WorldWideScience

Sample records for optical parametric amplifier

  1. Processing of optical combs with fiber optic parametric amplifiers

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Kakande, J.; Richardson, D.J.; Petropoulos, P.

    2012-01-01

    Roč. 20, č. 9 (2012), s. 10059-10070 ISSN 1094-4087 Institutional support: RVO:67985882 Keywords : Fiber -optic parametric amplifier * Phase sensitive * Spectral coverage Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.546, year: 2012

  2. Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael

    2012-01-01

    We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion inf...... characteristics of the amplifier and shows local maxima for specific dispersion values....

  3. Gain characteristics of a saturated fiber optic parametric amplifier

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny

    2008-01-01

    In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....

  4. Fiber optical parametric amplifiers in optical communication systems

    Science.gov (United States)

    Marhic (†), Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. PMID:25866588

  5. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...

  6. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier

    International Nuclear Information System (INIS)

    Liu Kui; Cui Shu-Zhen; Yang Rong-Guo; Zhang Jun-Xiang; Gao Jiang-Rui

    2012-01-01

    We experimentally demonstrate that HG 01 (Hermit—Gauss) and HG 10 squeezed states can be generated simultaneously in an optical parametric amplifier. The HG 01 mode is a bright squeezed state and the HG 10 mode is a vacuum squeezed state. The squeezing of the HG 01 mode is −2.8 dB, and the squeezing of the HG 10 mode is −1.6 dB. We also demonstrate that the output field is also continuous-variable entanglement with orbital angular momentum. (general)

  7. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  8. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Wang, Ke-Yao; Foster, Amy C

    2015-01-01

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  9. Numerical Modelling of Spontaneous Emission in Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Ulrik Lund; Rottwitt, Karsten

    2013-01-01

    Fiber optical parametric processes offer a wide range of applications including phase sensitive as well as phase insensitive amplification, wavelength conversion and signal regeneration. One of the difficult challenges is any of these applications is to predict their associated noise performance....

  10. Optical Parametric Chirped-Pulse Amplifier as the Front End for the OMEGA EP Laser Chain

    International Nuclear Information System (INIS)

    Bagnoud, V.; Begishev, I.A.; Guardalben, M.J.; Keegan, J.; Puth, J.; Waxer, L.J.; Zuegel, J.D.

    2004-01-01

    A 145-mJ optical parametric amplifier has been developed as a front-end source prototype for the OEMGA EP laser chain. The system definition is presented together with experimental results that show 30% conversion efficiency

  11. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  12. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We show a first-time demonstration of amplification of 400 fs pulses in a fiber optical parametric amplifier. The 400 fs signal is stretched in time, amplified by 26 dB and compressed back to 500 fs. A significant broadening of the pulses is experimentally shown due to dispersion and limited gain...

  13. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    Science.gov (United States)

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  14. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  15. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  16. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, C. J.

    2013-01-01

    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase...

  17. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Bliss, D.E.

    1997-02-01

    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  18. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    International Nuclear Information System (INIS)

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  19. A Phase-Controlled Optical Parametric Amplifier Pumped by Two Phase-Distorted Laser Beams

    International Nuclear Information System (INIS)

    Hong-Yan, Ren; Lie-Jia, Qian; Peng, Yuan; He-Yuan, Zhu; Dian-Yuan, Fan

    2010-01-01

    We theoretically study the phase characteristic of optical parametric amplification (OPA) or chirped pulse OPA (OPCPA) pumped by two phase-distorted laser beams. In the two-beam-pumped optical parametric amplification (TBOPA), due to spatial walk-off, both of the pump phase distortions will be partly transferred to signal in a single crystal so as to degrade the signal beam-quality, which will be more serious in high-energy OPCPA. An OPA configuration with a walkoff-compensated crystal pair is demonstrated for reducing the signal phase distortion experienced in the first stage and ensuring the signal phase independent of two pump phase distortions through the second crystal, hence maintaining the signal beam-quality. Such a TBOPA is similar to the conventional quantum laser amplifier by means of eliminating its sensitivity to the phase and number of the pump beams

  20. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  1. General analysis of group velocity effects in collinear optical parametric amplifiers and generators.

    Science.gov (United States)

    Arisholm, Gunnar

    2007-05-14

    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  2. A flexible receiver with fiber optical parametric amplifier in OCDMA-FSO communication system

    Science.gov (United States)

    Xia, Min; Yuan, Jin-hui; Sang, Xin-zhu; Yin, Xiao-li; Rao, Lan; Yu, Chong-xiu

    2014-11-01

    A new receiver is proposed, which uses the fiber optical parametric amplifier (FOPA) in optical code division multiple access (OCDMA) over free space optic (FSO) communication system. The noise tolerance as the performance index in this receiver is derived. The receiver can not only improve the noise tolerance but also change the pump data conveniently for adapting to the length variation of the coding sequence under a complex and fast-changing weather condition. The influence of different factors on the noise tolerance is analyzed, and a significant improvement of about 18.77 dB for the noise tolerance can be achieved when the pump power and the length of coding sequence are 5 W and 256, respectively.

  3. Quantum and Raman Noise in a Depleted Fiber Optical Parametric Amplifier

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, Colin J.

    2013-01-01

    The noise properties of both phase-sensitive and phase-insensitive saturated parametric amplifiers are studied using a semi-classical approach. Vacuum fluctuations as well as spontaneous Raman scattering are included in the analysis....

  4. Dynamic range enhancement and amplitude regeneration in single pump fibre optic parametric amplifiers using DPSK modulation

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2008-01-01

    Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain.......Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain....

  5. Development of optical parametric chirped-pulse amplifiers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuhisa

    2006-11-21

    In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA) has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared (NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to achieve by existing techniques of pulse amplification based on standard laser gain media followed by external compression. Potential applications of few-cycle pulses in the IR have also been demonstrated. The NIR OPCPA system produces 0.5-terawatt (10 fs,5 mJ) pulses by use of noncollinearly phase-matched optical parametric amplification and a down-chirping stretcher and up-chirping compressor pair. An IR OPCPA system was also developed which produces 20-gigawatt (20 fs,350 {mu}J) pulses at 2.1 {mu}m. The IR seed pulse is generated by optical rectification of a broadband pulse and therefore it exhibits a self-stabilized carrier-envelope phase (CEP). In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an inherent sub-picosecond optical synchronization between the two pulses. This was achieved by use of a custom-built Nd:YLF picosecond pump pulse amplifier that is directly seeded with optical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between the pump and seed pulses is critical for efficient and stable amplification. Two spectroscopic applications which utilize these unique sources have been demonstrated. First, the visible supercontinuum was generated in a solid-state media by the infrared optical pulses and through which the carrier-envelope phase (CEP) of the driving pulse was measured with an f-to-3f interferometer. This measurement confirms the self-stabilization mechanism of the CEP in a difference frequency generation process and the preservation of the CEP during optical parametric amplification. Second, high-order harmonics with energies extending beyond 200 eV were generated with the few

  6. Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser

    Science.gov (United States)

    Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.

  7. A high-flux entanglement source based on a doubly resonant optical parametric amplifier

    International Nuclear Information System (INIS)

    Kuklewicz, Christopher E; Keskiner, Eser; Wong, Franco N C; Shapiro, Jeffrey H

    2002-01-01

    A 532 nm pumped type-II phase-matched, doubly resonant KTP optical parametric amplifier (OPA) was operated near frequency degeneracy to yield an inferred downconverted photon pair production rate of 1.7x10 6 s -1 at a pump power of 100 μW. The OPA output consisted of three components: narrowband doubly resonant mode pairs; narrowband singly resonant mode pairs for which either the signal or idler was resonant with the cavity and broadband nonresonant mode pairs. Under frequency-degenerate operation, the broadband nonresonant mode pairs were polarization triplet states. We observed quantum interference between the orthogonally polarized photons of the triplet states when they were analysed with a polarizer set at 45 deg. relative to the OPA's output polarizations, leading to reduced coincidence counts

  8. 110 GHz rapid, continous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser

    NARCIS (Netherlands)

    Lindsay, I.D.; Adhimoolam, B.; Gross, P.; Klein, M.E.; Boller, Klaus J.

    2005-01-01

    A singly-resonant continuous-wave optical parametric oscillator (cw-OPO) pumped by a fiber-amplified diode laser is described. Tuning of the pump source allowed the OPO output to be tuned continuously, without mode-hops, over 110 GHz in 29 ms. Discontinuous pump tuning over 20 nm in the region of

  9. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Ozolins, Oskars; An, Yi

    2012-01-01

    The performance of cascaded single-pump fiber optical parametric amplifiers (FOPAs) is experimentally studied for the first time using recirculating loop transmission with 80-km dispersion managed spans. Error-free performance has been achieved over 320 km for 40-Gbit/s CSRZ-OOK and CSRZ...

  10. Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2009-01-01

    An increased gain in a fibre-optical parametric amplifier through suppression of stimulated Brillouin scattering is demonstrated by applying a temperature distribution along the fibre for a fixed phase modulation of the pump. The temperature distribution slightly impacts the gain spectrum....

  11. Nanoscale electromechanical parametric amplifier

    Science.gov (United States)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  12. Pump to signal noise transfer in parametric fiber amplifiers

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe

    2010-01-01

    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  13. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  14. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Keathley P.

    2013-03-01

    Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  15. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  16. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    Science.gov (United States)

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  17. A Front End for Multipetawatt Lasers Based on a High-Energy, High-Average-Power Optical Parametric Chirped-Pulse Amplifier

    International Nuclear Information System (INIS)

    Bagnoud, V.

    2004-01-01

    We report on a high-energy, high-average-power optical parametric chirped-pulse amplifier developed as the front end for the OMEGA EP laser. The amplifier provides a gain larger than 109 in two stages leading to a total energy of 400 mJ with a pump-to-signal conversion efficiency higher than 25%

  18. Performance Analysis of a Hybrid Raman Optical Parametric Amplifier in the O- and E-Bands for CWDM PONs

    Directory of Open Access Journals (Sweden)

    Sasanthi Peiris

    2014-12-01

    Full Text Available We describe a hybrid Raman-optical parametric amplifier (HROPA operating at the O- and E-bands and designed for coarse wavelength division multiplexed (CWDM passive optical networks (PONs. We present the mathematical model and simulation results for the optimization of this HROPA design. Our analysis shows that separating the two amplification processes allows for optimization of each one separately, e.g., proper selection of pump optical powers and wavelengths to achieve maximum gain bandwidth and low gain ripple. Furthermore, we show that the proper design of optical filters incorporated in the HROPA architecture can suppress idlers generated during the OPA process, as well as other crosstalk that leaks through the passive optical components. The design approach enables error free performance for all nine wavelengths within the low half of the CWDM band, assigned to upstream traffic in a CWDM PON architecture, for all possible transmitter wavelength misalignments (±6 nm from the center wavelength of the channel band. We show that the HROPA can achieve error-free performance with a 170-nm gain bandwidth (e.g., 1264 nm–1436 nm, a gain of >20 dB and a gain ripple of <4 dB.

  19. Characterisation and setup of a noncollinear optical parametric amplifier and investigation of ultrafast dynamics of Na/Cu(111)

    Energy Technology Data Exchange (ETDEWEB)

    Wegkamp, Daniel; Krenz, Marcel; Wolf, Martin [Fritz Haber Institute of the MPG, Dept. of Physical Chemistry, Berlin (Germany); Freie Universitaet Berlin, Dept. of Physics, Berlin (Germany); Bovensiepen, Uwe [Universitaet Duisburg-Essen, Dept. of Physics, Duisburg (Germany); Freie Universitaet Berlin, Dept. of Physics, Berlin (Germany)

    2010-07-01

    To study ultrafast dynamics on a femtosecond timescale, laser pulses of comparable and shorter scale are used in this work in combination with 2-photon photoemission. Here, we report the principle, setup, and characterisation of a femtosecond light-source based on a noncollinear optical parametric amplifier (NOPA) and its application in studying the dynamics of Na/Cu(111) following. Laser pulses with duration <20 fs have been generated in the visible spectral range using a 300 kHz regenerative amplifier. In a single color scheme (h{nu}=2.3 eV) the NOPA pulses are used to excite and photoemit hot electrons, which are detected with a time of flight (TOF) spectrometer. With time independent measurements the binding energy of the adsorbate-induced resonance at 2 eV is observed in agreement with. As a function of pump-probe delay a time-dependent binding energy shift of the Na resonance with -2 meV/fs is observed. This shift is explained as a pump-induced movement of the sodium adsorbate away from the surface.

  20. Pump-to-Signal Intensity Modulation Transfer in Saturated- Gain Fiber Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Rottwitt, Karsten

    2011-01-01

    The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime....

  1. Cut-off scaling of high-harmonic generation driven by a femtosecond visible optical parametric amplifier

    International Nuclear Information System (INIS)

    Cirmi, Giovanni; Lai, Chien-Jen; Granados, Eduardo; Huang, Shu-Wei; Sell, Alexander; Hong, Kyung-Han; Moses, Jeffrey; Keathley, Phillip; Kärtner, Franz X

    2012-01-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 µJ energy at the 1 kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping other parameters (energy, duration and beam size) constant, we experimentally studied the scaling law of cut-off energy with the driver wavelength in helium. Our measurements show a λ 1.7+0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source, the high-order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ∼25 and ∼100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  2. Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2009-01-01

    to demonstrate amplitude regeneration of a distorted RZ-DPSK signal in a gain-saturated FOPA. An optical signal-to-noise ratio penalty of 3.5 dB after amplitude distortion is shown to be reduced to 0.2 dB after the FOPA, thus clearly demonstrating the regenerative nature of saturated FOPAs for RZ-DPSK modulation....

  3. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  4. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...... knowledge, how gain saturation of a FOPA reduces the noise contribution due to the transfer of pump power fluctuations to the signal. In a particular example, it is shown that the transferred noise is significantly reduced by a factor of 3, while the FOPA gain remains above 10 dB....

  5. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    Science.gov (United States)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  6. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  7. Ultrashort-pulse laser machining system employing a parametric amplifier

    Science.gov (United States)

    Perry, Michael D.

    2004-04-27

    A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.

  8. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  9. Generation of broadly tunable picosecond mid-infrared laser and sensitive detection of a mid-infrared signal by parametric frequency up-conversion in MgO:LiNbO3 optical parametric amplifiers

    International Nuclear Information System (INIS)

    Zhang Qiu-Lin; Zhang Jing; Qiu Kang-Sheng; Zhang Dong-Xiang; Feng Bao-Hua; Zhang Jing-Yuan

    2012-01-01

    Picosecond optical parametric generation and amplification in the near-infrared region within 1.361–1.656 μm and the mid-infrared region within 2.976–4.875 μm is constructed on the basis of bulk MgO:LiNbO 3 crystals pumped at 1.064 μm. The maximum pulse energy reaches 1.3 mJ at 1.464 μm and 0.47 mJ at 3.894 μm, corresponding to a pump-to-idler photon conversion efficiency of 25%. By seeding the hard-to-measure mid-infrared radiation as the idler in the optical parametric amplification and measuring the amplified and frequency up-converted signal in the near-infrared or even visible region, one can measure very week mid-infrared radiation with ordinary detectors, which are insensitive to mid-infrared radiation, with a very high gain. A maximum gain factor of about 7 × 10 7 is achieved at the mid-infrared wavelength of 3.374 μm and the corresponding energy detection limit is as low as about 390 aJ per pulse. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  11. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2014-01-01

    We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all...

  12. High average power scaling of optical parametric amplification through cascaded difference-frequency generators

    Science.gov (United States)

    Jovanovic, Igor; Comaskey, Brian J.

    2004-09-14

    A first pump pulse and a signal pulse are injected into a first optical parametric amplifier. This produces a first amplified signal pulse. At least one additional pump pulse and the first amplified signal pulse are injected into at least one additional optical parametric amplifier producing an increased power coherent optical pulse.

  13. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  14. Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier.

    Science.gov (United States)

    Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio

    2009-03-15

    We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.

  15. On the unlimited gain of a nonlinear parametric amplifier

    DEFF Research Database (Denmark)

    Sorokin, Vladislav

    2014-01-01

    The present paper is concerned with analysis of the response of a nonlinear parametric amplifier in abroad range of system parameters, particularly beyond resonance. Such analysis is of particular interestfor micro- and nanosystems, since many small-scale parametric amplifiers exhibit a distinctly...... nonlinearbehavior when amplitude of their response is sufficiently large. The modified method of direct separa-tion of motions is employed to study the considered system. As the result it is obtained that steady-stateamplitude of the nonlinear parametric amplifier response can reach large values in the case...... of arbitrarilysmall amplitude of external excitation, so that the amplifier gain tends to infinity. Very large amplifiergain can be achieved in a broad range of system parameters, in particular when the amplitude of para-metric excitation is comparatively small. The obtained results clearly demonstrate that very...

  16. Excess quantum noise in optical parametric chirped-pulse amplification

    OpenAIRE

    Manzoni, C.; Moses, J.; Kärtner, F. X.; Cerullo, G.

    2011-01-01

    Noise evolution in an optical parametric chirped-pulse amplifier (OPCPA) differs essentially from that of an optical parametric or a conventional laser amplifier, in that an incoherent pedestal is produced by superfluorescence that can overwhelm the signal under strong saturation. Using a model for the nonlinear dynamics consistent with quantum mechanics, we numerically study the evolution of excess noise in an OPCPA. The observed dynamics explain the macroscopic characteristics seen previous...

  17. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    Science.gov (United States)

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)

    2014-01-01

    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  18. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  19. Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, Robert M.; Gnauck, Alan H.

    2017-01-01

    We demonstrate fiber nonlinearity mitigation by using multiple optical phase conjugations (OPCs) in the WDM transmission systems of both 8 x 32-Gbaud PDM QPSK channels and 8 x 32-Gbaud PDM 16-QAM channels, showing improved performance over a single mid-span OPC and no OPC in terms of nonlinear...... threshold and a best achievable Q(2) factor after transmission. In addition, after an even number of OPCs, the signal wavelength can be preserved after transmission. The performance of multiple OPCs for fiber nonlinearity mitigation was evaluated independently for WDM PDM QPSK signals and WDM PDM 16QAM...... to 1 dB compared to the case of mid-span OPC. The improvements in the best achievable Q(2) factors were more modest, ranging from 0.2 dB to 1.1 dB for the results presented. (C) 2017 Optical Society of America...

  20. Sub-nanosecond periodically poled lithium niobate optical parametric generator and amplifier pumped by an actively Q-switched diode-pumped Nd:YAG microlaser

    Science.gov (United States)

    Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.

    2017-05-01

    A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.

  1. Optimal Operation of a Josephson Parametric Amplifier for Vacuum Squeezing

    Science.gov (United States)

    Malnou, M.; Palken, D. A.; Vale, Leila R.; Hilton, Gene C.; Lehnert, K. W.

    2018-04-01

    A Josephson parametric amplifier (JPA) can create squeezed states of microwave light, lowering the noise associated with certain quantum measurements. We experimentally study how the JPA's pump influences the phase-sensitive amplification and deamplification of a coherent tone's amplitude when that amplitude is commensurate with vacuum fluctuations. We predict and demonstrate that, by operating the JPA with a single current pump whose power is greater than the value that maximizes gain, the amplifier distortion is reduced and, consequently, squeezing is improved. Optimizing the singly pumped JPA's operation in this fashion, we directly observe 3.87 ±0.03 dB of vacuum squeezing over a bandwidth of 30 MHz.

  2. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  3. Displacement of microwave squeezed states with Josephson parametric amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Ling; Baust, Alexander; Xie, Edwar; Schwarz, Manuel; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Fedorov, Kirill; Menzel, Edwin; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Betzenbichler, Martin; Pogorzalek, Stefan; Haeberlein, Max; Eder, Peter; Goetz, Jan; Wulschner, Karl Friedrich; Huebl, Hans; Deppe, Frank [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)

    2015-07-01

    Propagating quantum microwaves are promising building blocks for quantum communication. Interestingly, such itinerant quantum microwaves can be generated in the form of squeezed photon states by Josephson parametric amplifiers (JPA). We employ a specific ''dual-path'' setup for both state reconstruction and JPA characterization. Displacement operations are performed by using a directional coupler after the squeezing. We compare our results with theory predictions. In particular, we discuss our experiments in the context of remote state preparation and quantum teleportation with propagating microwaves.

  4. Strong environmental coupling in a Josephson parametric amplifier

    International Nuclear Information System (INIS)

    Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M.; Megrant, A.; Sundqvist, K. M.

    2014-01-01

    We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.

  5. On the parametric approximation in quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Pavia Univ. (Italy). Dipt. di Fisica ' Alessandro Volta'

    1999-03-01

    The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion.

  6. On the parametric approximation in quantum optics

    International Nuclear Information System (INIS)

    D'Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F.; Pavia Univ.

    1999-01-01

    The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion

  7. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  8. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  9. Mismatch characteristics of optical parametric chirped pulse amplification

    Czech Academy of Sciences Publication Activity Database

    Novák, Ondřej; Turčičová, Hana; Divoký, Martin; Huynh, Jaroslav; Straka, Petr

    2014-01-01

    Roč. 11, č. 2 (2014), 1-7 ISSN 1612-2011 R&D Projects: GA ČR GA202/06/0814; GA MŠk(CZ) LC528 Institutional support: RVO:68378271 Keywords : phase matching * phase mismatch * beam mismatch * broadband amplification * parametric amplifiers * OPCPA * iodine laser Subject RIV: BH - Optics , Masers, Lasers Impact factor: 2.458, year: 2014

  10. Experimental implementation of a nonlinear beamsplitter based on a phase-sensitive parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yami; Feng, Jingliang; Cao, Leiming; Wang, Yaxian; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2016-03-28

    Beamsplitters have played an important role in quantum optics experiments. They are often used to split and combine two beams, especially in the construct of an interferometer. In this letter, we experimentally implement a nonlinear beamsplitter using a phase-sensitive parametric amplifier, which is based on four-wave mixing in hot rubidium vapor. Here we show that, despite the different frequencies of the two input beams, the output ports of the nonlinear beamsplitter exhibit interference phenomena. We make measurements of the interference fringe visibility and study how various parameters, such as the intensity gain of the amplifier, the intensity ratio of the two input beams, and the one and two photon detunings, affect the behavior of the nonlinear beamsplitter. It may find potential applications in quantum metrology and quantum information processing.

  11. BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER

    DEFF Research Database (Denmark)

    2010-01-01

    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  12. Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators.

    Science.gov (United States)

    Liu, Jian; Torres, F A; Ma, Yubo; Zhao, C; Ju, L; Blair, D G; Chao, S; Roch-Jeune, I; Flaminio, R; Michel, C; Liu, K-Y

    2014-02-10

    Three-mode optoacoustic parametric amplifiers (OAPAs), in which a pair of photon modes are strongly coupled to an acoustic mode, provide a general platform for investigating self-cooling, parametric instability and very sensitive transducers. Their realization requires an optical cavity with tunable transverse modes and a high quality-factor mirror resonator. This paper presents the design of a table-top OAPA based on a near-self-imaging cavity design, using a silicon torsional microresonator. The design achieves a tuning coefficient for the optical mode spacing of 2.46  MHz/mm. This allows tuning of the mode spacing between amplification and self-cooling regimes of the OAPA device. Based on demonstrated resonator parameters (frequencies ∼400  kHz and quality-factors ∼7.5×10(5) we predict that the OAPA can achieve parametric instability with 1.6 μW of input power and mode cooling by a factor of 1.9×10(4) with 30 mW of input power.

  13. Implementing quantum optics with parametrically driven superconducting circuits

    Science.gov (United States)

    Aumentado, Jose

    Parametric coupling has received much attention, in part because it forms the core of many low-noise amplifiers in superconducting quantum information experiments. However, parametric coupling in superconducting circuits is, as a general rule, simple to generate and forms the basis of a methodology for interacting microwave fields at different frequencies. In the quantum regime, this has important consequences, allowing relative novices to do experiments in superconducting circuits today that were previously heroic efforts in quantum optics and cavity-QED. In this talk, I'll give an overview of some of our work demonstrating parametric coupling within the context of circuit-QED as well as some of the possibilities this concept creates in our field.

  14. Study on high gain broadband optical parametric chirped pulse amplification

    International Nuclear Information System (INIS)

    Zhang, S.K.; Fujita, M.; Yamanaka, C.; Yoshida, H.; Kodama, R.; Fujita, H.; Nakatsuka, M.; Izawa, Y.

    2000-01-01

    Optical parametric chirped pulse amplification has apparent advantages over the current schemes for high energy ultrashort pulse amplification. High gain in a single pass amplification, small B-integral, low heat deposition, high contrast ratio and, especially the extremely broad gain bandwidth with large-size crystals available bring people new hope for over multi-PW level at which the existing Nd:glass systems suffered difficulties. In this paper we present simulation and experimental studies for a high gain optical parametric chirped pulse amplification system which may be used as a preamplifier to replace the current complicated regenerative system or multi-pass Ti:sapphire amplifiers. Investigations on the amplification bandwidth and gain with BBO are performed. Analysis and discussions are also given. (author)

  15. Shaping of picosecond pulses for pumping optical parametric amplification

    International Nuclear Information System (INIS)

    Fueloep, J.A.; Krausz, F.; Major, Zs.; Horvath, B.

    2006-01-01

    Complete test of publication follows. The use of temporally shaped pump pulses for optical parametric amplification (OPA) is expected to facilitate an increase of efficiency and suppression of possible spectral distortions in this process, since the gain sensitively depends on the pump intensity. Our simulations confirmed such beneficial effect of temporally shaped pump pulses on the OPA process. With the aim to realize an optimized OPA stage pumped by shaped pulses, a novel method for passively shaping narrow band picosecond pulses has been developed. The method is based on the pulse-stacking principle, where replicas of the incoming pulse are created in a specially designed four-beam interferometer. The replicas are recombined with appropriate delays. The interferometer design allows for a unique flexibility in varying the pulse shape, since all relevant degrees of freedom, such as relative intensities and delays between the pulse replicas are independently adjustable. According to our calculations a pulse with a flat-top time profile would provide optimal conditions in the OPA process. Usually the pump pulse needs to be amplified in a conventional laser amplifier prior to the OPA. Our cross-correlation measurements showed that we are able to obtain shaped amplified pulses by shaping the amplifier input. Furthermore, by precompensating the distortions introduced by the amplifier we demonstrated our capability to produce amplified pulses with a flat-top time profile.

  16. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grating and etalon in combination, grazing angle of incidence, entangled cavity ...

  17. Parametric Amplifiers for Microwave Kinectic Inductance Detector (MKID) Readout

    Data.gov (United States)

    National Aeronautics and Space Administration — Build a microwave amplifier with near quantum-limited sensitivity, octave or greater bandwidth, gain > 20 dB for input signals in the frequency range 1 – 10 GHz,...

  18. Ultrashort pulse shaping by optical parametric chirped amplification

    International Nuclear Information System (INIS)

    Nelet, Ambre

    2007-01-01

    The aim of this work is to propose new laser architectures based on optical parametric chirped pulse amplification (OPCPA). Common goals of OPCPA pre-amplifiers are to reach high energy level while maintaining the spectrum width and to adapt geometry of the amplified beam to the high power laser chain optics. We consider OPCPA as a way to control and to sculpt ultrashort pulses. Our first set-up aims at thwarting possible time recovery default between pump and signal pulses, which lower the energy extraction. A regenerative OPCPA, idler resonant, is a way to produce a high-intensity and high-repetition rate train of amplified signal replicas. Our second laser system pre-compensates the spectral gain narrowing by sculpting pulses directly within the OPCPA section, where a temporal shaping of the pump beam permits a spectro-spectral shaping of the amplified signal. Finally, we propose an OPCPA based on spatial coding and uniform amplification of spectral signal components by using a fan-out periodically poled crystal and a zero dispersion line. (author) [fr

  19. Enhancement and suppression of opto-acoustic parametric interactions using optical feedback

    International Nuclear Information System (INIS)

    Zhang Zhongyang; Zhao Chunnong; Ju, L.; Blair, D. G.

    2010-01-01

    A three mode opto-acoustic parametric amplifier (OAPA) is created when two orthogonal optical modes in a high finesse optical cavity are coupled via an acoustic mode of the cavity mirror. Such interactions are predicted to occur in advanced long baseline gravitational wave detectors. They can have high positive gain, which leads to strong parametric instability. Here we show that an optical feedback scheme can enhance or suppress the parametric gain of an OAPA, allowing exploration of three-mode parametric interactions, especially in cavity systems that have insufficient optical power to achieve spontaneous instability. We derive analytical equations and show that optical feedback is capable of controlling predicted instabilities in advanced gravitational wave detectors within a time scale of 13∼10 s.

  20. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  1. Parametric uncertainty in optical image modeling

    Science.gov (United States)

    Potzick, James; Marx, Egon; Davidson, Mark

    2006-10-01

    Optical photomask feature metrology and wafer exposure process simulation both rely on optical image modeling for accurate results. While it is fair to question the accuracies of the available models, model results also depend on several input parameters describing the object and imaging system. Errors in these parameter values can lead to significant errors in the modeled image. These parameters include wavelength, illumination and objective NA's, magnification, focus, etc. for the optical system, and topography, complex index of refraction n and k, etc. for the object. In this paper each input parameter is varied over a range about its nominal value and the corresponding images simulated. Second order parameter interactions are not explored. Using the scenario of the optical measurement of photomask features, these parametric sensitivities are quantified by calculating the apparent change of the measured linewidth for a small change in the relevant parameter. Then, using reasonable values for the estimated uncertainties of these parameters, the parametric linewidth uncertainties can be calculated and combined to give a lower limit to the linewidth measurement uncertainty for those parameter uncertainties.

  2. The Dynamics of Semiconductor Optical Amplifiers – Modeling and Applications

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Mads Lønstrup; Berg, Tommy Winther

    2003-01-01

    The importance of semiconductor optical amplifiers is discussed. A semiconductor optical amplifier (SOA) is a semiconductor laser with anti-reflection coated facets that amplifies an injected light signal by means of stimulated emission. SOAs have a number of unique properties that open up...

  3. Sm 3+-doped polymer optical waveguide amplifiers

    Science.gov (United States)

    Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing

    2010-04-01

    Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.

  4. Mutually incoherent beam combining through optical parametric amplification

    International Nuclear Information System (INIS)

    Tropheme, B.

    2012-01-01

    This work deals with a technique of combination of coherent beams: Optical Parametric Amplification (OPA) with Multiple Pumps. This technique is used to instantly transfer the energy of several pumps on one beam, without energy storage and thus avoiding thermal effects in the amplifying media. It can be useful to combine energy of numerous fiber lasers and to amplify with a high repetition rate very high energy lasers or broadband pulses. With a numerical and experimental study using BBO and LBO as nonlinear crystal, we determine how to dispose the pumps around the signal and the corresponding angular tolerances of such set up. Then we focus our attention on recombining mechanisms between a pump and a non-corresponding idler. We demonstrate experimentally that these cascading effects may decrease the spatial and spectral quality of the amplified signal, and that these phenomena can be avoided with a minimum angle between the different pumps. A novel modelling of multi-pumps OPA links these cascading effects to the gratings generated by the interaction between the pumps. The last part presents a 5 pump OPA experiment. We achieve a pump-to-signal efficiency of 27% and so that a signal more powerful than each pump is obtained. (author) [fr

  5. Optical oscillator-amplifier laser configuration

    International Nuclear Information System (INIS)

    McAllister, G.L.

    1975-01-01

    A laser is described that has incorporated therein an oscillator formed by a pair of mirrors, at least one of the mirrors being positioned outside of the envelope. The mirrors are dimensioned and spaced from each other so that the resonator has a relatively low Fresnel number and is operated unstably. The entire surface of one of these mirrors is convex and diffracts a portion of the energy outside of the oscillator region. Also incorporated into the laser is an amplifier region defined by a separate pair of mirrors which receive the energy diffracted from the oscillator region. The second pair of mirrors form an optical system with a high Fresnel number. A filter, modulator or other control for the laser signal may be placed outside the laser envelope in the optical path of the oscillator

  6. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  7. Squeezing resulting from a fourth-order interaction in a degenerate parametric amplifier with absorption losses

    Science.gov (United States)

    Garca Fernández, P.; Colet, P.; Toral, R.; San Miguel, M.; Bermejo, F. J.

    1991-05-01

    The squeezing properties of a model of a degenerate parametric amplifier with absorption losses and an added fourth-order nonlinearity have been analyzed. The approach used consists of obtaining the Langevin equation for the optical field from the Heisenberg equation provided that a linearization procedure is valid. The steady states of the deterministic equations have been obtained and their local stability has been analyzed. The stationary covariance matrix has been calculated below and above threshold. Below threshold, a squeezed vacuum state is obtained and the nonlinear effects in the fluctuations have been taken into account by a Gaussian decoupling. In the case above threshold, a phase-squeezed coherent state is obtained and numerical simulations allowed to compute the time interval, depending on the loss parameter, on which the system jumps from one stable state to the other. Finally, the variances numerically determined have been compared with those obtained from the linearized theory and the limits of validity of the linear theory have been analyzed. It has become clear that the nonlinear contribution may perhaps be profitably used for the construction of above-threshold squeezing devices.

  8. Normal dispersion femtosecond fiber optical parametric oscillator.

    Science.gov (United States)

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  9. Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.

    Science.gov (United States)

    Shao, Guang-hao; Song, Xiao-shi; Xu, Fei; Lu, Yan-qing

    2012-08-13

    Optical parametric amplification (OPA) of arbitrarily polarized light is proposed in a multi-section periodically poled Lithium Niobate (PPLN). External electric field is applied on selected sections to induce the polarization rotation of involved lights, thus the quasi-phase matched optical parametric processes exhibit polarization insensitivity under suitable voltage. In addition to the amplified signal wave, an idler wave with the same polarization is generated simultaneously. As an example, a ~10 times OPA showing polarization independency is simulated. Applications of this technology are also discussed.

  10. Fiber optical parametric amplifiers in optical communication systems

    DEFF Research Database (Denmark)

    Marhic, Michel E.; Andrekson, Peter A.; Petropoulos, Periklis

    2015-01-01

    -modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512Gb/s have been transmitted over 6,000km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products...

  11. On-chip integration of a superconducting microwave circulator and a Josephson parametric amplifier

    Science.gov (United States)

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Bradley A.; Kerckhoff, Joseph; Malnou, Maxime; Palken, D. A.; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; Lehnert, K. W.

    Recent progress in microwave amplification based on parametric processes in superconducting circuits has revolutionized the measurement of feeble microwave signals. These devices, which operate near the quantum limit, are routinely used in ultralow temperature cryostats to: readout superconducting qubits, search for axionic dark matter, and characterize astrophysical sensors. However, these amplifiers often require ferrite circulators to separate incoming and outgoing traveling waves. For this reason, measurement efficiency and scalability are limited. In order to facilitate the routing of quantum signals we have created a superconducting, on-chip microwave circulator without permanent magnets. We integrate our circulator on-chip with a Josephson parametric amplifier for the purpose of near quantum-limited directional amplification. In this talk I will present a design overview and preliminary measurements.

  12. Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching

    International Nuclear Information System (INIS)

    White, T. C.; Mutus, J. Y.; Hoi, I.-C.; Barends, R.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Martinis, John M.; Megrant, A.; Chaudhuri, S.

    2015-01-01

    Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance, while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted λ/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12 dB across a 4 GHz span, along with an average saturation power of −92 dBm with noise approaching the quantum limit

  13. The SU(1, 1) Perelomov number coherent states and the non-degenerate parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx; Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738 México D. F. (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430, México D. F. (Mexico)

    2014-04-15

    We construct the Perelomov number coherent states for an arbitrary su(1, 1) group operation and study some of their properties. We introduce three operators which act on Perelomov number coherent states and close the su(1, 1) Lie algebra. By using the tilting transformation we apply our results to obtain the energy spectrum and eigenfunctions of the non-degenerate parametric amplifier. We show that these eigenfunctions are the Perelomov number coherent states of the two-dimensional harmonic oscillator.

  14. A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx [Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430 Ciudad de México (Mexico); Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico)

    2016-06-15

    We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.

  15. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

    2016-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...

  16. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  17. Chaotic noise in superconducting microbridge 4-photon X-band parametric amplifier

    International Nuclear Information System (INIS)

    Andresen, J.E.; Christiansen, B.; Levinsen, M.T.

    1988-01-01

    The anomalous noise rise observed in nearly all types of parametric amplifiers based on Josephson junctions has been an intriguing as well as annoying problem for many years. This phenomenon has been most spectacular in microbridge amplifiers. Here we present measurements on externally pumped single microbridge 4-photon unbiased amplifiers, where the slit with the bridge is used as a slotline resonantly coupled to the waveguide in an exceptionally simple coupling scheme. This scheme may be of interest in itself, particularly if the noise problem can be overcome, but also in other connections. Up to 16 dB gain was obtained at the top of the waveguide. However, the noise rise was observed as usual. An analog computer study on a model including an input/output circiut was performed. The results are in very good agreement with the experiments. The amplification is heralded by a seemingly chaotic noise rise. This noise is then amplified linearly when gain occurs. Amplification is found to take place very close to where the supercurrent is completely suppressed by the pump. This has previously been interpreted as loss of phaselock being the cause of the noise rise. However, the power spectra of the time-derivative of the phase show the still to be locked in the region of positive gain. Furthermore, computations of the Lyapunov exponents show one to be positive in the region where gain occurs reaching a maximum value at the parameters corresponding to maximum gain. We therefore conclude that chaotic noise is indeed present in Josephson junction parametric amplifiers where low-impedance devices like microbridges with negligible capacitance are used as the active elements. (orig.)

  18. Efficient and Compact Optical Amplifier Using EYDF

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2010-09-01

    Full Text Available An efficient Erbium/Ytterbium doped fiber amplifier (EYDFA is demonstrated using a 1058nm pumping wavelength, where the amplification is assisted by energy transfer between Yb and Er ions. The energy transfer increases the limit of erbium doping concentration that is imposed by concentration quenching in Erbium-doped fiber (EDF. Therefore, the gain and noise figure are severely degraded with 1480 nm pumping, where the energy transfer cannot be achieved. The use of optical isolator improves the small signal gain and noise figure by about 4.8 dB and 1.6 dB, respectively. By employing a double-pass configuration, a higher gain can be obtained with an expense of a noise figure penalty. The gain improvement of 17.0 dB is obtained at 20 mW and -50 dBm of pump and input signal powers. This shows that the double-pass configuration is an important aspect to consider when designing an efficient EYDFA.

  19. Even and odd subharmonic frequencies and chaos in Josephson junctions: Impact on parametric amplifiers

    International Nuclear Information System (INIS)

    Levinsen, M.T.

    1982-01-01

    The Stewart-McCumber model of a Josephson junction has been shown to exhibit period-doubling bifurcation cascades, as described by the Feigenbaum bifurcation theory. Chaotic states, sometimes associated with the bifurcations, are also prevalent. The present paper deals with the questions of subharmonic generation and chaotic states in the aforementioned model, and in addition with the problem of the ubiquitous noise rise found in Josephson junction parametric amplifiers. The bifurcation is first discussed by drawing on analytical results on the Duffing equation which is an approximation to the complete ac-driven Stewart-McCumber model. The complete model is then solved on an analog computer. Thereafter it is shown that besides the even subharmonics predicted by the bifurcation theory, the natural subharmonic to expect at small dc currents is the odd. This may then have associated its own bifurcation tree. The role of spontaneous symmetry breaking will be discussed. This reconciles the earlier treatment of the 3-photon amplifier with the Feigenbaum scheme. Finally, analog calculations on a model of an externally pumped Josephson junction parametric amplifier will be discussed. The conclusion seems to be that chaotic noise cannot account for the noise rise

  20. Remote optically-tunable transimpedance amplifiers for quantum well diodes

    Energy Technology Data Exchange (ETDEWEB)

    Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V

    1999-08-01

    In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed.

  1. Remote optically-tunable transimpedance amplifiers for quantum well diodes

    International Nuclear Information System (INIS)

    Carraresi, L.; Landi, G.; Rocchi, S.; Vignoli, V.

    1999-01-01

    In a previous paper we discussed the advantages in using linear optical transmission systems based on quantum well diodes in modern high energy physics experiments. In this paper, after a short summary of the quantum well theory, the electronics section of the above optical transmission system is presented. In particular the basic configuration of a transimpedance amplifier and the arrangement of an optical remote control system for the amplifier gain and bandwidth tuning are discussed

  2. Dual frequency parametric excitation of a nonlinear, multi degree of freedom mechanical amplifier with electronically modified topology

    Science.gov (United States)

    Dolev, A.; Bucher, I.

    2018-04-01

    Mechanical or electromechanical amplifiers can exploit the high-Q and low noise features of mechanical resonance, in particular when parametric excitation is employed. Multi-frequency parametric excitation introduces tunability and is able to project weak input signals on a selected resonance. The present paper addresses multi degree of freedom mechanical amplifiers or resonators whose analysis and features require treatment of the spatial as well as temporal behavior. In some cases, virtual electronic coupling can alter the given topology of the resonator to better amplify specific inputs. An analytical development is followed by a numerical and experimental sensitivity and performance verifications, illustrating the advantages and disadvantages of such topologies.

  3. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    DEFF Research Database (Denmark)

    Berg, Tommy Winther

    2004-01-01

    This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... respects is comparable to those of fiber amplifiers. The possibility of inverting the optically active states to a large degree is essential in order to achieve this performance. Optical signal processing through cross gain modulation and four wave mixing is modeled and described. For both approaches...... and QW devices and to experiments on quantum dot amplifiers. These comparisons outline the qualitative differences between the different types of amplifiers. In all cases focus is put on the physical processes responsible the differences....

  4. Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Hvam, Jørn Märcher

    2007-01-01

    We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...

  5. Optical crosstalk reduction using Amplified Spontaneous Emission (ASE)

    NARCIS (Netherlands)

    Chen, H.; Fontaine, N.K.; Ryf, R.; Alvarado, J.C.; van Weerdenburg, J.A.A.; Amezcua-Correa, R.; Okonkwo, C.; Koonen, A.M.J.

    2018-01-01

    We employ spectrally filtered amplified spontaneous emission as the signal carrier and matched local oscillator to mitigate optical crosstalk. We demonstrate polarization crosstalk reduction in single-mode fiber transmission and modal crosstalk reduction over multimode fiber.

  6. Directional amplifier in an optomechanical system with optical gain

    Science.gov (United States)

    Jiang, Cheng; Song, L. N.; Li, Yong

    2018-05-01

    Directional amplifiers are crucial nonreciprocal devices in both classical and quantum information processing. Here we propose a scheme for realizing a directional amplifier between optical and microwave fields based on an optomechanical system with optical gain, where an active optical cavity and two passive microwave cavities are coupled to a common mechanical resonator via radiation pressure. The two passive cavities are coupled via hopping interaction to facilitate the directional amplification between the active and passive cavities. We obtain the condition of achieving optical directional amplification and find that the direction of amplification can be controlled by the phase differences between the effective optomechanical couplings. The effects of the gain rate of the active cavity and the effective coupling strengths on the maximum gain of the amplifier are discussed. We show that the noise added to this amplifier can be greatly suppressed in the large cooperativity limit.

  7. Rapid and sensitive trace gas detection with continuous wave Optical Parametric Oscillator-based Wavelength Modulation Spectroscopy

    NARCIS (Netherlands)

    Arslanov, D.D.; Spunei, M.; Ngai, A.K.Y.; Cristescu, S.M.; Lindsay, I.D.; Lindsay, I.D.; Boller, Klaus J.; Persijn, S.T.; Harren, F.J.M.

    2011-01-01

    A fiber-amplified Distributed Bragg Reflector diode laser is used to pump a continuous wave, singly resonant Optical Parametric Oscillator (OPO). The output radiation covers the 3–4 μm with ability of rapid (100 THz/s) and broad mode-hop-free tuning (5 cm−1). Wavelength Modulation Spectroscopy is

  8. A Carbon Nanotube-based NEMS Parametric Amplifier for Enhanced Radio Wave Detection and Electronic Signal Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, B J; Sussman, A; Zettl, A [Physics Department, University of California, Berkeley, CA 94720 (United States); Mickelson, W, E-mail: azettl@berkeley.edu [Center of Integrated Nanomechanical Systems, University of California, Berkeley, CA 94720 (United States)

    2011-07-20

    We propose a scheme for a parametric amplifier based on a single suspended carbon nanotube field-emitter. This novel electromechanical nanotube device acts as a phase-sensitive, variable-gain, band-pass-filtering amplifier for electronic signal processing and, at the same time, can operate as a variable-sensitivity, tuneable detector and transducer of radio frequency electromagnetic waves. The amplifier can exhibit infinite gain at pumping voltages much less than 10 Volts. Additionally, the amplifier's low overhead power consumption (10-1000 nW) make it exceptionally attractive for ultra-low-power applications.

  9. A Carbon Nanotube-based NEMS Parametric Amplifier for Enhanced Radio Wave Detection and Electronic Signal Amplification

    International Nuclear Information System (INIS)

    Aleman, B J; Sussman, A; Zettl, A; Mickelson, W

    2011-01-01

    We propose a scheme for a parametric amplifier based on a single suspended carbon nanotube field-emitter. This novel electromechanical nanotube device acts as a phase-sensitive, variable-gain, band-pass-filtering amplifier for electronic signal processing and, at the same time, can operate as a variable-sensitivity, tuneable detector and transducer of radio frequency electromagnetic waves. The amplifier can exhibit infinite gain at pumping voltages much less than 10 Volts. Additionally, the amplifier's low overhead power consumption (10-1000 nW) make it exceptionally attractive for ultra-low-power applications.

  10. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)

  11. Spiral intensity patterns in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...

  12. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  13. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2000-01-01

    Semiconductor optical amplifiers are useful building blocks for all-optical gates as wavelength converters and OTDM demultiplexers. The paper reviews the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using cross-phase modulation....... These gates are very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-speed all-optical logic functions...

  14. State-dependent linear-optical qubit amplifier

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Černoch, Antonín; Lemr, K.

    2013-01-01

    Roč. 88, č. 6 (2013), "062304-1"-"062304-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : linear-optical qubit amplifier * quantum cloning * quantum cryptography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013

  15. Effects of entanglement in an ideal optical amplifier

    Science.gov (United States)

    Franson, J. D.; Brewster, R. A.

    2018-04-01

    In an ideal linear amplifier, the output signal is linearly related to the input signal with an additive noise that is independent of the input. The decoherence of a quantum-mechanical state as a result of optical amplification is usually assumed to be due to the addition of quantum noise. Here we show that entanglement between the input signal and the amplifying medium can produce an exponentially-large amount of decoherence in an ideal optical amplifier even when the gain is arbitrarily close to unity and the added noise is negligible. These effects occur for macroscopic superposition states, where even a small amount of gain can leave a significant amount of which-path information in the environment. Our results show that the usual input/output relation of a linear amplifier does not provide a complete description of the output state when post-selection is used.

  16. Classicalization times of parametrically amplified 'Schroedinger cat' states coupled to phase-sensitive reservoirs

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Valverde, C.; Souza, L.S.; Baseia, B.

    2011-01-01

    The exact Wigner function of a parametrically excited quantum oscillator in a phase-sensitive amplifying/attenuating reservoir is found for initial even/odd coherent states. Studying the evolution of negativity of the Wigner function we show the difference between the 'initial positivization time' (IPT), which is inversely proportional to the square of the initial size of the superposition, and the 'final positivization time' (FPT), which does not depend on this size. Both these times can be made arbitrarily long in maximally squeezed high-temperature reservoirs. Besides, we find the conditions when some (small) squeezing can exist even after the Wigner function becomes totally positive. -- Highlights: → We study parametric excitation of a quantum oscillator in phase-sensitive baths. → Exact time-dependent Wigner function for initial even/odd coherent states is found. → The evolution of negativity of Wigner function is compared with the squeezing dynamics. → The difference between initial and final 'classicalization times' is emphasized. → Both these times can be arbitrarily long for rigged reservoirs at infinite temperature.

  17. Frequency comb generation in a continuously pumped optical parametric oscillator

    Science.gov (United States)

    Mosca, S.; Parisi, M.; Ricciardi, I.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M.

    2018-02-01

    We demonstrate optical frequency comb generation in a continuously pumped optical parametric oscillator, in the parametric region around half of the pump frequency. We also model the dynamics of such quadratic combs using a single time-domain mean-field equation, and obtain simulation results that are in good agreement with experimentally observed spectra. Moreover, we numerically investigate the coherence properties of simulated combs, showing the existence of correlated and phase-locked combs. Our work could pave the way for a new class of frequency comb sources, which may enable straightforward access to new spectral regions and stimulate novel applications of frequency combs.

  18. Synchronously Pumped Optical Parametric Oscillator with Intracavity Difference Frequency Mixing

    Science.gov (United States)

    1998-06-29

    departing from the Rrpubbc of Panama when traveling on official orders." * " De eonfortnidad con el Parrafo 5u) del Articulo XVII del Acuerdo para U...isotopic photochemistry using an optical parametric oscillator and a down converter," J. Opt. ( Paris ), , no. 14, pp. 43-48, 1983. [4] J. D. Kafka, M. L...isotopic photochemistry using an optical parametric oscillator and a down converter," J. Opt. ( Paris ), , no. 14, pp. 43-48, 1983. [4] J. D. Kafka, M. L

  19. Low Noise Optically Pre-amplified Lightwave Receivers and Other Applications of Fiber Optic Parametric Amplifiers

    Science.gov (United States)

    2010-07-27

    PS) FOPAs are discussed, and the phase-squeezing behavior of PS-FOPAs is characterized in Sec V. In Sec. VI, we present measurements of the noise...fiber and has the following parameters: L = 350 m, Aeff = 9.4 μm2, S0 = 0.025 ps/nm2km, λ0 = 1561.9 nm, β4 = 2.5*10-5 ps4 /km, estimated variation of...obtained the average gain and NF, which makes the analysis complicated and time- consuming . When considering the impacts of ZDW distributions on FOPA

  20. Efficient trigger signal generation from wasted backward amplified stimulated emission at optical amplifiers for optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Kim Seung Taek

    2015-01-01

    Full Text Available This paper propose an optical structure to generate trigger signals for optical coherence tomography (OCT using backward light which is usually disposed. The backward light is called backward amplified stimulated emission generated from semiconductor optical amplifier (SOA when using swept wavelength tunable laser (SWTL. A circulator is applied to block undesirable lights in the SWTL instead of an isolator in common SWTL. The circulator also diverts backward amplified spontaneous lights, which finally bring out trigger signals for a high speed digitizer. The spectra of the forward lights at SOA and the waveform of the backward lights were measured to check the procedure of the trigger formation in the experiment. The results showed that the trigger signals from the proposed SWTL with the circulator was quite usable in OCT.

  1. Ultrafast dynamics in semiconductor optical amplifiers and all-optical processing: Bulk versus quantum dot devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg

    2003-01-01

    We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...

  2. 2R Regeneration in Concatenated Semiconductor Optical Amplifiers and Electroabsorbers

    DEFF Research Database (Denmark)

    Christiansen, Lotte Jin; Xu, Lin; Yvind, Kresten

    2004-01-01

    We present a novel 2R regenerator with a large level separation and steep step a sharp, adjustable threshold based on concatenated semiconductor optical amplifiers and electroabsorbers. We demonstrate demonstrate improvements in both extinction-ratio and BER sensitivity atfor a 10 Gb/s NRZ signal....

  3. Entanglement-based linear-optical qubit amplifier

    Czech Academy of Sciences Publication Activity Database

    Meyer-Scott, E.; Bula, M.; Bartkiewicz, K.; Černoch, Antonín; Soubusta, Jan; Jennewein, T.; Lemr, Karel

    2013-01-01

    Roč. 87, č. 1 (2013), "012327-1"-"012327-7" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : quantum physics * photonics qubits * qubit amplifier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.991, year: 2013

  4. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    also because of high laser damage threshold coating on mirror as well as on crystal. Now-a-days with the development of coating technology and with the availability of good optical quality crystals having high damage threshold and deep infrared. (IR) transparency it is possible to extend the tunability of the OPO.

  5. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    Science.gov (United States)

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-10-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications.

  6. Electrical versus optical pumping of quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Bischoff, Svend; Mørk, Jesper

    2001-01-01

    The influence of the pumping mechanism for the dynamical properties of quantum dot amplifiers is investigated for 10, 40 and 160 GHz signals. A fast response is predicted in the case of optical pumping in the wetting layer (WL). The combination of fast relaxation and capture times and the presence...... of a reservoir of carriers in the WL opens up for the possibility of ultrafast gain recovery in QD devices. The strength of optical contra electrical pumping is that it reduces the bottleneck effect of a slow WL. Optical pumping thus allows significant improvement of the dynamical properties of QD devices....

  7. Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier

    Science.gov (United States)

    O'Brien, Kevin

    Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.

  8. Testing methodologies and systems for semiconductor optical amplifiers

    Science.gov (United States)

    Wieckowski, Michael

    Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable

  9. Parametric Covariance Model for Horizon-Based Optical Navigation

    Science.gov (United States)

    Hikes, Jacob; Liounis, Andrew J.; Christian, John A.

    2016-01-01

    This Note presents an entirely parametric version of the covariance for horizon-based optical navigation measurements. The covariance can be written as a function of only the spacecraft position, two sensor design parameters, the illumination direction, the size of the observed planet, the size of the lit arc to be used, and the total number of observed horizon points. As a result, one may now more clearly understand the sensitivity of horizon-based optical navigation performance as a function of these key design parameters, which is insight that was obscured in previous (and nonparametric) versions of the covariance. Finally, the new parametric covariance is shown to agree with both the nonparametric analytic covariance and results from a Monte Carlo analysis.

  10. Ultrafast all-optical signal processing using semiconductor optical amplifiers

    NARCIS (Netherlands)

    Li, Z.

    2007-01-01

    As the bit rate of one wavelength channel and the number of channels keep increasing in the telecommunication networks thanks to the advancement of optical transmission technologies, switching is experiencing the transition from the electrical domain to the optical domain. All-optical signal

  11. Effect of idler absorption in pulsed optical parametric oscillators.

    Science.gov (United States)

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  12. Beam splitter coupled CdSe optical parametric oscillator

    International Nuclear Information System (INIS)

    Levinos, N.J.; Arnold, G.P.

    1980-01-01

    An optical parametric oscillator is disclosed in which the resonant radiation is separated from the pump and output radiation so that it can be manipulated without interfering with them. Thus, for example, very narrow band output may readily be achieved by passing the resonant radiation through a line narrowing device which does not in itself interfere with either the pump radiation or the output radiation

  13. Signal-to-pump back action and self-oscillation in double-pump Josephson parametric amplifier

    International Nuclear Information System (INIS)

    Kamal, Archana; Marblestone, Adam; Devoret, Michel

    2009-01-01

    We present the theory of a Josephson parametric amplifier employing two-pump sources. Our calculations are based on input-output theory, and can easily be generalized to any coupled system involving parametric interactions. We analyze the operation of the device, taking into account the feedback introduced by the reaction of the signal and noise on the pump power, and in this framework, compute the response functions of interest--signal and idler gains, internal gain of the amplifier, and self-oscillation signal amplitude. To account for this back action between signal and pump, we adopt a mean-field approach and self-consistently explore the boundary between amplification and self-oscillation. The coincidence of bifurcation and self-oscillation thresholds reveals that the origin of coherent emission of the amplifier lies in the multiwave mixing of the noise components. Incorporation of the back action leads the system to exhibit hysteresis, dependent on parameters such as temperature and detuning from resonance. Our analysis also shows that the resonance condition itself changes in the presence of back action and this can be understood in terms of the change in plasma frequency of the junction. The potential of the double-pump amplifier for quantum-limited measurements and as a squeezer is also discussed.

  14. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  15. Cooling optically levitated dielectric nanoparticles via parametric feedback

    Science.gov (United States)

    Neukirch, Levi; Rodenburg, Brandon; Bhattacharya, Mishkatul; Vamivakas, Nick

    2015-05-01

    The inability to leverage resonant scattering processes involving internal degrees of freedom differentiates optical cooling experiments performed with levitated dielectric nanoparticles, from similar atomic and molecular traps. Trapping in optical cavities or the application of active feedback techniques have proven to be effective ways to circumvent this limitation. We present our nanoparticle optical cooling apparatus, which is based on parametric feedback modulation of a single-beam gradient force optical trap. This scheme allows us to achieve effective center-of-mass temperatures well below 1 kelvin for our ~ 1 ×10-18 kg particles, at modest vacuum pressures. The method provides a versatile platform, with parameter tunability not found in conventional tethered nanomechanical systems. Potential applications include investigations of nonequilibrium nanoscale thermodynamics, ultra-sensitive force metrology, and mesoscale quantum mechanics and hybrid systems. Supported by the office of Naval Research award number N000141410442.

  16. Phase Sensitive Amplification using Parametric Processes in Optical Fibers

    DEFF Research Database (Denmark)

    Kang, Ning

    . Further, phase sensitive parametric processes in a nano-engineered silicon waveguide have been measured experimentally for the first time. Numerical optimizations show that with reduced waveguide propagation loss and reduced carrier life time, larger signal phase sensitive extinction ratio is achievable......Phase sensitive amplification using the parametric processes in fiber has the potential of delivering high gain and broadband operation with ultralow noise. It is able to regenerate both amplitude and phase modulated signals, simultaneously, with the appropriate design. This thesis concerns...... types. The regeneration capability of PSAs on phase encoded signal in an optical link has been optimized. Flat-top phase sensitive profile has been synthesized. It is able to provide simultaneous amplitude and phase noise squeezing, with enhanced phase noise margin compared to conventional designs...

  17. Noise spectra in balanced optical detectors based on transimpedance amplifiers

    Science.gov (United States)

    Masalov, A. V.; Kuzhamuratov, A.; Lvovsky, A. I.

    2017-11-01

    We present a thorough theoretical analysis and experimental study of the shot and electronic noise spectra of a balanced optical detector based on an operational amplifier connected in a transimpedance scheme. We identify and quantify the primary parameters responsible for the limitations of the circuit, in particular, the bandwidth and shot-to-electronic noise clearance. We find that the shot noise spectrum can be made consistent with the second-order Butterworth filter, while the electronic noise grows linearly with the second power of the frequency. Good agreement between the theory and experiment is observed; however, the capacitances of the operational amplifier input and the photodiodes appear significantly higher than those specified in manufacturers' datasheets. This observation is confirmed by independent tests.

  18. On the Creation of Solitons in Amplifying Optical Fibers

    Directory of Open Access Journals (Sweden)

    Christoph Mahnke

    2018-01-01

    Full Text Available We treat the creation of solitons in amplifying fibers. Strictly speaking, solitons are objects in an integrable setting while in real-world systems loss and gain break integrability. That case usually has been treated in the perturbation limit of low loss or gain. In a recent approach fiber-optic solitons were described beyond that limit, so that it became possible to specify how and where solitons are eventually destroyed. Here we treat the opposite case: in the presence of gain, new solitons can arise from an initially weak pulse. We find conditions for that to happen for both localized and distributed gain, with no restriction to small gain. By tracing the energy budget we show that even when another soliton is already present and copropagates, a newly created soliton takes its energy from radiation only. Our results may find applications in amplified transmission lines or in fiber lasers.

  19. Jumps and bi-stability in the phase-gain characteristics of a nonlinear parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; van de Looij, Ruud; Thomsen, Jon Juel

    2014-01-01

    This work experimentally investigates the impact of nonlinearity on macromechanical parametric amplification. For a strong cubic stiffness nonlinearity we observe jumps in gain (ratio of steady-state vibration amplitude of the externally and parametrically excited system, to vibration amplitude o...

  20. Characterization of transimpedance amplifier as optical to electrical converter on designing optical instrumentation

    International Nuclear Information System (INIS)

    Hanto, D; Ula, R K

    2017-01-01

    Optical to electrical converter is the main components for designing of the optical instrumentations. In addition, this component is also used as signal conditioning. This component usually consists of a photo detector and amplifier. In this paper, characteristics of commercial amplifiers from Thorlabs PDA50B-EC has been observed. The experiment was conducted by diode laser with power of -5 dBm and wavelength 1310 nm; the optical attenuator to vary optical power from 0 to 60 dB, optical to electrical converter from Thorlabs Amplifier PDA50B-EC; multimode optical fiber to guide the laser; and digital voltmeter to measure the output of converter. The results of the characterization indicate that each channel amplification has a non-linear correlation between optical and electrical parameter; optical conversion measurement range of 20-23 dB to full scale; and different measurement coverage area. If this converter will be used as a part component of optical instrumentation so it should be adjusted suitably with the optical power source. Then, because of the correlation equation is not linear so calculation to determine the interpretation also should be considered in addition to the transfer function of the optical sensor. (paper)

  1. Characterization of transimpedance amplifier as optical to electrical converter on designing optical instrumentation

    Science.gov (United States)

    Hanto, D.; Ula, R. K.

    2017-05-01

    Optical to electrical converter is the main components for designing of the optical instrumentations. In addition, this component is also used as signal conditioning. This component usually consists of a photo detector and amplifier. In this paper, characteristics of commercial amplifiers from Thorlabs PDA50B-EC has been observed. The experiment was conducted by diode laser with power of -5 dBm and wavelength 1310 nm; the optical attenuator to vary optical power from 0 to 60 dB, optical to electrical converter from Thorlabs Amplifier PDA50B-EC; multimode optical fiber to guide the laser; and digital voltmeter to measure the output of converter. The results of the characterization indicate that each channel amplification has a non-linear correlation between optical and electrical parameter; optical conversion measurement range of 20-23 dB to full scale; and different measurement coverage area. If this converter will be used as a part component of optical instrumentation so it should be adjusted suitably with the optical power source. Then, because of the correlation equation is not linear so calculation to determine the interpretation also should be considered in addition to the transfer function of the optical sensor.

  2. Classical and quantum properties of optical parametric oscillators

    CERN Document Server

    Martinelli, M; Nussenzveig, P; Souto-Ribeiro, P H

    2001-01-01

    We present a review of the Optical Parametric Oscillator (OPO), describing its operation and the quantum correlation between the light beams generated by this oscillator. We show the construction of an OPO using a Potassium Titanyl Phosphate crystal, pumped by a frequency doubled Nd:YAG laser, and discuss the stability of the system and related thermal effects. We have measured the quantum correlation of signal and idler beams in a transient regime, obtaining a noise correlation level 39 % below the shot noise level.

  3. Classical and quantum properties of optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, M.; Alzar, C.L. Garrido; Nussenzveig, P. [Sao Paulo Univ., SP (Brazil); Souto Ribeiro, P.H. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    2001-12-01

    We present a review of the Optical Parametric Oscillator (OPO), describing its operation and the quantum correlation between the light beams generated by this oscillator. We show the construction of an OPO using a Potassium Titanyl Phosphate crystal, pumped by a frequency doubled Nd:YAG laser, and discuss the stability of the system and related thermal effects. We have measured the quantum correlation of signal and idler beams in a transient regime, obtaining a noise correlation level 39 % below the shot noise level. (author)

  4. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Diez, S.; Mecozzi, A.; Mørk, Jesper

    1999-01-01

    We investigate the saturation properties of four-wave mixing of short optical pulses in a semiconductor optical amplifier. By varying the gain of the optical amplifier, we find a strong dependence of both conversion efficiency and signal-to-background ratio on pulse width and bit rate....... In particular, the signal-to-background ratio can be optimized for a specific amplifier gain. This behavior, which is coherently described in experiment and theory, is attributed to the dynamics of the amplified spontaneous emission, which is the main source of noise in a semiconductor optical amplifier....

  5. Nonlinear effects in ultralong semiconductor optical amplifiers for optical communications. Physics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Runge, Patrick

    2010-10-19

    The presented work discusses physical properties of ultralong semiconductor optical amplifiers (UL-SOAs) and some of their possible applications in optical communication systems. At the beginning of this thesis the analytical framework for the optical properties of UL-SOAs is presented. Based on this theoretical description, a numerical simulation model is derived used for the investigation of this thesis. To obtain from the simulation model realistic results the important properties of UL-SOAs have to be included, e.g., being the saturation of the main part of the device. In this saturated part of the device, fast intraband effects dominate over the slow interband effects. The intention of UL-SOAs is to make use of these pronounced fast intraband effects in applications. Due to the short relaxation times of the fast intraband effects, they can be used for high-speed signal processing (>20 GBaud). With the help of an additional continuous wave (CW) signal propagating with the data signal in the UL-SOA, the capability for all-optical signal processing with 100 Gbit/s on-off keying RZ-50% pseudo random bit sequence signals has been demonstrated in this thesis. With an optimised device under proper driving conditions, bit pattern effects are negligible compared to the degradation due to amplified spontaneous emission. The suppression of the bit pattern effects can be ascribed to the additional CW signal operating as a holding beam. Investigations of the UL-SOA's driving condition showed that the data signal's extinction ratio (ER) can be regenerated if the two input signals are co-polarised and the data signal has a shorter wavelength than the CW signal. These two and other driving conditions have indicated, that parametric amplification due to four-wave mixing (FWM) (Bogatov-like effect) is the reason for the ER improvement. Moreover, due to the additional CW signal, all-optical wavelength conversion (AOWC) is possible which can be combined with the ER

  6. A Review of Some Superconducting Technologies for AtLAST: Parametric Amplifiers, Kinetic Inductance Detectors, and On-Chip Spectrometers

    Science.gov (United States)

    Noroozian, Omid

    2018-01-01

    The current state of the art for some superconducting technologies will be reviewed in the context of a future single-dish submillimeter telescope called AtLAST. The technologies reviews include: 1) Kinetic Inductance Detectors (KIDs), which have now been demonstrated in large-format kilo-pixel arrays with photon background-limited sensitivity suitable for large field of view cameras for wide-field imaging. 2) Parametric amplifiers - specifically the Traveling-Wave Kinetic Inductance (TKIP) amplifier - which has enormous potential to increase sensitivity, bandwidth, and mapping speed of heterodyne receivers, and 3) On-chip spectrometers, which combined with sensitive direct detectors such as KIDs or TESs could be used as Multi-Object Spectrometers on the AtLAST focal plane, and could provide low-medium resolution spectroscopy of 100 objects at a time in each field of view.

  7. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  8. Numerical investigations of non-collinear optical parametric chirped pulse amplification for Laguerre-Gaussian vortex beam

    Science.gov (United States)

    Xu, Lu; Yu, Lianghong; Liang, Xiaoyan

    2016-04-01

    We present for the first time a scheme to amplify a Laguerre-Gaussian vortex beam based on non-collinear optical parametric chirped pulse amplification (OPCPA). In addition, a three-dimensional numerical model of non-collinear optical parametric amplification was deduced in the frequency domain, in which the effects of non-collinear configuration, temporal and spatial walk-off, group-velocity dispersion and diffraction were also taken into account, to trace the dynamics of the Laguerre-Gaussian vortex beam and investigate its critical parameters in the non-collinear OPCPA process. Based on the numerical simulation results, the scheme shows promise for implementation in a relativistic twisted laser pulse system, which will diversify the light-matter interaction field.

  9. All-metal coupling and package of semiconductor laser and amplifier with optical fiber

    International Nuclear Information System (INIS)

    Xu Fenglan; Li Lina; Zhang Yueqing

    1992-01-01

    The semiconductor laser and optical amplifier made by Changchun Institute of Physics coupled with optical fiber by use of all-metal coupling are represented. The net gain of semiconductor laser amplifier with optical fiber is 14 ∼18 dB

  10. Erbium/ytterbium co-doped double clad fiber amplifier, its applications and effects in fiber optic communication systems

    Science.gov (United States)

    Dua, Puneit

    Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced

  11. Automatic alignment of double optical paths in excimer laser amplifier

    Science.gov (United States)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  12. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  13. Continuous-wave terahertz light from optical parametric oscillators

    International Nuclear Information System (INIS)

    Sowade, Rosita

    2010-12-01

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  14. Photonic processing and realization of an all-optical digital comparator based on semiconductor optical amplifiers

    Science.gov (United States)

    Singh, Simranjit; Kaur, Ramandeep; Kaler, Rajinder Singh

    2015-01-01

    A module of an all-optical 2-bit comparator is analyzed and implemented using semiconductor optical amplifiers (SOAs). By employing SOA-based cross phase modulation, the optical XNOR logic is used to get an A=B output signal, where as AB¯ and A¯B> logics operations are used to realize A>B and Aoperations results along with the wide open eye diagrams are obtained. It is suggested that the proposed system would be promising in all-optical high speed networks and computing systems.

  15. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission

    OpenAIRE

    Longhi, Stefano

    2016-01-01

    Optical parametric amplification/oscillation provide a powerful tool for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency {\\it down-conversion} process, and thus it can not be realized for signal waves at a frequency $\\omega_3$ {\\it higher} than the frequency of the pump wave $\\omega_1$. In this work we suggest a route toward the realization of {\\it up-conversion} optical parametric amplification and oscillation, i.e. amplification ...

  16. Modeling FWM and impairments aware amplifiers placement technique for an optical MAN/WAN: Inline amplifiers case

    Science.gov (United States)

    Singh, Gurpreet; Singh, Maninder Lal

    2015-08-01

    A new four wave mixing (FWM) model for an optical network with amplifiers and a comparative analysis among three proposed amplifiers placement techniques have been presented in this paper. The FWM model is validated with the experimental measured data. The novelty of this model is its uniqueness that on direct substitutions of network parameters like length, it works even for unequal inter amplifier separations. The novelty of the analysis done among three schemes is that it presents fair choice of amplifiers placement methods for varied total system length. The appropriateness of these three schemes has been analyzed on the basis of critical system length, critical number of amplifiers and critical bit error rate (10-9) in presence of four wave mixing (FWM) and amplified spontaneous emission noise (ASE). The implementation of analysis done has been given with the help of an example of a regenerative metropolitan area network (MAN). The results suggest that the decreasing fiber section scheme should be avoided for placements of amplifiers and schemes IUFS and EFS shows their importance interchangeably for different set of parameters.

  17. The cascaded amplifier and saturable absorber (CASA) all-optical switch

    DEFF Research Database (Denmark)

    Hilliger, E.; Berger, J.; Weber, H. G.

    2001-01-01

    The cascaded amplifier and saturable absorber is presented as a new all-optical switching scheme for optical signal processing applications. First demultiplexing experiments demonstrate the principle of operation of this scheme....

  18. Pump-induced optical distortions in disk amplifier modules: holographic and interferometric measurements

    International Nuclear Information System (INIS)

    Linford, G.J.; Chau, H.H.; Glaze, J.A.; Layne, C.B.; Rainer, F.

    1975-01-01

    Interferometric measurements have been made of the optical distortions induced in laser disk amplifiers during the flashlamp pumping pulse. Both conventional interferometric methods and the techniques of double exposure holographic interferometry were used to identify four major sources of pump-induced optical distortions: subsonic intrusion of hot gas (traced to leakage of atmospheric oxygen into the amplifier), microexplosions of dust particles, thermally induced optical distortions in the glass disks, and gaseous optical distortion effects caused by turbulent flow of the purging nitrogen gas supply used within the laser amplifier head. Methods for reducing or eliminating the effects of each of these optical distortions are described

  19. Semi-analytical model of filtering effects in microwave phase shifters based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip

    2008-01-01

    We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals.......We present a model to interpret enhanced microwave phase shifts based on filter assisted slow and fast light effects in semiconductor optical amplifiers. The model also demonstrates the spectral phase impact of input optical signals....

  20. Experimental and theoretical investigation of semiconductor optical amplifier (SOA) based all-optical switches

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup

    2004-01-01

    This thesis analyzes semiconductor optical amplifier (SOA) based all-optical switches experimentally and through numerical simulations. These devices are candidates for optical signal processing functionalities such as wavelength conversion, regeneration, and logic processing in future transparent......, consisting of an SOA and an asymmetric MZI filter, is analyzed in the small-signal regime, and the obtainable modulation bandwidth is expressed analytically. A new optical spectrum approach to small signal analysis is introduced, and is used to assess the bandwidth enhancing effect of different optical...... filters, as well the impact of the filter phase response. Experiments at 40 Gb/s verify the predictions of the small-signal analysis. Wavelength conversion is demonstrated experimentally at 40 Gb/s using a simple filtering-assisted scheme with an ultra-low optical switching energy, and up to 80 Gb...

  1. Demultiplexing of OTDM-DPSK signals based on a single semiconductor optical amplifier and optical filtering

    DEFF Research Database (Denmark)

    Xu, Jing; Ding, Yunhong; Peucheret, Christophe

    2011-01-01

    We propose and demonstrate the use of a single semiconductor optical amplifier (SOA) and optical filtering to time demultiplex tributaries from an optical time division multiplexing-differential phase shift keying (OTDM-DPSK) signal. The scheme takes advantage of the fact that phase variations...... added to the target channel by cross-phase modulation from the control signal are effectively subtracted in the differential demodulation scheme employed for DPSK signals. Demultiplexing from 80 to 40 Gbit=s is demonstrated with moderate power penalty using an SOA with recovery time twice as long...

  2. Design of a Highly Stable, High-Conversion-Efficiency, Optical Parametric Chirped-Pulse Amplification System with Good Beam Quality

    International Nuclear Information System (INIS)

    Guardalben, M.J.; Keegan, J.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Puth, J.; Zuegel, J.D.

    2003-01-01

    OAK B204 An optical parametric chirped-pulse amplifier (OPCPA) design that provides 40% pump-to-signal conversion efficiency and over-500-mJ signal energy at 1054 nm for front-end injection into a Nd:glass amplifier chain is presented. This OPCPA system is currently being built as the prototype front end for the OMEGA EP (extended performance) laser system at the University of Rochester's Laboratory for Laser Energetics. Using a three-dimensional spatial and temporal numerical model, several design considerations necessary to achieve high conversion efficiency, good output stability, and good beam quality are discussed. The dependence of OPCPA output on the pump beam's spatiotemporal shape and the relative size of seed and pump beams is described. This includes the effects of pump intensity modulation and pump-signal walk-off. The trade-off among efficiency, stability, and low output beam intensity modulation is discussed

  3. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    Science.gov (United States)

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  4. Simulation and measurement of optical access network with different types of optical-fiber amplifiers

    Science.gov (United States)

    Latal, Jan; Vogl, Jan; Koudelka, Petr; Vitasek, Jan; Siska, Petr; Liner, Andrej; Papes, Martin; Vasinek, Vladimir

    2012-01-01

    The optical access networks are nowadays swiftly developing in the telecommunications field. These networks can provide higher data transfer rates, and have great potential to the future in terms of transmission possibilities. Many local internet providers responded to these facts and began gradually installing optical access networks into their originally built networks, mostly based on wireless communication. This allowed enlargement of possibilities for end-users in terms of high data rates and also new services such as Triple play, IPTV (Internet Protocol television) etc. However, with this expansion and building-up is also related the potential of reach in case of these networks. Big cities, such as Prague, Brno, Ostrava or Olomouc cannot be simply covered, because of their sizes and also because of their internal regulations given by various organizations in each city. Standard logical and also physical reach of EPON (IEEE 802.3ah - Ethernet Passive Optical Network) optical access network is about 20 km. However, for networks based on Wavelength Division Multiplex the reach can be up to 80 km, if the optical-fiber amplifier is inserted into the network. This article deals with simulation of different types of amplifiers for WDM-PON (Wavelength Division Multiplexing-Passive Optical Network) network in software application Optiwave OptiSystem and than are the values from the application and from real measurement compared.

  5. Statistical Analysis of Coherent Ultrashort Light Pulse CDMA With Multiple Optical Amplifiers Using Additive Noise Model

    Science.gov (United States)

    Jamshidi, Kambiz; Salehi, Jawad A.

    2005-05-01

    This paper describes a study of the performance of various configurations for placing multiple optical amplifiers in a typical coherent ultrashort light pulse code-division multiple access (CULP-CDMA) communication system using the additive noise model. For this study, a comprehensive performance analysis was developed that takes into account multiple-access noise, noise due to optical amplifiers, and thermal noise using the saddle-point approximation technique. Prior to obtaining the overall system performance, the input/output statistical models for different elements of the system such as encoders/decoders,star coupler, and optical amplifiers were obtained. Performance comparisons between an ideal and lossless quantum-limited case and a typical CULP-CDMA with various losses exhibit more than 30 dB more power requirement to obtain the same bit-error rate (BER). Considering the saturation effect of optical amplifiers, this paper discusses an algorithm for amplifiers' gain setting in various stages of the network in order to overcome the nonlinear effects on signal modulation in optical amplifiers. Finally, using this algorithm,various configurations of multiple optical amplifiers in CULP-CDMA are discussed and the rules for the required optimum number of amplifiers are shown with their corresponding optimum locations to be implemented along the CULP-CDMA system.

  6. Two-section semiconductor optical amplifier used as an efficient channel dropping node

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Storkfelt, Niels; Durhuus, T.

    1992-01-01

    High responsivity in a two-section semiconductor optical amplifier/detector, serving as a channel dropping mode is described. A simple receiver constructed using a 50 Ω amplifier with a sensitivity of -30.2 dBm at 140 Mb/s is demonstrated......High responsivity in a two-section semiconductor optical amplifier/detector, serving as a channel dropping mode is described. A simple receiver constructed using a 50 Ω amplifier with a sensitivity of -30.2 dBm at 140 Mb/s is demonstrated...

  7. Design of a transimpedance amplifier for a bio-optical fiber sensor

    International Nuclear Information System (INIS)

    Pola, L.; Camasa, J.; Gomez B, J.

    2012-01-01

    In this work we present a fairly detailed model for a photodiode coupled to an operational amplifier in the trans impedance circuit configuration, for the applications in Biotechnology. An optical signal of the fiber optic biosensor is detected by a photodiode and its photocurrent generated is introduced in the trans impedance amplifier. The proposed design uses a photodiode in photovoltaic mode, and its photocurrent is coupled to an amplifier with positive output. Finally, the trans impedance amplifier presents reliable design characteristics such as accuracy, stability, low noise, and the ability to measure photocurrent from 1nA to 100μA. (Author)

  8. Active locking and entanglement in type II optical parametric oscillators

    Science.gov (United States)

    Ruiz-Rivas, Joaquín; de Valcárcel, Germán J.; Navarrete-Benlloch, Carlos

    2018-02-01

    Type II optical parametric oscillators are amongst the highest-quality sources of quantum-correlated light. In particular, when pumped above threshold, such devices generate a pair of bright orthogonally-polarized beams with strong continuous-variable entanglement. However, these sources are of limited practical use, because the entangled beams emerge with different frequencies and a diffusing phase difference. It has been proven that the use of an internal wave-plate coupling the modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing the entanglement levels. In this work we characterize theoretically an alternative locking mechanism: the injection of a laser at half the pump frequency. Apart from being less invasive, this method should allow for an easier real-time experimental control. We show that such an injection is capable of generating the desired phase locking between the emerging beams, while still allowing for large levels of entanglement. Moreover, we find an additional region of the parameter space (at relatively large injections) where a mode with well defined polarization is in a highly amplitude-squeezed state.

  9. Optimization and characterization of dual-chirped optical parametric amplification

    International Nuclear Information System (INIS)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi; Zhang, Qingbin; Lu, Peixiang

    2015-01-01

    We report optimization and characterization of a dual-chirped optical parametric amplification (DC-OPA) scheme (2011 Opt. Express 19 7190). By increasing a pump pulse energy to 100 mJ, a total (signal + idler) output energy exceeding 30 mJ was recorded with higher than 30% conversion efficiency. The feasibility of further increasing the output energy to a higher scale using the DC-OPA scheme was confirmed by a proof-of-principle experiment, in which 30%–40% conversion efficiency was observed. The signal pulse with the center wavelength of 1.4 μm was compressed to 27 fs (FWHM), which was very close to a transform-limited pulse duration of 25 fs. Since the DC-OPA scheme is efficient for generating high-energy infrared (IR) pulses with excellent scaling ability, the design parameters for obtaining hundred-mJ-level and even joule-level IR pulses are discussed and presented in detail. (invited article)

  10. High speed all optical logic gates based on quantum dot semiconductor optical amplifiers.

    Science.gov (United States)

    Ma, Shaozhen; Chen, Zhe; Sun, Hongzhi; Dutta, Niloy K

    2010-03-29

    A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.

  11. Tuned Optical Front-End MMIC Amplifiers for a Coherent Optical Receiver

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad; Jagd, A M

    1992-01-01

    Two low noise tuned optical front-end GaAs MESFET MMIC amplifiers for a coherent optical CPFSK (Continuous Phase Frequency Shift Keying) receiver are presented. The receiver operates at 2.5 Gbit/s at an IF of approx. 9 GHz. The front-ends are based on full-custom designed MMICs and a commercially...... available GaInAs/InP pin photo diode. The procedure for measuring the transimpedance and the equivalent input noise current density is outlined in this paper and demonstrated using one of the MMICs. The MMICs were fabricated using the Plessey F20 process by GEC-Marconi through the ESPRIT programme EUROCHIP...

  12. Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch.

    Science.gov (United States)

    Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing

    2018-04-16

    We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.

  13. Detection of weak optical signals with a laser amplifier

    International Nuclear Information System (INIS)

    Kozlovskii, A. V.

    2006-01-01

    Detection of weak and extremely weak light signals amplified by linear and four-wave mixing laser amplifiers is analyzed. Photoelectron distributions are found for different input photon statistics over a wide range of gain. Signal-to-noise ratios are calculated and analyzed for preamplification schemes using linear and four-wave mixing amplifiers. Calculations show that the high signal-to-noise ratio (much higher than unity), ensuring reliable detection of weak input signals, can be attained only with a four-wave mixing preamplification scheme. Qualitative dependence of the signal-to-noise ratio on the quantum statistical properties of both signal and idler waves is demonstrated

  14. Electronically tunable femtosecond all-fiber optical parametric oscillator for multi-photon microscopy

    Science.gov (United States)

    Hellwig, Tim; Brinkmann, Maximilian; Fallnich, Carsten

    2018-02-01

    We present a femtosecond fiber-based optical parametric oscillator (FOPO) for multiphoton microscopy with wavelength tuning by electronic repetition rate tuning in combination with a dispersive filter in the FOPO cavity. The all-spliced, all-fiber FOPO cavity is based on polarization-maintaining fibers and a broadband output coupler, allowing to get access to the resonant signal pulses as well as the idler pulses simultaneously. The system was pumped by a gain-switched fiber-coupled laser diode emitting pulses at a central wavelength of 1030 nm and an electronically tunable repetition frequency of about 2 MHz. The pump pulses were amplified in an Ytterbium fiber amplifier system with a pulse duration after amplification of 13 ps. Tuning of the idler (1140 nm - 1300 nm) and signal wavelengths (850 nm - 940 nm) was achieved by changing the repetition frequency of the pump laser by about 4 kHz. The generated signal pulses reached a pulse energy of up to 9.2 nJ at 920 nm and were spectrally broadened to about 6 nm in the FOPO by a combination of self-phase and cross-phase modulation. We showed external compression of the idler pulses at 920 nm to about 430 fs and appleid them to two-photon excitation microscopy with green fluorescent dyes. The presented system constitutes an important step towards a fully fiber-integrated all-electronically tunable and, thereby, programmable light source and already embodies a versatile and flexible light source for applications, e.g., for smart microscopy.

  15. Ultrafast optical signal processing using semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....

  16. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves through polarization-insensitive optical parametric amplification enabling transmission over 4000-km dispersion-managed TWRS fiber

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.

    2013-01-01

    We experimentally demonstrate the first Tb/s Nyquist-WDM phase-conjugated twin waves, consisting of eight 128-Gb/s PDM-QPSK signals and their idlers, by a broadband polarization-insensitive fiber optical parametric amplifier, enabling more than doubled reach in dispersion-managed transmission. © ...

  17. Ultrashort pulse-propagation effects in a semiconductor optical amplifier: Microscopic theory and experiment

    DEFF Research Database (Denmark)

    Hughes, S.; Borri, P.; Knorr, A.

    2001-01-01

    We present microscopic modeling and experimental measurements of femtosecond-pulse interactions in a semiconductor optical amplifier. Two novel nonlinear propagation effects are demonstrated: pulse breakup in the gain regime and pulse compression in the transparency regime. These propagation phen...... phenomena highlight the microscopic origin and important role of adiabatic following in semiconductor optical amplifiers. Fundamental light-matter interactions are discussed in detail and possible applications are highlighted....

  18. Pulse propagation in a two-pass optical amplifier with arbitrary laser beams overlap

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2011-09-01

    Full Text Available An analytical model for two-pass optical amplifier with arbitrary beams overlap has been developed which generalized the classical theory of Frantz-Nodvik for single pass amplifier. The effect of counterpropagating beams on gain and output energy fluence included in the model. Moreover, the appropriate limiting relations for two special cases of weak input signal and saturation state of the amplifier gain have been derived. The results indicate that for complete beams overlap, the gain and output energy have the least values. The model predictions are consistent with experimental observations and exact analytical model for two-pass amplifier when beam propagation paths are coincided.

  19. High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB(3)O(6) pumped at 800 nm.

    Science.gov (United States)

    Petrov, Valentin; Noack, Frank; Tzankov, Pancho; Ghotbi, Masood; Ebrahim-Zadeh, Majid; Nikolov, Ivailo; Buchvarov, Ivan

    2007-01-22

    Substantial power scaling of a travelling-wave femtosecond optical parametric amplifier, pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier, is demonstrated using monoclinic BiB(3)O(6) in a two stage scheme with continuum seeding. Total energy output (signal plus idler) exceeding 1 mJ is achieved, corresponding to an intrinsic conversion efficiency of approximately 32% for the second stage. The tunability extends from 1.1 to 2.9 microm. The high parametric gain and broad amplification bandwidth of this crystal allowed the maintenance of the pump pulse duration, leading to pulse lengths less than 140 fs, both for the signal and idler pulses, even at such high output levels.

  20. Optical architecture for a multi-megajoule ICF driver incorporating megajoule class KrF amplifiers

    International Nuclear Information System (INIS)

    McLeod, J.

    1989-01-01

    A gaseous amplifying medium should be scalable to any arbitrary size. A system architecture is reported which will produce 10 MJ with only four amplifiers in the last stage by making use of this scalability. The system described uses optical angular multiplexing for efficient utilization of such large KrF amplifiers. For such large amplifiers, each multiplex beamline carries 16 kJ toward the target chamber. This is because the pump duration need only be increased as the cube root of the output energy and is only 2050 ns. While the use of angular multiplexing does not increase the total count of beamlines, it does increase their length since space has to be provided for the temporal decoder; a possible site plan is shown. Optical beam tubes are filled with He to avoid propagation problems and to promote cleanliness. Single shot sacrificial windows are proposed for large amplifiers. Relatively large multiplexing angles reduce crosstalk to a manageable level

  1. Very fast, high peak-power, planar triode amplifiers for driving optical gates

    International Nuclear Information System (INIS)

    Howland, M.M.; Davis, S.J.; Gagnon, W.L.

    1979-01-01

    Recent extensions of the peak power capabilities of planar triodes have made possible the latter's use as very fast pulse amplifiers, to drive optical gates within high-power Nd:glass laser chains. These pulse amplifiers switch voltages in the 20 kV range with rise times of a few nanoseconds, into crystal optical gates that are essentially capacitive loads. This paper describes a simplified procedure for designing these pulse amplifiers. It further outlines the use of bridged-T constant resistance networks to transform load capacitance into pure resistance, independent of frequency

  2. Nonlinear carrier dynamics in a quantum dash optical amplifier

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Ek, Sara; Yvind, Kresten

    2012-01-01

    dynamics. Thus, both enhancement as well as suppression of the transmission can be observed even when the amplifier is biased at transparency. A simple theoretical model taking into account two-photon absorption and free carrier absorption is presented that shows good agreement with the measurements....

  3. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-09-01

    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  4. Regularized linearization for quantum nonlinear optical cavities: application to degenerate optical parametric oscillators.

    Science.gov (United States)

    Navarrete-Benlloch, Carlos; Roldán, Eugenio; Chang, Yue; Shi, Tao

    2014-10-06

    Nonlinear optical cavities are crucial both in classical and quantum optics; in particular, nowadays optical parametric oscillators are one of the most versatile and tunable sources of coherent light, as well as the sources of the highest quality quantum-correlated light in the continuous variable regime. Being nonlinear systems, they can be driven through critical points in which a solution ceases to exist in favour of a new one, and it is close to these points where quantum correlations are the strongest. The simplest description of such systems consists in writing the quantum fields as the classical part plus some quantum fluctuations, linearizing then the dynamical equations with respect to the latter; however, such an approach breaks down close to critical points, where it provides unphysical predictions such as infinite photon numbers. On the other hand, techniques going beyond the simple linear description become too complicated especially regarding the evaluation of two-time correlators, which are of major importance to compute observables outside the cavity. In this article we provide a regularized linear description of nonlinear cavities, that is, a linearization procedure yielding physical results, taking the degenerate optical parametric oscillator as the guiding example. The method, which we call self-consistent linearization, is shown to be equivalent to a general Gaussian ansatz for the state of the system, and we compare its predictions with those obtained with available exact (or quasi-exact) methods. Apart from its operational value, we believe that our work is valuable also from a fundamental point of view, especially in connection to the question of how far linearized or Gaussian theories can be pushed to describe nonlinear dissipative systems which have access to non-Gaussian states.

  5. Remote Optical Imagery of Obscured Objects in Low-Visibility Environments Using Parametric Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Asher, R.B.; Bliss, D.E.; Cameron, S.M.; Hamil, R.A.

    1998-10-14

    The development of unconventional active optical sensors to remotely detect and spatially resolve suspected threats obscured by low-visibility observation conditions (adverse weather, clouds, dust, smoke, precipitation, etc.) is fundamental to maintaining tactical supremacy in the battlespace. In this report, the authors describe an innovative frequency-agile image intensifier technology based on time-gated optical parametic amplification (OPA) for enhanced light-based remote sensing through pervasive scattering and/or turbulent environments. Improved dynamic range characteristics derived from the amplified passband of the OPA receiver combined with temporal discrimination in the image capture process will offset radiant power extinction losses, while defeating the deugradative effects & multipath dispersion and ,diffuse backscatter noise along the line-of-sight on resultant image contrast and range resolution. Our approach extends the operational utility of the detection channel in existing laser radar systems by increasing sensitivity to low-level target reffectivities, adding ballistic rejection of scatter and clutter in the range coordinate, and introducing multispectral and polarization discrimination capability in a wavelen~h-tunable, high gain nonlinear optical component with strong potential for source miniaturization. A key advantage of integrating amplification and tlequency up-conversion functions within a phasematched three-wave mixing parametric device is the ability to petiorm background-free imaging with eye-safe or longer inilared illumination wavelengths (idler) less susceptible to scatter without sacrificing quantum efficiency in the detection process at the corresponding signal wavelength. We report benchmark laboratory experiments in which the OPA gating process has been successfidly demonstrated in both transillumination and reflection test geometries with extended pathlengths representative of realistic coastal sea water and cumulus cloud

  6. Interplay of nonclassicality and entanglement of two-mode Gaussian fields generated in optical parametric processes

    Czech Academy of Sciences Publication Activity Database

    Arkhipov, Ie.I.; Peřina, Jan; Peřina, J.; Miranowicz, A.

    2016-01-01

    Roč. 94, č. 1 (2016), 1-15, č. článku 013807. ISSN 2469-9926 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-mode Gaussian fields * optical parametric processes Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016

  7. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.

    2010-01-01

    In whispering gallery mode (WGM) resonator light is guided by continuous total internal reflection along a curved surface. Fabricating such resonators from an optically nonlinear material one takes advantage of their exceptionally high quality factors and small mode volumes to achieve extremely...... efficient optical frequency conversion. Our analysis of the phase-matching conditions for optical parametric down-conversion (PDC) in a spherical WGM resonator shows their direct relation to the sum rules for photons' angular momenta and predicts a very low parametric oscillation threshold. We realized...... such an optical parametric oscillator (OPO) based on naturally phase-matched PDC in lithium niobate. We demonstrated a single-mode, strongly nondegenerate OPO with a threshold of 6.7  μW and linewidth under 10 MHz. This work demonstrates the remarkable capabilities of WGM-based OPOs....

  8. Channel addition/removal response in all-optical gain-clamped lumped Raman fiber amplifier

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Kaňka, Jiří; Honzátko, Pavel; Radil, J.

    2004-01-01

    Roč. 16, č. 3 (2004), s. 771-773 ISSN 1041-1135 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical communication * optical fibre amplifiers * wavelength division multiplexing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.552, year: 2004

  9. Static thermo-optic instability in double-pass fiber amplifiers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2016-01-01

    A coupled-mode formalism, earlier used to describe transverse mode instabilities in single-pass optical fiber amplifiers, is extended to the case of double-pass amplifiers. Contrary to the single-pass case, it is shown that the thermo-optic nonlinearity can couple light at the same frequency...... between the LP01 and LP11 modes, leading to a static deformation of the output beam profile. This novel phenomenon is caused by the interaction of light propagating in either direction with thermo-optic index perturbations caused by light propagating in the opposite direction. The threshold power...... for the static deformation is found to be several times lower than what is typically found for the dynamic modal instabilities observed in single-pass amplifiers. (C) 2016 Optical Society of America...

  10. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  11. Characterization of tunable light source by optical parametric oscillator for high resolution spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J. W. [Ewha Womens Univ., Seoul (Korea); Rhee, B. G. [Sejong Univ., Seoul (Korea); Park, S. W. [Yonsei Univ., Seoul (Korea); Noh, J. W. [Inha Univ., Incheon (Korea)

    1998-04-01

    A tunable light source is developed by the optical parametric oscillator, which is very useful for a high resolution spectroscopy. The electronic structure of molecules and atoms can be examined by a proper coherent light source. Optical parametric oscillator provides light sources stable and widely tunable. In this work, the characteristics of the parametric optical generation are examined in the LiNbO{sub 3}. The theoretical analysis as well as the experimental measurement is performed. The pump laser is a second harmonic of Nd:YAG laser, and the parametric gain is measured. The characteristics of singly resonant oscillator and doubly resonant oscillator is studied as a function of temperature. It is found that 1mole% MgO:LiNbO{sub 3} crystal provides the tunability from 0.6{mu}m to 3.0{mu}m wavelength. Both the critical and noncritical phase matching are studied. The optical damage occurring in a congruent LiNbO{sub 3} crystal was not observed in 1mole% MgO:LiNbO{sub 3} crystal, opening a possibility for a high power optical parametric oscillation generation. The current work can be extended to an experiment employing the fundamental Nd:YAG as pump to provide a coherent light source for the study of molecular vibrations. 28 refs., 14 figs., 3 tabs. (Author)

  12. Optimum design of Nd-doped fiber optical amplifiers

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Bjarklev, Anders Overgaard; Lumholt, Ole

    1992-01-01

    The waveguide parameters for a Nd-doped fluoride (Nd:ZBLANP) fiber amplifier have been optimized for small-signal and booster operation using an accurate numerical model. The optimum cutoff wavelength is shown to be 800 nm and the numerical aperture should be made as large as possible. Around 80%......% booster quantum conversion efficiency can be reached for an input power of 10 dBm and a pump power of 100 mW by the use of one filter...

  13. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  14. Optical Sensitivity of a Monolithic Integrated InP PIN-HEMT-HBT Transimpedance Amplifier

    OpenAIRE

    Matiss, A.; Janssen, G.; Bertenburg, R. M.; Brockerhoff, W.; Tegude, F.J.

    2004-01-01

    To improve sensitivity of optical receivers, a special integration concept is chosen that includes a pinphotodiode, high-electron mobility transistors (HEMT) and heterostructure bipolar transistors (HBT) on a single substrate. This work focuses on the optimization of the amplifier design to achieve lowest input noise currents of a transimpedance amplifier, and thus highest receiver sensitivity. The respective advantages of the components used are investigated with respect...

  15. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier.

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-29

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  16. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion

    Science.gov (United States)

    Cho, Minhaeng

    2018-05-01

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  17. Quantum optical measurement with tripartite entangled photons generated by triple parametric down-conversion.

    Science.gov (United States)

    Cho, Minhaeng

    2018-05-14

    Parametric down-conversion is a second-order nonlinear optical process annihilating a pump photon and creating a pair of photons in the signal and idler modes. Then, by using two parametric down-converters and introducing a path indistinguishability for the two generated idler modes, a quantum coherence between two conjugate signal beams can be induced. Such a double spontaneous or stimulated parametric down-conversion scheme has been used to demonstrate quantum spectroscopy and imaging with undetected idler photons via measuring one-photon interference between their correlated signal beams. Recently, we considered another quantum optical measurement scheme utilizing W-type tripartite entangled signal photons that can be generated by employing three spontaneous parametric down-conversion crystals and by inducing coherences or path-indistinguishabilities between their correlated idler beams and between quantum vacuum fields. Here, we consider an extended triple stimulated parametric down-conversion scheme for quantum optical measurement of sample properties with undetected idler and photons. Noting the real effect of vacuum field indistinguishability on the fringe visibility as well as the role of zero-point field energy in the interferometry, we show that this scheme is an ideal and efficient way to create a coherent state of W-type entangled signal photons. We anticipate that this scheme would be of critical use in further developing quantum optical measurements in spectroscopy and microscopy with undetected photons.

  18. Propagation delay of femtosecond pulses in an optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    of 2.6 THz, through a quantum-dot (QD) semiconductor amplifier (SOA) at room temperature. This extremely large bandwidth, on the other hand, is at the cost of a rather small group index change of ?ng=4*10-3. We have performed two types of femtosecond pulse slow-down and advancement experiments....... In the first experiment, we prepare a narrow peak or dip in the SOA gain spectrum by injection of a strong pump pulse4. The resulting dispersion feature is then probed by a weak pulse. In the second experiment, we measure self-slowdown or advancement as pulse energy isincreased5. In both cases, we perform...

  19. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  20. Multivariable Parametric Cost Model for Ground Optical Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2005-01-01

    A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.

  1. Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly

    Science.gov (United States)

    Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia

    2004-01-01

    A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.

  2. Optical Detection of Non-amplified Genomic DNA

    Science.gov (United States)

    Li, Di; Fan, Chunhai

    Nucleic acid sequences are unique to every living organisms including animals, plants and even bacteria and virus, which provide a practical molecular target for the identification and diagnosis of various diseases. DNA contains heterocyclic rings that has inherent optical absorbance at 260 nm, which is widely used to quantify single and double stranded DNA in biology. However, this simple quantification method could not differentiate sequences; therefore it is not suitable for sequence-specific analyte detection. In addition to a few exceptions such as chiral-related circular dichroism spectra, DNA hybridization does not produce significant changes in optical signals, thus an optical label is generally needed for sequence-specific DNA detection with optical means. During the last two decades, we have witnessed explosive progress in the area of optical DNA detection, especially with the help of simultaneously rapidly developed nanomaterials. In this chapter, we will summarize recent advances in optical DNA detection including colorimetric, fluorescent, luminescent, surface plasmon resonance (SPR) and Raman scattering assays. Challenges and problems remained to be addressed are also discussed.

  3. Semiconductor optical amplifiers for the 1000-1100-nm spectral range

    International Nuclear Information System (INIS)

    Lobintsov, A A; Shramenko, M V; Yakubovich, S D

    2008-01-01

    Two types of semiconductor optical amplifiers (SOAs) based on a double-layer quantum-well (InGa)As/(GaAl)As/GaAs heterostructure are investigated. The optical gain of more than 30 dB and saturation output power of more than 30 mW are achived at 1060 nm in pigtailed SOA modules. These SOAs used as active elements of a tunable laser provide rapid continuous tuning within 85 nm and 45 nm at output powers of 0.5 mW and more than 30 mW, respectively. (active media, lasers, and amplifiers)

  4. Fast optical source for quantum key distribution based on semiconductor optical amplifiers.

    Science.gov (United States)

    Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V

    2011-02-28

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.

  5. Radiation hardening techniques for rare-earth based optical fibers and amplifiers

    International Nuclear Information System (INIS)

    Girard, Sylvain; Marcandella, Claude; Vivona, Marilena; Prudenzano, Luciano Mescia F.; Laurent, Arnaud; Robin, Thierry; Cadier, Benoit; Pinsard, Emmanuel; Ouerdane, Youcef; Boukenter, Aziz; Cannas, Marco; Boscaino, Roberto

    2012-01-01

    Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern the fiber composition, some possible pre-treatments and the interest of simulation tools used to harden by design the amplifiers. We showed that adding cerium inside the fiber phospho-silicate-based core strongly decreases the fiber radiation sensitivity compared to the standard fiber. For both fibers, a pre-treatment with hydrogen permits to enhance again the fiber resistance. Furthermore, simulations tools can also be used to improve the tolerance of the fiber amplifier by helping identifying the best amplifier configuration for operation in the radiative environment. (authors)

  6. Theoretical Investigation of Oxazine 170 Perchlorate Doped Polymeric Optical Fiber Amplifier

    Directory of Open Access Journals (Sweden)

    Piotr Miluski

    2017-01-01

    Full Text Available Optical signal amplification in the waveguiding structure of optical fibers can be used for optical telecommunication systems and new light sources constructions. Organic dyes doped materials are interesting for new applications in polymeric optical fibers technology due to their benefits (efficient fluorescence, high absorption cross section, and easy processing. This article presents a numerical simulation of gain in poly(methyl methacrylate optical fiber doped by Oxazine 170 Perchlorate. The calculated gain characteristic for the used dye molar concentration (0.2·10-6–1.4·10-6 and pump power (1–10 kW is presented. The fabricated fluorescent polymeric optical fiber is also shown. The presented analysis can be used for optical amplifier construction based on dye-doped polymeric optical fiber (POF.

  7. Polarization dependent dispersion and its impact on optical parametric process in high nonlinear microstructure fibre

    International Nuclear Information System (INIS)

    Xiao Li; Zhang Wei; Huang Yidong; Peng Jiangde

    2008-01-01

    High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency detunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift

  8. All optical wavelength conversion and parametric amplification in Ti:PPLN channel waveguides for telecommunication applications

    Energy Technology Data Exchange (ETDEWEB)

    Nouroozi, Rahman

    2010-10-19

    Efficient ultra-fast integrated all-optical wavelength converters and parametric amplifiers transparent to the polarization, phase, and modulation-level and -format are investigated. The devices take advantage of the optical nonlinearity of Ti:PPLN waveguides exploiting difference frequency generation (DFG). In a DFG, the signal ({lambda}{sub s}) is mixed with a pump ({lambda}{sub p}) to generate a wavelength shifted idler (1/{lambda}{sub i}=1/{lambda}{sub p}-1/{lambda}{sub s}). Efficient generation of the pump in Ti:PPLN channel guides is investigated using different approaches. In the waveguide resonators, first a resonance of the fundamental wave alone is considered. It is shown that the maximum power enhancement of the fundamental wave, and therefore the maximum second-harmonic generation (SHG) efficiency, can be achieved with low loss matched resonators. By this way, SHG efficiency of {proportional_to}10300%/W (10.3 %/mW) has been achieved in a 65 mm long waveguide resonator. Its operation for cSHG/DFG requires narrowband reflector for fundamental wave only. Thus, the SH (pump) wave resonator is investigated. The SH-wave resonator enhances the intracavity SH power only. Based on this scheme, an improvement of {proportional_to}10 dB for cSHG/DFG based wavelength conversion efficiency has been achieved with 50 mW of coupled fundamental power in a 30 mm long Ti:PPLN. However, operation was limited to relatively small fundamental power levels (<50 mW) due to the onset of photorefractive instabilities destroying the cavity stabilization. The cSHG/DFG efficiency can be considerably improved by using a double-pass configuration in which all the interacting waves were reflected by a broadband dielectric mirror deposited on the one endface of the waveguide. Three different approaches are investigated and up to 9 dB improvement of the wavelength conversion efficiency in comparison with the single-pass configuration is achieved. Polarization-insensitive wavelength

  9. BANDWIDTH STUDIES OF AN INJECTION-SEEDED BETA-BARIUM BORATE OPTICAL PARAMETRIC OSCILLATOR

    NARCIS (Netherlands)

    Boonengering, J.M.; van der Veer, W.E.; Gerritsen, J.W.; Hogervorst, W.

    1995-01-01

    Spectral and temporal properties of a scanning injection-seeded β-barium borate optical parametric oscillator pumped by the third harmonic of a 10-Hz Nd:YAG laser have been studied. The seed source was a cw diode laser with a wavelength of 830 nm tunable over a range of 50 GHz. We measured the

  10. Microsecond pulsed optical parametric oscillator pumped by a Q-switched fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Adel, P.; Auerbach, M.; Fallnich, C.; Gross, P.; Boller, Klaus J.

    2003-01-01

    We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-ms-long pulses from an actively Q-switched

  11. Fiber Laser Pumped Continuous-wave Singly-resonant Optical Parametric Oscillator

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Walde, T.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.; Fejer, Martin M.

    2002-01-01

    We report on the first fiber-pumped CW LiNbO/sub 3/ optical parametric oscillator (OPO). The OPO is singly resonant (SRO) and generates idler wavelengths in the range of 3.0 /spl mu/m to 3.7 /spl mu/m with a maximum output power of 1.9 watt.

  12. Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-W average output power

    NARCIS (Netherlands)

    Graf, T.; McConnell, G.; Ferguson, A.I.; Bente, E.A.J.M.; Burns, D.; Dawson, M.D.

    1999-01-01

    We report on a rugged all-solid-state laser source of near-IR radiation in the range of 1461–1601 nm based on a high-power Nd:YVO4 laser that is mode locked by a semiconductor saturable Bragg reflector as the pump source of a synchronously pumped optical parametric oscillator with a periodically

  13. Entanglement in optical parametric down-conversion with losses and noise

    Czech Academy of Sciences Publication Activity Database

    Peřina, Jan; Křepelka, Jaromír

    2009-01-01

    Roč. 282, č. 19 (2009), 3918-3923 ISSN 0030-4018 R&D Projects: GA MŠk(CZ) 1M06002; GA AV ČR IAA100100713 Institutional research plan: CEZ:AV0Z10100522 Keywords : quantum measurement * parametric down-conversion * nonclassical light Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.316, year: 2009

  14. Optimization of an Optical Parametric Chirped Pulse Amplification System for the OMEGA EP Laser System

    International Nuclear Information System (INIS)

    Begishev, I.; Bagnoud, V.; Guardalben, M.; Waxer, L.; Puth, J.; Zuegel, J.

    2003-01-01

    OAK B204 We report on the experimental achievements of the optical parametric chirped-pulse amplification (OPCPA) system, including 29% pump-to-signal conversion efficiency and 107 gain using two LBO crystals configured as a single amplification stage. Temporal and spatial shaping of the pump laser pulse is required to achieve both high-gain and high-conversion efficiency

  15. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  16. Stable integrated hyper-parametric oscillator based on coupled optical microcavities.

    Science.gov (United States)

    Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick

    2015-12-01

    We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.

  17. Transient optical nutations in a CO2 amplifier

    International Nuclear Information System (INIS)

    Baranov, V.Yu.; Borzenko, V.L.; Kozochkin, S.M.; Makarov, K.N.; Malyuta, D.D.; Petrushevich, Yu.V.; Satov, Yu.A.; Starostin, A.N.; Strel'tsov, A.P.

    1984-01-01

    An influence has been studied of coherent effects on the shape of a CO 2 laser nanosecond radiation pulse. Experimental observations of optical nutation are compared with an approximate solution of quasi-classical equations and with the results of numerical simulation. It is shown that the coherent interaction effects can influence the radiation pulse shape in high-power CO 2 systems used in laser fusion

  18. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  19. Self-slowdown and -advancement of fs pulses in a quantum-dot semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    We demonstrate changes in the propagation time of 180 femtosecond pulses in a quantum-dot semiconductor optical amplifier as function of pulse input power and bias current. The results interpreted as a result of pulse reshaping by gain saturation but are also analogous to coherent population osci...

  20. Controllable delay of ultrashort pulses in a quantum dot optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    Optical and electrical tuning of the propagation time of 170 fs pulses in a quantum dot semiconductor amplifier at room temperature is demonstrated. Both pulse slowdown and advancement is possible and we achieve fractional delays (delay divided with pulse duration) of up to 40%. The results...

  1. The Transimpedance Amplifier Noise Optimization for the Atmospheric Optical Link Receiver

    Directory of Open Access Journals (Sweden)

    A. Prokes

    1996-12-01

    Full Text Available This paper deals with design of wideband low-noise preamplifier of atmospheric optical link receiver. Sources of noise and the noise models for the PIN photodiode coupled to a transimpedance amplifier are described here. This paper presents the way of optimization the signal to noise ratio at the required frequency range.

  2. The Transimpedance Amplifier Noise Optimization for the Atmospheric Optical Link Receiver

    OpenAIRE

    A. Prokes

    1996-01-01

    This paper deals with design of wideband low-noise preamplifier of atmospheric optical link receiver. Sources of noise and the noise models for the PIN photodiode coupled to a transimpedance amplifier are described here. This paper presents the way of optimization the signal to noise ratio at the required frequency range.

  3. InP based lasers and optical amplifiers with wire-/dot-like active regions

    DEFF Research Database (Denmark)

    Reithmaier, J. P.; Somers, A.; Deubert, S.

    2005-01-01

    Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 - 1.65 mm. In a brief overview different technological approaches will be ...

  4. High gain semiconductor optical amplifier — Laser diode at visible wavelength

    KAUST Repository

    Shen, Chao; Lee, Changmin; Ng, Tien Khee; Nakamura, Shuji; Speck, James S.; DenBaars, Steven P.; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    We reported on the first experimental demonstration of a two-section semipolar InGaN-based laser diode with monolithically integrated semiconductor optical amplifier (SOA-LD). The onset of amplification effect was measured at 4V SOA bias (VSOA). The SOA-LD shows a large gain of 5.32 dB at Vsoa = 6 V.

  5. High gain semiconductor optical amplifier — Laser diode at visible wavelength

    KAUST Repository

    Shen, Chao

    2017-02-07

    We reported on the first experimental demonstration of a two-section semipolar InGaN-based laser diode with monolithically integrated semiconductor optical amplifier (SOA-LD). The onset of amplification effect was measured at 4V SOA bias (VSOA). The SOA-LD shows a large gain of 5.32 dB at Vsoa = 6 V.

  6. Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Camel, J.; Maciejko, R.

    2002-01-01

    The problem of the linewidth degradation in systems using distributed-feedback lasers together with strained-layer multi-quantum-well semiconductor optical amplifiers (SOAs) is examined. A modified expression for the linewidth in the case of antireflection-coated SOA output facets is derived and ...

  7. Spectral characteristics of DFB lasers in presence of a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Camel, J.; Maciejko, R.

    2002-01-01

    The problem of the linewidth degradation in systems using distributed-feedback lasers together with strained-layer multi-quantum-well semiconductor optical amplifiers (SOAs) is examined. A numerical model combining finite element calculations in the transverse x - y plane and a longitudinal model...

  8. All-optical packet envelope detection using a slow semiconductor saturable absorber gate and a semiconductor optical amplifier

    NARCIS (Netherlands)

    Porzi, C.; Fresi, F.; Poti, L.; Bogoni, A.; Guina, M.; Orsila, L.; Okhotnikov, O.; Calabretta, N.

    2008-01-01

    Abstract—We propose a simple and effective scheme for alloptical packet envelope detection (AO-PED), exploiting a slow saturable absorber-based vertical cavity semiconductor gate and a semiconductor optical amplifier. A high extinction ratio of 15 dB was measured for the recovered envelope signal.

  9. Quantitative evaluation of standard deviations of group velocity dispersion in optical fibre using parametric amplification

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard; Svane, Ask Sebastian; Lund-Hansen, Toke

    2014-01-01

    A numerical model for parametric amplifiers, which include stochastic variations of the group velocity dispersion (GVD), is presented. The impact on the gain is investigated, both with respect to the magnitude of the variations and by the effect caused by changing the wavelength of the pump. It i....... It is demonstrated that the described model is able to predict the experimental results and thereby provide a quantitative evaluation of the standard deviation of the GVD. For the investigated fibre, a standard deviation of 0.01 ps/(nm km) was found....

  10. Optical parametric oscillator-based photoacoustic detection of CO2 at 4.23 mu m allows real-time monitoring of the respiration of small insects

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Ngai, A.K.Y.; Bisson, S.E.; Hackstein, J.H.P.; Woltering, E.J.; Harren, F.J.M.

    2006-01-01

    A continuous wave, single frequency and continuously tunable optical parametric oscillator is used in combination with photoacoustic spectroscopy to detect trace emissions of CO2 from insects under atmospheric conditions. The optical parametric oscillator (OPO) contains a periodically poled lithium

  11. Optical parametric oscillator-based photoacoustic detection of CO 2 at 4.23 µm allows real-time monitoring of the respiration of small insects

    NARCIS (Netherlands)

    Herpen, van M.M.J.W.; Ngai, A.K.Y.; Bisson, S.E.; Hackstein, J.H.P.; Woltering, E.J.; Harren, F.J.M.

    2006-01-01

    A continuous wave, single frequency and continuously tunable optical parametric oscillator is used in combination with photoacoustic spectroscopy to detect trace emissions of CO2 from insects under atmospheric conditions. The optical parametric oscillator (OPO) contains a periodically poled lithium

  12. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  13. Angular spectrum characters of high gain non-critical phase match optical parametric oscillators

    International Nuclear Information System (INIS)

    Liu Jian-Hui; Liu Qiang; Gong Ma-Li

    2011-01-01

    The angular spectrum gain characters and the power magnification characters of high gain non-walk-off colinear optical parametric oscillators have been studied using the non-colinear phase match method for the first time. The experimental results of the KTiOAsO 4 and the KTiOPO 4 crystals are discussed in detail. At the high energy single resonant condition, low reflective ratio of the output mirror for the signal and long non-linear crystal are beneficial for small divergence angles. This method can also be used for other high gain non-walk-off phase match optical parametric processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Laser amplification of optical images using a CW Nd:YAG amplifier

    International Nuclear Information System (INIS)

    Aman, H

    2013-01-01

    In this paper a scheme for the amplification of optical images is described, using a continuous wave (CW) diode-pumped Nd:YAG (yttrium aluminum garnet) laser module. A passively q-switched end-pumped Nd:YAG laser is used as a pump source, which carries the optical image distribution as an input which is transmitted towards the amplifier at a distance of about ten feet. For amplification, a three-side-pumped CW Nd:YAG laser module is utilized without the cavity mirrors. In this way, optical images are amplified by a factor of 3.2 and imaged at a distance of ten feet with a spatial resolution of 500 μm. (paper)

  15. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Huang Lirong; Yu Yi; Tian Peng; Huang Dexiu

    2009-01-01

    The optical gain of a quantum-dot semiconductor optical amplifier is usually seriously dependent on polarization; we propose a quantum-dot coupled tensile-strained quantum-well structure to obtain polarization insensitivity. The tensile-strained quantum well not only serves as a carrier injection layer of quantum dots but also offers gain to the transverse-magnetic mode. Based on the polarization-dependent coupled carrier rate-equation model, we study carrier competition among quantum well and quantum dots, and study the polarization dependence of the quantum-dot coupled quantum-well semiconductor optical amplifier. We also analyze polarization-dependent photon-mediated carrier distribution among quantum well and quantum dots. It is shown that polarization-insensitive gain can be realized by optimal design

  16. Crosstalk in 1.5-μm InGaAsP optical amplifiers

    DEFF Research Database (Denmark)

    Lassen, H. E.; Hansen, Peter Bukhave; Stubkjær, Kristian

    1988-01-01

    A dynamical model for multichannel amplification by near-traveling-wave optical amplifiers is presented, and results on crosstalk induced by either amplitude modulation or frequency modulation are given. The mechanisms influencing the crosstalk most are the residual facet reflectivities...... and the detuning of the channels relative to the amplifier Fabry-Perot spectrum. Calculations of worst-case crosstalk levels are included. The model is verified experimentally for amplitude-modulated signals, and crosstalk levels up to -7 dB are reported. For frequency-modulated signals, estimated crosstalk...

  17. Radiation-hardened optical amplifier based on multicore fiber for telecommunication satellites

    Science.gov (United States)

    Filipowicz, M.; Napierała, M.; Murawski, M.; Ostrowski, L.; Szostkiewicz, L.; Mergo, P.; Kechagias, M.; Farzana, J.; Stampoulidis, L.; Kehayas, E.; Crabb, J.; Nasilowski, T.

    2017-10-01

    Our research results concerning a space-dedicated C-band optical amplifier for application in telecommunication satellites are presented in this article. The device is based on a 7-core microstructured fiber where independent access to each core is granted by an all fiber fan-in/ fan-out coupler. The amplifier properties are described as well as its performance after irradiation to a maximal dose of 100 kRad. Also the difference between two kinds of fiber material compositions is discussed with regard to radiation resistance.

  18. Development of a switched integrator amplifier for high-accuracy optical measurements

    International Nuclear Information System (INIS)

    Mountford, John; Porrovecchio, Geiland; Smid, Marek; Smid, Radislav

    2008-01-01

    In the field of low flux optical measurements, the development and use of large area silicon detectors is becoming more frequent. The current/voltage conversion of their photocurrent presents a set of problems for traditional transimpedance amplifiers. The switched integration principle overcomes these limitations. We describe the development of a fully characterized current-voltage amplifier using the switched integrator technique. Two distinct systems have been developed in parallel at the United Kingdom's National Physical Laboratory (NPL) and Czech Metrology Institute (CMI) laboratories. We present the circuit theory and best practice in the design and construction of switched integrators. In conclusion the results achieved and future developments are discussed

  19. Development of a switched integrator amplifier for high-accuracy optical measurements.

    Science.gov (United States)

    Mountford, John; Porrovecchio, Geiland; Smid, Marek; Smid, Radislav

    2008-11-01

    In the field of low flux optical measurements, the development and use of large area silicon detectors is becoming more frequent. The current/voltage conversion of their photocurrent presents a set of problems for traditional transimpedance amplifiers. The switched integration principle overcomes these limitations. We describe the development of a fully characterized current-voltage amplifier using the switched integrator technique. Two distinct systems have been developed in parallel at the United Kingdom's National Physical Laboratory (NPL) and Czech Metrology Institute (CMI) laboratories. We present the circuit theory and best practice in the design and construction of switched integrators. In conclusion the results achieved and future developments are discussed.

  20. Squeezed light in an optical parametric oscillator network with coherent feedback quantum control.

    Science.gov (United States)

    Crisafulli, Orion; Tezak, Nikolas; Soh, Daniel B S; Armen, Michael A; Mabuchi, Hideo

    2013-07-29

    We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.

  1. Four-Wave Optical Parametric Amplification in a Raman-Active Gas

    Directory of Open Access Journals (Sweden)

    Yuichiro Kida

    2015-08-01

    Full Text Available Four-wave optical parametric amplification (FWOPA in a Raman-active medium is experimentally investigated by use of an air-filled hollow fiber. A femtosecond pump pulse shorter than the period of molecular motion excites the coherent molecular motion of the Raman-active molecules during the parametric amplification of a signal pulse. The excited coherent motion modulates the frequency of the signal pulse during the parametric amplification, and shifts it to lower frequencies. The magnitude of the frequency redshift depends on the pump intensity, resulting in intensity-dependent spectral characteristics that are different from those in the FWOPA induced in a noble-gas-filled hollow fiber.

  2. Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers.

    Science.gov (United States)

    Lang, T; Harth, A; Matyschok, J; Binhammer, T; Schultze, M; Morgner, U

    2013-01-14

    A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects.

  3. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Stubkjær, Kristian

    1997-01-01

    This work assesses the prospects for high-speed all-optical wavelength conversion using the simple optical interaction with the gain in semiconductor optical amplifiers (SOAs) via the interband carrier recombination. Operation and design guidelines for conversion speeds above 10 Gb/s are described...... and the various tradeoffs are discussed. Experiments at bit rates up to 40 Gb/s are presented for both cross-gain modulation (XGM) and cross-phase modulation (XPM) in SOAs demonstrating the high-speed capability of these techniques...

  4. Improvement of two-way continuous-variable quantum key distribution using optical amplifiers

    International Nuclear Information System (INIS)

    Zhang, Yi-Chen; Yu, Song; Gu, Wanyi; Li, Zhengyu; Sun, Maozhu; Peng, Xiang; Guo, Hong; Weedbrook, Christian

    2014-01-01

    The imperfections of a receiver's detector affect the performance of two-way continuous-variable (CV) quantum key distribution (QKD) protocols and are difficult to adjust in practical situations. We propose a method to improve the performance of two-way CV-QKD by adding a parameter-adjustable optical amplifier at the receiver. A security analysis is derived against a two-mode collective entangling cloner attack. Our simulations show that the proposed method can improve the performance of protocols as long as the inherent noise of the amplifier is lower than a critical value, defined as the tolerable amplifier noise. Furthermore, the optimal performance can approach the scenario where a perfect detector is used. (paper)

  5. Fiber Based Optical Amplifier for High Energy Laser Pulses Final Report CRADA No. TC02100.0

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cunningham, P. [Boeing Company, Springfield, VA (United States)

    2017-09-06

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL), and The Boeing Company to develop an optical fiber-based laser amplifier capable of producing and sustaining very high-energy, nanosecond-scale optical pulses. The overall technical objective of this CRADA was to research, design, and develop an optical fiber-based amplifier that would meet specific metrics.

  6. Semiclassical Wigner distribution for a two-mode entangled state generated by an optical parametric oscillator

    International Nuclear Information System (INIS)

    Dechoum, K.; Hahn, M. D.; Khoury, A. Z.; Vallejos, R. O.

    2010-01-01

    We derive the steady-state solution of the Fokker-Planck equation that describes the dynamics of the nondegenerate optical parametric oscillator in the truncated Wigner representation of the density operator. We assume that the pump mode is strongly damped, which permits its adiabatic elimination. When the elimination is correctly executed, the resulting stochastic equations contain multiplicative noise terms and do not admit a potential solution. However, we develop a heuristic scheme leading to a satisfactory steady-state solution. This provides a clear view of the intracavity two-mode entangled state valid in all operating regimes of the optical parametric oscillator. A non-Gaussian distribution is obtained for the above threshold solution.

  7. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography

    Science.gov (United States)

    Ravanfar, Mohammadreza; Pfeiffer, Ferris M.; Bozynski, Chantelle C.; Wang, Yuanbo; Yao, Gang

    2017-12-01

    Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.

  8. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    Science.gov (United States)

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  9. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.

    Science.gov (United States)

    Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F

    2017-10-30

    Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

  10. Correlations in photon-numbers and integrated intensities in parametric processes involving three optical fields

    Czech Academy of Sciences Publication Activity Database

    Peřina, Jan; Křepelka, Jaromír; Peřina ml., Jan; Bondani, M.; Allevi, A.; Andreoni, A.

    2009-01-01

    Roč. 53, č. 3 (2009), 373-382 ISSN 1434-6060 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : parametric process * three-mode state * sub-Poisson statistics * conditional measurement Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.420, year: 2009

  11. Computational Principle and Performance Evaluation of Coherent Ising Machine Based on Degenerate Optical Parametric Oscillator Network

    Directory of Open Access Journals (Sweden)

    Yoshitaka Haribara

    2016-04-01

    Full Text Available We present the operational principle of a coherent Ising machine (CIM based on a degenerate optical parametric oscillator (DOPO network. A quantum theory of CIM is formulated, and the computational ability of CIM is evaluated by numerical simulation based on c-number stochastic differential equations. We also discuss the advanced CIM with quantum measurement-feedback control and various problems which can be solved by CIM.

  12. Modeling of Semiconductor Optical Amplifier Gain Characteristics for Amplification and Switching

    Science.gov (United States)

    Mahad, Farah Diana; Sahmah, Abu; Supa'at, M.; Idrus, Sevia Mahdaliza; Forsyth, David

    2011-05-01

    The Semiconductor Optical Amplifier (SOA) is presently commonly used as a booster or pre-amplifier in some communication networks. However, SOAs are also a strong candidate for utilization as multi-functional elements in future all-optical switching, regeneration and also wavelength conversion schemes. With this in mind, the purpose of this paper is to simulate the performance of the SOA for improved amplification and switching functions. The SOA is modeled and simulated using OptSim software. In order to verify the simulated results, a MATLAB mathematical model is also used to aid the design of the SOA. Using the model, the gain difference between simulated and mathematical results in the unsaturated region is <1dB. The mathematical analysis is in good agreement with the simulation result, with only a small offset due to inherent software limitations in matching the gain dynamics of the SOA.

  13. Gain transient control for wavelength division multiplexed access networks using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Osadchiy, Alexey Vladimirovich; Kjær, Rasmus

    2009-01-01

    Gain transients can severely hamper the upstream network performance in wavelength division multiplexed (WDM) access networks featuring erbium doped fiber amplifiers (EDFAs) or Raman amplification. We experimentally demonstrate for the first time using 10 Gb/s fiber transmission bit error rate...... measurements how a near-saturated semiconductor optical amplifier (SOA) can be used to control these gain transients. An SOA is shown to reduce the penalty of transients originating in an EDFA from 2.3 dB to 0.2 dB for 10 Gb/s transmission over standard single mode fiber using a 231-1 PRBS pattern. The results...... suggest that a single SOA integrated within a WDM receiver at the metro node could offer a convenient all-optical solution for upstream transient controlin WDM access networks....

  14. Electronic-Optical Amplifier in the measurement of light polarization plane

    International Nuclear Information System (INIS)

    Miranda Diaz, Lazaro

    2009-01-01

    This paper analyzes the behavior of the output response of two electronic-optical amplifiers with constant amplitude and phase variable, in which photodiodes each them are arranged spatially 90th each other and both with their faces detection parallel to the axis of light transmission. Outward both amplifiers are going to a digital circuit that compares the fronts outputs to the front of the pulse signal that feeds the light source, to finally obtain the difference in time when fronts of light capture the photodiodes. This configuration permit to analyze the influence of the geometric arrangement of the system optical and understand the principle of why the diodes with their faces parallel to the axis of light transmission are capable of capturing variations of this, and even detect the rotation of the plane of light polarized. (Author)

  15. Spectroscopy and decay kinetics of Pr3+-doped chloride crystals for 1300-nm optical amplifiers

    International Nuclear Information System (INIS)

    Page, R.H.; Schaffers, K.I.; Wilke, G.D.

    1995-01-01

    Several Pr 3+ -doped chloride crystals have been tested spectroscopically for suitability as 1300-nm optical amplifiers operating on the 1 G 4 - 3 H 5 transition. 1 G 4 lifetimes are much longer than in fluoride hosts, ranging up to 1300 μsec and suggesting a near-unity luminescence quantum yield. Emission spectra are typically broad (FWHM ∼ 70 nm) and include the 1310-nm zero-dispersion wavelength of standard telecommunications fiber

  16. Implementation of a lock-in amplifier for optical spectroscopy measurement

    International Nuclear Information System (INIS)

    Homs, R.; Puron, E.

    2012-01-01

    The experimental set-up of an optical spectroscopy measurement based on virtual instrumentation is presented. A lock-in amplifier has been implemented by applying digital signal processing techniques to a PC-based data acquisition board. The application was developed in C++, on top of open source Qt/Qwt graphical framework. The emission spectral of reference light sources were measured in order to calibrate and validate the system. (Author)

  17. Broadband superluminescent diodes and semiconductor optical amplifiers for the spectral range 750 - 800 nm

    International Nuclear Information System (INIS)

    Il'chenko, S N; Kostin, Yu O; Kukushkin, I A; Ladugin, M A; Lapin, P I; Lobintsov, A A; Marmalyuk, Aleksandr A; Yakubovich, S D

    2011-01-01

    We have studied superluminescent diodes (SLDs) and semiconductor optical amplifiers (SOAs) based on an (Al x Ga 1-x )As/GaAs single quantum well structure with an Al content x ∼ 0.1 in a 10-nm-thick active layer. Depending on the length of the active channel, the single-mode fibre coupled cw output power of the SLDs is 1 to 30 mW at a spectral width of about 50 nm. The width of the optical gain band in the active channel exceeds 40 nm. Preliminary operating life tests have demonstrated that the devices are sufficiently reliable. (lasers)

  18. Construction of an optical semiconductor amplifier starting from a Fabry-Perot semiconductor laser

    International Nuclear Information System (INIS)

    Garcia, E.; Soto, H.; Marquez, H.; Valles V, N.

    2000-01-01

    A methodology to convert a semiconductor laser Fabry-Perot (SL-FP) in a semiconductor optical amplifier (SOA) is presented. In order to suppress the cavity resonant an optical thin film coating was deposited on the facets of the SL-FP. The experiment was carried out putting on service a new monitoring technique that consist in the observation of the laser power spectrum during the antireflection coatings deposition. This allows to determine the moment were the facets reflectivity is minimum. The SOA obtained was characterized for different polarization currents. (Author)

  19. Parametric Phase-sensitive and Phase-insensitive All-optical Signal Processing on Multiple Nonlinear Platforms - Invited talk

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Da Ros, Francesco; Vukovic, Dragana

    Parametric processes in materials presenting a second- or third-order nonlinearity have been widely used to demonstrate a wide range of all-optical signal processing functionalities, including amplication, wavelength conversion, regeneration, sampling, switching, modulation format conver- sion, o...

  20. Single-cycle Pulse Synthesis by Coherent Superposition of Ultra-broadband Optical Parametric Amplifiers

    Science.gov (United States)

    2011-08-01

    Research Council Centre of Excellence, School of Physics, University of Sydney, NSW 2006, Australia, 3IFN-CNR, Dipartimento di Fisica , Politecnico di...Cristian Manzoni, 1,* Jeffrey Moses, 2 Franz X. Kärtner, 2,3 and Giulio Cerullo 1 1IFN-CNR, Dipartimento di Fisica , Politecnico di Milano, Piazza L...Cerullo1 1 IFN-CNR, Dipartimento di Fisica , Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy 2 Department of Electrical

  1. Frequency dependence of the pump-to-signal RIN transfer in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Pakarzadeh Dezfuli Nezhad, Hassan; Rottwitt, Karsten; Zakery, A.

    2009-01-01

    Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams.......Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams....

  2. The Holy Grail of quantum optical communication

    International Nuclear Information System (INIS)

    García-Patrón, Raúl; Navarrete-Benlloch, Carlos; Lloyd, Seth; Shapiro, Jeffrey H.; Cerf, Nicolas J.

    2014-01-01

    Optical parametric amplifiers together with phase-shifters and beamsplitters have certainly been the most studied objects in the field of quantum optics. Despite such an intensive study, optical parametric amplifiers still keep secrets from us. We will show how they hold the answer to one of the oldest problems in quantum communication theory, namely the calculation of the optimal communication rate of optical channels

  3. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  4. Continuous parametric feedback cooling of a single atom in an optical cavity

    Science.gov (United States)

    Sames, C.; Hamsen, C.; Chibani, H.; Altin, P. A.; Wilk, T.; Rempe, G.

    2018-05-01

    We demonstrate a feedback algorithm to cool a single neutral atom trapped inside a standing-wave optical cavity. The algorithm is based on parametric modulation of the confining potential at twice the natural oscillation frequency of the atom, in combination with fast and repetitive atomic position measurements. The latter serve to continuously adjust the modulation phase to a value for which parametric excitation of the atomic motion is avoided. Cooling is limited by the measurement backaction which decoheres the atomic motion after only a few oscillations. Nonetheless, applying this feedback scheme to an ˜5 -kHz oscillation mode increases the average storage time of a single atom in the cavity by a factor of 60 to more than 2 s. In contrast to previous feedback schemes, our algorithm is also capable of cooling a much faster ˜500 -kHz oscillation mode within just microseconds. This demonstrates that parametric cooling is a powerful technique that can be applied in all experiments where optical access is limited.

  5. High-energy, tunable, mid-infrared, picosecond optical parametric generation in CdSiP2

    Science.gov (United States)

    Chaitanya Kumar, S.; Jelínek, M.; Baudisch, M.; Zawilski, K. T.; Schunemann, P. G.; Kubecek, V.; Biegert, J.; Ebrahim-Zadeh, M.

    2012-06-01

    We report a tunable, high-energy, single-pass, optical parametric generator (OPG) based on the new nonlinear material, cadmium silicon phosphide, CdSiP2. The OPG is pumped by a laboratory designed cavity-dumped passively mode-locked, diode-pumped, Nd:YAG oscillator, providing 25 μJ pulses in 20 ps at 5 Hz. The pump energy is further boosted by a flashlamp-pumped Nd:YAG amplifier to 2.5 mJ. The OPG is temperature tunable over 1263-1286 nm (23 nm) in the signal and 6153-6731 nm (578 nm) in the idler, corresponding to a total tuning range of 601 nm. Using the single-pass OPG configuration, we have generated signal energy as high as 636 μJ at 1283 nm, together with an idler energy of 33 μJ at 6234 nm, for 2.1 mJ of input pump energy. The signal pulses generated from the OPG have a Gaussian pulse duration of 24 ps and an FWHM spectral bandwidth of 10.4 nm at central wavelength of 1276 nm. The corresponding idler spectrum has an FWHM bandwidth of 140 nm centered at 6404 nm.

  6. Design and analysis of optically pumped submillimeter waveguide maser amplifiers and oscillators

    Science.gov (United States)

    Galantowicz, T. A.

    1975-01-01

    The design and experimental measurements are described of an optically pumped far-infrared (FIR) waveguide maser; preliminary measurements on a FIR waveguide amplifier are presented. The FIR maser was found to operate satisfactorily in a chopped CW mode using either methanol (CH3OH) or acetonitrile (CH3CN) as the active molecule. Two other gases, difluoroethane and difluoroethylene, produced an unstable output with high threshold and low output power when operated in the chopped CW mode. Experimental measurements include FIR output versus cavity length, output beam pattern, output power versus pressure, and input power. The FIR output was the input to an amplifier which was constructed similar to the oscillator. An increase of 10% in output power was noted on the 118.8 microns line of methanol.

  7. High-Performance BiCMOS Transimpedance Amplifiers for Fiber-Optic Receivers

    Directory of Open Access Journals (Sweden)

    F. Touati

    2007-12-01

    Full Text Available High gain, wide bandwidth, low noise, and low-power transimpedance amplifiers based on new BiCMOS common- base topologies have been designed for fiber-optic receivers. In particular a design approach, hereafter called "A more- FET approach", added a new dimension to effectively optimize performance tradeoffs inherent in such circuits. Using conventional silicon 0.8 μm process parameters, simulated performance features of a total-FET transimpedance amplifier operating at 7.2 GHz, which is close to the technology fT of 12 GHz, are presented. The results are superior to those of similar recent designs and comparable to IC designs using GaAs technology. A detailed analysis of the design architecture, including a discussion on the effects of moving toward more FET-based designs is presented.

  8. Theory of Pulse Train Amplification Without Patterning Effects in Quantum Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    A theory for pulse amplification and saturation in quantum dot (QD) semiconductor optical amplifiers (SOAs) is developed. In particular, the maximum bit rate at which a data stream of pulses can be amplified without significant patterning effects is investigated. Simple expressions are derived th...... energies of 0.2–0.4 pJ. The superiority of QD SOAs is based on: 1) the faster achievement of the regime of maximum gain in QD SOAs compared to QW and bulk SOAs and 2) the lower effective cross section of photon-carrier interaction in QDs....... that clearly show the dependence of the maximum bit rate on material and device parameters. A comparative analysis of QD, quantum well (QW), and bulk SOAs shows that QD SOAs may have superior properties; calculations predict patterning-free amplification up to bit rates of 150–200 Gb/s with pulse output...

  9. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Ma Li; Zhu Hong-Liang; Liang Song; Zhao Ling-Juan; Chen Ming-Hua

    2013-01-01

    Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 × 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demonstrated. The average output power and the threshold current are 1.8 mW and 35 mA, respectively, when the injection current of the SOA is 100 mA, with a side mode suppression ratio (SMSR) exceeding 40 dB. The four channels have a 1-nm average channel spacing and can operate separately or simultaneously. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation

    Science.gov (United States)

    Zhang, Chi; Xu, Jianbing; Chui, P. C.; Wong, Kenneth K. Y.

    2013-06-01

    Real-time optical spectrum analysis is an essential tool in observing ultrafast phenomena, such as the dynamic monitoring of spectrum evolution. However, conventional method such as optical spectrum analyzers disperse the spectrum in space and allocate it in time sequence by mechanical rotation of a grating, so are incapable of operating at high speed. A more recent method all-optically stretches the spectrum in time domain, but is limited by the allowable input condition. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a frame rate as high as 100 MHz and accommodates various input conditions. As a proof of concept and also for the first time, we verify its applications in observing the dynamic spectrum of a Fourier domain mode-locked laser, and the spectrum evolution of a laser cavity during its stabilizing process.

  11. Effects of two-photon absorption on all optical logic operation based on quantum-dot semiconductor optical amplifiers

    Science.gov (United States)

    Zhang, Xiang; Dutta, Niloy K.

    2018-01-01

    We investigate all-optical logic operation in quantum-dot semiconductor optical amplifier (QD-SOA) based Mach-Zehnder interferometer considering the effects of two-photon absorption (TPA). TPA occurs during the propagation of sub-picosecond pulses in QD-SOA, which leads to a change in carrier recovery dynamics in quantum-dots. We utilize a rate equation model to take into account carrier refill through TPA and nonlinear dynamics including carrier heating and spectral hole burning in the QD-SOA. The simulation results show the TPA-induced pumping in the QD-SOA can reduce the pattern effect and increase the output quality of the all-optical logic operation. With TPA, this scheme is suitable for high-speed Boolean logic operation at 320 Gb/s.

  12. Optimum output coupling for a mid-infrared KTiOAsO4 optical parametric oscillator

    International Nuclear Information System (INIS)

    Li, Guochao; Gao, Yesheng; Zheng, Guangjin; Zhao, Yao; Chen, Kunfeng; Wang, Qingpu; Bai, Fen

    2013-01-01

    Taking into account the turn off time of the Q-switch, the coupled equations for a mid-infrared KTiOAsO 4 optical parametric oscillator (OPO) are given. These rate equations are solved numerically and some key parameters for designing the laser system are determined. The key parameters include the optimal coupling and nonlinear crystal length which maximize the output power and OPO conversion efficiency. We found that a low-loss singly resonant OPO cavity not only enhances the mid-infrared output but also decreases the optimal OPO crystal length. (paper)

  13. Pattern formation without diffraction matching in optical parametric oscillators with a metamaterial.

    Science.gov (United States)

    Tassin, Philippe; Van der Sande, Guy; Veretennicoff, Irina; Kockaert, Pascal; Tlidi, Mustapha

    2009-05-25

    We consider a degenerate optical parametric oscillator containing a left-handed material. We show that the inclusion of a left-handed material layer allows for controlling the strength and sign of the diffraction coefficient at either the pump or the signal frequency. Subsequently, we demonstrate the existence of stable dissipative structures without diffraction matching, i.e., without the usual relationship between the diffraction coefficients of the signal and pump fields. Finally, we investigate the size scaling of these light structures with decreasing diffraction strength.

  14. Properties and structure of high erbium doped phosphate glass for short optical fibers amplifiers

    International Nuclear Information System (INIS)

    Seneschal, Karine; Smektala, Frederic; Bureau, Bruno; Floch, Marie Le; Jiang Shibin; Luo, Tao; Lucas, Jacques; Peyghambarian, Nasser

    2005-01-01

    New phosphate glasses have been developed in order to incorporate high rare-earth ions concentrations. These glasses present a great chemical stability and a high optical quality. The phosphate glass network is open, very flexible, with a linkage of the tetrahedrons very disordered and contains a larger number of non-bridging oxygens (66%). The great stability and resistance against crystallization associated with the possibility to incorporate high doping concentration of rare-earth ions in these phosphate glasses make them very good candidates for the realization of ultra short single mode amplifiers with a high gain at 1.55 μm

  15. Overview of solid state lasers with applications as LIDAR transmitters and optical image amplifiers

    International Nuclear Information System (INIS)

    Powell, R.C.; Basiev, T.T.; Zverev, P.G.

    2000-01-01

    Full text: This talk will review the current status of solid state lasers. Then a specific class of solid state lasers, Raman lasers, will be discussed as a specific example of new technology development. The spectroscopic properties of the materials are used in these lasers is presented and the use of these materials in shared-, coupled-, and external-resonator laser systems is described. System design parameters affecting efficiency, beam quality, and temporal pulse width are discussed. Examples will be presented of the use of these lasers for transmitters in atmospheric and marine imaging light detection and ranging (LIDAR) systems and in optical amplifiers

  16. A transfer function approach to the small-signal response of saturated semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Blumenthal, D. J.; Mørk, Jesper

    2000-01-01

    A theoretical analysis of the small-signal frequency response (SSFR) of a wavelength converter based on cross-gain modulation in a semiconductor optical amplifier with a finite waveguide loss is presented. We use a transfer function formalism to explain the resonant behavior of the frequency...... response. The limitations to the magnitude of the spectral overshoot are also accounted for. Operating with the data and CW signals in a co-propagating configuration, we End that the resonance only exists for a finite waveguide loss. In a counter-propagating scheme, a resonance can exist regardless...

  17. Polymer-Optical-Fiber Lasers and Amplifiers Doped with Organic Dyes

    Directory of Open Access Journals (Sweden)

    Joseba Zubia

    2011-07-01

    Full Text Available Polymer optical fibers (POFs doped with organic dyes can be used to make efficient lasers and amplifiers due to the high gains achievable in short distances. This paper analyzes the peculiarities of light amplification in POFs through some experimental data and a computational model capable of carrying out both power and spectral analyses. We investigate the emission spectral shifts and widths and on the optimum signal wavelength and pump power as functions of the fiber length, the fiber numerical aperture and the radial distribution of the dopant. Analyses for both step-index and graded-index POFs have been done.

  18. Slow and fast light effects in semiconductor optical amplifiers for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi

    This thesis analyzes semiconductor optical amplifiers based slow and fast light effects with particular focus on the applications in microwave photonics. We conceive novel ideas and demonstrate a great enhancement of light slow down. Furthermore, by cascading several slow light stages, >360 degree...... microwave phase shifts over a bandwidth of several tens of gigahertz are achieved. These also satisfy the basic requirements of microwave photonic systems. As an application demonstration, a tunable microwave notch filter is realized, where slow light based phase shifters provide 100% fractional tuning over...

  19. Physical model for the incoherent writing/erasure of cavity solitons in semiconductor optical amplifiers.

    Science.gov (United States)

    Barbay, S; Kuszelewicz, R

    2007-09-17

    We present a physical mechanism that explains the recent observations of incoherent writing and erasure of Cavity Solitons in a semiconductor optical amplifier [S. Barbay et al, Opt. Lett. 31, 1504-1506 (2006)]. This mechanism allows to understand the main observations of the experiment. In particular it perfectly explains why writing and erasure are possible as a result of a local perturbation in the carrier density, and why a delay is observed along with the writing process. Numerical simulations in 1D are performed and show very good qualitative agreement with the experimental observations.

  20. Enhanced performance of semiconductor optical amplifier at high direct modulation speed with birefringent fiber loop

    Directory of Open Access Journals (Sweden)

    K. E. Zoiros

    2014-07-01

    Full Text Available We employ a birefringent fiber loop (BFL for enhancing the performance of a semiconductor optical amplifier (SOA which is directly modulated. By properly exploiting the BFL comb-like spectral response, we show that the SOA can be directly modulated at a data rate which is more than five times faster than that enabled by the SOA electrical bandwidth. The experimental results, which include chirp measurements, demonstrate the significant improvements achieved in the performance of the directly modulated SOA with the help of the BFL.

  1. Performance analysis of bi-directional broadband passive optical network using erbium-doped fiber amplifier

    Science.gov (United States)

    Almalaq, Yasser; Matin, Mohammad A.

    2014-09-01

    The broadband passive optical network (BPON) has the ability to support high-speed data, voice, and video services to home and small businesses customers. In this work, the performance of bi-directional BPON is analyzed for both down and up streams traffic cases by the help of erbium doped fiber amplifier (EDFA). The importance of BPON is reduced cost. Because PBON uses a splitter the cost of the maintenance between the providers and the customers side is suitable. In the proposed research, BPON has been tested by the use of bit error rate (BER) analyzer. BER analyzer realizes maximum Q factor, minimum bit error rate, and eye height.

  2. Figures of merit for microwave photonic phase shifters based on semiconductor optical amplifiers.

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2012-05-07

    We theoretically and experimentally compare the performance of two fully tunable phase shifter structures based on semiconductor optical amplifiers (SOA) by means of several figures of merit common to microwave photonic systems. A single SOA stage followed by a tailored notch filter is compared with a cascaded implementation comprising three SOA-based phase shifter stages. Attention is focused on the assessment of the RF net gain, noise figure and nonlinear distortion. Recommendations on the performance optimization of this sort of approaches are detailed.

  3. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  4. A high gain wide dynamic range transimpedance amplifier for optical receivers

    International Nuclear Information System (INIS)

    Liu Lianxi; Zou Jiao; Liu Shubin; Niu Yue; Zhu Zhangming; Yang Yintang; En Yunfei

    2014-01-01

    As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the −3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the −3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage. (semiconductor integrated circuits)

  5. Analysis and evaluation of zig-zag slab laser amplifier with optical diamond geometry

    International Nuclear Information System (INIS)

    Matsumoto, Osamu; Yasuhara, Ryo; Kanabe, Tadashi

    2007-01-01

    In this paper, we describe the development of a high-average-power solid-state laser system and the derivation of equations for the amplification of a laser beam. This laser system is capable of generating an output energy of 10J per pulse at a wavelength of 1,053nm in a 10 Hz operation for scientific and industrial applications. The main amplifier of our system is a laser-diode-pumped solid-state amplifier. A water-cooled Nd:glass slab is pumped with two 803 nm AlGaAs laser-diode modules. The laser beam propagates through zig-zag optical paths four times and is amplified. To estimate laser output energy, we have derived and evaluated equations for the amplification of the laser beam, and designed and constructed a laser system based on the calculated results. Experimental results reveal an output energy of 10.6 J at 1 Hz, which closely fits the results calculated using the derived equations. (author)

  6. Analysis of channel addition/removal response in all-optical gain-clamped cascade of lumped Raman fiber amplifiers

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Kaňka, Jiří; Radil, J.

    2004-01-01

    Roč. 22, č. 10 (2004), s. 2271-2278 ISSN 0733-8724 R&D Projects: GA AV ČR IAA2067202 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical communication * optical fibre amplifiers * wavelength division multiplexing Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.113, year: 2004

  7. Measurement of the linewidth enhancement factor based on nonlinear polarization rotation of semiconductor optical amplifier.

    Science.gov (United States)

    Liu, Guodong; Wu, Chongqing; Wang, Fu; Zhang, Tianyong; Shang, Chao; Gao, Kaiqiang

    2015-06-01

    A simple measurement scheme of the linewidth enhancement factor based on the nonlinear polarization rotation of a semiconductor optical amplifier is proposed. Considering the polarization dependent gain, the relationship between the linewidth enhancement factor and the Stokes vector was derived theoretically. It is proven that the linewidth enhancement factor can be calculated directly from the Stokes parameters without any other assistant measurement system. The results demonstrate that the linewidth enhancement factor varies in a small range from 10.5 to 8.5 for TE mode and from 8.2 to 5.8 for TM mode, respectively, when the input optical power varies from 50 μW to 1 mW and the bias current varies from 90 to 170 mA.

  8. Tunable femtosecond laser in the visible range with an intracavity frequency-doubled optical parametric oscillator

    International Nuclear Information System (INIS)

    Zhu Jiang-Feng; Xu Liang; Lin Qing-Feng; Zhong Xin; Han Hai-Nian; Wei Zhi-Yi

    2013-01-01

    We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical parametric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624–672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech 2 pulse profile. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Atmospheric boundary layer CO2 remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.

    Science.gov (United States)

    Cadiou, Erwan; Mammez, Dominique; Dherbecourt, Jean-Baptiste; Gorju, Guillaume; Pelon, Jacques; Melkonian, Jean-Michel; Godard, Antoine; Raybaut, Myriam

    2017-10-15

    We report on the capability of a direct detection differential absorption lidar (DIAL) for range resolved and integrated path (IPDIAL) remote sensing of CO 2 in the atmospheric boundary layer (ABL). The laser source is an amplified nested cavity optical parametric oscillator (NesCOPO) emitting approximately 8 mJ at the two measurement wavelengths selected near 2050 nm. Direct detection atmospheric measurements are taken from the ground using a 30 Hz frequency switching between emitted wavelengths. Results show that comparable precision measurements are achieved in DIAL and IPDIAL modes (not better than a few ppm) on high SNR targets such as near range ABL aerosol and clouds, respectively. Instrumental limitations are analyzed and degradation due to cloud scattering variability is discussed to explain observed DIAL and IPDIAL limitations.

  10. Contextual realization of the universal quantum cloning machine and of the universal-NOT gate by quantum-injected optical parametric amplification

    International Nuclear Information System (INIS)

    Pelliccia, D.; Schettini, V.; Sciarrino, F.; Sias, C.; De Martini, F.

    2003-01-01

    A simultaneous, contextual experimental demonstration of the two processes of cloning an input qubit vertical bar Ψ> and of flipping it into the orthogonal qubit vertical bar Ψ perpendicular> is reported. The adopted experimental apparatus, a quantum-injected optical parametric amplifier is transformed simultaneously into a universal optimal quantum cloning machine and into a universal-NOT quantum-information gate. The two processes, indeed forbidden in their exact form for fundamental quantum limitations, were found to be universal and optimal, i.e., the measured fidelity of both processes F<1 was found close to the limit values evaluated by quantum theory. A contextual theoretical and experimental investigation of these processes, which may represent the basic difference between the classical and the quantum worlds, can reveal in a unifying manner the detailed structure of quantum information. It may also enlighten the yet little explored interconnections of fundamental axiomatic properties within the deep structure of quantum mechanics

  11. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  12. Improving Continuous-Variable Measurement-Device-Independent Multipartite Quantum Communication with Optical Amplifiers*

    Science.gov (United States)

    Guo, Ying; Zhao, Wei; Li, Fei; Huang, Duan; Liao, Qin; Xie, Cai-Lang

    2017-08-01

    The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing scalable quantum networks. Up to now, most theoretical and experimental researches on CV-MDI QKD are focused on two-party protocols. However, we suggest a CV-MDI multipartite quantum secret sharing (QSS) protocol use the EPR states coupled with optical amplifiers. More remarkable, QSS is the real application in multipartite CV-MDI QKD, in other words, is the concrete implementation method of multipartite CV-MDI QKD. It can implement a practical quantum network scheme, under which the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Even if there is a possibility that the relay may be completely tampered, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Additionally, we illustrate that the use of optical amplifiers can compensate the partial inherent imperfections of detectors and increase the transmission distance of the CV-MDI quantum system.

  13. A Low-Power CMOS Trans-Impedance Amplifier for 2.5 Gb/S Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Mojgan Mohseni

    2013-01-01

    Full Text Available This Paper presents a new Trans-impedance amplifier for optical receiver circuits. The amplifier is based on parallel (R-C feedback topology which is optimized for power consumption and uses shunt-peaking technique to enhance the frequency bandwidth of the amplifier. However, the circuit is designed and simulated using 0.18µm CMOS technology parameters. As simulation results show, the amplifier has a gain of 67.5dBΩ, bandwidth of 3GHz while consumes only 12.16 mW power which shows a very good performance for using in a 2.5Gb/S (SONET OC-48 optical communication system. Finally, as the simulated Eye-Diagram shows, the circuit has a very good performance for a 2.5Gb/S system for a 10µA input current.

  14. Short-pulse optical parametric chirped-pulse amplification for the generation of high-power few-cycle pulses

    International Nuclear Information System (INIS)

    Major, Zs.; Osterhoff, J.; Hoerlein, R.; Karsch, S.; Fuoloep, J.A.; Krausz, F.; Ludwig-Maximilians Universitaet, Muenchen

    2006-01-01

    Complete test of publication follows. In the quest for a way to generate ultrashort, high-power, few-cycle laser pulses the discovery of optical parametric amplification (OPA) has opened up to the path towards a completely new regime, well beyond that of conventional laser amplification technology. The main advantage of this parametric amplification process is that it allows for an extremely broad amplification bandwidth compared to any known laser amplifier medium. When combined with the chirped-pulse amplification (CPA) principle (i.e. OPCPA), on one hand pulses of just 10 fs duration and 8 mJ pulse energy have been demonstrated. On the other hand, pulse energies of up to 30 J were also achieved on a different OPCPA system; the pulse duration in this case, however, was 100 fs. In order to combine ultrashort pulse durations (i.e. pulses in the few-cycle regime) with high pulse energies (i.e. in the Joule range) we propose tu pump on OPCPA chain with TW-scale short pulses (100 fs - 1 ps instead of > 100 ps of previous OPCPA systems) delivered by a conventional CPA system. This approach inherently improves the conditions for generating high-power ultrashort pulses using OPCPA in the following ways. Firstly, the short pump pulse duration reduces the necessary stretching factor for the seed pulse, thereby increasing stretching and compression fidelity. Secondly, also due to the shortened pump pulse duration, a much higher contrast is achieved. Finally, the significantly increased pump power makes the use of thinner OPCPA crystals possible, which implies an even broader amplification bandwidth, thereby allowing for even shorter pulses. We carried out theoretical investigations to show the feasibility of such a set-up. Alongside these studies we will also present preliminary experimental results of an OPCPA system pumped by the output of our Ti:Sapphire ATLAS laser, currently delivering 350 mJ in 43 fs. An insight into the planned scaling of this technique to petawatt

  15. Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier

    Science.gov (United States)

    Li, Qiang; Wang, Zhi; Le, Yansi; Sun, Chonghui; Song, Xiaojia; Wu, Chongqing

    2016-10-01

    Neuromorphic engineering has a wide range of applications in the fields of machine learning, pattern recognition, adaptive control, etc. Photonics, characterized by its high speed, wide bandwidth, low power consumption and massive parallelism, is an ideal way to realize ultrafast spiking neural networks (SNNs). Synaptic plasticity is believed to be critical for learning, memory and development in neural circuits. Experimental results have shown that changes of synapse are highly dependent on the relative timing of pre- and postsynaptic spikes. Synaptic plasticity in which presynaptic spikes preceding postsynaptic spikes results in strengthening, while the opposite timing results in weakening is called antisymmetric spike-timing-dependent plasticity (STDP) learning rule. And synaptic plasticity has the opposite effect under the same conditions is called antisymmetric anti-STDP learning rule. We proposed and experimentally demonstrated an optical implementation of neural learning algorithms, which can achieve both of antisymmetric STDP and anti-STDP learning rule, based on the cross-gain modulation (XGM) within a single semiconductor optical amplifier (SOA). The weight and height of the potentitation and depression window can be controlled by adjusting the injection current of the SOA, to mimic the biological antisymmetric STDP and anti-STDP learning rule more realistically. As the injection current increases, the width of depression and potentitation window decreases and height increases, due to the decreasing of recovery time and increasing of gain under a stronger injection current. Based on the demonstrated optical STDP circuit, ultrafast learning in optical SNNs can be realized.

  16. Computational analysis of the amplified spontaneous emission in quantum dot doped plastic optical fibers

    International Nuclear Information System (INIS)

    Peng, Xuefeng; Han, Yinxia; Hu, Guoqiang; Wu, Pinghui

    2014-01-01

    The properties of amplified spontaneous emission (ASE) in CdSe/ZnS quantum dot (QD) doped step-index polymer optical fibers (POFs) were computationally analyzed in this paper. A theoretical model based on the rate equations between two main energy levels of CdSe/ZnS QD was built in terms of time (t), distance traveled by light (z) and wavelength (λ), which can describe the ASE successfully. Through analyzing the spectral evolution with distance of the pulses propagating along the CdSe/ZnS QD doped POFs, dependences of the ASE threshold and the slope efficiency on the numerical aperture were obtained. Compared to the ASE in common dye-doped POFs, the pump threshold was just about 1/1000, but the slope efficiency was much higher. (paper)

  17. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Lobintsov, A A; Shramenko, M V [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A [' Sigm Plyus' Ltd, Moscow (Russian Federation); Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-11-30

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  18. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    International Nuclear Information System (INIS)

    Andreeva, E V; Il'chenko, S N; Lobintsov, A A; Shramenko, M V; Ladugin, M A; Marmalyuk, A A; Yakubovich, S D

    2013-01-01

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  19. Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

    Science.gov (United States)

    Williams, Benjamin S. (Inventor); Hu, Qing (Inventor)

    2009-01-01

    The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.

  20. Image-rotating cavity designs for improved beam quality in nanosecond optical parametric oscillators

    International Nuclear Information System (INIS)

    Smith, Arlee V.; Bowers, Mark S.

    2001-01-01

    We show by computer simulation that high beam quality can be achieved in high-energy, nanosecond optical parametric oscillators by use of image-rotating resonators. Lateral walk-off between the signal and the idler beams in a nonlinear crystal creates correlations across the beams in the walk off direction, or equivalently, creates a restricted acceptance angle. These correlations can improve the beam quality in the walk-off plane. We show that image rotation or reflection can be used to improve beam quality in both planes. The lateral walk-off can be due to birefringent walk-off in type II mixing or to noncollinear mixing in type I or type II mixing

  1. Investigation of a diode-pumped intracavity optical parametric oscillator in pulsed and continuous wave operation

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Skettrup, Torben; Balle-Petersen, O.

    2001-01-01

    Summary form only given. CW and pulsed compact tunable laser sources in the infrared have widespread scientific, medical and industrial applications. Such a laser source can be obtained by use of a diode-pumped intracavity optical parametric oscillator (IOPO). We report on a IOPO based on a Yb......:YAG laser incorporating a periodically poled LiNbO3 (PPLN) crystal inside the laser cavity to take advantage of the high circulating intracavity field. The Yb:YAG crystal is pumped by a reliable 940 nm fibre-coupled diode laser. The IOPO consists of a Yb:YAG crystal coated for HR at 1030 nm, an intracavity...... lens to generate a beam waist in the PPLN crystal, a dichroic mirror to separate the laser and signal fields and two end mirrors...

  2. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  3. Parametric feedback cooling of a single atom inside on optical cavity

    International Nuclear Information System (INIS)

    Tatjana Wilk

    2014-01-01

    An optical cavity can be used as a kind of intensifier to study radiation features of an atom, which are hard to detect in free space, like squeezing. Such experiments make use of strong coupling between atom and cavity mode, which experimentally requires the atom to be well localized in the cavity mode. This can be achieved using feedback on the atomic motion: from intensity variations of a probe beam transmitted through the cavity information about the atomic motion is gained, which is used to synchronously modulate the trapping potential holding the atom, leading to cooling and better localization. Here, we report on efficient parametric feedback cooling of a single atom held in an intra-cavity standing wave dipole trap. In contrast to previous feedback strategies, this scheme cools the fast axial oscillation of the atom as well as the slower radial motion. (author)

  4. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine

    Science.gov (United States)

    Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa

    2014-12-01

    Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.

  5. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  6. Investigation on phase noise of the signal from a singly resonant optical parametric oscillator

    Science.gov (United States)

    Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang

    2018-04-01

    The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.

  7. A High-Power Continuous-Wave Mid-Infrared Optical Parametric Oscillator Module

    Directory of Open Access Journals (Sweden)

    Yichen Liu

    2017-12-01

    Full Text Available We demonstrate here a compact optical parametric oscillator module for mid-infrared generation via nonlinear frequency conversion. This module weighs only 2.5 kg and fits within a small volume of 220 × 60 × 55 mm3. The module can be easily aligned to various pump laser sources, and here we use a 50 W ytterbium (Yb-doped fiber laser as an example. With a two-channel MgO-doped periodically poled lithium niobate crystal (MgO:PPLN, our module covers a tuning range of 2416.17–2932.25 nm and 3142.18–3452.15 nm. The highest output power exceeds 10.4 W at 2.7 μm, corresponding to a conversion efficiency of 24%. The measured power stability is 2.13% Root Meat Square (RMS for a 10 h duration under outdoor conditions.

  8. Heralded creation of photonic qudits from parametric down-conversion using linear optics

    Science.gov (United States)

    Yoshikawa, Jun-ichi; Bergmann, Marcel; van Loock, Peter; Fuwa, Maria; Okada, Masanori; Takase, Kan; Toyama, Takeshi; Makino, Kenzo; Takeda, Shuntaro; Furusawa, Akira

    2018-05-01

    We propose an experimental scheme to generate, in a heralded fashion, arbitrary quantum superpositions of two-mode optical states with a fixed total photon number n based on weakly squeezed two-mode squeezed state resources (obtained via weak parametric down-conversion), linear optics, and photon detection. Arbitrary d -level (qudit) states can be created this way where d =n +1 . Furthermore, we experimentally demonstrate our scheme for n =2 . The resulting qutrit states are characterized via optical homodyne tomography. We also discuss possible extensions to more than two modes concluding that, in general, our approach ceases to work in this case. For illustration and with regards to possible applications, we explicitly calculate a few examples such as NOON states and logical qubit states for quantum error correction. In particular, our approach enables one to construct bosonic qubit error-correction codes against amplitude damping (photon loss) with a typical suppression of √{n }-1 losses and spanned by two logical codewords that each correspond to an n -photon superposition for two bosonic modes.

  9. Intracavity Cr3+:LiCAF + PPSLT optical parametric oscillator with self-injection-locked pump wave

    International Nuclear Information System (INIS)

    Maestre, H; Torregrosa, A J; Capmany, J

    2013-01-01

    In this letter we present an intracavity pumped continuous wave (CW) doubly resonant optical parametric oscillator (OPO) based on Cr 3+ :LiCaAlF 6 (Cr:LiCAF) as the material generating the OPO pump wave and periodically poled stoichiometric lithium tantalate (PPSLT) as the nonlinear material. The OPO pump wave is spectrally narrowed and tuned by means of an external cavity, thus allowing self-injection locking of the OPO pump wavelength. When operated near degeneracy, the constructed OPO enables a fast tuning of the parametrically generated wavelengths in response to small perturbations of the phase-matching condition. The Cr:LiCAF emission band is especially well suited to provide dual-wavelength oscillation in the optical communications 1550 nm band as a result of the parametric oscillation in PPSLT. (letter)

  10. All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polarization-dependent semiconductor optical amplifiers

    Science.gov (United States)

    Wang, Yongjun; Liu, Xinyu; Tian, Qinghua; Wang, Lina; Xin, Xiangjun

    2018-03-01

    Basic configurations of various all-optical clocked flip-flops (FFs) and optical random access memory (RAM) based on the nonlinear polarization rotation (NPR) effect of low-polarization-dependent semiconductor optical amplifiers (SOA) are proposed. As the constituent elements, all-optical logic gates and all-optical SR latches are constructed by taking advantage of the SOA's NPR switch. Different all-optical FFs (AOFFs), including SR-, D-, T-, and JK-types as well as an optical RAM cell were obtained by the combination of the proposed all-optical SR latches and logic gates. The effectiveness of the proposed schemes were verified by simulation results and demonstrated by a D-FF and 1-bit RAM cell experimental system. The proposed all-optical clocked FFs and RAM cell are significant to all-optical signal processing.

  11. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  12. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Öhman, Filip

    2009-01-01

    We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We...... demonstrate ~120º phase delay as well as ~170º phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based...

  13. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  14. Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links

    Science.gov (United States)

    Jiao, Haisong; Pu, Tao; Xiang, Peng; Zheng, Jilin; Fang, Tao; Zhu, Huatao

    2017-08-01

    The quantitative security of quantum-noise randomized cipher (QNRC) in optically amplified links is analyzed from the perspective of physical-layer advantage. Establishing the wire-tap channel models for both key and data, we derive the general expressions of secrecy capacities for the key against ciphertext-only attack and known-plaintext attack, and that for the data, which serve as the basic performance metrics. Further, the maximal achievable secrecy rate of the system is proposed, under which secrecy of both the key and data is guaranteed. Based on the same framework, the secrecy capacities of various cases can be assessed and compared. The results indicate perfect secrecy is potentially achievable for data transmission, and an elementary principle of setting proper number of photons and bases is given to ensure the maximal data secrecy capacity. But the key security is asymptotically perfect, which tends to be the main constraint of systemic maximal secrecy rate. Moreover, by adopting cascaded optical amplification, QNRC can realize long-haul transmission with secure rate up to Gb/s, which is orders of magnitude higher than the perfect secrecy rates of other encryption systems.

  15. Microwave phase shifter with controllable power response based on slow-and fast-light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2009-01-01

    with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of 240° at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique...

  16. Nonlinear properties of quantum dot semiconductor optical amplifiers at 1.3 μm Invited Paper

    Institute of Scientific and Technical Information of China (English)

    D. Bimberg; C. Meuer; M. L(a)mmlin; S. Liebich; J. Kim; A. Kovsh; I. Krestnikov; G. Eisenstein

    2008-01-01

    @@ The dynamics of nonlinear processes in quantum dot (QD) semiconductor optical amplifiers (SOAs) are investigated. Using small-signal measurements, the suitabilities of cross-gain and cross-phase modulation as well as four wave mixing (FWM) for wavelength conversion are examined. The cross-gain modulation is found to be suitable for wavelength conversion up to a frequency of 40 GHz.

  17. A 7-13 GHz low-noise tuned optical front-end amplifier for heterodyne transmission system application

    DEFF Research Database (Denmark)

    Ebskamp, Frank; Schiellerup, Gert; Høgdal, Morten

    1991-01-01

    The authors present a 7-13 GHz low-noise bandpass tuned optical front-end amplifier, showing 46±1 dBΩ transimpedance, and a noise spectral density of about 12 pA/√Hz. This is the first time such a flat response and such low noise were obtained simultaneously at these frequencies, without any...

  18. Output power PDF of a saturated semiconductor optical amplifier: Second-order noise contributions by path integral method

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper; Tromborg, Bjarne

    2007-01-01

    We have developed a second-order small-signal model for describing the nonlinear redistribution of noise in a saturated semiconductor optical amplifier. In this paper, the details of the model are presented. A numerical example is used to compare the model to statistical simulations. We show that...

  19. Frequency-swept laser light source at 1050 nm with higher bandwidth due to multiple semiconductor optical amplifiers in series

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Thrane, Lars; Andersen, Peter E.

    2009-01-01

    We report on the development of an all-fiber frequency-swept laser light source in the 1050 nm range based on semiconductor optical amplifiers (SOA) with improved bandwidth due to multiple gain media. It is demonstrated that even two SOAs with nearly equal gain spectra can improve the performance...

  20. Optimisation of 40 Gb/s wavelength converters based on four-wave mixing in a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Schulze, K.; Petersen, Martin Nordal; Herrera, J.

    2007-01-01

    The optimum operating powers and wavelengths for a 40 Gb/s wavelength converter based on four-wave mixing in a semiconductor 14 optical amplifier are inferred from experimental results. From these measurements, some general rules of thumb are derived for this kind of devices. Generally, the optim...

  1. Degradation of Side-Mode Suppression Ratio in a DFB Laser Integrated With a Semiconductor Optical Amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Lestrade, Michel; Camel, Jérôme

    2004-01-01

    The degradation of the side-mode suppression ratio (SMSR) in a monolithically integrated distributed feedback laser and semiconductor optical amplifier (SOA) cavity is investigated. An expression is derived that gives the degradation of the SMSR in the case of a perfectly antireflection-coated SO...

  2. Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and intermodulation distortion

    DEFF Research Database (Denmark)

    Durhuus, Terji; Mikkelsen, Benny; Stubkjær, Kristian

    1992-01-01

    . The model is used to assess intermodulation distortion and crosstalk. Cascaded amplifiers are considered, and the crosstalk and intermodulation distortion due to cascaded amplifiers are found to accumulate by adding together in amplitude; this may limit the number or cascaded amplifiers in multichannel...

  3. Use of KRS-XE positive chemically amplified resist for optical mask manufacturing

    Science.gov (United States)

    Ashe, Brian; Deverich, Christina; Rabidoux, Paul A.; Peck, Barbara; Petrillo, Karen E.; Angelopoulos, Marie; Huang, Wu-Song; Moreau, Wayne M.; Medeiros, David R.

    2002-03-01

    The traditional mask making process uses chain scission-type resists such as PBS, poly(butene-1-sulfone), and ZEP, poly(methyl a-chloroacrylate-co-a-methylstyrene) for making masks with dimensions greater than 180nm. PBS resist requires a wet etch process to produce patterns in chrome. ZEP was employed for dry etch processing to meet the requirements of shrinking dimensions, optical proximity corrections and phase shift masks. However, ZEP offers low contrast, marginal etch resistance, organic solvent development, and concerns regarding resist heating with its high dose requirements1. Chemically Amplified Resist (CAR) systems are a very good choice for dimensions less than 180nm because of their high sensitivity and contrast, high resolution, dry etch resistance, aqueous development, and process latitude2. KRS-XE was developed as a high contrast CA resist based on ketal protecting groups that eliminate the need for post exposure bake (PEB). This resist can be used for a variety of electron beam exposures, and improves the capability to fabricate masks for devices smaller than 180nm. Many factors influence the performance of resists in mask making such as post apply bake, exposure dose, resist develop, and post exposure bake. These items will be discussed as well as the use of reactive ion etching (RIE) selectivity and pattern transfer.

  4. Enhancing Optically Pumped Organic-Inorganic Hybrid Perovskite Amplified Spontaneous Emission via Compound Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2018-03-01

    Full Text Available Organic-inorganic hybrid perovskite has attracted intensive attention from researchers as the gain medium in lasing devices. However, achieving electrically driven lasing remains a significant challenge. Modifying the devices’ structure to enhance the optically pumped amplified spontaneous emission (ASE is the key issue. In this work, gold nanoparticles (Au NPs are first doped into PEDOT: PSS buffer layer in a slab waveguide device structure: Quartz/PEDOT: PSS (with or w/o Au NPs/CH3NH3PbBr3. As a result, the facile device shows a significantly enhanced ASE intensity and a narrowed full width at half maximum. Based on experiments and theoretical simulation data, the improvement is mainly a result of the compound surface plasmon resonance, including simultaneous near- and far-field effects, both of which could increase the density of excitons excited state and accelerate the radiative decay process. This method is highly significant for the design and development and fabrication of high-performance organic-inorganic hybrid perovskite lasing diodes.

  5. All-optical OR/NOR Bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Choi, Kyoung Sun; Byun, Young Tae; Lee, Seok; Jhon, Young Min

    2010-01-01

    An OR/NOR bi-functional all-optical logic gate has been experimentally demonstrated at 10 Gbit/s by using cross-gain modulation (XGM) in only 2 semiconductor optical amplifiers (SOAs). One SOA was used for NOR operation and the other SOA was used for inversion to obtain OR operation. Numerical simulation has also been performed, which coincided well with the experimental results.

  6. High energy eye-safe and mid-infrared optical parametric oscillator

    International Nuclear Information System (INIS)

    Liu, J; Liu, Q; Huang, L; Gong, M

    2010-01-01

    A high energy eye-safe and mid-infrared optical parametric oscillator (OPO) is demonstrated. The nonlinear media is a Y-cut KTA crystal with the length of 20 mm, which is pumped by a Nd:YAG laser. Both eye-safe and mid-infrared laser are output with high energy. When the pump energy is 1 J and the pulse duration is 10 ns, we get 53 mJ idler at 3.632 μm and 151 mJ signal at 1.505 μm. As we know, the idler energy is the highest at the wavelength beyond 3.5 μm and the signal energy is the highest with Y-cut KTA. The results prove that the Y-cut KTA crystal can produce the signal and idler with the energies as high as these in the paper. We have tested the temperature-tuning characters and the coefficient of the idler is 0.26 nm/°C

  7. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy

    Science.gov (United States)

    Jin, Yuwei; Cristescu, Simona M.; Harren, Frans J. M.; Mandon, Julien

    2015-04-01

    We demonstrate mid-infrared dual-comb spectroscopy with an optical parametric oscillator (OPO) toward real-time field measurement. A singly resonant OPO based on a MgO-doped periodically poled lithium niobate (PPLN) crystal is demonstrated. Chirped mirrors are used to compensate the dispersion caused by the optical cavity and the crystal. A low threshold of 17 mW has been achieved. The OPO source generates a tunable idler frequency comb between 2.7 and 4.7 μm. Dual-comb spectroscopy is achieved by coupling two identical Yb-fiber mode-locked lasers to this OPO with slightly different repetition frequencies. A measured absorption spectrum of methane is presented with a spectral bandwidth of , giving an instrumental resolution of . In addition, a second OPO containing two MgO-doped PPLN crystals in a singly resonant ring cavity is demonstrated. As such, this OPO generates two idler combs (average power up to 220 mW), covering a wavelength range between 2.7 and 4.2 μm, from which a mid-infrared dual-comb Fourier transform spectrometer is constructed. By detecting the heterodyned signal between the two idler combs, broadband spectra of molecular gases can be observed over a spectral bandwidth of more than . This special cavity design allows the spectral resolution to be improved to without locking the OPO cavity, indicating that this OPO represents an ideal high-power broadband mid-infrared source for real-time gas sensing.

  8. Parametric spectro-temporal analyzer (PASTA) for ultrafast optical performance monitoring

    Science.gov (United States)

    Zhang, Chi; Wong, Kenneth K. Y.

    2013-12-01

    Ultrafast optical spectrum monitoring is one of the most challenging tasks in observing ultrafast phenomena, such as the spectroscopy, dynamic observation of the laser cavity, and spectral encoded imaging systems. However, conventional method such as optical spectrum analyzer (OSA) spatially disperses the spectrum, but the space-to-time mapping is realized by mechanical rotation of a grating, so are incapable of operating at high speed. Besides the spatial dispersion, temporal dispersion provided by dispersive fiber can also stretches the spectrum in time domain in an ultrafast manner, but is primarily confined in measuring short pulses. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a 100-MHz frame rate and can measure arbitrary waveforms. For the first time, we observe the dynamic spectrum of an ultrafast swept-source: Fourier domain mode-locked (FDML) laser, and the spectrum evolution of a laser cavity during its stabilizing process. In addition to the basic single-lens structure, the multi-lens configurations (e.g. telescope or wide-angle scope) will provide a versatile operating condition, which can zoom in to achieve 0.05-nm resolution and zoom out to achieve 10-nm observation range, namely 17 times zoom in/out ratio. In view of the goal of achieving spectrum analysis with fine accuracy, PASTA provides a promising path to study the real-time spectrum of some dynamic phenomena and non-repetitive events, with orders of magnitude enhancement in the frame rate over conventional OSAs.

  9. Nonlinear optical interactions in silicon waveguides

    Directory of Open Access Journals (Sweden)

    Kuyken B.

    2017-03-01

    Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  10. Method of developing all-optical trinary JK, D-type, and T-type flip-flops using semiconductor optical amplifiers.

    Science.gov (United States)

    Garai, Sisir Kumar

    2012-04-10

    To meet the demand of very fast and agile optical networks, the optical processors in a network system should have a very fast execution rate, large information handling, and large information storage capacities. Multivalued logic operations and multistate optical flip-flops are the basic building blocks for such fast running optical computing and data processing systems. In the past two decades, many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitations because of the low switching response of active devices. The frequency encoding technique has been used because of its many advantages. It can preserve its identity throughout data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. The action of polarization-rotation-based very fast switching of semiconductor optical amplifiers increases processing speed. At the same time, tristate optical flip-flops increase information handling capacity.

  11. Entanglement, Einstein Podolsky Rosen correlations and Schrodinger cat state generation by quantum-injected optical parametric amplification

    International Nuclear Information System (INIS)

    De Martini, Francesco; Sciarrino, Fabio

    2007-01-01

    We investigate the multi-photon quantum superposition state generated by the quantum-injected high-gain optical parametric amplification of a single photon. The physical configurations based on the optimal universal and on the phase-covariant quantum cloning have been adopted. The theoretical results are supported by a set of experiments leading to the generation of an average number of clones in excess of 10 3

  12. Carrier dynamics in inhomogeneously broadened InAs/AlGaInAs/InP quantum-dot semiconductor optical amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Karni, O., E-mail: oulrik@tx.technion.ac.il; Mikhelashvili, V.; Eisenstein, G. [Electrical Engineering Department, Technion—Israel Institute of Technology, Haifa 32000 (Israel); Kuchar, K. J. [Electrical Engineering Department, Technion—Israel Institute of Technology, Haifa 32000 (Israel); Institute of Physics, Wroclaw University of Technology, Wroclaw 50-370 (Poland); Capua, A. [Electrical Engineering Department, Technion—Israel Institute of Technology, Haifa 32000 (Israel); IBM Almaden Research Center, San Jose, 95120 California (United States); Sęk, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wroclaw 50-370 (Poland); Ivanov, V.; Reithmaier, J. P. [Technische Physik, Institute of Nanostructure Technology and Analytics, CINSaT, University of Kassel, Kassel D-34132 (Germany)

    2014-03-24

    We report on a characterization of fundamental gain dynamics in recently developed InAs/InP quantum-dot semiconductor optical amplifiers. Multi-wavelength pump-probe measurements were used to determine gain recovery rates, following a powerful optical pump pulse, at various wavelengths for different bias levels and pump excitation powers. The recovery was dominated by coupling between the electronic states in the quantum-dots and the high energy carrier reservoir via capture and escape mechanisms. These processes determine also the wavelength dependencies of gain saturation depth and the asymptotic gain recovery level. Unlike quantum-dash amplifiers, these quantum-dots exhibit no instantaneous gain response, confirming their quasi zero-dimensional nature.

  13. Transistor amplifier as an electrochemical transducer with intuitive optical read-out: Improving its performance with simple electronic solutions

    Czech Academy of Sciences Publication Activity Database

    Lacina, K.; Žák, J.; Sopoušek, J.; Szabó, Z.; Václavek, Tomáš; Žeravík, J.; Fiala, P.; Skládal, P.

    2016-01-01

    Roč. 216, OCT (2016), s. 147-151 ISSN 0013-4686 R&D Projects: GA ČR GA13-09086S; GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : electrochemical transducer transistor * operational amplifier * optical read-out * ( bio )sensing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.798, year: 2016

  14. Transistor amplifier as an electrochemical transducer with intuitive optical read-out: Improving its performance with simple electronic solutions

    Czech Academy of Sciences Publication Activity Database

    Lacina, K.; Žák, J.; Sopoušek, J.; Szabó, Z.; Václavek, Tomáš; Žeravík, J.; Fiala, P.; Skládal, P.

    2016-01-01

    Roč. 216, OCT (2016), s. 147-151 ISSN 0013-4686 R&D Projects: GA ČR GA13-09086S; GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : electrochemical transducer transistor * operational amplifier * optical read-out * (bio)sensing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.798, year: 2016

  15. Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers

    International Nuclear Information System (INIS)

    Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal

    2010-01-01

    An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

  16. A High Gain-Bandwidth Product Distributed Transimpedance Amplifier IC for High-Speed Optical Transmission Using Low-Cost GaAs Technology.

    OpenAIRE

    Giannini, F.; Limiti, E.; Orengo, G.; Serino, A.; De Dominicis, M.

    2002-01-01

    This paper reports a distributed baseband transimpedance amplifier for optical links up to 10 Gb/s. The amplifier operates as a baseband amplifier with a transimpedance gain of 48 dB Ω and a DC-to-9 GHz bandwidth. Some innovative design techniques to improve gain-bandwidth performance at low and high frequency with an available low-cost GaAs MESFET technology have been developed.

  17. A high-power narrow-linewidth optical parametric oscillator based on PPMgLN

    International Nuclear Information System (INIS)

    Peng, Y F; Wei, X B; Xie, G; Gao, J R; Li, D M; Wang, W M

    2013-01-01

    A high-power and narrow-linewidth tunable optical parametric oscillator based on PPMgLN is presented. The phase matching type e → e + e is used to avoid the walk-off effect and utilize the maximum nonlinear coefficient d 33 (27.4 pm V −1 ) of the PPMgLN crystal (5 mol% MgO doped). When the pump power of the 1064 nm laser is 50 W and the temperature of the PPMgLN crystal is 100 °C, average output power of 15.8 W is obtained with a slope efficiency of 40.6%. The 1.655 μm signal and 2.98 μm idler output powers are 9.5 W and 6.3 W, respectively. The linewidth of the 1.655 μm signal laser is 1.00 nm before compression and 0.05 nm after compression. The compression ratio is 20. The linewidth of the 2.98 μm idler laser is within 0.30–0.63 nm based on theoretical analysis of the linewidth of the 1064 nm pump laser and 1.655 μm signal laser. The output wavelength can be tuned from 1.6 to 1.8 μm and from 3.1 to 2.7 μm by changing the temperature of the 31.2 μm PPMgLN crystal from 30 to 200 °C. (paper)

  18. Noncritical quadrature squeezing in two-transverse-mode optical parametric oscillators

    International Nuclear Information System (INIS)

    Navarrete-Benlloch, Carlos; Roldan, Eugenio; Valcarcel, German J. de; Romanelli, Alejandro

    2010-01-01

    In this article we explore the quantum properties of a degenerate optical parametric oscillator when it is tuned to the first family of transverse modes at the down-converted frequency. Recently we found [C. Navarrete-Benlloch et al., Phys. Rev. Lett. 100, 203601 (2008)] that above threshold a TEM 10 mode following a random rotation in the transverse plane emerges in this system (we denote it as the bright mode), breaking thus its rotational invariance. Then, owing to the mode orientation being undetermined, we showed that the phase quadrature of the transverse mode orthogonal to this one (denoted as the dark mode) is perfectly squeezed at any pump level and without an increase in the fluctuations on its amplitude quadrature (which seems to contradict the uncertainty principle). In this article we go further in the study of this system and analyze some important features not considered previously. First we show that the apparent violation of the uncertainty principle is just that -'apparent' - as the conjugate pair of the squeezed quadrature is not another quadrature but the orientation of the bright mode (which is completely undetermined in the long term). We also study a homodyne scheme in which the local oscillator is not perfectly matched to the dark mode, as this could be impossible in real experiments due to the random rotation of the mode, showing that even in this case large levels of noise reduction can be obtained (also including the experimentally unavoidable phase fluctuations). Finally, we show that neither the adiabatic elimination of the pump variables nor the linearization of the quantum equations are responsible for the remarkable properties of the dark mode (which we prove analytically and through numerical simulations, respectively), which were simplifying assumptions used in Navarrete-Benlloch et al. [Phys. Rev. Lett. 100, 203601 (2008)]. These studies show that the production of noncritically squeezed light through spontaneous rotational

  19. Research on disk amplifiers as polarizer of electro-optical switch

    CERN Document Server

    Zheng Kui Xing; Feng Bin; Zheng Jian; Dong Yun; Peng Zhi Tao; Lu Jing Ping; Jing Feng; Wei Xiao Feng

    2002-01-01

    It benefits to decrease the engineering cost and to debase the technical crisis by the polarizer composed of amplifier Nd sup 3 sup + : glass slabs located with the Brewster angle in large scale multi-passes laser facility. The relationships of the isolation efficiency with the numbers of slab, the growth of the amplifier and the switch efficiency of Pockels cell are calculated theoretically. The experimental results indicated that the output energy ratio of this Pockels cell-amplifier isolation system is 1 : 8 while Pockels cell is on and off

  20. Measurements of gain and index dynamics in quantum dash semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    Ultrafast gain and index recovery of a 1.5um quantum dash amplifier after short pulse amplification is measured using pump-probe spectroscopy. The major part of the gain reduction is found to recover within a few picoseconds....

  1. Theoretical analysis of four wave mixing in quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2003-01-01

    The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing.......The four wave mixing properties of semiconductor quantum dot amplifiers have been investigated. The combination of strong non-equilibrium depletion of dot levels and a small linewidth enhancement factor results in efficient and symmetric four wave mixing....

  2. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers.

    Science.gov (United States)

    Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang

    2015-02-09

    We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.

  3. Optical design and studies of a tiled single grating pulse compressor for enhanced parametric space and compensation of tiling errors

    Science.gov (United States)

    Daiya, D.; Patidar, R. K.; Sharma, J.; Joshi, A. S.; Naik, P. A.; Gupta, P. D.

    2017-04-01

    A new optical design of tiled single grating pulse compressor has been proposed, set-up and studied. The parametric space, i.e. the laser beam diameters that can be accommodated in the pulse compressor for the given range of compression lengths, has been calculated and shown to have up to two fold enhancement in comparison to our earlier proposed optical designs. The new optical design of the tiled single grating pulse compressor has an additional advantage of self compensation of various tiling errors like longitudinal and lateral piston, tip and groove density mismatch, compared to the earlier designs. Experiments have been carried out for temporal compression of 650 ps positively chirped laser pulses, at central wavelength 1054 nm, down to 235 fs in the tiled grating pulse compressor set up with the proposed design. Further, far field studies have been performed to show the desired compensation of the tiling errors takes place in the new compressor.

  4. Amplified spontaneous emission and laser emission from a high optical-gain medium of dye-doped dendrimer

    International Nuclear Information System (INIS)

    Yokoyama, Shiyoshi; Nakahama, Tatsuo; Mashiko, Shinro

    2005-01-01

    We measured the amplified spontaneous emission and laser emission from high-gain media of laser-dye encapsulated dendrimers. A highly branched poly(amidoamine) (PAMAM-OH) dendrimer formed a guest-host complex with a conventional laser-dye (DCM), resulting in a high optical-gain. Of particular note was the appearance of a laser threshold, above which a super-narrowed laser spectrum was observed, although laser feedback was caused without any mirror cavity devices. The optical feedback was attributed to spatial confinement of the light due to gain guiding under optical excitation. The laser spectrum clearly indicated a resonant laser-mode with a spectrum linewidth of less than 0.1 nm. This order of spectrum narrowing is comparable to that seen in the laser emission from ordinary laser devices

  5. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  6. Measurement of IR optics with linear coupling's action-angle parametrization

    Science.gov (United States)

    Luo, Y.; Bai, M.; Pilat, F.; Satogata, T.; Trbojevic, D.

    2005-08-01

    Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM) data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs), using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.

  7. Measurement of IR optics with linear coupling’s action-angle parametrization

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2005-08-01

    Full Text Available Linear coupling’s action-angle parametrization is convenient for interpretation of turn-by-turn beam position monitor (BPM data. We demonstrate how to apply this parametrization to extract Twiss and coupling parameters in interaction regions (IRs, using BPMs on each side of a long IR drift region. Example data were acquired at the Relativistic Heavy Ion Collider, using an ac dipole to excite a single transverse eigenmode. We have measured the waist of the β function and its Twiss and coupling parameters.

  8. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    Science.gov (United States)

    Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  9. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots.

    Science.gov (United States)

    Geiregat, Pieter; Houtepen, Arjan J; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  10. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator

    Science.gov (United States)

    Lamour, Tobias P.; Reid, Derryck T.

    2011-08-01

    Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

  11. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2011-01-01

    We investigate the effect of temperature gradients in high-power Yb-doped fiber amplifiers by a numerical beam propagation model, which takes thermal effects into account in a self-consistent way. The thermally induced change in the refractive index of the fiber leads to a thermal lensing effect...

  12. Multicanonical evaluation of the tails of the probability density function of semiconductor optical amplifier output power fluctuations

    DEFF Research Database (Denmark)

    Tromborg, Bjarne; Reimer, Michael; Yevick, David

    2010-01-01

    This paper presents a multicanonical Monte Carlo method for simulating the tails of a pdf distribution of the filtered output power from a semiconductor optical amplifier down to values of the order of 10−40. The influence of memory effects on the pdf is examined in order to demonstrate the manner...... in which the calculated pdf approaches the true pdf with increasing integration time. The simulated pdf is shown to be in good agreement with a second order analytic expression for the pdf....

  13. Parametric excitation of a SiN membrane via piezoelectricity

    Directory of Open Access Journals (Sweden)

    Shuhui Wu

    2018-01-01

    Full Text Available We develop a stoichiometric silicon nitride (SiN membrane-based electromechanical system, in which the spring constant of the mechanical resonator can be dynamically controlled via piezoelectric actuation. The degenerate parametric amplifier is studied in this configuration. We observe the splitting of mechanical mode in the response spectra of a phase-sensitive parametric amplifier. In addition, we demonstrate that the quality factor Q of the membrane oscillator can be significantly enhanced by more than two orders of magnitude due to the coherent amplification, reaching an effective Q factor of ∼3 × 108 at room temperature. The nonlinear effect on the parametric amplification is also investigated, as well as the thermomechanical noise squeezing. This system offers the possibility to integrate electrical, optical and mechanical degrees of freedom without compromising the exceptional material properties of SiN membranes, and can be a useful platform for studying cavity optoelectromechanics.

  14. Parametric excitation of a SiN membrane via piezoelectricity

    Science.gov (United States)

    Wu, Shuhui; Sheng, Jiteng; Zhang, Xiaotian; Wu, Yuelong; Wu, Haibin

    2018-01-01

    We develop a stoichiometric silicon nitride (SiN) membrane-based electromechanical system, in which the spring constant of the mechanical resonator can be dynamically controlled via piezoelectric actuation. The degenerate parametric amplifier is studied in this configuration. We observe the splitting of mechanical mode in the response spectra of a phase-sensitive parametric amplifier. In addition, we demonstrate that the quality factor Q of the membrane oscillator can be significantly enhanced by more than two orders of magnitude due to the coherent amplification, reaching an effective Q factor of ˜3 × 108 at room temperature. The nonlinear effect on the parametric amplification is also investigated, as well as the thermomechanical noise squeezing. This system offers the possibility to integrate electrical, optical and mechanical degrees of freedom without compromising the exceptional material properties of SiN membranes, and can be a useful platform for studying cavity optoelectromechanics.

  15. Gain optimization in fiber optical parametric amplifiers by combining standard and high-SBS threshold highly nonlinear fibers

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Rottwitt, Karsten; Peucheret, Christophe

    2012-01-01

    Combining Al-doped and Ge-doped HNLFs as gain media in FOPAs is proposed and optimized, resulting in efficient SBS mitigation while circumventing the additional loss of the high SBS threshold Al-doped fiber.......Combining Al-doped and Ge-doped HNLFs as gain media in FOPAs is proposed and optimized, resulting in efficient SBS mitigation while circumventing the additional loss of the high SBS threshold Al-doped fiber....

  16. Ultra-Broadband Infrared Pulses from a Potassium-Titanyl Phosphate Optical Parametric Amplifier for VIS-IR-SFG Spectroscopy

    Science.gov (United States)

    Isaienko, Oleksandr; Borguet, Eric

    A non-collinear KTP-OPA to provide ultra-broadband mid-infrared pulses was designed and characterized. With proper pulse-front and phase correction, the system has a potential for high-time resolution vibrational VIS-IR-SFG spectroscopy.

  17. Broadly tunable, beta-barium-borate-based, pulsed optical parametric oscillators and their potential applications in medicine

    Science.gov (United States)

    Sobey, Mark S.; Clark, Jim; Johnson, Bertram C.

    1995-05-01

    With the recent availability of Beta Barium Borate (BBO) crystals in useful sizes at acceptable market prices, the promise of Optical Parametric Oscillators (OPOs) becoming practical tunable systems is finally being realized. Wavelength coverage from such systems extends from 420 nm to over 2400 nm when pumped in the UV. For medical applications their usage will be limited in the near term to low repetition rates (suitable for selective absorption applications in medicine such as colored tattoo removal or treating vascular lesions. For such high energy devices peak powers necessitate the use of articulating arms for beam delivery. For high repetition rate systems, energy outputs will be in the range of 100 to 500 (mu) J at kHz frequencies (up to 1 W average power). Peak powers are low enough that fiber optic delivery is possible. These systems may find selective absorption applications in ophthalmology.

  18. Efficient continuous-wave eye-safe region signal output from intra-cavity singly resonant optical parametric oscillator

    International Nuclear Information System (INIS)

    Li Bin; Ding Xin; Sheng Quan; Yin Su-Jia; Shi Chun-Peng; Li Xue; Wen Wu-Qi; Yao Jian-Quan; Yu Xuan-Yi

    2012-01-01

    We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO 4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401–1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Frequency comb generation by a continuous-wave-pumped optical parametric oscillator based on cascading quadratic nonlinearities.

    Science.gov (United States)

    Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku

    2013-11-01

    We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.

  20. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Zeghuzi, A.; Schmeckebier, H.; Stubenrauch, M.; Bimberg, D.; Meuer, C.; Schubert, C.; Bunge, C.-A.

    2015-01-01

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-μm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation

  1. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  2. In situ aerosol characterization at Cape Verde. Part 2: Parametrization of relative humidity- and wavelength-dependent aerosol optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Schladitz, Alexander; Muller, Thomas; Nordmann, Stephan; Tesche, Matthias; Wiedensohler, Alfred (Leibniz Institute for Tropospheric Research (IfT), Leipzig (Germany)), e-mail: alexander.schladitz@tropos.de; Gross, Silke; Freudenthaler, Volker; Gasteiger, Josef (Meteorological Institute, Ludwig-Maximilians-Universitaet, Munich (Germany))

    2011-09-15

    An observation-based numerical study of humidity-dependent aerosol optical properties of mixed marine and Saharan mineral dust aerosol is presented. An aerosol model was developed based on measured optical and microphysical properties to describe the marine and Saharan dust aerosol at Cape Verde. A wavelength-dependent optical equivalent imaginary part of the refractive index and a scattering non-sphericity factor for Saharan dust were derived. Simulations of humidity effects on optical properties by the aerosol model were validated with relative measurements of the extinction coefficient at ambient conditions. Parametrizations were derived to describe the humidity dependence of the extinction, scattering, and absorption coefficients as well as the asymmetry parameter and single scattering albedo. For wavelengths (300-950 nm) and dry dust volume fractions (0-1), aerosol optical properties as a function of relative humidity (RH = 0-90%) can be calculated from tabulated parameters. For instance, at a wavelength of 550 nm, a volume fraction of 0.5 of dust on the total particle volume (dry conditions) and a RH of 90%, the enhancements for the scattering, extinction and absorption coefficients are 2.55, 2.46 and 1.04, respectively, while the enhancements for the asymmetry parameter and single scattering albedo are 1.11 and 1.04

  3. Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Midorikawa, Katsumi; Takahashi, Eiji J

    2018-05-16

    Expansion of the wavelength range for an ultrafast laser is an important ingredient for extending its range of applications. Conventionally, optical parametric amplification (OPA) has been employed to expand the laser wavelength to the infrared (IR) region. However, the achievable pulse energy and peak power have been limited to the mJ and the GW level, respectively. A major difficulty in the further energy scaling of OPA results from a lack of suitable large nonlinear crystals. Here, we circumvent this difficulty by employing a dual-chirped optical parametric amplification (DC-OPA) scheme. We successfully generate a multi-TW IR femtosecond laser pulse with an energy of 100 mJ order, which is higher than that reported in previous works. We also obtain excellent energy scaling ability, ultrashort pulses, flexiable wavelength tunability, and high-energy stability, which prove that DC-OPA is a superior method for the energy scaling of IR pulses to the 10 J/PW level.

  4. Stabilization in laser wavelength semiconductor with fiber optical amplifier application doped with erbium

    International Nuclear Information System (INIS)

    Camas, J.; Anzueto, G.; Mendoza, S.; Hernandez, H.; Garcia, C.; Vazquez, R.

    2009-01-01

    In this work, we present a novel electronic design of a DC source, which automatically controls the temperature of a tunable laser. The temperature change in the laser is carried out by the control of DC that circulates through a cooling stage where the laser is set. The laser can be tuned in a wavelength around 1550 nm. Its application is in Erbium Doped Fiber Amplifier (EDFA) in reflective configuration. (Author)

  5. Improving the signal-to-noise ratio in ultrasound-modulated optical tomography by a lock-in amplifier

    Science.gov (United States)

    Zhu, Lili; Wu, Jingping; Lin, Guimin; Hu, Liangjun; Li, Hui

    2016-10-01

    With high spatial resolution of ultrasonic location and high sensitivity of optical detection, ultrasound-modulated optical tomography (UOT) is a promising noninvasive biological tissue imaging technology. In biological tissue, the ultrasound-modulated light signals are very weak and are overwhelmed by the strong unmodulated light signals. It is a difficulty and key to efficiently pick out the weak modulated light from strong unmodulated light in UOT. Under the effect of an ultrasonic field, the scattering light intensity presents a periodic variation as the ultrasonic frequency changes. So the modulated light signals would be escape from the high unmodulated light signals, when the modulated light signals and the ultrasonic signal are processed cross correlation operation by a lock-in amplifier and without a chopper. Experimental results indicated that the signal-to-noise ratio of UOT is significantly improved by a lock-in amplifier, and the higher the repetition frequency of pulsed ultrasonic wave, the better the signal-to-noise ratio of UOT.

  6. Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers

    International Nuclear Information System (INIS)

    Kik, P.G.; Polman, A.

    2003-01-01

    Erbium doped Al 2 O 3 waveguide amplifiers were fabricated using two different doping methods, namely Er ion implantation into sputter deposited Al 2 O 3 , and co-sputtering from an Er 2 O 3 /Al 2 O 3 target. Although the Er concentration in both materials is almost identical (0.28 and 0.31 at. %), the amplifiers show a completely different behavior. Upon pumping with 1.48 μm, the co-sputtered waveguide shows a strong green luminescence from the 4 S 3/2 level, indicating efficient cooperative upconversion in this material. This is confirmed by pump power dependent measurements of the optical transmission at 1.53 μm and the spontaneous emission at 1.53 and 0.98 μm. All measurements can be accurately modeled using a set of rate equations that include first order and second order cooperative upconversion. The first order cooperative upconversion coefficient C 24 is found to be 3.5x10 -16 cm 3 s -1 in the co-sputtered material, two orders of magnitude higher than the value obtained in Er implanted Al 2 O 3 of 4.1x10 -18 cm 3 s -1 . It is concluded that the co-sputtering process results in a strongly inhomogeneous atomic scale spatial distribution of the Er ions. As a result, the co-sputtered waveguides do not show optical gain, while the implanted waveguides do

  7. 10 Gb/s OEIC optical receiver front-end and 3.125 Gb/s PHEMT limiting amplifier

    International Nuclear Information System (INIS)

    Fan Chao; Jiao Shilong; Wu Yunfeng; Ye Yutang; Chen Tangsheng; Yang Lijie; Feng Ou

    2009-01-01

    A 10 Gb/s OEIC (optoelectronic integrated circuit) optical receiver front-end has been studied and fabricated based on the Φ-76 mm GaAs PHEMT process; this is the first time that a limiting amplifier (LA) has been designed and realized using depletion mode PHEMT. An OEIC optical receiver front-end mode composed of an MSM photodiode and a current mode transimpedance amplifier (TIA) has been established and optimized by simulation software ATLAS. The photodiode has a bandwidth of 10 GHz, a capacitance of 3 fF/μm and a photosensitive area of 50 x 50 μm 2 . The whole chip has an area of 1511 x 666 μm 2 . The LA bandwidth is expanded by spiral inductance which has been simulated by software HFSS. The chip area is 1950 x 1910 μm 2 and the measured results demonstrate an input dynamic range of 34 dB (10-500 mVpp) with constant output swing of 500 mVpp.

  8. 10 Gb/s OEIC optical receiver front-end and 3.125 Gb/s PHEMT limiting amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Fan Chao; Jiao Shilong; Wu Yunfeng; Ye Yutang [School of Opto-Electronic Information, UESTC, Chengdu 610054 (China); Chen Tangsheng; Yang Lijie; Feng Ou, E-mail: fanchao41@126.co [Nanjing Electronic Devices Institute, Nanjing 210016 (China)

    2009-10-15

    A 10 Gb/s OEIC (optoelectronic integrated circuit) optical receiver front-end has been studied and fabricated based on the {Phi}-76 mm GaAs PHEMT process; this is the first time that a limiting amplifier (LA) has been designed and realized using depletion mode PHEMT. An OEIC optical receiver front-end mode composed of an MSM photodiode and a current mode transimpedance amplifier (TIA) has been established and optimized by simulation software ATLAS. The photodiode has a bandwidth of 10 GHz, a capacitance of 3 fF/{mu}m and a photosensitive area of 50 x 50 {mu}m{sup 2}. The whole chip has an area of 1511 x 666 {mu}m{sup 2}. The LA bandwidth is expanded by spiral inductance which has been simulated by software HFSS. The chip area is 1950 x 1910 {mu}m{sup 2} and the measured results demonstrate an input dynamic range of 34 dB (10-500 mVpp) with constant output swing of 500 mVpp.

  9. Power Scaling of Laser Oscillators and Amplifiers Based on Nd:YVO4

    OpenAIRE

    Yarrow, Michael James

    2006-01-01

    This thesis presents a strategy for power and brightness scaling in diode-end-pumped, master-oscillator-power-amplifier laser systems, based on Nd:YVOIssues relating to further power and brightness scaling are discussed as well as the potential applications of these laser sources as pump sources for frequency conversion in optical parametric devices.

  10. Closed-loop wavelength stabilization of an optical parametric oscillator as a front end of a high-power iodine laser chain

    Czech Academy of Sciences Publication Activity Database

    Král, Lukáš

    2007-01-01

    Roč. 78, č. 5 (2007), 053104/1-053104/5 ISSN 0034-6748 R&D Projects: GA MŠk(CZ) LC528; GA ČR GA202/06/0814 Grant - others:LASERLAB-EUROPE(XE) RII3-CT-2003-506350 Program:FP6 Institutional research plan: CEZ:AV0Z10100523 Keywords : gas lasers * optical parametric oscillators * nonlinear optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.384, year: 2007

  11. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  12. Compensation of nonlinearity in a fiber-optic transmission system using frequency-degenerate phase conjugation through counter-propagating dual pump FWM in a semiconductor optical amplifier

    Science.gov (United States)

    Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal

    2018-04-01

    We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.

  13. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidi-Ghaleh, Kazem, E-mail: k-jamshidi@azaruinv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of); Ebrahimpour, Zeinab [Department of Physics, Shahid Beheshti University, Evin 19839 Tehran (Iran, Islamic Republic of); Moslemi, Fatemeh [Department of Physics, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2015-07-15

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM){sup N}, (GDM){sup N} and (DMG){sup N}, where N is the number of periodicity, were investigated. Two full photonic band gaps and N−1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region.

  14. Amplifying and compressing optical filter based on one-dimensional ternary photonic crystal structure containing gain medium

    Science.gov (United States)

    Jamshidi-Ghaleh, Kazem; Ebrahimpour, Zeinab; Moslemi, Fatemeh

    2015-07-01

    The transmission spectrum properties of the one-dimensional ternary photonic crystal (1DTPC) structure, composed of dielectric (D), metal (M) and gain (G) materials, with three different arrangements of (DGM)N, (GDM)N and (DMG)N, where N is the number of periodicity, were investigated. Two full photonic band gaps and N-1 resonant peaks, localized between them, were observed on transmittance spectra on near-UV spectrum region. When the gained layer was placed in front of the metal, the peaks appeared with higher resolution. There is a peak, localized on the higher band-edge of the first gap, which shows very interesting property than the other peaks. Thus, it amplifies and compresses faster with increase in the N and strength of the gain coefficient. The effects of the gain coefficient and periodicity number are graphically illustrated. This communication presents a PC structure that can be a good candidate to design an amplifying and compressing single or multi-channel optical filter in the UV region.

  15. Novel pre-equalization transimpedance amplifier for 10 Gb/s optical interconnects

    International Nuclear Information System (INIS)

    Song Qiwei; Mao Luhong; Xie Sheng; Kang Yuzhuo

    2015-01-01

    This paper presents a modified regulated cascode (RGC) transimpedance amplifier (TIA) with a novel pre-equalized technique. The pre-equalized circuit employed the broadband series inductive π-network and G m -boosting technique. The introduction of this technique compensates the transferred signal at the input port of the TIA without an increase in power dissipation. Furthermore, a novel miller capacitance degeneration method is designed in the gain stage for further bandwidth improvement. The TIA is realized in UMC 0.18 πm CMOS technology and tested with an on-chip 0.3 pF capacitor to emulate a photodetector (PD). The measured transimpedance gain amounts to 57 dBΩ with a −3 dB bandwidth of about 8.2 GHz and consumes only 22 mW power from a single 1.8 V supply. (paper)

  16. Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals

    Science.gov (United States)

    Kaucikas, M.; Warren, M.; Michailovas, A.; Antanavicius, R.; van Thor, J. J.

    2013-02-01

    This paper describes the investigation of an optical parametric oscillator (OPO) set-up based on two beta barium borate (BBO) crystals, where the interplay between the crystal orientations, cut angles and air dispersion substantially influenced the OPO performance, and especially the angular spectrum of the output beam. Theory suggests that if two BBO crystals are used in this type of design, they should be of different cuts. This paper aims to provide an experimental manifestation of this fact. Furthermore, it has been shown that air dispersion produces similar effects and should be taken into account. An x-ray crystallographic indexing of the crystals was performed as an independent test of the above conclusions.

  17. Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals

    International Nuclear Information System (INIS)

    Kaucikas, M; Warren, M; Van Thor, J J; Michailovas, A; Antanavicius, R

    2013-01-01

    This paper describes the investigation of an optical parametric oscillator (OPO) set-up based on two beta barium borate (BBO) crystals, where the interplay between the crystal orientations, cut angles and air dispersion substantially influenced the OPO performance, and especially the angular spectrum of the output beam. Theory suggests that if two BBO crystals are used in this type of design, they should be of different cuts. This paper aims to provide an experimental manifestation of this fact. Furthermore, it has been shown that air dispersion produces similar effects and should be taken into account. An x-ray crystallographic indexing of the crystals was performed as an independent test of the above conclusions. (paper)

  18. Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy.

    Science.gov (United States)

    Jin, Yuwei; Cristescu, Simona M; Harren, Frans J M; Mandon, Julien

    2014-06-01

    We present a femtosecond optical parametric oscillator (OPO) containing two magnesium-doped periodically poled lithium niobate crystals in a singly resonant ring cavity, pumped by two mode-locked Yb-fiber lasers. As such, the OPO generates two idler combs (up to 220 mW), covering a wavelength range from 2.7 to 4.2 μm, from which a mid-infrared dual-comb Fourier transform spectrometer is constructed. By detecting the heterodyning signal between the two idler beams a full broadband spectrum of a molecular gas can be observed over 250  cm(-1) within 70 μs with a spectral resolution of 15 GHz. The absorption and dispersion spectra of acetylene and methane have been measured around 3000  cm(-1), indicating that this OPO represents an ideal broadband mid-infrared source for fast chemical sensing.

  19. Note: Pulsed single longitudinal mode optical parametric oscillator for sub-Doppler spectroscopy of jet cooled transient species

    Science.gov (United States)

    Zhang, Qiang; Zhu, Boxing; Zhang, Deping; Gu, Jingwang; Zhao, Dongfeng; Chen, Yang

    2017-12-01

    We present a pulsed single longitudinal mode optical parametric oscillator that was recently constructed for sub-Doppler spectroscopic studies of transient species in a supersonic slit jet expansion environment. The system consists of a Littman-type grazing-incidence-grating resonator and a KTP crystal and is pumped at 532 nm. By spatially filtering the pump laser beam and employing an active cavity-length-stabilization scheme, a frequency down-conversion efficiency up to 18% and generation of Fourier-transform limited pulses with a typical pulse duration of ˜5.5 ns and a bandwidth less than 120 MHz have been achieved. In combination with a slit jet expansion, a sub-Doppler spectrum of SiC2 has been recorded at ˜498 nm, showing a spectral resolution of Δν/ν ≈ 6.2 × 10-7.

  20. Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Maria [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico); Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Apartado Postal 2732, BC 22860 Ensenada (Mexico); Garay-Palmett, Karina; U' Ren, Alfred B. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, apdo. postal 70-543, DF 04510 Mexico City (Mexico)

    2011-09-15

    We study the third-order spontaneous parametric down-conversion (TOSPDC) process, as a means to generate entangled photon triplets. Specifically, we consider thin optical fibers as the nonlinear medium to be used as the basis for TOSPDC in configurations where phase matching is attained through the use of more than one fiber transverse modes. Our analysis in this paper, which follows from our earlier paper [Opt. Lett. 36, 190-192 (2011)], aims to supply experimentalists with the details required in order to design a TOSPDC photon-triplet source. Specifically, our analysis focuses on the photon triplet state, on the rate of emission, and on the TOSPDC phase-matching characteristics for the cases of frequency-degenerate and frequency nondegenerate TOSPDC.

  1. Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation

    International Nuclear Information System (INIS)

    Ţălu, Ştefan; Marković, Zoran; Stach, Sebastian; Todorović Marković, B.; Ţălu, Mihai

    2014-01-01

    This study presents a multifractal approach, obtained with atomic force microscopy analysis, to characterize the structural evolution of single wall carbon nanotube thin films upon exposure to optical parametric oscillator laser irradiation at wavelength of 430 nm. Microstructure and morphological changes of carbon nanotube films deposited on different substrates (mica and TGX grating) were recorded by atomic force microscope. A detailed methodology for surface multifractal characterization, which may be applied for atomic force microscopy data, was presented. Multifractal analysis of surface roughness revealed that carbon nanotube films surface has a multifractal geometry at various magnifications. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of carbon nanotube films surface morphology at nanometer scale. Multifractal analysis provides different yet complementary information to that offered by traditional surface statistical parameters.

  2. Broadband and tunable optical parametric generator for remote detection of gas molecules in the short and mid-infrared.

    Science.gov (United States)

    Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François

    2015-04-01

    The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

  3. The usability of the optical parametric amplification of light for high-angular-resolution imaging and fast astrometry

    Science.gov (United States)

    Kurek, A. R.; Stachowski, A.; Banaszek, K.; Pollo, A.

    2018-05-01

    High-angular-resolution imaging is crucial for many applications in modern astronomy and astrophysics. The fundamental diffraction limit constrains the resolving power of both ground-based and spaceborne telescopes. The recent idea of a quantum telescope based on the optical parametric amplification (OPA) of light aims to bypass this limit for the imaging of extended sources by an order of magnitude or more. We present an updated scheme of an OPA-based device and a more accurate model of the signal amplification by such a device. The semiclassical model that we present predicts that the noise in such a system will form so-called light speckles as a result of light interference in the optical path. Based on this model, we analysed the efficiency of OPA in increasing the angular resolution of the imaging of extended targets and the precise localization of a distant point source. According to our new model, OPA offers a gain in resolved imaging in comparison to classical optics. For a given time-span, we found that OPA can be more efficient in localizing a single distant point source than classical telescopes.

  4. Heterodyne pump-probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    1999-01-01

    We demonstrate a new detection scheme for pump-probe and four-wave mixing heterodyne experiments, using balanced detection and a dual-phase lock-in for spectral filtering. The technique allows the use of low repetition-rate laser systems, as is demonstrated on an InGaAsP/InP bulk optical amplifier...... at 1.53 mym. Ultrafast pump-induced changes in the amplitude and phase of the transmitted probe signal are simultaneously measured, going from small to large signal changes and with no need of an absolute phase calibration, showing the versatility and the sensitivity of this detection scheme....... The results for small perturbations are consistent with previous pump-probe experiments reported in literature. Time-resolved four-wave mixing in the absorption regime of the device is measured, and compared with numerical simulations, indicating a 100 fs dephasing time....

  5. Light radiation pressure upon a wrinkled membrane – parametrization of an optically orthotropic model

    Science.gov (United States)

    Nerovny, N. A.; Zimin, V. N.

    2018-04-01

    In this paper, the problem of representing the light pressure force upon the surface of a thin wrinkled film is discussed. The common source of wrinkles is the shear deformation of the membrane sample. The optical model of such a membrane is assumed to be optically orthotropic and an analytic equation for infinitesimal light pressure force is written. A linear regression model in the case of wrinkle geometry, where a surface element can have different optical parameters, is constructed and the Bayesian approach is used to calculate the parameters of this model.

  6. Optical mixing of microwave signals in a nonlinear semiconductor laser amplifier modulator.

    Science.gov (United States)

    Capmany, José; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz

    2002-02-11

    In this paper we propose and evaluate the optical mixing of RF signals by means of exploiting the nonlinearity of a SLA modulator. The results show the potential for devices with low conversion losses (and even gain) and polarization insensitivity and reduced insertion losses.

  7. Demonstration and optimisation of an ultrafast all-optical AND logic gate using four-wave mixing in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Razaghi, M; Nosratpour, A; Das, N K

    2013-01-01

    We have proposed an all-optical AND logic gate based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) integrated with an optical filter. In the scheme proposed, the preferred logical function can be performed without using a continuous-wave (cw) signal. The modified nonlinear Schroedinger equation (MNLSE) is used for the modelling wave propagation in a SOA. The MNLSE takes into account all nonlinear effects relevant to pico- and sub-picosecond pulse durations and is solved by the finite-difference beam-propagation method (FD-BPM). Based on the simulation results, the optimal output signal with a 40-fJ energy can be obtained at a bit rate of 50 Gb s -1 . In the simulations, besides the nonlinearities included in the model, the pattern effect of the signals propagating in the SOA medium and the effect of the input signal bit rate are extensively investigated to optimise the system performance. (optical logic elements)

  8. Parametric amplification and phase preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Galili, Michael; Mulvad, Hans Christian Hansen

    2013-01-01

    We report the first experimental demonstration of parametric amplification and all-optical phase-preserving amplitude regeneration for a 640 Gbit/s return-to-zero (RZ) differential phase-shift keying (DPSK) optical time division multiplexed (OTDM) signal. In the designed gain-flattened single......-pump fiber optical parametric amplifier (FOPA), 620 fs short optical pulses are successfully amplified with 15 dB gain with error-free performance and less than 1 dB power penalty. Phase-preserving amplitude regeneration based on gain saturation in the FOPA is carried out for optical signals with degraded...... optical signal-to-noise ratio. An improvement of 2.2 dB in receiver sensitivity at a bit-error-ratio of 10−9 has been successfully achieved after regeneration, together with 13.3 dB net gain....

  9. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure.

    Science.gov (United States)

    Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng

    2016-07-28

    A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process.

  10. Optically pumped alkali laser and amplifier using helium-3 buffer gas

    Science.gov (United States)

    Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan

    2010-09-28

    In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.

  11. Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon

    NARCIS (Netherlands)

    Bradley, J.; Agazzi, L.; Geskus, D.; Ay, F.; Worhoff, Kerstin; Pollnau, Markus

    Erbium-doped aluminum oxide integrated optical amplifiers were fabricated on silicon substrates, and their characteristics were investigated for Er concentrations ranging from 0.27 to 4.2x10e20 cm−3. Background losses below 0.3 dB/cm at 1320 nm were measured. For optimum Er concentrations in the

  12. Quantitative optical extinction-based parametric method for sizing a single core-shell Ag-Ag2O nanoparticle

    International Nuclear Information System (INIS)

    Santillan, J M J; Scaffardi, L B; Schinca, D C

    2011-01-01

    This paper develops a parametric method for determining the core radius and shell thickness in small silver-silver-oxide core-shell nanoparticles (Nps) based on single particle optical extinction spectroscopy. The method is based on the study of the relationship between plasmon peak wavelength, full width at half maximum (FWHM) and contrast of the extinction spectra as a function of core radius and shell thickness. This study reveals that plasmon peak wavelength is strongly dependent on shell thickness, whereas FWHM and contrast depend on both variables. These characteristics may be used for establishing an easy and fast stepwise procedure to size core-shell NPs from single particle absorption spectrum. The importance of the method lies in the possibility of monitoring the growth of the silver-oxide layer around small spherical silver Nps in real time. Using the electrostatic approximation of Mie theory, core-shell single particle extinction spectra were calculated for a silver particle's core size smaller than about 20 nm and different thicknesses of silver oxide around it. Analysis of the obtained curves shows a very particular characteristic of the plasmon peak of small silver-silver-oxide Nps, expressed in the fact that its position is strongly dependent on oxide thickness and weakly dependent on the core radius. Even a very thin oxide layer shifts the plasmon peak noticeably, enabling plasmon tuning with appropriate shell thickness. This characteristic, together with the behaviour of FWHM and contrast of the extinction spectra can be combined into a parametric method for sizing both core and shell of single silver Nps in a medium using only optical information. In turn, shell thickness can be related to oxygen content in the Np's surrounding media. The method proposed is applied to size silver Nps from single particle extinction spectrum. The results are compared with full optical spectrum fitting using the electrostatic approximation in Mie theory. The method

  13. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    Science.gov (United States)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  14. Effect of wetting-layer density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Kim, Jungho; Yu, Bong-Ahn

    2015-01-01

    We numerically investigate the effect of the wetting-layer (WL) density of states on the gain and phase recovery dynamics of quantum-dot semiconductor optical amplifiers in both electrical and optical pumping schemes by solving 1088 coupled rate equations. The temporal variations of the ultrafast gain and phase recovery responses at the ground state (GS) are calculated as a function of the WL density of states. The ultrafast gain recovery responses do not significantly depend on the WL density of states in the electrical pumping scheme and the three optical pumping schemes such as the optical pumping to the WL, the optical pumping to the excited state ensemble, and the optical pumping to the GS ensemble. The ultrafast phase recovery responses are also not significantly affected by the WL density of states except the optical pumping to the WL, where the phase recovery component caused by the WL becomes slowed down as the WL density of states increases. (paper)

  15. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2010-03-15

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360 degrees microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz). The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.

  16. Quantum tomography enhanced through parametric amplification

    Science.gov (United States)

    Knyazev, E.; Spasibko, K. Yu; Chekhova, M. V.; Khalili, F. Ya

    2018-01-01

    Quantum tomography is the standard method of reconstructing the Wigner function of quantum states of light by means of balanced homodyne detection. The reconstruction quality strongly depends on the photodetectors quantum efficiency and other losses in the measurement setup. In this article we analyze in detail a protocol of enhanced quantum tomography, proposed by Leonhardt and Paul [1] which allows one to reduce the degrading effect of detection losses. It is based on phase-sensitive parametric amplification, with the phase of the amplified quadrature being scanned synchronously with the local oscillator phase. Although with sufficiently strong amplification the protocol enables overcoming any detection inefficiency, it was so far not implemented in the experiment, probably due to the losses in the amplifier. Here we discuss a possible proof-of-principle experiment with a traveling-wave parametric amplifier. We show that with the state-of-the-art optical elements, the protocol enables high fidelity tomographic reconstruction of bright non-classical states of light. We consider two examples: bright squeezed vacuum and squeezed single-photon state, with the latter being a non-Gaussian state and both strongly affected by the losses.

  17. Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout.

    Science.gov (United States)

    Hopper, David A; Grote, Richard R; Parks, Samuel M; Bassett, Lee C

    2018-04-23

    Nanodiamonds containing nitrogen-vacancy (NV) centers offer a versatile platform for sensing applications spanning from nanomagnetism to in vivo monitoring of cellular processes. In many cases, however, weak optical signals and poor contrast demand long acquisition times that prevent the measurement of environmental dynamics. Here, we demonstrate the ability to perform fast, high-contrast optical measurements of charge distributions in ensembles of NV centers in nanodiamonds and use the technique to improve the spin-readout signal-to-noise ratio through spin-to-charge conversion. A study of 38 nanodiamonds with sizes ranging between 20 and 70 nm, each hosting a small ensemble of NV centers, uncovers complex, multiple time scale dynamics due to radiative and nonradiative ionization and recombination processes. Nonetheless, the NV-containing nanodiamonds universally exhibit charge-dependent photoluminescence contrasts and the potential for enhanced spin readout using spin-to-charge conversion. We use the technique to speed up a T 1 relaxometry measurement by a factor of 5.

  18. Parametric Studies on Artificial Morpho Butterfly Wing Scales for Optical Device Applications

    OpenAIRE

    Kim, Hyun Myung; Kim, Sang Hyeok; Lee, Gil Ju; Kim, Kyujung; Song, Young Min

    2015-01-01

    We calculated diffraction efficiencies of grating structures inspired by Morpho butterfly wings by using a rigorous coupled-wave analysis method. The geometrical effects, such as grating width, period, thickness, and material index, were investigated in order to obtain better optical performance. Closely packed grating structures with an optimized membrane thickness show vivid reflected colors and provide high sensitivity to surrounding media variations, which is applicable to vapor sensing o...

  19. Wide range operation of regenerative optical parametric wavelength converter using ASE-degraded 43-Gb/s RZ-DPSK signals.

    Science.gov (United States)

    Gao, Mingyi; Kurumida, Junya; Namiki, Shu

    2011-11-07

    For sustainable growth of the Internet, wavelength-tunable optical regeneration is the key to scaling up high energy-efficiency dynamic optical path networks while keeping the flexibility of the network. Wavelength-tunable optical parametric regenerator (T-OPR) based on the gain saturation effect of parametric amplification in a highly nonlinear fiber is promising for noise reduction in phase-shift keying signals. In this paper, we experimentally evaluated the T-OPR performance for ASE-degraded 43-Gb/s RZ-DPSK signals over a 20-nm input wavelength range between 1527 nm and 1547 nm. As a result, we achieved improved power penalty performance for the regenerated idler with a proper pump power range.

  20. Er3+ phosphate glass optical waveguide amplifiers at 1.5 μm on silicon

    Science.gov (United States)

    Yan, Yingchao; Faber, Anne J.; de Waal, Henk

    1996-01-01

    RF-sputtering techniques were employed to produce Er-doped phosphate glass films on thermally oxidized silicon wafers. Film compositions were characterized by X-ray photoelectron spectroscopy. As-deposited films showed very low Er luminescence lifetimes. By postannealing of deposited films in pure oxygen, Er photoluminescence emission lifetime of the 4I13/2 - 4I15/2 transition could be increased from 1 - 2 ms to 8 - 9 ms. The long Er lifetime of the deposited films is very promising for achieving an optical gain. A dependence of measured lifetimes on pump power was observed which are related to a up-conversion quenching process. After postannealing, the sputtered waveguides showed relatively low attenuation loss at the potential pumping and signaling wavelengths. The loss spectrum from 700 nm to 1600 nm was measured by two-prism coupling. The films were easy to be patterned by lithography and ridge channel waveguides were developed by argon plasma etching.

  1. Design of a petawatt optical parametric chirped pulse amplification upgrade of the kilojoule iodine laser PALS

    Czech Academy of Sciences Publication Activity Database

    Novák, Ondřej; Divoký, Martin; Turčičová, Hana; Straka, Petr

    2013-01-01

    Roč. 31, č. 2 (2013), s. 211-218 ISSN 0263-0346 R&D Projects: GA ČR GA202/06/0814; GA MŠk(CZ) LC528; GA MŠk LN00A100 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE Institutional support: RVO:68378271 Keywords : VULCAN petawatt * system * prospects * facility * program Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.701, year: 2013 http://journals.cambridge.org/action/displayAbstract?fromPage=online& aid =8950936

  2. Parametric Studies on Artificial Morpho Butterfly Wing Scales for Optical Device Applications

    Directory of Open Access Journals (Sweden)

    Hyun Myung Kim

    2015-01-01

    Full Text Available We calculated diffraction efficiencies of grating structures inspired by Morpho butterfly wings by using a rigorous coupled-wave analysis method. The geometrical effects, such as grating width, period, thickness, and material index, were investigated in order to obtain better optical performance. Closely packed grating structures with an optimized membrane thickness show vivid reflected colors and provide high sensitivity to surrounding media variations, which is applicable to vapor sensing or healthcare indicators. Morpho structures with high index materials such as zinc sulfide or gallium phosphide generate white color caused by broadband reflection that can be used as reflected light sources for display applications.

  3. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    International Nuclear Information System (INIS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-01-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30–70 mA. In addition, the output stabilities of the power and wavelength are also discussed. (paper)

  4. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-05-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.

  5. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    Directory of Open Access Journals (Sweden)

    A. H. Lumpkin

    2009-04-01

    Full Text Available Observations of strongly enhanced optical transition radiation (OTR following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source accelerator and recently at the Advanced Photon Source (APS linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge microbunching instability which leads to coherent OTR emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE free-electron laser (FEL data at APS in the visible regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those “prebunched” structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  6. Quantum nondemolition measurement with a nonclassical meter input and an electro-optic enhancement

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchler, B.C.; Bachor, H.A.

    2002-01-01

    Optical quantum nondemolition measurements are performed using a beamsplitter with a nonclassical meter input and a electro-optic feedforward loop. The nonclassical meter input is provided by a stable 4.5 dB amplitude squeezed source generated by an optical parametric amplifier. We show...

  7. Optical Amplication for Terabit-per-Second Ultra-High Speed Communication Systems

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh

    The present thesis is concerned with fiber optical parametric amplification and regeneration for high-speed optical communication systems. Fiber optical parametric amplifiers (FOPAs) have multi-functional applications depending on their implementation in optical systems. Based on a few femtosecond...... and saturation effect in order to assess the degradation of the amplified signal. In a very good agreement with the performed experiments, it is shown that the noise transferred to the signal can be effectively suppressed by operating in the saturation regime. The amplification of short few picosecond...

  8. A continuous-wave optical parametric oscillator around 5-μm wavelength for high-resolution spectroscopy.

    Science.gov (United States)

    Krieg, J; Klemann, A; Gottbehüt, I; Thorwirth, S; Giesen, T F; Schlemmer, S

    2011-06-01

    We present a continuous-wave optical parametric oscillator (OPO) capable of high resolution spectroscopy at wavelengths between 4.8 μm and 5.4 μm. It is based on periodically poled lithium niobate (PPLN) and is singly resonant for the signal radiation around 1.35 μm. Because of the strong absorption of PPLN at wavelengths longer than 4.5 μm, the OPO threshold rises to the scale of several watts, while it produces idler powers of more than 1 mW and offers continuous tuning over 15 GHz. A supersonic jet spectrometer is used in combination with the OPO to perform measurements of the transient linear molecule Si(2)C(3) at 1968.2 cm(-1). Fifty rovibrational transition frequencies of the ν(3) antisymmetric stretching mode have been determined with an accuracy on the order of 10(-4) cm(-1), and molecular parameters for the ground and the v(3) = 1 state have been determined most precisely. © 2011 American Institute of Physics

  9. High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT.

    Science.gov (United States)

    Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2011-07-01

    We report a stable, high-power, cw, mid-IR optical parametric oscillator using MgO-doped stoichiometric periodically poled LiTaO₃ (MgO:sPPLT) pumped by a Yb fiber laser at 1064 nm. The singly resonant oscillator (SRO), based on a 30 mm long crystal, is tunable over 430 nm from 3032 to 3462 nm and can generate as much as 5.5 W of mid-IR output power, with >4 W of over 60% of the tuning range and under reduced thermal effects, enabling room temperature operation. Idler power scaling measurements at ~3.3 μm are compared with an MgO-doped periodically poled LiNbO₃ cw SRO, confirming that MgO:sPPLT is an attractive material for multiwatt mid-IR generation. The idler output at 3299 nm exhibits a peak-to-peak power stability better than 12.8% over 5 h and frequency stability of ~1 GHz, while operating close to room temperature, and has a linewidth of ~0.2 nm, limited by the resolution of the wavemeter. The corresponding signal linewidth at 1570 nm is ~21 MHz.

  10. Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP.

    Science.gov (United States)

    Chaitanya Kumar, S; Parsa, S; Ebrahim-Zadeh, M

    2016-01-01

    We report a stable, Yb-fiber-laser-based, green-pumped, picosecond optical parametric oscillator (OPO) for the near-infrared based on periodically poled potassium titanyl phosphate (PPKTP) nonlinear crystal, using fan-out grating design and operating near room temperature. The OPO is continuously tunable across 726-955 nm in the signal and 1201-1998 nm in the idler, resulting in a total signal plus idler wavelength coverage of 1026 nm by grating tuning at a fixed temperature. The device generates up to 580 mW of average power in the signal at 765 nm and 300 mW in the idler at 1338 nm, with an overall extraction efficiency of up to 52% and a pump depletion >76%. The extracted signal at 765 nm and idler at 1746 nm exhibit excellent passive power stability better than 0.5% and 0.8% rms, respectively, over 1 h with good beam quality in TEM00 mode profile. The output signal pulses have a Gaussian temporal duration of 13.2 ps, with a FWHM spectral bandwidth of 3.4 nm at 79.5 MHz repetition rate. Power scaling limitations of the OPO due to the material properties of PPKTP are studied.

  11. Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2-6.7 µm

    Science.gov (United States)

    Kumar, S. Chaitanya; Casals, J. Canals; Parsa, S.; Zawilski, K. T.; Schunemann, P. G.; Ebrahim-Zadeh, M.

    2018-06-01

    We report a high-average-power picosecond optical parametric oscillator (OPO) tunable in the mid-infrared (mid-IR) based on CdSiP2 synchronously pumped by an Yb-fiber laser at 80 MHz repetition rate. Successful operation of this high-repetition-rate singly-resonant picosecond OPO has been enabled by the improved CSP crystal quality over a long interaction length. The OPO can be tuned across 1264-1284 nm in the near-IR signal and 6205-6724 nm in the mid-IR idler by temperature tuning the CSP crystal over 39-134 °C. By deploying a 5% output coupler for the resonant signal, we have extracted up to 44 mW of average power in the near-IR and up to 95 mW of non-resonant idler power at 6205 nm at 6.3% total conversion efficiency, with > 50 mW over > 55% of the mid-IR tuning range. We have investigated temperature-tuning characteristics of the OPO and compared the data with the theoretical calculations using the recent Sellmeier and thermo-optic coefficients for CdSiP2. The signal pulses from the OPO exhibit a Gaussian pulse duration of 19 ps centered at 1284 nm. We have also studied the output power stability of the OPO, resulting in a passive stability better than 1.9% rms for the near-IR signal and 2.4% rms for the mid-IR idler, measured over > 17 h, with both beams in high spatial quality.

  12. Parametric study of a polymer-coated fibre-optic humidity sensor

    International Nuclear Information System (INIS)

    David, Nigel A; Wild, Peter M; Djilali, Ned

    2012-01-01

    A relative humidity sensor based on polymer-coated optical fibre Bragg gratings is presented. This fully functional sensor has response time and resolution comparable to the current capacitive relative humidity (RH) sensors, but with greater applicability. Numerical and experimental methods are used to determine the effects of coating thickness and fibre diameter on the response time and sensitivity of Bragg gratings coated with Pyralin. Transient results indicate that coating thicknesses of less than 4 μm are needed to achieve a response time of 5 s, competitive with commercial capacitive RH sensors. Using thin coatings of ∼2 μm, for a short response time, sensors with reduced fibre diameter were fabricated and tested under steady-state, transient and saturated conditions. By chemical etching from 125 to 20 μm, the sensitivity increased by a factor of 7. Such an increase in sensitivity allows for the resolution and response time of the Pyralin-coated sensor to be comparable to commercial capacitive RH sensors. These characteristics, in addition to the sensor’s rapid recovery from saturation in liquid water, indicate good potential for use of this sensor design in applications where electronic RH sensors are not suitable. (paper)

  13. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources.

    Science.gov (United States)

    Liu, Pei; Wang, Sicong; He, Puyuan; Zhang, Zhaowei

    2018-05-01

    We report, to the best of our knowledge, a novel approach for generating broadband mid-infrared (mid-IR) light by implementing a dual-channel scheme in a synchronously pumped optical parametric oscillator (SPOPO). Two-channel operation was achieved by inserting a prism pair and two reflection mirrors inside an optical parametric oscillator (OPO) cavity. Pumped by a Yb-fiber laser, the OPO generated an idler wave at ∼3150  nm with a -10  dB bandwidth of ∼13.2  THz, which was twice as much as that of the pump source. This scheme represents a promising technical route to transform conventional SPOPOs into a device capable of generating mid-IR light with very broad instantaneous bandwidth.

  14. Phase-coherent all-optical frequency division by three

    NARCIS (Netherlands)

    Lee, Dong-Hoon; Klein, M.E.; Meyn, Jan-Peter; Wallenstein, Richard; Gross, P.; Boller, Klaus J.

    2003-01-01

    The properties of all-optical phase-coherent frequency division by 3, based on a self-phase-locked continuous-wave (cw) optical parametric oscillator (OPO), are investigated theoretically and experimentally. The frequency to be divided is provided by a diode laser master-oscillator power-amplifier

  15. Macromechanical Parametric Amplification

    DEFF Research Database (Denmark)

    Neumeyer, Stefan

    between the two peaks can be altered. The first experimental bistable amplified steady-state responses are also reported. The derived analytical models and experimental setups can readily be extended to investigate other factors. Some of the results are also applicable to the more general field of systems...... for energy harvesting. Using analytical, numerical, and experimental methods, the thesis focuses on superthreshold pumping (above the systems parametric instability threshold), nonlinear effects, frequency response backbones, and frequency detuning effects for parametric amplifiers. Part one of the thesis...... covers superthreshold pumping and nonlinear effects. Superthresh-old pumping produces some useful characteristics. For instance, strong superthreshold pumping yields a high gain even though nonlinear effects tend to reduce it. In addition, a narrower excitation phase range is realized for which...

  16. Enhanced 1.32 μm fluorescence and broadband amplifying for O-band optical amplifier in Nd3+-doped tellurite glass

    Science.gov (United States)

    Zhou, Zi-zhong; Zhou, Ming-han; Su, Xiu-e.; Cheng, Pan; Zhou, Ya-xun

    2017-01-01

    WO3 oxides with relatively high phonon energy and different concentrations were introduced into the Nd3+-doped tellurite-based glasses of TeO2-ZnO-Na2O to improve the 1.32 μm band fluorescence emission. The absorption spectra, Raman spectra, 1.32 μm band fluorescence spectra and differential scanning calorimeter (DSC) curves were measured, together with the Judd-Ofelt intensity parameters, stimulated emission and gain parameters were calculated to evaluate the effects of WO3 amount on the glass structure and spectroscopic properties of 1.32 μm band fluorescence. It is shown that the introduction of an appropriate amount of WO3 oxide can effectively improve the 1.32 μm band fluorescence intensity through the enhanced multi-phonon relaxation (MPR) processes between the excited levels of Nd3+. The results indicate that the prepared Nd3+-doped tellurite glass with an appropriate amount of WO3 oxide is a potential gain medium applied for the O-band broad and high-gain fiber amplifier.

  17. Analysis on frequency response of trans-impedance amplifier (TIA) for signal-to-noise ratio (SNR) enhancement in optical signal detection system using lock-in amplifier (LIA)

    Science.gov (United States)

    Kim, Ji-Hoon; Jeon, Su-Jin; Ji, Myung-Gi; Park, Jun-Hee; Choi, Young-Wan

    2017-02-01

    Lock-in amplifier (LIA) has been widely used in optical signal detection systems because it can measure small signal under high noise level. Generally, The LIA used in optical signal detection system is composed of transimpedance amplifier (TIA), phase sensitive detector (PSD) and low pass filter (LPF). But commercial LIA using LPF is affected by flicker noise. To avoid flicker noise, there is 2ω detection LIA using BPF. To improve the dynamic reserve (DR) of the 2ω LIA, the signal to noise ratio (SNR) of the TIA should be improved. According to the analysis of frequency response of the TIA, the noise gain can be minimized by proper choices of input capacitor (Ci) and feed-back network in the TIA in a specific frequency range. In this work, we have studied how the SNR of the TIA can be improved by a proper choice of frequency range. We have analyzed the way to control this frequency range through the change of passive component in the TIA. The result shows that the variance of the passive component in the TIA can change the specific frequency range where the noise gain is minimized in the uniform gain region of the TIA.

  18. Operation amplifier

    NARCIS (Netherlands)

    Tetsuya, Saito; Nauta, Bram

    2008-01-01

    To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a differential amplifier circuit 1;

  19. Design and Development of Intracavity Optical Parametric Oscillator-based Eye Safe Laser Operating at 20 Hz without Forced Air Cooling

    OpenAIRE

    Atul Bhardwaj; Lalita Agrawal; A. K. Maini

    2013-01-01

    In this paper we report the design and development of an electro-optically Q-switched diode pumped Nd:YAG laser with intracavity optical parametric oscillator, generating ~ 5 ns laser pulses of ~8 mJ energy at eye safe wavelength of 1534 nm. A Z-shaped laser resonator has been designed with porro prism end reflector in Q-switch arm containing RTP Q-Switch and a suitably oriented waveplate. The gain arm consists of a Ø3 x 72 mm Nd: YAG laser rod, pumped from one side by 3 x 5 bar laser diode a...

  20. Ball-milled nano-colloids of rare-earth compounds as liquid gain media for capillary optical amplifiers and lasers

    Science.gov (United States)

    Patel, Darayas; Blockmon, Avery; Ochieng, Vanesa; Lewis, Ashley; Wright, Donald M.; Lewis, Danielle; Valentine, Rueben; Valentine, Maucus; Wesley, Dennis; Sarkisov, Sergey S.; Darwish, Abdalla M.; Sarkisov, Avedik S.

    2017-02-01

    Nano-colloids and nano-crystals doped with ions of rare-earth elements have recently attracted a lot of attention in the scientific community due to their potential applications as biomarkers, fluorescent inks, gain media for lasers and optical amplifiers. Many rare-earth doped materials of different compositions, shapes and size distribution have been prepared by different synthetic methods, such as chemical vapor deposition, sol-gel process, micro-emulsion techniques, gas phase condensation methods, hydrothermal methods and laser ablation. In this paper micro-crystalline powder of the rare-earthdoped compound NaYF4:Yb3+, Er3+ was synthesized using a simple wet process followed by baking in open air. Under 980 nm diode laser excitation strong fluorescence in the 100 nm band around 1531-nm peak was observed from the synthesized micro-powder. The micro-powder was pulverized using a ball mill and prepared in the form of nano-colloids in different liquids. The particle size of the obtained nano-colloids was measured using an atomic force microscope and a dynamic light scatterometer. The size of the nano-particles was close to 100-nm. The nano-colloids were utilized as a filling media in capillary optical amplifiers and lasers. The gain of a 7-cm-long capillary optical amplifier (150-micron inner diameter) was as high as 6 dB at 200 mW pump power. The synthesized nano-colloids and the active optical components using them can be potentially used in optical communication, signal processing, optical computing, and other applications.

  1. All-optical header recognizer for optical packet switched networks : exploiting nonlinear gain and index dynamics in semiconductor optical amplifiers for low power operation and photonic integration device

    NARCIS (Netherlands)

    Calabretta, N.; Dorren, H.J.S.

    2009-01-01

    The increase of the internet traffic leads to future optical networks requiring tens of Tb/s of capacity. Current electronic circuit switches are limited by the scalability of the electronic switching fabrics, power consumption and dissipation in the opto- electronic conversion. All-optical packet

  2. Antares laser power amplifier

    International Nuclear Information System (INIS)

    Stine, R.D.; Ross, G.F.; Silvernail, C.

    1979-01-01

    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  3. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.H.; Schaffers, K.I.; Payne, S.A.; Krupke, W.F.; Beach, R.J.

    1997-12-02

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 {micro}m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 {micro}m. Related halide materials, including bromides and iodides, are also useful. The Dy{sup 3+}-doped metal chlorides can be pumped with laser diodes and yield 1.3 {micro}m signal gain levels significantly beyond those currently available. 9 figs.

  4. Optical amplifier operating at 1.3 microns useful for telecommunications and based on dysprosium-doped metal chloride host materials

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H. (San Ramon, CA); Schaffers, Kathleen I. (Pleasanton, CA); Payne, Stephen A. (Castro Valley, CA); Krupke, William F. (Pleasanton, CA); Beach, Raymond J. (Livermore, CA)

    1997-01-01

    Dysprosium-doped metal chloride materials offer laser properties advantageous for use as optical amplifiers in the 1.3 .mu.m telecommunications fiber optic network. The upper laser level is characterized by a millisecond lifetime, the host material possesses a moderately low refractive index, and the gain peak occurs near 1.31 .mu.m. Related halide materials, including bromides and iodides, are also useful. The Dy.sup.3+ -doped metal chlorides can be pumped with laser diodes and yield 1.3 .mu.m signal gain levels significantly beyond those currently available.

  5. Study and realisation of a miniature optical parametric oscillator; Etude et realisation d`un oscillateur parametrique optique miniature

    Energy Technology Data Exchange (ETDEWEB)

    Fulop, L.

    1998-10-09

    We used micro-chip lasers developed in LETI to pump a miniature Optical Parametric Oscillator (OPO). The micro-chip lasers can be fabricated at very low cost, using collective fabrication processes. The micro-chip lasers we used are Nd:YAG lasers, passively Q-switched by a Cr{sup 4+}:YAG saturable absorber. They are pumped with 1 W standard laser diodes and emit pulses which characteristics are a few {mu}J energies and several kHz repetition rates. The main problem in pumping an OPO with such a micro-chip laser is to reach its oscillation threshold. We are calculated this threshold and showed that it will be impossible to pump an extra-cavity OPO with a micro-chip laser. We first worked with an extra-cavity OPO based on the non-critical-phase-matching conversion 1.064 {mu}m{yields}1.572 {mu}m + 3.293 {mu}m in a KTP crystal, pumped with a mJ energy laser. In spite of good results (low thresholds of 200 {mu}J) and as we have calculated, it was not be possible to pump such an OPO with our micro-chip lasers (10{mu}J maximum energies). We developed an intracavity micro-chip OPO (with the OPO inside the laser cavity). In this configuration, the OPO benefits from the intracavity laser intensity to reach the oscillation threshold. The micro-chip OPO emits about 10 ns pulses at 1.572 {mu}m with a few {mu}J energy at several kHz repetition rate. To our knowledge, we realised the first micro-chip-OPO using a 1 W standard diode pumped, passively Q-switched micro-chip laser. In order to improve the performances of the intracavity micro-chip-OPO, we developed a software for numerical modelling its operation. (author) 80 refs.

  6. Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s-1 directly modulated lasers and 40 Gb s-1 signal-regenerative amplifiers

    International Nuclear Information System (INIS)

    Sugawara, M; Hatori, N; Ishida, M; Ebe, H; Arakawa, Y; Akiyama, T; Otsubo, K; Yamamoto, T; Nakata, Y

    2005-01-01

    This paper presents recent progress in the field of semiconductor lasers and optical amplifiers with InAs-based self-assembled quantum dots in the active region for optical telecommunication. Based on our design in terms of the maximum bandwidth for high-speed modulation and p-type doping in quantum dots for high temperature stability, we realized temperature-insensitive 10 Gb s -1 laser diodes on a GaAs substrate at 1.3 μm. The output waveform at 10 Gb s -1 maintained a clear eye opening, average output power and extinction ratio without current adjustments from 20 deg. C to 70 deg. C. We developed ultrawide-band high-power amplifiers in the 1.5 μm wavelength region on an InP substrate. The amplifier showed ultrafast gain response under gain saturation, and enabled signal regeneration at 40 Gb s -1 by suppressing the '1'-level noise due to the beating between the signal and amplified spontaneous emission. We present our amplifier module with polarization diversity to enable a stable polarization-insensitive performance, and also, discuss prospects for polarization-insensitive quantum dots by the close stacking technique

  7. Fabrication of an electro-absorption transceiver with a monolithically integrated optical amplifier for fiber transmission of 40–60 GHz radio signals

    International Nuclear Information System (INIS)

    Zhang, Andy Zhenzhong; Wang, Qin; Fonjallaz, Pierre-Yves; Almqvist, Susanne; Karlsson, Stefan; Kjebon, Olle; Schatz, Richard; Chacinski, Marek; Thylén, Lars; Berggren, Jesper; Hammar, Mattias; Honecker, Jörg; Steffan, Andreas

    2011-01-01

    We report on the fabrication of a monolithically integrated semiconductor optical amplifier (SOA) and a reflective electro-absorption transceiver (EAT) for 40–60 GHz radio-over-fiber applications. The EAT can either function as a transmitter (reflective modulator) or as a receiver (photodetector) depending on operation mode. The SOA and the EAT sections are based on different InGaAsP multiple quantum-well active layers connected by a butt joint. Benzocyclobutene is used to reduce the capacitance beside the ridge mesa. Devices are designed to have a peaked response at the operating frequency through the design of microwave waveguides on top of the devices. The packaged device exhibits at 0.1 mW optical input power an amplified DC responsivity of 18.5 mA mW −1 and a modulation efficiency of 0.67 mW V −1 . The estimated radio frequency loss at 40 GHz of an optical link consisting of two SOA–EAT devices was 23 dB using an unmodulated optical input carrier to the transmitter of 0.94 mW

  8. Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-μm pulses using a mixed phase matching scheme

    International Nuclear Information System (INIS)

    Xu, Guibao; Wandel, Scott F.; Jovanovic, Igor

    2014-01-01

    We describe the production of 2.2-mJ, ∼6 optical-cycle-long mid-infrared laser pulses with a carrier wavelength of 2.05 μm in a two-stage β-BaB 2 O 4 nondegenerate optical parametric amplifier design with a mixed phase matching scheme, which is pumped by a standard Ti:sapphire chirped-pulse amplification system. It is demonstrated that relatively high pulse energies, short pulse durations, high stability, and excellent beam profiles can be obtained using this simple approach, even without the use of optical parametric chirped-pulse amplification

  9. Full and semi-analytic analyses of two-pump parametric amplification with pump depletion

    DEFF Research Database (Denmark)

    Steffensen, Henrik; Ott, Johan Raunkjær; Rottwitt, Karsten

    2011-01-01

    This paper solves the four coupled equations describing non-degenerate four-wave mixing, with the focus on amplifying a signal in a fiber optical parametric amplifier (FOPA). Based on the full analytic solution, a simple approximate solution describing the gain is developed. The advantage...... of this new approximation is that it includes the depletion of the pumps, which is lacking in the usual quasi-linearized approximation. With the proposed model it is thus simple to predict the gain of a FOPA, which we demonstrate with a highly nonlinear fiber to show that an undepleted FOPA can produce a flat...

  10. Operation Amplifier

    NARCIS (Netherlands)

    Tetsuya, Saito; Nauta, Bram

    2011-01-01

    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a

  11. Operation Amplifier

    NARCIS (Netherlands)

    Tetsuya, S.; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. ; SOLUTION: The operation amplifier comprises: a

  12. Operational amplifiers

    CERN Document Server

    Dostal, Jiri

    1993-01-01

    This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits

  13. Amplifier Distortion

    Science.gov (United States)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  14. Efficient Long Wave IR Laser from Ho:YAG 2 {mu}m Pumped ZnGeP{sub 2} Optical Parametric Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li-Gang,; Bao-Quan, Yao; Xiao-Ming, Duan; Guo-Li, Zhu; Yue-Zhu, Wang; You-Lun, Ju [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2010-01-15

    An efficient high power long wave infrared laser based on ZnGeP{sub 2} optical parametric oscillator pumped by a 2.09 {mu}m Tm:YLF/Ho:YAG laser at 10KHz pulse repetition rate is reported. The pump to idler conversion efficiency is 8% at 15.6 W Ho pump power level and a quantum efficiency of 31 % when the 1'idler wavelength is tuned at 8.08 {mu}m. The wavelength tuning range from 8-9.1 {mu}m is also achieved by rotating the ZGP crystal. (fundamental areas of phenomenology(including applications))

  15. Optomechanical entanglement via non-degenerate parametric interactions

    International Nuclear Information System (INIS)

    Ahmed, Rizwan; Qamar, Shahid

    2017-01-01

    We present a scheme for the optomechanical entanglement between a micro-mechanical mirror and the field inside a bimodal cavity system using a non-degenerate optical parametric amplifier (NOPA). Our results show that the introduction of NOPA makes the entanglement stronger or more robust against the mean number of average thermal phonons and cavity decay. Interestingly, macroscopic entanglement depends upon the choice of the phase associated with classical field driving NOPA. We also consider the effects of input laser power on optomechanical entanglement. (paper)

  16. Optomechanical entanglement via non-degenerate parametric interactions

    Science.gov (United States)

    Ahmed, Rizwan; Qamar, Shahid

    2017-10-01

    We present a scheme for the optomechanical entanglement between a micro-mechanical mirror and the field inside a bimodal cavity system using a non-degenerate optical parametric amplifier (NOPA). Our results show that the introduction of NOPA makes the entanglement stronger or more robust against the mean number of average thermal phonons and cavity decay. Interestingly, macroscopic entanglement depends upon the choice of the phase associated with classical field driving NOPA. We also consider the effects of input laser power on optomechanical entanglement.

  17. Effects of Temperature and Axial Strain on Four-Wave Mixing Parametric Frequencies in Microstructured Optical Fibers Pumped in the Normal Dispersion Regime

    Directory of Open Access Journals (Sweden)

    Javier Abreu-Afonso

    2014-10-01

    Full Text Available A study of the effect of temperature and axial strain on the parametric wavelengths produced by four-wave mixing in microstructured optical fibers is presented. Degenerate four-wave mixing was generated in the fibers by pumping at normal dispersion, near the zero-dispersion wavelength, causing the appearance of two widely-spaced four-wave mixing spectral bands. Temperature changes, and/or axial strain applied to the fiber, affects the dispersion characteristics of the fiber, which can result in the shift of the parametric wavelengths. We show that the increase of temperature causes the signal and idler wavelengths to shift linearly towards shorter and longer wavelengths, respectively. For the specific fiber of the experiment, the band shift at rates ­–0.04 nm/ºC and 0.3 nm/ºC, respectively. Strain causes the parametric bands to shift in the opposite way. The signal band shifted 2.8 nm/me and the idler -5.4 nm/me. Experimental observations are backed by numerical simulations.

  18. Synthesis and Characterization of Electroresponsive Materials with Applications In: Part I. Second Harmonic Generation. Part II. Organic-Lanthanide Ion Complexes for Electroluminescence and Optical Amplifiers.

    Science.gov (United States)

    Claude, Charles

    1995-01-01

    Materials for optical waveguides were developed from two different approaches, inorganic-organic composites and soft gel polymers. Inorganic-organic composites were developed from alkoxysilane and organically modified silanes based on nonlinear optical chromophores. Organically modified silanes based on N-((3^' -trialkoxysilyl)propyl)-4-nitroaniline were synthesized and sol-gelled with trimethoxysilane. After a densification process at 190^circC with a corona discharge, the second harmonic of the film was measured with a Nd:YAG laser with a fundamental wavelength of 1064nm, d_{33} = 13pm/V. The decay of the second harmonic was expressed by a stretched bi-exponential equation. The decay time (tau _2) was equal to 3374 hours, and was comparable to nonlinear optical systems based on epoxy/Disperse Orange 1. The processing temperature of the organically modified silane was limited to 200^circC due to the decomposition of the organic chromophore. Soft gel polymers were synthesized and characterized for the development of optical waveguides with dc-electrical field assisted phase-matching. Polymers based on 4-nitroaniline terminated poly(ethylene oxide-co-propylene oxide) were shown to exhibit second harmonic generation that were optically phase-matched in an electrical field. The optical signals were stable and reproducible. Siloxane polymers modified with 1-mercapto-4-nitrobenzene and 1-mercapto-4-methylsulfonylstilbene nonlinear optical chromophores were synthesized. The physical and the linear and nonlinear optical properties of the polymers were characterized. Waveguides were developed from the polymers which were optically phase -matched and had an efficiency of 8.1%. The siloxane polymers exhibited optical phase-matching in an applied electrical field and can be used with a semiconductor laser. Organic lanthanide ion complexes for electroluminescence and optical amplifiers were synthesized and characterized. The complexes were characterized for their thermal and

  19. Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems.

    Science.gov (United States)

    Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In

    2014-01-13

    A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).

  20. High power pulsed sources based on fiber amplifiers

    Science.gov (United States)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  1. Structural and optical studies of Er3+-doped alkali/alkaline oxide containing zinc boro-aluminosilicate glasses for 1.5 μm optical amplifier applications

    Science.gov (United States)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Lira, A.; Caldiño, U.; Meza-Rocha, A. N.; Falcony, C.; Kityk, I. V.; Taufiq-Yap, Y. H.; Halimah, M. K.; Mahdi, M. A.

    2017-07-01

    In the present work, we report on the optical spectral properties of Er3+-doped zinc boro-aluminosilicate glasses with an addition of 10 mol % alkali/alkaline modifier regarding the fabrication of new optical materials for optical amplifiers. A total of 10 glasses were prepared using melt-quenching technique with the compositions (40-x)B2O3 - 10SiO2 - 10Al2O3 - 30ZnO - 10Li2O - xEr2O3 and (40-x)B2O3 - 10SiO2 - 10Al2O3 - 30ZnO - 10MgO - xEr2O3 (x = 0.1, 0.25, 0.5, 1.0, and 2.0 mol %). We confirm the amorphous-like structure for all the prepared glasses using X-ray diffraction (XRD). To study the functional groups of the glass composition after the melt-quenching process, Raman spectroscopy was used, and various structural units such as triangular and tetrahedral-borates (BO3 and BO4) have been identified. All the samples were characterized using optical absorption for UV, visible and NIR regions. Judd-Ofelt (JO) intensity parameters (Ωλ, λ = 2, 4 and 6) were calculated from the optical absorption spectra of two glasses LiEr 2.0 and MgEr 2.0 (doped with 2 mol % of Er3+). JO parameters for LiEr 2.0 and MgEr 2.0 glasses follow the trend as Ω6>Ω2>Ω4. Using Judd-Ofelt intensity parameters, we obtained radiative probability A (S-1), branching ratios (β), radiative decay lifetimes τrad (μs) of emissions from excited Er+3 ions in LiEr 2.0 and MgEr 2.0 to all lower levels. Quantum efficiency (η) of 4I13/2 and 4S3/2 levels for LiEr 2.0 and MgEr 2.0 with and without 4D7/2 level was calculated using the radiative decay lifetimes τrad. (μs) and measured lifetimes τexp. (μs). We measured the visible photoluminescence under 377 nm excitation for both LiEr and MgEr glass series within the region 390-580 nm. Three bands were observed in the visible region at 407 nm, 530 nm, and 554 nm, as a result of 2H9/2 → 4I15/2, 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions, respectively. Decay lifetimes for emissions at 407 nm, 530 nm, and 554 nm were measured and they show

  2. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    NARCIS (Netherlands)

    Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2017-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be

  3. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    NARCIS (Netherlands)

    Geiregat, P.A.; Houtepen, A.J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can

  4. Quantum-dot based microdisk lasers and semiconductor optical amplifiers operating at 1.55 μm

    NARCIS (Netherlands)

    Solis Trapala, K.

    2011-01-01

    Optical data transmission allows for high-speed and low-loss transmission over longer distances than the electronic counterpart. Yet, the advantage of using fiber-optic communications has been restrained by power hungry opto-electronic conversions at the nodes. These are required for switching

  5. Optimization of two-photon wave function in parametric down conversion by adaptive optics control of the pump radiation.

    Science.gov (United States)

    Minozzi, M; Bonora, S; Sergienko, A V; Vallone, G; Villoresi, P

    2013-02-15

    We present an efficient method for optimizing the spatial profile of entangled-photon wave function produced in a spontaneous parametric down conversion process. A deformable mirror that modifies a wavefront of a 404 nm CW diode laser pump interacting with a nonlinear β-barium borate type-I crystal effectively controls the profile of the joint biphoton function. The use of a feedback signal extracted from the biphoton coincidence rate is used to achieve the optimal wavefront shape. The optimization of the two-photon coupling into two, single spatial modes for correlated detection is used for a practical demonstration of this physical principle.

  6. Efficient phase locking of two dual-wavelength fiber amplifiers by an all-optical self-feedback loop

    Science.gov (United States)

    Lei, Bing; Chen, Keshan; Yao, Tianfu; Shi, Jianhua; Hu, Haojun

    2017-10-01

    Efficient phase locking of two dual-wavelength fiber amplifiers has been demonstrated by using a self-feedback coupling and intracavity filtering configuration, and the effect of bandwidth and wavelength spacing on their phase locking performances have been investigated in experiment. Two independent fiber lasers with different operating wavelength were combined incoherently by a 3 dB fiber coupler to form a dual-wavelength seed source laser, which was injected into the fiber amplifiers' coupling array through the self-feedback loop. The effect of bandwidth and wavelength spacing was researched by altering the seed laser's pump power and operating wavelengths respectively. As long as the feedback loop and the single-mode fiber filtering configuration were well constructed in the unidirectional ring laser cavity, stable phase locking states and high fringe visibility interference patterns could always be obtained in our experiment. When the spacing of two operating wavelength was varied from 1.6 nm to 19.6 nm, the fringe visibility decreased slightly with the increase of wavelength spacing, and the corresponding fringe visibility was always larger than 0.6. In conclusion, we believe that efficient phase locking of several multi-wavelength laser sources is also feasible by passive self-adjusting methods, and keeping the component laser beams' phase relationship stable and fixed is more important than controlling their operating wavelengths.

  7. Amplified Policymaking

    Science.gov (United States)

    Prince, Katherine; Woempner, Carolyn

    2010-01-01

    This brief examines the policy implications of two drivers of change presented in the "2020 Forecast: Creating the Future of Learning"-- Pattern Recognition and Amplified Organization. These drivers point toward a series of cultural shifts and illuminate how we are developing new ways of organizing, constructing, and managing knowledge.…

  8. A general solution for the dynamics of a generalized non-degenerate optical parametric down-conversion interaction by virtue of the Lewis-Riesenfeld invariant theory

    International Nuclear Information System (INIS)

    Li Jiangfan; Jiang Zongfu; Xiao Fuliang; Huang Chunjia

    2005-01-01

    The dynamics of a generalized non-degenerate optical parametric down-conversion interaction whose Hamiltonian includes an arbitrary time-dependent driving part and a two-mode coupled part is studied by adopting the Lewis-Riesenfeld invariant theory. The closed formulae for the evolution of the quantum states and the evolution operators of the system are obtained. It is shown that various generalized squeezed states arise naturally in the process, and the two-mode squeezed effect is independent of the driving part. An explicitly analytical solution of the Schroedinger equation is further derived as the classical generalized force acting on each mode and the coupling of the two modes both have harmonic time dependences. This solution is found to be in agreement with previous research in special cases

  9. Comparison of Small-Scale Actively and Passively Q-Switched Eye-Safe Intracavity Optical Parametric Oscillators at 1.57 μm

    International Nuclear Information System (INIS)

    Miao Jie-Guang; Pan Yu-Zhai; Qu Shi-Liang

    2012-01-01

    The first experimental comparison between the actively and passively Q-switched intracavity optical parametric oscillators (IOPOs) at 1.57 μm driven by a small-scale diode-pumped Nd:YVO 4 laser are thoroughly presented. It is found that the performances of the two types of IOPOs are complementary. The actively Q-switched IOPO features a shorter pulse duration, a higher peak power, and a superior power and pulse stability. However, in terms of compactness, operation threshold and conversion efficiency, passively Q-switched IOPOs are more attractive. It is further indicated that the passively Q-switched IOPO at 1.57μm is a promising and cost-effective eye-safe laser source, especially at the low and moderate output levels. In addition, instructional improvement measures for the two types of IOPOs are also summarized. (fundamental areas of phenomenology(including applications))

  10. A Mid-IR 14.1 W ZnGeP{sub 2} Optical Parametric Oscillator Pumped by a Tm,Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Guo-Li, Zhu; You-Lun, Ju; Tian-Heng, Wang; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2009-03-15

    We report a high power and high efficiency double resonant ZnGeP{sub 2} (ZGP) optical parametric oscillator (OPO) pumped by a Tm,Ho:GdVO{sub 4} laser. We employ a Tm,Ho:GdVO{sub 4} laser as the pump source operated at 2.049 {mu}m with M{sup 2} = 1.1. The ZGP OPO can generate a total combined output power of 14.1 W at 3.80 {mu}m signal and 4.45 {mu}m idler under pumping power of 28.7 W. The slope efficiency reaches 61.8%, and M{sup 2} = 3.6 for OPO output is obtained. (fundamental areas of phenomenology (including applications))

  11. Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry.

    Science.gov (United States)

    Norris, G; McConnell, G

    2010-03-01

    A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm(2) (corresponding to 3.55 GW/cm(2) from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm(2), without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

  12. A general approach to optomechanical parametric instabilities

    International Nuclear Information System (INIS)

    Evans, M.; Barsotti, L.; Fritschel, P.

    2010-01-01

    We present a simple feedback description of parametric instabilities which can be applied to a variety of optical systems. Parametric instabilities are of particular interest to the field of gravitational-wave interferometry where high mechanical quality factors and a large amount of stored optical power have the potential for instability. In our use of Advanced LIGO as an example application, we find that parametric instabilities, if left unaddressed, present a potential threat to the stability of high-power operation.

  13. Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier.

    Science.gov (United States)

    Qin, Jun; Lu, Guo-Wei; Sakamoto, Takahide; Akahane, Kouichi; Yamamoto, Naokatsu; Wang, Danshi; Wang, Cheng; Wang, Hongxiang; Zhang, Min; Kawanishi, Tetsuya; Ji, Yuefeng

    2014-12-01

    In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR-LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10(-9). Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting.

  14. An ultra-long cavity passively mode-locked fiber laser based on nonlinear polarization rotation in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Liu, Tonghui; Jia, Dongfang; Yang, Jingwen; Chen, Jiong; Wang, Zhaoying; Yang, Tianxin

    2013-01-01

    In this paper we investigate an ultra-long cavity passively mode-locked fiber laser based on a semiconductor optical amplifier (SOA). Experimental results are presented which indicate that stable mode-locked pulses can be obtained by combining nonlinear polarization rotation (NPR) in the SOA with a polarization controller. By adding a 4 km single mode fiber into the ring cavity, a stable fundamental-order mode-locked pulse train with a repetition rate of 50.72 kHz is generated through the NPR effect in the SOA. The central wavelength, 3 dB bandwidth and single pulse energy of the output pulse are 1543.95 nm, 1.506 nm and 33.12 nJ, respectively. Harmonic mode-locked pulses are also observed in experiments when the parameters are chosen properly. (paper)

  15. Direction-dependent waist-shift-difference of Gaussian beam in a multiple-pass zigzag slab amplifier and geometrical optics compensation method.

    Science.gov (United States)

    Li, Zhaoyang; Kurita, Takashi; Miyanaga, Noriaki

    2017-10-20

    Zigzag and non-zigzag beam waist shifts in a multiple-pass zigzag slab amplifier are investigated based on the propagation of a Gaussian beam. Different incident angles in the zigzag and non-zigzag planes would introduce a direction-dependent waist-shift-difference, which distorts the beam quality in both the near- and far-fields. The theoretical model and analytical expressions of this phenomenon are presented, and intensity distributions in the two orthogonal planes are simulated and compared. A geometrical optics compensation method by a beam with 90° rotation is proposed, which not only could correct the direction-dependent waist-shift-difference but also possibly average the traditional thermally induced wavefront-distortion-difference between the horizontal and vertical beam directions.

  16. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  17. NIF/LMJ prototype amplifier mechanical design

    International Nuclear Information System (INIS)

    Horvath, J.

    1996-10-01

    Amplifier prototypes for the National Ignition Facility and the Laser Megajoule will be tested at Lawrence Livermore National Laboratory. The prototype amplifier, which is an ensemble of modules from LLNL and Centre d'Etudes de Limeil-Valenton, is cassette-based with bottom access for maintenance. A sealed maintenance transfer vehicle which moves optical cassettes between the amplifier and the assembly cleanroom, and a vacuum gripper which holds laser slabs during cassette assembly will also be tested. The prototype amplifier will be used to verify amplifier optical performance, thermal recovery time, and cleanliness of mechanical operations

  18. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  19. European Research on THz Vacuum Amplifiers

    DEFF Research Database (Denmark)

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.

    2010-01-01

    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players...... of the European research, academy and industry in vacuum electronics. This paper describes the status of the project and progress towards the THz amplifier realization....

  20. Experimental and theoretical studies in non-linear optical applications. Fiber oscillatiors, regenerative amplifiers, simulations on white-light generation

    Energy Technology Data Exchange (ETDEWEB)

    Zia, Haider

    2015-12-15

    Compact and stable ultrafast laser sources for electron diffraction experiments are the first step in accomplishing the dream experiment of producing a molecular movie. This thesis work focuses on developing new robust laser sources to enable arbitrary scaling in laser repetition rate, pulse energy, duration and stability as needed to provide sufficient integrated detected electrons for high quality diffraction patterns that can be inverted to real space movies. In chapter 2, the construction of a novel stable and high power stretched pulse fiber oscillator outputting 300 mW at 31 MHz and compressible pulses to below 90 fs will be described. Chapter 3 describes the construction of a solid-state regenerative amplifier that was developed to achieve pulse energies above 1mJ with 0.40 mJ already achieved at 1 kHz. Novel simulation techniques were explored that aided the construction of the amplifier. Chapter 4 derives a new, fast and powerful numerical theory that is implemented for generalized non-linear Schrodinger equations in all spatial dimensions and time. This new method can model complicated terms in these equations that outperforms other numerical methods with respect to minimizing numerical error and increased speed. These advantages are due to this method's Fourier nature. A simulation tool was created, employing this numerical technique to simulate white-light generation in bulk media. The simulation matches extremely well with published experimental data, and is superior to the original simulation method used to match the experiment. The use of this tool enables accurate calculations of continuum or white light generation as needed for different experimental protocols and serves as the primary input to generate wide bandwidth coherent light.This work has solved the problem of predictably designing continuum generation within targeted wavelength ranges. This information is needed as part of an overall scheme in laser source development to coherently

  1. Experimental and theoretical studies in non-linear optical applications. Fiber oscillatiors, regenerative amplifiers, simulations on white-light generation

    International Nuclear Information System (INIS)

    Zia, Haider

    2015-12-01

    Compact and stable ultrafast laser sources for electron diffraction experiments are the first step in accomplishing the dream experiment of producing a molecular movie. This thesis work focuses on developing new robust laser sources to enable arbitrary scaling in laser repetition rate, pulse energy, duration and stability as needed to provide sufficient integrated detected electrons for high quality diffraction patterns that can be inverted to real space movies. In chapter 2, the construction of a novel stable and high power stretched pulse fiber oscillator outputting 300 mW at 31 MHz and compressible pulses to below 90 fs will be described. Chapter 3 describes the construction of a solid-state regenerative amplifier that was developed to achieve pulse energies above 1mJ with 0.40 mJ already achieved at 1 kHz. Novel simulation techniques were explored that aided the construction of the amplifier. Chapter 4 derives a new, fast and powerful numerical theory that is implemented for generalized non-linear Schrodinger equations in all spatial dimensions and time. This new method can model complicated terms in these equations that outperforms other numerical methods with respect to minimizing numerical error and increased speed. These advantages are due to this method's Fourier nature. A simulation tool was created, employing this numerical technique to simulate white-light generation in bulk media. The simulation matches extremely well with published experimental data, and is superior to the original simulation method used to match the experiment. The use of this tool enables accurate calculations of continuum or white light generation as needed for different experimental protocols and serves as the primary input to generate wide bandwidth coherent light.This work has solved the problem of predictably designing continuum generation within targeted wavelength ranges. This information is needed as part of an overall scheme in laser source development to coherently

  2. All-optical signal regeneration at 40 Gbit/s using a Mach-Zehnder Interferometer based on semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Bischoff, Svend; Mørk, Jesper

    2000-01-01

    Summary form only given. All-optical signal regeneration and processing are interesting for high bit-rate transmission systems. The Mach-Zehnder interferometer (MZI) is a promising device for functionalities like all-optical add/drop and signal regeneration. Wavelength conversion up-to 20 Gbit...... and optimization issues....

  3. 1.25 Gbit/s bidirectional link in an access network employing a reconfigurable optical add/drop multiplexer and a reflective semiconductor optical amplifier

    NARCIS (Netherlands)

    Urban, P.J.; de Laat, M.M.; Klein, E.J.; Koonen, A.M.J.; Khoe, G.D.; de Waardt, H.; Marciniak, M.; Jaworski, M.; Zdabiwicz, M.

    2008-01-01

    In this paper, we demonstrate symmetrical bidirectional transmission of 1.25 Gbit/s wavelength channels in an access network link employing centralized light generation, colourless optical network unit (ONU) and a reconfigurable optical add/drop multiplexer (ROADM). The architecture of ONU is based

  4. Quantitative optical extinction-based parametric method for sizing a single core-shell Ag-Ag{sub 2}O nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Santillan, J M J; Scaffardi, L B; Schinca, D C, E-mail: lucias@ciop.unlp.edu.ar [Centro de Investigaciones Opticas (CIOp), (CONICET La Plata-CIC) (Argentina)

    2011-03-16

    This paper develops a parametric method for determining the core radius and shell thickness in small silver-silver-oxide core-shell nanoparticles (Nps) based on single particle optical extinction spectroscopy. The method is based on the study of the relationship between plasmon peak wavelength, full width at half maximum (FWHM) and contrast of the extinction spectra as a function of core radius and shell thickness. This study reveals that plasmon peak wavelength is strongly dependent on shell thickness, whereas FWHM and contrast depend on both variables. These characteristics may be used for establishing an easy and fast stepwise procedure to size core-shell NPs from single particle absorption spectrum. The importance of the method lies in the possibility of monitoring the growth of the silver-oxide layer around small spherical silver Nps in real time. Using the electrostatic approximation of Mie theory, core-shell single particle extinction spectra were calculated for a silver particle's core size smaller than about 20 nm and different thicknesses of silver oxide around it. Analysis of the obtained curves shows a very particular characteristic of the plasmon peak of small silver-silver-oxide Nps, expressed in the fact that its position is strongly dependent on oxide thickness and weakly dependent on the core radius. Even a very thin oxide layer shifts the plasmon peak noticeably, enabling plasmon tuning with appropriate shell thickness. This characteristic, together with the behaviour of FWHM and contrast of the extinction spectra can be combined into a parametric method for sizing both core and shell of single silver Nps in a medium using only optical information. In turn, shell thickness can be related to oxygen content in the Np's surrounding media. The method proposed is applied to size silver Nps from single particle extinction spectrum. The results are compared with full optical spectrum fitting using the electrostatic approximation in Mie theory

  5. Comparative investigation of long-wave infrared generation based on ZnGeP{sub 2} and CdSe optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Gang, Li; Guo-Li, Zhu; Pei-Bei, Meng; You-Lun, Ju; Wang Yue-Zhu, E-mail: yaobq08@hit.edu.cn [National Key Laboratory of Tunable Laser Technology Harbin Institute of Technology Harbin 150001 (China)

    2012-03-15

    Long-wave infrared (IR) generation based on type-II (o{yields}e+o) phase matching ZnGeP{sub 2} (ZGP) and CdSe optical parametric oscillators (OPOs) pumped by a 2.05 {mu}m Tm,Ho:GdVO{sub 4} laser is reported. The comparisons of the bire-fringent walk-off effect and the oscillation threshold between ZGP and CdSe OPOs are performed theoretically and experimentally. For the ZGP OPO, up to 419 mW output at 8.04 {mu}m is obtained at the 8 kHz pump pulse repetition frequency (PRF) with a slope efficiency of 7.6%. This ZGP OPO can be continuously tuned from 7.8 to 8.5 {mu}m. For the CdSe OPO, we demonstrate a 64 mW output at 8.9 {mu}m with a single crystal 28 mm in length. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  6. Coherent feedback control of multipartite quantum entanglement for optical fields

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhihui; Jia, Xiaojun; Xie, Changde; Peng, Kunchi [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006 (China)

    2011-12-15

    Coherent feedback control (CFC) of multipartite optical entangled states produced by a nondegenerate optical parametric amplifier is theoretically studied. The features of the quantum correlations of amplitude and phase quadratures among more than two entangled optical modes can be controlled by tuning the transmissivity of the optical beam splitter in the CFC loop. The physical conditions to enhance continuous variable multipartite entanglement of optical fields utilizing the CFC loop are obtained. The numeric calculations based on feasible physical parameters of realistic systems provide direct references for the design of experimental devices.

  7. Ionospheric modification and parametric instabilities

    International Nuclear Information System (INIS)

    Fejer, J.A.

    1979-01-01

    Thresholds and linear growth rates for stimulated Brillouin and Raman scattering and for the parametric decay instability are derived by using arguments of energy transfer. For this purpose an expression for the ponderomotive force is derived. Conditions under which the partial pressure force due to differential dissipation exceeds the ponderomotive force are also discussed. Stimulated Brillouin and Raman scattering are weakly excited by existing incoherent backscatter radars. The parametric decay instability is strongly excited in ionospheric heating experiments. Saturation theories of the parametric decay instability are therefore described. After a brief discussion of the purely growing instability the effect of using several pumps is discussed as well as the effects of inhomogenicity. Turning to detailed theories of ionospheric heating, artificial spread F is discussed in terms of a purely growing instability where the nonlinearity is due to dissipation. Field-aligned short-scale striations are explained in terms of dissipation of the parametrically excited Langmuir waves (plasma oscillations): they might be further amplified by an explosive instability (except the magnetic equator). Broadband absorption is probably responsible for the 'overshoot' effect: the initially observed level of parametrically excited Langmuir waves is much higher than the steady state level

  8. Development of Chemically Amplified Optical Sensors for Continuous Blood Glucose Monitoring Final Report CRADA No. TSB-1162-95

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Stephen M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Livermore, CA (United States); Mastrototaro, John J. [Minimed Technologies, Inc., Sylmar, CA (United States)

    2018-01-22

    Diabetes is a chronic disease that affects 14 million people in the U.S. and more than 110 million people worldwide. Each year in this country 27,000 diabetic patients become blind, 15,000 have kidney failure, and over 54,000 have peripheral limb amputations. In 1992, total healthcare costs in the U.S. for diabetes were more than $105 billion, approximately 15% of our healthcare budget. Conventional therapy for the most severe form of diabetes, insulin-dependent diabetes mellitus (IDDM) or Type I diabetes, is to administer one or two injections per day of various forms of insulin while monitoring blood glucose levels twice or three times daily with commercial glucometers that require blood samples. Near normal blood sugar levels (glycemic control) is difficult to achieve with conventional therapy. In the fall of 1993, the results of the 10-year $165 million Diabetes Control and Complications Trial (DCCT) were published which showed that intensive insulin management would lead to dramatically fewer cases of retinopathy (which leads to blindness), nephropathy (which leads to kidney failure), and neuropathy (which can lead to limb amputations) [New England Journal of Medicine, Vo1239, No.14 977-986 (1993)]. If existing commercial insulin pumps could be combined with a continuous glucose sensor, a more physiological and fine-tuned therapy could be provided - in effect, an artificial biomechanical pancreas would be available. Existing research suggested that such a development would dramatically improve glucose control, thus greatly reducing morbidity and mortality from this disease. MiniMed Technologies in Sylmar, CA, identified a number of optically based sensor strategies as well as candidate chemical reactions that could be used to implement a minimally invasive opto-chemical glucose sensor. LLNL evaluated these sensor strategies and chemical reactions. These evaluations were the first steps leading to development of a sensor of considerable importance that could

  9. Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters

    DEFF Research Database (Denmark)

    Wang, Z.; Durhuus, T.; Mikkelsen, Benny

    1994-01-01

    A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....

  10. Tunable, high-repetition-rate, dual-signal-wavelength femtosecond optical parametric oscillator based on BiB3O6

    Science.gov (United States)

    Meng, Xianghao; Wang, Zhaohua; Tian, Wenlong; Fang, Shaobo; Wei, Zhiyi

    2018-01-01

    We have demonstrated a high-repetition-rate tunable femtosecond dual-signal-wavelength optical parametric oscillator (OPO) based on BiB3O6 (BiBO) crystal, synchronously pumped by a frequency-doubled mode-locked Yb:KGW laser. The cavity is simple since no dispersion compensators are used in the cavity. The wavelength range of dual-signal is widely tunable from 710 to 1000 nm. Tuning is accomplished by rotating phase-matching angle of BiBO, and optimizing cavity length and output coupler. Using a 3.75 W pump laser, the maximum average dual-signal output power is 760 mW at 707 and 750 nm, leading to a conversion efficiency of 20.3% not taking into account the idler power. Our experimental results show a non-critical phase-matching configuration pumped by a high peak power laser source. The operation of the dual-signal benefits from the balance of phase matching and group velocity mismatching between the two signals.

  11. Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB₃O₆.

    Science.gov (United States)

    Devi, Kavita; Kumar, S Chaitanya; Ebrahim-Zadeh, M

    2013-10-21

    We report a continuous-wave (cw) source of tunable radiation across 333-345 nm in the ultraviolet (UV) using bismuth triborate, BiB₃O₆ (BIBO) as the nonlinear gain material. The source is based on internal sum-frequency-generation (SFG) in a cw singly-resonant optical parametric oscillator (OPO) pumped at 532 nm. The compact tunable source employs a 30-mm-long MgO:sPPLT crystal as the OPO gain medium and a 5-mm-long BIBO crystal for intracavity SFG of the signal and pump, providing up to 21.6 mW of UV power at 339.7 nm, with >15 mW over 64% of the SFG tuning range. The cw OPO is also tunable across 1158-1312 nm in the idler, delivering as much as 1.7 W at 1247 nm, with >1W over 65% of the tuning range. The UV output at maximum power exhibits passive power stability better than 3.4% rms and frequency stability of 193 GHz over more than one minute.

  12. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    International Nuclear Information System (INIS)

    Zulkifli, M Z; Ahmad, H; Hassan, N A; Jemangin, M H; Harun, S W

    2011-01-01

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm to 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)

  13. A 3.125-Gb/s inductorless transimpedance amplifier for optical communication in 0.35 μm CMOS

    International Nuclear Information System (INIS)

    Xu Hui; Feng Jun; Liu Quan; Li Wei

    2011-01-01

    A 3.125-Gb/s transimpedance amplifier (TIA) for an optical communication system is realized in 0.35 μm CMOS technology. The proposed TIA employs a regulated cascode configuration as the input stage, and adopts DC-cancellation techniques to stabilize the DC operating point. In addition, noise optimization is processed. The on-wafer measurement results show the transimpedance gain of 54.2 dBΩ and −3 dB bandwidth of 2.31 GHz. The measured average input referred noise current spectral density is about 18.8 pA/√Hz. The measured eye diagram is clear and symmetrical for 2.5-Gb/s and 3.125-Gb/s PRBS. Under a single 3.3-V supply voltage, the TIA consumes only 58.08 mW, including 20 mW from the output buffer. The whole die area is 465 × 435 μm 2 . (semiconductor integrated circuits)

  14. The use of polarized deuterons beams and the determination of the optical model parameters; Utilisation de faisceaux de deutons polarises et determination des parametres du modele optique

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-15

    A general description of beams of polarized particles in nuclear reactions is studied; the various choices necessary to define the polarization parameters are discussed with regard to their consequences. The frequent occurrence of symmetry plane yields a set of relations among these parameters. The range of these parameters is studied in particular for a beam of particles of spin 1 and with a symmetry plane. Nuclear reactions involving two bodies are described in terms of the helicity formalism. With the use of the adopted set of polarization parameters, the polarization of the final state is studied for a given polarization in the initial state. An optical model for deuterons may consist of a scalar term, an L.S potential and tensor potentials built with the distance between the deuteron and the nucleus, its angular momentum or its relative momentum. Calculations have been made with the first two tensor potentials. Many authors have calculated a potential for deuterons starting from the nucleon-nucleus potential. These calculations are redone taking into account both the S and D waves of the deuteron. The various terms of the potential have been calculated with a set of different intrinsic wave functions. The use of a potential not limited to scalar form yields good fits for cross-sections with nuclear radii which are greater than those necessary with a purely central potential. The experimental results obtained at Saclay for the polarization of deuterons elastically scattered by Ca are not compatible with the existence of an important tensor potential; they can be accounted for by an L.S coupling potential independent of the central potential but with very small radii. (author) [French] La description de faisceaux do particules polarisees dans les reactions nucleaires est etudiee de facon generale; les choix necessaires pour definir les parametres de polarisation sont discutes en fonction de leurs consequences. L'existence tres frequente d'un plan de symetrie

  15. Spaceflight 2 um Tm Fiber MOPA Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to design, develop, and test a spaceflight prototype 2051 nm thulium (Tm)-doped fiber amplifier (TDFA) optical master oscillator power amplifier...

  16. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann

    2012-01-01

    We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission....... These results are promising for short and efficient semiconductor optical amplifiers. This effect will also benefit other devices, such as mode locked lasers....

  17. Dielectric waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Pollnau, Markus

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length

  18. Amplitude and phase modulation with waveguide optics

    International Nuclear Information System (INIS)

    Burkhart, S.C.; Wilcox, R.B.; Browning, D.; Penko, F.A.

    1996-01-01

    We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high-speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz

  19. Photoluminescence quenching by OH in Er- and Pr-doped glasses for 1.5 and 1.3 μm optical amplifiers

    Science.gov (United States)

    Faber, Anne J.; Simons, Dennis R.; Yan, Yingchao; de Waal, Henk

    1994-09-01

    In this paper we report on the effect of hydroxyl (OH) groups on the photoluminescence in the near IR (1.5 and 1.3 micrometers ) in rare earth (Er, Pr)-doped glasses. The 1.5 micrometers emission of Er-doped phosphate glasses was studied, before and after a special heat treatment. The luminescent lifetime of the 1.5 micrometers emission increases substantially, typically from 3 ms up to 7.2 ms for a 2 mole% Er2O3-doped phosphate glass, due to the controlled heat treatment. The increase in lifetime is ascribed to a decrease in OH- concentration, which is confirmed by IR-absorption spectroscopy. The quenching by OH is described by a simplified quenching model, which predicts the 1.5 micrometers emission lifetime as a function of Er- concentration with the OH-concentration as parameter. It appears that the larger part of the OH groups is coupled to Er ions and thus acts as quenching center. Photoluminescence quenching by OH groups is also reported for the 1.3 micrometers emission of Pr in GeS2-glasses: In pure OH-free GeS2 glass the 1.3 micrometers emission lifetime is as high as 350 microsecond(s) , for a 400 ppm dopant level. In GeS2 glasses containing only small amounts of OH (approximately 100 ppm), this lifetime is less than 200 microsecond(s) . Both examples demonstrate that for the fabrication of efficient glass optical amplifiers at the telecommunication windows 1.3 and 1.5 micrometers , the OH-impurity level of the host glass must be kept as low as possible.

  20. Construction of an optical semiconductor amplifier starting from a Fabry-Perot semiconductor laser; Construccion de un amplificador optico de semiconductor a partir de un laser de semiconductor Fabry-Perot

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.; Soto, H.; Marquez, H.; Valles V, N. [Departamento de Electronica y Telecomunicaciones, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada. Km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, Baja California (Mexico)

    2000-07-01

    A methodology to convert a semiconductor laser Fabry-Perot (SL-FP) in a semiconductor optical amplifier (SOA) is presented. In order to suppress the cavity resonant an optical thin film coating was deposited on the facets of the SL-FP. The experiment was carried out putting on service a new monitoring technique that consist in the observation of the laser power spectrum during the antireflection coatings deposition. This allows to determine the moment were the facets reflectivity is minimum. The SOA obtained was characterized for different polarization currents. (Author)

  1. Ten-watt level picosecond parametric mid-IR source broadly tunable in wavelength

    Science.gov (United States)

    Vyvlečka, Michal; Novák, Ondřej; Roškot, Lukáscaron; Smrž, Martin; Mužík, Jiří; Endo, Akira; Mocek, Tomáš

    2018-02-01

    Mid-IR wavelength range (between 2 and 8 μm) offers perspective applications, such as minimally-invasive neurosurgery, gas sensing, or plastic and polymer processing. Maturity of high average power near-IR lasers is beneficial for powerful mid-IR generation by optical parametric conversion. We utilize in-house developed Yb:YAG thin-disk laser of 100 W average power at 77 kHz repetition rate, wavelength of 1030 nm, and about 2 ps pulse width for pumping of a ten-watt level picosecond mid-IR source. Seed beam is obtained by optical parametric generation in a double-pass 10 mm long PPLN crystal pumped by a part of the fundamental near-IR beam. Tunability of the signal wavelength between 1.46 μm and 1.95 μm was achieved with power of several tens of miliwatts. Main part of the fundamental beam pumps an optical parametric amplification stage, which includes a walk-off compensating pair of 10 mm long KTP crystals. We already demonstrated the OPA output signal and idler beam tunability between 1.70-1.95 μm and 2.18-2.62 μm, respectively. The signal and idler beams were amplified up to 8.5 W and 5 W, respectively, at 42 W pump without evidence of strong saturation. Thus, increase in signal and idler output power is expected for pump power increase.

  2. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    Science.gov (United States)

    Nascimento, Jehan F.; Silva, Marcionilo J.; Coêlho, Isnaldo J. S.; Cipriano, Eliel; Martins-Filho, Joaquim F.

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations. PMID:22737017

  3. Parametric and Non-Parametric System Modelling

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg

    1999-01-01

    the focus is on combinations of parametric and non-parametric methods of regression. This combination can be in terms of additive models where e.g. one or more non-parametric term is added to a linear regression model. It can also be in terms of conditional parametric models where the coefficients...... considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how...... networks is included. In this paper, neural networks are used for predicting the electricity production of a wind farm. The results are compared with results obtained using an adaptively estimated ARX-model. Finally, two papers on stochastic differential equations are included. In the first paper, among...

  4. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Koptev, M Yu; Anashkina, E A; Lipatov, D S; Andrianov, A V; Muravyev, S V; Kim, A V [Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (Russian Federation); Bobkov, K K; Likhachev, M E; Levchenko, A E; Aleshkina, S S; Semjonov, S L; Denisov, A N; Bubnov, M M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Laptev, A Yu; Gur' yanov, A N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2015-05-31

    We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm range and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)

  5. Spectroscopic amplifier for pin diode

    International Nuclear Information System (INIS)

    Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R.

    2014-10-01

    The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)

  6. The OPTHER Project: Progress toward the THz Amplifier

    DEFF Research Database (Denmark)

    Paoloni, C; Brunetti, F; Di Carlo, A

    2011-01-01

    This paper describes the status of the OPTHER (OPtically driven TeraHertz AmplifiERs) project and progress toward the THz amplifier realization. This project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within...... this project is a consolidation of efforts at the international level from the leading scientific and industrial European organizations working with vacuum electronics....

  7. Amplifier for nuclear spectrometry

    International Nuclear Information System (INIS)

    Suarez Canner, E.

    1996-01-01

    The spectroscopy amplifier model AE-020 is designed to adjust suitable the pulses coming from nuclear radiation detectors. Due to is capacity and specifications, the amplifier can be used together with high and medium resolution spectroscopy system

  8. Portable musical instrument amplifier

    Science.gov (United States)

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  9. Multi-pass amplifier architecture for high power laser systems

    Science.gov (United States)

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C

    2014-04-01

    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  10. Noise figure of amplified dispersive Fourier transformation

    International Nuclear Information System (INIS)

    Goda, Keisuke; Jalali, Bahram

    2010-01-01

    Amplified dispersive Fourier transformation (ADFT) is a powerful tool for fast real-time spectroscopy as it overcomes the limitations of traditional optical spectrometers. ADFT maps the spectrum of an optical pulse into a temporal waveform using group-velocity dispersion and simultaneously amplifies it in the optical domain. It greatly simplifies spectroscopy by replacing the diffraction grating and detector array in the conventional spectrometer with a dispersive fiber and single-pixel photodetector, enabling ultrafast real-time spectroscopic measurements. Following our earlier work on the theory of ADFT, here we study the effect of noise on ADFT. We derive the noise figure of ADFT and discuss its dependence on various parameters.

  11. A ZnGeP{sub 2} Optical Parametric Oscillator with Mid-IR Output Power 3 W Pumped by a Tm, Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Guo-Li, Zhu; You-Lun, Ju; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080 (China)

    2009-02-15

    We report an efficient mid-infrared optical parametric oscillator (OPO) pumped by a pulsed Tm,Ho-codoped GdVO4 laser. The 10-W Tm,Ho:GdVO4 laser pumped by a 801 nm diode produces 20ns pulses with a repetition rate of 10kHz at wavelength of 2.048 {mu}m. The ZnGeP{sub 2} (ZGP) OPO produces 15-ns pulses in the spectral regions 3.65-3.8 {mu}m and 4.45-4.65 {mu}m simultaneously. More than 3 W of mid-IR output power can be generated with a total OPO slope efficiency greater than 58% corresponding to incident 2 {mu}m pump power. The diode laser pump to mid-IR optical conversion efficiency is about 12%.

  12. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ; SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and

  13. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2010-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ;SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and can

  14. Detection of two-mode compression and degree of entanglement in continuous variables in parametric scattering of light

    International Nuclear Information System (INIS)

    Rytikov, G. O.; Chekhova, M. V.

    2008-01-01

    Generation of 'twin beams' (of light with two-mode compression) in single-pass optical parametric amplifier (a crystal with a nonzero quadratic susceptibility) is considered. Radiation at the output of the nonlinear crystal is essentially multimode, which raises the question about the effect of the detection volume on the extent of suppression of noise from the difference photocurrent of the detectors. In addition, the longitudinal as well as transverse size of the region in which parametric transformation takes place is of fundamental importance. It is shown that maximal suppression of noise from difference photocurrent requires a high degree of entanglement of two-photon light at the outlet of the parametric amplifier, which is defined by Federov et al. [Phys. Rev. A 77, 032336 (2008)] as the ratio of the intensity distribution width to the correlation function width. The detection volume should be chosen taking into account both these quantities. Various modes of single-pass generation of twin beams (noncollinear frequency-degenerate and collinear frequency-nondegenerate synchronism of type I, as well as collinear frequency-degenerate synchronism of type II) are considered in connection with the degree of entanglement

  15. On Parametric (and Non-Parametric Variation

    Directory of Open Access Journals (Sweden)

    Neil Smith

    2009-11-01

    Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.

  16. Parametric Instability in Advanced Laser Interferometer Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Ju, L; Grass, S; Zhao, C; Degallaix, J; Blair, D G

    2006-01-01

    High frequency parametric instabilities in optical cavities are radiation pressure induced interactions between test mass mechanical modes and cavity optical modes. The parametric gain depends on the cavity power and the quality factor of the test mass internal modes (usually in ultrasonic frequency range), as well as the overlap integral for the mechanical and optical modes. In advanced laser interferometers which require high optical power and very low acoustic loss test masses, parametric instabilities could prevent interferometer operation if not suppressed. Here we review the problem of parametric instabilities in advanced detector configurations for different combinations of sapphire and fused silica test masses, and compare three methods for control or suppression of parametric instabilities-thermal tuning, surface damping and active feedback

  17. Phase noise in RF and microwave amplifiers.

    Science.gov (United States)

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  18. Amplified spontaneous emissions in a high-gain laser amplifier

    International Nuclear Information System (INIS)

    Osada, Hidenori; Gamo, Hideya.

    1978-01-01

    The gain and line-narrowing of the amplified spontaneous emissions(ASE) in a partially homogeneous high-gain Xe 3.51 μm laser amplifier were studied theoretically and experimentally with emphasis of saturation effect. The unidirectionally travelling ASE was generated by conveniently using optical isolators and used as a broadband radiation source. It has properties of 10 μW/mm 2 in intensity with fluctuation of less than 1% in 5 hours, 43.5 MHz of the linewidth and 1.0 x 10 -3 radians of beam divergence. The measured saturation intensity was 4.85 μW/mm 2 and a small signal gain was 0.1 cm -1 . The theoretical prediction of the line-narrowing shows reasonablly good agreement with the measured one. (author)

  19. Multiple excitation regenerative amplifier inertial confinement system

    International Nuclear Information System (INIS)

    George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.

    1980-01-01

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation

  20. Markovian Dynamics of Josephson Parametric Amplification

    Directory of Open Access Journals (Sweden)

    W. Kaiser

    2017-09-01

    Full Text Available In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA. The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.