WorldWideScience

Sample records for optical parametric amplifier

  1. Gain Characteristics of Fiber Optical Parametric Amplifier

    Institute of Scientific and Technical Information of China (English)

    高明义; 姜淳; 胡卫生

    2004-01-01

    The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics of one-pump and two-pump FOPA. The results show that for one-pump FOPA, when pump wavelength is near to fiber zero-dispersion wavelength(ZDW), the gain flatness is better, and with the increase of the pump power, fiber length and its nonlinear coefficient, the gain value will increase while the gain bandwidth will become narrow. For two-pump FOPA, when the pump central wavelength is near to fiber ZDW, the gain flatness is better. Moreover, by decreasing the space of two pumps wavelength, the gain flatness can be improved. Finally, some problems existing in FOPA were addressed.

  2. Design criteria for ultrafast optical parametric amplifiers

    Science.gov (United States)

    Manzoni, C.; Cerullo, G.

    2016-10-01

    Optical parametric amplifiers (OPAs) exploit second-order nonlinearity to transfer energy from a fixed frequency pump pulse to a variable frequency signal pulse, and represent an easy way of tuning over a broad range the frequency of an otherwise fixed femtosecond laser system. OPAs can also act as broadband amplifiers, transferring energy from a narrowband pump to a broadband signal and thus considerably shortening the duration of the pump pulse. Due to these unique properties, OPAs are nowadays ubiquitous in ultrafast laser laboratories, and are employed by many users, such as solid state physicists, atomic/molecular physicists, chemists and biologists, who are not experts in ultrafast optics. This tutorial paper aims at providing the non-specialist reader with a self-consistent guide to the physical foundations of OPAs, deriving the main equations describing their performance and discussing how they can be used to understand their most important working parameters (frequency tunability, bandwidth, pulse energy/repetition rate scalability, control over the carrier-envelope phase of the generated pulses). Based on this analysis, we derive practical design criteria for OPAs, showing how their performance depends on the type of the nonlinear interaction (crystal type, phase-matching configuration, crystal length), on the characteristics of the pump pulse (frequency, duration, energy, repetition rate) and on the OPA architecture.

  3. High-Frequency RIN Transfer in Fibre Optic Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Kang, Ning

    2011-01-01

    ibre optic parametric amplifiers (FOPAs) are versatile devices for amplification at arbitrary wavelengths, as well as a wide range of optical signal processing applications, including switching, wavelength conversion, regeneration, pulse generation etc [1]. Transfer of intensity fluctuations from...

  4. Fiber optical parametric amplifiers in optical communication systems

    DEFF Research Database (Denmark)

    Marhic, Michel E.; Andrekson, Peter A.; Petropoulos, Periklis

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-...... in excess of 14,000 Tb/s x km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed.......The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time......-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512Gb/s have been transmitted over 6,000km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products...

  5. Gain characteristics of a saturated fiber optic parametric amplifier

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny

    2008-01-01

    In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....

  6. Fiber optical parametric amplifiers in optical communication systems.

    Science.gov (United States)

    Marhic, Michel E; Andrekson, Peter A; Petropoulos, Periklis; Radic, Stojan; Peucheret, Christophe; Jazayerifar, Mahmoud

    2015-01-01

    The prospects for using fiber optical parametric amplifiers (OPAs) in optical communication systems are reviewed. Phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers (PSAs) are considered. Low-penalty amplification at/or near 1 Tb/s has been achieved, for both wavelength- and time-division multiplexed formats. High-quality mid-span spectral inversion has been demonstrated at 0.64 Tb/s, avoiding electronic dispersion compensation. All-optical amplitude regeneration of amplitude-modulated signals has been performed, while PSAs have been used to demonstrate phase regeneration of phase-modulated signals. A PSA with 1.1-dB noise figure has been demonstrated, and preliminary wavelength-division multiplexing experiments have been performed with PSAs. 512 Gb/s have been transmitted over 6,000 km by periodic phase conjugation. Simulations indicate that PIAs could reach data rate x reach products in excess of 14,000 Tb/s × km in realistic wavelength-division multiplexed long-haul networks. Technical challenges remaining to be addressed in order for fiber OPAs to become useful for long-haul communication networks are discussed. [Formula: see text].

  7. Decomposing a pulsed optical parametric amplifier into independent squeezers

    CERN Document Server

    Lvovsky, A I; Banaszek, K

    2006-01-01

    We discuss the concept of characteristic squeezing modes applied to a travelling-wave optical parametric amplifier pumped by an ultrashort pulse. The characteristic modes undergo decoupled single-mode squeezing transformations, and therefore they form a useful basis to describe the evolution of the entire multimode system. This provides an elegant and intuitive picture of quantum statistical properties of parametric fluorescence. We analyse the efficiency of detecting quadrature squeezing, and present results of numerical calculations for a realistic nonlinear medium.

  8. Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael

    2012-01-01

    We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion...

  9. Femtosecond Optical Parametric Amplifier for Petawatt Nd:Glass Lasers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Min; QIAN Lie-Jia; YUAN Peng; LUO Hang; ZHU He-Yuan; ZHU Qi-Hua; WEI Xiao-Feng; FAN Dian-Yuan

    2006-01-01

    @@ We study a femtosecond Ti:sapphire laser pumped optical parametric amplifier (OPA) at 1053nm. The OPA generates stable signal pulses with duration smaller than 100 fs, wavelength drift smaller than 0.5nm, and pulse-to-pulse fluctuation of about ±4%, by employing an external seeder. In a terawatt laser pumped large-aperture LiNbO3 OPA, pulse energy at signal has been scaled up to 4mJ. This m J-class femtosecond OPA at 1053nm presents a feasible alternative to optical parametric chirped-pulse amplification, and is ready to be applied to petawatt lasers.

  10. Numerical Modelling of Spontaneous Emission in Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Ulrik Lund; Rottwitt, Karsten

    2013-01-01

    Fiber optical parametric processes offer a wide range of applications including phase sensitive as well as phase insensitive amplification, wavelength conversion and signal regeneration. One of the difficult challenges is any of these applications is to predict their associated noise performance....... However, it is well accepted that one contribution to the noise performance originates from vacuum fluctuations. In this work we show a novel approach to predict the spontaneous radiation from a parametric amplifier. In the approach the propagating fields are treated as a sum of a classical mean field...

  11. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    Science.gov (United States)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  12. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    and can operate with a potentially low noise figure with respect to erbium-doped fiber amplifiers and Raman amplifiers, when working in phase-sensitive configurations. A characterization of the signal distortion mechanisms introduced by FOPAs is relevant for investigating the applicability of FOPAs......Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... transfer can be reduced in saturated F OPAs. In order to characterize propagation impairments such as dispersion and Kerr effect, affecting signals reaching multi-terabit per second per channel, short pulses on the order of 500 fs need to be considered. Therefore, a short pulses fiber laser source...

  13. Fiber-optic parametric amplifier and oscillator based on intracavity parametric pump technique.

    Science.gov (United States)

    Luo, Zhengqian; Zhong, Wen-De; Tang, Ming; Cai, Zhiping; Ye, Chenchun; Xiao, Xiaosheng

    2009-01-15

    A cost-effective fiber optical parametric amplifier (FOPA) based on the laser intracavity pump technique has been proposed and demonstrated experimentally. The parametric process is realized by inserting a 1 km highly nonlinear dispersion-shifted fiber (HNL-DSF) into a fiber ring-laser cavity that consists of a high-power erbium-doped fiber (EDF) amplifier and two highly reflective fiber Bragg gratings. Compared with the conventional parametric pump schemes, the proposed pumping technique is free from a tunable semiconductor laser as the pump source and also the pump phase modulation. When the oscillating power of 530 mW in the EDF laser cavity is achieved to pump the HNL-DSF, a peak parametric gain of 27.5 dB and a net gain over 45 nm are obtained. Moreover, a widely tunable fiber-optic parametric oscillator is further developed using the FOPA as a gain medium.

  14. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

    CERN Document Server

    Liu, Xiaoping; Vlasov, Yurii A; Green, William M J

    2010-01-01

    All-optical signal processing is envisioned as an approach to dramatically decrease power consumption and speed up performance of next-generation optical telecommunications networks. Nonlinear optical effects, such as four-wave mixing (FWM) and parametric gain, have long been explored to realize all-optical functions in glass fibers. An alternative approach is to employ nanoscale engineering of silicon waveguides to enhance the optical nonlinearities by up to five orders of magnitude, enabling integrated chip-scale all-optical signal processing. Previously, strong two-photon absorption (TPA) of the telecom-band pump has been a fundamental and unavoidable obstacle, limiting parametric gain to values on the order of a few dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic TPA-related absorption vanishes. This gain is high enough to comp...

  15. Ultra-Broad-Band Optical Parametric Amplifier or Oscillator

    Science.gov (United States)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute

    2009-01-01

    A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter

  16. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  17. Optical parametric chirped pulse amplifier at 1600 nm with all-optical synchronization

    Directory of Open Access Journals (Sweden)

    Leitenstorfer Alfred

    2013-03-01

    Full Text Available We demonstrate the amplification of 1.6 μm pulses by a KTA optical parametric chirped-pulse amplifier based on an all-optical synchronization scheme as a scalable approach to generation of high power tunable mid infrared.

  18. Low Noise Optically Pre-amplified Lightwave Receivers and Other Applications of Fiber Optic Parametric Amplifiers

    Science.gov (United States)

    2010-07-27

    noise performance, optical gain bandwidth, and power efficiency. An interesting alternative to the mature Erbium-doped fiber amplifier ( EDFA ) is the...fibers (HNLF) and high power booster EDFAs . The FOPA can provide a very wide gain bandwidth [2], very high gain (70 dB was demonstrated in [3]), and...amplified spontaneous emission (ASE) noise in EDFAs is also generated. It is sometimes referred to as amplified quantum noise. Maximum gain (at the gain

  19. Fiber-optic parametric amplifiers: Their advantages and limitations

    Science.gov (United States)

    Yaman, Fatih

    Fiber-optic parametric amplifiers (FOPAs) can be used in lightwave systems for several signal-processing applications including optical amplification, phase conjugation, and wavelength conversion. In principle, FOPAs can provide high gain uniform over a wide wavelength range (> 100 nm). What is more, FOPAs add little noise to the amplified signal. FOPAs can have noise figure as low as 0 dB when operated in the phase-sensitive mode and 3 dB in the phase insensitive mode. However, in practice, these advantages of FOPAs are compromised. In this work, I investigate several factors that limit the performance of FOPAs, and propose practical schemes to minimize those limitations. FOPAs can provide a relatively large gain bandwidth because the gain spectrum of FOPAs is not determined by material resonances but by the phase-matching condition. For the same reason, FOPAs are very sensitive to perturbations stemming from fiber irregularities. One such irregularity is that fiber dispersion varies randomly along the fiber length. My numerical modeling showed that, because of such variations, FOPA gain spectrum cannot maintain its flatness and also that FOPA gain profile changes from one fiber to the other. Using stochastic methods, an analytic theory is developed that can predict an "average gain spectrum." This analytic theory can be used to show that flatness of FOPA gain is recovered at the expense of reducing the gain bandwidth. Another fiber irregularity that affects FOPA gain spectrum is the residual birefringence. During the fiber-drawing process, the cross section of fiber core inevitably deviates from perfect circular symmetry. As a result, all non-polarization maintaining fibers exhibit residual birefringence. Both the magnitude of birefringence and the direction of its principal axis vary along the fiber length as well as in time. Because of residual birefringence, state of polarizations of the propagating fields change randomly also. Since the underlying four

  20. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a

  1. Asymmetric Gain-Saturated Spectrum in One-pump Fiber Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael

    2011-01-01

    The effect of third-order dispersion on the saturated-gain in fiber optical parametric amplifiers is experimentally demonstrated. A possible interpretation in terms of dispersive waves, which change the power transfer to the signal, is presented.......The effect of third-order dispersion on the saturated-gain in fiber optical parametric amplifiers is experimentally demonstrated. A possible interpretation in terms of dispersive waves, which change the power transfer to the signal, is presented....

  2. Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier.

    Science.gov (United States)

    Brida, D; Marangoni, M; Manzoni, C; Silvestri, S De; Cerullo, G

    2008-12-15

    Ultrabroadband mid IR pulses with energy as high as 2 microJ and tunability from 2 to 5 microm are generated as the idler beam of an 800 nm pumped optical parametric amplifier in periodically poled stoichiometric lithium tantalate. After bulk compression in a Ge plate and frequency-resolved-opticle-gating characterization, a pulse duration as low as 25 fs was measured, corresponding to two optical cycles of the 3.6 microm carrier wavelength.

  3. Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz.

    Science.gov (United States)

    Mörz, Florian; Steinle, Tobias; Steinmann, Andy; Giessen, Harald

    2015-09-07

    We present a high repetition rate mid-infrared optical parametric master oscillator power amplifier (MOPA) scheme, which is tunable from 1370 to 4120nm. Up to 4.3W average output power are generated at 1370nm, corresponding to a photon conversion efficiency of 78%. Bandwidths of 6 to 12nm with pulse durations between 250 and 400fs have been measured. Strong conversion saturation over the whole signal range is observed, resulting in excellent power stability. The system consists of a fiber-feedback optical parametric oscillator that seeds an optical parametric power amplifier. Both systems are pumped by the same Yb:KGW femtosecond oscillator.

  4. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  5. Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers

    Science.gov (United States)

    Isaienko, Oleksandr; Robel, István

    2016-03-01

    Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.

  6. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We show a first-time demonstration of amplification of 400 fs pulses in a fiber optical parametric amplifier. The 400 fs signal is stretched in time, amplified by 26 dB and compressed back to 500 fs. A significant broadening of the pulses is experimentally shown due to dispersion and limited gain...

  7. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  8. Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier

    Science.gov (United States)

    Cai-yun, Zhang; Hu, Li; Gui-xia, Pan; Zong-qiang, Sheng

    2016-07-01

    A scheme to generate entanglement in a cavity optomechanical system filled with an optical parametric amplifier is proposed. With the help of the optical parametric amplifier, the stationary macroscopic entanglement between the movable mirror and the cavity field can be notably enhanced, and the entanglement increases when the parametric gain increases. Moreover, for a given parametric gain, the degree of entanglement of the cavity optomechanical system increases with increasing input laser power. Project supported by the National Natural Science Foundation of China (Grant No. 11247001), the Scientific Research Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2012A083), and the Doctor (Master) Fund of Anhui University of Science and Technology, China.

  9. Polarization-insensitive fiber optical parametric amplifier based on polarization diversity technique with dual parallel pumps

    Institute of Scientific and Technical Information of China (English)

    YIN Lu; SANG Xin-zhu; ZHANG Qi; XIN Xiang-jun; YU Chong-xiu; Da-xiong

    2011-01-01

    By analyzing the principle of dual-pump parametric amplification and the polarization dependent gain of fiber optical parametric amplifier (FOPA), a polarization-insensitive FOPA based on polarization-diversity technique with dual parallel pumps is presented. The performances of polarization-insensitivity, gain and BER are theoretically analyzed and numerically simulated by comparing the proposed scheme with parallel pump solution and orthogonal pump solution. The presented solution can reduce the complexity of state of polarization (SoP) of pumps.

  10. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  11. Toward practical application of fiber optical parametric amplifiers in optical communication systems

    Science.gov (United States)

    Wong, Kin-Yip

    One of the most powerful techniques in fiber optical communication systems is wave-length division multiplexing (WDM). By utilizing the large (˜300 nm), low-loss (0.2--0.4 dB/km) transmission bandwidth, a single fiber can transmit many wavelengths. One fiber can potentially support transmission of tens of terabits per second of information over thousands of kilometers, to meet the exponentially-growing capacity demand. One of the key components for WDM systems is the optical amplifier; currently the most widely used optical amplifier is the erbium-doped fiber amplifier (EDFA). However, its bandwidth and operating wavelength are limited. To mitigate the bandwidth limitation of EDFAs, alternative optical amplifiers have been investigated, and one of the most promising candidates is the fiber optical parametric amplifier (OPA). Fiber OPAs are based on the third-order nonlinear susceptibility chi (3) in fiber. They can exhibit large bandwidth, and may find applications as optical amplifiers for WDM transmission. They also generate another wavelength, called idler, which contains the same modulation information as the input signal, with an inverted spectrum. This phase-conjugated idler can be used not only for wavelength conversion in WDM networks, but also for mid-span spectral inversion (MSSI) which can combat fiber dispersion, and even some of the detrimental fiber nonlinearities. In this dissertation, a record high-performance fiber OPA with 60 dB signal gain, and a parametric wavelength converter with 40 dB of conversion gain and 3.8 dB of noise figure are experimentally demonstrated. An OPA with 92% pump depletion is analyzed theoretically and demonstrated experimentally. Polarization-independent OPA, both in one-pump and two-pump configurations are investigated. The differences between the two configurations are discussed and other solutions are also proposed to address some issues of linear orthogonal two-pump OPA. In addition, the applications of OPA: as a

  12. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    Science.gov (United States)

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  13. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  14. Generation of Squeezing in Higher Order Hermite-Gaussian Modes with an Optical Parametric Amplifier

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Delaubert, Vincent; Harb, Charles C.;

    2006-01-01

    We demonstrate quantum correlations in the transverse plane of continuous wave light beams by producing -4.0 dB, -2.6 dB and -1.5 dB of squeezing in the TEM_{00}, TEM_{10} and TEM_{20} Hermite-Gauss modes with an optical parametric amplifier, respectively. This has potential applications in quant...

  15. Frequency-resolved noise figure measurements of phase (in)sensitive fiber optical parametric amplifiers.

    Science.gov (United States)

    Malik, R; Kumpera, A; Lorences-Riesgo, A; Andrekson, P A; Karlsson, M

    2014-11-17

    We measure the frequency-resolved noise figure of fiber optical parametric amplifiers both in phase-insensitive and phase-sensitive modes in the frequency range from 0.03 to 3 GHz. We also measure the variation in noise figure due to the degradation in pump optical signal to noise ratio and also as a function of the input signal powers. Noise figure degradation due to stimulated Brillouin scattering is observed.

  16. High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification.

    Science.gov (United States)

    Metzger, Thomas; Schwarz, Alexander; Teisset, Catherine Yuriko; Sutter, Dirk; Killi, Alexander; Kienberger, Reinhard; Krausz, Ferenc

    2009-07-15

    We report an optically synchronized picosecond pump laser for optical parametric amplifiers based on an Yb:YAG thin-disk amplifier. At 3 kHz repetition rate, pulse energies of 25 mJ with 1.6 ps pulse duration were achieved with an rms fluctuation in pulse energy of pumped regenerative amplifier.

  17. Robust entanglement between a movable mirror and a cavity field system with an optical parametric amplifier

    Science.gov (United States)

    Mi, Xianwu; Bai, Jiangxiang; Ke-hui, Song

    2013-06-01

    Robust entanglement created between an optical cavity field mode and a macroscopic vibrating mirror with an optical parametric amplifier is shown. Increasing the gain of the optical parametric amplifier makes the line of the logarithmic negativity E N move to the range of the larger detuning and higher temperature. Such optomechanical entanglement can be generated even at room temperature with current experimental parameters. Compared with other proposals, we have considered the one-to-one correspondence between the detuning and the input power, which is reasonable with the fact that the mean shift of the cavity frequency is determined by the radiation pressure which is related to the input power. Such consideration may be valuable to current experiments.

  18. High gain broadband amplification of ultraviolet pulses in optical parametric chirped pulse amplifier.

    Science.gov (United States)

    Wnuk, Paweł; Stepanenko, Yuriy; Radzewicz, Czesław

    2010-04-12

    We report on a high gain amplification of broadband ultraviolet femtosecond pulses in an optical parametric chirped pulse amplifier. Broadband ultraviolet seed pulses were obtained by an achromatic frequency doubling of the output from a femtosecond Ti:Sapphire oscillator. Stretched seed pulses were amplified in a multipass parametric amplifier with a single BBO crystal pumped by a ns frequency quadrupled Nd:YAG laser. A noncollinear configuration was used for a broadband amplification. The total (after compression) amplification of 2.510(5) was achieved, with compressed pulse energy of 30 microJ and pulse duration of 24 fs. We found that the measured gain was limited by thermal effects induced by the absorption of the pump laser by color centers created in the BBO crystal.

  19. Demonstration of an All-Optical 2-to-4 Level Encoder Based on an Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Yu Liang

    2009-01-01

    Full Text Available We demonstrated a novel technique for all-optical 2-to-4 level amplitude-shift keying (ASK coding based on a fiber optical parametric amplifier. A 20-Gb/s signal is realized by multiplexing two 10-Gb/s data streams.

  20. Sub-two-cycle light pulses at 1.6 microm from an optical parametric amplifier.

    Science.gov (United States)

    Brida, D; Cirmi, G; Manzoni, C; Bonora, S; Villoresi, P; De Silvestri, S; Cerullo, G

    2008-04-01

    We generate ultrabroadband pulses, spanning the 1200-2100 nm wavelength range, from an 800 nm pumped optical parametric amplifier (OPA) working at degeneracy. We compress the microjoule-level energy pulses to nearly transform-limited 8.5 fs duration by an adaptive system employing a deformable mirror. To our knowledge, these are the shortest light pulses generated at 1.6 microm.

  1. Generation of broadband mid-infrared pulses from an optical parametric amplifier.

    Science.gov (United States)

    Brida, D; Manzoni, C; Cirmi, G; Marangoni, M; De Silvestri, S; Cerullo, G

    2007-11-12

    We report on the direct generation of broadband mid-IR pulses from an optical parametric amplifier. Several crystals with extended IR transparency, when pumped at 800 nm, display a broad phase-matching bandwidth around 1 mum, allowing for the generation of idler pulses spanning the 3-5 mum wavelength range. Using LiIO(3), we produce 2muJ pulses tunable in the 3-4 mum range with bandwidth supporting 30-fs transform-limited duration.

  2. Enhancement of Available Conversion Efficiency of Optical Parametric Amplifier in a Cascaded Photonic Crystal Structure

    Institute of Scientific and Technical Information of China (English)

    LI Wen-Hui; CHEN Li-Xue; TANG Dong-Hua; DING Wei-Qiang; LIU Shu-Tian

    2005-01-01

    @@ Using the cascaded structure of a linear and a second-order nonlinear photonic crystals, we realize a high-efficiency optical parametric amplifier in the case of exact phase matching. This proposal is verified using the slow-envelope nonlinear finite difference time domain numerical method. Compared with the case of the individual nonlinear photonic crystal structure, the oscillation threshold is decreased obviously, and the peak power amplification factor of the transmitted signal is enhanced more than 20 times.

  3. 13.5 nm High Harmonic Generation Driven by a Visible Noncollinear Optical Parametric Amplifier

    Science.gov (United States)

    2011-11-11

    light source. We build a high energy tunable visible Optical Parametric Amplifier, and drive High Harmonic Generation in Argon and Helium . We study how...wavelength of 13.5 nm. The results agree well with a previously developed theoretical model. We predict that using a 630-nm driver in Helium could have a...light on the photo resist. Current techniques are capable of producing sub-100-nm features by using UV light at 193 nm from excimer lasers, but for

  4. Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2011-01-01

    Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source.

  5. Gated frequency-resolved optical imaging with an optical parametric amplifier for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Bliss, D.E.

    1997-02-01

    Implementation of optical imagery in a diffuse inhomogeneous medium such as biological tissue requires an understanding of photon migration and multiple scattering processes which act to randomize pathlength and degrade image quality. The nature of transmitted light from soft tissue ranges from the quasi-coherent properties of the minimally scattered component to the random incoherent light of the diffuse component. Recent experimental approaches have emphasized dynamic path-sensitive imaging measurements with either ultrashort laser pulses (ballistic photons) or amplitude modulated laser light launched into tissue (photon density waves) to increase image resolution and transmissive penetration depth. Ballistic imaging seeks to compensate for these {open_quotes}fog-like{close_quotes} effects by temporally isolating the weak early-arriving image-bearing component from the diffusely scattered background using a subpicosecond optical gate superimposed on the transmitted photon time-of-flight distribution. The authors have developed a broadly wavelength tunable (470 nm -2.4 {mu}m), ultrashort amplifying optical gate for transillumination spectral imaging based on optical parametric amplification in a nonlinear crystal. The time-gated image amplification process exhibits low noise and high sensitivity, with gains greater than 104 achievable for low light levels. We report preliminary benchmark experiments in which this system was used to reconstruct, spectrally upcovert, and enhance near-infrared two-dimensional images with feature sizes of 65 {mu}m/mm{sup 2} in background optical attenuations exceeding 10{sup 12}. Phase images of test objects exhibiting both absorptive contrast and diffuse scatter were acquired using a self-referencing Shack-Hartmann wavefront sensor in combination with short-pulse quasi-ballistic gating. The sensor employed a lenslet array based on binary optics technology and was sensitive to optical path distortions approaching {lambda}/100.

  6. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, C. J.

    2013-01-01

    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase......-sensitive amplifiers. We show that the model agrees with earlier fully quantum approaches in the linear gain regime, whereas in the saturated gain regime, in which the classical equations are valid, we predict that the amplifier increases the signal-to-noise ratio by generating an amplitude-squeezed state of light....... Also, in the same process, we analyze the quantum noise properties of the pump, which is difficult using standard quantum approaches, and we discover that the pump displays complicated dynamics in both the linear and the nonlinear gain regimes....

  7. Ultra-wideband fiber optical parametric amplifier for spectrally-encoded microscopy (Conference Presentation)

    Science.gov (United States)

    Wei, Xiaoming; Tan, Sisi; Mussot, Arnaud; Kudlinski, Alexandre; Tsia, Kevin K.; Wong, Kenneth

    2016-03-01

    Fiber optical parametric amplifier (FOPA) has gained its popularity in the telecommunication systems at the 1.5-um window for its gain, bandwidth etc. Unfortunately, its practical application at the bio-favorable window, i.e. 1.0 um, still requires substantial efforts. Thus, here we report a versatile all-fiber optical parametric amplifier for life-science (OPALS) at 1.0 um as an add-on module for optical imaging system. The parametric gain fiber (photonic-crystal fiber (PCF), 110 m in length) is specially designed to reduce the longitudinal dispersion fluctuation, which yields a superior figure of merit, i.e. a total insertion loss of ~2.5 dB and a nonlinear coefficient of 34 /(W•km). Our OPALS delivers a superior performance in terms of gain (~158,000), bandwidth (>100 nm) and gain flatness (Experimentally, we show that: 1) a wavelength-varying quasi-monochrome pump achieves a 52-dB gain and 160-nm bandwidth, but at the expense of a larger gain-spectrum ripple, i.e. a bell-shaped; 2) the birefringence of the parametric gain medium, i.e. PCF in this case, can be utilized to improve the gain-spectrum flatness of OPALS by 10.5 dB, meanwhile a 100-nm bandwidth can be guaranteed; 3) the gain-spectrum flatness of OPALS can be further flattened by using a high-speed wavelength-sweeping pump, which exhibits a 110-nm flat gain spectrum with ripple less than 3 dB. Finally, we employ this versatile all-fiber OPALS as an add-on module to enhance the sensitivity of a spectrally-encoded microscope by 47 dB over an ultra-wide spectral range.

  8. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  9. General analysis of group velocity effects in collinear optical parametric amplifiers and generators.

    Science.gov (United States)

    Arisholm, Gunnar

    2007-05-14

    Group velocity mismatch (GVM) is a major concern in the design of optical parametric amplifiers (OPAs) and generators (OPGs) for pulses shorter than a few picoseconds. By simplifying the coupled propagation equations and exploiting their scaling properties, the number of free parameters for a collinear OPA is reduced to a level where the parameter space can be studied systematically by simulations. The resulting set of figures show the combinations of material parameters and pulse lengths for which high performance can be achieved, and they can serve as a basis for a design.

  10. Few-cycle pulse generation from noncollinear optical parametric amplifier with static dispersion compensation

    Science.gov (United States)

    Adachi, Shunsuke; Watanabe, Yuya; Sudo, Yuki; Suzuki, Toshinori

    2017-09-01

    We present a novel design of a few-cycle noncollinear optical parametric amplifier (NOPA) pumped by the second harmonic of a Ti:sapphire laser. A quasi-transform-limited sub-6 fs pulse width was realized by static dispersion compensation with commercially available chirped mirrors. The performance of the NOPA was tested by performing transient absorption spectroscopy on sensory rhodopsin II, and we observe short-lived oscillatory components that are associated with the vibrational coherence from the isomerizing molecule in the excited electronic state.

  11. Alleviation of additional phase noise in fiber optical parametric amplifier based signal regenerator.

    Science.gov (United States)

    Jin, Lei; Xu, Bo; Yamashita, Shinji

    2012-11-19

    We theoretically and numerically explain the power saturation and the additional phase noise brought by the fiber optical parametric amplifier (FOPA). An equation to calculate an approximation to the saturated signal output power is presented. We also propose a scheme for alleviating the phase noise brought by the FOPA at the saturated state. In simulation, by controlling the decisive factor dispersion difference term Δk of the FOPA, amplitude-noise and additional phase noise reduction of quadrature phase shift keying (QPSK) based on the saturated FOPA is studied, which can provide promising performance to deal with PSK signals.

  12. Polarization effect in parametric amplifier

    Institute of Scientific and Technical Information of China (English)

    Junhe Zhou; Jianping Chen; Xinwan Li; Guiling Wu; Yiping Wang

    2005-01-01

    @@ Polarization effect in parametric amplifiers is studied. Coupled equations are derived from the basic propagation equations and numerical solutions are given for both one-wavelength-pump and two-wavelengthpump systems. Several parametric amplifiers driven by pumps at one wavelength and two wavelengths are analyzed and the polarization independent parametric amplifier is proposed.

  13. Transmission Performance Analysis of Fiber Optical Parametric Amplifiers for WDM System

    Directory of Open Access Journals (Sweden)

    Xiaohong Jiang

    2009-01-01

    Full Text Available A numerical analysis is presented on the long-haul wavelength-division multiplexing (WDM transmission system employing fiber-optic parametric amplifier (FOPA cascades based on one-pump FOPA model with Raman Effect taken into account. The end-to-end equalization scheme is applied to optimize the system features in terms of proper output powers and signal-to-noise ratios (SNRs in all the channels. The numerical results show that—through adjusting the fiber spans along with the number of FOPAs as well as the channel powers at the terminals in a prescribed way—the transmission distance and system performance can be optimized. By comparing the results generated by different lengths of fiber span, we come to the optimal span length to achieve the best transmission performance. Furthermore, we make a comparison among the long-haul WDM transmission systems employing different inline amplifiers, namely, FOPA, erbium-doped fiber amplifier (EDFA, and Fiber Raman Amplifier (FRA. FOPA demonstrates its advantage over the other two in terms of system features.

  14. Ground Demonstration of Planetary Gas Lidar Based on Optical Parametric Amplifier

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2012-01-01

    We report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OPA output has high spectral purity and is widely tunable both at near-infrared and mid-infrared wavelengths, with an optical-optica1 conversion efficiency of up to approx 39 %. Using this laser source, we demonstrated open-path measurements of CH4 (3291 nm and 1651 nm), CO2 (1573 nm), H2O (1652 nm), and CO (4764 nm) on the ground. The simplicity, tunability. and power scalability of the OPA make it a strong candidate for general planetary lidar instruments, which will offer important information on the origins of the planet's geology, atmosphere, and potential for biology,

  15. Dynamic range enhancement and amplitude regeneration in single pump fibre optic parametric amplifiers using DPSK modulation

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2008-01-01

    Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain.......Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain....

  16. Quantum and Raman Noise in a Depleted Fiber Optical Parametric Amplifier

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, Colin J.

    2013-01-01

    The noise properties of both phase-sensitive and phase-insensitive saturated parametric amplifiers are studied using a semi-classical approach. Vacuum fluctuations as well as spontaneous Raman scattering are included in the analysis.......The noise properties of both phase-sensitive and phase-insensitive saturated parametric amplifiers are studied using a semi-classical approach. Vacuum fluctuations as well as spontaneous Raman scattering are included in the analysis....

  17. Development of optical parametric chirped-pulse amplifiers and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Nobuhisa

    2006-11-21

    In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA) has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared (NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to achieve by existing techniques of pulse amplification based on standard laser gain media followed by external compression. Potential applications of few-cycle pulses in the IR have also been demonstrated. The NIR OPCPA system produces 0.5-terawatt (10 fs,5 mJ) pulses by use of noncollinearly phase-matched optical parametric amplification and a down-chirping stretcher and up-chirping compressor pair. An IR OPCPA system was also developed which produces 20-gigawatt (20 fs,350 {mu}J) pulses at 2.1 {mu}m. The IR seed pulse is generated by optical rectification of a broadband pulse and therefore it exhibits a self-stabilized carrier-envelope phase (CEP). In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an inherent sub-picosecond optical synchronization between the two pulses. This was achieved by use of a custom-built Nd:YLF picosecond pump pulse amplifier that is directly seeded with optical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between the pump and seed pulses is critical for efficient and stable amplification. Two spectroscopic applications which utilize these unique sources have been demonstrated. First, the visible supercontinuum was generated in a solid-state media by the infrared optical pulses and through which the carrier-envelope phase (CEP) of the driving pulse was measured with an f-to-3f interferometer. This measurement confirms the self-stabilization mechanism of the CEP in a difference frequency generation process and the preservation of the CEP during optical parametric amplification. Second, high-order harmonics with energies extending beyond 200 eV were generated with the few

  18. Highly Efficient Tabletop Optical Parametric Chirped Pulse Amplifier at 1 (micron)m

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, I.; Ebbers, C.A.; Comaskey, B.J.; Bonner, R.A.; Morse, E.C.

    2001-12-04

    Optical parametric chirped pulse amplification (OPCPA) is a scalable technology, for ultrashort pulse amplification. Its major advantages include design simplicity, broad bandwidth, tunability, low B-integral, high contrast, and high beam quality. OPCPA is suitable both for scaling to high peak power as well as high average power. We describe the amplification of stretched 100 fs oscillator pulses in a three-stage OPCPA system pumped by a commercial, single-longitudinal-mode, Q-switched Nd:YAG laser. The stretched pulses were centered around 1054 nm with a FWHM bandwidth of 16.5 nm and had an energy of 0.5 nJ. Using our OPCPA system, we obtained an amplified pulse energy of up to 31 mJ at a 10 Hz repetition rate. The overall conversion efficiency from pump to signal is 6%, which is the highest efficiency obtained With a commercial tabletop pump laser to date. The overall conversion efficiency is limited due to the finite temporal overlap of the seed (3 ns) with respect to the duration of the pump (8.5 ns). Within the temporal window of the seed pulse the pump to signal conversion efficiency exceeds 20%. Recompression of the amplified signal was demonstrated to 310 fs, limited by the aberrations initially present in the low energy seed imparted by the pulse stretcher. The maximum gain in our OPCPA system is 6 x 10{sup 7}, obtained through single passing of 40 mm of beta-barium borate. We present data on the beam quality obtained from our system (M{sup 2}=1.1). This relatively simple system replaces a significantly more complex Ti:sapphire regenerative amplifier based CPA system used in the front end of a high energy short pulse laser. Future improvement will include obtaining shorter amplified pulses and higher average power.

  19. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Ozolins, Oskars; An, Yi

    2012-01-01

    The performance of cascaded single-pump fiber optical parametric amplifiers (FOPAs) is experimentally studied for the first time using recirculating loop transmission with 80-km dispersion managed spans. Error-free performance has been achieved over 320 km for 40-Gbit/s CSRZ-OOK and CSRZ...

  20. Experimental Investigation of Pump-to-Signal Noise Transfer in One-Pump Phase Insensitive Fibre Optic Parametric Amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lund-Hansen, Toke; Peucheret, Christophe

    2011-01-01

    This paper presents a detailed experimental characterization of the relative intensity noise (RIN) transferred from the pump to the signal in one-pump phase insensitive fibre optic parametric amplifiers. We extend an existing experimental and theoretical work towards higher frequencies, showing...

  1. Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2009-01-01

    An increased gain in a fibre-optical parametric amplifier through suppression of stimulated Brillouin scattering is demonstrated by applying a temperature distribution along the fibre for a fixed phase modulation of the pump. The temperature distribution slightly impacts the gain spectrum....

  2. Nanoscale electromechanical parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  3. Nanoscale electromechanical parametric amplifier

    Science.gov (United States)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  4. Quantum information tapping using a fiber optical parametric amplifier with noise figure improved by correlated inputs.

    Science.gov (United States)

    Guo, Xueshi; Li, Xiaoying; Liu, Nannan; Ou, Z Y

    2016-07-26

    One of the important functions in a communication network is the distribution of information. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7 ± 0.1 dB and 0.84 ± 0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti = 1.5 ± 0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network for quantum information distribution.

  5. Quantum information tapping using a fiber optical parametric amplifier with noise figure improved by correlated inputs

    Science.gov (United States)

    Guo, Xueshi; Li, Xiaoying; Liu, Nannan; Ou, Z. Y.

    2016-07-01

    One of the important functions in a communication network is the distribution of information. It is not a problem to accomplish this in a classical system since classical information can be copied at will. However, challenges arise in quantum system because extra quantum noise is often added when the information content of a quantum state is distributed to various users. Here, we experimentally demonstrate a quantum information tap by using a fiber optical parametric amplifier (FOPA) with correlated inputs, whose noise is reduced by the destructive quantum interference through quantum entanglement between the signal and the idler input fields. By measuring the noise figure of the FOPA and comparing with a regular FOPA, we observe an improvement of 0.7 ± 0.1 dB and 0.84 ± 0.09 dB from the signal and idler outputs, respectively. When the low noise FOPA functions as an information splitter, the device has a total information transfer coefficient of Ts+Ti = 1.5 ± 0.2, which is greater than the classical limit of 1. Moreover, this fiber based device works at the 1550 nm telecom band, so it is compatible with the current fiber-optical network for quantum information distribution.

  6. 300 microJ noncollinear optical parametric amplifier in the visible at 1 kHz repetition rate.

    Science.gov (United States)

    Tzankov, Pancho; Zheng, Jiaan; Mero, Mark; Polli, Dario; Manzoni, Cristian; Cerullo, Giulio

    2006-12-15

    We demonstrate an order-of-magnitude energy scaling of a white-light seeded noncollinear optical parametric amplifier in the visible. The generated pulses, tunable between 520 and 650 nm with sub-25-fs duration, had energies up to 310 microJ with 20% blue-pump-to-signal energy conversion efficiency at 540 nm. This new ultrafast source will make possible numerous extreme nonlinear optics applications. As a first application, we demonstrate the generation of tunable vacuum ultraviolet pulses.

  7. High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers.

    Science.gov (United States)

    Klingebiel, Sandro; Wandt, Christoph; Skrobol, Christoph; Ahmad, Izhar; Trushin, Sergei A; Major, Zsuzsanna; Krausz, Ferenc; Karsch, Stefan

    2011-03-14

    We present a chirped pulse amplification (CPA) system based on diode-pumped Yb:YAG. The stretched ns-pulses are amplified and have been compressed to less than 900 fs with an energy of 200 mJ and a repetition rate of 10 Hz. This system is optically synchronized with a broadband seed laser and therefore ideally suited for pumping optical parametric chirped pulse amplification (OPCPA) stages on a ps-timescale.

  8. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  9. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Science.gov (United States)

    Cirmi, G.; Lai, C.-J.; Huang, S.-W.; Granados, E.; Sell, A.; Moses, J.; Hong, K.-H.; Keathley, P.; Kärtner, F. X.

    2013-03-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ-5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  10. Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier

    Directory of Open Access Journals (Sweden)

    Keathley P.

    2013-03-01

    Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  11. Optical signal to noise ratio improvement through unbalanced noise beating in phase-sensitive parametric amplifiers.

    Science.gov (United States)

    Malik, R; Kumpera, A; Olsson, S L I; Andrekson, P A; Karlsson, M

    2014-05-05

    We investigate the beating of signal and idler waves, which have imbalanced signal to noise ratios, in a phase-sensitive parametric amplifier. Imbalanced signal to noise ratios are achieved in two ways; first by imbalanced noise loading; second by varying idler to signal input power ratio. In the case of imbalanced noise loading the phase-sensitive amplifier improved the signal to noise ratio from 3 to 6 dB, and in the case of varying idler to signal input power ratio, the signal to noise ratio improved from 3 to in excess of 20 dB.

  12. Parametrically Amplified Bright-state Polariton of Four- and Six-wave Mixing in an Optical Ring Cavity

    Science.gov (United States)

    Chen, Haixia; Zhang, Yiqi; Yao, Xin; Wu, Zhenkun; Zhang, Xun; Zhang, Yanpeng; Xiao, Min

    2014-01-01

    We report experimental studies of bright-state polaritons of four-wave mixing (FWM) and six-wave mixing (SWM) signals through cascade nonlinear optical parametric amplification processes in an atom-cavity composite system for the first time. Also, the coexisting cavity transmission modes of parametrically amplified FWM and SWM signals are observed. Finally, electromagnetically induced absorption by the FWM cavity modes in the probe beam is investigated. The investigations can find potential applications in multi-channel narrow-band long-distance quantum communication. PMID:24401795

  13. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  14. Saturation Effect on Pump-to-Signal Intensity Modulation Transfer in Single-Pump Phase-Insensitive Fibre Optic Parametric Amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2011-01-01

    A numerical and experimental characterization of how signal gain saturation affects the transfer of the intensity modulation of the pump to the signal in single-pump phaseinsensitive fibre optic parametric amplifiers is presented.......A numerical and experimental characterization of how signal gain saturation affects the transfer of the intensity modulation of the pump to the signal in single-pump phaseinsensitive fibre optic parametric amplifiers is presented....

  15. Millijoule-level picosecond mid-infrared optical parametric amplifier based on MgO-doped periodically poled lithium niobate.

    Science.gov (United States)

    Xu, Hongyan; Yang, Feng; Chen, Ying; Liu, Ke; Du, Shifeng; Zong, Nan; Yang, Jing; Bo, Yong; Peng, Qinjun; Zhang, Jingyuan; Cui, Dafu; Xu, Zuyan

    2015-03-20

    A millijoule-level high pulse energy picosecond (ps) mid-infrared (MIR) optical parametric amplifier (OPA) at 3.9 μm based on large-aperture MgO-doped periodically poled lithium niobate (MgO:PPLN) crystal was demonstrated for the first time, to the best of our knowledge. The MIR OPA was pumped by a 30 ps 1064 nm Nd:YAG laser at 10 Hz and injected by an energy-adjustable near-infrared seed based on a barium boron oxide (BBO) optical parametric generator/optical parametric amplifier (OPG/OPA) with double-pass geometry. Output energy of 1.14 mJ at 3.9 μm has been obtained at pump energy of 15.2 mJ. Furthermore, the performance of MIR OPG in MgO:PPLN was also investigated for comparing with the seeded OPA.

  16. Suppression of WDM four-wave mixing crosstalk in fibre optic parametric amplifier using Raman-assisted pumping.

    Science.gov (United States)

    Redyuk, A; Stephens, M F C; Doran, N J

    2015-10-19

    We perform an extensive numerical analysis of Raman-Assisted Fibre Optical Parametric Amplifiers (RA-FOPA) in the context of WDM QPSK signal amplification. A detailed comparison of the conventional FOPA and RA-FOPA is reported and the important advantages offered by the Raman pumping are clarified. We assess the impact of pump power ratios, channel count, and highly nonlinear fibre (HNLF) length on crosstalk levels at different amplifier gains. We show that for a fixed 200 m HNLF length, maximum crosstalk can be reduced by up to 7 dB when amplifying 10x58Gb/s QPSK signals at 20 dB net-gain using a Raman pump of 37 dBm and parametric pump of 28.5 dBm in comparison to a standard single-pump FOPA using 33.4 dBm pump power. It is shown that a significant reduction in four-wave mixing crosstalk is also obtained by reducing the highly nonlinear fibre interaction length. The trend is shown to be generally valid for different net-gain conditions and channel grid size. Crosstalk levels are additionally shown to strongly depend on the Raman/parametric pump power ratio, with a reduction in crosstalk seen for increased Raman pump power contribution.

  17. Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression.

    Science.gov (United States)

    Moses, J; Huang, S-W; Hong, K-H; Mücke, O D; Falcão-Filho, E L; Benedick, A; Ilday, F O; Dergachev, A; Bolger, J A; Eggleton, B J; Kärtner, F X

    2009-06-01

    We present a 9 GW peak power, three-cycle, 2.2 microm optical parametric chirped-pulse amplification source with 1.5% rms energy and 150 mrad carrier envelope phase fluctuations. These characteristics, in addition to excellent beam, wavefront, and pulse quality, make the source suitable for long-wavelength-driven high-harmonic generation. High stability is achieved by careful optimization of superfluorescence suppression, enabling energy scaling.

  18. Generation of <7 fs pulses at 800 nm from a blue-pumped optical parametric amplifier at degeneracy.

    Science.gov (United States)

    Siddiqui, A M; Cirmi, G; Brida, D; Kärtner, F X; Cerullo, G

    2009-11-15

    We generate ultrabroadband pulses at 800 nm from an optical parametric amplifier (OPA) pumped by the second harmonic of a Ti:sapphire system and working at degeneracy. The OPA is seeded by a white-light continuum generated from a near-IR OPA pumped by the same laser. Nearly transform-limited <7 fs pulses, fully characterized in amplitude and phase, are obtained with a chirped mirror compressor. The system fills the gap around 800 nm for broadband continuum seeded OPAs pumped by Ti:sapphire-based sources.

  19. Photothermal Fluctuations as a Fundamental Limit to Low-Frequency Squeezing in a Degenerate Optical Parametric Amplifier

    CERN Document Server

    Goda, K; Mikhailov, E E; Lam, P K; McClelland, D; Mavalvala, N; Goda, Keisuke; Kenzie, Kirk Mc; Mikhailov, Eugeniy E.; Lam, Ping Koy; Clelland, David Mc; Mavalvala, Nergis

    2005-01-01

    We study the effect of photothermal fluctuations on squeezed states of light through the photo-refractive effect and thermal expansion in a degenerate optical parametric amplifier (OPA). We also discuss the effect of the photothermal noise in various cases and how to minimize its undesirable consequences. We find that the photothermal noise in the OPA introduces a significant amount of noise on phase squeezed beams, making them less than ideal for low frequency applications such as gravitational wave (GW) interferometers, whereas amplitude squeezed beams are relatively immune to the photothermal noise and may represent the best choice for application in GW interferometers.

  20. Analysis of ultra-broadband high-energy optical parametric chirped pulse amplifier based on YCOB crystal

    Institute of Scientific and Technical Information of China (English)

    Meizhi Sun; Lailin Ji; Qunyu Bi; Nannan Wang; Jun Kang; Xinglong Xie; Zunqi Lin

    2011-01-01

    A new type of optical parametric chirped pulse amplifier is designed and analyzed for the amplification of pulse centered at 808 nm.A novel crystal,yttrium calcium oxyborate YCa4O(BO3)3 (YCOB),is utilized in the power amplification stage of optical parametric amplification (OPA).Noncollinear phase matching parameters in the xoz principle plane of YCOB,compared with those in BBO and DKDP,are analyzed by numerical simulation.The results show that YCOB rather than DKDP can be used in the power amplification stage of OPA to realize the amplification of chirped pulse to several joules with a gain bandwidth exceeding 100 nm.This can be used to gain a high intensity pulse of ~10 fs after the compressor.The amplification of the femtosecond pulse is an important branch of ultra-intense laser technology,with Ti:sapphire as the medium for its large gain bandwidth.From the perspective of technical features and applications,such femtosecond pulses are used to study high field physics and other related areas in ultrashort time[1,2];however,the pursuit of higher energy femtosecond pulse should not be abandoned.Optical parametric chirped pulse amplification (OPCPA) has been successfully used in the front end of high intensity lasers[3-8],indicating the possibility of femtosecond pulse amplification.This has been verified by an increasing number of fine crystals being invented,such as YCa4O(BO3)3 (YCOB)[9-12].%A new type of optical parametric chirped pulse amplifier is designed and analyzed for the amplification of pulse centered at 808 nm. A novel crystal, yttrium calcium oxyborate YCa4O(BO3)3 (YCOB), is utilized in the power amplification stage of optical parametric amplification (OPA). Noncollinear phase matching parameters in the xoz principle plane of YCOB, compared with those in BBO and DKDP, are analyzed by numerical simulation. The results show that YCOB rather than DKDP can be used in the power amplification stage of OPA to realize the amplification of chirped pulse to

  1. Analysis of the generation of amplitude-squeezed light with Gaussian-beam degenerate optical parametric amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Koprulu, Kahraman G.; Aytur, Orhan

    2001-06-01

    We investigate the generation of amplitude-squeezed states with degenerate optical parametric amplifiers that are pumped by focused Gaussian beams. We present a model that facilitates the calculation of the squeezing level for an experimentally realistic configuration in which there is a Gaussian input signal beam that has the same confocal parameter and waist location as the Gaussian pump beam, with no restriction on the interaction length-to-confocal parameter ratio. We show that the 3-dB squeezing limit that was thought to be imposed by the Gaussian pump profile can be exceeded in the (previously uninvestigated) tight-focusing regime. We find the maximum possible amplitude squeezing in this regime to be 4.65 dB. However, it is possible to increase the squeezing level further by spatially filtering the tails of the output signal beam, resulting in squeezing levels in excess of 10 dB. {copyright} 2001 Optical Society of America

  2. On the suitability of fibre optical parametric amplifiers for use in all-optical agile photonic networks

    Science.gov (United States)

    Gryspolakis, Nikolaos

    The objective of this thesis is to investigate the suitability of fibre optical parametric amplifiers (FOPAs) for use in multi-channel, dynamic networks. First, we investigate their quasi-static behaviour in such an environment. We study the behaviour of a FOPA under realistic conditions and we examine the impact on the gain spectrum of channel addition for several different operating conditions and regimes. In particular, we examine the impact of surviving channel(s) position, input power and channel spacing. We see how these parameters affect the gain tilt as well as its dynamic characteristics, namely the generation of under or over-shoots at the transition point, possible dependence of rise and fall times on any of the aforementioned parameters and how the gain excursions depend on those parameters. For these studies we assume continuous wave operation for all signals. We observe that the gain spectrum changes are a function of the position and the spacing of the channels. We also find that the gain excursion can reach several dBs (up to 5 dB) in the case of channel add/drop and are heavily dependent on the position of the surviving channels. The channels located in the middle of the transmission band are more prone to channel add/drop-induced gain changes. Moreover, we investigate for the first time the FOPA dynamic behaviour in a packet switching scenario. This part of the study assumes that all but one channels normally vary in a packet-switched fashion. The remaining channel (probe channel) is expected to undergo gain variations due to the perturbation of the system experienced by the other channels. Furthermore, we consider several different scenarios for which the channels spacing, per channel input power (PCIP), variance of the power fluctuation and position of the probe channel will change. We find that when the FOPA operates near saturation the target gain is not achieved more than 50% of the time while the peak-to-peak gain excursions can exceed 1 d

  3. Performance Analysis of a Hybrid Raman Optical Parametric Amplifier in the O- and E-Bands for CWDM PONs

    Directory of Open Access Journals (Sweden)

    Sasanthi Peiris

    2014-12-01

    Full Text Available We describe a hybrid Raman-optical parametric amplifier (HROPA operating at the O- and E-bands and designed for coarse wavelength division multiplexed (CWDM passive optical networks (PONs. We present the mathematical model and simulation results for the optimization of this HROPA design. Our analysis shows that separating the two amplification processes allows for optimization of each one separately, e.g., proper selection of pump optical powers and wavelengths to achieve maximum gain bandwidth and low gain ripple. Furthermore, we show that the proper design of optical filters incorporated in the HROPA architecture can suppress idlers generated during the OPA process, as well as other crosstalk that leaks through the passive optical components. The design approach enables error free performance for all nine wavelengths within the low half of the CWDM band, assigned to upstream traffic in a CWDM PON architecture, for all possible transmitter wavelength misalignments (±6 nm from the center wavelength of the channel band. We show that the HROPA can achieve error-free performance with a 170-nm gain bandwidth (e.g., 1264 nm–1436 nm, a gain of >20 dB and a gain ripple of <4 dB.

  4. Optimal Design of Dual-Pump Fibre-Optical Parametric Amplifiers with Dispersion Fluctuations Based on Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-Ming; LI Yan-He

    2005-01-01

    @@ Solutions of dual-pump fibre-optical parametric amplifiers (DP-FOPAs) with dispersion fluctuations are derived by using a matrix operator. Based on these solutions and a hybrid genetic algorithm, we have optimized threesection DP-FOPAs to increase the signal band and improve the gain uniformity. The optimizations demonstrate that when dispersion fluctuations are taken into account, the 44-nm signal band with the 0.37-dB ripple and over 14.8-dB gain can be obtained from the three-section DP-FOPA, instead of the lowest gain of ~13dB with the ripple of more than 15dB from the single-section DP-FOPA.

  5. Approaching Quantum-Limited Amplification with Large Gain Catalyzed by Optical Parametric Amplifier Medium

    Science.gov (United States)

    Zheng, Qiang; Li, Kai

    2017-07-01

    Amplifier is at the heart of experiments carrying out the precise measurement of a weak signal. An idea quantum amplifier should have a large gain and minimum added noise simultaneously. Here, we consider the quantum measurement properties of the cavity with the OPA medium in the op-amp mode to amplify an input signal. We show that our nonlinear-cavity quantum amplifier has large gain in the single-value stable regime and achieves quantum limit unconditionally. Supported by the National Natural Science Foundation of China under Grant Nos. 11365006, 11364006, and the Natural Science Foundation of Guizhou Province QKHLHZ [2015]7767

  6. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...

  7. Pump-to-Signal Intensity Modulation Transfer in Saturated- Gain Fiber Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Rottwitt, Karsten

    2011-01-01

    The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime....

  8. Broadband optical parametric amplifier formed by two pairs of adjacent four-wave mixing sidebands in a tellurite microstructured optical fibre

    Science.gov (United States)

    Zhang, Lei; Tuan, Tong-Hoang; Kawamura, Harutaka; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake

    2016-05-01

    A broadband fibre-optical parametric amplifier (FOPA) operating at a novel wavelength region that is far from the pump wavelength has been demonstrated by exploiting two pairs of adjacent four-wave mixing (FWM) sidebands generated simultaneously in a tellurite microstructured optical fibre (TMOF). Owing to the large nonlinearity of the TMOF and the high pump peak power provided by a picosecond laser, a maximal average gain of 65.1 dB has been obtained. When the FOPA is operated in a saturated state, a flat-gain amplification from 1424 nm to 1459 nm can be achieved. This broadband and high-gain FOPA operating at new wavelength regions far from the pump offers the prospect of all-optical signal processing.

  9. Cut-off scaling of high-harmonic generation driven by a femtosecond visible optical parametric amplifier

    Science.gov (United States)

    Cirmi, Giovanni; Lai, Chien-Jen; Granados, Eduardo; Huang, Shu-Wei; Sell, Alexander; Hong, Kyung-Han; Moses, Jeffrey; Keathley, Phillip; Kärtner, Franz X.

    2012-10-01

    We studied high-harmonic generation (HHG) in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA) in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 µJ energy at the 1 kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping other parameters (energy, duration and beam size) constant, we experimentally studied the scaling law of cut-off energy with the driver wavelength in helium. Our measurements show a λ1.7 + 0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source, the high-order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ˜25 and ˜100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.

  10. Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge

    2009-01-01

    to demonstrate amplitude regeneration of a distorted RZ-DPSK signal in a gain-saturated FOPA. An optical signal-to-noise ratio penalty of 3.5 dB after amplitude distortion is shown to be reduced to 0.2 dB after the FOPA, thus clearly demonstrating the regenerative nature of saturated FOPAs for RZ-DPSK modulation....

  11. Wavelength-swept spectral and pulse shaping utilizing hybrid Fourier domain modelocking by fiber optical parametric and erbium-doped fiber amplifiers.

    Science.gov (United States)

    Cheng, Kyle H Y; Standish, Beau A; Yang, Victor X D; Cheung, K K Y; Gu, Xijia; Lam, Edmund Y; Wong, K K Y

    2010-02-01

    We report the first Fourier domain modelocked (FDML) laser constructed using optical parametric amplifier (OPA) in conjunction with an erbium-doped fiber amplifier (EDFA), centered at approximately 1555 nm, to the best of our knowledge. We utilize a one-pump OPA and a C-band EDFA in serial configuration with a tunable Fabry-Perot interferometer to generate a hybrid FDML spectrum. Results demonstrate a substantially better spectral shape, output power and stability than individual configurations, with decreased sensitivity to polarization changes. We believe this technique has the potential to enable several amplifiers to complement individual deficiencies resulting in improved spectral shapes and power generation for imaging applications such as optical coherence tomography (OCT).

  12. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang, E-mail: yxweng@aphy.iphy.ac.cn [Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-12-15

    Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300–1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10{sup −5}M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.

  13. Comprehensive Numerical Modelling of a Low-Gain Optical Parametric Amplifier as a Front-End Contrast Enhancement Unit

    CERN Document Server

    Sharba, A B; Zepf, M; Borghesi, M; Sarri, G

    2016-01-01

    We present a comprehensive model for predicting the full performance of a second harmonic generationoptical parametric amplification system that aims at enhancing the temporal contrast of laser pulses. The model simultaneously takes into account all the main parameters at play in the system such as the group velocity mismatch, the beam divergence, the spectral content, the pump depletion, and the length of the nonlinear crystals. We monitor the influence of the initial parameters of the input pulse and the interdependence of the two related non-linear processes on the performance of the system and show its optimum configuration. The influence of the initial beam divergence on the spectral and the temporal characteristics of the generated pulse is discussed. In addition, we show that using a crystal slightly longer than the optimum length and introducing small delay between the seed and the pump ensures maximum efficiency and compensates for the spectral shift in the optical parametric amplification stage in c...

  14. High-average-power 2 μm few-cycle optical parametric chirped pulse amplifier at 100 kHz repetition rate.

    Science.gov (United States)

    Shamir, Yariv; Rothhardt, Jan; Hädrich, Steffen; Demmler, Stefan; Tschernajew, Maxim; Limpert, Jens; Tünnermann, Andreas

    2015-12-01

    Sources of long wavelengths few-cycle high repetition rate pulses are becoming increasingly important for a plethora of applications, e.g., in high-field physics. Here, we report on the realization of a tunable optical parametric chirped pulse amplifier at 100 kHz repetition rate. At a central wavelength of 2 μm, the system delivered 33 fs pulses and a 6 W average power corresponding to 60 μJ pulse energy with gigawatt-level peak powers. Idler absorption and its crystal heating is experimentally investigated for a BBO. Strategies for further power scaling to several tens of watts of average power are discussed.

  15. Simple optical parametric oscillator-amplifier in unitary crystal, tunable over the visible range of spectrum and its application for two-photon spectroscopy

    Science.gov (United States)

    Klimentov, Sergei M.; Garnov, Serge V.; Epifanov, Alexander S.; Manenkov, Alexander A.

    1994-06-01

    For application of optical parametric oscillator (OPO) to investigation of nonlinear interaction of laser radiation with matter the factor of importance is stability of light spatial distribution and spotsize position on a target through a tuning range. Collinear temperature tunable schemes show an advantage for these purposes, in particular, for small pump beam diameters. A simple and efficient visible range parametric converter can be realized using two-pass configuration, where parametric luminescence is excited on the first pass through a nonlinear crystal and amplified on the second pass after spatial filtering. Lack of resonator simplifies high power UV pumping and getting of relatively narrow emission spectrum. Using such an approach, we have made the oscillator-amplifier system temperature tunable in the range of 440 to 670 nm employing 4-cm-length ADP crystal pumped by 266 nm radiation from the single-mode YAG:Nd laser. The output energy of 3 mJ in about 1-ns pulsewidth has been achieved with total conversion efficiency of 10%. A spatial profile of the output beam kept its shape within the branch of the tuning curve. This allowed us to use the device as a proper tool for investigation of two-photon excitation in undoped CsI and KI single crystals. The OPO signal output was used to record photoconductivity spectra in these materials.

  16. High-energy, sub-30 fs near-IR pulses from a broadband optical parametric amplifier based on collinear interaction in BiB(3)O(6).

    Science.gov (United States)

    Ghotbi, M; Beutler, M; Petrov, V; Gaydardzhiev, A; Noack, F

    2009-03-01

    We report efficient generation of tunable femtosecond pulses in the near IR using a two stage, white-light seeded, collinear, femtosecond optical parametric amplifier (OPA). The OPA, based on BiB(3)O(6) crystal in both stages and pumped at 807 nm by a 1 kHz Ti:sapphire laser amplifier, provides sub-30 fs signal pulses after compression with energies exceeding 200 microJ, which corresponds to fivefold pulse shortening and approximately 30% internal conversion efficiency in the second stage considering 150 fs pump pulses with 1.5 mJ energy. The corresponding idler pulses with more than 100 microJ have sub-60 fs duration without compression. The first stage alone is capable of producing sub-20 fs pulses near 1400 nm at the microjoule level without using any compression.

  17. Raman and loss induced quantum noise in a depleted phase-sensitive parametric amplifier

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten

    We study the quantum noise properties of phase-sensitive fiber optical parametric amplifiers in deep pump depletion using a semiclassical approach. Amplified spontaneous emission and spontaneous Raman scattering are included in the analysis.......We study the quantum noise properties of phase-sensitive fiber optical parametric amplifiers in deep pump depletion using a semiclassical approach. Amplified spontaneous emission and spontaneous Raman scattering are included in the analysis....

  18. A THEORY FOR BROADBAND VARACTOR PARAMETRIC AMPLIFIERS

    Science.gov (United States)

    design and synthesis of broadband varactor parametric amplifiers. The circuit considered in this thesis is that of linear variable capacitors embedded...second and more important inherent property is that, due to the frequency-coupling action of the variable capacitor , the scattering coefficient at the

  19. Microwave parametric amplifiers using externally pumped Josephson junctions

    DEFF Research Database (Denmark)

    Sørensen, O. H.; Mygind, Jesper; Pedersen, Niels Falsig

    1978-01-01

    Externally pumped parametric amplifiers are discussed. Theory and experiments on the singly degenerate parametric amplifier based on a Josephson junction are presented. Advantages and limitations of the singly degenerate and doubly degenerate parametric amplifiers are discussed. Some plans and pr...... and proposals for future research are presented....

  20. Perspectives of Long-Haul WDM Transmission Systems Based on Phase-Insensitive Fiber-Optic Parametric Amplifiers

    DEFF Research Database (Denmark)

    Jazayerifar, M.; Sackey, I.; Elschner, R.

    2015-01-01

    The deployment of phase-insensitive fiber-opticparametric amplifiers (PI-FOPAs) as inline amplifiers in longhaul WDM transmission systems is discussed, and it is outlined how to design PI-FOPAs to be a valuable upgrade option for this application....

  1. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  2. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  3. Generation of broadly tunable picosecond mid-infrared laser and sensitive detection of a mid-infrared signal by parametric frequency up-conversion in MgO:LiNbO3 optical parametric amplifiers

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiu-Lin; Zhang Jing; Qiu Kang-Sheng; Zhang Dong-Xiang; Feng Bao-Hua; Zhang Jing-Yuan

    2012-01-01

    Picosecond optical parametric generation and amplification in the near-infrared region within 1.361-1.656 μm and the mid-infrared region within 2.976-4.875 μm is constructed on the basis of bulk MgO:LiNbO3 crystals pumped at 1.064 μm.The maximum pulse energy reaches 1.3 mJ at 1.464 μm and 0.47 mJ at 3.894 μm,corresponding to a pumpto-idler photon conversion efficiency of 25%.By seeding the hard-to-measure mid-infrared radiation as the idler in the optical parametric amplification and measuring the amplified and frequency up-converted signal in the near-infrared or even visible region,one can measure very week mid-infrared radiation with ordinary detectors,which are insensitive to mid-infrared radiation,with a very high gain.A maximum gain factor of about 7 x 107 is achieved at the mid-infrared wavelength of 3.374 μm and the corresponding energy detection limit is as low as about 390 aJ per pulse.

  4. Controlling the dynamic range of a Josephson parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, Christopher; Wallraff, Andreas [ETH Zuerich, Department of Physics, Zuerich (Switzerland)

    2014-12-01

    One of the central challenges in the development of parametric amplifiers is the control of the dynamic range relative to its gain and bandwidth, which typically limits quantum limited amplification to signals which contain only a few photons per inverse bandwidth. Here, we discuss the control of the dynamic range of Josephson parametric amplifiers by using Josephson junction arrays. We discuss gain, bandwidth, noise, and dynamic range properties of both a transmission line and a lumped element based parametric amplifier. Based on these investigations we derive useful design criteria, which may find broad application in the development of practical parametric amplifiers. (orig.)

  5. Tuneable, non-degenerated, nonlinear, parametrically-excited amplifier

    Science.gov (United States)

    Dolev, Amit; Bucher, Izhak

    2016-01-01

    The proposed parametric amplifier scheme can be tuned to amplify a wide range of input frequencies by altering the parametric excitation with no need to physically modify the oscillator. Parametric amplifiers had been studied extensively, although most of the work focused on amplifiers that are parametrically excited at a frequency twice the amplifier's natural frequency. These amplifiers are confined to amplifying predetermined frequencies. The proposed parametric amplifier's bandwidth is indeed tuneable to nearly any input frequency, not bound to be an integer multiple of a natural frequency. In order to tune the stiffness and induce a variable frequency parametric excitation, a digitally controlled electromechanical element must be incorporated in the realization. We introduce a novel parametric amplifier with nonlinearity, Duffing type hardening, that bounds the otherwise unlimited amplitude. Moreover, we present a multi degree of freedom system in which a utilization of the proposed method enables the projection of low frequency vector forces on any eigenvector and corresponding natural frequency of the system, and thus to transform external excitations to a frequency band where signal levels are considerably higher. Using the method of multiple scales, analytical expressions for the responses have been retrieved and verified numerically. Parametric studies of the amplifiers' gain, sensitivities and spatial projection of the excitation on the system eigenvectors were carried out analytically. The results demonstrate the advantage of the proposed approach over existing schemes. Practical applications envisaged for the proposed method will be outlined.

  6. Sub-Nanosecond Infrared Optical Parametric Pulse Generation in Periodically Poled Lithium Niobate Pumped by a Seeded Fiber Amplifier

    Science.gov (United States)

    2008-02-01

    56 Figure 31: Filter Transmission Tests at 45...amplified seed beam pass was tested – only 85% of the seed beam was transmitting, and at 117 mW of average power with 0.5-ns pulse width and 7.14-kHz...through the connectorizer to fit in the cleaver , the fiber was cleaved, examined from the side with the fiber microscope for flatness, and pulled

  7. Characterization of a multimode coplanar waveguide parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Simoen, M., E-mail: simoen@chalmers.se; Krantz, P.; Bylander, Jonas; Shumeiko, V.; Delsing, P. [Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, Göteborg SE-412 96 (Sweden); Chang, C. W. S.; Wilson, C. M. [Institute for Quantum Computing and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Wustmann, W. [Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, Göteborg SE-412 96 (Sweden); Laboratory for Physical Sciences, College Park, Maryland 20740 (United States)

    2015-10-21

    We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ∼1 GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases.

  8. Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier.

    Science.gov (United States)

    Beutler, Marcus; Ghotbi, Masood; Noack, Frank; Brida, Daniele; Manzoni, Cristian; Cerullo, Giulio

    2009-03-15

    We report on the generation of powerful sub-20 fs deep UV pulses with 10 microJ level energy and broadly tunable in the 250-310 nm range. These pulses are produced by frequency doubling a high-power noncollinear optical parametric amplifier and compressed by a pair of MgF2 prisms to an almost transform-limited duration. Our results provide a power scaling by an order of magnitude with respect to previous works.

  9. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  10. Nearly noiseless amplification of microwave signals with a Josephson parametric amplifier

    Science.gov (United States)

    Castellanos-Beltran, Manuel

    2009-03-01

    A degenerate parametric amplifier transforms an incident coherent state by amplifying one of its quadrature components while deamplifying the other. This transformation, when performed by an ideal parametric amplifier, is completely deterministic and reversible; therefore the amplifier in principle can be noiseless. We attempt to realize a noiseless amplifier of this type at microwave frequencies with a Josephson parametric amplifier (JPA). To this end, we have built a superconducting microwave cavity containing many dc-SQUIDs. This arrangement creates a non-linear medium in a cavity and it is closely analogous to an optical parametric amplifier. In my talk, I will describe the current performance of this circuit, where I show I can amplify signals with less added noise than a quantum-limited amplifier that amplifies both quadratures. In addition, the JPA also squeezes the electromagnetic vacuum fluctuations by 10 dB. Finally, I will discuss our effort to put two such amplifiers in series in order to undo the first stage of squeezing with a second stage of amplification, demonstrating that the amplification process is truly reversible.[4pt] M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale and K. W. Lehnert, Nature Physics, published on line, http://dx.doi.org/10.1038/nphys1090 (2008).

  11. Generation of femtosecond laser pulses tunable from 380 nm to 465 nm via cascaded nonlinear optical mixing in a noncollinear optical parametric amplifier with a type-I phase matched BBO crystal.

    Science.gov (United States)

    Lee, Chao-Kuei; Zhang, Jing-Yuan; Huang, J; Pan, Ci-Ling

    2003-07-14

    We report the generation of tunable femtosecond pulses from 380nm to 465nm near the degenerate point of a 405-nm pumped type-I BBO noncollinearly phase-matched optical parametric amplifier (NOPA). The tunable UV/blue radiation is obtained from sum frequency generation (SFG) between the OPA output and the residual fundamental beam at 810-nm and cascaded second harmonic generation (SHG) of OPA. With a fixed seeding angle, the generated SFG and SHG covers from 385 nm to 465-nm. With a pumping energy of 75 J at 405 nm, the optical conversion efficiency from the pump to the tunable SFG is more than 5% and the efficiency of SHG of the OPA is about 2%.

  12. On the unlimited gain of a nonlinear parametric amplifier

    DEFF Research Database (Denmark)

    Sorokin, Vladislav

    2014-01-01

    The present paper is concerned with analysis of the response of a nonlinear parametric amplifier in abroad range of system parameters, particularly beyond resonance. Such analysis is of particular interestfor micro- and nanosystems, since many small-scale parametric amplifiers exhibit a distinctly...... nonlinearbehavior when amplitude of their response is sufficiently large. The modified method of direct separa-tion of motions is employed to study the considered system. As the result it is obtained that steady-stateamplitude of the nonlinear parametric amplifier response can reach large values in the case...... of arbitrarilysmall amplitude of external excitation, so that the amplifier gain tends to infinity. Very large amplifiergain can be achieved in a broad range of system parameters, in particular when the amplitude of para-metric excitation is comparatively small. The obtained results clearly demonstrate that very...

  13. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge

    Science.gov (United States)

    Ooi, K. J. A.; Ng, D. K. T.; Wang, T.; Chee, A. K. L.; Ng, S. K.; Wang, Q.; Ang, L. K.; Agarwal, A. M.; Kimerling, L. C.; Tan, D. T. H.

    2017-01-01

    CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si7N3, that possesses a high Kerr nonlinearity (2.8 × 10−13 cm2 W−1), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform. PMID:28051064

  14. Design of Raman-parametric fiber amplifier for wavelength division multiplex transmission system

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Jiang; Chun Jiang; Xiaoming Zhang

    2008-01-01

    We optimize the novel configuration of a hybrid fiber amplifier-Raman assisted-fiber-based optical parametric amplifier (R-FOPA), in which the parametric gain and Raman gain profiles are combined to achieve a flat composite gain profile.The pump powers and the fiber length in the hybrid amplifier are effectively optimized by genetic algorithm (GA) scheme.The optimization results indicate that the R-FOPA can achieve a 200-nm flat bandwidth spectrum with the gain of 20 dB and ripple of less than 4 dB.

  15. Theory of parametrically amplified electron-phonon superconductivity

    Science.gov (United States)

    Babadi, Mehrtash; Knap, Michael; Martin, Ivar; Refael, Gil; Demler, Eugene

    2017-07-01

    Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016), 10.1038/nature16522], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systems with lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time- and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.

  16. Theory of parametrically amplified electron-phonon superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Babadi, Mehrtash; Knap, Michael; Martin, Ivar; Refael, Gil; Demler, Eugene

    2017-07-01

    Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016)], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systemswith lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time-and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.

  17. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    Science.gov (United States)

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)

    2014-01-01

    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  18. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.;

    2014-01-01

    -optical signal processing approach to generate WDM-PCTWs enables a 2-fold reduction in the needed optical transmitters as compared to the conventional approach where each idler is generated by a dedicated transmitter. Digital coherent superposition of the twin waves at the receiver enables more than doubled......We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all...... reach in a dispersion-managed transmission link. We further study the impact of polarization-mode dispersion on the performance gain brought by the phase-conjugated twin waves, showing a gain of ∼3.8 dB in signal quality factors....

  19. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric amplifier for fiber-nonlinearity-tolerant transmission.

    Science.gov (United States)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S; Jopson, R M; Gnauck, A H; Dinu, M; Xie, C; Winzer, P J

    2014-03-24

    We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all-optical signal processing approach to generate WDM-PCTWs enables a 2-fold reduction in the needed optical transmitters as compared to the conventional approach where each idler is generated by a dedicated transmitter. Digital coherent superposition of the twin waves at the receiver enables more than doubled reach in a dispersion-managed transmission link. We further study the impact of polarization-mode dispersion on the performance gain brought by the phase-conjugated twin waves, showing a gain of ~3.8 dB in signal quality factors.

  20. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  1. Externally pumped millimeter-wave Josephson-junction parametric amplifier

    DEFF Research Database (Denmark)

    Levinsen, M.T; Pedersen, Niels Falsig; Sørensen, Ole;

    1980-01-01

    A unified theory of the singly and doubly degenerate Josephson-junction parametric amplifier is presented. Experiments with single junctions on both amplifier modes at frequencies 10, 35, and 70 GHz are discussed. Low-noise temperature (∼100 K, single sideband (SSB)) and reasonable gain (∼8 d......B) were obtained at 35 GHz in the singly degenerate mode. On the basis of the theory and experiments, a general procedure for optimizing junction parameters is discussed and illustrated by the specific design of a 100-GHz amplifier....

  2. International Standardization Activities for Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Haruo Okamura

    2003-01-01

    International standardization activities for Optical Amplifiers at IECTC86 and ITU-T SG15 are reviewed. Current discussions include Optical Amplifier safety guideline, Reliability standard, Rest methods of Noise and PMD, Definitions of Raman amplifier parameters and OA classification.

  3. Coherent amplified optical coherence tomography

    Science.gov (United States)

    Zhang, Jun; Rao, Bin; Chen, Zhongping

    2007-07-01

    A technique to improve the signal-to-noise ratio (SNR) of a high speed 1300 nm swept source optical coherence tomography (SSOCT) system was demonstrated. A semiconductor optical amplifier (SOA) was employed in the sample arm to coherently amplify the weak light back-scattered from sample tissue without increasing laser power illuminated on the sample. The image quality improvement was visualized and quantified by imaging the anterior segment of a rabbit eye at imaging speed of 20,000 A-lines per second. The theory analysis of SNR gain is given followed by the discussion on the technologies that can further improve the SNR gain.

  4. Optical stochastic cooling for RHIC using optical parametric amplification

    Directory of Open Access Journals (Sweden)

    M. Babzien

    2004-01-01

    Full Text Available We propose using an optical parametric amplifier, with a ∼12   μm wavelength, for optical-stochastic cooling of ^{79}Au ions in the Relativistic Heavy Ion Collider. While the bandwidth of this amplifier is comparable to that of a Ti:sapphire laser, it has a higher average output power. Its wavelength is longer than that of the laser amplifiers previously considered for such an application. This longer wavelength permits a longer undulator period and higher magnetic field, thereby generating a larger signal from the pickup undulator and ensuring a more efficient interaction in the kicker undulator, both being essential elements in cooling moderately relativistic ions. The transition to a longer wavelength also relaxes the requirements for stability of the path length during ion-beam transport between pickup and kicker undulators.

  5. Amplified Dispersive Optical Tomography

    CERN Document Server

    Goda, Keisuke; Jalali, Bahram

    2008-01-01

    Optical coherence tomography (OCT) has proven to be a powerful technique for studying tissue morphology in ophthalmology, cardiology, and endomicroscopy. Its performance is limited by the fundamental trade-off between the imaging sensitivity and acquisition speed -- a predicament common in virtually all imaging systems. In this paper, we circumvent this limit by using distributed Raman post-amplification of the reflection from the sample. We combine the amplification with simultaneously performed dispersive Fourier transformation, a process that maps the optical spectrum into an easily measured time-domain waveform. The Raman amplification enables measurement of weak signals which are otherwise buried in noise. It extends the depth range without sacrificing the acquisition speed or causing damage to the sample. As proof of concept, single-shot imaging with 15 dB improvement in sensitivity at an axial scan rate of 36.6 MHz is demonstrated.

  6. Higher-order nonlinear effects in a Josephson parametric amplifier

    Science.gov (United States)

    Kochetov, Bogdan A.; Fedorov, Arkady

    2015-12-01

    Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.

  7. Sub-nanosecond periodically poled lithium niobate optical parametric generator and amplifier pumped by an actively Q-switched diode-pumped Nd:YAG microlaser

    Science.gov (United States)

    Liu, L.; Wang, H. Y.; Ning, Y.; Shen, C.; Si, L.; Yang, Y.; Bao, Q. L.; Ren, G.

    2017-05-01

    A sub-nanosecond seeded optical parametric generator (OPG) based on magnesium oxide-doped periodically poled lithium niobate (MgO:PPLN) crystal is presented. Pumped by an actively Q-switched diode-pumped 1 kHz, 1064 nm, Nd:YAG microlaser and seeded with a low power distributed feedback (DFB) diode continuous-wave (CW) laser, the OPG generated an output energy of 41.4 µJ and 681 ps pulse duration for the signal at 1652.4 nm, achieving a quantum conversion efficiency of 61.2% and a slope efficiency of 41.8%. Signal tuning was achieved from 1651.0 to 1652.4 nm by tuning the seed-laser current. The FWHM of the signal spectrum was approximately from 35 nm to 0.5 nm by injection seed laser. The SHG doubled the frequency of OPG signal to produce a output energy of 12 µJ with the energy conversion efficiency of 29.0% and tunanble wavelength near 826 nm.

  8. 100  kHz Yb-fiber laser pumped 3  μm optical parametric amplifier for probing solid-state systems in the strong field regime.

    Science.gov (United States)

    Archipovaite, Giedre Marija; Petit, Stéphane; Delagnes, Jean-Christophe; Cormier, Eric

    2017-03-01

    We report on a laser source operating at 100 kHz repetition rate and delivering 8 μJ few-cycle mid-IR pulses at 3 μm. The system is based on optical parametric amplification pumped by a high repetition rate Yb-doped femtosecond fiber-chirped amplifier. This high-intensity ultrafast system is a promising tool for strong-field experiments (up to 50 GV/m and 186 T) in low ionization potential atomic and molecular systems, or solid-state physics with coincidence measurements. As a proof of principle, up to the sixth harmonic has been generated in a 1 mm zinc selenide sample.

  9. Proposal for a Casimir-driven parametric amplifier

    CERN Document Server

    Imboden, M; Campbell, D K; Bishop, D J

    2014-01-01

    In this paper, we discuss a design for a MEMS parametric amplifier modulated by the Casimir force. We present the theory for such a device and show that it allows for the implementation of a very sensitive voltage measuring technique, where the amplitude of a high quality factor resonator includes a tenth power dependency on an applied DC voltage. This approach opens up a new and powerful measuring modality, applicable to other measurement types.

  10. Quantum spatial propagation of squeezed light in a degenerate parametric amplifier

    Science.gov (United States)

    Deutsch, Ivan H.; Garrison, John C.

    1992-01-01

    Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump.

  11. Television-optical operational amplifier.

    Science.gov (United States)

    Goetz, J; Häusler, G; Sesselmann, R

    1979-08-15

    The advantages of negative feedback are well known in electronics and extensively used in the operational amplifier. The properties of such a system are nearly independent of the parameters in the forward branch of the system; they are only determined by external elements in the backward branch. An optical analog of such an operational amplifier is reported. The essential operations, amplifications, and inversion of the circulating signals are carried out using a TV system. The capability of the system to compensate for spatial inhomogeneities and for nonlinearities is demonstrated. In addition, the system is able to create the inverse of a transfer function located in the feedback branch.

  12. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including t...

  13. Fiber-Optical Parametric Amplification of Sub-Picosecond Pulses for High-Speed Optical Communications

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Cristofori, Valentina; Rottwitt, Karsten

    2015-01-01

    This article reviews recent results of amplification of short optical pulses using fiber-optical parametric amplifiers. This includes chirped-pulse amplification of 400 fs pulses, error-free amplification of a 640-Gbit/s optical time-division multiplexed signal with less than a 1-dB power penalty...

  14. Strong environmental coupling in a Josephson parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O' Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M., E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Megrant, A. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Department of Materials, University of California, Santa Barbara, California 93106 (United States); Sundqvist, K. M. [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States)

    2014-06-30

    We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.

  15. Displacement of microwave squeezed states with Josephson parametric amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Ling; Baust, Alexander; Xie, Edwar; Schwarz, Manuel; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Fedorov, Kirill; Menzel, Edwin; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Betzenbichler, Martin; Pogorzalek, Stefan; Haeberlein, Max; Eder, Peter; Goetz, Jan; Wulschner, Karl Friedrich; Huebl, Hans; Deppe, Frank [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)

    2015-07-01

    Propagating quantum microwaves are promising building blocks for quantum communication. Interestingly, such itinerant quantum microwaves can be generated in the form of squeezed photon states by Josephson parametric amplifiers (JPA). We employ a specific ''dual-path'' setup for both state reconstruction and JPA characterization. Displacement operations are performed by using a directional coupler after the squeezing. We compare our results with theory predictions. In particular, we discuss our experiments in the context of remote state preparation and quantum teleportation with propagating microwaves.

  16. Hybrid mid-infrared optical parametric chirped-pulse amplification system with a broadband non-collinear quasi-phase-matched power amplifier

    CERN Document Server

    Mayer, Benedikt W; Gallmann, Lukas; Keller, Ursula

    2014-01-01

    We report a hybrid OPCPA system with the capability of generating broadband mid-infrared idler pulses from a non-collinear quasi-phase-matched power amplifier on the basis of periodically poled MgO:LiNbO3. It is seeded by the idler generated from a two-stage collinear pre-amplifier based on aperiodically poled MgO:LiNbO3. The amplification and pulse compression scheme we use does not require any angular dispersion to be introduced or compensated for on either the seed or the generated idler pulses. The mid-IR idler output has a bandwidth of 800 nm centered at 3.4 $\\mu$m. After compression, we obtain a pulse duration of 43.1 fs (FWHM; 41.4-fs transform limit) and a pulse energy of 17.2 $\\mu$J at a repetition rate of 50 kHz.

  17. Theory of Polarization Attraction in Parametric Amplifiers Based on Telecommunication Fibers

    CERN Document Server

    Guasoni, Massimiliano; Wabnitz, Stefan

    2012-01-01

    We develop from first principles the coupled wave equations that describe polarization-sensitive parametric amplification based on four-wave mixing in standard (randomly birefringent) optical fibers. We show that in the small-signal case these equations can be solved analytically, and permit us to predict the gain experienced by the signal beam as well as its state of polarization (SOP) at the fiber output. We find that, independently of its initial value, the output SOP of a signal within the parametric gain bandwidth is solely determined by the pump SOP. We call this effect of pulling the polarization of the signal towards a reference SOP as polarization attraction, and such parametric amplifier as the FWM-polarizer. Our theory is valid beyond the zero polarization mode dispersion (PMD) limit, and it takes into account moderate deviations of the PMD from zero. In particular, our theory is capable of analytically predicting the rate of degradation of the efficiency of the parametric amplifier which is caused...

  18. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  19. Airy beam optical parametric oscillator.

    Science.gov (United States)

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-05-04

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  20. Widely tunable dual-pump parametric amplifiers with photonic crystal fibres

    Institute of Scientific and Technical Information of China (English)

    Li Yong-Zhong; Qian Lie-Jia; Lu Da-Quan; Fan Dian-Yuan; Chen Guang-nui

    2008-01-01

    This paper theoretically studies the double-pumped fibre-optical parametric amplifiers (FOPAs) in photonic crystalfibres.Two distinct working regimes of FOPAs are researched,which depend on the dispersion at the central wavelengthof the two pumps.Extremely broad tuning range can he obtained when the central pump wavelength is in the normaldispersion regime and is insensitive to the wavelength separation between the two pumps,while the tuning range isnarrow in the anomalous dispersion regime and can be significantly enhanced by increasing the wavelength separation.Impacts of higher-order dispersions and temporal walk-off on the gain spectra are also discussed.

  1. Near Infrared (NIR) Imaging Techniques Using Lasers and Nonlinear Crystal Optical Parametric Oscillator/Amplifier (OPO/OPA) Imaging and Transferred Electron (TE) Photocathode Image Intensifiers

    Energy Technology Data Exchange (ETDEWEB)

    YATES,GEORGE J.; MCDONALD,THOMAS E. JR.; BLISS,DAVID E.; CAMERON,STEWART M.; GREIVES,KENNETH H.; ZUTAVERN,FRED J.

    2000-12-20

    Laboratory experiments utilizing different near-infrared (NIR) sensitive imaging techniques for LADAR range gated imaging at eye-safe wavelengths are presented. An OPO/OPA configuration incorporating a nonlinear crystal for wavelength conversion of 1.56 micron probe or broadcast laser light to 807 nm light by utilizing a second pump laser at 532 nm for gating and gain, was evaluated for sensitivity, resolution, and general image quality. These data are presented with similar test results obtained from an image intensifier based upon a transferred electron (TE) photocathode with high quantum efficiency (QE) in the 1-2 micron range, with a P-20 phosphor output screen. Data presented include range-gated imaging performance in a cloud chamber with varying optical attenuation of laser reflectance images.

  2. Highly efficient, widely tunable, 10-Hz parametric amplifier pumped by frequency-doubled femtosecond Ti:sapphire laser pulses.

    Science.gov (United States)

    Zhang, J Y; Xu, Z; Kong, Y; Yu, C; Wu, Y

    1998-05-20

    We report a 10-Hz, highly efficient, widely tunable (from the visible to the IR), broadband femtosecond optical parametric generator and optical parametric amplifier (OPA) in BBO, LBO, and CBO crystals pumped by the frequency-doubled output of a regeneratively amplified Ti:sapphire laser at 400 nm. The output of the system is continuously tunable from 440 nm to 2.5 microm with a maximum overall efficiency of approximately 25% at 670 nm and an optical conversion efficiency of more than 36% in the OPA stage. The effects of the seed beam energy, the type of the crystal and the crystal length, and the pumping energy of the output of the OPA, such as the optical efficiency, the bandwidth, the pulse duration, and the group velocity mismatch between the signal and the idler and between the seeder and the pump, are investigated. The results provide useful information for optimization of the design of the system.

  3. Narrow linewidth pulsed optical parametric oscillator

    Indian Academy of Sciences (India)

    S Das

    2010-11-01

    Tunable narrow linewidth radiation by optical parametric oscillation has many applications, particularly in spectroscopic investigation. In this paper, different techniques such as injection seeding, use of spectral selecting element like grating, grating and etalon in combination, grazing angle of incidence, entangled cavity configuration and type-II phase matching have been discussed for generating tunable narrow linewidth radiation by singly resonant optical parametric oscillation process.

  4. 200 TW 45 fs laser based on optical parametric chirped pulse amplification.

    Science.gov (United States)

    Lozhkarev, V V; Freidman, G I; Ginzburg, V N; Katin, E V; Khazanov, E A; Kirsanov, A V; Luchinin, G A; Mal'shakov, A N; Martyanov, M A; Palashov, O V; Poteomkin, A K; Sergeev, A M; Shaykin, A A; Yakovlev, I V; Garanin, S G; Sukharev, S A; Rukavishnikov, N N; Charukhchev, A V; Gerke, R R; Yashin, V E

    2006-01-01

    200 TW peak power has been achieved experimentally using a Cr:forsterite master oscillator at 1250 nm, a stretcher, three optical parametrical amplifiers based on KD*P (DKDP) crystals providing 14.5 J energy in the chirped pulse at 910 nm central wavelength, and a vacuum compressor. The final parametrical amplifier and the compressor are described in detail. Scaling of such architecture to multipetawatt power is discussed.

  5. BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER

    DEFF Research Database (Denmark)

    2010-01-01

    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  6. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification

    NARCIS (Netherlands)

    Witte, S.; Zinkstok, R.T.; Hogervorst, W.; Eikema, K.S.E.

    2005-01-01

    We demonstrate the generation of 9.8 +/- 0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti: Sapphire oscillator to

  7. Parametric Amplification For Detecting Weak Optical Signals

    Science.gov (United States)

    Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash

    1996-01-01

    Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.

  8. Quantum Superposition of Parametrically Amplified Multiphoton Pure States whitin a Decoherence-Free Schrödinger-Cat Structure

    CERN Document Server

    Bovino, F A; Mussi, V

    1999-01-01

    The new process of quantum-injection into an optical parametric amplifier operating in entangled configuration is adopted to amplify into a large dimensionality spin 1/2 Hilbert space the quantum entanglement and superposition properties of the photon-couples generated by parametric down-conversion. The structure of the Wigner function and of the field's correlation functions shows a decoherence-free, multiphoton Schroedinger-cat behaviour of the emitted field which is largely detectable against the squeezed-vacuum noise. Furthermore, owing to its entanglement character, the system is found to exhibit multi-particle quantum nonseparability and Bell-type nonlocality properties. These relevant quantum features are analyzed for several travelling-wave optical configurations implying different input quantum-injection schemes

  9. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

    2016-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system, a...

  10. Experimental and Theoretical Analysis of Nondegenerate Ultrabroadband Chirped Pulse Optical Parametric Amplification

    Institute of Scientific and Technical Information of China (English)

    刘红军; 赵卫; 陈国夫; 王屹山; 于连君; 阮驰; 卢克清

    2004-01-01

    Experimental investigations of nondegenerate ultrabroadband chirped pulse optical parametric amplification have been carried out. The general mathematical expressions for evaluating parametric bandwidth, gain and gain bandwidth for arbitrary three-wave mixing parametric amplifiers are presented. In our experiments, a type-I noncollinear phase-matched optical parametric amplifier based on lithium triborate, which was pumped by a 5-ns second harmonic pulses from a Q-switched Nd:YAG operating at 10 Hz, seeded by a 14-rs Ti:sapphire laser at 800nm, was presented. The 0.85nJ energy of input chirped signal pulse with 57-FWHM has been amplified to 3.1 μJ at pump intensity 3 G W/cm2, the corresponding parametric gain reached 3.6 × 103, the 53 nm-FWHM gain spectrum bandwidth of output signal has been obtained. The large gain and broad gain bandwidth, which have been confirmed experimentally, provide great potentials to amplify efficiently the broad bandwidth femtosecond light pulses to generate new extremes in power, intensity, and pulse duration using optical parametric chirped pulse amplifiers pumped by powerful nanosecond systems.

  11. Parametric Amplifiers for Microwave Kinectic Inductance Detector (MKID) Readout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Find numerical solutions to the non-linear partial differential equations describing our amplifier transmission lines. Optimize periodic choke structure to block...

  12. Optical Parametric Technology for Methane Measurements

    Science.gov (United States)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  13. Optical parametric technology for methane measurements

    Science.gov (United States)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-09-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 μJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  14. Improving the Quality of Heisenberg Back-Action of Qubit Measurements made with Parametric Amplifiers

    Science.gov (United States)

    Sliwa, Katrina

    The quantum back-action of the measurement apparatus arising from the Heisenberg uncertainty principle is both a fascinating phenomenon and a powerful way to apply operations on quantum systems. Unfortunately, there are other effects which may overwhelm the Heisenberg back-action. This thesis focuses on two effects arising in the dispersive measurement of superconducting qubits made with two ultra-low-noise parametric amplifiers, the Josephson bifurcation amplifier (JBA) and the Josephson parametric converter (JPC). The first effect is qubit dephasing due to excess photons in the cavity coming from rogue radiation emitted by the first amplifier stage toward the system under study. This problem arises primarily in measurements made with the JBA, where a strong resonant pump tone is traditionally used to provide the energy for amplification. Replacing the single strong pump tone with two detuned pump tones minimized this dephasing to the point where the Heisenberg back-action of measurements made with the JBA could be observed. The second effect is reduced measurement efficiency arising from losses between the qubit and the parametric amplifier. Most commonly used parametric amplifiers operate in reflection, requiring additional lossy, magnetic elements known as circulators both to separate input from output, and to protect the qubits from dephasing due to the amplified reflected signal. This work presents two alternative directional elements, the Josephson circulator, which is both theoretically loss-less and does not rely upon the strong magnetic fields needed for traditional circulators, and the Josephson directional amplifier which does not send any amplified signal back toward the qubit. Both of these elements achieve directionality by interfering multiple parametric processes inside a single JPC, allowing for in-situ switching between the two modes of operation. This brings valuable experimental flexibility, and also makes these devices strong candidates for

  15. Gain and noise spectral density in an electronic parametric amplifier with added white noise

    CERN Document Server

    Batista, Adriano A

    2015-01-01

    In this paper, we discuss the behavior of a linear classical parametric amplifier (PA) in the presence of white noise and give theoretical estimates of the noise spectral density based on approximate Green's functions obtained by using averaging techniques. Furthermore, we give analytical estimates for parametric amplification bandwidth of the amplifier and for the noisy precursors to instability. To validate our theory we compare the analytical results with experimental data obtained in an analog circuit. We describe the implementation details and the setup used in the experimental study of the amplifier. Near the threshold to the first parametric instability, and in degenerate-mode amplification, the PA achieved very high gains in a very narrow bandwidth centered on its resonance frequency. In quasi-degenerate mode amplification, we obtained lower values of gain, but with a wider bandwidth that is tunable. The experimental data were accurately described by the predictions of the model. Moreover, we noticed ...

  16. Theory of the singly quasidegenerate Josephson junction parametric amplifier

    DEFF Research Database (Denmark)

    Sørensen, O.H.; Dueholm, B.; Mygind, Jesper;

    1980-01-01

    as incident thermal radiation is included in the discussion. It is shown that the noise temperature is virtually independent of noise injected from external sources and that minimum noise temperature is automatically achieved if the amplifier is tuned to maximize the gain-bandwidth product. The analytical...

  17. Diode-pumped optical parametric oscillator.

    Science.gov (United States)

    Geiger, A R; Hemmati, H; Farr, W H; Prasad, N S

    1996-02-01

    Diode-pumped optical parametric oscillation has been demonstrated for the first time to our knowledge in a single Nd:MgO:LiNbO(3) nonlinear crystal. The crystal is pumped by a semiconductor diode laser array at 812 nm. The Nd(3+) ions absorb the 812-nm radiation to generate 1084-nm laser oscillation. On internal Q switching the 1084-nm radiation pumps the LiNbO(3) host crystal that is angle cut at 46.5 degrees and generates optical parametric oscillation. The oscillation threshold that is due to the 1084-nm laser pump with a pulse length of 80 ns in a 1-mm-diameter beam was measured to be approximately 1 mJ and produced 0.5-mJ output at 3400-nm signal wavelength.

  18. Photonic Quantum Noise Reduction with Low-Pump Parametric Amplifiers for Photonic Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Andre Vatarescu

    2016-11-01

    Full Text Available An approximation-free and fully quantum optic formalism for parametric processes is presented. Phase-dependent gain coefficients and related phase-pulling effects are identified for quantum Rayleigh emission and the electro-optic conversion of photons providing parametric amplification in small-scale integration of photonic devices. These mechanisms can be manipulated to deliver, simultaneously, sub-Poissonian distributions of photons as well as phase-dependent amplification in the same optical quadrature of a signal field.

  19. Motion-light parametric amplifier and entanglement distributor

    CERN Document Server

    Peng, A

    2002-01-01

    We propose a scheme for entangling the motional mode of a trapped atom with a propagating light field via a cavity-mediated parametric interaction. We then show that if this light field is subsequently coupled to a second distant atom via a cavity-mediated linear-mixing interaction, it is possible to transfer the entanglement from the light beam to the motional mode of the second atom to create an EPR-type entangled state of the positions and momenta of two distantly-separated atoms.

  20. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  1. Bandwidth enhancement for parametric amplifiers operated in chirped multi-beam mode

    CERN Document Server

    Terranova, F; Pegoraro, F

    2008-01-01

    In this paper we discuss the bandwidth enhancement that can be achieved in multi-Joule OPCPA systems exploiting the tunability of parametric amplification. In particular, we consider a pair of single pass amplifiers based on DKDP, pumped by the second harmonic of Nd:glass and tuned to amplify adjacent regions of the signal spectrum. We demonstrate that a bandwidth enhancement up to 50% is possible in two configurations; in the first case, one of the two amplifiers is operated near its non-collinear broadband limit; to allow for effective recombination and recompression of the outgoing signals this configuration requires filtering and phase manipulation of the spectral tail of the amplified pulses. In the second case, effective recombination can be achieved simply by spectral filtering: in this configuration, the optimization of the parameters of the amplifiers (pulse, crystal orientation and crystal length) does not follow the recipes of non-collinear OPCPA.

  2. Optical power equalization using Fabry-Perot semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    Yun Ling; Kun Qiu; Wei Zhang; Ying Pang

    2006-01-01

    A novel scheme of optical power equalization based on Fabry-Perot semiconductor optical amplifier (FPSOA) is proposed. Because of the gain characteristic of FP-SOA, real-time controlling mechanism according to input optical power is aborted in the scheme. The simulations show that 10-dB pulse peak power variation can be clamped in less than i dB. The influences of injecting current, pulse periods, and pulse width are discussed.

  3. Parallel reservoir computing using optical amplifiers.

    Science.gov (United States)

    Vandoorne, Kristof; Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Bienstman, Peter

    2011-09-01

    Reservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation. We have previously proposed a network of coupled semiconductor optical amplifiers as an interesting test case for such a hardware implementation. In this paper, we investigate the important design parameters and the consequences of process variations through simulations. We use an isolated word recognition task with babble noise to evaluate the performance of the photonic reservoirs with respect to traditional software reservoir implementations, which are based on leaky hyperbolic tangent functions. Our results show that the use of coherent light in a well-tuned reservoir architecture offers significant performance benefits. The most important design parameters are the delay and the phase shift in the system's physical connections. With optimized values for these parameters, coherent semiconductor optical amplifier (SOA) reservoirs can achieve better results than traditional simulated reservoirs. We also show that process variations hardly degrade the performance, but amplifier noise can be detrimental. This effect must therefore be taken into account when designing SOA-based RC implementations.

  4. Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho:YAG chirped-pulse amplifier.

    Science.gov (United States)

    Kanai, Tsuneto; Malevich, Pavel; Kangaparambil, Sarayoo Sasidharan; Ishida, Kakuta; Mizui, Makoto; Yamanouchi, Kaoru; Hoogland, Heinar; Holzwarth, Ronald; Pugzlys, Audrius; Baltuska, Andrius

    2017-02-15

    We report on the parametric generation of 100 fs sub-6-cycle 40 μJ pulses with the center wavelength at 5.2 μm using a 1 ps 2.1 μm pump laser and a dispersion management scheme based on bulk material. Our optically synchronized amplifier chain consists of a Ho:YAG chirped-pulse amplifier and white-light-seeded optical parametric amplifiers providing simultaneous passive carrier-envelope phase locking of three ultrashort longwave pulses at the pump, signal, and idler wavelengths corresponding, respectively, to 2.1, 3.5, and 5.2 μm. We also demonstrate bandwidth enhancement and efficient control over nonlinear spectral phase in the regime of cascaded χ2 nonlinearity in ZnGeP2.

  5. High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier

    CERN Document Server

    Liang, Houkun; Zawilski, Kevin; Schunemann, Peter; Moses, Jeffrey; Hong, Kyung-Han; Kartner, Franz X

    2016-01-01

    High-energy, sub-cycle, mid-infrared (mid-IR) pulses with long-term carrier-envelope phase (CEP) stability can provide unique opportunities of exploring phase-sensitive strong-field light-matter interactions in atoms, molecules, and solid materials. The applications include the generation of isolated attosecond or even zeptosecond X-ray pulses, steering the atomic-scale motion of electrons, and sub-femtosecond control and metrology of bound-electron dynamics. Here, we present a high-energy, sub-cycle pulse synthesizer based on a mid-IR optical parametric amplifier (OPA), pumped by CEP-stable, 2.1 um femtosecond pulses. The signal and idler combined spectrum spans from 2.5 to 9.0 um, which covers the whole midwave-infrared (MWIR) region. We coherently synthesize the CEP-stable few-cycle signal and idler pulses to generate 33 uJ, 0.77-cycle (13 fs), 2.5 GW pulses centered at ~5 um, which is further energy scalable. The signal and idler pulses are both passively CEP stable, ensuring long-term overall CEP stabili...

  6. Modeling and measurement of the noise figure of a cascaded non-degenerate phase-sensitive parametric amplifier.

    Science.gov (United States)

    Tong, Zhi; Bogris, Adonis; Lundström, Carl; McKinstrie, C J; Vasilyev, Michael; Karlsson, Magnus; Andrekson, Peter A

    2010-07-01

    Semi-classical noise characteristics are derived for the cascade of a non-degenerate phase-insensitive (PI) and a phase-sensitive (PS) fiber optical parametric amplifier (FOPA). The analysis is proved to be consistent with the quantum theory under the large-photon number assumption. Based on this, we show that the noise figure (NF) of the PS-FOPA at the second stage can be obtained via relative-intensity-noise (RIN) subtraction method after averaging the signal and idler NFs. Negative signal and idler NFs are measured, and 16 dB PS gain is estimated when considering the combined signal and idler input, which is believed to be the lowest measured NF of a non-degenerate PS amplifier to this date. The limitation of the RIN subtraction method attributed to pump transferred noise and Raman phonon induced noise is also discussed.

  7. Optical Vortex Solitons in Parametric Wave Mixing

    CERN Document Server

    Alexander, T J; Buryak, A V; Sammut, R A; Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.

    2000-01-01

    We analyze two-component spatial optical vortex solitons supported by degenerate three- or four-wave mixing in a nonlinear bulk medium. We study two distinct cases of such solitons, namely, parametric vortex solitons due to phase-matched second-harmonic generation in a optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a `halo-vortex', consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a `ring-vortex' soliton which is a vortex in a harmonic field that guides a bright localized ring-like mode of a fundamental frequency field.

  8. Normal dispersion femtosecond fiber optical parametric oscillator.

    Science.gov (United States)

    Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N

    2013-09-15

    We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60  mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3  ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths.

  9. The Dynamics of Semiconductor Optical Amplifiers – Modeling and Applications

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Mads Lønstrup; Berg, Tommy Winther

    2003-01-01

    The importance of semiconductor optical amplifiers is discussed. A semiconductor optical amplifier (SOA) is a semiconductor laser with anti-reflection coated facets that amplifies an injected light signal by means of stimulated emission. SOAs have a number of unique properties that open up...

  10. Generation of few-cycle terawatt light pulses using optical parametric chirped pulse amplification.

    Science.gov (United States)

    Witte, S; Zinkstok, R; Hogervorst, W; Eikema, K

    2005-06-27

    We demonstrate the generation of 9.8+/-0.3 fs laser pulses with a peak power exceeding one terawatt at 30 Hz repetition rate, using optical parametric chirped pulse amplification. The amplifier is pumped by 140 mJ, 60 ps pulses at 532 nm, and amplifies seed pulses from a Ti:Sapphire oscillator to 23 mJ/pulse, resulting in 10.5 mJ/pulse after compression while amplified fluorescence is kept below 1%. We employ grating-based stretching and compression in combination with an LCD phase-shaper, allowing compression close to the Fourier limit of 9.3 fs.

  11. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  12. Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching

    Energy Technology Data Exchange (ETDEWEB)

    White, T. C.; Mutus, J. Y.; Hoi, I.-C.; Barends, R.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O' Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Martinis, John M., E-mail: martinis@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Megrant, A. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Department of Materials, University of California, Santa Barbara, California 93106 (United States); Chaudhuri, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States); and others

    2015-06-15

    Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance, while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted λ/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12 dB across a 4 GHz span, along with an average saturation power of −92 dBm with noise approaching the quantum limit.

  13. The SU(1, 1) Perelomov number coherent states and the non-degenerate parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx; Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738 México D. F. (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430, México D. F. (Mexico)

    2014-04-15

    We construct the Perelomov number coherent states for an arbitrary su(1, 1) group operation and study some of their properties. We introduce three operators which act on Perelomov number coherent states and close the su(1, 1) Lie algebra. By using the tilting transformation we apply our results to obtain the energy spectrum and eigenfunctions of the non-degenerate parametric amplifier. We show that these eigenfunctions are the Perelomov number coherent states of the two-dimensional harmonic oscillator.

  14. A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx [Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430 Ciudad de México (Mexico); Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico)

    2016-06-15

    We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.

  15. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    Science.gov (United States)

    Neumeyer, S.; Sorokin, V. S.; Thomsen, J. J.

    2017-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing-Mathieu equation with appended quadratic nonlinearity is considered as the model system, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic nonlinearities may generate additional amplitude-frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi-stability in the amplitude-phase characteristics are predicted, supporting previously reported experimental observations.

  16. A Theoretical Evaluation of Optical Parametric Amplification in BBO Crystal

    Institute of Scientific and Technical Information of China (English)

    邵敏; 薛绍林; 林尊琪

    2005-01-01

    The noncollinear optical parametric amplification in BBO crystal is theoretically investigated. The phase matching angle, gain bandwidth, optimal noncollinear angle and conversion efficiency for both type-Ⅰ and type-Ⅱ BBO are simulated. The numerical simulation results are important to the practical optical parametric amplification experiments with BBO crystal.

  17. Lumped-element Josephson parametric amplifier at 650 MHz for nano-calorimeter readout

    Science.gov (United States)

    Vesterinen, Visa; Saira, Olli-Pentti; Räisänen, Ilmo; Möttönen, Mikko; Grönberg, Leif; Pekola, Jukka; Hassel, Juha

    2017-08-01

    We design a sub-gigahertz Josephson parametric amplifier for the readout of nanoscale calorimeters which consist of normal-metal-superconductor heterostructures. We characterize the amplifier performance at two operating points, 605 and 655 MHz, corresponding to reproducible local frequency maxima with respect to the applied magnetic flux. At the 655 MHz operating point, the device displays its maximum small-signal gain of 32 dB and gain-bandwidth product of 2π × 3.3 {MHz}. The gain remains above 20 dB for incident powers up to -119 dBm. The added noise of the amplifier, determined by the hot/cold source method, assumes a minimum value of 0.2 K.

  18. Pulse-distortion in a quantum-dot optical amplifier

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Borri, Paola; Mørk, Jesper;

    2000-01-01

    Distortion of a -150fs optical pulse after propagation through an InAs/InGaAs quantum-dot optical amplifier is measured for different input energies an bias currents. Pulse distortion is observed and compared with results on a bulk amplifier.......Distortion of a -150fs optical pulse after propagation through an InAs/InGaAs quantum-dot optical amplifier is measured for different input energies an bias currents. Pulse distortion is observed and compared with results on a bulk amplifier....

  19. Observation of Three Mode Parametric Interactions in Long Optical Cavities

    CERN Document Server

    Zhao, C; Fan, Y; Slagmolen, S Gras B J J; Miao, H; Blair, P Barriga D G; Hosken, D J; Brooks, A F; Veitch, P J; Mudge, D; Munch, J

    2008-01-01

    We report the first observation of three-mode opto-acoustic parametric interactions of the type predicted to cause parametric instabilities in an 80 m long, high optical power cavity that uses suspended sapphire mirrors. Resonant interaction occurs between two distinct optical modes and an acoustic mode of one mirror when the difference in frequency between the two optical cavity modes is close to the frequency of the acoustic mode. Experimental results validate the theory of parametric instability in high power optical cavities.

  20. High efficient CEP-stabilized infrared optical parametric amplifier made from a BBO single crystal%基于单个BBO晶体载波包络相位稳定的高效率光参量放大器

    Institute of Scientific and Technical Information of China (English)

    尤良芳; 令维军; 李可; 张明霞; 左银燕; 王屹山

    2014-01-01

    基于单个BBO非线性晶体,利用非共线光参量放大技术,研究了载波包络相位稳定的高效率可调谐近红外脉冲产生.以载波包络相位稳定的飞秒激光放大系统产生的白光作为种子光,注入一个二类匹配的二级光参量放大器,在1350 nm波段获得抽运-信号光34%的转换效率.利用f-2f光谱相干测量技术,放大脉冲载波包络相位的抖动30 min内小于137 mrad.该方法提供了一种简单高效的载波包络相位稳定的红外脉冲产生技术.%We demonstrate an efficient tunable phase-stabilized near-infrared optical parametric amplifier (OPA) made from a BBO (β-BaB2O4) single crystal in this paper. By using the seeded white-light continuum produced by CEP(carrier envelop phase)-stabilized femtosecond laser amplifier system which is seeded into the two stages of a type II OPA system, the pump-to-signal conversion efficiency of 34%can be achieved at 1350 nm. The CEP jitter of amplified pulses measured by an f-2f interferometer is 137 mrad in 30 minutes. This paper demonstrates a simple, feasible and efficient way to produce tunable femtosecond pulses with CEP control.

  1. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  2. Spatiotemporal structures in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We analyze pattern formation in doubly resonant second-harmonic generation in the presence of a competing parametric process, also named the internally pumped optical parametric oscillator. Different scenarios are established where either the up- or down-conversion processes dominate the spatiote...... patterns and gray solitons. Estimates of the thresholds for pattern formation under experimentally relevant conditions are given....

  3. Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier.

    Science.gov (United States)

    Baltuska, Andrius; Fuji, Takao; Kobayashi, Takayoshi

    2002-07-15

    We demonstrate a scheme for parametric amplification that allows us to measure the drift of the carrier-envelope phase of the output signal pulses. The method is based on the unique double phase-matching properties of a noncollinearly pumped BBO crystal, making possible the detection of the interference between the signal and the frequency-doubled idler. Additionally, the suggested device greatly simplifies the single-shot measurement of the phase evolution in Ti:sapphire laser amplifiers by dispensing with harmonic synthesis from the spectral edges of an octave-wide supercontinuum.

  4. Optical parametric chirped pulse amplification and spectral shaping of a continuum generated in a photonic band gap fiber.

    Science.gov (United States)

    Hugonnot, E; Somekh, M; Villate, D; Salin, F; Freysz, E

    2004-05-31

    A chirped pulse, spectrally broadened in a photonic bandgap optical fiber by 120 fs Ti:Sapphire laser pulses, is parametrically amplified in a BBO crystal pumped by a frequency doubled nanosecond Nd:YAG laser pulse. Without changing the frequency of the Ti:Sapphire, a spectral tunability of the amplified pulses is demonstrated. The possibility to achieve broader spectral range amplification is confirmed for a non-collinear pump-signal interaction geometry. For optimal non-collinear interaction geometry, the pulse duration of the original and amplified pulse are similar. Finally, we demonstrate that the combination of two BBO crystals makes it possible to spectrally shape the amplified pulses.

  5. Efficient and Compact Optical Amplifier Using EYDF

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2010-09-01

    Full Text Available An efficient Erbium/Ytterbium doped fiber amplifier (EYDFA is demonstrated using a 1058nm pumping wavelength, where the amplification is assisted by energy transfer between Yb and Er ions. The energy transfer increases the limit of erbium doping concentration that is imposed by concentration quenching in Erbium-doped fiber (EDF. Therefore, the gain and noise figure are severely degraded with 1480 nm pumping, where the energy transfer cannot be achieved. The use of optical isolator improves the small signal gain and noise figure by about 4.8 dB and 1.6 dB, respectively. By employing a double-pass configuration, a higher gain can be obtained with an expense of a noise figure penalty. The gain improvement of 17.0 dB is obtained at 20 mW and -50 dBm of pump and input signal powers. This shows that the double-pass configuration is an important aspect to consider when designing an efficient EYDFA.

  6. Studies of nondegenerate, quasi-phase-matched optical parametric amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Livermore National Laboratory

    2004-03-18

    We have performed extensive numerical studies of quasi-phase-matched optical parametric amplification with the aim to improve its nondegenerate spectral bandwidth. Our multi-section fan-out design calculations indicate a 35-fold increase in spectral bandwidth.

  7. Generation of high-energy self-phase-stabilized pulses by difference-frequency generation followed by optical parametric amplification.

    Science.gov (United States)

    Manzoni, C; Vozzi, C; Benedetti, E; Sansone, G; Stagira, S; Svelto, O; De Silvestri, S; Nisoli, M; Cerullo, G

    2006-04-01

    We produce ultrabroadband self-phase-stabilized near-IR pulses by a novel approach where a seed pulse, obtained by difference-frequency generation of a hollow-fiber broadened supercontinuum, is amplified by a two-stage optical parametric amplifier. Energies up to 20 microJ with a pulse spectrum extending from 1.2 to 1.6 microm are demonstrated, and a route for substantial energy scaling is indicated.

  8. High Average Power Optical FEL Amplifiers

    CERN Document Server

    Ben-Zvi, I; Litvinenko, V

    2005-01-01

    Historically, the first demonstration of the FEL was in an amplifier configuration at Stanford University. There were other notable instances of amplifying a seed laser, such as the LLNL amplifier and the BNL ATF High-Gain Harmonic Generation FEL. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance a 100 kW average power FEL. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting energy recovery linacs combine well with the high-gain FEL amplifier to produce unprecedented average power FELs with some advantages. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Li...

  9. Optical-parametric-amplification applications to complex images

    Science.gov (United States)

    Vaughan, Peter M.

    2011-12-01

    Ultrafast optical pulses have many useful features. One in particular is their ability to exploit nonlinear processes due to their extremely short durations. We have used ultrafast optical pulses, primarily focused on the nonlinear processes of Polarization Gating and of Optical Parametric Amplification, one for measurement and the other for imaging purposes. For measurement, we have demonstrated a robust method of measurement to simultaneously measure both optical pulses used in a pump-probe type configuration. In these measurements, no initial information beyond the nonlinear interaction between the pulses is required. We refer to this method of pulse measurement as Double-Blind Polarization Gating FROG[1]. We have demonstrated this single-shot method for measuring two unknown pulses using one device. We have demonstrated this technique on three separate pulse pairs. We measured two Gaussian pulses with different amounts of chirp. We measured two double pulses with different pulse separations, and we have measured two extremely different pulses, where one was simple Gaussian and the other was a pulse train produced by an etalon. This method has no non-trivial ambiguities, has a reliable algorithm, and is automatically phase matched for all spectral bandwidths. In simulations[2], this method has proven to be extremely robust, measuring very complicated pulses with TBPs of ˜100 even in the presence of noise. In addition to pulse measurement, we have demonstrated the processes of Optical Parametric Amplification (OPA) applicability to imaging of complex objects[3]. We have done this where the Fourier transform plane is used during the interaction. We have amplified and wavelength converted a complex image. We report imaging of spatial features from 1.1 to 10.1 line pairs/millimeter (lp/mm) in the vertical dimension and from 2.0 to 16.0 lp/mm in the horizontal dimension. We observe a gain of ˜100, and, although our images were averaged over many shots, we used a

  10. GHz bandwidth noise eater hybrid optical amplifier: design guidelines.

    Science.gov (United States)

    Danion, Gwennaël; Bondu, François; Loas, Goulc'hen; Alouini, Mehdi

    2014-07-15

    This Letter describes the design of an optical amplifier system optimized to reduce the relative intensity noise (RIN) of the input signal, and discloses its performance in terms of intensity noise reduction and bandwidth, without phase noise degradation. This polarization-maintaining amplifier is composed of an erbium-doped fiber amplifier (EDFA) cascaded with a semiconductor optical amplifier (SOA). The EDFA is sized to feed the SOA with a constant power corresponding to the optimal saturation level for noise reduction, through coherent population oscillations. When properly optimized, such an amplifier provides, simultaneously, 17 dB optical gain, 5.4 dB noise factor, and 20 dB reduction of the input-RIN across a 3 GHz bandwidth, without any electronics feedback loop.

  11. A Carbon Nanotube-based NEMS Parametric Amplifier for Enhanced Radio Wave Detection and Electronic Signal Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, B J; Sussman, A; Zettl, A [Physics Department, University of California, Berkeley, CA 94720 (United States); Mickelson, W, E-mail: azettl@berkeley.edu [Center of Integrated Nanomechanical Systems, University of California, Berkeley, CA 94720 (United States)

    2011-07-20

    We propose a scheme for a parametric amplifier based on a single suspended carbon nanotube field-emitter. This novel electromechanical nanotube device acts as a phase-sensitive, variable-gain, band-pass-filtering amplifier for electronic signal processing and, at the same time, can operate as a variable-sensitivity, tuneable detector and transducer of radio frequency electromagnetic waves. The amplifier can exhibit infinite gain at pumping voltages much less than 10 Volts. Additionally, the amplifier's low overhead power consumption (10-1000 nW) make it exceptionally attractive for ultra-low-power applications.

  12. Analysis of optical amplifier noise in coherent optical communication systems with optical image rejection receivers

    DEFF Research Database (Denmark)

    Jørgensen, Bo Foged; Mikkelsen, Benny; Mahon, Cathal J.

    1992-01-01

    performance. Two types of optical image rejection receivers are investigated: a novel, all-optical configuration and the conventional, microwave-based configuration. The analysis shows that local oscillator-spontaneous emission beat noise (LO-SP), signal-spontaneous emission beat noise (S-SP), and spontaneous......A detailed theoretical analysis of optical amplifier noise in coherent optical communication systems with heterodyne receivers is presented. The analysis quantifies in particular how optical image rejection receiver configurations reduce the influence of optical amplifier noise on system......-spontaneous beat noise (SP-SP) can all be reduced by 3 dB, thereby doubling the dynamic range of the optical amplifier. A 2.5-dB improvement in dynamic range has been demonstrated experimentally with the all-optical image rejection configuration. The implications of the increased dynamic range thus obtained...

  13. Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Hvam, Jørn Märcher

    2007-01-01

    We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...

  14. Quantum cloning with an optical fiber amplifier

    CERN Document Server

    Fasel, S; Ribordy, G; Scarani, V; Zbinden, H; Fasel, Sylvain; Gisin, Nicolas; Ribordy, Gregoire; Scarani, Valerio; Zbinden, Hugo

    2002-01-01

    It has been shown theoretically that a light amplifier working on the physical principle of stimulated emission should achieve optimal quantum cloning of the polarization state of light. We demonstrate close-to-optimal universal quantum cloning of polarization in a standard fiber amplifier for telecom wavelengths. For cloning $1\\to 2$ we find a fidelity of 0.82, the optimal value being ${5/6}=0.83$.

  15. Use of semiconductor optical amplifiers in signal processing applications

    OpenAIRE

    Manning, Robert J.; Webb, Rod P.; Dailey, James M.; Maxwell, Graeme D.; Poustie, Alistair J.; Lardenois, Sébastien; Cotter, David

    2010-01-01

    We describe a 42.6 Gbit/s all-optical pattern recognition system which uses semiconductor optical amplifiers (SOAs). A circuit with three SOA-based logic gates is used to identify the presence of specific port numbers in an optical packet header.

  16. Amplifying waveguide optical isolator with an integrated electromagnet

    OpenAIRE

    2007-01-01

    We have demonstrated an amplifying waveguide optical isolator with an integrated electromagnet. This provides a solution to the generally poor magnetic remanence of this type of isolator. The proof of principle is presented and optimization routes are discussed.

  17. Tunable optical frequency division using a phase-locked optical parametric oscillator.

    Science.gov (United States)

    Lee, D; Wong, N C

    1992-01-01

    We report the experimental demonstration of a novel optical parametric oscillator approach to tunable optical frequency division. The beat frequency of the signal and idler subharmonic outputs of a tunable cw KTP optical parametric oscillator was phase locked to a microwave reference frequency source, which thus permitted precise determination of the output frequencies at approximately half the input pump frequency.

  18. Spiral intensity patterns in the internally pumped optical parametric oscillator

    DEFF Research Database (Denmark)

    Lodahl, Peter; Bache, Morten; Saffman, Mark

    2001-01-01

    We describe a nonlinear optical system that supports spiral pattern solutions in the field intensity. This new spatial structure is found to bifurcate above a secondary instability in the internally pumped optical parametric oscillator. The analytical predictions of threshold and spatial scale...

  19. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  20. Implementation of a nondeterministic optical noiseless amplifier.

    Science.gov (United States)

    Ferreyrol, Franck; Barbieri, Marco; Blandino, Rémi; Fossier, Simon; Tualle-Brouri, Rosa; Grangier, Philippe

    2010-03-26

    Quantum mechanics imposes that any amplifier that works independently on the phase of the input signal has to introduce some excess noise. The impossibility of such a noiseless amplifier is rooted in the unitarity and linearity of quantum evolution. A possible way to circumvent this limitation is to interrupt such evolution via a measurement, providing a random outcome able to herald a successful-and noiseless-amplification event. Here we show a successful realization of such an approach; we perform a full characterization of an amplified coherent state using quantum homodyne tomography, and observe a strong heralded amplification, with about a 6 dB gain and a noise level significantly smaller than the minimal allowed for any ordinary phase-independent device.

  1. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier*

    Institute of Scientific and Technical Information of China (English)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influenced by the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled.

  2. A Broadband Quantum-Limited Josephson Parametric Amplifier, Part I: Exp.

    Science.gov (United States)

    White, T. C.; Barends, R.; Bochmann, J.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Megrant, A.; Mutus, J. Y.; Neill, C.; O'Malley, P.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, J. M.

    2014-03-01

    While Josephson parametric amplifiers (JPA) have achieved noise performance near the quantum limit, their bandwidth and saturation power is constrained by the resonant design. For a 50 ohm environment the relationship between junction critical current, frequency, and coupled Q means that bandwidth and saturation vary inversely. We present a device in which the coupled Q was lowered by engineering the environment impedance, increasing both bandwidth and saturation power without changing the resonator circuit parameters. The 50 ohm environment was transformed to 15 ohms at the resonator using a hybrid co-planar waveguide/micro-strip transmission line to create a broadband impedance matching network. This device exhibits regions with near quantum-limited bandwidth exceeding 700 MHz and saturation powers as high as -105 dBm.

  3. Multi-mode of Four and Six Wave Parametric Amplified Process

    Science.gov (United States)

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-01

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  4. Dual-pump wave mixing in semiconductor optical amplifiers: performance enhancement with long amplifiers

    Science.gov (United States)

    Tomkos, Ioannis; Zacharopoulos, Ioannis; Syvridis, Dimitrios

    1999-05-01

    We demonstrate experimentally the improvement of the performance of the dual pump wave mixing scheme in semiconductor optical amplifiers, using long amplifier chips and high optical pump powers. The optical amplifiers used in the experiment had a ridge waveguide structure with bulk active layer and antireflective-coated angled facets. Measurements of the conversion efficiency and SBR as a function of wavelength shift are presented for a wavelength shift of more than 40 nm. The above measurements are carried out for three amplifier lengths (500 micrometers , 1000 micrometers , and 1500 micrometers ) and for different levels of the optical power of the two pumps. It will be shown that an increase in the amplifier length from 500 micrometers to 1500 micrometers results to an increase of more than 25 dB for the efficiency and more than 20 dB for the SBR. This improvement combined with the inherent advantages of the dual pump scheme (almost constant SBR and high efficiency for large wavelength shifts) results in a highly performing wavelength converter/phase conjugator, suitable for many applications.

  5. High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator.

    Science.gov (United States)

    Kienle, Florian; Teh, Peh Siong; Lin, Dejiao; Alam, Shaif-Ul; Price, Jonathan H V; Hanna, D C; Richardson, David J; Shepherd, David P

    2012-03-26

    We report on a picosecond, green-pumped, lithium triborate optical parametric oscillator with record-high output power. It was synchronously pumped by a frequency-doubled (530 nm), pulse-compressed (4.4 ps), high-repetition-rate (230 MHz), fiber-amplified gain-switched laser diode. For a pump power of 17 W, a maximum signal and idler power of 3.7 W and 1.8 W was obtained from the optical parametric oscillator. A signal pulse duration of ~3.2 ps was measured and wide tunability from 651 nm to 1040 nm for the signal and from 1081 nm to 2851 nm for the idler was achieved.

  6. Josephson Traveling-Wave Parametric Amplifier with Three-Wave Mixing

    Science.gov (United States)

    Zorin, A. B.

    2016-09-01

    We develop a concept of the traveling-wave Josephson parametric amplifier exploiting quadratic nonlinearity of a serial array of one-junction superconducting quantum interference devices (SQUIDs) embedded in a superconducting transmission line. The external magnetic flux applied to the SQUIDs makes it possible to efficiently control the shape of their current-phase relation and, hence, the balance between quadratic and cubic (Kerr-like) nonlinearities. This property allows us to operate in the favorable three-wave-mixing mode with a minimal phase mismatch, an exponential dependence of the power gain on number of sections N , a large bandwidth, a high dynamic range, and substantially separated signal (ωs ) and pump (ωp) frequencies obeying the relation ωs+ωi=ωp, where ωi is the idler frequency. An estimation of the amplifier characteristics with typical experimental parameters, a pump frequency of 12 GHz, and N =300 yields a flat gain of 20 dB in the bandwidth of 5.6 GHz.

  7. Broadening and Amplification of an Infrared Femtosecond Pulse for Optical Parametric Chirped-Pulse Amplification

    Institute of Scientific and Technical Information of China (English)

    WANG He-Lin; YANG Ai-Jun; LENG Yu-Xin

    2011-01-01

    A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA).The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically.By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity,the pre-stretching pulse from an (O)ffner stretcher is further broadened to above 200ps,which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system.The bandwidth of the amplified pulse is 1.5 nm,and an output energy of 2mJ is achieved at a repetition rate of 10 Hz.Optical parametric chirped pulse amplification (OPCPA)[1-4] has attracted a great deal of attention as the most promising technique for generating ultrashort ultrahigh-peak-power laser pulses because of its very broad gain bandwidth,negligible thermal load on the nonlinear crystal,and extremely high singlepass gain as compared to amplifiers based on laser gain media.For efficient amplification and high fidelity of dispersion compensation in OPCPA,a femtosecond seed pulse is first stretched to several tens of picoseconds with a bulk grating stretcher or a fiber stretcher.%A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA). The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically. By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity, the pre-stretching pulse from an (O)finer stretcher is further broadened to above 200 ps, which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system. The bandwidth of the amplified pulse is 1.5 nm, and an

  8. Recent advances in semiconductor optical amplifiers and their applications

    DEFF Research Database (Denmark)

    Stubkjær, Kristian; Mikkelsen, Benny; Djurhuus, Torsten;

    1992-01-01

    The authors review recent advances in SOAs (semiconductor optical amplifiers) and some of their applications. SOAs are under rapid development to achieve polarization independent gain, low facet reflectivities, good coupling to optical fibers, and high saturation power. The package SOA can be made...

  9. Energy-Level of Some Singular Harmonic Oscillators and Parametric Amplifiers with Singular Potential Derived via IEO Method

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; TANG Xu-Bing

    2007-01-01

    We employ the invariant eigen-operator (IEO) method to find the invariant eigen-operators of N-body singular oscillators' Hamiltonians and then derive their energy gaps. The Hamiltonians of parametric amplifiers with singular potential are also discussed in this way.

  10. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    2000-01-01

    Semiconductor optical amplifiers are useful building blocks for all-optical gates as wavelength converters and OTDM demultiplexers. The paper reviews the progress from simple gates using cross-gain modulation and four-wave mixing to the integrated interferometric gates using cross-phase modulation....... These gates are very efficient for high-speed signal processing and open up interesting new areas, such as all-optical regeneration and high-speed all-optical logic functions...

  11. Spectral Broadening in the 1.3 μm Region Using a 1.8-m-Long Photonic Crystal Fiber by Femtosecond Pulses from an Optical Parametric Amplifier%飞秒脉冲泵浦光子晶体光纤产生1.3μm区域的光谱展宽

    Institute of Scientific and Technical Information of China (English)

    于永芹; 阮双琛; 杜晨林; 姚建铨

    2005-01-01

    Supercontinuum with a spectral bandwidth of 700 nm (1.09μm ~ 1.79μm) was achieved in a 1.8-m-long photonic crystal fiber with an average core radius of 2.0 μm pumped by optical femtosecond pulses at the wavelength of 1. 2759 μm, with the average power of 30 mW, the duration of 250 fs and the repetition rate of 250 kHz from an optical parametric amplifier. It was interpreted that the spectral broadening was due to the fission of higher-order solitons and four-wave mixing. The concave profile at the wavelength of about 1.4 μm was resulted from the OH absorption. The broadened spectra were applicable to a multi channel optical source with ultra-short pulsewidth for WDM communication and photonic network systems.%采用OPA产生的中心波长为1.2759μm、平均输出功率为30mW、重复频率为250kHz、脉冲宽度为250 fs的光脉冲作为泵浦源,研究了PCF输出光谱随泵浦焦点与光纤端面的相对移动的光谱演变.在纤芯直径为2.0μm、长度为1.8m的光子晶体光纤中获得了近700nm的光谱展宽,展宽的光谱从1.09μm到1.79 μm,分析认为是高阶孤子的分裂和四波混频导致的光谱展宽,而在1.4μm左右的光谱凹陷是由于光纤中OH离子的吸收造成的.PCF输出的光谱可应用在WDM通信和光互连网的超短脉冲多通道光源中.

  12. High-Energy Optical Parametric Waveform Synthesizer

    OpenAIRE

    Muecke, Oliver D.; Cirmi, G.; Fang, S.; Rossi, G. M.; Chia, Shih-Hsuan; Kärtner, F. X.; Manzoni, C.; Farinello, P.; Cerullo, and G.

    2014-01-01

    We discuss the ongoing development of a phase-stable, multi-mJ 3-channel parametric waveform synthesizer generating a 2-octave-wide spectrum (0.52-2.4μm). After two amplification stages, the combined >125-μJ output supports 1.9-fs waveforms. First preliminary FROG-characterization results of the second-stage outputs demonstrate the feasibility to recompress all three channels simultaneously close to the Fourier limit. Energy scaling to ~2 mJ is achieved after three amplification stages. The f...

  13. Short-pulse propagation in fiber optical parametric amplifiers

    OpenAIRE

    Cristofori, Valentina; Rottwitt, Karsten; Peucheret, Christophe

    2013-01-01

    Fiberoptiske parametriske forstærkere (FPF) er attraktive fordi de kan levere stor forstærkning over et bredt spektrum, afhængigt kun af tilstedeværelsen af en passende pumpelaser. Derudover er FPF velegnede til fuldoptisk signal processering, og kan operere med en potentielt lav støjgrænse, sammenlignet med erbium-doterede og Raman fiberforstærkere, når de arbejder i en fase-følsom konfiguration. En karakterisering af signalforvrængningsmekanismer i FPF er relevant for at undersøge anvendeli...

  14. Fibre Optical Parametric Amplification in Defect Bragg Fibres with Zero Dispersion Slow Light Effect

    Institute of Scientific and Technical Information of China (English)

    XIAO Li; ZHANG Wei; HUANG Yi-Dong; PENG Jiang-De; ZHAO Hong; YANG Ke-Wu

    2008-01-01

    Nonfinearity enhancement by slow light effect and strong light confinement in defect Bragg fibres is demonstrated and analysed in applications of fibre optical parametric amplifiers. Broadband low group velocity and zero dispersion as well as the strong light confinement by band gap enhances the nonlinear coefficient up to more than one order than the conventional high nonlinear fibres.Moreover,the zero dispersion wavelength of coupled core mode can be designed arbitrarily,under which the phase-matching bandwidth of the nonlinear process can be extended.

  15. High efficiency coherent beam combining of semiconductor optical amplifiers.

    Science.gov (United States)

    Creedon, Kevin J; Redmond, Shawn M; Smith, Gary M; Missaggia, Leo J; Connors, Michael K; Kansky, Jan E; Fan, Tso Yee; Turner, George W; Sanchez-Rubio, Antonio

    2012-12-01

    We demonstrate 40 W coherently combined output power in a single diffraction-limited beam from a one-dimensional 47-element array of angled-facet slab-coupled optical waveguide amplifiers at 1064 nm. The output from each emitter was collimated and overlapped onto a diffractive optical element combiner using a common transform lens. Phase locking was achieved via active feedback on each amplifier's drive current to maximize the power in the combined beam. The combining efficiency at all current levels was nearly constant at 87%.

  16. Static gain saturation in quantum dot semiconductor optical amplifiers.

    Science.gov (United States)

    Meuer, Christian; Kim, Jungho; Laemmlin, Matthias; Liebich, Sven; Capua, Amir; Eisenstein, Gadi; Kovsh, Alexey R; Mikhrin, Sergey S; Krestnikov, Igor L; Bimberg, Dieter

    2008-05-26

    Measurements of saturated amplified spontaneous emission-spectra of quantum dot semiconductor optical amplifiers demonstrate efficient replenishment of the quantum-dot ground state population from excited states. This saturation behavior is perfectly modeled by a rate equation model. We examined experimentally the dependence of saturation on the drive current and the saturating optical pump power as well as on the pump wavelength. A coherent noise spectral hole is observed with which we assess dynamical properties and propose optimization of the SOA operating parameters for high speed applications.

  17. Gravitational-wave detection by dispersion force modulation in nanoscale parametric amplifiers

    Science.gov (United States)

    Fabrizio, Pinto

    2016-05-01

    Two infinite parallel plane slabs separated by a gap alter the zero-point-energy of the matter-electromagnetic field system. Generally speaking, the corresponding interaction depends on the reflection properties of the boundaries, and therefore on the dielectric functions of both the slab and gap materials, on the gap width, and on the absolute temperature of the system. Importantly, it is known experimentally that dispersion forces can be modulated in time. This can be achieved by mechanically varying the gap width so as to introduce parametric oscillations. Much more fundamentally, however, dispersion forces can be altered by acting on the dielectric functions involved as is the case in semiconductors. In the optical analogy, a gravitational wave introduces an additional time dependence of the effective gap dielectric function. These elements, already confirmed by direct experimentation or predicted from the Lifshitz theory, support the design of a novel approach to ground-based nanoscale gravitational wave detection based on parametric amplification driven by dispersion force modulation.

  18. Dressed Gain from the Parametrically Amplified Four-Wave Mixing Process in an Atomic Vapor

    Science.gov (United States)

    Zhang, Zhaoyang; Wen, Feng; Che, Junling; Zhang, Dan; Li, Changbiao; Zhang, Yanpeng; Xiao, Min

    2015-01-01

    With a forward cone emitting from the strong pump laser in a thermal rubidium atomic vapor, we investigate the non-degenerate parametrically amplified four-wave mixing (PA-FWM) process with dressing effects in a three-level “double-Λ” configuration both theoretically and experimentally. By seeding a weak probe field into the Stokes or anti-Stokes channel of the FWM, the gain processes are generated in the bright twin beams which are called conjugate and probe beams, respectively. However, the strong dressing effect of the pump beam will dramatically affect the gain factors both in the probe and conjugate channels, and can inevitably impose an influence on the quantum effects such as entangled degree and the quantum noise reduction between the two channels. We systematically investigate the intensity evolution of the dressed gain processes by manipulating the atomic density, the Rabi frequency and the frequency detuning. Such dressing effects are also visually evidenced by the observation of Autler-Townes splitting of the gain peaks. The investigation can contribute to the development of quantum information processing and quantum communications. PMID:26463588

  19. Effects on Semiconductor Optical Amplifier Gain Quality for Applications in Advanced All-optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Riyam A. Johni

    2014-04-01

    Full Text Available Semiconductor optical amplifiers are strong candidates to replace traditional erbium-doped-fibre-amplifiers in future all-optical networks by virtue of their proven functional capabilities, in addition to gain. They are also smaller, cheaper and easier to integrate than fibre amplifiers. This study summarizes the gain quality of the semiconductor optical amplifier with varying effects such as input power, bias current and wavelength and data rate. The results reported herein show high quality gain, coupled with accept ably low noise figure values.

  20. An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing

    Energy Technology Data Exchange (ETDEWEB)

    Stefszky, Michael; Buchler, Ben C; Symul, Thomas; Lam, Ping Koy [Quantum Optics Group, Department of Quantum Science, The Australian National University, ACT 0200 (Australia); Mow-Lowry, Conor M; McKenzie, Kirk; Chua, Sheon; McClelland, David E, E-mail: michael.stefszky@anu.edu.au [Centre for Gravitational Physics, Department of Quantum Science, The Australian National University, ACT 0200 (Australia)

    2011-01-14

    A squeezed light source requires properties such as high squeezing amplitude, high bandwidth and stability over time, ideally using as few resources, such as laser power, as possible. We compare three nonlinear materials, two of which have not been well characterized for squeezed state production, and also investigate the viability of doubly-resonant optical parametric oscillator cavities in achieving these requirements. A model is produced that provides a new way of looking at the construction of an optical parametric oscillator/optical parametric amplifier setup where second harmonic power is treated as a limited resource. The well-characterized periodically poled potassium titanyl phosphate (PPKTP) is compared in an essentially identical setup to two relatively new materials, periodically poled stoichiometric lithium tantalate (PPSLT) and 1.7% magnesium oxide doped periodically poled stoichiometric lithium niobate (PPSLN). Although from the literature PPSLT and PPSLN present advantages such as a higher damage threshold and a higher nonlinearity, respectively, PPKTP was still found to have the most desirable properties. With PPKTP, 5.8 dB of squeezing below the shot noise limit was achieved. With PPSLT, 5.0 dB of squeezing was observed but the power required to see this squeezing was much higher than expected. A technical problem with the PPSLN limited the observed squeezing to around 1.0 dB. This problem is discussed.

  1. Raman-Suppressing Coupling for Optical Parametric Oscillator

    Science.gov (United States)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico

    2007-01-01

    A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.

  2. Ultrafast dynamics in semiconductor optical amplifiers and all-optical processing: Bulk versus quantum dot devices

    DEFF Research Database (Denmark)

    Mørk, Jesper; Berg, Tommy Winther; Magnúsdóttir, Ingibjörg

    2003-01-01

    We discuss the dynamical properties of semiconductor optical amplifiers and the importance for all-optical signal processing. In particular, the dynamics of quantum dot amplifiers is considered and it is suggested that these may be operated at very high bit-rates without significant patterning...... effects, as opposed to quantum well or bulk devices....

  3. Widely tunable picosecond optical parametric generation and amplification in BiB(3)O(6).

    Science.gov (United States)

    Sun, Zhipei; Ghotbi, Masood; Zadeh, Majid E

    2007-04-02

    Efficient generation of widely tunable picosecond pulses from the visible to near-infrared is demonstrated by optical parametric generation and amplification in BiB(3)O(6). Pumped by the second harmonic of an amplified mode-locked Nd:YAG laser at 532 nm, also generated in BiB(3)O(6), a signal and idler tuning range of 740-1893 nm has been achieved with angle tuning under type I (o?e+e) phase-matching in the optical yz-plane. With 40-ps pump pulses of 420-muJ energy, single-pass signal pulse energies of up to 48.6 muJ have been obtained at total OPA pump to signal and idler conversion efficiency as high as 30%. Significant temperature tuning under type I (o?e+e) noncritical interaction along the optical z-axis is also demonstrated, extending the signal tuning range from 740 nm down to 676 nm and idler tuning range from 1893 nm up to 2497 nm. Using second harmonic generation of the amplified signal pulses, also in BiB(3)O(6),wavelength extension to 370-500 nm has been achieved at 24% conversion efficiency, providing 10-muJ pulses across the tuning range. Optical parametric generation and amplification in BiB(3)O(6) under strong two-photon absorption pumped by 210-muJ pulses at 355 nm is also reported, providing amplified signal pulse energies of 14.2 muJ at OPA conversion efficiency as high as 21% and a spectral coverage across 450-1674 nm.

  4. Nonlinear carrier dynamics in a quantum dash optical amplifier

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Ek, Sara; Yvind, Kresten

    2012-01-01

    Results of experimental pump-probe spectroscopy of a quantum dash optical amplifier biased at transparency are presented. Using strong pump pulses we observe a competition between free carrier absorption and two-photon induced stimulated emission that can have drastic effects on the transmission ...

  5. Electrical versus optical pumping of quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Bischoff, Svend; Mørk, Jesper

    2001-01-01

    The influence of the pumping mechanism for the dynamical properties of quantum dot amplifiers is investigated for 10, 40 and 160 GHz signals. A fast response is predicted in the case of optical pumping in the wetting layer (WL). The combination of fast relaxation and capture times and the presence...

  6. 2R Regeneration in Concatenated Semiconductor Optical Amplifiers and Electroabsorbers

    DEFF Research Database (Denmark)

    Christiansen, Lotte Jin; Xu, Lin; Yvind, Kresten;

    2004-01-01

    We present a novel 2R regenerator with a large level separation and steep step a sharp, adjustable threshold based on concatenated semiconductor optical amplifiers and electroabsorbers. We demonstrate demonstrate improvements in both extinction-ratio and BER sensitivity atfor a 10 Gb/s NRZ signal....

  7. Jumps and bi-stability in the phase-gain characteristics of a nonlinear parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; van de Looij, Ruud; Thomsen, Jon Juel

    2014-01-01

    This work experimentally investigates the impact of nonlinearity on macromechanical parametric amplification. For a strong cubic stiffness nonlinearity we observe jumps in gain (ratio of steady-state vibration amplitude of the externally and parametrically excited system, to vibration amplitude...

  8. Conjugated amplifying polymers for optical sensing applications.

    Science.gov (United States)

    Rochat, Sébastien; Swager, Timothy M

    2013-06-12

    Thanks to their unique optical and electrochemical properties, conjugated polymers have attracted considerable attention over the last two decades and resulted in numerous technological innovations. In particular, their implementation in sensing schemes and devices was widely investigated and produced a multitude of sensory systems and transduction mechanisms. Conjugated polymers possess numerous attractive features that make them particularly suitable for a broad variety of sensing tasks. They display sensory signal amplification (compared to their small-molecule counterparts) and their structures can easily be tailored to adjust solubility, absorption/emission wavelengths, energy offsets for excited state electron transfer, and/or for use in solution or in the solid state. This versatility has made conjugated polymers a fluorescence sensory platform of choice in the recent years. In this review, we highlight a variety of conjugated polymer-based sensory mechanisms together with selected examples from the recent literature.

  9. Sub 100-fs, 5.2-$\\mu$m ZGP Parametric Amplifier Driven by a ps Ho:YAG Chirped Pulse Amplifier and its application to high harmonic generation

    CERN Document Server

    Kanai, Tsuneto; Kangaparambil, Sarayoo Sasidharan; Hoogland, Heinar; Holzwarth, Ronald; Pugžlys, Audrius; Baltuška, Andrius

    2016-01-01

    We report a 1 kHz repetition-rate mid-IR (MIR) optical parametric amplifier (OPA) system operating at a central wavelength of 5.2 $\\mu$m with the tail-to-tail spectrum extending over 1.5 $\\mu$m and delivering 40 $\\mu$J pulses that are compressed to 99 fs (5.6 optical cycles). Also we develop a novel pulse compression scheme for further pulse compression and wavelength tunability. As the first application of this laser system, we generated high harmonics in bulk ZnSe above the bandgap, dense exciton generation after 10-photon absorption, high order sum- and difference-frequency generation, ultrafast transition in the conduction band, which reflects the structure of conduction bands.

  10. Graphene-based side-polished optical fiber amplifier.

    Science.gov (United States)

    Karimi, Mohammad; Ahmadi, Vahid; Ghezelsefloo, Masoud

    2016-12-20

    We demonstrate a novel design for optical fiber amplifiers, utilizing side-polished fibers with a single-layer graphene overlay as the active medium and carrier injection in the graphene layer to provide the required inversion. We study the effects of an electrically induced graphene p-i-n heterojunction in the forward bias regime on optical modes of side-polished fibers and show that gain values of 0.51, 1.81, and 1.79 dB/cm for wavelengths 1064, 1330, and 1550 nm can be obtained for single-mode side-polished fibers. Our results show that in multi-mode side-polished fibers, higher order modes experience higher values of gain, and gain can be increased by increasing polished depth. The proposed system is a tunable wideband optical amplifier that can operate for wavelengths larger than 1000 nm.

  11. Nonlinear carrier dynamics in a quantum dash optical amplifier

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Ek, Sara; Yvind, Kresten;

    2012-01-01

    Results of experimental pump-probe spectroscopy of a quantum dash optical amplifier biased at transparency are presented. Using strong pump pulses we observe a competition between free carrier absorption and two-photon induced stimulated emission that can have drastic effects on the transmission...... dynamics. Thus, both enhancement as well as suppression of the transmission can be observed even when the amplifier is biased at transparency. A simple theoretical model taking into account two-photon absorption and free carrier absorption is presented that shows good agreement with the measurements....

  12. Efficient 1 kHz femtosecond optical parametric amplification in BiB(3)O(6) pumped at 800 nm.

    Science.gov (United States)

    Ghotbi, Masood; Ebrahim-Zadeh, Majid; Petrov, Valentin; Tzankov, Pancho; Noack, Frank

    2006-10-30

    We demonstrate efficient operation of a tunable femtosecond optical parametric amplifier based on BiB(3)O(6) pumped at 800 nm by a 1 kHz Ti:sapphire regenerative amplifier. The idler wavelength coverage extends to beyond 3 mum and the pulse duration at this wavelength is of the order of 110 fs. This new nonlinear borate crystal offers exceptionally high nonlinearity, making it a very promising candidate for power scaling of such frequency converters in the near-IR.

  13. An on-chip diamond optical parametric oscillator

    CERN Document Server

    Hausmann, B J M; Venkataraman, V; Deotare, P; Loncar, M

    2013-01-01

    Efficient, on-chip optical nonlinear processes are of great interest for the development of compact, robust, low-power consuming systems for applications in spectroscopy, metrology, sensing and classical and quantum optical information processing. Diamond holds promise for these applications, owing to its exceptional properties. However, although significant progress has been made in the development of an integrated diamond photonics platform, optical nonlinearities in diamond have not been explored much apart from Raman processes in bulk samples. Here, we demonstrate optical parametric oscillations (OPO) via four wave mixing (FWM) in single crystal diamond (SCD) optical networks on-chip consisting of waveguide-coupled microring resonators. Threshold powers as low as 20mW are enabled by ultra-high quality factor (1*10^6) diamond ring resonators operating at telecom wavelengths, and up to 20 new wavelengths are generated from a single-frequency pump laser. We also report the inferred nonlinear refractive index...

  14. Parametric and scattering characterization of PDMS membranes for optical applications

    Science.gov (United States)

    Santiago-Alvarado, A.; Vazquez Montiel, S.; Munoz-Lopez, J.; Castro-Ramos, J.; Delgado Atencio, J. A.

    2009-08-01

    Today elastic membranes are being used more frequent as optical surfaces in the science or in the industry. This due to the advantages that they display in their handling and in their cost of production. These characteristics make them ideals to apply them in micro-optical components and Tunable Focus Liquid Filled Length Lens (TFLFLL). In order to know if a membrane of PDMS (PDMS Sylgard 184) is feasible for a specific application within the field of the optics, it is necessary to know its mechanical, optical and chemical properties. In this work the parametric membrane characterization is reported for an optical application. An important factor in the performance of these membranes is related with their scattering factor that is produced due to the roughness and impurities (micro-bubbles or dust particles). These membranes are used as refractive surface in TFLFLL. Experimental results of the characterization process and device performance are presented.

  15. Singly-resonant optical parametric oscillator based on KTA crystal

    Indian Academy of Sciences (India)

    S Das; S Gangopadhyay; C Ghosh; G C Bhar

    2005-01-01

    Tunable mid-infra-red radiation by singly resonant optical parametric oscillation based on KTA crystal pumped by multi-axial Gaussian shape beam from Q-switched Nd:YAG laser has been demonstrated. Threshold energy of oscillation at different idler wavelengths for different cavity length has been demonstrated. Single pass conversion efficiency of incident pump energy to infra-red wavelength has also been measured.

  16. Effect of idler absorption in pulsed optical parametric oscillators.

    Science.gov (United States)

    Rustad, Gunnar; Arisholm, Gunnar; Farsund, Øystein

    2011-01-31

    Absorption at the idler wavelength in an optical parametric oscillator (OPO) is often considered detrimental. We show through simulations that pulsed OPOs with significant idler absorption can perform better than OPOs with low idler absorption both in terms of conversion efficiency and beam quality. The main reason for this is reduced back conversion. We also show how the beam quality depends on the beam width and pump pulse length, and present scaling relations to use the example simulations for other pulsed nanosecond OPOs.

  17. Testing methodologies and systems for semiconductor optical amplifiers

    Science.gov (United States)

    Wieckowski, Michael

    Semiconductor optical amplifiers (SOA's) are gaining increased prominence in both optical communication systems and high-speed optical processing systems, due primarily to their unique nonlinear characteristics. This in turn, has raised questions regarding their lifetime performance reliability and has generated a demand for effective testing techniques. This is especially critical for industries utilizing SOA's as components for system-in-package products. It is important to note that very little research to date has been conducted in this area, even though production volume and market demand has continued to increase. In this thesis, the reliability of dilute-mode InP semiconductor optical amplifiers is studied experimentally and theoretically. The aging characteristics of the production level devices are demonstrated and the necessary techniques to accurately characterize them are presented. In addition, this work proposes a new methodology for characterizing the optical performance of these devices using measurements in the electrical domain. It is shown that optical performance degradation, specifically with respect to gain, can be directly qualified through measurements of electrical subthreshold differential resistance. This metric exhibits a linear proportionality to the defect concentration in the active region, and as such, can be used for prescreening devices before employing traditional optical testing methods. A complete theoretical analysis is developed in this work to explain this relationship based upon the device's current-voltage curve and its associated leakage and recombination currents. These results are then extended to realize new techniques for testing semiconductor optical amplifiers and other similarly structured devices. These techniques can be employed after fabrication and during packaged operation through the use of a proposed stand-alone testing system, or using a proposed integrated CMOS self-testing circuit. Both methods are capable

  18. Quantum Dot Semiconductor Optical Amplifiers - Physics and Applications

    DEFF Research Database (Denmark)

    Berg, Tommy Winther

    2004-01-01

    This thesis describes the physics and applications of quantum dot semiconductor optical amplifiers based on numerical simulations. These devices possess a number of unique properties compared with other types of semiconductor amplifiers, which should allow enhanced performance of semiconductor...... devices in communication systems in the future. The basic properties of quantum dot devices are investigated, especially regarding the potential of realizing amplification and signal processing without introducing pattern dependence. Also the gain recovery of a single short pulse is modeled...... and an explanation for the fast gain recovery observed experimentally is given. The properties of quantum dot amplifiers operating in the linear regime are investigated. The devices are predicted to show high device gain, high saturated output power, and low noise figure, resulting in a performance, that in some...

  19. Optical-fiber laser amplifier for ultrahigh-speed communications

    Energy Technology Data Exchange (ETDEWEB)

    Gosnell, T.; Xie, Ping; Cockroft, N.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to develop a praseodymium-based 1.31-{mu}m fiber amplifier that can be optically pumped with off-the-shelf semiconductor diode lasers. Development of optical amplifiers for the 1.31-{mu}m communications window is motivated by the push towards ``all-optical`` networks that will support multigigabits per second communication rates. Our approach exploited radiationless energy transfer from optically pumped Yb{sup 3+} ions co-doped with Pr{sup 3+} into a fluorozirconate glass (ZBLAN). We obtained a gain of approximately 10 on a 1.31-{mu}m amplifier, a value too low for practical applications. In two spin- off applications, all-solid-state operation at all four output wavelengths was achieved in the development of a four-color visible laser, and laser cooling of a solid material was demonstrated for the first time in the development of a fluorescent cryogenic refrigerator.

  20. Optical detection of terahertz using nonlinear parametric upconversion.

    Science.gov (United States)

    Khan, M Jalal; Chen, Jerry C; Kaushik, Sumanth

    2008-12-01

    We extend our work to perform sensitive, room-temperature optical detection of terahertz (THz) by using nonlinear parametric upconversion. THz radiation at 700 GHz is mixed with pump light at 1,550 nm in a bulk GaAs crystal to generate an idler wave at 1,555.6 nm. The idler is separated, coupled into optical fiber, and detected using a gated Geiger-mode avalanche photodiode. The resulting THz detector has a power sensitivity of 4.5 pW/Hz and a timing resolution of 1 ns.

  1. Optically amplifying planar glass waveguides: Laser on a chip

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas

    with UV-light and that permanent Bragg-gratings can be induced. Planar waveguide lasers with integrated Bragg-gratings are manufactured and characterised. It is shown that linewidths below 125 kHz and output powers around 0.5 mW can be obtained, and that the manufactured lasers are resistant to mechanical......The objective of this work was to devlop optically amplifying planar wavguides, using erbium-doped germano-silicate glass films deposited by PECVD (Plasma Enhanced Chemical Vapour Deposition). The waveguides should exhibit enough gain to be useful as optical amplifiers in integrated planar...... lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index of the films can be controlled by germanium co...

  2. Optically amplifying planar glass waveguides: Laser on a chip

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas

    The objective of this work was to devlop optically amplifying planar wavguides, using erbium-doped germano-silicate glass films deposited by PECVD (Plasma Enhanced Chemical Vapour Deposition). The waveguides should exhibit enough gain to be useful as optical amplifiers in integrated planar...... fluoresence level. In addition the first measurement of the diffusion coefficient of erbium in silica is presented and it is shown that eribum rich precipitaties are formed in areas of high erbium concentration. The manufacturing of planar waveguide structures using RIE (Reactive Ion Etching) is described...... and it is shown that sidewall roughness resulting from micro masking by non-volatile reaction products can be minimised through a carful choice of etching parameters. This results in low propagation loss for the fabricated waveguides. It is shown that the achivable population inversion depends on the erbium...

  3. Four-Wave Mixing Aplication in Semiconductor Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Radoslav Odrobinak

    2004-01-01

    Full Text Available Four-Wave Mixing (FWM in semiconductor optical amplifiers is an attrative mechanism for wavelenght coversion in wavelenght-division multiplexed (WDM systems since it provides modulation format and bit rate transparency over wide tuning ranges. A series of systems experiments evaluating several aspects of the performance of these devices at bit rates of 2.5 and 10 Gb/s are presented.

  4. Quantum-dot Semiconductor Optical Amplifiers in State Space Model

    Institute of Scientific and Technical Information of China (English)

    Hussein Taleb; Kambiz Abedi; Saeed Golmohammadi

    2013-01-01

    A state space model (SSM) is derived for quantum-dot semiconductor optical amplifiers (QD-SOAs).Rate equations of QD-SOA are formulated in the form of state update equations,where average occupation probabilities along QD-SOA cavity are considered as state variables of the system.Simulations show that SSM calculates QD-SOA's static and dynamic characteristics with high accuracy.

  5. Intraband effects on ultrafast pulse propagation in semiconductor optical amplifier

    Indian Academy of Sciences (India)

    K Hussain; S K Varshney; P K Datta

    2010-11-01

    High bit-rate (>10 Gb/s) signals are composed of very short pulses and propagation of such pulses through a semiconductor optical amplifier (SOA) requires consideration of intraband phenomena. Due to the intraband effects, the propagating pulse sees a fast recovering nonlinear gain which introduces less distortion in the pulse shape and spectrum of the output pulse but introduces a positive chirping at the trailing edge of the pulse.

  6. Wavelength Conversion by Cascaded FWM in a Fiber Optical Parametric Oscillator

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Lund-Hansen, Toke; Rishøj, Lars Søgaard

    2011-01-01

    We report on a continuous-wave fiber optical parametric oscillator utilizing selective filtering on cascade four wave mixing (CFWM). Oscillations of distinct CFWM terms are obtained, extending wavelength conversion outside the parametric gain region.......We report on a continuous-wave fiber optical parametric oscillator utilizing selective filtering on cascade four wave mixing (CFWM). Oscillations of distinct CFWM terms are obtained, extending wavelength conversion outside the parametric gain region....

  7. Amplifier Noise Based Optical Steganography with Coherent Detection

    Science.gov (United States)

    Wu, Ben; Chang, Matthew P.; Caldwell, Naomi R.; Caldwell, Myles E.; Prucnal, Paul R.

    2014-12-01

    We summarize the principle and experimental setup of optical steganography based on amplified spontaneous emission (ASE) noise. Using ASE noise as the signal carrier, optical steganography effectively hides a stealth channel in both the time domain and the frequency domain. Coherent detection is used at the receiver of the stealth channel. Because ASE noise has short coherence length and random phase, it only interferes with itself within a very short range. Coherent detection requires the stealth transmitter and stealth receiver to precisely match the optical delay,which generates a large key space for the stealth channel. Several methods to further improve optical steganography, signal to noise ratio, compatibility with the public channel, and applications of the stealth channel are also summarized in this review paper.

  8. Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed. Broadband QD optical gain material was used to achieve Gbps-order high-speed optical data transmission, and an optical gain change as high as approximately 6-7 dB was obtained with a low OGM voltage of 2.0 V. Loss of optical power due to insertion of the device was also effectively compensated for by the SOA section. Furthermore, it was confirmed that the QD-OGM/SOA device helped achieve 6.0-Gbps error-free optical data transmission over a 2.0-km-long photonic crystal fiber. We also successfully demonstrated generation of Gbps-order, high-speed, and error-free optical signals in the >5.5-THz broadband optical frequency bandwidth larger than the C-band. These results suggest that the developed monolithically integrated QD-OGM/SOA device will be an advantageous and compact means of increasing the usable optical frequency channels for short-reach communications.

  9. Saturation properties of four-wave mixing between short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Mecozzi, A.; Diez, S.

    1999-01-01

    Summary form only given. The authors report the first comparison between theory and experiment on the four wave mixing between trains of short pulses in semiconductor optical amplifiers. The theory is able to explain all qualitative features seen in the experiment.......Summary form only given. The authors report the first comparison between theory and experiment on the four wave mixing between trains of short pulses in semiconductor optical amplifiers. The theory is able to explain all qualitative features seen in the experiment....

  10. Continuous-wave, two-crystal, singly-resonant optical parametric oscillator: theory and experiment.

    Science.gov (United States)

    Samanta, G K; Aadhi, A; Ebrahim-Zadeh, M

    2013-04-22

    We present theoretical and experimental study of a continuous-wave, two-crystal, singly-resonant optical parametric oscillator (T-SRO) comprising two identical 30-mm-long crystals of MgO:sPPLT in a four- mirror ring cavity and pumped with two separate pump beams in the green. The idler beam after each crystal is completely out-coupled, while the signal radiation is resonant inside the cavity. Solving the coupled amplitude equations under undepleted pump approximation, we calculate the maximum threshold reduction, parametric gain acceptance bandwidth and closest possible attainable wavelength separation in arbitrary dual-wavelength generation and compare with the experimental results. Although the T-SRO has two identical crystals, the acceptance bandwidth of the device is equal to that of a single-crystal SRO. Due to the division of pump power in two crystals, the T-SRO can handle higher total pump power while lowering crystal damage risk and thermal effects. We also experimentally verify the high power performance of such scheme, providing a total output power of 6.5 W for 16.2 W of green power at 532 nm. We verified coherent energy coupling between the intra-cavity resonant signal waves resulting Raman spectral lines. Based on the T-SRO scheme, we also report a new technique to measure the temperature acceptance bandwidth of the single-pass parametric amplifier across the OPO tuning range.

  11. Astigmatism transfer phenomena in the optical parametric amplification process

    Science.gov (United States)

    Li, Wenkai; Chen, Yun; Li, Yanyan; Xu, Yi; Guo, Xiaoyang; Lu, Jun; Leng, Yuxin

    2017-01-01

    We numerically and experimentally investigate the astigmatism transfer phenomena in femtosecond optical parametric amplification (OPA). We model the OPA process based on the coupled second-order three-wave nonlinear propagation equations. The numerical and experimental results support that the input pump pulse astigmatism can be transferred into the idler pulse but not the signal pulse, and the idler pulse astigmatism originating from spatial walk-off is less than the idler pulse astigmatism received from the pump. Thus, we can provide a clear understanding of astigmatism transfer mechanisms in the OPA process, and make better use of broadband tunable OPA sources.

  12. Spontaneous parametric processes in optical fibers: a comparison

    CERN Document Server

    Garay-Palmett, Karina; U'Ren, Alfred

    2013-01-01

    We study the processes of spontaneous four wave mixing and of third-order spontaneous parametric downconversion in optical fibers, as the basis for the implementation of photon-pair and photon-triplet sources. We present a comparative analysis of the two processes including expressions for the respective quantum states and plots of the joint spectral intensity, a discussion of phasematching characteristics, and expressions for the conversion efficiency. We have also included a comparative study based on numerical results for the conversion efficiency for the two sources, as a function of several key experimental parameters.

  13. Modeling of Self-Pumped Singly Resonant Optical Parametric Oscillator

    CERN Document Server

    Deng, Chengxian

    2016-01-01

    A model of the steady-state operating, self-pumped singly resonant optical parametric oscillator (SPSRO) has been developed. The characteristics of quasi three-level laser gain medium pumped longitudinally have been taken into account. The characteristics of standing wave cavity, reabsorption losses, focusing Gaussian beams of the pump laser, fundamental laser and signal wave have been considered in the analyses. Furthermore, The power characteristics of threshold and efficiency have been analyzed, employing a Yb3+-doped periodically poled lithium niobate co-doped with MgO (Yb3+:MgO:PPLN) as the medium of laser gain and second-order nonlinear crystal.

  14. A Coherent Ising Machine Based On Degenerate Optical Parametric Oscillators

    Science.gov (United States)

    Wang, Zhe; Marandi, Alireza; Wen, Kai; Byer, Robert L.; Yamamoto, Yoshihisa

    2014-03-01

    A degenerate optical parametric oscillator network is proposed to solve the NP-hard problem of finding a ground state of the Ising model. The underlying operating mechanism originates from the bistable output phase of each oscillator and the inherent preference of the network in selecting oscillation modes with the minimum photon decay rate. Computational experiments are performed on all instances reducible to the NP-hard MAX-CUT problems on cubic graphs of order up to 20. The numerical results reasonably suggest the effectiveness of the proposed network. This project is supported by the FIRST program of Japanese Government. Zhe Wang is also grateful for the support from Stanford Graduate Fellowship.

  15. Entanglement in the above-threshold optical parametric oscillator

    CERN Document Server

    Villar, A S; Dechoum, K; Khoury, A Z; Martinelli, M; Nussenzveig, P; Cassemiro, Katiuscia N.; Dechoum, Kaled; Khoury, Antonio Z.; Martinelli, Marcelo; Nussenzveig, Paulo; Villar, Alessandro S.

    2006-01-01

    We investigate entanglement in the above-threshold Optical Parametric Oscillator, both theoretically and experimentally, and discuss its potential applications to quantum information. The fluctuations measured in the subtraction of signal and idler amplitude quadratures are $\\Delta^2 \\hat p_-=0.50(1)$, or $-3.01(9)$ dB, and in the sum of phase quadratures are $\\Delta^2 \\hatq_+=0.73(1)$, or $-1.37(6)$ dB. A detailed experimental study of the noise behavior as a function of pump power is presented, and discrepancies with theory are discussed.

  16. Optical steganography based on amplified spontaneous emission noise.

    Science.gov (United States)

    Wu, Ben; Wang, Zhenxing; Tian, Yue; Fok, Mable P; Shastri, Bhavin J; Kanoff, Daniel R; Prucnal, Paul R

    2013-01-28

    We propose and experimentally demonstrate an optical steganography method in which a data signal is transmitted using amplified spontaneous emission (ASE) noise as a carrier. The ASE serving as a carrier for the private signal has an identical frequency spectrum to the existing noise generated by the Erbium doped fiber amplifiers (EDFAs) in the transmission system. The system also carries a conventional data channel that is not private. The so-called "stealth" or private channel is well-hidden within the noise of the system. Phase modulation is used for both the stealth channel and the public channel. Using homodyne detection, the short coherence length of the ASE ensures that the stealth signal can only be recovered if the receiver closely matches the delay-length difference, which is deliberately changed in a dynamic fashion that is only known to the transmitter and its intended receiver.

  17. Erbium Doped Phosphate Glass For Optical Waveguide Amplifier

    Institute of Scientific and Technical Information of China (English)

    R.S.F.Wong; S.Q.Man; E.Y.B.Pun; P.S.Chung

    2000-01-01

    @@ Erbium (Er3+) doped phosphate glasses was prepared and the optical properties of these glasses were investigated. The emission parameters were calculated using the Judd-Ofelt treatment. The radiative lifetime of the 4I13/2 level is calculated to be 7.2ms. The fluorescence lifetime is measured to be 6ms, and the quantum efficiency is estimated to be 83%. Ion-exchanged optical waveguides were fabricated in these glasses by using pure KNO3 meet at 370℃, and diluted AgNO3 molten salt at 270℃. It was found that the lower temperature diluted AgNO3 molten salt is better for the ion exchange process. Planar waveguide with 5 modes at the 633nm and 2 modes at the 1550nm was demonstrated using the diluted AgNO3. Our results show that phosphate glass is a potential candidate for the 1.5μm optical amplifier device.

  18. Quantum correlation in degenerate optical parametric oscillators with mutual injections

    CERN Document Server

    Takata, Kenta

    2015-01-01

    We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive $P$ representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections are simulated, and their quantum states are investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes $\\hat{p}$ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, and the entanglement between the intracavity subharmonic fields. When with a small loss of the injection path, each oscillator around the phase transition point forms macroscopic superposition for a small pump noise. It suggests that the low-loss injection path works as a sq...

  19. Phase mismatched optical parametric generation in semiconductor magnetoplasma

    Science.gov (United States)

    Dubey, Swati; Ghosh, S.; Jain, Kamal

    2017-05-01

    Optical parametric generation involves the interaction of pump, signal, and idler waves satisfying law of conservation of energy. Phase mismatch parameter plays important role for the spatial distribution of the field along the medium. In this paper instead of exactly matching wave vector, a small mismatch is admitted with a degree of phase velocity mismatch between these waves. Hence the medium must possess certain finite coherence length. This wave mixing process is well explained by coupled mode theory and one dimensional hydrodynamic model. Based on this scheme, expressions for threshold pump field and transmitted intensity have been derived. It is observed that the threshold pump intensity and transmitted intensity can be manipulated by varying doping concentration and magnetic field under phase mismatched condition. A compound semiconductor crystal of n-InSb is assumed to be shined at 77 K by a 10.6μm CO2 laser with photon energy well below band gap energy of the crystal, so that only free charge carrier influence the optical properties of the medium for the I.R. parametric generation in a semiconductor plasma medium. Favorable parameters were explored to incite the said process keeping in mind the cost effectiveness and conversion efficiency of the process.

  20. Investigation of coupled optical parametric oscillators for novel applications

    Science.gov (United States)

    Ding, Yujie J.

    2016-03-01

    In this proceedings article, we summarize our previous results on the novel applications using the coupled optical parametric oscillators (OPO's). In a conventional OPO, a single pump wavelength is capable of generating a pair of the signal and idler beams by placing a bulk nonlinear crystal inside an OPO cavity. When a nonlinear crystal composite consisting of periodically-inverted KTiOPO4 (KTP) plates bonded together by the adhesive-free-bonded (AFB) technique is used instead of the bulk nonlinear crystal, the optical parametric oscillation takes place at two sets of the new wavelengths for the signal and idler beams due to the phase shifts occurring at the interfaces of the adjacent domains making up the composite. These two sets of the signal and idler waves are effectively generated by the two OPO's being coupled to each other. These signals and idlers exhibit ultrastability in terms of their frequency separation. We review the progress made by us on the applications being realized by using such coupled OPO's such as THz generation and restoration of the blurred images after propagating through a distortion plate and a phase plate simulating atmospheric turbulence.

  1. Efficient monolithic MgO:LiNbO3 singly resonant optical parametric oscillator

    Science.gov (United States)

    Kozlovsky, W. J.; Gustafson, E. K.; Eckardt, R. C.; Byer, R. L.

    1988-01-01

    A monolithic MgO:LiNbO3 singly resonant optical parametric oscillator (OPO) was operated as both a standing-wave and a ring-geometry resonator. The OPO was pumped by the second harmonic of an amplified single-mode diode-laser-pumped Nd:YAG laser. Pump depletions of greater than 60 percent were observed when pumping four times greater than the 35-W threshold. The OPO output at the resonant signal tuned with temperature from 834 to 958 nm, while the corresponding idler tuned from 1.47 to 1.2 microns. The spectral characteristics of the OPO signal output and the relative merits of a standing wave versus a ring geometry are discussed.

  2. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  3. Generation of synchronized signal and pump pulses for an optical parametric chirped pulse amplification based multi-terawatt Nd:glass laser system

    Indian Academy of Sciences (India)

    M Raghuramaiah; R K Patidar; R A Joshi; P A Naik; P D Gupta

    2010-11-01

    Synchronized signal (650 ps) and pump (1.3 ns) pulses were generated using 4-pass geometry in a grating pair based pulse stretcher unit. The pump pulse has been further amplified in a high gain regenerative amplifier. This amplified pulse was used as the pump in an optical parametric chirped pulse amplification based Nd:glass laser system. As the chirped signal pulse and the pump pulse originated from the same oscillator, the time jitter between the pump pulse and the signal pulse can be <50 ps.

  4. Nonlinear effects in ultralong semiconductor optical amplifiers for optical communications. Physics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Runge, Patrick

    2010-10-19

    The presented work discusses physical properties of ultralong semiconductor optical amplifiers (UL-SOAs) and some of their possible applications in optical communication systems. At the beginning of this thesis the analytical framework for the optical properties of UL-SOAs is presented. Based on this theoretical description, a numerical simulation model is derived used for the investigation of this thesis. To obtain from the simulation model realistic results the important properties of UL-SOAs have to be included, e.g., being the saturation of the main part of the device. In this saturated part of the device, fast intraband effects dominate over the slow interband effects. The intention of UL-SOAs is to make use of these pronounced fast intraband effects in applications. Due to the short relaxation times of the fast intraband effects, they can be used for high-speed signal processing (>20 GBaud). With the help of an additional continuous wave (CW) signal propagating with the data signal in the UL-SOA, the capability for all-optical signal processing with 100 Gbit/s on-off keying RZ-50% pseudo random bit sequence signals has been demonstrated in this thesis. With an optimised device under proper driving conditions, bit pattern effects are negligible compared to the degradation due to amplified spontaneous emission. The suppression of the bit pattern effects can be ascribed to the additional CW signal operating as a holding beam. Investigations of the UL-SOA's driving condition showed that the data signal's extinction ratio (ER) can be regenerated if the two input signals are co-polarised and the data signal has a shorter wavelength than the CW signal. These two and other driving conditions have indicated, that parametric amplification due to four-wave mixing (FWM) (Bogatov-like effect) is the reason for the ER improvement. Moreover, due to the additional CW signal, all-optical wavelength conversion (AOWC) is possible which can be combined with the ER

  5. Broadband Continuous-Wave Multi-Harmonic Optical Comb Based on a Frequency Division-by-Three Optical Parametric Oscillator

    Directory of Open Access Journals (Sweden)

    Yen-Yin Lin

    2014-11-01

    Full Text Available We report a multi-watt broadband continuous-wave multi-harmonic optical comb based on a frequency division-by-three singly-resonant optical parametric oscillator. This cw optical comb is frequency-stabilized with the help of a beat signal derived from the signal and frequency-doubled idler waves. The measured frequency fluctuation in one standard deviation is ~437 kHz. This is comparable to the linewidth of the pump laser which is a master-oscillator seeded Yb:doped fiber amplifier at ~1064 nm. The measured powers of the fundamental wave and the harmonic waves up to the 6th harmonic wave are 1.64 W, 0.77 W, 3.9 W, 0.78 W, 0.17 W, and 0.11 W, respectively. The total spectral width covered by this multi-harmonic comb is ~470 THz. When properly phased, this multi-harmonic optical comb can be expected to produce by Fourier synthesis a light source consisting of periodic optical field waveforms that have an envelope full-width at half-maximum of 1.59 fs in each period.

  6. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Diez, S.; Mecozzi, A.; Mørk, Jesper

    1999-01-01

    We investigate the saturation properties of four-wave mixing of short optical pulses in a semiconductor optical amplifier. By varying the gain of the optical amplifier, we find a strong dependence of both conversion efficiency and signal-to-background ratio on pulse width and bit rate....... In particular, the signal-to-background ratio can be optimized for a specific amplifier gain. This behavior, which is coherently described in experiment and theory, is attributed to the dynamics of the amplified spontaneous emission, which is the main source of noise in a semiconductor optical amplifier....

  7. Parametric Analysis of Fiber Non-Linearity in Optical systems

    Directory of Open Access Journals (Sweden)

    Abhishek Anand

    2013-06-01

    Full Text Available With the advent of technology Wavelength Division Multiplexing (WDM is always an area of interest in the field of optical communication. When combined with Erbium Doped Fiber Amplifier (EDFA, it provides high data transmission rate and low attenuation. But due to fiber non-linearity such as Self Phase Modulation (SPM and Cross Phase Modulation (XPM the system performance has degraded. This non-linearity depends on different parameters of an optical system such as channel spacing, power of the channel and length of the fiber section. The degradation can be seen in terms of phase deviation and Bit Error Rate (BER performance. Even after dispersion compensation at the fiber end, residual pulse broadening still exists due to cross talk penalty.

  8. Photonic processing and realization of an all-optical digital comparator based on semiconductor optical amplifiers

    Science.gov (United States)

    Singh, Simranjit; Kaur, Ramandeep; Kaler, Rajinder Singh

    2015-01-01

    A module of an all-optical 2-bit comparator is analyzed and implemented using semiconductor optical amplifiers (SOAs). By employing SOA-based cross phase modulation, the optical XNOR logic is used to get an A=B output signal, where as AB¯ and A¯B> logics operations are used to realize A>B and Aoptical high speed networks and computing systems.

  9. Continuous-wave terahertz light from optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Sowade, Rosita

    2010-12-15

    Continuous-wave (cw) optical parametric oscillators (OPOs) are working horses for spectroscopy in the near and mid infrared. However, in the terahertz frequency range (0.1 to 10 THz), the pump threshold is more than 100 W due to the high absorption in nonlinear crystals and thus exceeds the power of standard cw single-frequency pump sources. In this thesis the first cw OPO capable of generating terahertz radiation is demonstrated. To overcome the high threshold, the signal wave of a primary infrared process is resonantly enhanced to serve as the pump wave for a cascaded parametric process with one wave being at the terahertz frequency level. A terahertz output power of more than two microwatts is measured and tuning is achieved from 1.3 to 1.7 THz. This terahertz source emits a narrow-band, diffraction-limited beam which remains mode-hop free over more than one hour. Such a device inhibits high potential for applications in areas like astronomy, telecommunications or high-resolution spectroscopy. (orig.)

  10. Ultrafast optical transistor and router of multi-order fluorescence and spontaneous parametric four-wave mixing in Pr³⁺:YSO.

    Science.gov (United States)

    Wen, Feng; Ali, Imran; Hasan, Abdulkhaleq; Li, Changbiao; Tang, Haijun; Zhang, Yufei; Zhang, Yanpeng

    2015-10-15

    We study the realization of an optical transistor (switch and amplifier) and router in multi-order fluorescence (FL) and spontaneous parametric four-wave mixing (SP-FWM). We estimate that the switching speed is about 15 ns. The router action results from the Autler-Townes splitting in spectral or time domain. The switch and amplifier are realized by dressing suppression and enhancement in FL and SP-FWM. The optical transistor and router can be controlled by multi-parameters (i.e., power, detuning, or polarization).

  11. Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.

  12. Mechanically amplified MEMS optical accelerometer with FPI readout

    Science.gov (United States)

    Davies, Edward; George, David S.; Holmes, Andrew S.

    2014-03-01

    We have developed a silicon MEMS optical accelerometer in which the motion of the proof mass is mechanically amplified using a V-beam mechanism prior to transduction. The output motion of the V-beam is detected using a Fabry-Pérot interferometer (FPI) which is interrogated in reflection mode via a single-mode optical fibre. Mechanical amplification allows the sensitivity of the accelerometer to be increased without compromising the resonant frequency or measurement bandwidth. We have also devised an all-optical method for calibrating the return signal from the FPI, based on photothermal actuation of the V-beam structure using fibre-delivered light of a different wavelength. A finite-element model has been used to predict the relationship between the incident optical power and the cavity length at steady state, as well as the step response which determines the minimum time for calibration. Prototype devices have been fabricated with resonant frequencies above 10 kHz and approximately linear response for accelerations in the range 0.01 to 15 g.

  13. Experimental performance of semiconductor optical amplifiers and praseodymium-doped fiber amplifiers in 1310-nm dense wavelength division multiplexing system

    Science.gov (United States)

    Chorchos, Lukasz; Turkiewicz, Jaroslaw P.

    2017-04-01

    One of the key optical transmission components is optical amplifiers. Studies on the amplification properties of the 1310-nm optical amplifiers are presented. The evaluated optical amplifiers are semiconductor optical amplifier (SOA) and praseodymium-doped fiber amplifier (PDFA). The study is aimed at the dynamic operation in single- and multiwavelength domains with high rate signals. The maximum obtained gain was 25.0 dB for SOA and 20.9 dB for PDFA. For the SOAs, the minimum achieved value of the receiver sensitivity was -11.5 dBm for a single channel and -11.5 dBm for a dense wavelength division multiplexing case while for PDFA those values were -11.0 dBm and -10.9, respectively. The main advantage of the PDFA in comparison to the measured SOAs is its higher saturation power. The SOAs proved to be viable candidates for high-speed amplification in the 1310-nm wavelength domain.

  14. A method of developing frequency encoded multi-bit optical data comparator using semiconductor optical amplifier

    Science.gov (United States)

    Garai, Sisir Kumar

    2011-02-01

    Optical data comparator is the part and parcel of arithmetic and logical unit of any optical data processor and it is working as a building block in a larger optical circuit, as an optical switch in all optical header processing and optical packet switching based all optical telecommunications system. In this article the author proposes a method of developing an all optical single bit comparator unit and subsequently extending the proposal to develop a n-bit comparator exploiting the nonlinear rotation of the state of polarization of the probe beam in semiconductor optical amplifier (SOA). Here the dataset to be compared are taken in frequency encoded/decoded form throughout the communication. The major advantages of frequency encoding over all other conventional techniques are that as the frequency of any signal is fundamental one so it can preserve its identity throughout the communication of optical signal and minimizes the probability of bit error problem. For frequency routing purpose optical add/drop multiplexer (ADM) is used which not only route the pump beams properly but also to amplify the pump beams efficiently. Switching speed of 'MZI-SOA switch' as well as SOA based switches are very fast with good on-off contrast ratio and as a result it is possible to obtain very fast action of optical data comparator.

  15. Synchronously pumped femtosecond optical parametric oscillator with broadband chirped mirrors

    Science.gov (United States)

    Stankevičiūte, Karolina; Melnikas, Simas; Kičas, Simonas; Trišauskas, Lukas; Vengelis, Julius; Grigonis, Rimantas; Vengris, Mikas; Sirutkaitis, Valdas

    2015-05-01

    We present results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) with broadband complementary chirped mirror pairs (CMP). The SPOPO based on β-BBO nonlinear crystal is pumped by second harmonic of femtosecond Yb:KGW laser and provides signal pulses tunable over spectral range from 625 to 980 nm. More than 500 mW are generated in the signal beam, giving up to 27 % pump power to signal power conversion efficiency. The plane SPOPO cavity mirror pairs were specially designed to provide 99 % reflection in broad spectral range corresponding to signal wavelength tuning (630-1030 nm) and to suppress group delay dispersion (GDD) oscillations down to +/-10 fs2. Dispersion properties of designed mirrors were tested with white light interferometer (WLI) and attributed to the SPOPO tuning behaviour.

  16. Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Skettrup, Torben; Petersen, O.B.;

    2002-01-01

    An intracavity optical parametric oscillator is investigated in pulsed and continuous-wave operation. The intracavity optical parametric oscillator is based on Yb:YAG as the laser material and a periodically poled lithium niobate crystal as the nonlinear material. Tuneable idler output powers above...

  17. Frequency comb metrology with an optical parametric oscillator.

    Science.gov (United States)

    Balskus, K; Schilt, S; Wittwer, V J; Brochard, P; Ploetzing, T; Jornod, N; McCracken, R A; Zhang, Z; Bartels, A; Reid, D T; Südmeyer, T

    2016-04-18

    We report on the first demonstration of absolute frequency comb metrology with an optical parametric oscillator (OPO) frequency comb. The synchronously-pumped OPO operated in the 1.5-µm spectral region and was referenced to an H-maser atomic clock. Using different techniques, we thoroughly characterized the frequency noise power spectral density (PSD) of the repetition rate frep, of the carrier-envelope offset frequency fCEO, and of an optical comb line νN. The comb mode optical linewidth at 1557 nm was determined to be ~70 kHz for an observation time of 1 s from the measured frequency noise PSD, and was limited by the stability of the microwave frequency standard available for the stabilization of the comb repetition rate. We achieved a tight lock of the carrier envelope offset frequency with only ~300 mrad residual integrated phase noise, which makes its contribution to the optical linewidth negligible. The OPO comb was used to measure the absolute optical frequency of a near-infrared laser whose second-harmonic component was locked to the F = 2→3 transition of the 87Rb D2 line at 780 nm, leading to a measured transition frequency of νRb = 384,228,115,346 ± 16 kHz. We performed the same measurement with a commercial fiber-laser comb operating in the 1.5-µm region. Both the OPO comb and the commercial fiber comb achieved similar performance. The measurement accuracy was limited by interferometric noise in the fibered setup of the Rb-stabilized laser.

  18. Automatic alignment of double optical paths in excimer laser amplifier

    Science.gov (United States)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  19. All-optical sampling based on quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Wu, Chen; Wang, Yongjun; Wang, Lina

    2016-11-01

    In recent years, the all-optical signal processing system has become a hot research field of optical communication. This paper focused on the basic research of quantum-dot (QD) semiconductor optical amplifier (SOA) and studied its practical application to all-optical sampling. A multi-level dynamic physical model of QD-SOA is established, and its ultrafast dynamic characteristics are studied through theoretical and simulation research. For further study, an all-optical sampling scheme based on the nonlinear polarization rotation (NPR) effect of QD-SOA is also proposed. This paper analyzed the characteristics of optical switch window and investigated the influence of different control light pulses on switch performance. The presented optical sampling method has an important role in promoting the improvement of all-optical signal processing technology.

  20. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping

    Science.gov (United States)

    Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-04-01

    We present an approach for both efficient generation and amplification of 4-12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8-4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr2+:ZnSe/ZnS laser, enabling the generation of  Terawatt-level 4-12 μm pulses with an available large-aperture ZGP. Furthermore, the 4-12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4-4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4-12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser.

  1. Experimental study on all-optical half-adder based on semi-conductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    HAN Bing-chen; YU Jin-long; WANG Wen-rui; ZHANG Li-tai; HU Hao; YANG En-ze

    2009-01-01

    We demonstrate a novel all-optical half-adder based on two semiconductor optical amplifiers (SOAS). Two optical band-pass filters are used to select the two idlers generated by four-wave mixing (FWM) effect of the first SOA. Therefore, the AND gate and XNOR logic are realized simultaneously. The second SOA acts as a NOT gate, in which the NOR logic is achieved with the input of the logic XNOR. As a result, the output is the sum of the two input bits and the carry. In the experiment, all-optical half-addition calculation is achieved between two 10 Gb/s signals.

  2. Demultiplexing of OTDM-DPSK signals based on a single semiconductor optical amplifier and optical filtering

    DEFF Research Database (Denmark)

    Xu, Jing; Ding, Yunhong; Peucheret, Christophe

    2011-01-01

    We propose and demonstrate the use of a single semiconductor optical amplifier (SOA) and optical filtering to time demultiplex tributaries from an optical time division multiplexing-differential phase shift keying (OTDM-DPSK) signal. The scheme takes advantage of the fact that phase variations...... as the bit period at 80 Gbit=s. Large dynamic ranges for the input power and SOA current are experimentally demonstrated. The scheme is expected to be scalable toward higher bit rates. © 2011 Optical Society of America....

  3. A fiber-optical cable television system using a reflective semiconductor optical amplifier

    Science.gov (United States)

    Peng, P. C.; Shiu, K. C.; Liu, W. C.; Chen, K. J.; Lu, H. H.

    2013-02-01

    This investigation demonstrates a fiber-optical cable television system using a reflective semiconductor optical amplifier (RSOA) for uplink transmission. The downstream signal is cable television and the upstream signal is generated by remodulating the downstream signal via an RSOA with a radio-frequency signal. Favorable carrier-to-noise ratio, composite second-order, and composite triple beat are obtained for the downstream and the upstream signal is successfully transmitted over 60 km of single-mode fiber.

  4. Cascaded Optical Buffer Based on Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    CHENG Mu; WU Chong-Qing; LIU Hua

    2008-01-01

    A cascaded buffer based on nonlinear polarization rotation in semiconductor optical amplifiers is proposed, which is suitable for fast reconfiguration of buffering time at picoseconds. With the proposed buffer, sixty different buffer times are demonstrated at 2.5 Gb/s.

  5. 4 Gb/s optical wavelength conversion using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Durhuus, T.; Braagaard, C.

    1993-01-01

    Semiconductor optical amplifiers used for efficient wavelength conversion up to 4 Gb/s are discussed. The rise and fall times as well as extinction ratio are experimentally analyzed. System performance at 4 Gb/s is evaluated showing a penalty of only 1.5 dB for the converted signal for conversion...

  6. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission

    CERN Document Server

    Longhi, Stefano

    2016-01-01

    Optical parametric amplification/oscillation provide a powerful tool for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency {\\it down-conversion} process, and thus it can not be realized for signal waves at a frequency $\\omega_3$ {\\it higher} than the frequency of the pump wave $\\omega_1$. In this work we suggest a route toward the realization of {\\it up-conversion} optical parametric amplification and oscillation, i.e. amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of up-conversion optical parametric oscillation at $\\lambda_3=465$ nm are given for a periodically-poled lithium-niobate (PPLN) crystal doped with Nd$^{3+}$ ions.

  7. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier.

    Science.gov (United States)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-27

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  8. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier

    Science.gov (United States)

    Li, Ming; Deng, Ye; Tang, Jian; Sun, Shuqian; Yao, Jianping; Azaña, José; Zhu, Ninghua

    2016-01-01

    All-optical signal processing has been considered a solution to overcome the bandwidth and speed limitations imposed by conventional electronic-based systems. Over the last few years, an impressive range of all-optical signal processors have been proposed, but few of them come with reconfigurability, a feature highly needed for practical signal processing applications. Here we propose and experimentally demonstrate an analog optical signal processor based on a phase-shifted distributed feedback semiconductor optical amplifier (DFB-SOA) and an optical filter. The proposed analog optical signal processor can be reconfigured to perform signal processing functions including ordinary differential equation solving and temporal intensity differentiation. The reconfigurability is achieved by controlling the injection currents. Our demonstration provitdes a simple and effective solution for all-optical signal processing and computing.

  9. The cascaded amplifier and saturable absorber (CASA) all-optical switch

    DEFF Research Database (Denmark)

    Hilliger, E.; Berger, J.; Weber, H. G.

    2001-01-01

    The cascaded amplifier and saturable absorber is presented as a new all-optical switching scheme for optical signal processing applications. First demultiplexing experiments demonstrate the principle of operation of this scheme....

  10. The cascaded amplifier and saturable absorber (CASA) all-optical switch

    DEFF Research Database (Denmark)

    Hilliger, E.; Berger, J.; Weber, H. G.

    2001-01-01

    The cascaded amplifier and saturable absorber is presented as a new all-optical switching scheme for optical signal processing applications. First demultiplexing experiments demonstrate the principle of operation of this scheme....

  11. Microstructure-Fibre-Based Optical Parametric Amplification in Telecom Band with Ultra-High Gain Slope

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; XIAO Li; ZHANG Lei; HUANG Yi-Dong; PENG Jiang-De

    2006-01-01

    @@ We report a microstructure-fibre-based parametric amplification experiment in telecom band with ultra-high gain slope. A peak on-off gain of 52.3 dB is achieved using 25 m high nonlinear microstructure fibre (MF) and only 5.3 W pump power. The parametric gain slope is up to 580dBW-1 km-1. From the experimental data, the linear coefficient of the MF is estimated to be about 66. 7 W-1 km-1. The experiment shows the great potential of MFs in practical fibre parametric amplifiers.

  12. Embedded real-time control of optically amplified repeaters in broadband access networks

    Science.gov (United States)

    Stubbe, Brecht; Vaes, Peter; Gouwy, Lieven; Coene, Chris; Qiu, Xing-Zhi; Staelens, Bart; Vandewege, Jan; Slabbinck, B. Hans; Martin, Claire M.; Van de Voorde, Ingrid

    1997-10-01

    This paper presents the use of distributed, intelligent control and management in optically amplified repeaters. These optical repeater units (ORUs) are used in an optical access network. A semiconductor optical amplifier (SOA) has been used in the upstream direction because of the possibility of fast switching. The real time control platform consists of both a hard- and a software part. The software control is handled with the embedded control system FORTRESS developed by IMEC.

  13. Transmission Techniques for Ultra Dense Wavelength Division Multiplexing By Using Two Optical Amplifiers in Nonlinear Optical Networks

    Directory of Open Access Journals (Sweden)

    Abd El-Naser A. Mohammed

    2010-09-01

    Full Text Available In the present paper, the problem amplification techniques of ultra dense wavelength division multiplexing (UDWDM in nonlinear optical networks are investigated through five transmission techniques. The impact of tailoring of chirped pulses of different temporal waveforms is investigated in a normal dispersion fiber. The set of multiplexed signals are tailored in a different a subset to assure approximately the same output level of power to hold the signal-to-noise ratio at the same level. Moreover, three different transmission techniques, namely, soliton propagation, maximum time division multiplexing (MTDM and ìShannonî capacity, are employed where successive section of alternating dispersion are used as a technique to manage the dispersion. Distributed ìRamanî amplifiers as well as Erbium doped fiber amplifier are engaged to maximize the repeater spacing. We have succeeded to multiplex 2400 (UDWDM channels in the optical range 1.45  1.65 µm with channel spacing ranging from 0.3 up to 0.6 nm where each channel has its own characteristic parameters of loss, dispersion, and amplification. The channels are divided into sub-groups ( each of 4, 5, 6, 7,Ö.,24 where the technique of space division multiplexing (SDM is applied. The multispan effects of ìKerrî nonlinearity and amplifier noise on ìShannonî channel capacity of dispersion-free nonlinear fiber is considered as a ceiling value for the sake of comparison. The case of soliton with modified Raman amplification via parametric gain also is investigated. Each link has special chemical structure, optical signals power, and optical Raman pumping. The cable contains {4, 5, 6, 7,Ö. , 24} links in SDM. It has been shown that the modified Raman gain yields higher effects on the variable under consideration if compared with the conventional Raman gain. The number of links is in positive correlations with the set of effects {Repeater spacing, Soliton product, MTDM product}. In general

  14. Time-domain model of quantum-dot semiconductor optical amplifiers for wideband optical signals.

    Science.gov (United States)

    Puris, D; Schmidt-Langhorst, C; Lüdge, K; Majer, N; Schöll, E; Petermann, K

    2012-11-19

    We present a novel theoretical time-domain model for a quantum dot semiconductor optical amplifier, that allows to simulate subpicosecond pulse propagation including power-based and phase-based effects. Static results including amplified spontaneous emission spectra, continuous wave amplification, and four-wave mixing experiments in addition to dynamic pump-probe simulations are presented for different injection currents. The model uses digital filters to describe the frequency dependent gain and microscopically calculated carrier-carrier scattering rates for the interband carrier dynamics. It can be used to calculate the propagation of multiple signals with different wavelengths or one wideband signal with high bitrate.

  15. Enhanced coherent OTDR for long span optical transmission lines containing optical fiber amplifiers

    Science.gov (United States)

    Furukawa, Shin-Ichi; Tanaka, Kuniaki; Koyamada, Yahei; Sumida, Masatoyo

    1995-05-01

    We have newly constructed an enhanced coherent optical time domain reflectometer (C-OTDR) for use in testing optical cable spans in transmission lines containing erbium-doped fiber amplifiers (EDFA's), which is based on heterodyne detection using acousto-optic (AO) switches. In order to avoid any optical surges in the EDFA's in the transmission lines, optical dummy pulses were added between the signal pulses by an AO switch to keep the probe power from the C-OTDR as uniform as possible. We achieved a large single-way dynamic range of 42 dB with 5 dBm less probe power. The measurable portion of the fiber spans was more than 80 km in optical transmission lines containing EDFA's. This is twice the previously reported value.

  16. Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer

    Science.gov (United States)

    Xu, Jing; Zhang, Xinliang; Liu, Deming; Huang, Dexiu

    2006-10-01

    An ultrafast all-optical logic NOR gate based on a semiconductor optical amplifier (SOA) and a fiber delay interferometer (FDI) is presented. For high-speed input return-to-zero (RZ) signal, nonreturn-to-zero (NRZ) switching windows which satisfy Boolean NOR operation can be formed by properly choosing the delay time and the phase shift of FDI. 40Gb/s NOR operation has been demonstrated successfully with low control optical power. The factors that degrade the NOR operation have been discussed.

  17. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.;

    2010-01-01

    efficient optical frequency conversion. Our analysis of the phase-matching conditions for optical parametric down-conversion (PDC) in a spherical WGM resonator shows their direct relation to the sum rules for photons' angular momenta and predicts a very low parametric oscillation threshold. We realized...... such an optical parametric oscillator (OPO) based on naturally phase-matched PDC in lithium niobate. We demonstrated a single-mode, strongly nondegenerate OPO with a threshold of 6.7  μW and linewidth under 10 MHz. This work demonstrates the remarkable capabilities of WGM-based OPOs....

  18. Beam divergence effects on high power optical parametric oscillation

    Institute of Scientific and Technical Information of China (English)

    Li Hui-Qing; Geng Ai-Cong; Bo Yong; Wu Ling-An; Cui Da-Fu; Xu Zu-Yan

    2005-01-01

    The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviation of real laser beams from ideal phase matching conditions. Our theoretical model is based on the decomposition of the Gaussian beam and assumes each component has a single deviation angle and thus a Particular wave vector mismatch. We take into account the variable intensity profile in the spatial and temporal domains of the Gaussian beam, the pump depletion effects for large-signal processes as well as the oscillatory effects of the three waves. Two nonlinear crystals β-BaB2O4 (BBO) and LiB3O5 (LBO) have been investigated in detail. The results indicate that the degree of beam divergence strongly influences the maximum pump intensity, optimum crystal length and OPO conversion efficiency.The impact of beam divergence is much more severe in the case of critical phase-matching for BBO than in the case of non-critical phase-matching for LBO. The results provide a way to choose the optimum parameters for a high power ns OPO such as the nonlinear material, the crystal length and the pump intensity, etc. Good agreement is obtained with our experimental results.

  19. Optical parametric amplification beyond the slowly varying amplitude approximation

    Indian Academy of Sciences (India)

    M Hosseini Farzad

    2007-09-01

    The coupled-wave equations describing optical parametric amplification (OPA) are usually solved in the slowly varying amplitude (SVA) approximation regime, in which the second-order derivatives of the signal and idler amplitudes are ignored and in fact the electromagnetic effects due to exit face of the medium is not involved. Here, an analytical plane-wave solution of these coupled-wave equations in a non-absorbing medium is presented. The solutions are derived beyond the SVA approximation up to order of = (coupling constant over the wave number). The intensity distributions of the signal and the idler waves show a periodic behavior about their corresponding distributions of SVA-adapted solution. This behavior can be explained by the interference of the forward propagating signal (idler) wave and the corresponding backward one resulted from the reflection by the end face of the medium. Furthermore, this interference pattern in the medium can in turn serve as a periodic source for the next generations of the signal and idler waves. Therefore, the superposition of the waves, generated from different points of this periodic source, at the exit face of the medium shows an oscillatory behavior of the transmitted signal (idler) wave in terms of normalized coupling constant, . This study also shows that this effect is more considerable for high intensity pump beam, high relative refractive index and short length of the nonlinear medium.

  20. Stochastic master equation approach for analysis of remote entanglement with Josephson parametric converter amplifier

    Science.gov (United States)

    Silveri, M.; Zalys-Geller, E.; Hatridge, M.; Leghtas, Z.; Devoret, M. H.; Girvin, S. M.

    2015-03-01

    In the remote entanglement process, two distant stationary qubits are entangled with separate flying qubits and the which-path information is erased from the flying qubits by interference effects. As a result, an observer cannot tell from which of the two sources a signal came and the probabilistic measurement process generates perfect heralded entanglement between the two signal sources. Notably, the two stationary qubits are spatially separated and there is no direct interaction between them. We study two transmon qubits in superconducting cavities connected to a Josephson Parametric Converter (JPC). The qubit information is encoded in the traveling wave leaking out from each cavity. Remarkably, the quantum-limited phase-preserving amplification of two traveling waves provided by the JPC can work as a which-path information eraser. By using a stochastic master approach we demonstrate the probabilistic production of heralded entangled states and that unequal qubit-cavity pairs can be made indistinguishable by simple engineering of driving fields. Additionally, we will derive measurement rates, measurement optimization strategies and discuss the effects of finite amplification gain, cavity losses, and qubit relaxations and dephasing. Work supported by IARPA, ARO and NSF.

  1. All-optical flip-flop based on vertical cavity semiconductor optical amplifiers.

    Science.gov (United States)

    Song, Deqiang; Gauss, Veronica; Zhang, Haijiang; Gross, Matthias; Wen, Pengyue; Esener, Sadik

    2007-10-15

    We report the operation of an all-optical set-reset (SR) flip-flop based on vertical cavity semiconductor optical amplifiers (VCSOAs). This flip-flop is cascadable, has low optical switching power (~10 microW), and has the potential to be integrated on a small footprint (~100 microm(2)). The flip-flop is composed of two cross-coupled electrically pumped VCSOA inverters and uses the principles of cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics to achieve flip-flop functionality. We believe that, when integrated on chip, this type of all-optical flip-flop opens new prospects for implementing all-optical fast memories and timing regeneration circuits.

  2. Study of all-optical sampling using a semiconductor optical amplifier

    Science.gov (United States)

    Wu, Chen; Wang, Yongjun; Wang, Lina; Wang, Fu

    2016-08-01

    All-optical sampling is an important research content of all-optical signal processing. In recent years, the application of the semiconductor optical amplifier (SOA) in optical sampling has attracted lots of attention because of its small volume and large nonlinear coefficient. We propose an optical sampling model based on nonlinear polarization rotation effect of the SOA. The proposed scheme has the advantages of high sampling speed and small input pump power, and a transfer curve with good linearity was obtained through simulation. To evaluate the performance of sampling, we analyze the linearity and efficiency of sampling pulse considering the impact of pulse width and analog signal frequency. We achieve the sampling of analog signal to high frequency pulse and exchange the positions of probe light and pump light to study another sampling.

  3. All-optical wavelength conversion by four-wave mixing in a semiconductor optical amplifier

    Science.gov (United States)

    Lee, Robert Bumju

    1997-11-01

    Wavelength division multiplexed optical communication systems will soon become an integral part of commercial optical networks. A crucial new function required in WDM networks is wavelength conversion, the spectral translation of information-laden optical carriers, which enhances wavelength routing options and greatly improves network reconfigurability. One of several techniques for implementing this function is four-wave mixing utilizing ultra-fast intraband nonlinearities in semiconductor optical amplifiers. The effects of input power, noise prefiltering and semiconductor optical amplifier length on the conversion efficiency and optical signal-to-noise ratio were examined. Systems experiments have been conducted in which several important performance characteristics of the wavelength converter were studied. A bit-error-rate performance of BER performance were studied at 2.5 Gb/s for both a single-channel conversion and a simultaneous 2-channel conversion. The crosstalk penalty induced by parasitic cross-gain modulation in 2-channel conversion is quantified. The spectral inversion which results from the conversion process is studied by time-resolved spectral analysis, and its application as a technique for dispersion compensation is demonstrated. Finally, the application of selective organometallic vapor-phase epitaxy for the formation of highly-uniform and densely-packed arrays of GaAs quantum dots is demonstrated. GaAs dots of 15-20 nm in base diameter and 8-10 nm in height terminated by slow-growth crystallographic planes were grown within dielectric-mask openings and characterized by atomic force microscopy.

  4. On the Theory of the Modulation Instability in Optical Fiber and Laser Amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; Turitsyn, S K; Fedoruk, M P

    2010-11-03

    The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to CW beam breakup and the growth of multiple pulses. This can be both a detrimental effect, limiting the performance of amplifiers, and also an underlying physical mechanism in the operation of MI-based devices. Here we revisit the analytical theory of MI in fiber optical amplifiers. The results of the exact theory are compared with the previously used adiabatic approximation model, and the range of applicability of the latter is determined. The same technique is applicable to the study of spatial MI in solid state laser amplifiers and MI in non-uniform media.

  5. Diode-pumped intracavity optical parametric oscillator in pulsed and continuous-wave operation

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Skettrup, Torben; Petersen, O.B.;

    2002-01-01

    An intracavity optical parametric oscillator is investigated in pulsed and continuous-wave operation. The intracavity optical parametric oscillator is based on Yb:YAG as the laser material and a periodically poled lithium niobate crystal as the nonlinear material. Tuneable idler output powers above...... 200 mW are obtained in both modes of operation with 13.5 W of incident diode pump power. The idler output was tuned in the wavelength range 3820-4570 nm....

  6. Parametric Optical Signal Processing in Silicon Waveguides with Reverse-biased p-i-n Junctions

    DEFF Research Database (Denmark)

    Peucheret, C.; Da Ros, Francesco; Vukovic, Dragana;

    2014-01-01

    The use of silicon-on-insulator waveguides with free carriers removal using a reverse-biased p-i-n junction for parametric optical signal processing is reviewed. High-efficiency wavelength conversion and phase-sensitive regeneration are reported.......The use of silicon-on-insulator waveguides with free carriers removal using a reverse-biased p-i-n junction for parametric optical signal processing is reviewed. High-efficiency wavelength conversion and phase-sensitive regeneration are reported....

  7. Design and Implementation of 2-Input OR Gate based on XGM properties of Semiconductor Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Chandra Kamal Borgohain

    2014-04-01

    Full Text Available In this paper we have implemented an all-optical OR-gate using simultaneous Four-Wave Mixing (FWM and Cross-Gain Modulation (XGM in a semiconductor optical amplifier (SOA.Which incorporates two semiconductor optical amplifiers (SOAs.The proposed OR logic is numerically simulated by solving nonlinear coupled equations that explain cross gain modulation(XGM effect in individual SOAs.

  8. Novel Raman Parametric Hybrid L-Band Amplifier with Four-Wave Mixing Suppressed Pump for Terabits Dense Wavelength Division Multiplexed Systems

    Directory of Open Access Journals (Sweden)

    Gaganpreet Kaur

    2016-01-01

    Full Text Available We demonstrate improved performance of parametric amplifier cascaded with Raman amplifier for gain of 54.79 dB. We report amplification of L-band using 100 × 10 Gbps Dense Wavelength Division Multiplexed (DWDM system with 25 GHz channel spacing. The gain achieved is the highest reported so far with gain flatness of 3.38 dB without using any gain flattening technique. Hybrid modulated parametric pump is used for suppressing four-wave mixing (FWM around pump region, resulting in improvement of gain flatness by 2.42 dB. The peak to peak variation of gain is achieved less than 1.6 dB. DWDM system with 16-channel, 25 GHz spaced system has been analyzed thoroughly with hybrid modulated parametric pump amplified Raman-FOPA amplifier for gain flatness and improved performance in terms of BER and Q-factor.

  9. Saturation and noise properties of quantum-dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    Based on extensive numerical calculations, quantum-dot (QD) amplifiers are predicted to offer higher output power and lower noise figure compared to bulk as well as quantum well amplifiers. The underlying physical mechanisms are analyzed in detail, leading to the identification of a few key...

  10. Specifics of short-wavelength generation in a continuous wave fiber optical parametric oscillator

    Science.gov (United States)

    Zlobina, E. A.; Mishra, V.; Kablukov, S. I.; Singh, S. P.; Varshney, S. K.; Babin, S. A.

    2016-11-01

    We investigate factors limiting short-wavelength generation and therefore tuning range of the continuous wave all-fiber optical parametric oscillator based on birefringent photonic crystal fiber pumped by a tunable linearly polarized ytterbium-doped fiber laser. Influence of the longitudinal dispersion fluctuations in the fiber on the threshold of the fiber optical parametric oscillators is numerically studied. It is shown that even low fluctuations (<0.5 nm) of the zero dispersion wavelength in 18 m-long fiber result in a significant increase of the threshold at large parametric shifts.

  11. Optical Design of Dilute Nitride Quantum Wells Vertical Cavity Semiconductor Optical Amplifiers for Communication Systems

    Directory of Open Access Journals (Sweden)

    Faten A. Chaqmaqchee

    2016-04-01

    Full Text Available III-V semiconductors components such as Gallium Arsenic (GaAs, Indium Antimony (InSb, Aluminum Arsenic (AlAs and Indium Arsenic (InAs have high carrier mobilities and direct energy gaps. This is making them indispensable for today’s optoelectronic devices such as semiconductor lasers and optical amplifiers at 1.3 μm wavelength operation. In fact, these elements are led to the invention of the Gallium Indium Nitride Arsenic (GaInNAs, where the lattice is matched to GaAs for such applications. This article is aimed to design dilute nitride GaInNAs quantum wells (QWs enclosed between top and bottom of Aluminum (Gallium Arsenic Al(GaAs distributed bragg mirrors (DBRs using MATLAB® program. Vertical cavity semiconductor optical amplifiers (VCSOAs structures are based on Fabry Perot (FP method to design optical gain and bandwidth gain to be operated in reflection and transmission modes. The optical model gives access to the contact layer of epitaxial structure and the reflectivity for successive radiative modes, their lasing thresholds, emission wavelengths and optical field distributions in the laser cavity.

  12. Experimental and theoretical investigation of semiconductor optical amplifier (SOA) based all-optical switches

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup

    2004-01-01

    This thesis analyzes semiconductor optical amplifier (SOA) based all-optical switches experimentally and through numerical simulations. These devices are candidates for optical signal processing functionalities such as wavelength conversion, regeneration, and logic processing in future transparent...... optical networks. The factors governing the modulation bandwidth of SOAs are determined, and schemes for reducing detrimental patterning effects are discussed. Three types of SOA-based switches are investigated numerically: so-called standardmode and differential-mode switches, and the filtering assisted...... switch. Differential -mode switches are shown to eliminate one contribution to the patterning effects, referred to as the linear patterning. This enables operation at bitrates far beyond the limit set by the carrier lifetime, but ultimately a saturation-induced patterning effect, nonlinear patterning...

  13. Generation of 1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves through polarization-insensitive optical parametric amplification enabling transmission over 4000-km dispersion-managed TWRS fiber

    DEFF Research Database (Denmark)

    Liu, Xiang; Hu, Hao; Chandrasekhar, S.;

    2013-01-01

    We experimentally demonstrate the first Tb/s Nyquist-WDM phase-conjugated twin waves, consisting of eight 128-Gb/s PDM-QPSK signals and their idlers, by a broadband polarization-insensitive fiber optical parametric amplifier, enabling more than doubled reach in dispersion-managed transmission. © ...

  14. High-power Femtosecond Optical Parametric Amplification at 1 kHz in BiB(3)O(6) pumped at 800 nm.

    Science.gov (United States)

    Petrov, Valentin; Noack, Frank; Tzankov, Pancho; Ghotbi, Masood; Ebrahim-Zadeh, Majid; Nikolov, Ivailo; Buchvarov, Ivan

    2007-01-22

    Substantial power scaling of a travelling-wave femtosecond optical parametric amplifier, pumped near 800 nm by a 1 kHz Ti:sapphire laser amplifier, is demonstrated using monoclinic BiB(3)O(6) in a two stage scheme with continuum seeding. Total energy output (signal plus idler) exceeding 1 mJ is achieved, corresponding to an intrinsic conversion efficiency of approximately 32% for the second stage. The tunability extends from 1.1 to 2.9 microm. The high parametric gain and broad amplification bandwidth of this crystal allowed the maintenance of the pump pulse duration, leading to pulse lengths less than 140 fs, both for the signal and idler pulses, even at such high output levels.

  15. Near-Nyquist optical pulse generation with fiber optical parametric amplification.

    Science.gov (United States)

    Vedadi, Armand; Shoaie, Mohammad Amin; Brès, Camille-Sophie

    2012-12-10

    A novel method using optical fiber parametric amplification and phase modulation is proposed in order to generate Nyquist pulses. Using parabolic pulses as a pump, we show theoretically that it is possible to generate Nyquist pulses. Furthermore, we show that by using a sinusoidal pump (pump intensity modulated by an RF tone), it is possible to obtain pulses with characteristics that are close to Nyquist limited pulses. We demonstrate experimentally the generation of bandwidth limited pulses with full width half maximum of 14 ps at 10 GHz repetition rate. We also discuss limitations of this method and means to overcome these limitations.

  16. Monolithic integration of widely tunable sampled grating DBR laser with tilted semiconductor optical amplifier

    Science.gov (United States)

    Ye, Nan; Liu, Yang; Wang, BaoJun; Zhou, DaiBing; Pang, JiaoQing; Zhao, LingJuan; Wang, Wei

    2011-01-01

    More than 11mW output powers for all wavelengths from the fiber and over 49 nm range tuning in sampled grating distributed Bragg reflector laser with an integrated semiconductor optical amplifier which is enabling access to 110 ITU 50GHz channels is demonstrated. Tilted amplifier and anti-reflection facet coating are used to suppress reflection.

  17. Theory of Pulse Train Amplification Without Patterning Effects in Quantum Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    A theory for pulse amplification and saturation in quantum dot (QD) semiconductor optical amplifiers (SOAs) is developed. In particular, the maximum bit rate at which a data stream of pulses can be amplified without significant patterning effects is investigated. Simple expressions are derived th...

  18. Experimental examinations of semiconductor laser amplifiers for optical communication technology

    Science.gov (United States)

    Ludwig, Reinhold

    1993-01-01

    Properties of SLA (Semiconductor Laser Amplifier), which are particularly interesting for application to linear repeaters in coherent multichannel systems, are studied and design rules for future optimized amplifier structure are deduced. Laser diode antireflection was examined and reflection factor was measured. Low signal properties were discussed considering injection current, wavelengths, temperature and polarization. The coupling between amplifiers and glass fibers was examined. The utilization of cascade amplifiers as linear repeaters in multichannel heterodyne systems and television distribution systems was investigatied. The following results are obtained: measurement and calculation of the paradiaphony between two signals radiated in a SLA; multichannel data transfer through a SLA; polarization independent amplification with SLA configurations; measurement of the frequency dependence of four wave mixing sidelines in a SLA; measurement of the system degradation through echoes in a bidirectional SLA chain; data transmission with frequency conversion and calculation of multichannel transmission systems with cascade SLA, taking into account saturation, signal to noise ratio, bandwidth reduction and echo.

  19. Ultrafast optical signal processing using semiconductor quantum dot amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing.......The linear and nonlinear properties of quantum dot amplifiers are discussed on the basis of an extensive theoretical model. These devices show great potential for linear amplification as well as ultrafast signal processing....

  20. A flexible and high-performance bidirectional optical amplifier with all optical gain control using ASE noise path through multi-port circulators

    Institute of Scientific and Technical Information of China (English)

    An Vu Tran; Chang-Joon Chae; Rodney S. Tucker

    2003-01-01

    We report a flexible all-optical gain controlled bidirectional optical amplifier. The device achieves constant gain and low noise figure over a large input power range. Moreover, the device removes Rayleigh backscattered light and amplifier noise.

  1. A High Efficiency Wavelength Conversion Scheme Based on Four Wave Minxing in a Semiconductor Optical Amplifier

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new approach of all optical wavelength converter based on four wave mixing (FWM) in a semiconductor optical amplifier (SOA) with the conjugate wave reflected by a fiber Bragg grating (FBG) and then amplified by the SOA is reported. By adjusting the pump power, the conversion efficiency could be improved 7~10dB with signal-to-background-noise-ratio (SBR) deteriorated 1~2dB, compared with traditional single pump four wave mixing.

  2. Microwave photonic true time delay based on cross gain modulation in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Mørk, Jesper

    2010-01-01

    We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained.......We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained....

  3. Pulse propagation in a two-pass optical amplifier with arbitrary laser beams overlap

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2011-09-01

    Full Text Available An analytical model for two-pass optical amplifier with arbitrary beams overlap has been developed which generalized the classical theory of Frantz-Nodvik for single pass amplifier. The effect of counterpropagating beams on gain and output energy fluence included in the model. Moreover, the appropriate limiting relations for two special cases of weak input signal and saturation state of the amplifier gain have been derived. The results indicate that for complete beams overlap, the gain and output energy have the least values. The model predictions are consistent with experimental observations and exact analytical model for two-pass amplifier when beam propagation paths are coincided.

  4. Inverse four-wave-mixing and self-parametric amplification effect in optical fibre.

    Science.gov (United States)

    Turitsyn, Sergei K; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Papernyi, Serguei B; Clements, Wallace R L

    2015-09-01

    An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics.

  5. Body-centered cubic dissipative crystal formation in a dispersive and diffractive optical parametric oscillator.

    Science.gov (United States)

    Tlidi, M; Pieroux, D; Mandel, Paul

    2003-09-15

    We show that coupling diffraction and chromatic dispersion lead to body-centered cubic and hexagonally packed cylinders of dissipative optical crystals in a degenerate optical parametric oscillator. The stabilization of these crystals is a direct consequence of the interaction between the modulational and the quasi-neutral modes.

  6. Gain recovery in a quantum dot semiconductor optical amplifier and corresponding pattern effects in amplified optical signals at 1.5 μm.

    Science.gov (United States)

    Park, J; Jang, Y D; Baek, J S; Kim, N J; Yee, K J; Lee, H; Lee, D; Pyun, S H; Jeong, W G; Kim, J

    2012-03-12

    Fast gain recovery observed in quantum-dot semiconductor-optical-amplifiers (QDSOAs) is useful for amplifying high-speed optical signals. The small but finite slow recovery component can deteriorate the signal amplification due to the accumulation of gain saturation during 10 Gb/s operation. A study of the gain recoveries and pattern effects in signals amplified using a 1.5 μm InAs/InGaAsP QDSOA reveals that the gain recovery is always fast, and pattern-effect-free amplification is observed at the ground state. However, at the excited state, the slow component increases with the current, and significant pattern effects are observed. Simulations of the pattern effects agreed with the observed experimental trends.

  7. Tunable propagation delay of femtosecond pulse in quantum-dot optical amplifier at room temperature

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    Optically induced dispersion over a large bandwidth of 2.6 THz is used to slow or speed up a 150 fs pulse in a quantum-dot optical amplifier. A group refractive index change of 4*10-3 is observed.......Optically induced dispersion over a large bandwidth of 2.6 THz is used to slow or speed up a 150 fs pulse in a quantum-dot optical amplifier. A group refractive index change of 4*10-3 is observed....

  8. Tunable propagation delay of femtosecond pulses in a quantum-dot optical amplifier at room temperature

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    Optically induced dispersion over a large bandwidth of 2.6 THz is used to slow or speed up a 150 fs pulse in a quantum-dot optical amplifier. A group refractive index change of 4*10-3 is observed......Optically induced dispersion over a large bandwidth of 2.6 THz is used to slow or speed up a 150 fs pulse in a quantum-dot optical amplifier. A group refractive index change of 4*10-3 is observed...

  9. On the Theory of the Modulation Instability in Optical Fibre Amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Turitsyn, S K; Rubenchik, A M; Fedoruk, M P

    2010-05-10

    The modulation instability (MI) in optical fiber amplifiers and lasers with anomalous dispersion leads to CW radiation break-up and growth of multiple pulses. This can be both a detrimental effect limiting the performance of amplifiers, and also an underlying physical mechanism in the operation of MI-based devices. Here we revisit the analytical theory of MI in fiber optical amplifiers. The results of the exact theory are compared with the previously used adiabatic approximation model and the range of applicability of the later is determined.

  10. Implementation of a non-deterministic optical noiseless amplifier

    CERN Document Server

    Ferreyrol, Franck; Blandino, Remi; Fossier, Simon; Tualle-Brouri, Rosa; Grangier, Philippe

    2009-01-01

    Quantum mechanics imposes that any amplifier that works independently on the phase of the input signal has to introduce some excess noise. The impossibility of such a noiseless amplifier is rooted into unitarity and linearity of quantum evolution. A possible way to circumvent this limitation is to interrupt such evolution via a measurement, providing a random outcome able to herald a successful - and noiseless - amplification event. Here we show a successful realisation of such an approach; we perform a full characterization of an amplified coherent state using quantum homodyne tomography, and observe a strong heralded amplification, with about 6dB gain and a noise level significantly smaller than the minimal allowed for any ordinary phase-independent device.

  11. Multipass diode-pumped solid-state optical amplifier

    Science.gov (United States)

    Plaessmann, Henry; Re, Sean A.; Alonis, Joseph J.; Vecht, David L.; Grossman, William M.

    1993-01-01

    A new diode-pumped solid-state multipass amplifier produced 38-dB small-signal gain at 1.047 micron in Nd:YLF with 1.6-W pump power and 37 percent extraction efficiency near saturation. The amplifier had a 1:1 confocally reimaging multipass design that generated both high gain and high efficiency. The same amplifier design with 13 W of pump power was tested with Nd:YAG at 1.064 micron, which gave 38-dB small-signal gain and 3.2 W of output power, and with Nd:YVO4, also at 1.064 micron, which gave greater than 50-dB small-signal gain and 4.3 W of output power.

  12. Remote Optical Imagery of Obscured Objects in Low-Visibility Environments Using Parametric Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Asher, R.B.; Bliss, D.E.; Cameron, S.M.; Hamil, R.A.

    1998-10-14

    The development of unconventional active optical sensors to remotely detect and spatially resolve suspected threats obscured by low-visibility observation conditions (adverse weather, clouds, dust, smoke, precipitation, etc.) is fundamental to maintaining tactical supremacy in the battlespace. In this report, the authors describe an innovative frequency-agile image intensifier technology based on time-gated optical parametic amplification (OPA) for enhanced light-based remote sensing through pervasive scattering and/or turbulent environments. Improved dynamic range characteristics derived from the amplified passband of the OPA receiver combined with temporal discrimination in the image capture process will offset radiant power extinction losses, while defeating the deugradative effects & multipath dispersion and ,diffuse backscatter noise along the line-of-sight on resultant image contrast and range resolution. Our approach extends the operational utility of the detection channel in existing laser radar systems by increasing sensitivity to low-level target reffectivities, adding ballistic rejection of scatter and clutter in the range coordinate, and introducing multispectral and polarization discrimination capability in a wavelen~h-tunable, high gain nonlinear optical component with strong potential for source miniaturization. A key advantage of integrating amplification and tlequency up-conversion functions within a phasematched three-wave mixing parametric device is the ability to petiorm background-free imaging with eye-safe or longer inilared illumination wavelengths (idler) less susceptible to scatter without sacrificing quantum efficiency in the detection process at the corresponding signal wavelength. We report benchmark laboratory experiments in which the OPA gating process has been successfidly demonstrated in both transillumination and reflection test geometries with extended pathlengths representative of realistic coastal sea water and cumulus cloud

  13. Semiconductor quantum dot amplifiers for optical signal processing

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Uskov, A. V.; Bischoff, Svend

    2001-01-01

    The dynamics of quantum dot semiconductor amplifiers are investigated theoretically with respect to the potential for ultrafast signal processing. The high-speed signal processing capacity of these devices is found to be limited by the wetting layer dynamics in case of electrical pumping, while...

  14. Semiconductor quantum dot amplifiers for optical signal processing

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Uskov, A. V.; Bischoff, Svend

    2001-01-01

    The dynamics of quantum dot semiconductor amplifiers are investigated theoretically with respect to the potential for ultrafast signal processing. The high-speed signal processing capacity of these devices is found to be limited by the wetting layer dynamics in case of electrical pumping, while...

  15. Optimum design of Nd-doped fiber optical amplifiers

    DEFF Research Database (Denmark)

    Rasmussen, Thomas; Bjarklev, Anders Overgaard; Lumholt, Ole

    1992-01-01

    The waveguide parameters for a Nd-doped fluoride (Nd:ZBLANP) fiber amplifier have been optimized for small-signal and booster operation using an accurate numerical model. The optimum cutoff wavelength is shown to be 800 nm and the numerical aperture should be made as large as possible. Around 80...

  16. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator.

    Science.gov (United States)

    Fan, Jintao; Gu, Chenglin; Wang, Chingyue; Hu, Minglie

    2016-06-13

    We experimentally demonstrate a compact tunable, high average power femtosecond laser source in the ultraviolet (UV) regime. The laser source is based on intra-cavity frequency doubling of a temperature-tuned lithium tribotate (LBO) optical parametric oscillator (OPO), synchronously pumped at 520 nm by a frequency-doubled, Yb-fiber femtosecond laser amplifier system. By adjusting crystal temperature, the OPO can provide tunable visible to near-infrared (NIR) signal pulse, which have a wide spectral tuning range from 660 to 884 nm. Using a β-barium borate (BBO) crystal for intra-cavity frequency doubling, tunable femtosecond UV pulse are generated across 330~442 nm with up to 364 mW at 402 nm.

  17. Phase Sensitive Amplification using Parametric Processes in Optical Fibers

    DEFF Research Database (Denmark)

    Kang, Ning

    , in specific, the design and optimization of such phase sensitive amplifiers (PSAs). For phase sensitive amplification in highly nonlinear fibers, optima points of operation have been identified for both the standard and the novel high stimulated Brillouin scattering (SBS) threshold highly nonlinear fiber....... Finally, preliminary simulations were carried out to investigate the inline amplification properties of such PSAs, and their pulse shaping capabilities....

  18. All-optical NRZ-to-RZ data format conversion with optically injected laser diode or semiconductor optical amplifier

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-09-01

    By injecting the optical NRZ data into a Fabry-Perot laser diode (FPLD) synchronously modulated at below threshold condition or a semiconductor optical amplifier (SOA) gain-depleted with a backward injected clock stream, the all-optical non-return to zero (NRZ) to return-to-zero (RZ) format conversion of a STM-64 date-stream for synchronous digital hierarchy (SDH) or an OC-192 data stream for synchronous optical network (SONET) in high-speed fiber-optic communication link can be performed. Without the assistance of any complicated RF electronic circuitry, the output RZ data-stream at bit rate of up to 10 Gbit/s is successfully transformed in the optically NRZ injection-locked FPLD, in which the incoming NRZ data induces gain-switching of the FPLD without DC driving current or at below threshold condition. A power penalty of 1.2 dB is measured after NRZ-to-RZ transformation in the FPLD. Alternatively, the all-optical 10Gbits/s NRZ-to-RZ format conversion can also be demonstrated in a semiconductor optical amplifier under a backward dark-optical-comb injection with its duty-cycle 70%, which is obtained by reshaping from the received data clock at 10 GHz. The incoming optical NRZ data-stream is transformed into a pulsed RZ data-stream with its duty-cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. In contrast to the FPLD, the SOA based NRZ-to-RZ converter exhibits an enhanced extinction ratio from 7 to 13 dB, and BER of 10 -13 at -18.5 dBm. In particular, the power penalty of the received RZ data-stream has greatly improved by 5 dB as compared to that obtained from FPLD.

  19. Optical label switching in telecommunication using semiconductor lasers, amplifiers and electro-absorption modulators

    DEFF Research Database (Denmark)

    Chi, Nan; Christiansen, Lotte Jin; Jeppesen, Palle

    2004-01-01

    We demonstrate all-optical label encoding and updating for an orthogonally labeled signal in combined IM/FSK modulation format utilizing semiconductor lasers, semiconductor optical amplifiers and electro-absorption modulators. Complete functionality of a network node including two-hop transmissio...

  20. Cascaded transformerless DC-DC voltage amplifier with optically isolated switching devices

    Science.gov (United States)

    Sridharan, Govind (Inventor)

    1993-01-01

    A very high voltage amplifier is provided in which plural cascaded banks of capacitors are switched by optically isolated control switches so as to be charged in parallel from the preceding stage or capacitor bank and to discharge in series to the succeeding stage or capacitor bank in alternating control cycles. The optically isolated control switches are controlled by a logic controller whose power supply is virtually immune to interference from the very high voltage output of the amplifier by the optical isolation provided by the switches, so that a very high voltage amplification ratio may be attained using many capacitor banks in cascade.

  1. Static thermo-optic instability in double-pass fiber amplifiers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2016-01-01

    A coupled-mode formalism, earlier used to describe transverse mode instabilities in single-pass optical fiber amplifiers, is extended to the case of double-pass amplifiers. Contrary to the single-pass case, it is shown that the thermo-optic nonlinearity can couple light at the same frequency...... between the LP01 and LP11 modes, leading to a static deformation of the output beam profile. This novel phenomenon is caused by the interaction of light propagating in either direction with thermo-optic index perturbations caused by light propagating in the opposite direction. The threshold power...

  2. Aperture scaling effects with monolithic periodically poled lithium niobate optical parametric oscillators and generators.

    Science.gov (United States)

    Missey, M; Dominic, V; Powers, P; Schepler, K L

    2000-02-15

    We used elliptical beams to demonstrate aperture scaling effects in nanosecond single-grating and multigrating periodically poled lithium niobate (PPLN) monolithic optical parametric oscillators and generators. Increasing the cavity Fresnel number in single-grating crystals broadened both the beam divergence and the spectral bandwidth. Both effects are explained in terms of the phase-matching geometry. These effects are suppressed when a multigrating PPLN crystal is used because the individual gratings provide small effective subapertures. A flood-pumped multigrating optical parametric generator displayed a low output beam divergence and contained 19 pairs of signal and idler frequencies.

  3. Spectral characterization of a frequency comb based on cascaded quadratic nonlinearities inside an optical parametric oscillator

    CERN Document Server

    Ulvila, Ville; Halonen, Lauri; Vainio, Markku

    2015-01-01

    We present an experimental study of optical frequency comb generation based on cascaded quadratic nonlinearities inside a continuous-wave-pumped optical parametric oscillator. We demonstrate comb states which produce narrow-linewidth intermode beat note signals, and we verify the mode spacing uniformity of the comb at the Hz level. We also show that spectral quality of the comb can be improved by modulating the parametric gain at a frequency that corresponds to the comb mode spacing. We have reached a high average output power of over 4 W in the near-infrared region, at ~2 {\\mu}m.

  4. Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Matsumoto, Atsushi; Kawanishi, Tetsuya

    2016-04-01

    A monolithically integrated quantum dot (QD) optical gain modulator (OGM) with a QD semiconductor optical amplifier (SOA) was successfully developed with T-band (1.0 µm waveband) and O-band (1.3 µm waveband) QD optical gain materials for Gbps-order, high-speed optical data generation. The insertion loss due to coupling between the device and the optical fiber was effectively compensated for by the SOA section. It was also confirmed that the monolithic QD-OGM/SOA device enabled >4.8 Gbps optical data generation with a clear eye opening in the T-band. Furthermore, we successfully demonstrated error-free 4.8 Gbps optical data transmissions in each of the six wavelength channels over a 10-km-long photonic crystal fiber using the monolithic QD-OGM/SOA device in multiple O-band wavelength channels, which were generated by the single QD gain chip. These results suggest that the monolithic QD-OGM/SOA device will be advantageous in ultra-broadband optical frequency systems that utilize the T+O-band for short- and medium-range optical communications.

  5. All-Optical Quantum Random Bit Generation from Intrinsically Binary Phase of Parametric Oscillators

    CERN Document Server

    Marandi, Alireza; Vodopyanov, Konstantin L; Byer, Robert L

    2012-01-01

    True random number generators (RNGs) are desirable for applications ranging from cryptogra- phy to computer simulations. Quantum phenomena prove to be attractive for physical RNGs due to their fundamental randomness and immunity to attack [1]- [5]. Optical parametric down conversion is an essential element in most quantum optical experiments including optical squeezing [9], and generation of entangled photons [10]. In an optical parametric oscillator (OPO), photons generated through spontaneous down conversion of the pump initiate the oscillation in the absence of other inputs [11, 12]. This quantum process is the dominant effect during the oscillation build-up, leading to selection of one of the two possible phase states above threshold in a degenerate OPO [13]. Building on this, we demonstrate a novel all-optical quantum RNG in which the photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We implement a synchronously pumped twin degenerate O...

  6. All-optical pulse data generation in a semiconductor optical amplifier gain controlled by a reshaped optical clock injection

    Science.gov (United States)

    Lin, Gong-Ru; Chang, Yung-Cheng; Yu, Kun-Chieh

    2006-05-01

    Wavelength-maintained all-optical pulse data pattern transformation based on a modified cross-gain-modulation architecture in a strongly gain-depleted semiconductor optical amplifier (SOA) is investigated. Under a backward dark-optical-comb injection with 70% duty-cycle reshaping from the received data clock at 10GHz, the incoming optical data stream is transformed into a pulse data stream with duty cycle, rms timing jitter, and conversion gain of 15%, 4ps, and 3dB, respectively. The high-pass filtering effect of the gain-saturated SOA greatly improves the extinction ratio of data stream by 8dB and reduces its bit error rate to 10-12 at -18dBm.

  7. Propagation delay of femtosecond pulses in an optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    The recent realization of tunable propagation delay of optical pulses in solid-state and semiconductor optical media1,2 has attracted great attention as such a functionality enables a whole new class of optical components in optical communications systems and signal processing3. The reported...... measurements as function of injected bias current. Good agreement is found with simple models of the real and imaginary parts of the active material's susceptibility. 1 M.S. Bigelow, N.N. Lepeshkin, and R. Boyd, Phys. Rev. Lett. 90, 113903-1—4 (2003) 2 P.-C. Ku et al., Opt. Lett. 19, 2291—2293 (2004) 3 C...

  8. Optical amplifier exhibiting net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation and method of operation

    Science.gov (United States)

    Feve, Jean-Philippe; Kliner, Dahv A. V.; Farrow; Roger L.

    2011-02-01

    An optical amplifier, such as an optical waveguide amplifier (e.g., an optical fiber amplifier or a planar waveguide) or a non-guiding optical amplifier, that exhibits a net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation thereof is disclosed. In one aspect of the invention, an optical amplifier structure includes at least one optical amplifier having a length and a gain region. The at least one optical amplifier exhibits a net phase-mismatch that varies along at least part of the length thereof selected to at least partially reduce gain-induced phase-matching during operation thereof.

  9. WDM-PON network simulation with different implementation of optical amplifier in the line

    Science.gov (United States)

    Latal, Jan; Koudelka, Petr; Siska, Petr; Vitasek, Jan; Vasinek, Vladimir

    2014-09-01

    This article is dealing with simulation of deployment of different optical amplifier types in different positions (power amplifier, in-line amplifier, preamplifier) in the WDM-PON network. For simulation available bit rates per chanell were taken in to account, specifically 125 Mbps, 1.25 Gbps and 2.5 Gbps. Optical amplifiers implementation than has influence on possible transmission distance for WDM-PON network. In simulated topology parameters as bit error ratio, attenuation, Q-factor, OSNR, etc. were observed. The whole designed WDM-PON network topology was based on real device Ericsson-LG EAST1100 available on the market. Necessary parameters and data for simulation were obtained from datasheets and real measurements so that the simulation resemble to the real measured results as much as possible.

  10. In-Phase Wavelength Conversion Based On Cross-Gain Modulation in Semiconductor Optical Amplifier

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xinliang; HUANG Dexiu; SUN Junqiang; LIU Deming; YI Heqing

    2000-01-01

    In-phase wavelength conversion based on cross-gain modulation in a semiconductor optical amplifier biased around critical threshold current has been demonstrated. The converted signal and the pump signal have the same bit sequence 1101011000. The stimulated emission competition between the amplification of input signals and the amplified spontaneous emission was used to illustrate the conversion mechanism. Experiment results showed that in-phase wavelength conversion can be achieved with simple structure and high output extinction ratio.

  11. Monolithic integration of widely tunable sampled grating DBR laser with tilted semiconductor optical amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yang; Ye Nan; Wang Baojun; Zhou Daibing; An Xin; Bian Jing; Pan Jiaoqing; Zhao Lingjuan; Wang Wei, E-mail: matsu@semi.ac.c [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2010-07-15

    High output powers and wide range tuning have been achieved in a sampled grating distributed Bragg reflector laser with an integrated semiconductor optical amplifier. Tilted amplifier and anti-reflection facet coating are used to suppress reflection. We have demonstrated sampled grating DBR laser with a tuning range over 38 nm, good wavelength coverage and peak output powers of more than 9 mW for all wavelengths.

  12. Effective amplifier noise for an optical receiver based on linear mode avalanche photodiodes

    Science.gov (United States)

    Chen, C.-C.

    1989-01-01

    The rms noise charge induced by the amplifier for an optical receiver based on the linear-mode avalanche photodiode (APD) was analyzed. It is shown that for an amplifier with a 1-pF capacitor and a noise temperature of 100 K, the rms noise charge due to the amplifier is about 300. Since the noise charge must be small compared to the signal gain, APD gains on the order of 1000 will be required to operate the receiver in the linear mode.

  13. An analytical study on bistability of Fabry-Perot semiconductor optical amplifiers

    Science.gov (United States)

    Wang, Gang; Chen, Shuqiang; Yang, Huajun

    2016-09-01

    Optical bistabilities have been considered to be useful for sensor applications. As a typical nonlinear device, Fabry-Perot semiconductor optical amplifiers (FPSOAs) exhibit bistability under certain conditions. In this paper, the bistable characteristics in FPSOAs are investigated theoretically. Based on Adams's relationship between the incident optical intensity I in and the z-independent average intracavity intensity I av, an analytical expression of the bistable loop width in SOAs is derived. Numerical simulations confirm the accuracy of the analytical result.

  14. BBO晶体光参量放大研究%A Theoretical Evaluation of Optical Parametric Amplification in BBO Crystal

    Institute of Scientific and Technical Information of China (English)

    SHAO Min; XUE Shao-lin; LIN Zun-qi

    2005-01-01

    The noncollinear optical parametric amplification in BBO crystal is theoretically investigated. The phase matching angle, gain bandwidth, optimal noncollinear angle and conversion efficiency for both type-Ⅰ and type-Ⅱ BBO are simulated. The numerical simulation results are important to the practical optical parametric amplification experiments with BBO crystal.

  15. Propagation delay of femtosecond pulses in an optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    The recent realization of tunable propagation delay of optical pulses in solid-state and semiconductor optical media1,2 has attracted great attention as such a functionality enables a whole new class of optical components in optical communications systems and signal processing3. The reported...... results show a large reduction in group velocity but this was achieved at the cost of a small bandwidth (e.g. 37 Hz in the case of Bigelow et al.1) of the probe signal. In this paper, we report measurements of slowing down and speeding up of the propagation of 150 fs pulses, having a very large bandwidth....... In the first experiment, we prepare a narrow peak or dip in the SOA gain spectrum by injection of a strong pump pulse4. The resulting dispersion feature is then probed by a weak pulse. In the second experiment, we measure self-slowdown or advancement as pulse energy isincreased5. In both cases, we perform...

  16. Polarization dependent dispersion and its impact on optical parametric process in high nonlinear microstructure fibre

    Institute of Scientific and Technical Information of China (English)

    Xiao Li; Zhang Wei; Huang Yi-Dong; Peng Jiang-De

    2008-01-01

    High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency dctunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift.

  17. Highly efficient optical parametric generation in proton exchanged PPLN waveguides

    CERN Document Server

    Chanvillard, L; Baldi, P; De Micheli, M; Ostrowsky, D B; Huang, L; Bamford, G

    1999-01-01

    Summary form only given. Parametric fluorescence, amplification, and oscillation in PPLN waveguides have already been demonstrated. In all previous experiments, the measured efficiencies were smaller than the theoretically predicted values since the waveguide fabrication process utilized, annealed proton exchange (APE) can reduce or even destroy the nonlinear coefficient and/or the periodic domain orientation in a portion of the guiding structure. In the experiment reported here, we used a 2 cm long, Z-cut PPLN with a 18 mu m domain inversion period. The waveguides are created using a direct proton exchange process in a highly diluted melt, which induces no crystallographic phase transition. This allows preserving both the nonlinear coefficient and the domain orientation while fully benefiting from the power confinement associated with the guided wave configuration. (4 refs).

  18. Investigation of a diode-pumped intracavity optical parametric oscillator in pulsed and continuous wave operation

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Skettrup, Torben; Balle-Petersen, O.;

    2001-01-01

    Summary form only given. CW and pulsed compact tunable laser sources in the infrared have widespread scientific, medical and industrial applications. Such a laser source can be obtained by use of a diode-pumped intracavity optical parametric oscillator (IOPO). We report on a IOPO based on a Yb...

  19. Prospects of obtaining terawatt class infrared pulses using standard optical parametric amplification

    Science.gov (United States)

    Guo, Xiaoyang; Tokita, Shigeki; Tu, Xiaoniu; Zheng, Yanqing; Kawanaka, Junji

    2017-02-01

    We conceptually propose a standard optical parametric amplification system based on YCOB crystal to achieve terawatt (TW) class infrared (IR) pulses with 100 mJ level energy, which would be one order of magnitude more energetic and powerful than currently available IR pulses and suitable to generate high photon flux water window x-rays.

  20. Thermal self-frequency locking of doubly-resonant optical parametric oscillator

    DEFF Research Database (Denmark)

    Hansen, P.L.; Buchhave, Preben

    1997-01-01

    The increase in the circulating signal and idler fields that occurs in a high-Q doubly resonant optical parametric oscillator (OPO) as it approaches resonance results in a small increase in the crystal temperature owing to absorption of the generated fields. The temperature change affects...

  1. Microsecond pulsed optical parametric oscillator pumped by a Q-switched fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Adel, P.; Auerbach, M.; Fallnich, C.; Gross, P.; Boller, Klaus J.

    2003-01-01

    We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-ms-long pulses from an actively Q-switched Y

  2. Parametric interaction of optical modes in fiber-optic light guide

    Science.gov (United States)

    Stirzhevskiy, V. L.; Fonmaniy, V. A.; Yashkir, Yu. N.

    1987-10-01

    Parametric interaction of optical modes in an arbitrary fiber-optic structure with quadratically nonlinear susceptibility is analyzed, assuming propagation of natural modes along the fiber axis and a known transverse field distribution. Generation of a sum-frequency wave by interaction of a pump wave and an infrared signal wave is considered, for specificity, assuming that the amplitudes of all three fields vary slowly as functions of the longitudinal coordinate. The corresponding system of integro-differential equations is solved for TEM modes, in standard shorthand notation, with the mathematical apparatus of Bessel and Hankel functions. The solution yields the overlap integral and the Umov-Poynting vector. On this basis we calculate the dependence of the conversion efficiency on the fiber radius and on the half-width of the Gaussian pump-power distribution over modes in a fiber of given radius, this half-width being normalized to the number of the highest-order mode still propagating at the pump wavelength and being proportional to the angular width of the laser beam at the fiber entrance.

  3. Stable integrated hyper-parametric oscillator based on coupled optical microcavities

    CERN Document Server

    Armaroli, Andrea; Dumeige, Yannick

    2015-01-01

    We propose a flexible scheme based on three coupled optical microcavities which permits to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find the different dynamical regimes (soft and hard excitation) to affect the oscillation intensity but not their period. This configuration may permit to implement compact hyper-parametric sources on an integrated optical circuit, with interesting applications in communications, sensing and metrology.

  4. All optical wavelength conversion and parametric amplification in Ti:PPLN channel waveguides for telecommunication applications

    Energy Technology Data Exchange (ETDEWEB)

    Nouroozi, Rahman

    2010-10-19

    Efficient ultra-fast integrated all-optical wavelength converters and parametric amplifiers transparent to the polarization, phase, and modulation-level and -format are investigated. The devices take advantage of the optical nonlinearity of Ti:PPLN waveguides exploiting difference frequency generation (DFG). In a DFG, the signal ({lambda}{sub s}) is mixed with a pump ({lambda}{sub p}) to generate a wavelength shifted idler (1/{lambda}{sub i}=1/{lambda}{sub p}-1/{lambda}{sub s}). Efficient generation of the pump in Ti:PPLN channel guides is investigated using different approaches. In the waveguide resonators, first a resonance of the fundamental wave alone is considered. It is shown that the maximum power enhancement of the fundamental wave, and therefore the maximum second-harmonic generation (SHG) efficiency, can be achieved with low loss matched resonators. By this way, SHG efficiency of {proportional_to}10300%/W (10.3 %/mW) has been achieved in a 65 mm long waveguide resonator. Its operation for cSHG/DFG requires narrowband reflector for fundamental wave only. Thus, the SH (pump) wave resonator is investigated. The SH-wave resonator enhances the intracavity SH power only. Based on this scheme, an improvement of {proportional_to}10 dB for cSHG/DFG based wavelength conversion efficiency has been achieved with 50 mW of coupled fundamental power in a 30 mm long Ti:PPLN. However, operation was limited to relatively small fundamental power levels (<50 mW) due to the onset of photorefractive instabilities destroying the cavity stabilization. The cSHG/DFG efficiency can be considerably improved by using a double-pass configuration in which all the interacting waves were reflected by a broadband dielectric mirror deposited on the one endface of the waveguide. Three different approaches are investigated and up to 9 dB improvement of the wavelength conversion efficiency in comparison with the single-pass configuration is achieved. Polarization-insensitive wavelength

  5. Alpha parameter in quantum-dot amplifier under optical and electrical carrier modulation

    DEFF Research Database (Denmark)

    Poel, Mike van der; Birkedal, Dan; Hvam, Jørn Märcher;

    2004-01-01

    Alpha parameter of a long-wavelength quantum-dot amplifier near 1.3 ìm is measured to be below one even with saturated gain. A simple model explains difference in apparent alpha parameter under optical and electrical carrier modulation.......Alpha parameter of a long-wavelength quantum-dot amplifier near 1.3 ìm is measured to be below one even with saturated gain. A simple model explains difference in apparent alpha parameter under optical and electrical carrier modulation....

  6. Crosstalk in 1.5-μm InGaAsP optical amplifiers

    DEFF Research Database (Denmark)

    Lassen, H. E.; Hansen, Peter Bukhave; Stubkjær, Kristian

    1988-01-01

    A dynamical model for multichannel amplification by near-traveling-wave optical amplifiers is presented, and results on crosstalk induced by either amplitude modulation or frequency modulation are given. The mechanisms influencing the crosstalk most are the residual facet reflectivities and the d......A dynamical model for multichannel amplification by near-traveling-wave optical amplifiers is presented, and results on crosstalk induced by either amplitude modulation or frequency modulation are given. The mechanisms influencing the crosstalk most are the residual facet reflectivities...

  7. InP based lasers and optical amplifiers with wire-/dot-like active regions

    DEFF Research Database (Denmark)

    Reithmaier, J. P.; Somers, A.; Deubert, S.

    2005-01-01

    Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 - 1.65 mm. In a brief overview different technological approaches will be ......Long wavelength lasers and semiconductor optical amplifiers based on InAs quantum wire/dot-like active regions were developed on InP substrates dedicated to cover the extended telecommunication wavelength range between 1.4 - 1.65 mm. In a brief overview different technological approaches...

  8. Theoretical analysis on double Rayleigh backscattering noise in optical fibre Raman amplifiers and its suppression

    Institute of Scientific and Technical Information of China (English)

    Jiang Wen-Ning; Chen Jian-Ping; Li Xin-Wan; Shang Tao

    2004-01-01

    In this paper, amplified double Rayleigh backscattering noise (DRB) in the optical fibre Raman amplifier is analysed. Expressions are presented for both forward pumping and backward pumping schemes. Calculation is performed to show the effective suppression of DRB noise by employing an optical isolator. The optimal position for the isolator is determined and is found to be insensitive to the power levels of the signals and pumps. The results show that a reduction of the DRB noise by almost 2 to 3 orders can be reached.

  9. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude......We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  10. Lanthanide-Activated Fiber Materials for Broadband Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Yong; Gyu; Choi; Bong; Je; Park; Doo; Hee; Cho; Hong; Seok; Seo; Myung; Hyun; Lee; Kyong; Hon; Kim

    2003-01-01

    Some intra-4/-configurational transitions of lanthanide, of which radiative emissions cover in wavelengths the optical communication window of the currently available OH-free silica-based line fibers, are discussed in terms of relationship between their emission properties and host fiber materials.

  11. Fast optical source for quantum key distribution based on semiconductor optical amplifiers

    CERN Document Server

    Jofre, M; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; Juan, J L San; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V; 10.1364/OE.19.003825

    2011-01-01

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as $1.14\\times 10^{-2}$ while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size,...

  12. Fast optical source for quantum key distribution based on semiconductor optical amplifiers.

    Science.gov (United States)

    Jofre, M; Gardelein, A; Anzolin, G; Amaya, W; Capmany, J; Ursin, R; Peñate, L; Lopez, D; San Juan, J L; Carrasco, J A; Garcia, F; Torcal-Milla, F J; Sanchez-Brea, L M; Bernabeu, E; Perdigues, J M; Jennewein, T; Torres, J P; Mitchell, M W; Pruneri, V

    2011-02-28

    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14×10⁻² while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.

  13. Performance study of macro-bending EDFA/Raman hybrid optical fiber amplifiers

    Science.gov (United States)

    Mahran, O.

    2015-10-01

    In this paper, we present an analytical study of a (macro-bending EDFA)/Raman hybrid optical amplifier. The bending radius is 4 mm with EDFA length 10 m with forward pump power in the range (100-500 mW) and Raman amplifier length (12-55 km) with backward pump power variations (80-200 mW) is considered in our model. Due to bending loss in EDFA, the gain of hybrid amplifier is increased to ~7 dB more than the normal EDFA/Raman hybrid amplifier and the noise figure is decreased by ~2 dB rather than without macro-bending EDFA/Raman hybrid amplifier. The signal to noise ratio (OSNR) calculations shows a better performance of macro-bending EDFA/Raman hybrid amplifier than without macro-bending one. A flat gain is obtained in the signal wavelength region (1560-1600 nm), which is the L-band. The calculated results for macro-bending case are compared with experimental results of normal case by Lee et al., in the L-band showing an increase in the gain, reduction in the noise figure and more gain flatness at the input signal -20 dBm for macro-bending EDFA/Raman hybrid amplifier.

  14. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band

    Science.gov (United States)

    Firstov, Sergei V.; Alyshev, Sergey V.; Riumkin, Konstantin E.; Khopin, Vladimir F.; Guryanov, Alexey N.; Melkumov, Mikhail A.; Dianov, Evgeny M.

    2016-06-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150–1530 nm) and longer wavelength (1600–1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640–1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique.

  15. Schrodinger's Hat: Electromagnetic, acoustic and quantum amplifiers via transformation optics

    CERN Document Server

    Greenleaf, Allan; Lassas, Matti; Uhlmann, Gunther

    2011-01-01

    The advent of transformation optics and metamaterials has made possible devices producing extreme effects on wave propagation. Here we give theoretical designs for devices, Schr\\"odinger hats, acting as invisible concentrators of waves. These exist for any wave phenomenon modeled by either the Helmholtz or Schr\\"odinger equations, e.g., polarized waves in EM, pressure waves in acoustics and matter waves in QM, and occupy one part of a parameter space continuum of wave-manipulating structures which also contains standard transformation optics based cloaks, resonant cloaks and cloaked sensors. For EM and acoustic Schr\\"odinger hats, the resulting centralized wave is a localized excitation. In QM, the result is a new charged quasiparticle, a \\emph{quasmon}, which causes conditional probabilistic illusions. We discuss possible solid state implementations.

  16. Thermally robust semiconductor optical amplifiers and laser diodes

    Science.gov (United States)

    Dijaili, Sol P.; Patterson, Frank G.; Walker, Jeffrey D.; Deri, Robert J.; Petersen, Holly; Goward, William

    2002-01-01

    A highly heat conductive layer is combined with or placed in the vicinity of the optical waveguide region of active semiconductor components. The thermally conductive layer enhances the conduction of heat away from the active region, which is where the heat is generated in active semiconductor components. This layer is placed so close to the optical region that it must also function as a waveguide and causes the active region to be nearly the same temperature as the ambient or heat sink. However, the semiconductor material itself should be as temperature insensitive as possible and therefore the invention combines a highly thermally conductive dielectric layer with improved semiconductor materials to achieve an overall package that offers improved thermal performance. The highly thermally conductive layer serves two basic functions. First, it provides a lower index material than the semiconductor device so that certain kinds of optical waveguides may be formed, e.g., a ridge waveguide. The second and most important function, as it relates to this invention, is that it provides a significantly higher thermal conductivity than the semiconductor material, which is the principal material in the fabrication of various optoelectronic devices.

  17. Comparison of different fiber amplifiers in Yb-doped fiber femtosecond optical frequency combs

    Science.gov (United States)

    Liu, H.; Cao, S.; Lin, B.; Fang, Z.

    2016-12-01

    Recently, Yb-doped fiber femtosecond optical frequency combs (Yb-FOFCs) have obtained high repetition rates and high power outputs, and the wavelengths can cover the visible region by using a photonic crystal fiber to broaden the spectrum. In this paper, f0 (carrier-envelope offset frequency) with a signal-to-noise ratio (SNR) of 40 dB is generated in an Yb-FOFC by adopting a scheme which includes the three processes of amplifying, broadening the spectrum and detecting f0, and optimizing the system parameters. The effects of two types of amplifiers which employ direct optical pulse amplification and self-similar amplification, respectively, on the output parameters of the amplifiers, minimal output power of the octave spectrum meeting f0 detection requirements, and the SNR of f0 are compared and analyzed in detail.

  18. Parametric imaging of viscoelasticity using optical coherence elastography

    Science.gov (United States)

    Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.

    2015-03-01

    We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.

  19. Four-Wave Optical Parametric Amplification in a Raman-Active Gas

    Directory of Open Access Journals (Sweden)

    Yuichiro Kida

    2015-08-01

    Full Text Available Four-wave optical parametric amplification (FWOPA in a Raman-active medium is experimentally investigated by use of an air-filled hollow fiber. A femtosecond pump pulse shorter than the period of molecular motion excites the coherent molecular motion of the Raman-active molecules during the parametric amplification of a signal pulse. The excited coherent motion modulates the frequency of the signal pulse during the parametric amplification, and shifts it to lower frequencies. The magnitude of the frequency redshift depends on the pump intensity, resulting in intensity-dependent spectral characteristics that are different from those in the FWOPA induced in a noble-gas-filled hollow fiber.

  20. Generation of 2.1 m wavelength from degenerate high gray track resistant potassium titanyl phosphate optical parametric oscillator

    Indian Academy of Sciences (India)

    S Verma; C Mishra; V Kumar; M Yadav; K C Bahuguna; N S Vasan; S P Gaba

    2014-02-01

    This paper presents the experimental results of degenerate optical parametric generation using a high gray track resistant potassium titanyl phosphate (HGTR KTP) optical parametric oscillator (OPO). An average output power of 7 W at 10 kHz has been achieved that includes both signal and idler powers near degeneracy using 20Waverage power from a 1064 nm Nd:YVO4 pump source corresponding to an optical conversion efficiency of 35%.

  1. Parametric optimization of optical devices based on strong photonic localization

    Science.gov (United States)

    Gui, Minmin; Yang, Xiangbo

    2017-07-01

    Symmetric two-segment-connected triangular defect waveguide networks (STSCTDWNs) can produce strong photonic localization, which is useful for designing highly efficient energy storage devices, high power superluminescent light emitting diodes, all-optical switches, and more. Although STSCTDWNs have been studied in previous works, in this paper we systematically optimize the parameters of STSCTDWNs to further enhance photonic localization so that the function of optical devices based on strong photonic localization can be improved. When optimizing the parameters, we find a linear relationship between the logarithm of photonic localization and the broken degree of networks. Furthermore, the slope and intercept of the linear relationship are larger than previous results. This means that the increasing speed of photonic localization is improved. The largest intensity of photonic localizations can reach 1036, which is 16 orders of magnitude larger than previous reported results. These optimized networks provide practical solutions for all optical devices based on strong photonic localization in the low frequency range, such as nanostructured devices.

  2. Practical method for modelling the nonlinear behaviour of a travelling wave semiconductor optical amplifier

    OpenAIRE

    Ruiz Moreno, Sergio; Guitart Felip, Jorge

    1993-01-01

    The authors present a simple model of a travelling wave semiconductor optical amplifier with an appreciable degree of saturation. The model uses a particular way of linearising the total carrier recombination R(N) to find useful expressions for the saturation parameter and/or the carrier lifetime. By combining these expressions and the gain measurements realised, it is possible to establish the dependence between the mentioned parameters and the input optical power. Peer Reviewed

  3. Self-slowdown and -advancement of fs pulses in a quantum-dot semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    We demonstrate changes in the propagation time of 180 femtosecond pulses in a quantum-dot semiconductor optical amplifier as function of pulse input power and bias current. The results interpreted as a result of pulse reshaping by gain saturation but are also analogous to coherent population...... pulse distortion occurs at zero bias....

  4. Controllable delay of ultrashort pulses in a quantum dot optical amplifier

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Hvam, Jørn Märcher

    2005-01-01

    Optical and electrical tuning of the propagation time of 170 fs pulses in a quantum dot semiconductor amplifier at room temperature is demonstrated. Both pulse slowdown and advancement is possible and we achieve fractional delays (delay divided with pulse duration) of up to 40%. The results...

  5. Experimental investigation of chirp properties induced by signal amplification in quantum-dot semiconductor optical amplifiers.

    Science.gov (United States)

    Matsuura, Motoharu; Ohta, Hiroaki; Seki, Ryota

    2015-03-15

    We experimentally show the dynamic frequency chirp properties induced by signal amplification in a quantum-dot semiconductor optical amplifier (QD-SOA) for the first time. We also compare the red and blue chirp peak values and temporal chirp changes while changing the gain and injected signal powers of the QD-SOA with those of a common SOA.

  6. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  7. A transfer function approach to the small-signal response of saturated semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Blumenthal, D. J.; Mørk, Jesper

    2000-01-01

    A theoretical analysis of the small-signal frequency response (SSFR) of a wavelength converter based on cross-gain modulation in a semiconductor optical amplifier with a finite waveguide loss is presented. We use a transfer function formalism to explain the resonant behavior of the frequency...

  8. Linewidth broadening in a distributed feedback laser integrated with a semiconductor optical amplifier

    DEFF Research Database (Denmark)

    Champagne, A.; Camel, J.; Maciejko, R.

    2002-01-01

    The problem of the linewidth degradation in systems using distributed-feedback lasers together with strained-layer multi-quantum-well semiconductor optical amplifiers (SOAs) is examined. A modified expression for the linewidth in the case of antireflection-coated SOA output facets is derived...

  9. Cascaded Orientation-Patterned Gallium Arsenide Optical Parametric Oscillator for Improved Longwave Infrared Conversion Efficiency

    Science.gov (United States)

    Feaver, Ryan K.

    Optical parametric oscillators (OPOs) utilizing quasi-phase matched materials offer an appealing alternative to direct laser sources. Quasi-phase matched materials provide a useful alternative to traditional birefringent nonlinear optical materials and through material engineering, higher nonlinear coefficients can now be accessed. Orientation patterned gallium arsenide (OPGaAs) is an ideal material because of its broad IR transmission and large nonlinear coefficient. In contrast to ferroelectric materials, such as lithium niobate, where the pattern is fabricated through electric poling, zincblende materials, like OPGaAs, are grown epitaxially with the designed pattern. Generating longwave output from a much shorter pump wavelength, however, is relatively inefficiency due to the large quantum defect when compared to similar devices operating in the 3 - 5 mum regime. One method to increase pump to idler conversion efficiency is to recycle the undesired and higher energy signal photons into additional idler photons via a second nonlinear stage. An external amplifier stage can be utilized, where the signal and idler from the OPO are sent to a second nonlinear crystal in which the idler is amplified at the expense of the signal. Alternatively, the second crystal can be placed within the original OPO cavity where the signal from the first-stage acts as the pump for the second crystal and the resonant intensity of the signal is higher. Pumping the second crystal within the OPO should lead to higher conversion efficiency into the longwave idler. The grating period needed for the second crystal to use the signal from the first crystal to produce additional idler has the fortuitous advantage that it will not phase match to the original pump wavelength, avoiding unwanted nonlinear interactions. Therefore, a simple linear cavity can be utilized where the pump from the first-stage will simply propagate through the second crystal without undesired results. Without this feature

  10. Recent Advances of Distributed Optical Fiber Raman Amplifiers in Ultra Wide Wavelength Division Multiplexing Telecommunication Networks

    Directory of Open Access Journals (Sweden)

    Abd El–Naser A. Mohamed

    2012-05-01

    Full Text Available Recently, many research works have been focused on the fiber optic devices for optical communication systems. One of the main interests is on the optical amplifiers to boost a weak signal in the communication systems. In order to overcome the limitations imposed by electrical regeneration, a means of optical amplification was sought. The competing technology emerged: the first was Raman amplification. One reason was that the optical pump powers required for Raman amplification were significantly higher than that for Erbium doped fiber amplifier (EDFA, and the pump laser technology could not reliably deliver the required powers. However, with the improvement of pump laser technology Raman amplification is now an important means of expanding span transmission reach and capacity. We have deeply studied an analytical model for optical distributed Raman amplifiers (DRAs in the transmission signal power and pump power within Raman amplification technique in co-pumped, counter-pumped, and bi-directional pumping direction configurations through different types of fiber cable media. The validity of this model was confirmed by using experimental data and numerical simulations.

  11. Impact of temporal, spatial and cascaded effects on the pulse formation in ultra-broadband parametric amplifiers.

    Science.gov (United States)

    Lang, T; Harth, A; Matyschok, J; Binhammer, T; Schultze, M; Morgner, U

    2013-01-14

    A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects.

  12. The effect of input phase modulation to a phase-sensitive optical amplifier

    CERN Document Server

    Li, Tian; Horrom, Travis; Jones, Kevin M; Lett, Paul D

    2016-01-01

    Many optical applications depend on amplitude modulating optical beams using devices such as acousto-optical modulators (AOMs) or optical choppers. Methods to add amplitude modulation (AM) often inadvertently impart phase modulation (PM) onto the light as well. While this PM is of no consequence to many phase-insensitive applications, phase-sensitive processes can be affected. Here we study the effects of input phase and amplitude modulation on the output of a quantum-noise limited phase-sensitive optical amplifier (PSA) realized in hot $^{85}$Rb vapor. We investigate the dependence of PM on AOM alignment and demonstrate a novel approach to quantifying PM by using the PSA as a diagnostic tool. We then use this method to measure the alignment-dependent PM of an optical chopper which arises due to diffraction effects as the chopper blade passes through the optical beam.

  13. Broadband microwave phase shifter based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2009-01-01

    We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers.......We present a scheme to achieve tunable ~180 degrees microwave phase shifts at frequencies exceeding 100 GHz based on high speed cross gain modulation in quantum dot semiconductor optical amplifiers....

  14. High-speed pulse train amplification in semiconductor optical amplifiers with optimized bias current.

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H; Hou, Lianping; Kelly, Anthony E

    2017-02-01

    In this paper, we have experimentally investigated the optimized bias current of semiconductor optical amplifiers (SOAs) to achieve high-speed input pulse train amplification with high gain and low distortion. Variations of the amplified output pulse duration with the amplifier bias currents have been analyzed and, compared to the input pulse duration, the amplified output pulse duration is broadened. As the SOA bias current decreases from the high level (larger than the saturated bias current) to the low level, the broadened pulse duration of the amplified output pulse initially decreases slowly and then rapidly. Based on the analysis, an optimized bias current of SOA for high-speed pulse train amplification is introduced. The relation between the SOA optimized bias current and the parameters of the input pulse train (pulse duration, power, and repetition rate) are experimentally studied. It is found that the larger the input pulse duration, the lower the input pulse power or a higher repetition rate can lead to a larger SOA optimized bias current, which corresponds to a larger optimized SOA gain. The effects of assist light injection and different amplifier temperatures on the SOA optimized bias current are studied and it is found that assist light injection can effectively increase the SOA optimized bias current while SOA has a lower optimized bias current at the temperature 20°C than that at other temperatures.

  15. Parametric amplification and phase preserving amplitude regeneration of a 640 Gbit/s RZ-DPSK signal

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Galili, Michael; Mulvad, Hans Christian Hansen

    2013-01-01

    -pump fiber optical parametric amplifier (FOPA), 620 fs short optical pulses are successfully amplified with 15 dB gain with error-free performance and less than 1 dB power penalty. Phase-preserving amplitude regeneration based on gain saturation in the FOPA is carried out for optical signals with degraded...

  16. Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers.

    Science.gov (United States)

    Xiao, Feng; Alameh, Kamal; Lee, Yong Tak

    2009-12-07

    A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05 nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 dB. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 dB over the whole C-band.

  17. Cauchy-Schwarz characterization of tripartite quantum correlations in an optical parametric oscillator

    CERN Document Server

    Dechoum, K; Khoury, A Z; 10.1103/PhysRevA.83.063843

    2011-01-01

    We analyze the three-mode correlation properties of the electromagnetic field in a optical parametric oscillator below threshold. We employ a perturbative expansion of the It\\^o equations derived from the positive-P representation of the density matrix. Using the generalized Cauchy-Schwarz inequality, we investigate the genuine quantum nature of the triple correlations between the interacting fields, since in this case continuous variable entanglement is not detected by the van Loock-Furusawa criterion [Phys. Rev. A {\\bf 67}, 052315 (2003)]. Although not being a necessary condition, these triple correlations are a sufficient evidence of tripartite entanglement. Of course, our characterization of the quantum correlations is applicable to non-Gaussian states, which we show to be the case of the optical parametric oscillator below threshold, provided nonlinear quantum fluctuations are properly taken into account.

  18. Experimental demonstration of spatially coherent beam combining using optical parametric amplification.

    Science.gov (United States)

    Kurita, Takashi; Sueda, Keiichi; Tsubakimoto, Koji; Miyanaga, Noriaki

    2010-07-05

    We experimentally demonstrated coherent beam combining using optical parametric amplification with a nonlinear crystal pumped by random-phased multiple-beam array of the second harmonic of a Nd:YAG laser at 10-Hz repetition rate. In the proof-of-principle experiment, the phase jump between two pump beams was precisely controlled by a motorized actuator. For the demonstration of multiple-beam combining a random phase plate was used to create random-phased beamlets as a pump pulse. Far-field patterns of the pump, the signal, and the idler indicated that the spatially coherent signal beams were obtained on both cases. This approach allows scaling of the intensity of optical parametric chirped pulse amplification up to the exa-watt level while maintaining diffraction-limited beam quality.

  19. Phase matched parametric amplification via four-wave mixing in optical microfibers.

    Science.gov (United States)

    Abdul Khudus, Muhammad I M; De Lucia, Francesco; Corbari, Costantino; Lee, Timothy; Horak, Peter; Sazio, Pier; Brambilla, Gilberto

    2016-02-15

    Four-wave mixing (FWM) based parametric amplification in optical microfibers (OMFs) is demonstrated over a wavelength range of over 1000 nm by exploiting their tailorable dispersion characteristics to achieve phase matching. Simulations indicate that for any set of wavelengths satisfying the FWM energy conservation condition there are two diameters at which phase matching in the fundamental mode can occur. Experiments with a high-power pulsed source working in conjunction with a periodically poled silica fiber (PPSF), producing both fundamental and second harmonic signals, are undertaken to investigate the possibility of FWM parametric amplification in OMFs. Large increases of idler output power at the third harmonic wavelength were recorded for diameters close to the two phase matching diameters. A total amplification of more than 25 dB from the initial signal was observed in a 6 mm long optical microfiber, after accounting for the thermal drift of the PPSF and other losses in the system.

  20. Theory of Pulse Train Amplification Without Patterning Effects in Quantum Dot Semiconductor Optical Amplifiers

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    A theory for pulse amplification and saturation in quantum dot (QD) semiconductor optical amplifiers (SOAs) is developed. In particular, the maximum bit rate at which a data stream of pulses can be amplified without significant patterning effects is investigated. Simple expressions are derived...... that clearly show the dependence of the maximum bit rate on material and device parameters. A comparative analysis of QD, quantum well (QW), and bulk SOAs shows that QD SOAs may have superior properties; calculations predict patterning-free amplification up to bit rates of 150–200 Gb/s with pulse output...

  1. ZnCdSe/ZnSe quantum-dot semiconductor optical amplifiers

    Science.gov (United States)

    Al-Mossawi, Muwaffaq Abdullah

    2017-02-01

    Gain of CdZnSe quantum dot (QD) semiconductor optical amplifiers (SOAs) is studied theoretically using non-Markovian gain model including many-body effects. The calculations are done at three mole fractions. Spontaneous emission and noise figure of the amplifier are studied. The effect of shot noise is included. High gain, polarization independence, and low noise figure are characterize these QD-SOAs. A multi-mode gain appears for Zn0.69Cd0.31Se structure while the structure Zn0.6Cd0.4Se give a low noise.

  2. Polarization-independent wavelength conversion using a single semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Xu; Jue Wei; Zhihui Kang; Yun Jiang; Weizhong Zhu; Yunyun Qiao; Jinyue Gao

    2005-01-01

    @@ Polarization-independent wavelength conversion is demonstrated by using four-wave mixing (FWM) in a single semiconductor optical amplifier (SOA). In this scheme, all the incident fields are split into two orthogonal-polarized parts by polarizing beam splitters (PBS). Each of the two parts is then transmitted into one facet of the SOA and they are counter-propagating through the same amplifier. Wavelength conversion with the polarization sensitivity less than 1.3 dB is obtained over a range from 1510 to 1620 nm.

  3. Characteristics measurement of gain and refractive index of traveling-wave semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    MIAO Qing-yuan; Huang De-xiu; WANG Tao; KONG Xiao-jian; KE Chang-jian

    2005-01-01

    A novel method to measure the gain and refractive index characteristics of traveling-wave semiconductor optical amplifier(TMA) is presented.In-out fiber ends of TWA are used to construct an external cavity resonator to produce big ripple on amplified spontaneous emission(ASE) spectrum.By this means,Hakki-Paoli method is adopted to obtain the gain spectra of TWA over a wide spectral range.From measured longitudinal mode spacing and peak wavelength shift due to increased bias current,we further calculate the effective refractive index and the refractive index change.Special feature of refractive index change above lasing threshold is revealed and explained.

  4. Amplified feedback DFB laser for 40 Gb/s all-optical clock recovery

    Science.gov (United States)

    Chen, Cheng; Sun, Yu; Zhao, Lingjuan; Pan, Jiaoqing; Qiu, Jifang; Liang, Song; Wang, Wei; Lou, Caiyun

    2011-12-01

    A monolithic integrated amplified feedback semiconductor laser (AFL) was fabricated based on quantum well intermixing (QWI) technique. The AFL works as a self-pulsation laser. It consists of a gain-coupled multiple quantum well distribute feedback (DFB) laser diode (LD) section, a passive phase section and an amplified feedback section. The free-running repetition frequency of the AFL can be tuned from 32 GHz to 51 GHz via controlling the feedback strength. All-optical 40 Gb/s clock recovery was experimentally demonstrated using the AFL with a low timing jitter.

  5. Linear Theory Analysis of Self-Amplified Parametric X-ray Radiation from High Current Density Electron Bunches

    CERN Document Server

    Lobach, Ihar; Feranchuk, Ilya

    2015-01-01

    Linear theory of the parametric beam instability or the self-amplification of parametric x-ray radiation (PXR) from relativistic electrons in a crystal is considered taking into account finite emittance of the electron beam and absorption of the radiation. It is shown that these factors change essentially the estimation of threshold parameters of the electron bunches for the coherent X-ray generation. The boundary conditions for the linear theory of the effect is analyzed in details and it is shown that the grazing incidence diffraction geometry is optimal for the growth of instability. Numerical estimations of amplification and coherent photon yield in dependence on the electron current density are presented for the case of mm-thickness Si crystal and 100 MeV electrons. Possible improvements of the experimental scheme for optimization of the coherent radiation intensity are discussed.

  6. Fabrication of periodically poled lithium niobate chips for optical parametric oscillators

    Indian Academy of Sciences (India)

    Ashok Kaul; Ajay Mishra

    2010-11-01

    An electric-field poling process was established that yielded uniform periodically poled lithium niobate (PPLN) in 0.5 mm thick lithium niobate substrate. We have fabricated 50 mm long fanned as well as multigrating PPLNs having period variations from 25 m to 32 m. These PPLNs are required for quasi-phase-matched (QPM) optical parametric oscillator (OPO) applications. We have also configured a bench-top OPO set-up based on these PPLNs.

  7. Computational Principle and Performance Evaluation of Coherent Ising Machine Based on Degenerate Optical Parametric Oscillator Network

    Directory of Open Access Journals (Sweden)

    Yoshitaka Haribara

    2016-04-01

    Full Text Available We present the operational principle of a coherent Ising machine (CIM based on a degenerate optical parametric oscillator (DOPO network. A quantum theory of CIM is formulated, and the computational ability of CIM is evaluated by numerical simulation based on c-number stochastic differential equations. We also discuss the advanced CIM with quantum measurement-feedback control and various problems which can be solved by CIM.

  8. Experimental study of the spatial distribution of quantum correlations in a confocal Optical Parametric Oscillator

    CERN Document Server

    Martinelli, M; Ducci, S; Gigan, S; Maitre, A; Fabre, C; Martinelli, Marcello; Treps, Nicolas; Ducci, Sara; Gigan, Sylvain; Maitre, Agnes; Fabre, Claude

    2003-01-01

    We study experimentally the spatial distribution of quantum noise in the twin beams produced by a type II Optical Parametric Oscillator operating in a confocal cavity above threshold. The measured intensity correlations are at the same time below the standard quantum limit and not uniformly distributed inside the beams. We show that this feature is an unambiguous evidence for the multimode and nonclassical character of the quantum state generated by the device.

  9. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  10. Optical parametric oscillators in isotropic photonic crystals and cavities: 3D time domain analysis

    OpenAIRE

    Conti, Claudio; Di Falco, Andrea; Assanto, Gaetano

    2004-01-01

    We investigate optical parametric oscillations through four-wave mixing in resonant cavities and photonic crystals. The theoretical analysis underlines the relevant features of the phenomenon and the role of the density of states. Using fully vectorial 3D time-domain simulations, including both dispersion and nonlinear polarization, for the first time we address this process in a face centered cubic lattice and in a photonic crystal slab. The results lead the way to the development of novel p...

  11. Tunable, continuous-wave single-resonant optical parametric oscillator with output coupling for resonant wave

    Science.gov (United States)

    Xiong-Hua, Zheng; Bao-Fu, Zhang; Zhong-Xing, Jiao; Biao, Wang

    2016-01-01

    We present a continuous-wave singly-resonant optical parametric oscillator with 1.5% output coupling of the resonant signal wave, based on an angle-polished MgO-doped periodically poled lithium niobate (MgO:PPLN), pumped by a commercial Nd:YVO4 laser at 1064 nm. The output-coupled optical parametric oscillator delivers a maximum total output power of 4.19 W with 42.8% extraction efficiency, across a tuning range of 1717 nm in the near- and mid-infrared region. This indicates improvements of 1.87 W in output power, 19.1% in extraction efficiency and 213 nm in tuning range extension in comparison with the optical parametric oscillator with no output coupling, while at the expense of increasing the oscillation threshold by a factor of ˜ 2. Moreover, it is confirmed that the finite output coupling also contributes to the reduction of the thermal effects in crystal. Project supported by the National Natural Science Foundation of China (Grant Nos. 61308056, 11204044, 11232015, and 11072271), the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20120171110005 and 20130171130003), the Fundamental Research Funds for the Central Universities of China (Grant No. 14lgpy07), and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, China (Grant No. ZHD201203).

  12. PMD test method in the fiber link with optical amplifier

    Science.gov (United States)

    Li, Tangjun; Wang, Muguang; Gong, Xiangfeng; Diao, Cao; Tong, Zhi; Wei, Hui; Jian, Shuisheng

    2005-02-01

    To learn the surrounding conditions in the fiber link and its effect on PMD, and to provide the first-hand design basis, we have carried out the data observation of PMD in a fiber link for a long time. We have tested the first-order and second-order PMD. The fiber tested is the G652 fiber produced by Corning Co. of USA, and the testing distance is 1000km; n segments of same fibers are linked into one, and n equals to 40, that is to say, the length of every segment is 25km; for the requirement of dispersion compensation in the high-speed and long distance fiber optical communication system, one fiber grating dispersion compensator is added in the place of every 200km, and there are five compensators; one EDFA is added in the place of every 100km, and there are eleven EDFA. The result suggests that, with the increase of length of fiber link, the distribution of PMD intends to be stable, that is, with the number n increasing, the relative error of PMD becomes less. The testing methods are the Jones matrix eigenanalysis technique and interference technique. HP8509B fiber polarization analyzer of Agilent in USA is used for measuring instrument of the Jones matrix eigenanalysis technique; FPMD-5600 Femtosecond PMD Analyzer of EXFO in Canada is used for measuring instrument of interference technique. The difference between these two testing methods is analyzed. With the Jones matrix eigenanalysis technique, fibers of 1000km are inspected through 48 hours, and the result suggests that, at nine o'clock in the morning, PMD reaches the maximum, at nine o'clock in the evening, it reaches the minimum, during other time, its change is very little. So it can be concluded that, PMD in the long distance fiber link is affected by temperature of the lab. Stress testing is carried in the ultra-short fiber (less than one meter). PMD has no obvious change in the range of stress which can be endured by the fiber.

  13. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Jørgensen, Carsten; Danielsen, Søren Lykke; Stubkjær, Kristian

    1997-01-01

    This work assesses the prospects for high-speed all-optical wavelength conversion using the simple optical interaction with the gain in semiconductor optical amplifiers (SOAs) via the interband carrier recombination. Operation and design guidelines for conversion speeds above 10 Gb/s are described...... and the various tradeoffs are discussed. Experiments at bit rates up to 40 Gb/s are presented for both cross-gain modulation (XGM) and cross-phase modulation (XPM) in SOAs demonstrating the high-speed capability of these techniques...

  14. Applications of Kinetic Inductance: Parametric Amplifier & Phase Shifter, 2DEG Coupled Co-planar Structures & Microstrip to Slotline Transition at RF Frequencies

    Science.gov (United States)

    Surdi, Harshad

    Kinetic inductance springs from the inertia of charged mobile carriers in alternating electric fields and it is fundamentally different from the magnetic inductance which is only a geometry dependent property. The magnetic inductance is proportional to the volume occupied by the electric and magnetic fields and is often limited by the number of turns of the coil. Kinetic inductance on the other hand is inversely proportional to the density of electrons or holes that exert inertia, the unit mass of the charge carriers and the momentum relaxation time of these charge carriers, all of which can be varied merely by modifying the material properties. Highly sensitive and broadband signal amplifiers often broaden the field of study in astrophysics. Quantum-noise limited travelling wave kinetic inductance parametric amplifiers offer a noise figure of around 0.5 K +/- 0.3 K as compared to 20 K in HEMT signal amplifiers and can be designed to operate to cover the entire W-band (75 GHz -- 115 GHz). The research cumulating to this thesis involves applying and exploiting kinetic inductance properties in designing a W-band orthogonal mode transducer, quadratic gain phase shifter with a gain of ~49 dB over a meter of microstrip transmission line. The phase shifter will help in measuring the maximum amount of phase shift Deltaφmax(I) that can be obtained from half a meter transmission line which helps in predicting the gain of a travelling wave parametric amplifier. In another project, a microstrip to slot line transition is designed and optimized to operate at 150 GHz and 220 GHz frequencies, that is used as a part of horn antenna coupled microwave kinetic inductance detector proposed to operate from 138 GHz to 250 GHz. In the final project, kinetic inductance in a 2D electron gas (2DEG) is explored by design, simulation, fabrication and experimentation. A transmission line model of a 2DEG proposed by Burke (1999), is simulated and verified experimentally by fabricating a

  15. Large temporal window contrast measurement using optical parametric amplification and low-sensitivity detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Rahul C [Los Alamos National Laboratory; Johnson, Randall P [Los Alamos National Laboratory; Shimada, Tsutomu [Los Alamos National Laboratory; Hegelich, Bjorn M [Los Alamos National Laboratory

    2008-01-01

    To address few-shot pulse contrast measurement, we present a correlator coupling the high gain of an optical parametric amplification scheme with large pulse tilt. This combination enables a low sensitivity charge coupled device (CCD) to observe features in the pulse intensity within a 50 ps single-shot window with inter-window dynamic range > 10{sup 7} and < 0.5 mJ input energy. Partitioning of the single window with optical densities to boost the CCD dynamic range is considered.

  16. 32 x 10 and 64 × 10 Gb/s transmission using hybrid Raman-Erbium doped optical amplifiers

    Directory of Open Access Journals (Sweden)

    Shveta Singh

    2011-08-01

    Full Text Available We have successfully demonstrated a long-haul transmission of 32 × 10 Gbit/s and 64 × 10 Gbit/s over single-mode fiber of 650 km and 530 km respectively by using RAMAN-EDFA hybrid optical amplifier as inline and preamplifier amplifiers. The measured Q-factors and BER of the 32 and 64 channels after 650 and 530 km respectively (16.99–17 dB and (10-13 were higher than the standard acceptable value, which offers feasibility of the hybrid amplifiers including EDFA optical amplifiers for the long-haul transmission.

  17. Measurements of pattern formation in a confocal optical parametrical oscillator with applications in quantum optics

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Buchhave, Preben

    We describe simultaneous measurements of signal/idler near field and far field patterns of a 2nd order nonlinear multi-mode parametric downconverter. We also describe the use of auto- and cross correlation techniques to obtain statistical data.......We describe simultaneous measurements of signal/idler near field and far field patterns of a 2nd order nonlinear multi-mode parametric downconverter. We also describe the use of auto- and cross correlation techniques to obtain statistical data....

  18. Dissipative parametric modulation instability and pattern formation in nonlinear optical systems

    Science.gov (United States)

    Perego, A. M.; Tarasov, N.; Churkin, D. V.; Turitsyn, S. K.; Staliunas, K.

    2016-04-01

    We present the essential features of the dissipative parametric instability, in the universal complex Ginzburg- Landau equation. Dissipative parametric instability is excited through a parametric modulation of frequency dependent losses in a zig-zag fashion in the spectral domain. Such damping is introduced respectively for spectral components in the +ΔF and in the -ΔF region in alternating fashion, where F can represent wavenumber or temporal frequency depending on the applications. Such a spectral modulation can destabilize the homogeneous stationary solution of the system leading to growth of spectral sidebands and to the consequent pattern formation: both stable and unstable patterns in one- and in two-dimensional systems can be excited. The dissipative parametric instability provides an useful and interesting tool for the control of pattern formation in nonlinear optical systems with potentially interesting applications in technological applications, like the design of mode- locked lasers emitting pulse trains with tunable repetition rate; but it could also find realizations in nanophotonics circuits or in dissipative polaritonic Bose-Einstein condensates.

  19. Optical Amplifier with Flat-Gain and Wideband Operation Utilizing Highly Concentrated Erbium-Doped Fibers

    Science.gov (United States)

    Hamida, B. A.; Cheng, X. S.; Naji, A. W.; Ahmad, H.; Al-Khateeb, W.; Khan, S.; Harun, S. W.

    In this paper, we proposed a flat-gain and wide-band erbium doped fiber amplifier (EDFA) using two chirped fiber Bragg grating (CFBG) in serial configuration for double-pass operation. The amplifier consists of two sections of Erbium-doped fiber (EDF) operating in C-band and L-band respectively. A CFBG is used in each section to reflect the amplified signal back to the active area so that the overall gain spectrum can be enhanced and flattened. It is also observed that the gain of the amplifier produces a relatively higher gain with the Bismuth-based EDF (Bi-EDF) in the first stage compared to that of silica-based EDF (Si-EDF), especially in a longer wavelength region. The small signal gain of more than 19 dB is obtained within a wavelength region from 1545 to 1605 nm by the use of Bi-EDF with a small noise figure penalty. With a Si-EDF, the flat gain spectrum is observed within a wavelength region ranging from 1535 nm to 1605 nm with a gain variation of less than 2 dB at input signal of 0 dBm. This shows that the proposed serial double-pass amplifier may find its broad applications in wavelength division multiplexing long-haul systems as well as local optical networks.

  20. Detailed Theoretical Model for Adjustable Gain-Clamped Semiconductor Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Lin Liu

    2012-01-01

    Full Text Available The adjustable gain-clamped semiconductor optical amplifier (AGC-SOA uses two SOAs in a ring-cavity topology: one to amplify the signal and the other to control the gain. The device was designed to maximize the output saturated power while adjusting gain to regulate power differences between packets without loss of linearity. This type of subsystem can be used for power equalisation and linear amplification in packet-based dynamic systems such as passive optical networks (PONs. A detailed theoretical model is presented in this paper to simulate the operation of the AGC-SOA, which gives a better understanding of the underlying gain clamping mechanics. Simulations and comparisons with steady-state and dynamic gain modulation experimental performance are given which validate the model.

  1. Performance optimization of EDFA-Raman hybrid optical amplifier using genetic algorithm

    Science.gov (United States)

    Singh, Simranjit; Kaler, R. S.

    2015-05-01

    For the first time, a novel net gain analytical model of EDFA-Raman hybrid optical amplifier (HOA) is designed and optimized the various parameters using genetic algorithm. Our method has shown to be robust in the simultaneous analysis of multiple parameters, such as Raman length, EDFA length and its pump powers, to obtained highest possible gain. The optimized HOA is further investigated and characterized on system level in the scenario of 100×10 Gbps dense wavelength division multiplexed (DWDM) system with 25 GHz interval. With an optimized HOA, a flat gain of >18 dB is obtained from frequency region 187 to 189.5 THz with a gain variation of less than 1.35 dB without using any gain flattened technique. The obtained noise figure is also the lowest value (<2 dB/channel) ever reported for proposed hybrid optical amplifier at reduced channel spacing with acceptable bit error rate.

  2. Single-cycle Pulse Synthesis by Coherent Superposition of Ultra-broadband Optical Parametric Amplifiers

    Science.gov (United States)

    2011-08-01

    Research Council Centre of Excellence, School of Physics, University of Sydney, NSW 2006, Australia, 3IFN-CNR, Dipartimento di Fisica , Politecnico di...Cristian Manzoni, 1,* Jeffrey Moses, 2 Franz X. Kärtner, 2,3 and Giulio Cerullo 1 1IFN-CNR, Dipartimento di Fisica , Politecnico di Milano, Piazza L...Cerullo1 1 IFN-CNR, Dipartimento di Fisica , Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy 2 Department of Electrical

  3. Frequency dependence of the pump-to-signal RIN transfer in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Pakarzadeh Dezfuli Nezhad, Hassan; Rottwitt, Karsten; Zakery, A.

    2009-01-01

    Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams.......Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams....

  4. Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier.

    Science.gov (United States)

    Vallaitis, T; Koos, C; Bonk, R; Freude, W; Laemmlin, M; Meuer, C; Bimberg, D; Leuthold, J

    2008-01-07

    Gain and phase dynamics in InAs/GaAs quantum dot semiconductor optical amplifiers are investigated. It is shown that gain recovery is dominated by fast processes, whereas phase recovery is dominated by slow processes. Relative strengths and time constants of the underlying processes are measured. We find that operation at high bias currents optimizes the performance for nonlinear cross-gain signal processing if a low chirp is required.

  5. A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers

    Science.gov (United States)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1990-01-01

    The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.

  6. Gain transient control for wavelength division multiplexed access networks using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Osadchiy, Alexey Vladimirovich; Kjær, Rasmus;

    2009-01-01

    measurements how a near-saturated semiconductor optical amplifier (SOA) can be used to control these gain transients. An SOA is shown to reduce the penalty of transients originating in an EDFA from 2.3 dB to 0.2 dB for 10 Gb/s transmission over standard single mode fiber using a 231-1 PRBS pattern. The results...

  7. High gain semiconductor optical amplifier — Laser diode at visible wavelength

    KAUST Repository

    Shen, Chao

    2017-02-07

    We reported on the first experimental demonstration of a two-section semipolar InGaN-based laser diode with monolithically integrated semiconductor optical amplifier (SOA-LD). The onset of amplification effect was measured at 4V SOA bias (VSOA). The SOA-LD shows a large gain of 5.32 dB at Vsoa = 6 V.

  8. Analysis of SDWDM Ring Network and Enhancement Using Different Hybrid Optical Amplifiers and Modulation Formats

    Science.gov (United States)

    Anand, Vineet; Sharma, Anurag

    2016-09-01

    In this paper, performance enhancement of super-dense wavelength division multiplexing (SDWDM) optical add-drop multiplexer optical ring network for six nodes, 50 wavelengths having channel spacing of 0.2 nm for 300 km unidirectional nonlinear fiber is successfully demonstrated. The performance of the designed system is enhanced by comparing different modulation formats (non-return to zero (NRZ), return to zero (RZ), soliton, chirped return to zero (CRZ), carrier-suppressed RZ (CSRZ)) and hybrid amplifiers (Erbium-doped fiber amplifier (EDFA)-EDFA, semiconductor optical amplifier (SOA)-SOA, SOA, EDFA, EDFA-SOA) on the basis of eye diagram and bit error rate (BER). It has been observed that CRZ modulation format and EDFA-SOA shows the best results. It has been reported that EDFA-SOA/CRZ modulation format can achieve BER as better as e-13, which gives best performance. The effect of channel spacing on SDWDM system and performance degradation due to crosstalk is also evaluated.

  9. Improved Reduced Models for Single-Pass and Reflective Semiconductor Optical Amplifiers

    CERN Document Server

    Dúill, Seán P Ó

    2014-01-01

    We present highly accurate and easy to implement, improved lumped semiconductor optical amplifier (SOA) models for both single-pass and reflective semiconductor optical amplifiers (RSOA). The key feature of the model is the inclusion of the internal losses and we show that a few subdivisions are required to achieve an accuracy of 0.12 dB. For the case of RSOAs, we generalize a recently published model to account for the internal losses that are vital to replicate observed RSOA behavior. The results of the improved reduced RSOA model show large overlap when compared to a full bidirectional travelling wave model over a 40 dB dynamic range of input powers and a 20 dB dynamic range of reflectivity values. The models would be useful for the rapid system simulation of signals in communication systems, i.e. passive optical networks that employ RSOAs, signal processing using SOAs and for implementing digital back propagation to undo amplifier induced signal distortions.

  10. Synchronously pumped CdSe optical parametric oscillator in the 9-10 microm region.

    Science.gov (United States)

    Watson, M A; O'Connor, M V; Shepherd, D P; Hanna, D C

    2003-10-15

    Continuous mode-locked operation of a singly resonant, synchronously pumped optical parametric oscillator (SPOPO) based on CdSe has produced idler output tuned over the range of 9.1-9.7 microm, the longest wavelength generated so far to our knowledge from a SPOPO. Average idler powers as high as approximately 70 mW are generated in the crystal. Tandem pumping with a diffraction-grating-tuned parametric oscillator in periodically poled lithium niobate provides a convenient and agile means of tuning the noncritically phase-matched CdSe device. The absence of any detrimental thermal effects in the CdSe crystal suggests that significant further power scaling should be possible, with idler tuning ranges extendable to cover 8-12 microm.

  11. Design of optical fiber cable television distribution systems using erbium-doped fiber amplifiers

    Science.gov (United States)

    Zhang, Jian-Guo; Sharma, A. B.; Ritthisoonthorn, Pichet

    1998-04-01

    Optical fiber distribution systems with intensity- modulation/direct-detection and erbium-doped fiber amplifiers are designed for cable television (CATV) applications. Two types of system configurations are considered, i.e., the passive power splitter with optically preamplified receivers (PPS-OPR) scheme and the hybrid passive-and-active power splitter (HPAPS) scheme. The receiver sensitivity is calculated for various system parameters. We compare both schemes through the number of CATV subscribers and show that the HPAPS scheme is superior to the PPS-OPR scheme for large- scale CATV distribution applications.

  12. A Transfer Matrix-Based Analysis of Vertical-Cavity Semiconductor Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; LUO Bin; PAN Wei; XIONG Jie

    2005-01-01

    @@ Based on the transfer matrix method, we present a new one-dimensional steady-state model of vertical-cavity semiconductor optical amplifiers (VCSOAs), in which the longitudinal carrier concentration distribution in the active region and the discontinuity of the refractive index inside the cavity is taken into consideration. The model is theoretically proven to be a reliable one for describing the standing wave effect in a periodic gain structure.By using this model, some optical amplification characteristics of VCSOAs are investigated.

  13. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    Ma Li; Zhu Hong-Liang; Liang Song; Zhao Ling-Juan; Chen Ming-Hua

    2013-01-01

    Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 × 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demonstrated.The average output power and the threshold current are 1.8 mW and 35 mA,respectively,when the injection current of the SOA is 100 mA,with a side mode suppression ratio (SMSR) exceeding 40 dB.The four channels have a 1-nm average channel spacing and can operate separately or simultaneously.

  14. Optical Fiber Pumped High Repetition Rate and High Power Nd:YVO4 Picosecond Regenerative Amplifier

    Directory of Open Access Journals (Sweden)

    Zhen-Ao Bai

    2015-08-01

    Full Text Available We report a stable optical fiber pumped Nd:YVO4 all solid state regenerative amplifier with all fiber picosecond laser as seed source. 888 nm Yb optical fiber lasers was chosen as pump source to reduce quantum defect for improved thermal performance. At the repetition rate of 99.6 kHz, maximum power of 19.63 W with 36 ps pulse duration were achieved when seeded by a 150 mW picosecond oscillator. The wavelength delivered was 1064.07 nm with spectral width of 0.14 nm.

  15. Gigahertz to terahertz tunable all-optical single-side-band microwave generation via semiconductor optical amplifier gain engineering.

    Science.gov (United States)

    Li, Fangxin; Helmy, Amr S

    2013-11-15

    We propose and demonstrate a technique to generate low-noise broadly tunable single-side-band microwaves using cascaded semiconductor optical amplifiers (SOAs) using no RF bias. The proposed technique uses no RF components and is based on polarization-state controlled gain-induced four-wave mixing in SOAs. Microwave generation from 40 to 875 GHz with a line-width ~22 KHz is experimentally demonstrated.

  16. High-Power Amplifier Compatible Internally Sensed Optical Phased Array for Space Debris Tracking and Maneuvering

    Science.gov (United States)

    Roberts, L.; Francis, S.; Sibley, P.; Ward, R.; Smith, C.; McClelland, D.; Shaddock, D.

    2016-09-01

    Optical phased arrays (OPAs) provide a way to scale optical power beyond the capabilities of conventional CW lasers via coherent beam combination. By stabilising the relative output phase of multiple spatially separate lasers, OPAs form a coherent optical wavefront in the far field. Since the phase of each laser can be controlled independently, OPAs also have the ability to manipulate the distribution of optical power in the far field, and therefore may provide the capability to compensate for atmospheric turbulence. Combined with their inherent scalability and high power handling capabilities, OPAs are a promising technology for CW space debris ranging and manoeuvring. The OPA presented here is unique in its ability to sense the phase of each laser internally, without requiring any external sampling optics between it and the telescope. This allows the internally sensed OPA to be constructed entirely within fibre, utilising high-power fiber amplifiers to scale optical power beyond the limits of any conventional single lasers. The total power that can be delivered by each emitter in the OPA is limited only by the onset of stimulated Brillouin scattering, a non-linear effect that clamps the amount of power that can be delivered through a fiber waveguide. A three element internally sensed OPA developed at the Australian National University has been demonstrated to coherently combine three commercial 15 Watt fiber amplifiers with an output phase stability of one 200th of a wavelength. We have also demonstrated the ability to dynamically manipulate the distribution of optical power in the far-field at a bandwidth of up to 10 kHz. Since the OPA's control system is implemented using field-programmable gate-array technology, the system may be scaled beyond 100 emitters, potentially reaching the kilowatt level optical powers required to perturb the orbit of space debris.

  17. Photonic multi-shape UWB pulse generation using a semiconductor optical amplifier-based nonlinear optical loop mirror

    Institute of Scientific and Technical Information of China (English)

    Luo Bo-Wen; Dong Jian-Ji; Yu Yuan; Yang Ting; Zhang Xin-Liang

    2013-01-01

    We propose and demonstrate a scheme to implement photonic multi-shape ultra-wideband (UWB) signal generation using a semiconductor optical amplifier (SOA) based nonlinear optical loop mirror (NOLM).By employing the cross phase modulation (XPM) effect,cross gain modulation (XGM),or both,multi-shape UWB waveforms are generated including monocycle,doublet,triplet,and quadruplet pulses.Both the shapes and polarities of the generated pulses are flexible to adjust,which may be very useful in UWB pulse shape modulation and pulse polarity modulation.

  18. Energy and average power scalable optical parametric chirped-pulse amplification in yttrium calcium oxyborate.

    Science.gov (United States)

    Liao, Zhi M; Jovanovic, Igor; Ebbers, Chris A; Fei, Yiting; Chai, Bruce

    2006-05-01

    Optical parametric chirped-pulse amplification (OPCPA) in nonlinear crystals has the potential to produce extremes of peak and average power but is limited either in energy by crystal growth issues or in average power by crystal thermo-optic characteristics. Recently, large (7.5 cm diameter x 25 cm length) crystals of yttrium calcium oxyborate (YCOB) have been grown and utilized for high-average-power second-harmonic generation. Further, YCOB has the necessary thermo-optic properties required for scaling OPCPA systems to high peak and average power operation for wavelengths near 1 microm. We report what is believed to be the first use of YCOB for OPCPA. Scalability to higher peak and average power is addressed.

  19. Passively Q -Switched 1.57- m Intracavity Optical Parametric Oscillator

    Science.gov (United States)

    Yashkir, Yuri; van Driel, Henry M.

    1999-04-01

    We demonstrate an eye-safe KTP-based optical parametric oscillator (OPO) driven intracavity by a diode-pumped 1064-nm Nd:YAG laser, passively Q -switched by a Cr 4 :YAG crystal. The characteristics of this system, which operates at 1570 nm with a repetition rate as high as 50 Hz, are studied as a function of Cr 4 :YAG optical density. Under optimum conditions the OPO generates 1.5-mJ, 3.4 0.1-ns pulses in a single transverse mode. For a Cr 4 :YAG Q -switch element with an optical density of 0.5 the conversion efficiency of the intracavity energy is 45% with the ratio of OPO to Nd:YAG peak-pulse intensity exceeding unity. These and other OPO characteristics compare favorably with a simple rate equation model of the OPO dynamics.

  20. Passively Q-switched 1.57-microm intracavity optical parametric oscillator.

    Science.gov (United States)

    Yashkir, Y; van Driel, H M

    1999-04-20

    We demonstrate an eye-safe KTP-based optical parametric oscillator (OPO) driven intracavity by a diode-pumped 1064-nm Nd:YAG laser, passively Q-switched by a Cr4+:YAG crystal. The characteristics of this system, which operates at 1570 nm with a repetition rate as high as 50 Hz, are studied as a function of Cr4+:YAG optical density. Under optimum conditions the OPO generates 1.5-mJ, 3.4 +/- 0.1-ns pulses in a single transverse mode. For a Cr4+:YAG Q-switch element with an optical density of 0.5 the conversion efficiency of the intracavity energy is approximately 45% with the ratio of OPO to Nd:YAG peak-pulse intensity exceeding unity. These and other OPO characteristics compare favorably with a simple rate equation model of the OPO dynamics.

  1. Comparison of the Optical Amplifiers EDFA and SOA Based on the BER and Q-Factor in C-Band

    Directory of Open Access Journals (Sweden)

    Tomáš Ivaniga

    2017-01-01

    Full Text Available Currently it is not possible to create a fully optical communication system without a software tool which simulates an optical communication line in real conditions prior to its construction. The aim of this article is to establish a comparison between the EDFA (erbium doped fibre amplifier and SOA (semiconductor optical amplifier optical amplifiers in the WDM (wavelength division multiplexing system. The system contains a four-channel WDM with speed of 10 Gbps and optical fibre with length of 80 km. Simulations are conducted in the programme environment “OptSim.” The quality of the optical communication system is evaluated by the BER (bit error rate and Q-factor for individual wavelengths, namely, of 1558 nm and 1562 nm, which are within the C-band.

  2. Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators

    CERN Document Server

    Beckmann, T; Steigerwald, H; Sturman, B; Haertle, D; Buse, K; Breunig, I

    2010-01-01

    Tunability of optical parametric oscillation in a radially structured whispering gallery resonator made of lithium niobate is investigated experimentally and theoretically. With a 1.04-\\mu m pump wave, the signal and idler waves are tuned from 1.78 to 2.5 \\mu m -- including the point of degeneracy -- by varying the temperature between 20 and 62{\\deg}C. A weak off-centering of the radial domain structure extends considerably the tuning capabilities. The oscillation threshold lies in the mW-power range.

  3. Pattern formation without diffraction matching in optical parametric oscillators with a metamaterial.

    Science.gov (United States)

    Tassin, Philippe; Van der Sande, Guy; Veretennicoff, Irina; Kockaert, Pascal; Tlidi, Mustapha

    2009-05-25

    We consider a degenerate optical parametric oscillator containing a left-handed material. We show that the inclusion of a left-handed material layer allows for controlling the strength and sign of the diffraction coefficient at either the pump or the signal frequency. Subsequently, we demonstrate the existence of stable dissipative structures without diffraction matching, i.e., without the usual relationship between the diffraction coefficients of the signal and pump fields. Finally, we investigate the size scaling of these light structures with decreasing diffraction strength.

  4. Single-frequency mid-infrared optical parametric oscillator source for coherent laser radar.

    Science.gov (United States)

    Hanson, F; Poirier, P; Arbore, M A

    2001-11-15

    We report on the design and characterization of a highly coherent mid-IR source at 3.57mum based on a single-frequency optical parametric oscillator. Detailed frequency and amplitude noise spectra have been measured. The rms intensity noise from 1.2 to 1000 Hz was 0.03%, and a rms frequency drift of 8 kHz in 1 ms was observed. We have also demonstrated the utility of this source for coherent laser radar applications by measuring micro-Doppler spectra from vibrating targets.

  5. Stretchable polymeric modulator for intracavity spectroscopic broadening of femtosecond optical parametric oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimeng; Zhang, Xinping, E-mail: Zhangxinping@bjut.edu.cn; Zhang, Jian; Liu, Hongmei [Institute of Information Photonics Technology and College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China)

    2014-07-07

    We investigate stretching-induced microscopic deformations spatially distributed in a flexible plate of polydimethylsiloxane (PDMS) and their applications in the broadening of the output spectrum of a femtosecond optical parametric oscillator. The hologram of the stretched PDMS plate was used to evaluate indirectly the microscopic deformations. The experimental results show that these deformations exhibit weak scattering and diffraction of light and induce negligible cavity loss, ensuring practical applications of the PDMS plate as an intracavity device for lasers. In combination with the thickness reduction of the PDMS plate through stretching, the distributed deformations enable smooth tuning of the output spectrum.

  6. Investigation on bismuth-oxide photonic crystal fiber for optical parametric amplification

    Institute of Scientific and Technical Information of China (English)

    JIN Cang; RAO Lan; YUAN Jin-hui; SHEN Xiang-wei; YU Chong-xiu

    2011-01-01

    A hexagonal solid-core bismuth-oxide micro-structure fiber is developed to balance its dispersion and nonlinearity. This simulation and calculation results show that the bismuth-oxide photonic crystal fiber (Bi-PCF) has near zero dispersion around 1550 nm. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model field distribution are obtained. Compared with the experimental results by SiO-PCF, it can be seen that the Bi-PCF shows excellent characteristics for the optical parametric amplification (OPA).

  7. Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview

    Science.gov (United States)

    Brustlein, Sophie; Ferrand, Patrick; Walther, Nico; Brasselet, Sophie; Billaudeau, Cyrille; Marguet, Didier; Rigneault, Hervé

    2011-02-01

    We present the assets and constraints of using optical parametric oscillators (OPOs) to perform point scanning nonlinear microscopy and spectroscopy with special emphasis on coherent Raman spectroscopy. The difterent possible configurations starting with one OPO and two OPOs are described in detail and with comments that are intended to be practically useful for the user. Explicit examples on test samples such as nonlinear organic crystal, polystyrene beads, and fresh mouse tissues are given. Special emphasis is given to background-free coherent Raman anti-Stokes scattering (CARS) imaging, including CARS hyperspectral imaging in a fully automated mode with commercial OPOs.

  8. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator.

    Science.gov (United States)

    Zhang, Zhaowei; Gardiner, Tom; Reid, Derryck T

    2013-08-15

    We present the first implementation of mid-infrared dual-comb spectroscopy with an optical parametric oscillator. Methane absorption spectroscopy was demonstrated with a resolution of 0.2 cm(-1) (5 GHz) at an acquisition time of ~10.4 ms over a spectral coverage at 2900-3050 cm(-1). The average power from each individual mid-infrared comb line was ~1 μW, representing a power level much greater than typical difference-frequency-generation sources. Mid-infrared dual-comb spectroscopy opens up unique opportunities to perform broadband spectroscopic measurements with high resolution, high requisition rate, and high detection sensitivity.

  9. Phase synchronization and anti-phase synchronization of chaos for degenerate optical parametric oscillator

    Institute of Scientific and Technical Information of China (English)

    Feng Xiu-Qin; Shen Ke

    2005-01-01

    We have investigated chaotic synchronization in the generalized sense for the degenerate optical parametric oscillator (DOPO). The numerical results show that two unidirectional coupling DOPOs in chaos can be completely phase synchronization or anti-phase synchronization with a suitable coupling coefficient under which the maximum condition Lyapunov exponent (MCLE) is negative. Phase synchronization and anti-phase synchronization of chaos can be realized through positive and negative coupling. On the other hand, the different synchronization states depend on the coupling types used in the DOPO systems.

  10. Ultrahigh-frequency microwave phase shifts mediated by ultrafast dynamics in quantum-dot semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2010-01-01

    We present a novel scheme to achieve tunable microwave phase shifts at frequencies exceeding 100 GHz based on wavelength conversion induced by high-speed cross-gain modulation in quantum-dot semiconductor optical amplifiers.......We present a novel scheme to achieve tunable microwave phase shifts at frequencies exceeding 100 GHz based on wavelength conversion induced by high-speed cross-gain modulation in quantum-dot semiconductor optical amplifiers....

  11. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz.......We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  12. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper;

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz.......We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  13. Multi-Rare-Earth Ions Codoped Tellurite Glasses for Potential Dual Wavelength Fibre-Optic Amplifiers

    Institute of Scientific and Technical Information of China (English)

    DAI Shi-Xun; YANG Jian-Hu; XU Shi-Qing; DAI Neng-Li; WEN Lei; HU Li-Li; JIANG Zhong-Hong

    2003-01-01

    A novel co-doping method of multi-rare-earth (RE) ions was demonstrated in tellurite glasses for fibre amplifiers. Fluorescence emissions at both 1.53 and 1.63 fj,m communication windows were Brstly observed from Er3+ /Yb3+ /Tm3+ -codoped tellurite glasses under a single wavelength pumping at 980 nm. The full width at half maximum of Suorescence at 1.53 and 1.63 [im are 55 nm and 50 urn, respectively. Tm's codoping method of three RE ions could be applied to other low photon energy glasses, which would be possibly used for potential dual wavelength fibre-optic amplifiers to broaden the communication windows.

  14. Research on WDM optical fiber transmission system based on fiber Raman amplifier

    Institute of Scientific and Technical Information of China (English)

    Fei Xue(薛飞); Kun Qiu(邱昆); Yue Chen(陈玥)

    2003-01-01

    After wavelength division multiplexing (WDM) optical fiber transmission system based on fiber Raman amplifier (FRA) is investigated in detail, the influence of the collocation of dispersion compensation fiber (DCF), the dispersion coefficient, dispersion slope (DS), effective core area, nonlinear index, length of FRA, launch power and the bandwidth of Bessel filter on bit error rate (BER) is deduced. The influence of Rayleigh backscattering noise on optical signal noise ratio (OSNR) is also investigated, which affects the performance of long haul transmission badly. The result indicates that the broadband long haul transmission can be realized through the reasonable design of the fiber. The result is useful to the optimal design of the WDM optical fiber transmission system based on FRA.

  15. Low-noise RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillators: physics and operation.

    Science.gov (United States)

    Loh, William; Yegnanarayanan, Siva; Plant, Jason J; O'Donnell, Frederick J; Grein, Matthew E; Klamkin, Jonathan; Duff, Shannon M; Juodawlkis, Paul W

    2012-08-13

    We demonstrate a 10-GHz RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillator (SCOW-COEO) system operating with low phase-noise (70 dB measurement-limited). The optical pulses generated by the SCOW-COEO exhibit 26.8-ps pulse width (post compression) with a corresponding spectral bandwidth of 0.25 nm (1.8X transform-limited). We also investigate the mechanisms that limit the performance of the COEO. Our measurements indicate that degradation in the quality factor (Q) of the optical cavity significantly impacts COEO phase-noise through increases in the optical amplifier relative intensity noise (RIN).

  16. Large-scale Ising spin network based on degenerate optical parametric oscillators

    CERN Document Server

    Inagaki, Takahiro; Hamerly, Ryan; Inoue, Kyo; Yamamoto, Yoshihisa; Takesue, Hiroki

    2016-01-01

    Simulating a network of Ising spins with physical systems is now emerging as a promising approach for solving mathematically intractable problems. Here we report a large-scale network of artificial spins based on degenerate optical parametric oscillators (DOPO), paving the way towards a photonic Ising machine capable of solving difficult combinatorial optimization problems. We generated >10,000 time-division-multiplexed DOPOs using dual-pump four-wave mixing (FWM) in a highly nonlinear fibre (HNLF) placed in a fibre cavity. Using those DOPOs, a one-dimensional (1D) Ising model was simulated by introducing nearest-neighbour optical coupling. We observed the formation of spin domains and found that the domain size diverged near the DOPO threshold, which suggests that the DOPO network can simulate the behavior of low-temperature Ising spins.

  17. Exploiting vibrational strong coupling to make an optical parametric oscillator out of a Raman laser

    CERN Document Server

    del Pino, Javier; Feist, Johannes

    2016-01-01

    When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this work we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the mid-infrared.

  18. Exploiting Vibrational Strong Coupling to Make an Optical Parametric Oscillator Out of a Raman Laser

    Science.gov (United States)

    del Pino, Javier; Garcia-Vidal, Francisco J.; Feist, Johannes

    2016-12-01

    When the collective coupling of the rovibrational states in organic molecules and confined electromagnetic modes is sufficiently strong, the system enters into vibrational strong coupling, leading to the formation of hybrid light-matter quasiparticles. In this Letter, we demonstrate theoretically how this hybridization in combination with stimulated Raman scattering can be utilized to widen the capabilities of Raman laser devices. We explore the conditions under which the lasing threshold can be diminished and the system can be transformed into an optical parametric oscillator. Finally, we show how the dramatic reduction of the many final molecular states into two collective excitations can be used to create an all-optical switch with output in the midinfrared.

  19. Fiber optical parametric oscillator based on highly nonlinear dispersion-shifted fiber

    Institute of Scientific and Technical Information of China (English)

    Sigang YANG; Kenneth K. Y. WONG; Minghua CHEN; Shizhong XIE

    2013-01-01

    The development of fiber optical parametric oscillators (FOPO) based on highly nonlinear dispersion- shifted fiber is reviewed in this paper. Firstly, the background and motivation are introduced, and it is pointed out that the FOPO is promising to act as optical source in non-conventional wavelength bands. Subsequently, the context focuses principally on the problem of inherent multiple-longitudinal-mode characteristic of FOPO and the corresponding solutions to it. The primary technique is by locking the phase of multiple longitudinal modes. The first reported actively mode locked FOPO is also presented in this article. However, it is not probable to realize passively mode locked FOPO because of the random phase dithering of the pump required for suppressing stimulated Brillouin scattering. Furthermore, a regeneratively mode locked FOPO is demonstrated, which can generate wide band tunable radiation in non- conventional wavelengths. Besides mode locked FOPO, the single-longitudinal-mode FOPO is also introduced. Finally, potential future directions are discussed.

  20. Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL).

    Science.gov (United States)

    Stothard, D J M; Hopkins, J-M; Burns, D; Dunn, M H

    2009-06-22

    We report relaxation oscillation free, true continuous-wave operation of a singly-resonant, intracavity optical parametric oscillator (OPO) based upon periodically-poled, MgO-doped LiNbO3 and pumped internal to the cavity of a compact, optically-excited semiconductor disk laser (or VECSEL). The very short upper-laser-state lifetime of this laser gain medium, coupled with the enhancing effect of the high-finesse pump laser cavity in which the OPO is located, enables a low threshold, high efficiency intracavity device to be operated free of relaxation oscillations in continuous-wave mode. By optimizing for low-power operation, parametric threshold was achieved at a diode-laser power of only 1.4 W. At 8.5 W of diode-laser power, 205 mW of idler power was extracted, indicating a total down-converted power of 1.25 W, and hence a down-conversion efficiency of 83%.

  1. Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator.

    Science.gov (United States)

    Samanta, G K; Ebrahim-Zadeh, M

    2011-08-15

    We report a cw optical parametric oscillator (OPO) in a novel architecture comprising two nonlinear crystals in a single cavity, providing two independently tunable pairs of signal and idler wavelengths. Based on a singly resonant oscillator design, the device permits access to arbitrary signal and idler wavelength combinations within the parametric gain bandwidth and reflectivity of the OPO cavity mirrors. Using two identical 30 mm long MgO:sPPLT crystals in a compact four-mirror ring resonator pumped at 532 nm, we generate two pairs of signal and idler wavelengths with arbitrary tuning across 850-1430 nm, and demonstrate a frequency separation in the resonant signal waves down to 0.55 THz. Moreover, near wavelength-matched condition, coherent energy coupling between the resonant signal waves, results in reduced operation threshold and increased output power. A total output power >2.8 W with peak-to-peak power stability of 16% over 2 h is obtained. © 2011 Optical Society of America

  2. Usefulness of a wavelength tunable optical parametric oscillator laser on photodynamic therapy

    Science.gov (United States)

    Nishiwaki, Yoshiro; Yoshida, Takato O.; Nakamura, Satoshi; Baba, Shozo; Matsusawa, Eiji; Suzuki, Hideo; Hirano, Toru

    1995-03-01

    By rotating the optical axis of a nonlinear optical crystal ((beta) -BaB2O4), a tunable laser beam could be obtained from an optical parametric oscillator (OPO) laser. When the crystal was optically pumped by the third harmonics of the 1064 nm Nd:YAG laser, we had a coherent beam from 410 nm through 2550 nm continuously without changing the optical cavity. We compared photodynamic therapy (PDT) effects of two photosensitizers, phenophorbide a(Phd) and Photosan-3(Ph-3, hematoporphyrin-polyester), on Wistar rat liver. Twenty-four hours after sensitization (5 mg/kg i.v.), 670 nm and 630 nm light (75 mW/cm2) was irradiated for Phd and Ph-3 respectively at energy doses of 25, 50, and 100 J/cm2. The rats were sacrificed 24 hours after laser irradiation and analyzed pathologically. Phd produced more severe necrosis than Ph-3. Twenty-five J/cm2 of Phd was identical with 100 J/cm2 of Ph-3. Next, we treated HeLa cell tumors of nude mice by Phd 670 nm PDT and Ph-3 630 nm PDT. The PDT effects of the two photosensitizers on HeLa cell tumors were similar to those on normal liver tissue. In conclusion the OPO laser could make it possible to compare PDT effects of photosensitizers by activating them with their matched wavelengths.

  3. Design and analysis of various multifunctional operations at ultrahigh speed by using a semiconductor optical amplifier-Mach-Zehnder interferometer

    Science.gov (United States)

    Lovkesh; Marwaha, Anupma

    2016-03-01

    Various multifunctional operations are performed by proposing designs of optical adder, subtractor, comparator, and decoder at 60 Gb/s. In all operations, constructive interference is produced by choosing optimized parameters, i.e., optical pulse generator power, input power, semiconductor optical amplifier-Mach-Zehnder interferometer parameters, and so on, for delivering a true output signal. An optical pulse-generated signal is required for all operations except addition, subtraction and equal to in a comparator.

  4. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band

    OpenAIRE

    Sergei V. Firstov; Sergey V. Alyshev; Konstantin E. Riumkin; Khopin, Vladimir F.; Alexey N. Guryanov; Melkumov, Mikhail A.; Evgeny M. Dianov

    2016-01-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will req...

  5. Fast gain and phase recovery of semiconductor optical amplifiers based on submonolayer quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Bastian, E-mail: BHerzog@physik.tu-berlin.de; Owschimikow, Nina; Kaptan, Yücel; Kolarczik, Mirco; Switaiski, Thomas; Woggon, Ulrike [Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Schulze, Jan-Hindrik; Rosales, Ricardo; Strittmatter, André; Bimberg, Dieter; Pohl, Udo W. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany)

    2015-11-16

    Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one- and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-in-a-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.

  6. Fluorescent Er2O3 doped lead silicate glass for optical amplifiers

    OpenAIRE

    Mennig, Martin; Niegisch, Nico; Kalleder, Axel; Schmidt, Helmut K.; Graf, Jürgen; Sautter, Helmut

    1999-01-01

    A hot-pressing method is investigated for the fabrication of a planar optical waveguide amplifier. Therefore commercially available LaSFN15 produced by Schott is used as substrate and cladding material in combination with Er2O3 doped lead silicate glass as core material, synthesised by a hybrid sol-gel melting technique. The lead silicate glass is selected for its low melting temperature required for the waveguide processing. The core glass is adapted to the LaSFN15 with respect to the therma...

  7. Coherent control in room-temperature quantum dot semiconductor optical amplifiers using shaped pulses

    CERN Document Server

    Karni, Ouri; Eisenstein, Gadi; Ivanov, Vitalii; Reithmaier, Johann Peter

    2016-01-01

    We demonstrate the ability to control quantum coherent Rabi-oscillations in a room-temperature quantum dot semiconductor optical amplifier (SOA) by shaping the light pulses that trigger them. The experiments described here show that when the excitation is resonant with the short wavelength slope of the SOA gain spectrum, a linear frequency chirp affects its ability to trigger Rabi-oscillations within the SOA: A negative chirp inhibits Rabi-oscillations whereas a positive chirp can enhance them, relative to the interaction of a transform limited pulse. The experiments are confirmed by a numerical calculation that models the propagation of the experimentally shaped pulses through the SOA.

  8. Ultrabroad-band wavelength converter with high flattening conversion efficiency in a semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Xu(徐晓峰); Jue Wei(韦珏); Zhihui Kang(康智慧); Yun Jiang(姜云); Huifang Zhang(张惠芳); Jinyue Gao(高锦岳)

    2004-01-01

    The efficiency of ultrabroad-band wavelength conversion using orthogonal-pump four-wave mixing in a semiconductor optical amplifier is measured for the wavelength shifts from 1500 to 1640 nm. The variation of conversion efficiency is < 0.9 dB over the wavelength range from 1530 to 1560 nm (C-band), and < 4.5dB over the wavelength range from 1560 to 1610 nm (L-band). The maximum conversion efficiency is about -8.7 dB.

  9. Slow and fast light effects in semiconductor optical amplifiers for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi

    This thesis analyzes semiconductor optical amplifiers based slow and fast light effects with particular focus on the applications in microwave photonics. We conceive novel ideas and demonstrate a great enhancement of light slow down. Furthermore, by cascading several slow light stages, >360 degree...... microwave phase shifts over a bandwidth of several tens of gigahertz are achieved. These also satisfy the basic requirements of microwave photonic systems. As an application demonstration, a tunable microwave notch filter is realized, where slow light based phase shifters provide 100% fractional tuning over...

  10. Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission

    Science.gov (United States)

    Yamamoto, Naokatsu; Akahane, Kouichi; Umezawa, Toshimasa; Kawanishi, Tetsuya

    2015-03-01

    Short-range interconnection and/or data center networks require high capacity and a large number of channels in order to support numerous connections. Solutions employed to meet these requirements involve the use of alternative wavebands to increase the usable optical frequency range. We recently proposed the use of the T- and O-bands (Thousand band: 1000-1260 nm, Original band: 1260-1360 nm) as alternative wavebands because large optical frequency resources (>60 THz) can be easily employed. In addition, a simple and compact Gb/s-order high-speed optical modulator is a critical photonic device for short-range communications. Therefore, to develop an optical modulator that acts as a highfunctional photonic device, we focused on the use of self-assembled quantum dots (QDs) as a three-dimensional (3D) confined structure because QD structures are highly suitable for realizing broadband optical gain media in the T+O bands. In this study, we use the high-quality broadband QD optical gain to develop a monolithically integrated QD optical gain modulator (QD-OGM) device that has a semiconductor optical amplifier (QD-SOA) for Gb/s-order highspeed optical data generation in the 1.3-μm waveband. The insertion loss of the device can be compensated through the SOA, and we obtained an optical gain change of up to ~7 dB in the OGM section. Further, we successfully demonstrate a 10-Gb/s clear eye opening using the QD-OGM/SOA device with a clock-data recovery sequence at the receiver end. These results suggest that the monolithic QD-EOM/SOA is suitable for increasing the number of wavelength channels for smart short-range communications.

  11. Wavelength-dependent femtosecond pulse amplification in wideband tapered-waveguide quantum well semiconductor optical amplifiers.

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H

    2015-12-10

    In this paper, we study the wavelength-dependent amplification in three different wideband quantum well semiconductor optical amplifiers (QWAs) having conventional, exponentially tapered, and linearly tapered active region waveguide structures. A new theoretical model for tapered-waveguide QWAs considering the effect of lateral carrier density distribution and the strain effect in the quantum well is established based on a quantum well transmission line modeling method. The temporal and spectral characteristics of amplified femtosecond pulse are analyzed for each structure. It was found that, for the amplification of a single femtosecond pulse, the tapered-waveguide QWA provides higher saturation gain, and the output spectra of the amplified pulse in all three structures exhibit an apparent redshift and bandwidth narrowing due to the reduction of carrier density; however, the output spectrum in the tapered-waveguide amplifier is less distorted and exhibits smaller bandwidth narrowing. For the simultaneous amplification of two femtosecond pulses with different central frequencies, in all the three structures, two peaks appear in the output spectra while the peak at the frequency closer to the peak frequency of the QWA gain spectrum receives higher amplification due to the frequency (wavelength) dependence of the QWA gain. At a low peak power level of the input pulse, the bandwidth of each window in the tapered structure is larger than that of the conventional waveguide structure, which aggravates the spectrum alias in the amplification of femtosecond pulses with different central frequencies. As the peak powers of the two pulses increase, the spectrum alias in the conventional waveguide becomes more serious while there are small changes in the tapered structures. Also, we have found that in the amplification of a femtosecond pulse train, the linear-tapered QWAs exhibit the fastest gain recovery as compared with the conventional and exponentially tapered QWAs.

  12. Fiber Bragg grating dynamic strain sensor using an adaptive reflective semiconductor optical amplifier source.

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Zhu, Yinian; Krishnaswamy, Sridhar

    2016-04-01

    In this paper, a reflective semiconductor optical amplifier (RSOA) is configured to demodulate dynamic spectral shifts of a fiber Bragg grating (FBG) dynamic strain sensor. The FBG sensor and the RSOA source form an adaptive fiber cavity laser. As the reflective spectrum of the FBG sensor changes due to dynamic strains, the wavelength of the laser output shifts accordingly, which is subsequently converted into a corresponding phase shift and demodulated by an unbalanced Michelson interferometer. Due to the short transition time of the RSOA, the RSOA-FBG cavity can respond to dynamic strains at high frequencies extending to megahertz. A demodulator using a PID controller is used to compensate for low-frequency drifts induced by temperature and large quasi-static strains. As the sensitivity of the demodulator is a function of the optical path difference and the FBG spectral width, optimal parameters to obtain high sensitivity are presented. Multiplexing to demodulate multiple FBG sensors is also discussed.

  13. Frequency range selection method of trans-impedance amplifier for high sensitivity lock-in amplifier used in the optical sensors

    Science.gov (United States)

    Park, Chang-In; Jeon, Su-Jin; Hong, Nam-Pyo; Choi, Young-Wan

    2016-03-01

    Lock-in amplifier (LIA) has been proposed as a detection technique for optical sensors because it can measure low signal in high noise level. LIA uses synchronous method, so the input signal frequency is locked to a reference frequency that is used to carry out the measurements. Generally, input signal frequency of LIA used in optical sensors is determined by modulation frequency of optical signal. It is important to understand the noise characteristics of the trans-impedance amplifier (TIA) to determine the modulation frequency. The TIA has a frequency range in which noise is minimized by the capacitance of photo diode (PD) and the passive component of TIA feedback network. When the modulation frequency is determined in this range, it is possible to design a robust system to noise. In this paper, we propose a method for the determination of optical signal modulation frequency selection by using the noise characteristics of TIA. Frequency response of noise in TIA is measured by spectrum analyzer and minimum noise region is confirmed. The LIA and TIA circuit have been designed as a hybrid circuit. The optical sensor is modeled by the laser diode (LD) and photo diode (PD) and the modulation frequency was used as the input to the signal generator. The experiments were performed to compare the signal to noise ratio (SNR) of the minimum noise region and the others. The results clearly show that the SNR is enhanced in the minimum noise region of TIA.

  14. Period and temperature tuning of cascaded optical parametric oscillator based on periodically poled LiNbO3

    Institute of Scientific and Technical Information of China (English)

    林学春; 李瑞宁; 姚爱云; 毕勇; 崔大复; 许祖彦

    2003-01-01

    We report the broadly tunable source by a cascaded optical parametric oscillator in the periodically poled LiNbO3(PPLN) with domain grating period and temperature tuning. The optical parametric oscillator was pumped by a passive Q-switched Nd:YVO4 laser. Multi-wavelength outputs from visible to infrared were obtained. The temperature of the PPLN crystal changed within the range of 70-150℃ with different periods of PPLN. The tunable range covered from 433 to 1657nm.

  15. Ultra-Low Threshold Power On-Chip Optical Parametric Oscillation in AlGaAs-On-Insulator Microresonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2015-01-01

    We present a record-low threshold power of 7 mW at ~1.55 µm for on-chip optical parametric oscillation using a high quality factor micro-ring-resonator in a new nonlinear photonics platform: AlGaAs-on-insulator......We present a record-low threshold power of 7 mW at ~1.55 µm for on-chip optical parametric oscillation using a high quality factor micro-ring-resonator in a new nonlinear photonics platform: AlGaAs-on-insulator...

  16. Picosecond optical studies of the carrier dynamics in semiconductor optical amplifiers

    NARCIS (Netherlands)

    Boer, Alexander Peter de

    2002-01-01

    The development of directly modulated picosecond laser diodes might become the next step in boosting the capacity of long haul optical communication systems. Traditionally, laser diodes are modulated by controlling the injection current. The optical output of the device responds to the current contr

  17. Quantum State Engineering of Light with Continuous-wave Optical Parametric Oscillators

    Science.gov (United States)

    Morin, Olivier; Liu, Jianli; Huang, Kun; Barbosa, Felippe; Fabre, Claude; Laurat, Julien

    2014-01-01

    Engineering non-classical states of the electromagnetic field is a central quest for quantum optics1,2. Beyond their fundamental significance, such states are indeed the resources for implementing various protocols, ranging from enhanced metrology to quantum communication and computing. A variety of devices can be used to generate non-classical states, such as single emitters, light-matter interfaces or non-linear systems3. We focus here on the use of a continuous-wave optical parametric oscillator3,4. This system is based on a non-linear χ2 crystal inserted inside an optical cavity and it is now well-known as a very efficient source of non-classical light, such as single-mode or two-mode squeezed vacuum depending on the crystal phase matching. Squeezed vacuum is a Gaussian state as its quadrature distributions follow a Gaussian statistics. However, it has been shown that number of protocols require non-Gaussian states5. Generating directly such states is a difficult task and would require strong χ3 non-linearities. Another procedure, probabilistic but heralded, consists in using a measurement-induced non-linearity via a conditional preparation technique operated on Gaussian states. Here, we detail this generation protocol for two non-Gaussian states, the single-photon state and a superposition of coherent states, using two differently phase-matched parametric oscillators as primary resources. This technique enables achievement of a high fidelity with the targeted state and generation of the state in a well-controlled spatiotemporal mode. PMID:24961685

  18. Improving Continuous-Variable Measurement-Device-Independent Multipartite Quantum Communication with Optical Amplifiers*

    Science.gov (United States)

    Guo, Ying; Zhao, Wei; Li, Fei; Huang, Duan; Liao, Qin; Xie, Cai-Lang

    2017-08-01

    The developing tendency of continuous-variable (CV) measurement-device-independent (MDI) quantum cryptography is to cope with the practical issue of implementing scalable quantum networks. Up to now, most theoretical and experimental researches on CV-MDI QKD are focused on two-party protocols. However, we suggest a CV-MDI multipartite quantum secret sharing (QSS) protocol use the EPR states coupled with optical amplifiers. More remarkable, QSS is the real application in multipartite CV-MDI QKD, in other words, is the concrete implementation method of multipartite CV-MDI QKD. It can implement a practical quantum network scheme, under which the legal participants create the secret correlations by using EPR states connecting to an untrusted relay via insecure links and applying the multi-entangled Greenberger-Horne-Zeilinger (GHZ) state analysis at relay station. Even if there is a possibility that the relay may be completely tampered, the legal participants are still able to extract a secret key from network communication. The numerical simulation indicates that the quantum network communication can be achieved in an asymmetric scenario, fulfilling the demands of a practical quantum network. Additionally, we illustrate that the use of optical amplifiers can compensate the partial inherent imperfections of detectors and increase the transmission distance of the CV-MDI quantum system.

  19. High repetition rate Yb:CaF2 multipass amplifiers operating in the 100 mJ range

    OpenAIRE

    Dimitrios PAPADOPOULOS; Friebel, Florence; Pellegrina, Alain; Hanna, Marc; Camy, Patrice; Doualan, Jean-Louis; Moncorgé, Richard; Georges, Patrick; Druon, Frédéric

    2014-01-01

    International audience; — We present the research advances on the development of 50-200 mJ energy range diode-pumped Yb:CaF 2-based multipass amplifiers operating at relatively high repetition rates. These laser amplifiers are based on diverse innovative geometries. All these innovations aim to design compact, stable and reliable amplifiers adapted to our application that consists in pumping ultrashort-pulse OPCPA (optical parametric chirped pulse amplifier) systems in the frame of the Apollo...

  20. Capacities of quantum amplifier channels

    Science.gov (United States)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  1. Generation of two types of nonclassical optical states using an optical parametric oscillator with a PPKTP crystal

    Science.gov (United States)

    Huo, Meiru; Qin, Jiliang; Yan, Zhihui; Jia, Xiaojun; Peng, Kunchi

    2016-11-01

    As important members of nonclassical states of light, squeezed states and entangled states are basic resources for realizing quantum measurements and constructing quantum information networks. We experimentally demonstrate that the two types of nonclassical optical states can be generated from an optical parametric oscillator (OPO) involving a periodically poled KTiOPO4 crystal with a domain-inversion period of 51.7 μm, by changing the polarization of the pump laser. When a vertically polarized 671 nm laser is used to pump the OPO, the intra-cavity frequency-down-conversion with type-0 quasi-phase matching is realized and the output optical beam is a quadrature amplitude squeezed state of light at the wavelength of 1342 nm with the fluctuation of quadrature component of 3.17 dB below the quantum noise limit (QNL). If the pump laser is horizontally polarized, the condition of the type-II quasi-phase matching is satisfied and the output optical beam becomes Einstein-Podolsky-Rosen entangled state of light with correlation variances of both quadrature amplitude-sum and quadrature phase-difference of 2.2 dB below the corresponding QNL.

  2. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  3. High efficiency terahertz-wave photonic crystal fiber optical parametric oscillator.

    Science.gov (United States)

    Li, Shaopeng; Liu, Hongjun; Huang, Nan; Sun, Qibing; Li, Xuefeng

    2012-08-01

    We theoretically propose phase matched terahertz (THz)-wave generation via degenerate four-wave mixing (FWM) in a fiber optical parametric oscillator (FOPO) with our newly designed photonic crystal fiber (PCF). Perfect phase matching is realized when we locate the pump wavelength in the normal group-velocity dispersion (GVD) regime. The generated THz-wave can be tuned from 4.7578 to 5.9015 THz by varying the pump wavelength. Moreover, peak power of 27.38 W at 5.9015 THz with conversion efficiency of 1.37% is realized when the pump peak power of 2000 W is at 4.675 μm in our FOPO.

  4. Off-axis QEPAS using a pulsed nanosecond Mid-Infrared Optical Parametric Oscillator

    CERN Document Server

    Lassen, Mikael; Feng, Yuyang; peremans, Andre; Petersen, Jan C

    2016-01-01

    A trace gas sensor, based on quartz-enhanced photoacoustic spectroscopy (QEPAS), consisting of two acoustically coupled micro-resonators (mR) with an o?-axis 20 kHz quartz tuning fork (QTF) is demonstrated. The complete acoustically coupled mR system is optimized based on finite element simulations and experimentally verified. The QEPAS sensor is pumped resonantly by a nanosecond pulsed single-mode mid-infrared optical parametric oscillator (MIR OPO). The sensor is used for spectroscopic measurements on methane in the 3.1 um to 3.5 um wavelength region with a resolution bandwidth of 1 cm^-1 and a detection limit of 0.8 ppm. An Allan deviation analysis shows that the detection limit at optimum integration time for the QEPAS sensor is 32 ppbv@190s and that the background noise is solely due to the thermal noise of the QTF.

  5. High-Power Blue Light Generation by External Frequency Doubling of an Optical Parametric Oscillator

    Institute of Scientific and Technical Information of China (English)

    毕勇; 张鸿博; 孙志培; 包照日格图; 李惠清; 孔宇鹏; 林学春; 王桂玲; 张杰; 侯玮; 李瑞宁; 崔大复; 许祖彦; 宋立维; 章萍; 崔建峰; 樊仲维

    2003-01-01

    We report on an all-solid-state high-power quasi-continuous blue light source by the frequency doubling of a signal wave from an optical parametric oscillator(OPO).A 50-mm-long LiB3O5(LBO)crystal is used for the OPO,which is pumped by a diode-pumped Nd:YAG green laser(10kHz,50ns).Tunable blue emission in a new nonlinear crystal BiB3O6(BiBO)is obtained with a wavelength range from 450 to 495 nm.The average power of the signal output is as high as 9.3 W from 924 to 970nm.The maximum output of the blue laser with the second harmonic walk-off compensation is 1.3 W average power at 470nm for 6.2 W of OPO signal light at 940nm.

  6. Label-free imaging of thick tissue at 1550 nm using a femtosecond optical parametric generator.

    Science.gov (United States)

    Trägårdh, Johanna; Robb, Gillian; Gadalla, Kamal K E; Cobb, Stuart; Travis, Christopher; Oppo, Gian-Luca; McConnell, Gail

    2015-08-01

    We have developed a simple wavelength-tunable optical parametric generator (OPG), emitting broadband ultrashort pulses with peak wavelengths at 1530-1790 nm, for nonlinear label-free microscopy. The OPG consists of a periodically poled lithium niobate crystal, pumped at 1064 nm by a ultrafast Yb:fiber laser with high pulse energy. We demonstrate that this OPG can be used for label-free imaging, by third-harmonic generation, of nuclei of brain cells and blood vessels in a >150 μm thick brain tissue section, with very little decay of intensity with imaging depth and no visible damage to the tissue at an incident average power of 15 mW.

  7. Tuning characteristics of femtosecond optical parametric oscillator with broadband chirped mirrors

    Science.gov (United States)

    Stankevičiūtė, Karolina; Vengris, Mikas; Melnikas, Simas; Kičas, Simonas; Grigonis, Rimantas; Sirutkaitis, Valdas

    2015-12-01

    We present the investigation of a synchronously pumped optical parametric oscillator (SPOPO) based on beta barium borate (BBO) nonlinear crystal with broadband complementary chirped mirror pairs (CMPs). Three SPOPO cavity configurations with slightly different intracavity dispersion were explored. Dispersion properties of cavity mirrors were characterized using a white light interferometer and found to be the key factor determining the gap-free tuning range as well as simultaneous multiwavelength generation. The SPOPO is pumped by the second harmonic of a Yb:KGW oscillator and provides signal pulses tunable over a spectral range from 625 to 980 nm. Signal pulse duration ranges from 102 to 268 fs in various intracavity dispersion regimes. In addition, signal beam power in excess of 500 mW is demonstrated, corresponding to 27% conversion efficiency from pump to signal wave.

  8. Generating 2 micron continuous-wave ytterbium-doped fiber laser-based optical parametric effect

    Science.gov (United States)

    Paul, M. C.; Latiff, A. A.; Hisyam, M. B.; Rusdi, M. F. M.; Harun, S. W.

    2016-10-01

    We report an efficient method for generating a 2 micron laser based on an optical parametric oscillator (OPO). It uses a long piece of a newly developed double-clad ytterbium-doped fiber (YDF), which is obtained by doping multi-elements of ZrO2, CeO2 and CaO in a phospho-alumina-silica glass as a gain medium. The efficient 2 micron laser generation is successful due to the presence of partially crystalline Yb-doped ZrO2 nano-particles that serve as a nonlinear material in a linear cavity configuration and high watt-level pump power. Stable self-wavelength double lasing at 2122 nm with an efficiency of 7.15% is successfully recorded. At a maximum pump power of 4.1 W, the output power is about 201 mW.

  9. Three-photon absorption in optical parametric oscillators based on OP-GaAs

    Science.gov (United States)

    Heckl, Oliver H.; Bjork, Bryce J.; Winkler, Georg; Bryan Changala, P.; Spaun, Ben; Porat, Gil; Bui, Thinh Q.; Lee, Kevin F.; Jiang, Jie; Fermann, Martin E.; Schunemann, Peter G.; Ye, Jun

    2016-11-01

    We report on the first singly-resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 ${\\mu}$m within ~3 dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs. We discovered strong three photon absorption with a coefficient of 0.35 ${\\pm}$ 0.06 cm${^3}$/GW${^2}$ for our OP-GaAs sample, which limits the output power of these OPOs as mid-IR light sources. We present a detailed study of the three photon loss on the performance of both the SR and DR-OPOs, and compare them to those without this loss mechanism.

  10. Three Photon Absorption in Optical Parametric Oscillators Based on OP-GaAs

    CERN Document Server

    Heckl, Oliver H; Winkler, Georg; Changala, P Bryan; Spaun, Ben; Porat, 1 Gil; Bui, Thinh Q; Lee, Kevin F; Jiang, Jie; Fermann, Martin; Schunemann, Peter G; Ye, Jun

    2016-01-01

    We report on the first singly-resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 ${\\mu}$m within ~3 dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs. We discovered strong three photon absorption with a coefficient of 0.35 ${\\pm}$ 0.06 cm${^3}$/GW${^2}$ for our OP-GaAs sample, which limits the output power of these OPOs as mid-IR light sources. We present a detailed study of the three photon loss on the performance of both the SR and DR-OPOs, and compare them to those without this loss mechanism.

  11. Mid-IR fiber optic light source around 6 micron through parametric wavelength translation

    CERN Document Server

    Barh, A; Varshney, R K; Pal, B P; Sanghera, J; Shaw, L B; Aggarwal, I D

    2014-01-01

    We report numerically designed highly nonlinear all glass chalcogenide microstructured optical fiber for efficient generation of light around 6 micron through degenerate four wave mixing by considering continuous wave CO laser of 5 to 10 Watts power emitting at 5.6 micron as the pump. By tuning the pump wavelength, pump power, fiber dispersion and nonlinear properties, narrow and broad band mid-IR all-fiber light source could be realized. Parametric amplification of more than 20 decibel is achievable for the narrow band source at 6.46 micron with a maximum power conversion efficiency of 33 percent while amplification of 22 decibel is achievable for a B-band source over the wavelength range of 5 to 6.3 micron with a conversion efficiency of 40 percent.

  12. Investigating macroscopic quantum superpositions and the quantum-to-classical transition by optical parametric amplification

    CERN Document Server

    De Martini, Francesco

    2012-01-01

    The present work reports on an extended research endeavor focused on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. As it is well known, this intriguing, fundamental quantum condition is at the core of a famous argument conceived by Erwin Schroedinger, back in 1935. The main experimental challenge to the actual realization of this object resides generally on the unavoidable and uncontrolled interactions with the environment, i.e. the decoherence leading to the cancellation of any evidence of the quantum features associated with the macroscopic system. The present scheme is based on a nonlinear process, the "quantum injected optical parametric amplification", that maps by a linearized cloning process the quantum coherence of a single - particle state, i.e. a Micro - qubit, into a Macro - qubit, consisting in a large number M of photons in quantum superposition. Since the adopted scheme was found resilient to decoherence, the MQS\\ demonstration wa...

  13. Error-free 320-to-40-Gbit/s optical demultiplexing based on blueshift filtering in a quantum-dot semiconductor optical amplifier.

    Science.gov (United States)

    Matsuura, Motoharu; Raz, Oded; Gomez-Agis, Fausto; Calabretta, Nicola; Dorren, Harm J S

    2013-01-15

    We present an ultrahigh-speed optical demultiplexing concept based on optical blue-shift filtering in a quantum-dot semiconductor optical amplifier (QD-SOA). Using a simple scheme, a QD-SOA and an optical bandpass filter, we have successfully achieved error-free operations at 40 Gbit/s on all the extracted tributaries from an aggregated traffic at 320 Gbit/s.

  14. Demonstration of a chip-based optical isolator with parametric amplification

    Science.gov (United States)

    Hua, Shiyue; Wen, Jianming; Jiang, Xiaoshun; Hua, Qian; Jiang, Liang; Xiao, Min

    2016-11-01

    Despite being fundamentally challenging in integrated (nano)photonics, achieving chip-based light non-reciprocity becomes increasingly urgent in signal processing and optical communications. Because of material incompatibilities in conventional approaches based on the Faraday effect, alternative solutions have resorted to nonlinear processes to obtain one-way transmission. However, dynamic reciprocity in a recent theoretical analysis has pinned down the functionalities of these nonlinear isolators. To bypass such dynamic reciprocity, we here demonstrate an optical isolator on a silicon chip enforced by phase-matched parametric amplification in four-wave mixing. Using a high-Q microtoroid resonator, we realize highly non-reciprocal transport at the 1,550 nm wavelength when waves are injected from both directions in two different operating configurations. Our design, compatible with current complementary metal-oxide-semiconductor (CMOS) techniques, yields convincing isolation performance with sufficiently low insertion loss for a wide range of input power levels. Moreover, our work demonstrates the possibility of designing chip-based magnetic-free optical isolators for information processing and laser protection.

  15. Parametric studies of magnetic-optic imaging using finite-element models

    Science.gov (United States)

    Chao, C.; Udpa, L.; Xuan, L.; Fitzpatrick, G.; Thorne, D.; Shih, W.

    2000-05-01

    Magneto-optic imaging is a relatively new sensor application of bubble memory technology to NDI. The Magneto-Optic Imager (MOI) uses a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The flux leakage is produced by eddy current induction techniques in nonferrous metals and magnetic yokes are used in ferromagnetic materials. The technique has gained acceptance in the aircraft maintenance industry for use to detect surface-breaking cracks and corrosion. Until recently, much of the MOI development has been empirical in nature since the electromagnetic processes that produce images are rather complex. The availability of finite element techniques to numerically solve Maxwell's equations, in conjunction with MOI observations, allows greater understanding of the capabilities of the instrument. In this paper, we present a systematic set of finite element calculations along with MOI measurements on specific defects to quantify the current capability of the MOI as well as its desired performance. Parametric studies including effects of liftoff and proximity of edges are also studied.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order #IA013 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  16. Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier

    Science.gov (United States)

    Li, Qiang; Wang, Zhi; Le, Yansi; Sun, Chonghui; Song, Xiaojia; Wu, Chongqing

    2016-10-01

    Neuromorphic engineering has a wide range of applications in the fields of machine learning, pattern recognition, adaptive control, etc. Photonics, characterized by its high speed, wide bandwidth, low power consumption and massive parallelism, is an ideal way to realize ultrafast spiking neural networks (SNNs). Synaptic plasticity is believed to be critical for learning, memory and development in neural circuits. Experimental results have shown that changes of synapse are highly dependent on the relative timing of pre- and postsynaptic spikes. Synaptic plasticity in which presynaptic spikes preceding postsynaptic spikes results in strengthening, while the opposite timing results in weakening is called antisymmetric spike-timing-dependent plasticity (STDP) learning rule. And synaptic plasticity has the opposite effect under the same conditions is called antisymmetric anti-STDP learning rule. We proposed and experimentally demonstrated an optical implementation of neural learning algorithms, which can achieve both of antisymmetric STDP and anti-STDP learning rule, based on the cross-gain modulation (XGM) within a single semiconductor optical amplifier (SOA). The weight and height of the potentitation and depression window can be controlled by adjusting the injection current of the SOA, to mimic the biological antisymmetric STDP and anti-STDP learning rule more realistically. As the injection current increases, the width of depression and potentitation window decreases and height increases, due to the decreasing of recovery time and increasing of gain under a stronger injection current. Based on the demonstrated optical STDP circuit, ultrafast learning in optical SNNs can be realized.

  17. Yellow nanosecond sum-frequency generating optical parametric oscillator using periodically poled LiNbO3

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Bruun-Larsen, M.; Balle-Petersen, O.;

    2008-01-01

    Nanosecond yellow light has been generated through simultaneously phase matched sum-frequency generation and optical parametric oscillation in a periodically poled LiNbO3 crystal. 300 mW of yellow light at a wavelength of 586 nm has been generated from 1.3 W of laser power from a Q-switched Yb...

  18. Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator

    NARCIS (Netherlands)

    Verbraak, H.; Ngai, A.K.Y.; Persijn, S.T.; Harren, F.J.M.; Linnartz, H.

    2007-01-01

    A sensitive infrared detection scheme is presented in which continuous wave cavity ring down spectroscopy is used to record rovibrational spectra of molecular ions in direct absorption through supersonically expanding planar plasma. A cw optical parametric oscillator is used as a light source and

  19. Controlling Photon Echo in a Quantum-Dot Semiconductor Optical Amplifier Using Shaped Excitation

    Science.gov (United States)

    Mishra, A. K.; Karni, O.; Khanonkin, I.; Eisenstein, G.

    2017-05-01

    Two-pulse photon-echo-based quantum-memory applications require a precise control over the echo strength and appearance time. We describe a numerical investigation of observation and control of photon echo in a room-temperature InAs /InP -based quantum-dot (QD) semiconductor optical amplifier (SOA). We address an important case where the spectral excitation is narrower than the inhomogeneous broadening of the SOA. It is revealed that, in such a QD SOA, the amplitude of the echo pulse depends not only on the excitation-to-rephasing pulse temporal separation but also on the interference among the rephrasing pulse and the echo pulses generated during the propagation along the amplifier. More importantly, the appearance time and amplitude of the echo pulse can be precisely controlled by shaping the first (excitation) pulse. We also assert that deviations in the echo pulse stemming from the SOA gain inhomogeneity can be compensated for so as to be utilized in quantum coherent information processing.

  20. Electroabsorption modulated semiconductor optical amplifier monolithically integrated with spot-size converters

    Science.gov (United States)

    Hou, Lianping; Zhu, Hongliang; Zhou, Fan; Wang, Baojun; Bian, Jing; Wang, Wei

    2006-02-01

    We have demonstrated an electroabsorption modulator (EAM) and semiconductor optical amplifier (SOA) monolithically integrated with novel dual-waveguide spot-size converters (SSCs) at the input and output ports for low-loss coupling to planar light-guide circuit silica waveguide or cleaved single-mode optical fiber. The device is fabricated by means of selective-area MOVPE growth (SAG), quantum well intermixing (QWI) and asymmetric twin waveguide (ATG) technologies with only three steps low-pressure MOVPE growth. For the device structure, in SOA/EAM section, double ridge structure was employed to reduce the EAM capacitances and enable high bit-rate operation. In the SSC sections, buried ridge stripe (BRS) were incorporated. Such a combination of ridge, ATG and BRS structure is reported for the first time in which it can take advantage of both easy processing of ridge structure and the excellent mode characteristic of BRS. At the wavelength range of 1550-1600 nm, lossless operation with extinction ratios of 25 dB DC and more than 10 GHz 3-dB bandwidth is successfully achieved. The beam divergence angles of the input and output ports of the device are as small as 8.0°×12.6°, resulting in 3.0 dB coupling loss with cleaved single-mode optical fiber.