by the Gaussian pump profile can be exceeded in the (previously uninvestigated) tight-focusing regime. We find the maximum possible amplitude squeezing in this regime to be 4.65 dB. However, it is possible to increase the squeezing level further by spatially filtering the tails of the output signal beam, resulting in squeezing levels in excess of 10 dB. {copyright} 2001 Optical Society of America

  4. Phase-coherent all-optical frequency division by three

    NARCIS (Netherlands)

    Lee, Dong-Hoon; Klein, M.E.; Meyn, Jan-Peter; Wallenstein, Richard; Gross, P.; Boller, Klaus J.

    2003-01-01

    The properties of all-optical phase-coherent frequency division by 3, based on a self-phase-locked continuous-wave (cw) optical parametric oscillator (OPO), are investigated theoretically and experimentally. The frequency to be divided is provided by a diode laser master-oscillator power-amplifier

  5. Performance Analysis of a Hybrid Raman Optical Parametric Amplifier in the O- and E-Bands for CWDM PONs

    Directory of Open Access Journals (Sweden)

    Sasanthi Peiris

    2014-12-01

    Full Text Available We describe a hybrid Raman-optical parametric amplifier (HROPA operating at the O- and E-bands and designed for coarse wavelength division multiplexed (CWDM passive optical networks (PONs. We present the mathematical model and simulation results for the optimization of this HROPA design. Our analysis shows that separating the two amplification processes allows for optimization of each one separately, e.g., proper selection of pump optical powers and wavelengths to achieve maximum gain bandwidth and low gain ripple. Furthermore, we show that the proper design of optical filters incorporated in the HROPA architecture can suppress idlers generated during the OPA process, as well as other crosstalk that leaks through the passive optical components. The design approach enables error free performance for all nine wavelengths within the low half of the CWDM band, assigned to upstream traffic in a CWDM PON architecture, for all possible transmitter wavelength misalignments (±6 nm from the center wavelength of the channel band. We show that the HROPA can achieve error-free performance with a 170-nm gain bandwidth (e.g., 1264 nm–1436 nm, a gain of >20 dB and a gain ripple of <4 dB.

  6. Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre

    Science.gov (United States)

    Zhang, Lei; Tuan, Tong-Hoang; Kawamura, Harutaka; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake

    2016-05-01

    A broadband fibre-optical parametric amplifier (FOPA) operating at a novel wavelength region that is far from the pump wavelength has been demonstrated by exploiting two pairs of adjacent four-wave mixing (FWM) sidebands generated simultaneously in a tellurite microstructured optical fibre (TMOF). Owing to the large nonlinearity of the TMOF and the high pump peak power provided by a picosecond laser, a maximal average gain of 65.1 dB has been obtained. When the FOPA is operated in a saturated state, a flat-gain amplification from 1424 nm to 1459 nm can be achieved. This broadband and high-gain FOPA operating at new wavelength regions far from the pump offers the prospect of all-optical signal processing.

  7. Optimisation of high average power optical parametric generation using a photonic crystal fiber.

    Science.gov (United States)

    Sloanes, Trefor; McEwan, Ken; Lowans, Brian; Michaille, Laurent

    2008-11-24

    In this paper the length of a photonic crystal fiber is optimised to perform high average output power parametric generation with maximum efficiency. It is shown that the fiber length has to be increased up to 150 m, well beyond the walk-off distance between the pump and signal/idler, to optimize the generation efficiency. In this regime, the Raman process can take over from four-wave mixing and lead to supercontinuum generation. It is shown that the parametric wavelength conversion is directional; probably due to small variations in the core dimensions along the fiber length. The fiber exhibits up to 40% conversion efficiency, with the idler (0.9 microm) and the signal (1.3 microm) having a combined output power of over 1.5 W.

  8. Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal.

    Science.gov (United States)

    Wang, Yuye; Tang, Longhuang; Xu, Degang; Yan, Chao; He, Yixin; Shi, Jia; Yan, Dexian; Liu, Hongxiang; Nie, Meitong; Feng, Jiachen; Yao, Jianquan

    2017-04-17

    A widely tunable, high-energy terahertz wave parametric oscillator based on 1 mol. % MgO-doped near-stoichiometric LiNbO3 crystal has been demonstrated with 1064 nm nanosecond pulsed laser pumping. The tunable range of 1.16 to 4.64 THz was achieved. The maximum THz wave output energy of 17.49 μJ was obtained at 1.88 THz under the pump energy of 165 mJ/pulse, corresponding to the THz wave conversion efficiency of 1.06 × 10-4 and the photon conversion efficiency of 1.59%, respectively. Moreover, under the same experimental conditions, the THz output energy of TPO with MgO:SLN crystal was about 2.75 times larger than that obtained from the MgO:CLN TPO at 1.60 THz. Based on the theoretical analysis, the THz energy enhancement mechanism in the MgO:SLN TPO was clarified to originate from its larger Raman scattering cross section and smaller absorption coefficient.

  9. Delocalization-enhanced Bloch oscillations and driven resonant tunneling in optical lattices for precision force measurements

    CERN Document Server

    Tarallo, M G; Poli, N; Chiofalo, M L; Wang, F -Y; Tino, G M

    2012-01-01

    In this paper we describe and compare different methods used for accurate determination of forces acting on matter-wave packets in optical lattices. The quantum interference nature responsible for the production of both Bloch oscillations and coherent delocalization is investigated in detail. We study conditions for optimal detection of Bloch oscillation for a thermal ensemble of cold atoms with a large velocity spread. We report on the experimental observation of resonant tunneling in an amplitude-modulated (AM) optical lattice up to the sixth harmonic with Fourier-limited linewidth. We then explore the fundamental and technical phenomena which limit both the sensitivity and the final accuracy of the atomic force sensor at 10^{-7} precision level [1], with an analysis of the coherence time of the system and addressing few simple setup changes to go beyond the current accuracy.

  10. Type-II Quantum Dot Nanowire Structures with Large Oscillator Strengths for Optical Quantum Gating Applications

    DEFF Research Database (Denmark)

    Taherkhani, Masoomeh; Gregersen, Niels; Willatzen, Morten

    2017-01-01

    The exciton oscillator strength (OS) in type-II quantum dot (QD) nanowires is calculated by using a fast and efficient method. We propose a new structure in Double-Well QD (DWQD) nanowire that considerably increases OS of type-II QDs which is a key parameter in optical quantum gating...... in the stimulated Raman adiabatic passage (STIRAP) process [1] for implementing quantum gates....

  11. Mode-locked pulse oscillation of a self-resonating enhancement optical cavity

    CERN Document Server

    Hosaka, Yuji; Kosuge, Atsushi; Omori, Tsunehiko; Sakaue, Kazuyuki; Takahashi, Tohru; Uesugi, Yuuki; Urakawa, Junji; Washio, Masakazu

    2016-01-01

    A power enhancement optical cavity is a compelling means of realizing a pulsed laser with a high peak power and a high repetition frequency, which is not feasible by using a simple amplifier scheme. However, a precise feedback system is necessary for maintaining the narrow resonance condition of the optical cavity, and has become a major technical issue in developing such cavities. We developed a new approach that does not require any active feedback system, by placing the cavity in the outer loop of a laser amplifier. We report on the first demonstration of a mode-locked pulse oscillation using the new system.

  12. The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics

    CERN Document Server

    Torres, Juan Mauricio; Seligman, Thomas H

    2010-01-01

    The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which can be used to emulate the former.

  13. The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics

    Science.gov (United States)

    Torres, Juan Mauricio; Sadurní, Emerson; Seligman, Thomas H.

    2010-12-01

    The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which can be used to emulate the former.

  14. Indirect subharmonic optical injection locking of a millimeter-wave IMPATT oscillator

    Science.gov (United States)

    Herczfeld, Peter R.; Daryoush, Afshin S.; Rosen, Arye; Sharma, Arvind K.; Contarino, V. M.

    1986-12-01

    Large aperture phased-array antennas operating at millimeter-wave frequencies are designed for space-based communications and imaging. Array elements are composed of active transmit-receive (T/R) modules that are phase and frequency synchronized to a reference signal at the central processing unit by a fiber-optic (FO) distribution network. The implementation of FO links, synchronizing the millimeter-wave local oscillators (LO's) imposes a great challenge. This paper presents results of indirect optical injection locking of a free-running 38-GHz (Ka-band) IMPATT oscillator over the locking range of 2-132 MHz, depending on the injected power level (amplifier gain). In the experiment, the nonlinearity of both the laser diode and the IMPATT oscillator is exploited to achieve 12th subharmonic injection locking. The overall system FM noise degradation of the reference signal is 16 dB at 500-Hz offset. The FM noise degradation is dominated by the theoretical limit of 20log N, where N is the frequency multiplication factor used in subharmonic injection locking. Methods by which optical injection locking may be extended into 60 and 90 GHz are demonstrated.

  15. Rotationally relaxed, grating tuned laser oscillations in optically pumped C/sub 2/D/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, T.A.; Wittig, C.

    1982-07-15

    Rotationally relaxed, grating tuned laser oscillations are obtained in the frequency range 500--562 cm/sup -1/ via the optical pumping of C/sub 2/D/sub 2//He mixtures with a transverse, electric, atmospheric (TEA) CO/sub 2/ laser. Strong Q-branch oscillations at 530.8 cm/sup -1/ are also reported.

  16. High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes.

    Science.gov (United States)

    Haji, Mohsin; Hou, Lianping; Kelly, Anthony E; Akbar, Jehan; Marsh, John H; Arnold, John M; Ironside, Charles N

    2012-01-30

    Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors' knowledge), making it promising for the development of high frequency optoelectronic oscillators.

  17. Optical Oscillator Strengths of Hydrogen Chloride in the Energy Region of 5.5-20 eV

    Institute of Scientific and Technical Information of China (English)

    李文斌; 朱林繁; 刘小井; 苑震生; 孙建敏; 成华东; 酒井康弘; 徐克尊

    2003-01-01

    Absolute optical oscillator strength density (OOSD) spectrum of HCl in the valence shell energy region of 5.5-20 eV has been determined by the high resolution fast electron energy loss spectrometer (EELS). The optical oscillator strengths for the broad A1Ⅱ + 13∑+ dissociation peak and the discrete transitions of b3Ⅱ(v′=0),C1Ⅱ(v′ = 0, 1, 2) and M1Ⅱ(v′= 0) are reported.

  18. Optical signal to noise ratio improvement through unbalanced noise beating in phase-sensitive parametric amplifiers.

    Science.gov (United States)

    Malik, R; Kumpera, A; Olsson, S L I; Andrekson, P A; Karlsson, M

    2014-05-05

    We investigate the beating of signal and idler waves, which have imbalanced signal to noise ratios, in a phase-sensitive parametric amplifier. Imbalanced signal to noise ratios are achieved in two ways; first by imbalanced noise loading; second by varying idler to signal input power ratio. In the case of imbalanced noise loading the phase-sensitive amplifier improved the signal to noise ratio from 3 to 6 dB, and in the case of varying idler to signal input power ratio, the signal to noise ratio improved from 3 to in excess of 20 dB.

  19. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    Science.gov (United States)

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  20. Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Maria [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico); Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Apartado Postal 2732, BC 22860 Ensenada (Mexico); Garay-Palmett, Karina; U' Ren, Alfred B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico)

    2011-09-15

    We study the third-order spontaneous parametric down-conversion (TOSPDC) process, as a means to generate entangled photon triplets. Specifically, we consider thin optical fibers as the nonlinear medium to be used as the basis for TOSPDC in configurations where phase matching is attained through the use of more than one fiber transverse modes. Our analysis in this paper, which follows from our earlier paper [Opt. Lett. 36, 190-192 (2011)], aims to supply experimentalists with the details required in order to design a TOSPDC photon-triplet source. Specifically, our analysis focuses on the photon triplet state, on the rate of emission, and on the TOSPDC phase-matching characteristics for the cases of frequency-degenerate and frequency nondegenerate TOSPDC.

  1. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Herrmann, Daniel; Veisz, Laszlo; Tautz, Raphael; Tavella, Franz; Schmid, Karl; Pervak, Vladimir; Krausz, Ferenc

    2009-08-15

    We present a two-stage noncollinear optical parametric chirped-pulse amplification system that generates 7.9 fs pulses containing 130 mJ of energy at an 805 nm central wavelength and 10 Hz repetition rate. These 16 TW light pulses are compressed to within 5% of their Fourier limit and are carefully characterized by the use of home-built pulse diagnostics. The contrast ratio before the main pulse has been measured as 10(-4), 10(-8), and 10(-11) at t=-3.3 ps, t=-5 ps, and t=-30 ps, respectively. This source allows for experiments in a regime of relativistic light-matter interactions and attosecond science.

  2. Optimal Design of Dual-Pump Fibre-Optical Parametric Amplifiers with Dispersion Fluctuations Based on Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-Ming; LI Yan-He

    2005-01-01

    @@ Solutions of dual-pump fibre-optical parametric amplifiers (DP-FOPAs) with dispersion fluctuations are derived by using a matrix operator. Based on these solutions and a hybrid genetic algorithm, we have optimized threesection DP-FOPAs to increase the signal band and improve the gain uniformity. The optimizations demonstrate that when dispersion fluctuations are taken into account, the 44-nm signal band with the 0.37-dB ripple and over 14.8-dB gain can be obtained from the three-section DP-FOPA, instead of the lowest gain of ~13dB with the ripple of more than 15dB from the single-section DP-FOPA.

  3. Coherent LQG Control, Free-Carrier Oscillations, Optical Ising Machines and Pulsed OPO Dynamics

    CERN Document Server

    Hamerly, Ryan

    2016-01-01

    Broadly speaking, this thesis is about nonlinear optics, quantum mechanics, and computing. More specifically, it covers four main topics: Coherent LQG Control, Free-Carrier Oscillations, Optical Ising Machines and Pulsed OPO Dynamics. Tying them all together is a theory of open quantum systems called the SLH model, which I introduce in Chapters 1-2. The SLH model is a general framework for open quantum systems that interact through bosonic fields, and is the basis for the quantum circuit theory developed in the text. Coherent LQG control is discussed in Chapters 3-4, where I demonstrate that coherent feedback outperforms measurement-based feedback for certain linear quadratic-Gaussian (LQG) problems, and explain the discrepancy by the former's simultaneous utilization of both light quadratures. Semiclassical truncated-Wigner techniques for quantum-optical networks are discussed in Chapter 5, leading to a thorough discussion of quantum noise in systems with free-carrier nonlinearities (Chapter 6), comparison t...

  4. Optical cavity for enhanced parametric four-wave mixing in rubidium

    CERN Document Server

    Brekke, E

    2016-01-01

    We demonstrate the implementation of a ring cavity to enhance the efficiency of parametric four-wave mixing in rubidium. Using an input coupler with 95% reflectance, a finesse of 19.6$\\pm$0.5 is achieved with a rubidium cell inside. This increases the circulating intensity by a factor of 5.6$\\pm$0.5, and through two-photon excitation on the $5s_{1/2}\\rightarrow5d_{5/2}$ transition with a single excitation laser, up to 1.9$\\pm$0.3 mW of power at 420 nm is generated, 50 times what was previously generated with this scheme. The dependence of the output on Rb density and input power has been explored, suggesting the process may be approaching saturation. The blue output of the cavity also shows greatly improved spatial quality, combining to make this a promising source of 420 nm light for future experiments.

  5. A periodically poled LiNbO3 optical parametric generator in wavelength conversion from 2 to 3.88-4.34 μm

    Institute of Scientific and Technical Information of China (English)

    Xingbao Zhang; Youlun Ju; Yuezhu Wang; Baoquan Yao; Yunjun Zhang

    2008-01-01

    @@ A periodically poled lithium niobate (PPLN) optical parametric generator (OPG) pumped by a laser diode (LD)-pumped Q-switched Tm,Ho:GdVO4 laser operated at 2.048 μm with pump pulse of 25 ns and repetition rate of 10 kHz is reported.

  6. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...

  7. The parametric spring-mass system, its connection with non-linear optics, and an approach for undergraduate students

    CERN Document Server

    Boscolo, Ilario; Stellato, Marco; Vercellati, Stefano

    2014-01-01

    The spring-mass system studied in undergraduate physics laboratories may exhibit complex dynamics due to the simultaneous action of gravitational and elastic forces in addition to air friction. In the first part of this paper, we describe a laboratory experiment aimed at beginner students which also gives those with a more advanced background an opportunity to explore more complex aspects of the motions involved. If students are not given predefined apparatus but are allowed instead to design their own set-up for the experiment, they may also learn something about the thought processes and experimental procedures used in physics. In the second part of this paper, we present a systematic study of the parametric behavior of the system because teachers have to master its dynamics. The non-linear interaction between the vertical and the pendular oscillations in a vertical spring-mass system depends on the ratio between the frequencies of the two motions and on the motion's excitation. Systematic experimental inve...

  8. Neutrino oscillations: theory and phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, E.K., E-mail: akhmedov@ictp.trieste.it [Department of Theoretical Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm (Sweden)

    2011-12-15

    A brief overview of selected topics in the theory and phenomenology of neutrino oscillations is given. These include: oscillations in vacuum and in matter; phenomenology of 3-flavour neutrino oscillations; CP and T violation in neutrino oscillations in vacuum and in matter; matter effects on {nu}{sub {mu}}{r_reversible}{nu}{sub {tau}} oscillations; parametric resonance in neutrino oscillations inside the earth; oscillations below and above the MSW resonance; unsettled issues in the theory of neutrino oscillations.

  9. Four-wave parametric amplification in semiconductor quantum dot-metallic nanoparticle hybrid molecules.

    Science.gov (United States)

    Li, Jian-Bo; He, Meng-Dong; Chen, Li-Qun

    2014-10-06

    We study theoretically four-wave parametric amplification arising from the nonlinear optical response of hybrid molecules composed of semiconductor quantum dots and metallic nanoparticles. It is shown that highly efficient four-wave parametric amplification can be achieved by adjusting the frequency and intensity of the pump field and the distance between the quantum dot and the metallic nanoparticle. Specifically, the induced probe-wave gain is tunable in a large range from 1 to 1.43 × 10⁵. This gain reaches its maximum at the position of three-photon resonance. Our findings hold great promise for developing four-wave parametric oscillators.

  10. Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble

    CERN Document Server

    Jiang, Chang; Zhou, Lan

    2012-01-01

    We consider the propagation of a quantized polarized light in a magneto-optically manipulated atomic ensemble with a tripod configuration. Polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically induced transparency. The dark-state polariton with multiple components is achieved. We analyze quantum dynamics of the dark-state polariton by some experiment data from rubidium D1-line. It is found that one component propagates freely, however the wavepacket trajectory of the other component performs Bloch oscillations.

  11. Absolute measurement of the effective nonlinearities of KTP and BBO crystals by optical parametric amplification.

    Science.gov (United States)

    Armstrong, D J; Alford, W J; Raymond, T D; Smith, A V

    1996-04-20

    Absolute magnitudes of the effective nonlinearity, deff, were measured for seven KTP and six BBO crystals. The d(eff), were derived from the parametric gain of an 800-nm signal wave in the sample crystals when they were pumped by the frequency-doubled, spatially filtered light from an injectionseeded, Q-switched Nd:YAG laser. The KTP crystals, all type II phase matched with propagation in the X-Z plane, had d(eff) values ranging from 1.97 to 3.50 pm/V. Measurements of gain as a function of phase velocity mismatch indicate that two of the KTP crystals clearly contain multiple ferroelectric domains. For five type I phase-matched BBO crystals, d(eff) ranged from 1.76 to 1.83 pm/V, and a single type II phase-matched BBO crystal had a d(eff) of 1.56 pm/V. The uncertainty in our measurements of d(eff) values is ±5% for KTP and ±10% for BBO.

  12. Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2009-01-01

    to demonstrate amplitude regeneration of a distorted RZ-DPSK signal in a gain-saturated FOPA. An optical signal-to-noise ratio penalty of 3.5 dB after amplitude distortion is shown to be reduced to 0.2 dB after the FOPA, thus clearly demonstrating the regenerative nature of saturated FOPAs for RZ-DPSK modulation....

  13. Optical oximetry of volume-oscillating vascular compartments: contributions from oscillatory blood flow

    Science.gov (United States)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Fantini, Sergio

    2016-10-01

    We present a quantitative analysis of dynamic diffuse optical measurements to obtain oxygen saturation of hemoglobin in volume oscillating compartments. We used a phasor representation of oscillatory hemodynamics at the heart rate and respiration frequency to separate the oscillations of tissue concentrations of oxyhemoglobin (O) and deoxyhemoglobin (D) into components due to blood volume (subscript V) and blood flow (subscript F): O=OV+OF, D=DV+DF. This is achieved by setting the phase angle Arg(OF)-Arg(O), which can be estimated by a hemodynamic model that we recently developed. We found this angle to be -72 deg for the cardiac pulsation at 1 Hz, and -7 deg for paced breathing at 0.1 Hz. Setting this angle, we can obtain the oxygen saturation of hemoglobin of the volume-oscillating vascular compartment, SV=|OV|/(|OV|+|DV|). We demonstrate this approach with cerebral near-infrared spectroscopy measurements on healthy volunteers at rest (n=4) and during 0.1 Hz paced breathing (n=3) with a 24-channel system. Rest data at the cardiac frequency were used to calculate the arterial saturation, S(a); over all subjects and channels, we found ==0.96±0.02. In the case of paced breathing, we found =0.66±0.14, which reflects venous-dominated hemodynamics at the respiratory frequency.

  14. Wide range operation of regenerative optical parametric wavelength converter using ASE-degraded 43-Gb/s RZ-DPSK signals.

    Science.gov (United States)

    Gao, Mingyi; Kurumida, Junya; Namiki, Shu

    2011-11-07

    For sustainable growth of the Internet, wavelength-tunable optical regeneration is the key to scaling up high energy-efficiency dynamic optical path networks while keeping the flexibility of the network. Wavelength-tunable optical parametric regenerator (T-OPR) based on the gain saturation effect of parametric amplification in a highly nonlinear fiber is promising for noise reduction in phase-shift keying signals. In this paper, we experimentally evaluated the T-OPR performance for ASE-degraded 43-Gb/s RZ-DPSK signals over a 20-nm input wavelength range between 1527 nm and 1547 nm. As a result, we achieved improved power penalty performance for the regenerated idler with a proper pump power range.

  15. Magneto-optical properties in inhomogeneous quantum dot: The Aharonov-Bohm oscillations effect

    Energy Technology Data Exchange (ETDEWEB)

    Nasri, Djillali, E-mail: nasri_dj@yahoo.fr [Faculté des Sciences Appliquées, Département de Génie Electrique, Université Ibn-Khaldoun de Tiaret, Zaaroura BP No. 78, Tiaret 14000 (Algeria); Laboratoirede Microphysique et de Nanophysique (LaMiN), Ecole Nationale Polytechnique d' Oran, BP 1523EL M' Naouer, Oran 31000 (Algeria); Bettahar, N. [Faculté des Sciences de la matière, Département de Physique, Université Ibn-Khaldoun de Tiaret, Zaaroura BP No. 78, Tiaret 14000 (Algeria)

    2016-11-15

    In this study, we investigated theoretically the effect of a magnetic field B on the linear, nonlinear, and total absorption coefficients (ACs) and the refractive index changes (RICs) associated with intersubband transitions in the HgS quantum shell. In the calculations, a diagonalization method was employed within the effective-mass approximation. We find that a three kinds of optical transitions (S–P, P–D and D–F) between the ground state and the first excited state appear, resulting from the oscillation of the ground state with B (Aharonov-Bohm effect). In the other hand, the magnetic field enhances and diminishes their related RICs and ACs intensities respectively for the three kinds of optical transitions, and shifts their peaks towards low energy (blue shift).

  16. Optical Bloch oscillations and Zener tunneling of Airy beams in ionic-type photonic lattices.

    Science.gov (United States)

    Xiao, Fajun; Zhu, Weiren; Shang, Wuyun; Wang, Meirong; Zhang, Peng; Liu, Sheng; Premaratne, Malin; Zhao, Jianlin

    2016-08-01

    We report on the existence of optical Bloch oscillations (OBOs) and Zener tunneling (ZT) of Airy beams in ionic-type photonic lattices with a refractive index ramp. Different from their counterparts in uniform lattices, Airy beams undergoing OBOs show an alternatively switched concave and convex trajectory as well as a periodical revival of input beam profiles. Moreover, the ionic-type photonic lattice established in photorefractive crystal exhibits a reconfigurable lattice structure, which provides a flexible way to tune the amplitude and period of the OBOs. Remarkably, it is demonstrated that the band gap of the lattice can be readily controlled by rotating the lattice inducing beam, which forces the ZT rate to follow two significant different decay curves amidst decreasing index gradient. Our results open up new possibilities for all-optical switching, routing and manipulation of Airy beams.

  17. Magneto-optical properties in inhomogeneous quantum dot: The Aharonov-Bohm oscillations effect

    Science.gov (United States)

    Nasri, Djillali; Bettahar, N.

    2016-11-01

    In this study, we investigated theoretically the effect of a magnetic field B on the linear, nonlinear, and total absorption coefficients (ACs) and the refractive index changes (RICs) associated with intersubband transitions in the HgS quantum shell. In the calculations, a diagonalization method was employed within the effective-mass approximation. We find that a three kinds of optical transitions (S-P, P-D and D-F) between the ground state and the first excited state appear, resulting from the oscillation of the ground state with B (Aharonov-Bohm effect). In the other hand, the magnetic field enhances and diminishes their related RICs and ACs intensities respectively for the three kinds of optical transitions, and shifts their peaks towards low energy (blue shift).

  18. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  19. Oscillating optical tweezer-based 3-D confocal microrheometer for investigating the intracellular micromechanics and structures

    Science.gov (United States)

    Ou-Yang, H. D.; Rickter, E. A.; Pu, C.; Latinovic, O.; Kumar, A.; Mengistu, M.; Lowe-Krentz, L.; Chien, S.

    2005-08-01

    Mechanical properties of living biological cells are important for cells to maintain their shapes, support mechanical stresses and move through tissue matrix. The use of optical tweezers to measure micromechanical properties of cells has recently made significant progresses. This paper presents a new approach, the oscillating optical tweezer cytorheometer (OOTC), which takes advantage of the coherent detection of harmonically modulated particle motions by a lock-in amplifier to increase sensitivity, temporal resolution and simplicity. We demonstrate that OOTC can measure the dynamic mechanical modulus in the frequency range of 0.1-6,000 Hz at a rate as fast as 1 data point per second with submicron spatial resolution. More importantly, OOTC is capable of distinguishing the intrinsic non-random temporal variations from random fluctuations due to Brownian motion; this capability, not achievable by conventional approaches, is particular useful because living systems are highly dynamic and often exhibit non-thermal, rhythmic behavior in a broad time scale from a fraction of a second to hours or days. Although OOTC is effective in measuring the intracellular micromechanical properties, unless we can visualize the cytoskeleton in situ, the mechanical property data would only be as informative as that of "Blind men and the Elephant". To solve this problem, we take two steps, the first, to use of fluorescent imaging to identify the granular structures trapped by optical tweezers, and second, to integrate OOTC with 3-D confocal microscopy so we can take simultaneous, in situ measurements of the micromechanics and intracellular structure in living cells. In this paper, we discuss examples of applying the oscillating tweezer-based cytorheometer for investigating cultured bovine endothelial cells, the identification of caveolae as some of the granular structures in the cell as well as our approach to integrate optical tweezers with a spinning disk confocal microscope.

  20. Magnetic oscillation of optical phonon in ABA- and ABC-stacked trilayer graphene

    Science.gov (United States)

    Cong, Chunxiao; Jung, Jeil; Cao, Bingchen; Qiu, Caiyu; Shen, Xiaonan; Ferreira, Aires; Adam, Shaffique; Yu, Ting

    2015-06-01

    We present a comparative measurement of the G -peak oscillations of phonon frequency, Raman intensity, and linewidth in the magneto-Raman scattering of optical E2 g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behavior between the electronic excitations and the E2 g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the particular stacking order in few-layer graphene highlights the important role of interlayer coupling in modifying the optical response properties in van der Waals layered materials.