WorldWideScience

Sample records for optical multichannel analyzer

  1. The development of MOSA-II multichannel optical spectrum analyzer

    International Nuclear Information System (INIS)

    Guo Li; Yang Zhoujing; Fang Shuyao

    1989-01-01

    The MOSA-II Multichannel Optical Spectrum Analyzer is a high-perfor mance, easy-to-use measurment system for extremely rapid spectral data acquistion, processing and presentation. It consists of four parts: vidicon, data acquiring and timing circuit, the correcting circuit for the geometric distortion and the non-uniform distortion of the vidicon, IBMPC/XT and color plotter. The system has the following functions: single spectrum acquisition, continuous acquisition of multi-spectra, noise reduction, math, operations (including addition, subtraction, multiplication, and division) and geometric transform action of the spectra, and 3D-presentation of the spectra on both the color screen and the plotter. The absolute sensitivity of the system is 18 Photons/sec · mm 2 . The access time for data acquisition is 64 μs/per channel and the spectrum range is 1800 A - 8000A, the geometric distortion<2%, the amplitude error<5%

  2. Multichannel analyzer embedded in FPGA

    International Nuclear Information System (INIS)

    Garcia D, A.; Hernandez D, V. M.; Vega C, H. R.; Ordaz G, O. O.; Bravo M, I.

    2017-10-01

    Ionizing radiation has different applications, so it is a very significant and useful tool, which in turn can be dangerous for living beings if they are exposed to uncontrolled doses. However, due to its characteristics, it cannot be perceived by any of the senses of the human being, so that in order to know the presence of it, radiation detectors and additional devices are required to quantify and classify it. A multichannel analyzer is responsible for separating the different pulse heights that are generated in the detectors, in a certain number of channels; according to the number of bits of the analog to digital converter. The objective of the work was to design and implement a multichannel analyzer and its associated virtual instrument, for nuclear spectrometry. The components of the multichannel analyzer were created in VHDL hardware description language and packaged in the Xilinx Vivado design suite, making use of resources such as the ARM processing core that the System on Chip Zynq contains and the virtual instrument was developed on the LabView programming graphics platform. The first phase was to design the hardware architecture to be embedded in the FPGA and for the internal control of the multichannel analyzer the application was generated for the ARM processor in C language. For the second phase, the virtual instrument was developed for the management, control and visualization of the results. The data obtained as a result of the development of the system were observed graphically in a histogram showing the spectrum measured. The design of the multichannel analyzer embedded in FPGA was tested with two different radiation detection systems (hyper-pure germanium and scintillation) which allowed determining that the spectra obtained are similar in comparison with the commercial multichannel analyzers. (Author)

  3. Multichannel analyzer type CMA-3

    International Nuclear Information System (INIS)

    Czermak, A.; Jablonski, J.; Ostrowicz, A.

    1978-01-01

    Multichannel analyzer CMA-3 is designed for two-parametric analysis with operator controlled logical windows. It is implemented in CAMAC standard. A single crate contains all required modules and is controlled by the PDP-11/10 minicomputer. Configuration of CMA-3 is shown. CMA-3 is the next version of the multichannel analyzer described in report No 958/E-8. (author)

  4. Computer-based multi-channel analyzer based on internet

    International Nuclear Information System (INIS)

    Zhou Xinzhi; Ning Jiaoxian

    2001-01-01

    Combined the technology of Internet with computer-based multi-channel analyzer, a new kind of computer-based multi-channel analyzer system which is based on browser is presented. Its framework and principle as well as its implementation are discussed

  5. Multichannel analyzer embedded in FPGA; Analizador multicanal embebido en FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia D, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico); Ordaz G, O. O. [Universidad de Cordoba, Departamento de Arquitectura de Computadores, Electronica y Tecnologia Electronica, Campus de Rabanales, Ctra. N-IVa Km 396, 14071 Cordoba (Spain); Bravo M, I., E-mail: angelogarciad@hotmail.com [Universidad de Alcala de Henares, Departamento de Electronica, Campus Universitario, Carretera Madrid-Barcelona Km 33.600, 28801 Alcala de Henares, Madrid (Spain)

    2017-10-15

    Ionizing radiation has different applications, so it is a very significant and useful tool, which in turn can be dangerous for living beings if they are exposed to uncontrolled doses. However, due to its characteristics, it cannot be perceived by any of the senses of the human being, so that in order to know the presence of it, radiation detectors and additional devices are required to quantify and classify it. A multichannel analyzer is responsible for separating the different pulse heights that are generated in the detectors, in a certain number of channels; according to the number of bits of the analog to digital converter. The objective of the work was to design and implement a multichannel analyzer and its associated virtual instrument, for nuclear spectrometry. The components of the multichannel analyzer were created in VHDL hardware description language and packaged in the Xilinx Vivado design suite, making use of resources such as the ARM processing core that the System on Chip Zynq contains and the virtual instrument was developed on the LabView programming graphics platform. The first phase was to design the hardware architecture to be embedded in the FPGA and for the internal control of the multichannel analyzer the application was generated for the ARM processor in C language. For the second phase, the virtual instrument was developed for the management, control and visualization of the results. The data obtained as a result of the development of the system were observed graphically in a histogram showing the spectrum measured. The design of the multichannel analyzer embedded in FPGA was tested with two different radiation detection systems (hyper-pure germanium and scintillation) which allowed determining that the spectra obtained are similar in comparison with the commercial multichannel analyzers. (Author)

  6. A multichannel analyzer computer system for simultaneously measuring 64 spectra

    International Nuclear Information System (INIS)

    Jin Yuheng; Wan Yuqing; Zhang Jiahong; Li Li; Chen Guozhu

    2000-01-01

    The author introduces a multichannel analyzer computer system for simultaneously measuring 64 spectra with 64 coded independent inputs. The system is developed for a double chopper neutron scattering time-of-flight spectrometer. The system structure, coding method, operating principle and performances are presented. The system can also be used for other nuclear physics experiments which need multichannel analyzer with independent coded inputs

  7. A Novel Architecture For Multichannel Analyzer

    International Nuclear Information System (INIS)

    Marcus, E.; Elhanani, I.; Nir, J.; Ellenbogen, M.; Kadmon, Y.; Tirosh, D.

    1999-01-01

    A novel digital approach to real-time, high-throughput, low-cost Multichannel Analyzer (MCA) for radiation spectroscopy is being presented. The MCA input is a shaped nuclear pulse sampled at a high rate, using an Analog-to-Digital Converter (ADC) chip. The digital samples are analyzed by a state-of-the-art Field Programmable Gate Away (FPGA). A customized algorithm is utilized to estimate the peak of the pulse, to reject pile-up and to eliminate processing dead time. The valid pulses estimated peaks are transferred to a micro controller system that creates the histogram and controls the Human Machine Interface (HMI)

  8. Organization of a multichannel analyzer for gamma ray spectrometry

    International Nuclear Information System (INIS)

    Robinet, Genevieve

    1988-06-01

    This report describes the software organization of a medium scale multichannel analyzer for qualitative and quantitative measurements of the gamma rays emitted by radioactive samples. The first part reminds basis of radioactivity, principle of gamma ray detection, and data processing used for interpretation of a nuclear spectrum. The second part describes first the general organization of the software and then gives some details on interactivity, multidetector capabilites, and integration of complex algorithms for peak search and nuclide identification;problems encountered during the design phase are mentioned and solutions are given. Basic ideas are presented for further developments, such as expert system which should improve interpretation of the results. This present software has been integrated in a manufactured multichannel analyzer named 'POLYGAM NU416'. [fr

  9. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2016-11-01

    Full Text Available All-optical signal processing based on nonlinear optical effects allows for the realization of important functions in telecommunications including wavelength conversion, optical multiplexing/demultiplexing, Fourier transformation, and regeneration, amongst others, on ultrafast time scales to support high data rate transmission. In integrated photonic subsystems, the majority of all-optical signal processing systems demonstrated to date typically process only a single channel at a time or perform a single processing function, which imposes a serious limitation on the functionality of integrated solutions. Here, we demonstrate how nonlinear optical effects can be harnessed in a mode-selective manner to perform simultaneous multi-channel (two and multi-functional optical signal processing (i.e., regenerative wavelength conversion in an integrated silicon photonic device. This approach, which can be scaled to a higher number of channels, opens up a new degree of freedom for performing a broad range of multi-channel nonlinear optical signal processing functions using a single integrated photonic device.

  10. On the use of A PCA as a multichannel time analyzer

    International Nuclear Information System (INIS)

    Adib, M.; Abdelkawy, A.; Abuelela, M.; Habib, N.; Wahba, M.; Salama, F.

    1992-01-01

    PCA and PCA-11 software programmes have been used to utilize the operation of the nucleus personal computer analyzer PCA-8000 in its multichannel scaler (MCS) mode. The operating condition of PCA-8000 were selected to match the time-of-flight (TOF) spectrometer which is in operation at the ET-RR-1 reactor. The results of measuring the main parameters of PCA-8000 operating in its MCS mode showed that it can be successfully used as a multichannel time analyzer.5 fig

  11. A high-speed interface for multi-channel analyzer

    International Nuclear Information System (INIS)

    Shen Ji; Zheng Zhong; Qiao Chong; Chen Ziyu; Ye Yunxiu; Ye Zhenyu

    2003-01-01

    This paper presents a high-speed computer interface for multi-channel analyzer based on DMA technique. Its essential principle and operating procedure are introduced. By the detecting of γ spectrum of 137 Cs with the interface, it's proved that the interface can meet the requirements of high-speed data acquisition

  12. Miniature multichannel analyzer for process monitoring

    International Nuclear Information System (INIS)

    Halbig, J.K.; Klosterbuer, S.F.; Russo, P.A.; Sprinkle, J.K. Jr.; Stephens, M.M.; Wiig, L.G.; Ianakiev, K.D.

    1993-01-01

    A new, 4,000-channel analyzer has been developed for gamma-ray spectroscopy applications. A design philosophy of hardware and software building blocks has been combined with design goals of simplicity, compactness, portability, and reliability. The result is a miniature, modular multichannel analyzer (MMMCA), which offers solution to a variety of nondestructive assay (NDA) needs in many areas of general application, independent of computer platform or operating system. Detector-signal analog electronics, the bias supply, and batteries are included in the virtually pocket-size, low-power MMMCA unit. The MMMCA features digital setup and control, automated data reduction, and automated quality assurance. Areas of current NDA applications include on-line continuous (process) monitoring, process material holdup measurements, and field inspections

  13. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics.

    Science.gov (United States)

    Wang, Li-Ju; Chang, Yu-Chung; Sun, Rongrong; Li, Lei

    2017-01-15

    Current reported smartphone spectrometers are only used to monitor or measure one sample at a time. For the first time, we demonstrate a multichannel smartphone spectrometer (MSS) as an optical biosensor that can simultaneously optical sense multiple samples. In this work, we developed a novel method to achieve the multichannel optical spectral sensing with nanometer resolution on a smartphone. A 3D printed cradle held the smartphone integrated with optical components. This optical sensor performed accurate and reliable spectral measurements by optical intensity changes at specific wavelength or optical spectral shifts. A custom smartphone multi-view App was developed to control the optical sensing parameters and to align each sample to the corresponding channel. The captured images were converted to the transmission spectra in the visible wavelength range from 400nm to 700nm with the high resolution of 0.2521nm per pixel. We validated the performance of this MSS via measuring the concentrations of protein and immunoassaying a type of human cancer biomarker. Compared to the standard laboratory instrument, the results sufficiently showed that this MSS can achieve the comparative analysis detection limits, accuracy and sensitivity. We envision that this multichannel smartphone optical biosensor will be useful in high-throughput point-of-care diagnostics with its minimizing size, light weight, low cost and data transmission function. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A low power Multi-Channel Analyzer

    International Nuclear Information System (INIS)

    Anderson, G.A.; Brackenbush, L.W.

    1993-06-01

    The instrumentation used in nuclear spectroscopy is generally large, is not portable, and requires a lot of power. Key components of these counting systems are the computer and the Multi-Channel Analyzer (MCA). To assist in performing measurements requiring portable systems, a small, very low power MCA has been developed at Pacific Northwest Laboratory (PNL). This MCA is interfaced with a Hewlett Packard palm top computer for portable applications. The MCA can also be connected to an IBM/PC for data storage and analysis. In addition, a real-time time display mode allows the user to view the spectra as they are collected

  15. Multi-channel fiber optic dew and humidity sensor

    Science.gov (United States)

    Limodehi, Hamid E.; Mozafari, Morteza; Amiri, Hesam; Légaré, François

    2018-03-01

    In this article, we introduce a multi-channel fiber optic dew and humidity sensor which works using a novel method based on relation between surface plasmon resonance (SPR) and water vapor condensation. The proposed sensor can instantly detect moisture or dew formation through its fiber optic channels, separately situated in different places. It enables to simultaneously measure the ambient Relative Humidity (RH) and dew point temperature of several environments with accuracy of 5%.

  16. New-fashioned Multi-channel Analyzer Based on Bipartition Method

    International Nuclear Information System (INIS)

    Liu Mingjian; Zhang Yan; Yan Xuekun; Chen Ying

    2009-01-01

    A new-fashioned digital-analog converter (DAC) which can find the pulse-signal amplitude through dichotomy is devised. With this new DAC method, a 256-channel multi-channel pulse amplitude analyzer (MCA) is designed successfully, and its hardware and software are introduced in detail. This provides a new method for designing MCA. (authors)

  17. Electro-optic tunable multi-channel filter in two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Fu, Yulan; Zhang, Jiaxiang; Hu, Xiaoyong; Gong, Qihuang

    2010-01-01

    An electro-optic tunable multi-channel filter is presented, which is based on a two-dimensional ferroelectric photonic crystal made of barium titanate. The filtering properties of the photonic crystal filter can be tuned by an applied voltage or by adjusting the structural parameters. The channel shifts about 30 nm under excitation of an applied voltage of 54.8 V. The influences of the structural disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  18. Very low cost multichannel analyzer with some additional features

    Energy Technology Data Exchange (ETDEWEB)

    Tudyka, Konrad, E-mail: konrad.tudyka@polsl.pl [Centre of Excellence-Gliwice Absolute Dating Methods Centre, Institute of Physics, Silesian University of Technology (Poland); Bluszcz, Andrzej [Centre of Excellence-Gliwice Absolute Dating Methods Centre, Institute of Physics, Silesian University of Technology (Poland)

    2011-12-11

    In this paper we present a multichannel analyzer (MCA) based on a digital signal controller (DSC). The multichannel analyzer is characterized by a very low cost and an additional feature of recording time intervals between pulses. The total cost of electronic parts used in construction of the MCA is around 50 USD. The electronic circuit is based on dsPIC30F2020 DSC unit from Microchip. The device has a 10-bit analogue-to-digital converter (ADC) which can sample and convert 2 samples per {mu}s. The DSC samples the input voltage continuously and detects incoming pulses. The data belonging to a detected pulse and its time stamp are sent to a PC on-line. The analysis of data stored on the PC is performed off-line with the help of a genetic algorithm (GA) used to fit the pulse shape function. This allows determination of amplitude of each individual pulse. The effective resolution varies with the pulse length and is typically 1000 channels for pulses approximately 4{mu}s long.

  19. Development of a Multichannel Analyzer for modular ADCs

    International Nuclear Information System (INIS)

    Bannos Rodriguez, U.; Diaz Castro, M.; Rivero Ramirez, D.

    2013-01-01

    This paper describes the design and construction of a multichannel analyzer with USB interface from ADC module of the Fast ComTec 7074. One PIC18F4550 microprocessor from Microchip, one CPLD isPLSI 1032E from Lattice and one 32Kx8 SRAM memory were used. It also includes details of the programming circuitry and development of program acquisition, storage and display of the spectra using the Qt libraries. Finally, preliminary tests to the device are show. (Author)

  20. A novel portable multi-channel analyzer based on high-speed microcontroller

    International Nuclear Information System (INIS)

    Lou Xinghua; Yi Hongchang; Wang Yuemin

    2005-01-01

    This paper introduces a novel portable multi-channel analyzer (MCA) based on high-speed microcontroller. The hardware implementation and the software scenario of the MCA are discussed. The MCA has features of high speed, small size and better performances. (authors)

  1. Research on development of multi-channel analyzer used for monitoring and warning radiation equipment

    International Nuclear Information System (INIS)

    Nguyen Van Sy; Dang Quang Thieu; Nguyen Thi Bao My

    2015-01-01

    The subject assigned to this paper presents research on development of multi-channel analyzer used for monitoring and warning environmental radiation equipment under the project KC.05.16/11-15 Research on manufacturing equipment monitoring and warning radiation. In this thematic we have two subjects that need to be resolved such as: i) Designing spectroscopy amplifier block (AMP) duty pulse signals obtained about few hundred millivolts output from scintillation detector preamplifier, amplified as a few volts and the standard Gaussian pulses shaped to connect to the analog-to-digital converter. The spectroscopy amplifier block can change the gain by digital control to respond to the problem of automatic spectrum stability for multi-channel analyzer systems. ii) Designing analog-to-digital converter block (ADC) in accordance with the actual conditions, such as high stability, fast conversion time, high throughput, and it consumes low energy. Selecting suitable microprocessor for fast connection ability, to operate reliably paired with the analog-to-digital converter into a multi-channel analyzer (MCA) serving analysis. (author)

  2. Design of multi-channel amplitude analyzer base on LonWorks

    International Nuclear Information System (INIS)

    Zhang Ying; Zhao Lihong; Chen Aihua

    2008-01-01

    The paper introduces the multi-channel analyzer which adopts LonWorks technology. The system detects the pulse peak by hardware circuits and controls data acquisition and network communication by Micro Controller and Unit and Neuron chip. SCM is programmed by Keil C51; the communication between SCM and nerve cell is realized by Neron C language, and the computer program is written by VB language. Test results show that this analyzer is with fast conversion speed and low power consumption. (authors)

  3. 3m Vacuum Ultraviolet Spectrometer with Optical Multichannel Detector

    International Nuclear Information System (INIS)

    Martin, P.; Peraza, C.; Blanco, F.; Campos, J.

    1993-01-01

    This paper describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT. It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate / phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the array is digitized by a 12-bit analog to digital converter and stored in a computer, for its later analysis. The necessary software to store and display data has been developed. (Author) 18 refs

  4. The software for the USB-based multi-channel analyzer system

    International Nuclear Information System (INIS)

    Zhou Tong; Wei Yixiang

    2002-01-01

    A new type of multi-channel analyzer system is introduced, which takes advantage of Universal Serial Bus to communicate with computer and gets the merit of fast speed, universality and Plug and Play. The authors discussed the framework of the system, primary functions, display of spectrum date and the way of communication with hardware. The environment of the program is Visual Basic 6.0

  5. Interfacing a fieldable multichannel analyzer to a MicroVAX computer

    International Nuclear Information System (INIS)

    Litherland, K.R.; Johnson, M.W.

    1990-01-01

    This paper reports on software written for interfacing the D.S. Davidson Model 2056 portable multichannel analyzer to a MicroVAX computer running the VMS operating system. The operational objective of the software is to give the user a nearly transparent mechanism for controlling the analyzer with functions equivalent to those on the analyzer's own keyboard, thus minimizing the training requirement for the user. The software is written in VMS enhanced Fortran and consists of a main control program, several subprocesses, and libraries containing graphics commands and other information. Interfaces to other commercially available software packages for data storage and manipulation are provided. Problems encountered and their programming solutions are discussed

  6. Multichannel optical mapping: investigation of depth information

    Science.gov (United States)

    Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio

    2001-06-01

    Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.

  7. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  8. Astronomical observations with the optical multichannel analyser of the Sao Paulo University

    Energy Technology Data Exchange (ETDEWEB)

    Codina-Landaberry, S J; de Freitas Pacheco, J A [Universidade Mackenzie, Sao Paulo (Brazil). Centro de Radio-Astronomia e Astrofisica

    1979-03-01

    The first astronomical observations made with the optical multichannel analyser (OMA) of the Sao Paulo University is reported. A detailed description of the instrumentation is given as well as the results derived from the observation of some emission nebulae.

  9. Astronomical observations with the optical multichannel analyser of the Sao Paulo University

    International Nuclear Information System (INIS)

    Codina-Landaberry, S.J.; Freitas Pacheco, J.A. de

    1979-01-01

    The first astronomical observations made with the optical multichannel analyser (OMA) of the Sao Paulo University is reported. A detailed description of the instrumentation is given as well as the results derived from the observation of some emission nebulae [pt

  10. New ultra small battery operated portable multi-channel analyzer

    International Nuclear Information System (INIS)

    Wolf, M.A.; Umbarger, C.J.

    1979-01-01

    A newly designed portable multi-channel analyzer (MCA) has been developd at Los Alamos that has much improved physical and performance characteristics over previous designs. Namely, the instrument is very compact (25 cm wide x 14 cm deep x 21 cm high) and has a mass of 4.2 Kg (9.2 lb). The device has 1024 channels and is microprocessor controlled. The instrument has most of the standard features of present laboratory-based pulse height analyzers, including CRT display, region of interest integration, etc. Battery life of the MCA is nearly eight hours, with full charging over night. An accessory case carries a small audio cassette recorder for data storage. The case also contains two different NaI(Tl) detectors

  11. Multichannel analyzer based on microprocessors

    International Nuclear Information System (INIS)

    Soares, M.

    1983-06-01

    A multichannel analyser for nuclear spectrometry, that would attend the needs of research laboratories and could be industrialized in Brazil, was developed. The design was based on INTEL 8080/85 microprocessors; other processors were also used to implement specific functions, such as shared busbar using direct memory access. A prototype was developed and tested through simulation, using a nuclear spectrometry chain. The results were fully satisfactory. (Author) [pt

  12. Fibercore AstroGain fiber: multichannel erbium doped fibers for optical space communications

    Science.gov (United States)

    Hill, Mark; Gray, Rebecca; Hankey, Judith; Gillooly, Andy

    2014-03-01

    Fibercore have developed AstroGainTM fiber optimized for multichannel amplifiers used in optical satellite communications and control. The fiber has been designed to take full advantage of the photo-annealing effect that results from pumping in the 980nm region. The proprietary trivalent structure of the core matrix allows optimum recovery following radiation damage to the fiber, whilst also providing a market leading Erbium Doped Fiber Amplifier (EDFA) efficiency. Direct measurements have been taken of amplifier efficiency in a multichannel assembly, which show an effective photo-annealing recovery of up to 100% of the radiation induced attenuation through excitation of point defects.

  13. Compact and cost-effective multi-channel optical spectrometer for fine FBG sensing in IoT technology

    Science.gov (United States)

    Konishi, Tsuyoshi; Yamasaki, Yu

    2018-02-01

    Optical fiber sensor networks have attracted much attention in IoT technology and a fiber Bragg grating is one of key sensor devices there because of their advantages in a high affinity for optical fiber networks, compactness, immunity to electromagnetic interference and so on. Nevertheless, its sensitivity is not always satisfactory so as to be usable together with widespread cost-effective multi-channel spectrometers. In this paper, we introduce a new cost-effective approach for a portable multi-channel spectrometer with high spectral resolution and demonstrates some preliminary experimental results for fine FBG sensing.

  14. The design of multi-channel pulse amplitude analyzer based on ARM micro controller

    International Nuclear Information System (INIS)

    Li Hai; Li Xiang; Liu Caixue

    2010-01-01

    It introduces the design of multi-channel pulse amplitude analyzer based on embedded ARM micro-controller. The embedded and real-time system μC/OS-II builds up the real-time and stability of the system and advances the integration. (authors)

  15. A high-performance data acquisition system for computer-based multichannel analyzer

    International Nuclear Information System (INIS)

    Zhou Xinzhi; Bai Rongsheng; Wen Liangbi; Huang Yanwen

    1996-01-01

    A high-performance data acquisition system applied in the multichannel analyzer is designed with single-chip microcomputer system. The paper proposes the principle and the method of realizing the simultaneous data acquisition, the data pre-processing, and the fast bidirectional data transfer by means of direct memory access based on dual-port RAM as well. The measurement for dead or live time of ADC system can also be implemented efficiently by using it

  16. Multichannel analyzer for nuclear spectrometry with FPGA using Vivado

    International Nuclear Information System (INIS)

    Garcia D, A.; Hernandez D, V. M.; Vega C, H. R.; Ordaz G, O. O.; Ibarra D, S.; Bravo M, I.

    2017-09-01

    The different applications of ionizing radiation have made this a very significant and useful tool, in turn can be dangerous for living beings if they are exposed to uncontrolled doses. However, due to its characteristics, cannot be perceived by the five senses, in such a way that in order to know the presence of it, radiation detectors and additional devices are required that allow to quantify and classify it. This is the case of the multichannel analyzer that is responsible for separating the different pulse heights that are generated in the detectors, in a certain number of channels; according to the number of bits of the analog to digital converter. The development or conditioning of nuclear technology has increased considerably due to the demand of the applications; therefore this allows developing systems that cover some commercial requirements, cost and volume in relation to the user needs. The objective of the work was to design and implement an intellectual property core (IP Core) which functions as a multichannel analyzer for nuclear spectrometry. For the IP Core design methodology, its components were created in VHDL hardware description language and packaged in the Vivado design suite, making use of resources such as the ARM processor cores that the Zynq chip contains. Likewise, for the first phase of the implementation, the hardware architecture was embedded in the FPGA and the application for the ARM processor was programmed in C language. For the second phase, the management, control and visualization of the results, a virtual instrument was developed in the LabView programming platform. The data obtained as a result of the development and implementation of the IP Core was observed graphically in a histogram that is part of the aforementioned virtual instrument. (Author)

  17. Assembly language program design used in model DD80 multifunction microcomputer multichannel analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Yiziang, Wei; Ying, Chen; Xide, Zhao

    1985-05-01

    This paper describes the structures, features, flowcharts and design considerations of assembly language program used in Model DD80 (FH1920) multifunction microcomputer multichannel analyzer. On the Model TRS-80 (I) microcomputer with DD80 multifunction interface this program can be used in spectrum data acquisition, spectrum live display and some spectrum data processing.

  18. Acousto-Optic Applications for Multichannel Adaptive Optical Processor

    Science.gov (United States)

    1992-06-01

    AO cell and the two- channel line-scan camera system described in Subsection 4.1. The AO material for this IntraAction AOD-70 device was flint glass (n...Single-Channel 1.68 (flint glass ) 60,.0 AO Cell Multichannel 2.26 (TeO 2) 20.0 AO Cell Beam splitter 1.515 ( glass ) 50.8 Multichannel correlation was...Tone Intermodulation Dynamic Ranges of Longitudinal TeO2 Bragg Cells for Several Acoustic Power Densities 4-92 f f2 f 3 1 t SOURCE: Reference 21 TR-92

  19. New start-up channels and multichannel analyzer at the RB reactor; Novi start-up kanali i videkanalni analizator na reaktoru Rb

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O; Markovic, H; Vranic, S; Dimitrijevic, Z; Pesic, M [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1978-01-15

    New start-up channels and a multichannel analyzer were purchased in 1977 for the RB reactor. Both start-up channels contain BF{sub 3} neutron detectors, preamplifier, amplifier, single-channel analyzer, scaler, ratemeter, control unit, recording instrument. This document contains detailed technical description of these devices as well as characteristics of the multichannel analyzer which is being tested and will be used for measuring irradiation in the vicinity of the reactor.

  20. A computer program integrating a multichannel analyzer with gamma analysis for the estimation of 226 Ra concentration in soil samples

    International Nuclear Information System (INIS)

    Wilson, J. E.

    1992-08-01

    A new hardware/software system has been implemented using the existing three-regions-of-interest method for determining the concentration of 226 Ra in soil samples for the Pollutant Assessment Group of the Oak Ridge National Laboratory. Consisting of a personal computer containing a multichannel analyzer, the system utilizes a new program combining the multichannel analyzer with a program analyzing gamma-radiation spectra for 226 Ra concentrations. This program uses a menu interface to minimize and simplify the tasks of system operation

  1. Interfacing multichannel analyzers, counter, Modems and TTY:s with the PDP-15 computer

    International Nuclear Information System (INIS)

    Kozyczkowski, J.J.

    1975-01-01

    In nuclear physics laboratories as well as in others there exist strong needs of relatively fast but cost-economical transfers of stored data from available units into a computer. Here the advantage of asynchronous transceivers is utilized. The read in of 1024 channels from a Multichannel Analyzer can take place in 16 seconds in favourable circumstances. (Auth.)

  2. A software tool for analyzing multichannel cochlear implant signals.

    Science.gov (United States)

    Lai, Wai Kong; Bögli, Hans; Dillier, Norbert

    2003-10-01

    A useful and convenient means to analyze the radio frequency (RF) signals being sent by a speech processor to a cochlear implant would be to actually capture and display them with appropriate software. This is particularly useful for development or diagnostic purposes. sCILab (Swiss Cochlear Implant Laboratory) is such a PC-based software tool intended for the Nucleus family of Multichannel Cochlear Implants. Its graphical user interface provides a convenient and intuitive means for visualizing and analyzing the signals encoding speech information. Both numerical and graphic displays are available for detailed examination of the captured CI signals, as well as an acoustic simulation of these CI signals. sCILab has been used in the design and verification of new speech coding strategies, and has also been applied as an analytical tool in studies of how different parameter settings of existing speech coding strategies affect speech perception. As a diagnostic tool, it is also useful for troubleshooting problems with the external equipment of the cochlear implant systems.

  3. Independent multi-channel analyzer with the color display and microcomputer in the CAMAC standard

    International Nuclear Information System (INIS)

    Gyunter, Z.; Elizarov, O.I.; Zhukov, G.P.; Mikhaehlis, B.; Shul'tts, K.Kh.

    1983-01-01

    An independent multi-channel time-of-flight analyzer developed for a spectrometer of polarised neutrons and used in experiments with the IBR-2 pulse reactor is described. Different cyclic modes of measuring are realized in the analyzer, 4 kwords of analyzer momory being assigned for each mode. The spectra are displayed on a colour screen during measurements. Simultaneous displaying of up to 8 spectra is possible. A microcomputer transfers the spectra from the buffer analyzer memory to the microcomputer memory. The accumulated information is transferred to the PDP-11/70 central computer

  4. Advanced Modular, Multi-Channel, High Speed Fiber Optic Sensing System for Acoustic Emissions Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes to prove the feasibility of innovations based on ultra-light-weight, ultra-high-speed, multi-channel,...

  5. Massive parallel optical pattern recognition and retrieval via a two-stage high-capacity multichannel holographic random access memory system

    International Nuclear Information System (INIS)

    Cai, Luzhong; Liu, Hua-Kuang

    2000-01-01

    The multistage holographic optical random access memory (HORAM) system reported recently by Liu et al. provides a new degree of freedom for improving storage capacity. We further present a theoretical and practical analysis of the HORAM system with experimental results. Our discussions include the system design and geometrical requirements, its applications for multichannel pattern recognition and associative memory, the 2-D and 3-D information storage capacity, and multichannel image storage and retrieval via VanderLugt correlator (VLC) filters and joint transform holograms. A series of experiments are performed to demonstrate the feasibility of the multichannel pattern recognition and image retrieval with both the VLC and joint transform correlator (JTC) architectures. The experimental results with as many as 2025 channels show good agreement with the theoretical analysis. (c) 2000 Society of Photo-Optical Instrumentation Engineers

  6. A 16-detector alpha spectrometer using 1 multichannel analyzer

    International Nuclear Information System (INIS)

    Phillips, W.G.

    1978-01-01

    An alpha spectrometer containing 16 independent detectors and utilizing one 4096-channel multichannel analyzer (MCA) was constructed from commerically available modules. The spectrometer was designed specifically for the counting of low levels of radioactivity in environmental samples. Gated analog routing allows spectral data acquisition into 256 channel regions of the MCA memory as if each region were an independent 256-channel MCA. External live-time clocks and 50-Mhz analog-to-digital converters control timing and acquisition on each unit of eight detectors. Spectral data output is to magnetic tape in units of 256 channels each with a unique tagword. These tapes are then read and processed, and final reports are generated, by a large Control Data 6000 series computer

  7. Design of multi-channel analyzer's monitoring system based on embedded system

    International Nuclear Information System (INIS)

    Yang Tao; Wei Yixiang

    2007-01-01

    A new Multi-Channel Analyzer's Monitoring system based on ARM9 Embedded system is introduced in this paper. Some solutions to problem are also discussed during the procedure of design, installation and debugging on Linux system. The Monitoring system is developed by using MiniGUI and Linux software system API, with the functions of collecting, displaying and I/O data controlling 1024 channels datum. They are all realized in real time, with the merits of low cost, small size and portability. All these lay the foundation of developing homemade Digital and Portable nuclear spectrometers. (authors)

  8. The assembly language program design used in model DD80 multifunction microcomputer multichannel analyzer

    International Nuclear Information System (INIS)

    Wei Yiziang; Chen Ying; Zhao Xide

    1985-01-01

    This paper describes the structures, features, flowcharts and design considerations of assembly language program used in Model DD80 (FH1920) multifunction microcomputer multichannel analyzer. On the Model TRS-80 (I) microcomputer with DD80 multifunction interface this program can be used in spectrum data acquisition, spectrum live display and some spectrum data processing

  9. Flat Engineered Multichannel Reflectors

    Directory of Open Access Journals (Sweden)

    V. S. Asadchy

    2017-09-01

    Full Text Available Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.

  10. Flat Engineered Multichannel Reflectors

    Science.gov (United States)

    Asadchy, V. S.; Díaz-Rubio, A.; Tcvetkova, S. N.; Kwon, D.-H.; Elsakka, A.; Albooyeh, M.; Tretyakov, S. A.

    2017-07-01

    Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.

  11. Multichannel all–optical switch based on a thin slab of resonant two–level emitters

    Directory of Open Access Journals (Sweden)

    Malikov Ramil

    2017-01-01

    Full Text Available We discuss the possibility of using a thin layer of inhomogeneously broadened resonant emitters as a multichannel all–optical switch. Switching time from the lower stable branch of the system's bistable characteristics to the upper one and vice versa, which determines the speed of operation of a bistable device, is studied.

  12. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    OpenAIRE

    Md. Rajibur Rahaman Khan; Shin-Won Kang

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal?s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The...

  13. A low-cost multichannel pulse-height analyzer PHA 256 using single-chip microcomputer

    International Nuclear Information System (INIS)

    Koehler, M.; Meiling, W.

    1985-01-01

    The PHA 256 multichannel analyzer on the base of the U8820 single-chip microcomputer applied for radiation measurements, for example in monitoring systems with scintillation detectors, is described. The analyzer contains a power supply unit and 7 boards, namely, the processor board; data and program memory; 8-bit analog-to-digital converter; driver to display device; keyboard with 23 function keys; pulse amplifier and high-voltage supply (up to 2 kV). Software used provides preprocessing of spectra supported by following functions: addition and subtraction of different spectra, spectrum monitoring by use of a 5-point-algorithm, calculation of peak areas with linearly interpolated background

  14. Applying a CPLD for Refurbishment of a Multi-channel Pulse Height Analyzer

    International Nuclear Information System (INIS)

    Leetragunpichitchai, Supalerk; Thong-Aram, Decho; Ploykrachang, Kamontip

    2007-08-01

    Full text: This research applied a CPLD for construction of a 100 MHz, 2048 channel, Wilkinson type analog to digital converter (ADC) circuits for refurbishment of an original multi-channel pulse height analyzer (PHA) ADC. Introduction of the CPLD could reduce the complexity of the circuits, equipment size and also the power consumption while the operation speed was increased. The linearity test of the ADC was found to be excellent with an R2 = 0.9995 and a maximum pulse rate of 48.828 k cps could be converted in this system. Therefore the developed system was appropriate for replacing the original ADC

  15. Multichannel analyzer and spectrum evaluation program for a PDP-8/I computer

    International Nuclear Information System (INIS)

    German, U.

    1976-01-01

    The present report is intended to give descriptions of program functions and performances for a small computer used as multichannel analyzer; this has the advantage of flexibility and simple alteration of program parts for various experiments. To the common part of data acquisition and handling was added a calculation section which enables spectrum analysis; peaks are identified and their characteristics are printed, greatly simplifying the work of the analyst. Parameters for the detection efficiency curve are included in the program and thus absolute gamma-ray measurement can be performed on-line. The operation and use of the program are explained. (B.G.)

  16. Multichannel photocells for image converters with color separation

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, E. A.; Uzdovskii, V. V., E-mail: uzdovskii@list.ru; Khainovskii, V. I. [Moscow Institute of Electronic Technology (Russian Federation)

    2011-12-15

    The results of a study of photoelectric processes in photosensitive structures based on a multichannel vertically integrated p-n junction are presented. Optical radiation absorption in the space-charge region of a multichannel vertically integrated structure is studied.

  17. Digital baseline estimation method for multi-channel pulse height analyzing

    International Nuclear Information System (INIS)

    Xiao Wuyun; Wei Yixiang; Ai Xianyun

    2005-01-01

    The basic features of digital baseline estimation for multi-channel pulse height analysis are introduced. The weight-function of minimum-noise baseline filter is deduced with functional variational calculus. The frequency response of this filter is also deduced with Fourier transformation, and the influence of parameters on amplitude frequency response characteristics is discussed. With MATLAB software, the noise voltage signal from the charge sensitive preamplifier is simulated, and the processing effect of minimum-noise digital baseline estimation is verified. According to the results of this research, digital baseline estimation method can estimate baseline optimally, and it is very suitable to be used in digital multi-channel pulse height analysis. (authors)

  18. Use of the MCL dialog language for autonomous multi-channel analyzer automation

    International Nuclear Information System (INIS)

    Gyunter, Z.; Lebner, M.; Mikhaehlis, B.; Shvenkner, V.; Shul'tts, K.-Kh.

    1985-01-01

    The structure and software of a time-of-flight multichannel analyzer are considered. The analyzer is a subsystem of the measuring module of the SPN-1 polarized neutron spectrometer used in experiments at the IBR-2 reactor. The analyzer operates having several structures differing from one another by a timing coder. The MCL (MULTI-CONTROL-LANGUAGE) system is developed for control of the spectrometer. The system ensures the computer-user conversation and interfacing the computer and the experimental equipment. The MCL language is similar to that of the BASIC or the BAMBI. It has modular structure. The language interpreter and operating system have about 2 kbyte memory. The considered analyser is successfully used already during 6 months. The number of detector inputs of the analyser increased. Expenditures for alternations of programs are negligible due to modular structure of the system. Realization of new commads does not require comprehensive knowledge of the MCL language

  19. A high resolution 16 k multi-channel analyzer PC add-on card

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Paulson, Molly; Vaidya, P.P.

    2001-01-01

    This paper describes the system details of a 16 K channel resolution Multi-Channel Analyzer (MCA) developed at Electronics Division, BARC, which is used in high resolution nuclear spectroscopy systems for pulse height analysis. The high resolution data acquisition PC add-on card is architectured using a state of the art digital circuit design technology which makes use of a Field Programmable Gate Array (FPGA), and some of the most modern and advanced analog counterparts like low power, high speed and high precision comparators, Op-amps, ADCs and DACs etc. The 16 K MCA card gives an economic, compact, and low power alternative for nuclear pulse spectroscopy use. (author)

  20. Progress in miniaturization of a multichannel optical fiber Bragg grating sensor interrogator

    Science.gov (United States)

    Lopatin, Craig M.; Mahmood, Shah; Mendoza, Edgar; Moslehi, Behzad; Black, Richard; Chau, Kelvin; Oblea, Levy

    2007-07-01

    An effort to develop a miniaturized multichannel optical fiber Bragg grating sensor interrogator was initiated in 2006 under the Small Business Innovative Research (SBIR) program. The goal was to develop an interrogator that would be sufficiently small and light to be incorporated into a health monitoring system for use on tactical missiles. Two companies, Intelligent Fiber Optic Systems Corporation (IFOS) and Redondo Optics, were funded in Phase I, and this paper describes the prototype interrogators that were developed. The two companies took very different approaches: IFOS focused on developing a unit that would have a high channel count and high resolution, using off-the-shelf components, while Redondo Optics chose to develop a unit that would be very small and lightweight, using custom designed integrated optical chips. It is believed that both approaches will result in interrogators that will be significantly small, lighter, and possibly even more precise than what is currently commercially available. This paper will also briefly describe some of the sensing concepts that may be used to interrogate the health of the solid rocket motors used in many missile systems. The sponsor of this program was NAVAIR PMA 280.

  1. Abbott prism: a multichannel heterogeneous chemiluminescence immunoassay analyzer.

    Science.gov (United States)

    Khalil, O S; Zurek, T F; Tryba, J; Hanna, C F; Hollar, R; Pepe, C; Genger, K; Brentz, C; Murphy, B; Abunimeh, N

    1991-09-01

    We describe a multichannel heterogeneous immunoassay analyzer in which a sample is split between disposable reaction trays in a group of linear tracks. The system's pipettor uses noninvasive sensing of the sample volume and disposable pipet tips. Each assay track has (a) a conveyor belt for moving reaction trays to predetermined functional stations, (b) temperature-controlled tunnels, (c) noncontact transfer of the reaction mixture between incubation and detection wells, and (d) single-photon counting to detect a chemiluminescence (CL) signal from the captured immunochemical product. A novel disposable reaction tray, with separate reaction and detection wells and self-contained fluid removal, is used in conjunction with the transfer device on the track to produce a carryover-free system. The linear immunoassay track has nine predetermined positions for performing individual assay steps. Assay step sequence and timing is selected by changing the location of the assay modules between these predetermined positions. The assay methodology, a combination of microparticle capture and direct detection of a CL signal on a porous matrix, offers excellent sensitivity, specificity, and ease of automation. Immunoassay configurations have been tested for hepatitis B surface antigen and for antibodies to hepatitis B core antigen, hepatitis C virus, human immunodeficiency virus I and II, and human T-cell leukemia virus I and II.

  2. Experimental testing of the digital multichannel analyzer for gamma spectrometry measurements

    International Nuclear Information System (INIS)

    Novkovic, D.; Nadjdjerdj, L.; Kandic, A.; Vukanac, I.; Djurasevic, M.

    2008-01-01

    The results of experimental testing of the digital multichannel analyzer which digitalizes the signal after a preamplifier are presented. The recordings of some of the characteristics of the spectrometer containing a digital MCA, such as full-peak efficiency, net-area ratio of the two peaks and the stability of the peak position, were carried out under different input counting rates, with different radioactive sources. The tested MCA has shown some excellent features, like the stability of the peak position over a long-term period and flexibility in the adjusting of optimum measurement conditions. However, the performed tests have also shown some serious and unexpected disadvantages of the digital MCA when it operates under certain circumstances, one of them having to do with the automatic tuning of live-time correction at low-input counting rates. (author)

  3. Modeling High-Dimensional Multichannel Brain Signals

    KAUST Repository

    Hu, Lechuan; Fortin, Norbert J.; Ombao, Hernando

    2017-01-01

    aspects: first, there are major statistical and computational challenges for modeling and analyzing high-dimensional multichannel brain signals; second, there is no set of universally agreed measures for characterizing connectivity. To model multichannel

  4. Multichannel analyzer for the neutron time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Vojter, A.P.; Slyisenko, V.Yi.; Doronyin, M.Yi.; Maznij, Yi.O.; Vasil'kevich, O.A.; Golyik, V.V.; Koval'ov, O.M.; Kopachov, V.Yi.; Savchuk, V.G.

    2010-01-01

    New multichannel time-of-flight spectrometer for the measurement of the energy and angular distributions of neutrons from the WWWR-M reactor is considered. This spectrometer has been developed for the replacement of the previous one to increase the number of channels and measurement precision, reduce the time of channel tuning and provide the automatic monitoring during the experiment.

  5. Calculated characteristics of multichannel photoelectron multipliers

    International Nuclear Information System (INIS)

    Vasil'chenko, V.G.; Dajkovskij, A.G.; Milova, N.V.; Rakhmatov, V.E.; Rykalin, V.I.

    1990-01-01

    Structural features and main calculated characteristics of some modifications of position-sensitive two-coordinate multichannel photoelectron multipliers (PEM) with plate-type multiplying systems are described. The presented PEM structures are free from direct optical and ion feedbacks, provide coordinate resolution ≅ 1 mm with efficiency of photoelectron detection ≅ 90%. Capabilities for using silicon field-effect photocathodes, providing electron extraction into vacuum, as well as prospects of using multichannel multiplying systems for readout of the data from solid detectors are considered

  6. 3m Vacuum Ultraviolet Spectrometer with Optical Multichannel Detector; Espectrometro de ultravioleta de vacio de 3m provisto de sistema de deteccion optical multicanal

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P; Peraza, C; Blanco, F; Campos, J

    1993-07-01

    This paper describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT. It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate / phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the array is digitized by a 12-bit analog to digital converter and stored in a computer, for its later analysis. The necessary software to store and display data has been developed. (Author) 18 refs.

  7. Multichannel Mars Organic Analyzer (McMOA): Microfluidic Networks for the Automated In Situ Microchip Electrophoretic Analysis of Organic Biomarkers on Mars

    Science.gov (United States)

    Chiesl, T. N.; Benhabib, M.; Stockton, A. M.; Mathies, R. A.

    2010-04-01

    We present the Multichannel Mars Organic Analyzer (McMOA) for the analysis of Amino Acids, PAHs, and Oxidized Carbon. Microfluidic architecures integrating automated metering, mixing, on chip reactions, and serial dilutions are also discussed.

  8. Multichannel imager for littoral zone characterization

    Science.gov (United States)

    Podobna, Yuliya; Schoonmaker, Jon; Dirbas, Joe; Sofianos, James; Boucher, Cynthia; Gilbert, Gary

    2010-04-01

    This paper describes an approach to utilize a multi-channel, multi-spectral electro-optic (EO) system for littoral zone characterization. Advanced Coherent Technologies, LLC (ACT) presents their EO sensor systems for the surf zone environmental assessment and potential surf zone target detection. Specifically, an approach is presented to determine a Surf Zone Index (SZI) from the multi-spectral EO sensor system. SZI provides a single quantitative value of the surf zone conditions delivering an immediate understanding of the area and an assessment as to how well an airborne optical system might perform in a mine countermeasures (MCM) operation. Utilizing consecutive frames of SZI images, ACT is able to measure variability over time. A surf zone nomograph, which incorporates targets, sensor, and environmental data, including the SZI to determine the environmental impact on system performance, is reviewed in this work. ACT's electro-optical multi-channel, multi-spectral imaging system and test results are presented and discussed.

  9. Gray Scale Operation Of A Multichannel Optical Convolver Using The Semetex Magnetooptic Spatial Light Modulator

    Science.gov (United States)

    Davis, Jeffrey A.; Day, Timothy; Lilly, Roger A.; Taber, Donald B.; Liu, Hua-Kuang; Davis, J. A.; Day, T.; Lilly, R. A.; Taber, D. B.; Liu, H.-K.

    1988-02-01

    We present a new multichannel optical correlator/convolver architecture which uses an acoustooptic light modulator (AOLM) for the input channel and a Semetex magnetooptic spatial light modulator (MOSLM) for the set of parallel reference channels. Details of the anamorphic optical system are discussed. Experimental results illustrate use of the system as a convolver for performing digital multiplication by analog convolution (DMAC). A limited gray scale capability for data stored by the MOSLM is demonstrated by implementing this DMAC algorithm with trinary logic. Use of the MOSLM allows the number of parallel channels for the convolver to be increased significantly compared with previously reported techniques while retaining the capability for updating both channels at high speeds.

  10. A two-electrode multichannel analyzer of charged particles with discrete outer cylindrical and flat end electrodes

    Science.gov (United States)

    Fishkova, T. Ya.

    2017-06-01

    Using computer simulation, I have determined the parameters of a multichannel analyzer of charged particles of a simple design that I have proposed having the form of a cylindrical capacitor with a discrete outer cylinder and closed ends in a wide range of simultaneously recorded energies ( E max/ E min = 100). When introducing an additional cylindrical electrode of small dimensions near the front end of the system, it is possible to improve the resolution by more than an order of magnitude in the low-energy region. At the same time, the energy resolution of the analyzer in all the above energy range is ρ = (4-6) × 10-3.

  11. FPGA based high-performance multi-channel analyzer with local histogram memory

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.

    2004-01-01

    Modern nuclear spectroscopy systems demand for a Multi-Channel Analyzer (MCA) with higher resolution, faster speed and other advanced features. The MCA described here is targeted for such demanding applications. The MCA has an in-built local histogram memory and a memory management unit integrated in an FPGA (Field Programmable Gate Array) chip. In addition to the integrated low power digital circuitry, the system utilizes state of the art advanced analog circuits like low power, high speed and high precision comparators, op-amps, ADC and DAC. The operating resolution is selectable from 256 channels to 16384 channels for pulse height analysis. It supports high count rate applications (typically 100 KHz) without significant dead time penalty. It can have an USB bus interface with simple changes. In general, the MCA gives a high performance, compact and low power alternative for portable and battery operated systems as well as for high end laboratory instruments. (author)

  12. A low-cost multichannel analyzer with data reduction assembly for continuous air monitoring system

    International Nuclear Information System (INIS)

    Zoghi, B.; Lee, Y.; Nelson, D.C.

    1992-01-01

    This paper reports on a microcontroller-based multichannel analyzer (MCA) with a data reduction assembly (DRA) for a plutonium continuous air monitor (CAM) system. The MCA is capable of detecting the airborne alpha emitters in the presence of radon daughter products. The pulse output from the preamplifier has been stretched to allow the peak detector sufficient time to capture the pulse height. The pulse amplitude conversion, the data acquisition, and the output functions are carried out fully by software. The DRA consists of a data reduction unit (DRU) and its operator interface panel. The data reduction assembly has the ability to be networked to a single PC with up to 332 different CAM's remotely connected to it

  13. A PC based 8K multichannel analyzer [Paper No.: I2

    International Nuclear Information System (INIS)

    Bahere, A.R.; Vaidya, P.P.; Tabib, J.D.; Jha, Kuldip

    1993-01-01

    This paper describes a PC add on MCA card for nuclear spectroscopy applications. It consists of a 8K nuclear ADC, control logic and 8K * 24 bit dual ported histogram memory. The integral card assembly plugs into a single I/O expansion slot of the IBM-PC XT/AT or any compatible PC. This together with the data acquisition and processing software package, developed in Turbo C transforms the PC into a powerful Multichannel Analyzer. In the design of the MCA card, the PC interface, sequencers and control logic is implemented using programmable logic devices in order to achieve compact, efficient and reliable design. The dual ported 8K * 24 bit histogram memory is implemented using conventional static memory with external arbitration logic. Built-in ADC is designed around commercially available monolithic successive approximation type ADC chip. The low differential nonlinearity is achieved using an innovative interpolation technique along with Gatti sliding technique. The data acquisition and processing package developed in Turbo C, includes interrupt driven spectrum display driver and a pull down menu based user interface. Data processing features include spectrum smoothing, auto peak search and energy calibration. Separate memory buffers are used for data acquisition and data processing. Thus it is possible to acquire data in the background while analyzing an earlier acquired data. (author). 2 refs., 4 figs

  14. New small devices for radiation detection: the Wee Pocket Chirper and the Portable Multichannel Analyzer

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1980-08-01

    Recent events have demonstrated the need for improved capability to monitor the exposure of workers to radiation and, in general, to identify and measure the many forms of radioactive materials found throughout the nuclear industry. Two radiation monitoring devices have been developed that are much smaller than existing instruments, yet exhibit superior performance and a longer battery life. The first instrument, the Wee Pocket Chirper, is a tiny, battery-powered warning device that chirps when exposed to radiation. The second instrument is a portable battery-powered, computer-based, multichannel analyzer that allows the user to examine radiation fields and to identify the types and amounts of radioactive materials present

  15. A dual-parameter multichannel analyzer using a personal computer

    International Nuclear Information System (INIS)

    Akimoto, T.; Murai, I.; Chaki, S.; Ogawa, Y.; Shoji, I.

    1989-01-01

    The design of a practical system for measuring two-parameter signals is reported. To obtain constantly changing energy spectra of nuclear reactor assemblies due to repeated insertion of pulsed neutron sources, the simultaneous acquisition of time and energy data are needed. A computer-based dual-parameter multichannel pulse-height analyzer (MCA) has been developed; it employs a personal computer, two analog-to-digital converters (ADC's), and a parallel interface board for handling these signals. The system showed excellent performance characteristics with a minimum data processing time of about 14 μs; a maximum conversion gain of 2 18 channels (for example, 512 x 512 ch); a count capacity of 2 32 -1/ch(2 16 -1/ch at 512 x 512 ch); and the time required for graphic display of approximately 3 s/2 16 dots (contour display) or about 0.1 s/(2 16 /16) dots (isometric display). Large data arrays were handled dynamically with a segment register. The data processing speed was improved by transferring the data from the ADC to the central processing unit (CPU) in 16-bit words and simultaneously reading the status flag and the data. The graphic display process was speeded up by writing the data bit corresponding to the locations directly into the graphic video random access memory (VRAM). The system is simple to operate, and by changing the memory size and coincidence resolution time by software operations, it is highly flexible

  16. The portable micro-computerized multichannel spectrometer for geological application

    International Nuclear Information System (INIS)

    Fang Fang; Jia Wenyi; Zou Rongsheng; Ma Yingjie; Zhou Jianbin

    1999-01-01

    The portable micro-computerized multichannel spectrometer is based on the book computer and employs the A/D integrated circuit with 12 bits. It is a 2048 channel spectrometer which is consisted of hardware and software. The author analyzed the hardware circuit and software construction of the micro-computerized multichannel spectrometer which is suitable for filed geological application. The main technical specifications and application of the new multichannel spectrometer were also discussed

  17. The portable micro-computerized multichannel spectrometer for geological application

    International Nuclear Information System (INIS)

    Fang Fang; Jia Wenyi; Zhou Rongsheng; Ma Yingjie; Zhou Jianbin

    1999-01-01

    The portable micro-computerized multichannel spectrometer is based on the book computer and employs the A/D integrated circuit with 12 bits. It is a 2048 channel spectrometer which consists of hardware and software. The author analyzed the hardware circuit and software construction of the micro-computerized multichannel spectrometer which is suitable for field geological application. The main technical specifications and application of the new multichannel spectrometer were also discussed

  18. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  19. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    Science.gov (United States)

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  20. Multichannel analyzer using the direct-memory-access channel in a personal computer; Mnogokanal`nyj analizator v personal`nom komp`yutere, ispol`zuyushchij kanal pryamogo dostupa k pamyati

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, G; Vankov, I; Dimitrov, L [Incn. Yadernykh Issledovanij i Yadernoj Ehnergetiki Bolgarskoj Akademii Nuk, Sofiya (Bulgaria); Peev, I [Firma TOIVEL, Sofiya (Bulgaria)

    1996-12-31

    Paper describes a multichannel analyzer of the spectrometry data developed on the basis of a personal computer memory and a controlled channel of direct access. Analyzer software covering a driver and program of spectrum display control is studied. 2 figs.

  1. Multi-channel imaging cytometry with a single detector

    Science.gov (United States)

    Locknar, Sarah; Barton, John; Entwistle, Mark; Carver, Gary; Johnson, Robert

    2018-02-01

    Multi-channel microscopy and multi-channel flow cytometry generate high bit data streams. Multiple channels (both spectral and spatial) are important in diagnosing diseased tissue and identifying individual cells. Omega Optical has developed techniques for mapping multiple channels into the time domain for detection by a single high gain, high bandwidth detector. This approach is based on pulsed laser excitation and a serial array of optical fibers coated with spectral reflectors such that up to 15 wavelength bins are sequentially detected by a single-element detector within 2.5 μs. Our multichannel microscopy system uses firmware running on dedicated DSP and FPGA chips to synchronize the laser, scanning mirrors, and sampling clock. The signals are digitized by an NI board into 14 bits at 60MHz - allowing for 232 by 174 pixel fields in up to 15 channels with 10x over sampling. Our multi-channel imaging cytometry design adds channels for forward scattering and back scattering to the fluorescence spectral channels. All channels are detected within the 2.5 μs - which is compatible with fast cytometry. Going forward, we plan to digitize at 16 bits with an A-toD chip attached to a custom board. Processing these digital signals in custom firmware would allow an on-board graphics processing unit to display imaging flow cytometry data over configurable scanning line lengths. The scatter channels can be used to trigger data buffering when a cell is present in the beam. This approach enables a low cost mechanically robust imaging cytometer.

  2. Multichannel analyzer development in CAMAC

    International Nuclear Information System (INIS)

    Nagy, J.Z.; Zarandy, A.

    1988-01-01

    The data acquisition in TOKAMAK experiments some CAMAC modules have been developed. The modules are the following: 64 K analyzer memory, 32 K analyzer memory, 6-channel pulse peak analyzer memory which contains the 32 K analyzer memory and eight AD-converters

  3. Development of Labview based data acquisition and multichannel analyzer software for radioactive particle tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nuclearmalaysia.gov.my; Yussup, Nolida; Ibrahim, Maslina Bt. Mohd; Abdullah, Nor Arymaswati; Mokhtar, Mukhlis B. [Technical Support Division, Malaysian Nuclear Agency, 43000, Kajang, Selangor (Malaysia); Abdullah, Jaafar B.; Hassan, Hearie B. [Industrial Technology Division, Malaysian Nuclear Agency, 43000, Kajang, Selangor (Malaysia)

    2015-04-29

    A DAQ (data acquisition) software called RPTv2.0 has been developed for Radioactive Particle Tracking System in Malaysian Nuclear Agency. RPTv2.0 that features scanning control GUI, data acquisition from 12-channel counter via RS-232 interface, and multichannel analyzer (MCA). This software is fully developed on National Instruments Labview 8.6 platform. Ludlum Model 4612 Counter is used to count the signals from the scintillation detectors while a host computer is used to send control parameters, acquire and display data, and compute results. Each detector channel consists of independent high voltage control, threshold or sensitivity value and window settings. The counter is configured with a host board and twelve slave boards. The host board collects the counts from each slave board and communicates with the computer via RS-232 data interface.

  4. Separable expansion for realistic multichannel scattering problems

    International Nuclear Information System (INIS)

    Canton, L.; Cattapan, G.; Pisent, G.

    1987-01-01

    A new approach to the multichannel scattering problem with realistic local or nonlocal interactions is developed. By employing the negative-energy solutions of uncoupled Sturmian eigenvalue problems referring to simple auxiliary potentials, the coupling interactions appearing to the original multichannel problem are approximated by finite-rank potentials. By resorting to integral-equation tecniques the coupled-channel equations are then reduced to linear algebraic equations which can be straightforwardly solved. Compact algebraic expressions for the relevant scattering matrix elements are thus obtained. The convergence of the method is tasted in the single-channel case with realistic optical potentials. Excellent agreement is obtained with a few terms in the separable expansion for both real and absorptive interactions

  5. Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode.

    Science.gov (United States)

    Zhuo, Shuangmu; Chen, Jianxin; Luo, Tianshu; Zou, Dingsong

    2006-08-21

    A Multimode nonlinear optical imaging technique based on the combination of multichannel mode and Lambda mode is developed to investigate human dermis. Our findings show that this technique not only improves the image contrast of the structural proteins of extracellular matrix (ECM) but also provides an image-guided spectral analysis method to identify both cellular and ECM intrinsic components including collagen, elastin, NAD(P)H and flavin. By the combined use of multichannel mode and Lambda mode in tandem, the obtained in-depth two photon-excited fluorescence (TPEF) and second-harmonic generation (SHG) imaging and TPEF/SHG signals depth-dependence decay can offer a sensitive tool for obtaining quantitative tissue structural and biochemical information. These results suggest that the technique has the potential to provide more accurate information for determining tissue physiological and pathological states.

  6. Value Creation Challenges in Multichannel Retail Business Models

    Directory of Open Access Journals (Sweden)

    Mika Yrjölä

    2014-08-01

    Full Text Available Purpose: The purpose of the paper is to identify and analyze the challenges of value creation in multichannel retail business models. Design/methodology/approach: With the help of semi-structured interviews with top executives from different retailing environments, this study introduces a model of value creation challenges in the context of multichannel retailing. The challenges are analyzed in terms of three retail business model elements, i.e., format, activities, and governance. Findings: Adopting a multichannel retail business model requires critical rethinking of the basic building blocks of value creation. First of all, as customers effortlessly move between multiple channels, multichannel formats can lead to a mismatch between customer and firm value. Secondly, retailers face pressures to use their activities to form integrated total offerings to customers. Thirdly, multiple channels might lead to organizational silos with conflicting goals. A careful orchestration of value creation is needed to determine the roles and incentives of the channel parties involved. Research limitations/implications: In contrast to previous business model literature, this study did not adopt a network-centric view. By embracing the boundary-spanning nature of the business model, other challenges and elements might have been discovered (e.g., challenges in managing relationships with suppliers. Practical implications: As a practical contribution, this paper has analyzed the challenges retailers face in adopting multichannel business models. Customer tendencies for showrooming behavior highlight the need for generating efficient lock-in strategies. Customized, personal offers and information are ways to increase customer value, differentiate from competition, and achieve lock-in. Originality/value: As a theoretical contribution, this paper empirically investigates value creation challenges in a specific context, lowering the level of abstraction in the mostly

  7. Data processing for the multichannel pulse height analysis system ND-50/50, (1)

    International Nuclear Information System (INIS)

    Katagiri, Masaki

    1977-03-01

    The multichannel pulse height analysis system ND-50/50 manufactured by Nuclear Data Inc. consists of a 4096 channel pulse height analyzer and a small computer PDP-8/L (Digital Equipment Corporation). A conversational interpretive language, MACAL (Multichannel Analyzer CALculator) has been developed to analyze gamma-ray spectra in ND-50/50. It is a modification of the FOCAL (FOrmula CALculator) language of Digital Equipment Corporation. MACAL consists of imperative English commands and mathematical expressions, and has standard mathematical functions and functions for controlling the multichannel pulse height analyzer and I/O devices (high-speed reader, high-speed punch, and digital plotter). With MACAL, the following five programs were prepared : 1) program for controlling the multichannel pulse height analyzer and data handling, 2) program for automatically analyzing gamma-ray spectra obtained by germanium detectors, 3) program for automatically measuring characteristics of germanium detectors, 4) program for calculating the center energy of gamma-ray peaks, and 5) program for plotting the pulse height distribution and diagraming the results obtained with the programs. By combining the programs according to experimental purposes, the system can be highly effective. (auth.)

  8. 12.5 Gb/s multi-channel broadcasting transmission for free-space optical communication based on the optical frequency comb module.

    Science.gov (United States)

    Tan, Jun; Zhao, Zeping; Wang, Yuehui; Zhang, Zhike; Liu, Jianguo; Zhu, Ninghua

    2018-01-22

    A wide-spectrum, ultra-stable optical frequency comb (OFC) module with 100 GHz frequency intervals based on a quantum dot mode locked (QDML) laser is fabricated by our lab, and a scheme with 12.5 Gb/s multi-channel broadcasting transmission for free-space optical (FSO) communication is proposed based on the OFC module. The output power of the OFC is very stable, with the specially designed circuit and the flatness of the frequency comb over the span of 6 nm, which can be limited to 1.5 dB. Four channel wavelengths are chosen to demonstrate one-to-many channels for FSO communication, like optical wireless broadcast. The outdoor experiment is established to test the bit error rate (BER) and eye diagrams with 12.5 Gb/s on-off keying (OOK). The indoor experiment is used to test the highest traffic rate, which is up to 21 Gb/s for one-hop FSO communication. To the best of our knowledge, this scheme is the first to propose the realization of one-to-many broadcasting transmission for FSO communication based on the OFC module. The advantages of integration, miniaturization, channelization, low power consumption, and unlimited bandwidth of one-to-many broadcasting communication scheme, shows promising results on constructing the future space-air-ground-ocean (SAGO) FSO communication networks.

  9. Nondestructive measurement of tomato postharvest quality using a multichannel hyperspectral imaging probe

    Science.gov (United States)

    A multichannel hyperspectral imaging probe with 30 optic fibers covering the wavelength range of 550-1,650 nm and the light source-detector distances of 1.5-36 mm was recently developed for optical property measurement and quality evaluation of food products with flat or curved surface. This paper r...

  10. Analysis of multichannel optical rotary connectors based on the compensation operating principle with mirror and prismatic optical compensators (Part 1

    Directory of Open Access Journals (Sweden)

    V.M. Shapar

    2017-04-01

    Full Text Available Performed in this work is a comprehensive theoretical computer analysis of performances inherent to two types of multichannel optical rotary connectors (ORC of compensation operation based on mirror and prismatic compensators. This analysis relies on exact analytical expressions obtained for light ray paths in ORC models with a mirror compensator made in the form of bilateral mirror placed between two optical hemispheres and with prismatic compensator made in the form of Dove prism placed between two non-aberrational elliptic lenses. Found in ORC with the mirror compensator is the essential deficiency inherent to all these constructions, which is related with considerable rotary oscillations in the value of optical signals in mirror angular positions when the mirror halves the input light beam. In these mirror positions, the amplitude value of optical signal oscillations exceeds 95%, and optical losses are higher than –13 dB, when the rotor turns. One deficiency more in these constructions is also strict technical requirements to the accuracy of making the optical components and mechanisms at the level of 1…2 µm. Concerning the ORC construction with a prismatic compensator as well as collimator and focusing lenses common for all the channels, one should note the inadmissibly high optical losses of the signal value (higher than –30…40 dB in the case of construction with fiber-optic interfaces, and large dimensions and mass in the case of active construction with optoelectronic transducers at the inputs and outputs of ORC. For example, when the number of channels N = 10 the longitudinal dimension of optical transfer channel (prism and lenses exceeds 300 mm, and this dimension increases with increasing the number of channels. When this dimension is lower than 100 mm, the facility can be equipped with only one optical communication channel containing one LED and one photodiode located on the rotation axis. Optical losses in these

  11. Development of multi-channel optical-fiber feed through for ITER

    International Nuclear Information System (INIS)

    Sugie, Tatsuo; Kasai, Satoshi; Toriya, Tomoaki

    1998-08-01

    A multi-channel fiber feed through has been developed for visible and IR transmission lines through secondary vacuum boundary (cryostat boundary) of ITER. In the first phase, a scale down test-module which has ten fiber feed through in the vacuum flange was manufactured and tested. The vacuum seal was realized by soldering gold plated fibers to a vacuum flange with high temperature solder. The capacity to resist inner pressure rise of 5 atm, the acceleration resistant of 15g and the temperature resistant from 20degC-200degC were achieved by the test module. The connecting loss and the uniformity of transmission losses among each channels of the feed through were not well. Concerning the connecting loss, the best value was 2.2 dB and the worst one was 13.5 dB. In the second phase, the full performance test-module which has 57 fiber feed through was manufactured and tested. The feed through was improved in order to achieve a good transmission and the uniformity among each channels by using a optical fiber implanted in a center of a quartz rod very accurately. The capacity to resist inner pressure rise of 5 atm, the acceleration resistant of 15g and the temperature resistant from 40degC-200degC (Temperature ramp rate: >20degC/hr) were achieved by the full performance test-module. The connecting losses of the feed through were less than 3 dB, and the uniformity of transmission losses among each channels of the feed through was larger than 60%. The requirements for an optical-fiber feed through were almost satisfied with the full performance test-module. Further developments will be necessary for the remote handling method. (author)

  12. Research on digital multi-channel pulse height analysis techniques

    International Nuclear Information System (INIS)

    Xiao Wuyun; Wei Yixiang; Ai Xianyun; Ao Qi

    2005-01-01

    Multi-channel pulse height analysis techniques are developing in the direction of digitalization. Based on digital signal processing techniques, digital multi-channel analyzers are characterized by powerful pulse processing ability, high throughput, improved stability and flexibility. This paper analyzes key techniques of digital nuclear pulse processing. With MATLAB software, main algorithms are simulated, such as trapezoidal shaping, digital baseline estimation, digital pole-zero/zero-pole compensation, poles and zeros identification. The preliminary general scheme of digital MCA is discussed, as well as some other important techniques about its engineering design. All these lay the foundation of developing homemade digital nuclear spectrometers. (authors)

  13. Development of Data Storage System for Portable Multichannel Analyzer using S D Card

    International Nuclear Information System (INIS)

    Suksompong, Tanate; Ngernvijit, Narippawaj; Sudprasert, Wanwisa

    2009-07-01

    Full text: The development of data storage system for portable multichannel analyzer (MCA) focused on the application of SD card as a storage device instead of the older devices that could not easily extend their capacity. The entire work consisted of two parts: the first part was the study for pulse detection by designing the input pulse detecting circuit. The second part dealed with the accuracy testing of data storage system for portable MCA, consisting of the design of connecting circuit between micro controller and SD card, the transfer of input pulse data into SD card and the ability of data storage system for radiation detection. It was found that the input pulse detecting circuit could detect the input pulse with the maximum voltage, then the signal was transferred to micro controller for data processing. The micro controller could connect to SD card via SPI MODE. The portable MCA could perfectly verify the input signal ranging from 0.2 to 5.0 volts. The SD card could store the data as . xls file which could easily be accessed by the compatible software such as Microsoft Excel

  14. Multichannel Dynamic Fourier-Transform IR Spectrometer

    Science.gov (United States)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  15. Multichannel analyzer for nuclear spectrometry with FPGA using Vivado; Analizador multicanal para espectrometria nuclear con FPGA utilizando Vivado

    Energy Technology Data Exchange (ETDEWEB)

    Garcia D, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas, Zac. (Mexico); Ordaz G, O. O.; Ibarra D, S. [Universidad de Cordoba, Campus de Rabanales, Carretera Nacional IV, km 396, 14014 Cordoba (Spain); Bravo M, I., E-mail: angelogarciad@hotmail.com [Universidad de Alcala, Departamento de Electronica, Campus Universitario s/n, 28805 Alcala de Henares, Madrid (Spain)

    2017-09-15

    The different applications of ionizing radiation have made this a very significant and useful tool, in turn can be dangerous for living beings if they are exposed to uncontrolled doses. However, due to its characteristics, cannot be perceived by the five senses, in such a way that in order to know the presence of it, radiation detectors and additional devices are required that allow to quantify and classify it. This is the case of the multichannel analyzer that is responsible for separating the different pulse heights that are generated in the detectors, in a certain number of channels; according to the number of bits of the analog to digital converter. The development or conditioning of nuclear technology has increased considerably due to the demand of the applications; therefore this allows developing systems that cover some commercial requirements, cost and volume in relation to the user needs. The objective of the work was to design and implement an intellectual property core (IP Core) which functions as a multichannel analyzer for nuclear spectrometry. For the IP Core design methodology, its components were created in VHDL hardware description language and packaged in the Vivado design suite, making use of resources such as the ARM processor cores that the Zynq chip contains. Likewise, for the first phase of the implementation, the hardware architecture was embedded in the FPGA and the application for the ARM processor was programmed in C language. For the second phase, the management, control and visualization of the results, a virtual instrument was developed in the LabView programming platform. The data obtained as a result of the development and implementation of the IP Core was observed graphically in a histogram that is part of the aforementioned virtual instrument. (Author)

  16. Modeling High-Dimensional Multichannel Brain Signals

    KAUST Repository

    Hu, Lechuan

    2017-12-12

    Our goal is to model and measure functional and effective (directional) connectivity in multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). The difficulties from analyzing these data mainly come from two aspects: first, there are major statistical and computational challenges for modeling and analyzing high-dimensional multichannel brain signals; second, there is no set of universally agreed measures for characterizing connectivity. To model multichannel brain signals, our approach is to fit a vector autoregressive (VAR) model with potentially high lag order so that complex lead-lag temporal dynamics between the channels can be captured. Estimates of the VAR model will be obtained by our proposed hybrid LASSLE (LASSO + LSE) method which combines regularization (to control for sparsity) and least squares estimation (to improve bias and mean-squared error). Then we employ some measures of connectivity but put an emphasis on partial directed coherence (PDC) which can capture the directional connectivity between channels. PDC is a frequency-specific measure that explains the extent to which the present oscillatory activity in a sender channel influences the future oscillatory activity in a specific receiver channel relative to all possible receivers in the network. The proposed modeling approach provided key insights into potential functional relationships among simultaneously recorded sites during performance of a complex memory task. Specifically, this novel method was successful in quantifying patterns of effective connectivity across electrode locations, and in capturing how these patterns varied across trial epochs and trial types.

  17. The Time Division Multi-Channel Communication Model and the Correlative Protocol Based on Quantum Time Division Multi-Channel Communication

    International Nuclear Information System (INIS)

    Liu Xiao-Hui; Pei Chang-Xing; Nie Min

    2010-01-01

    Based on the classical time division multi-channel communication theory, we present a scheme of quantum time-division multi-channel communication (QTDMC). Moreover, the model of quantum time division switch (QTDS) and correlative protocol of QTDMC are proposed. The quantum bit error rate (QBER) is analyzed and the QBER simulation test is performed. The scheme shows that the QTDS can carry out multi-user communication through quantum channel, the QBER can also reach the reliability requirement of communication, and the protocol of QTDMC has high practicability and transplantable. The scheme of QTDS may play an important role in the establishment of quantum communication in a large scale in the future. (general)

  18. AN ADAPTIVE MULTI-CHANNEL SPECTROELLIPSOMETER FOR ECOLOGICAL MONITORING

    Directory of Open Access Journals (Sweden)

    F. A. Mkrtchyan

    2012-09-01

    Full Text Available The creation of multichannel polarization optical instrumentation and use of spectroellipsometric technology are very important for the real-time ecological control of aquatic environment. Spectroellipsometric devices give us high precision of measurements. This report is aimed to describe: •A technology of combined use of spectroellipsometry and algorithms of identification and recognition that allowed the creation of a standard integral complex of instrumental, algorithmic, modular and software tools for the collection and processing of data on the aquatic environment quality with forecasting and decision - making functions. •A compact measuring - information multichannel spectroellipsometric system (device for monitoring the quality of aquatic environment, that is based on the combined use of spectroellipsometry and training, classification, and identification algorithms. This spectroellipsometric system will differ from modern foreign analogues by the use of a new and very promising method of ellipsometric measurements, an original element base of polarization optics and a complex mathematical approach to estimating the quality of a water object subjected to anthropogenic influence.Unlike foreign analogues, the system has no rotating polarization elements. This allows one to increase the signal-to-noise ratio and the long-term stability of measurements, to simplify and reduce the price of multichannel spectroellipsometers. The system will be trainable to the recognition of the pollutants of aquatic environment. A spectroellipsometer in laboratories of V.A. Kotelnikov's Institute of Radioengineering and Electronics, Russian Academy of Sciences is designed for in-situ real time measurements of spectra of ellipsometric parameters Psi and Delta with consequent changeover to spectra of transmitted and reflected signal from water media in frames of used physical model of water environment.

  19. Multichannel spectral mode of the ALOHA up-conversion interferometer

    Science.gov (United States)

    Lehmann, L.; Darré, P.; Boulogne, H.; Delage, L.; Grossard, L.; Reynaud, F.

    2018-06-01

    In this paper, we propose a multichannel spectral configuration of the Astronomical Light Optical Hybrid Analysis (ALOHA) instrument dedicated to high-resolution imaging. A frequency conversion process is implemented in each arm of an interferometer to transfer the astronomical light to a shorter wavelength domain. Exploiting the spectral selectivity of this non-linear optical process, we propose to use a set of independent pump lasers in order to simultaneously study multiple spectral channels. This principle is experimentally demonstrated with a dual-channel configuration as a proof-of-principle.

  20. Calibration OGSE for a multichannel radiometer for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; Álvarez, F. J.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martin, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2017-09-01

    This work describes several OGSEs (Optical Ground Support Equipment) developed by INTA (Spanish Institute of Aerospace Technology - Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (Solar Irradiance Sensors - SIS) for planetary atmospheric studies in the frame of some Martian missions at which INTA is participating.

  1. Design and Simulation of Seido Buffer for Analog to Digital Converter (ADC) on Multichannel Analyzer (MCA) Application

    International Nuclear Information System (INIS)

    Harzawadi Hasim; Maslina Ibrahim; Nolida Yusop; Mohd Ashhar Khalid

    2011-01-01

    Most of our electronic equipment has buffer, thus this make buffer as one of importance in electronic gadget. This paper introduced Single Ended Input Differential Output (SEIDO) buffer to predict the bias at approximately 2.5 V. For this purpose, the input range between -1 mV to 4 V was implemented. The software used to cascade SEIDO buffer is called LTspice IV; an open source software developed by Linear Technology Incorporation. The component involve in this development was Operational Amplifier (OP AMP) AD826 from Analog Devices Incorporation, capacitor and resistor. Kirchhoffs Current Law and Kirchhoffs Voltage Law was applied to calculated voltage gain and biasing voltage. All design has been verified by LTspice IV. The result produced from simulation was between -0.3 V to 6.3 V with bias roughly at 2.5 V. These results prove that it was capable to drive Analog Digital Converter (ADC) that can subsequently apply for Multichannel Analyzer (MCA). (author)

  2. Multichannel waveform display system

    International Nuclear Information System (INIS)

    Kolvankar, V.G.

    1989-01-01

    For any multichannel data acquisition system, a multichannel paper chart recorder undoubtedly forms an essential part of the system. When deployed on-line, it instantaneously provides, for visual inspection, hard copies of the signal waveforms on common time base at any desired sensitivity and time resolution. Within the country, only a small range of these strip chart recorder s is available, and under stringent specifications imported recorders are often procured. The cost of such recorders may range from 1 to 5 lakhs of rupees in foreign exchange. A system to provide on the oscilloscope a steady display of multichannel waveforms, refreshed from the digital data stored in the memory is developed. The merits and demerits of the display system are compared with that built around a conventional paper chart recorder. Various illustrations of multichannel seismic event data acquired at Gauribidanur seismic array station are also presented. (author). 2 figs

  3. Optical properties of nasal septum cartilage

    Science.gov (United States)

    Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.

    1998-05-01

    Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).

  4. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    Science.gov (United States)

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  5. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  6. Multichannel analyzer with real-time correction of counting losses based on a fast 16/32 bit microprocessor

    International Nuclear Information System (INIS)

    Westphal, G.P.; Kasa, T.

    1984-01-01

    It is demonstrated that from a modern microprocessor with 32 bit architecture and from standard VLSI peripheral chips a multichannel analyzer with real-time correction of counting losses may be designed in a very flexible yet cost-effective manner. Throughput rates of 100,000 events/second are a good match even for high-rate spectroscopy systems and may be further enhanced by the use of already available CPU chips with higher clock frequency. Low power consumption and a very compact form factor make the design highly recommendable for portable applications. By means of a simple and easily reproducible rotating sample device the dynamic response of the VPG counting loss correction method have been tested and found to be more than sufficient for conceivable real-time applications. Enhanced statistical accuracy of correction factors may be traded against speed of response by the mere change of one preset value which lends itself to the simple implementation of self-adapting systems. Reliability as well as user convenience is improved by self-calibration of pulse evolution time in the VPG counting loss correction unit

  7. Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts

    Science.gov (United States)

    Posada-Roman, Julio E.; Jackson, David A.; Cole, Mike J.; Garcia-Souto, Jose A.

    2017-12-01

    A multichannel optical fiber laser Doppler vibrometer was demonstrated with the capability of making simultaneous non-contact measurements of impacts at 3 different locations. Two sets of measurements were performed, firstly using small ball bearings (1 mm-5.5 mm) falling under gravity and secondly using small projectiles (1 mm) fired from an extremely high velocity light gas gun (LGG) with speeds in the range 1 km/s-8 km/s. Determination of impact damage is important for industries such as aerospace, military and rail, where the effect of an impact on the structure can result in a major structural damage. To our knowledge the research reported here demonstrates the first trials of a multichannel fiber laser Doppler vibrometer being used to detect hypervelocity impacts.

  8. Phase sensitive multichannel OCT

    International Nuclear Information System (INIS)

    Trasischker, W.

    2015-01-01

    The main aim of this thesis was to develop and improve phase sensitive, multichannel methods for optical coherence tomography (OCT) using light in the 840 nm and 1040 nm regime. Conventional OCT provides purely structural information by illuminating the sample by one beam and recording the backscattered signal with one detection channel. Combination of this approach with a raster scan enables the acquisition of 2D and 3D structural information with a resolution in the micrometer regime. However, sometimes additional image contrast or information is desired. Amongst other approaches, this can be provided by a phase sensitive analysis of the interference pattern. Combining phase sensitivity with the illumination of the sample by more than one beam and/or by recording the data using more than one data acquisition channel allows for even more enhanced imaging. While phase sensitive OCT gives access to additional contrast and information, multichannel OCT can provide higher imaging speed, scan eld size and exible dierential measurements. Amongst the dierential, phase sensitive approaches, Doppler OCT (DOCT) and polarization sensitive OCT (PS-OCT) are two of the most promising OCT modalities. While the former targets information on the movement of backscattering particles, the latter measures alterations of the polarization state of the light induced by the sample. Both techniques provide additional image contrast and are, due to the non-invasive and fast character of OCT, well suited for in vivo imaging of the human eye. In the course of this thesis, two dierent multichannel, phase sensitive OCT systems will be presented. First, a D-OCT system with three dierent sampling beams is described. With a central wavelength of 840 nm these three beams are emitted by three individual laser sources. This eectively eliminates any cross talk and provides the full depth range for each channel. Furthermore, by illuminating the sample from three dierent directions, the absolute

  9. Optical-Correlator Neural Network Based On Neocognitron

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  10. Analyzing Water's Optical Absorption

    Science.gov (United States)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  11. Modeling high dimensional multichannel brain signals

    KAUST Repository

    Hu, Lechuan

    2017-03-27

    In this paper, our goal is to model functional and effective (directional) connectivity in network of multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). The primary challenges here are twofold: first, there are major statistical and computational difficulties for modeling and analyzing high dimensional multichannel brain signals; second, there is no set of universally-agreed measures for characterizing connectivity. To model multichannel brain signals, our approach is to fit a vector autoregressive (VAR) model with sufficiently high order so that complex lead-lag temporal dynamics between the channels can be accurately characterized. However, such a model contains a large number of parameters. Thus, we will estimate the high dimensional VAR parameter space by our proposed hybrid LASSLE method (LASSO+LSE) which is imposes regularization on the first step (to control for sparsity) and constrained least squares estimation on the second step (to improve bias and mean-squared error of the estimator). Then to characterize connectivity between channels in a brain network, we will use various measures but put an emphasis on partial directed coherence (PDC) in order to capture directional connectivity between channels. PDC is a directed frequency-specific measure that explains the extent to which the present oscillatory activity in a sender channel influences the future oscillatory activity in a specific receiver channel relative all possible receivers in the network. Using the proposed modeling approach, we have achieved some insights on learning in a rat engaged in a non-spatial memory task.

  12. Modeling high dimensional multichannel brain signals

    KAUST Repository

    Hu, Lechuan; Fortin, Norbert; Ombao, Hernando

    2017-01-01

    In this paper, our goal is to model functional and effective (directional) connectivity in network of multichannel brain physiological signals (e.g., electroencephalograms, local field potentials). The primary challenges here are twofold: first, there are major statistical and computational difficulties for modeling and analyzing high dimensional multichannel brain signals; second, there is no set of universally-agreed measures for characterizing connectivity. To model multichannel brain signals, our approach is to fit a vector autoregressive (VAR) model with sufficiently high order so that complex lead-lag temporal dynamics between the channels can be accurately characterized. However, such a model contains a large number of parameters. Thus, we will estimate the high dimensional VAR parameter space by our proposed hybrid LASSLE method (LASSO+LSE) which is imposes regularization on the first step (to control for sparsity) and constrained least squares estimation on the second step (to improve bias and mean-squared error of the estimator). Then to characterize connectivity between channels in a brain network, we will use various measures but put an emphasis on partial directed coherence (PDC) in order to capture directional connectivity between channels. PDC is a directed frequency-specific measure that explains the extent to which the present oscillatory activity in a sender channel influences the future oscillatory activity in a specific receiver channel relative all possible receivers in the network. Using the proposed modeling approach, we have achieved some insights on learning in a rat engaged in a non-spatial memory task.

  13. Multi-Channel Data Recording of Marx switch closures

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Ruggles, L.E.; Ziska, G.R.

    1984-01-01

    The authors have measured the optical signals associated with switch closure on the Demon marx at Sandia National Laboratories. Using the High Speed Multi-Channel Data Recorder(HSMCDR), they have recorded the time histories of the optical signals from the thirty switches in the marx generator. All thirty switches were fiber connected to the HSMCDR. The HSMCDR consists of a high speed streak camera, and a microcomputer-based video digitizing system. Since the thirty signals are recorded on a single streak, the time sequence can be determined with great accuracy. The appearance of a given signal can be determined to within two samples of the 256 samples that make up the time streak. The authors have found that the light intensity and time history of any given switch varied over a large range from shot to shot. Thus, the ability to record the entire optical signal as a function of time for each switch on every shot is necessary if accurate timing results are required

  14. Instrumentation and calibration methods for the multichannel measurement of phase and amplitude in optical tomography

    International Nuclear Information System (INIS)

    Nissilae, Ilkka; Noponen, Tommi; Kotilahti, Kalle; Katila, Toivo; Lipiaeinen, Lauri; Tarvainen, Tanja; Schweiger, Martin; Arridge, Simon

    2005-01-01

    In this article, we describe the multichannel implementation of an intensity modulated optical tomography system developed at Helsinki University of Technology. The system has two time-multiplexed wavelengths, 16 time-multiplexed source fibers and 16 parallel detection channels. The gain of the photomultiplier tubes (PMTs) is individually adjusted during the measurement sequence to increase the dynamic range of the system by 10 4 . The PMT used has a high quantum efficiency in the near infrared (8% at 800 nm), a fast settling time, and low hysteresis. The gain of the PMT is set so that the dc anode current is below 80 nA, which allows the measurement of phase independently of the intensity. The system allows measurements of amplitude at detected intensities down to 1 fW, which is sufficient for transmittance measurements of the female breast, the forearm, and the brain of early pre-term infants. The mean repeatability of phase and the logarithm of amplitude (ln A) at 100 MHz were found to be 0.08 deg. and 0.004, respectively, in a measurement of a 7 cm phantom with an imaging time of 5 s per source and source optical power of 8 mW. We describe a three-step method of calibrating the phase and amplitude measurements so that the absolute absorption and scatter in tissue may be measured. A phantom with two small cylindrical targets and a second phantom with three rods are measured and reconstructions made from the calibrated data are shown and compared with reconstructions from simulated data

  15. Virtual Microphones for Multichannel Audio Resynthesis

    Directory of Open Access Journals (Sweden)

    Athanasios Mouchtaris

    2003-09-01

    Full Text Available Multichannel audio offers significant advantages for music reproduction, including the ability to provide better localization and envelopment, as well as reduced imaging distortion. On the other hand, multichannel audio is a demanding media type in terms of transmission requirements. Often, bandwidth limitations prohibit transmission of multiple audio channels. In such cases, an alternative is to transmit only one or two reference channels and recreate the rest of the channels at the receiving end. Here, we propose a system capable of synthesizing the required signals from a smaller set of signals recorded in a particular venue. These synthesized “virtual” microphone signals can be used to produce multichannel recordings that accurately capture the acoustics of that venue. Applications of the proposed system include transmission of multichannel audio over the current Internet infrastructure and, as an extension of the methods proposed here, remastering existing monophonic and stereophonic recordings for multichannel rendering.

  16. Essays on multichannel customer management

    NARCIS (Netherlands)

    Konus, U.

    2010-01-01

    The main goal of this dissertation is to gain a greater understanding of multichannel customer behavior and how firms can manage their multichannel marketing activities. The first study reveals that three customer segments can be identified based on their orientation towards using multiple channels

  17. Multi-channel polarized thermal emitter

    Science.gov (United States)

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  18. The Gigabit Optical Transmitters for the LHCb Calorimeters

    CERN Document Server

    Lax, Ignazio; D’Antone, I; Marconi, U

    2007-01-01

    This report presents the boards developed for the optical data transmission of the calorimeter system of the LHCb experiment and test results. We developed two types of transmission boards: the single-channel and the multi-channel ones. Multi-channel boards can be equipped with a variable number of transmitters, depending on the need, with a maximum allowed of 12 channels. Each optical channel allows transmitting 32 bit data at 40.08 MHz. The boards have been designed and built using radiation hard devices produced at CERN. The optical links have been qualified using the eye diagram and the BERT at 1.6Gbps.

  19. Research on Multichannel Test Device of Missile Fuze

    Directory of Open Access Journals (Sweden)

    Guoyong Zhen

    2014-05-01

    Full Text Available This paper introduces the design of multichannel acquisition circuit based on FPGA which samples and records the Doppler signals, ignition signal and the working condition of fuze security enforcement agencies of missile fuze in real-time in the test of high speed dynamic intersection. Furthermore, for the problem of increasing number of sample channel which causes the complexity of the multiplexer control, a general programmable channel switching method is proposed based on FPGA. In the method, FPGA is the control core, and using the internal ROM resource effectively simplifies the complexity of channel switch in the multichannel acquisition system. This paper analyzes the acquisition system design, and describes the design of hardware circuit and analog switch address coding in detail. The test result shows that the acquisition circuit meets the design requirements with high sampling precision and application value.

  20. Development of multichannel system for nuclear radiation spectrometry based on an embedded control and acquisition device Myrio-1900

    International Nuclear Information System (INIS)

    Hernandez D, S.

    2016-01-01

    This work describes the design a multichannel analyzer system 4096 channels (Mca) for gamma radiation spectrometry. The multichannel analyzer has as its main component an embedded company National Instruments model NI (Myrio-1900) module, which is integrated by a step of converting analog to digital signals (A / D) and digital-to-analog (D / A) a programmable gate array, and a processor real time (Rt). Through this module the pulses generated by the detector to be processed and subsequently forming the multichannel analyzer are acquired. In addition, a graphical user interface designed to make more use friendly system from a personal computer (Pc), embedded programming module and the user interface was done with the LabVIEW programming environment. tests with different sources of radiation ("6"0Co, "2"2"6Ra, "1"3"7Cs) and semiconductor detectors (Ge) and scintillation (Na) were made. Getting results satisfactory. (Author)

  1. Multichannel analog temperature sensing system

    International Nuclear Information System (INIS)

    Gribble, R.

    1985-08-01

    A multichannel system that protects the numerous and costly water-cooled magnet coils on the translation section of the FRX-C/T magnetic fusion experiment is described. The system comprises a thermistor for each coil, a constant current circuit for each thermistor, and a multichannel analog-to-digital converter interfaced to the computer

  2. Modelling customer behaviour in multi-channel service distribution

    NARCIS (Netherlands)

    Heinhuis, D.; de Vries, E.J.; Kundisch, D.; Veit, D.J.; Weitzel, T.; Weinhardt, C.

    2009-01-01

    Financial service providers are innovating their distribution strategy into multi-channel strategies. The success of a multi-channel approach and the high investments made in information systems and enterprise architectures depends on the adoption and multi-channel usage behaviour of consumers. We

  3. A 12-bit spectroscopy analog-to-digital converter type SAA (Successive Approximation type with channel width Averaging) intended for multichannel pulse height analyzer SWAN-1 based on IBM PC/XT/AT

    International Nuclear Information System (INIS)

    Borsuk, S.; Kulka, Z.

    1989-12-01

    A 12-bit spectroscopy analog-to-digital converter (ADC) type SAA (Successive Approximation type with channel width Averaging) intended for multichannel pulse height analyzer SWAN-1 based on IBM PC/XT/AT has been described. Design principles, specifications and measurements of a fundamental SAA-2 converter version are reported. Finally, two next versions of the converter with introduced modifications are discussed. 6 refs., 7 figs. (author)

  4. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements

    International Nuclear Information System (INIS)

    Kolbe, Michaela

    2011-01-01

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S 2 I/I 0 , with the asymmetry function S and the ratio between scattered and primary intensity I/I 0 . State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM ≅10 -4 . On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 10 4 data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a μ-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k parallel -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of ≅3 eV. This leads to a two-dimensional figure of merit of FoM 2D =1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to investigate strongly reactive samples in a short time. This

  5. Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation

    Science.gov (United States)

    Zhang, Chi; Xu, Jianbing; Chui, P. C.; Wong, Kenneth K. Y.

    2013-06-01

    Real-time optical spectrum analysis is an essential tool in observing ultrafast phenomena, such as the dynamic monitoring of spectrum evolution. However, conventional method such as optical spectrum analyzers disperse the spectrum in space and allocate it in time sequence by mechanical rotation of a grating, so are incapable of operating at high speed. A more recent method all-optically stretches the spectrum in time domain, but is limited by the allowable input condition. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a frame rate as high as 100 MHz and accommodates various input conditions. As a proof of concept and also for the first time, we verify its applications in observing the dynamic spectrum of a Fourier domain mode-locked laser, and the spectrum evolution of a laser cavity during its stabilizing process.

  6. Multi-channel mechanical test machine for HANARO (I)

    International Nuclear Information System (INIS)

    Song, M. S.; Choi, Y.; Cho, M. S.; Kim, B. G.; Kang, Y. H.

    2004-01-01

    Design and fabrication of multi-channel mechanical test machine is useful and important for the study of in-pile test of nuclear materials in HANARO. The dimension and shape of the multi-channel mechanical test machine should be fixed to a test reactor and their objectives. KAERI successfully developed a non-instrumented multi-channel mechanical test machine for material irradiation tests in a domestic research reactor, HANARO. This results in strongly stimulating and accelerating irradiation tests of materials in domestic industry and research fields with HANARO. Although various types of in-pile creep capsule were made for well installation in each test reactor, there is no in-pile creep multi-channel mechanical test machine for HANARO. Hence, the objectives of this study are to fabricate and test a multi-channel mechanical test machine of HANARO

  7. Technology for Polymer Optical Fiber Bragg Grating Fabrication and Interrogation

    DEFF Research Database (Denmark)

    Ganziy, Denis

    The aim of this project is to develop a new, high-quality interrogator for FBG sensor systems, which combines high performance with costeffectiveness. The work includes the fields of optical system design, signal processing, and algorithm investigation. We present an efficient and fast peak...... analyze and investigate errors and drawbacks, which are typical for spectrometer-based interrogators: undersampling, grating internal reflection, photo response nonuniformity, pixel crosstalk and temperature and long term drift. We propose a novel type of multichannel Digital Micromirror Device (DMD......) based interrogator, where the linear detector is replaced with a commercially available DMD, which leads to cost reduction and better performance. Original optical design, which utilizes advantages of a retro-reflect optical scheme, has been developed in Zemax. We test the presented interrogator...

  8. Optimization of the operational conditions of a multichannel analyzer gamma spectrometer

    International Nuclear Information System (INIS)

    Mosse, H.

    1974-01-01

    For the optimization of the operational conditions of a multichannel analyser gamma spectrometer, with two 3'' x 3'' NaI (Tl) crystals in opposition, several parameters were studied, which are responsable for the best counting efficiency, in each type of sample to be analysed. Thus, electronic conditions, shielding, sample holding, resolution, geometry (or the sample positioning between the detectors), were investigated. Self-absorption, sample density and the effects of the shape of the containers were also tested. For solid samples, (usually ashed), the best container was found to be a plastic cylinder, with the sample pressed inside. For liquid samples, plastic cylindric flasks were also found to be the best ones. Environmental samples were measured with internal standards for 137 Cs and 40 K. Results were compared with those obtained by physical (atomic adsorption for K) and radiochemical methods (Cs precipitation by amonium phosphomolibdate). Results show good agreement with the spectrometric analysis. For comparison with environmental samples, standards were prepared, in such a way that they could simulated their physical caracteristics. The minimum detectable activity was determined for 137 Cs. Results show values of 0.01 pCi/g for the 1 Kg samples, and 0.004 pCi/g for the 300g ones. By the measurement of 40 K, we found this value to be 0.02 mgK/g, in both cases. (author) [pt

  9. Diffractive interference optical analyzer (DiOPTER)

    Science.gov (United States)

    Sasikumar, Harish; Prasad, Vishnu; Pal, Parama; Varma, Manoj M.

    2016-03-01

    This report demonstrates a method for high-resolution refractometric measurements using, what we have termed as, a Diffractive Interference Optical Analyzer (DiOpter). The setup consists of a laser, polarizer, a transparent diffraction grating and Si-photodetectors. The sensor is based on the differential response of diffracted orders to bulk refractive index changes. In these setups, the differential read-out of the diffracted orders suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6x10-7 RIU was achieved in glass. This work focuses on devices with integrated sample well, made on low-cost PDMS. As the detection methodology is experimentally straightforward, it can be used across a wide array of applications, ranging from detecting changes in surface adsorbates via binding reactions to estimating refractive index (and hence concentration) variations in bulk samples. An exciting prospect of this technique is the potential integration of this device to smartphones using a simple interface based on transmission mode configuration. In a transmission configuration, we were able to achieve an LoD of 4x10-4 RIU which is sufficient to explore several applications in food quality testing and related fields. We are envisioning the future of this platform as a personal handheld optical analyzer for applications ranging from environmental sensing to healthcare and quality testing of food products.

  10. A high dutycycle low cost multichannel analyser for electron spectroscopy

    International Nuclear Information System (INIS)

    Norell, K.E.; Baltzer, P.

    1983-03-01

    A high dutycycle multichannel analyzer has been designed and used in time-of-flight electron spectroscopy. The memory capacity is 64k counts. The number of channels is 8192 with a time resolution of 100 ns. An oscilloscope is used to display the spectra synchronous with the counting. The unit has been built with standard electronic components. (author)

  11. Accurate optical vector network analyzer based on optical single-sideband modulation and balanced photodetection.

    Science.gov (United States)

    Xue, Min; Pan, Shilong; Zhao, Yongjiu

    2015-02-15

    A novel optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation and balanced photodetection is proposed and experimentally demonstrated, which can eliminate the measurement error induced by the high-order sidebands in the OSSB signal. According to the analytical model of the conventional OSSB-based OVNA, if the optical carrier in the OSSB signal is fully suppressed, the measurement result is exactly the high-order-sideband-induced measurement error. By splitting the OSSB signal after the optical device-under-test (ODUT) into two paths, removing the optical carrier in one path, and then detecting the two signals in the two paths using a balanced photodetector (BPD), high-order-sideband-induced measurement error can be ideally eliminated. As a result, accurate responses of the ODUT can be achieved without complex post-signal processing. A proof-of-concept experiment is carried out. The magnitude and phase responses of a fiber Bragg grating (FBG) measured by the proposed OVNA with different modulation indices are superimposed, showing that the high-order-sideband-induced measurement error is effectively removed.

  12. 32 bit digital optical computer - A hardware update

    Science.gov (United States)

    Guilfoyle, Peter S.; Carter, James A., III; Stone, Richard V.; Pape, Dennis R.

    1990-01-01

    Such state-of-the-art devices as multielement linear laser diode arrays, multichannel acoustooptic modulators, optical relays, and avalanche photodiode arrays, are presently applied to the implementation of a 32-bit supercomputer's general-purpose optical central processing architecture. Shannon's theorem, Morozov's control operator method (in conjunction with combinatorial arithmetic), and DeMorgan's law have been used to design an architecture whose 100 MHz clock renders it fully competitive with emerging planar-semiconductor technology. Attention is given to the architecture's multichannel Bragg cells, thermal design and RF crosstalk considerations, and the first and second anamorphic relay legs.

  13. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; J Álvarez, F.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martín, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2018-06-01

    This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

  14. Calibration OGSEs for multichannel radiometers for Mars atmosphere studies

    Science.gov (United States)

    Jiménez, J. J.; J Álvarez, F.; Gonzalez-Guerrero, M.; Apéstigue, V.; Martín, I.; Fernández, J. M.; Fernán, A. A.; Arruego, I.

    2018-02-01

    This work describes several Optical Ground Support Equipment (OGSEs) developed by INTA (Spanish Institute of Aerospace Technology—Instituto Nacional de Técnica Aeroespacial) for the calibration and characterization of their self-manufactured multichannel radiometers (solar irradiance sensors—SIS) developed for working on the surface of Mars and studying the atmosphere of that planet. Nowadays, INTA is developing two SIS for the ESA ExoMars 2020 and for the JPL/NASA Mars 2020 missions. These calibration OGSEs have been improved since the first model in 2011 developed for Mars MetNet Precursor mission. This work describes the currently used OGSE. Calibration tests provide an objective evidence of the SIS performance, allowing the conversion of the electrical sensor output into accurate physical measurements (irradiance) with uncertainty bounds. Calibration results of the SIS on board of the Dust characterisation, Risk assessment, and Environment Analyzer on the Martian Surface (DREAMS) on board the ExoMars 2016 Schiaparelli module (EDM—entry and descent module) are also presented, as well as their error propagation. Theoretical precision and accuracy of the instrument are determined by these results. Two types of OGSE are used as a function of the pursued aim: calibration OGSEs and Optical Fast Verification (OFV) GSE. Calibration OGSEs consist of three setups which characterize with the highest possible accuracy, the responsivity, the angular response and the thermal behavior; OFV OGSE verify that the performance of the sensor is close to nominal after every environmental and qualification test. Results show that the accuracy of the calibrated sensors is a function of the accuracy of the optical detectors and of the light conditions. For normal direct incidence and diffuse light, the accuracy is in the same order of uncertainty as that of the reference cell used for fixing the irradiance, which is about 1%.

  15. The multichannel system of synchronous photon counting of range 50 ns - 100 ms

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, S M [and others

    1996-12-31

    A new type of the multichannel system of synchronous photon counting is designed. The recording past of the analyzer is described and the whole measurement process is considered. Frequency of the master generator is 75 MHz. 1 ref.; 2 figs.

  16. Realization of an optical multi and mono-channel analyzer, associated to a streak camera. Application to metrology of picosecond low intensity luminous pulses

    International Nuclear Information System (INIS)

    Roth, J.M.

    1985-02-01

    An electronic system including a low light level television tube (Nocticon) to digitize images from streak cameras is studied and realized. Performances (sensibility, signal-to-noise ratio) are studied and compared with a multi-channel analyzer using a linear network of photodiodes. It is applied to duration and amplitude measurement of short luminous pulses [fr

  17. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    Science.gov (United States)

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA.

  18. The Bateman method for multichannel scattering theory

    International Nuclear Information System (INIS)

    Kim, Y. E.; Kim, Y. J.; Zubarev, A. L.

    1997-01-01

    Accuracy and convergence of the Bateman method are investigated for calculating the transition amplitude in multichannel scattering theory. This approximation method is applied to the calculation of elastic amplitude. The calculated results are remarkably accurate compared with those of exactly solvable multichannel model

  19. Multichannel strategy - the dominant approach in modern retailing

    Directory of Open Access Journals (Sweden)

    Stojković Dragan

    2016-01-01

    Full Text Available The purpose of this paper is to thoroughly analyse the concept of multichannel strategy, focussing on retail, to enable the academic community and marketers to better understand its advantages and disadvantages. This paper presents a comprehensive literature review and financial data analysis. The authors have analysed the financial data of 88 retail companies in the 2007 to 2014 period, and have proven that the importance of multichannel strategy has grown with the emergence of e-commerce. The main hypothesis is that the multichannel concept dominates modern marketing channels because it is widely accepted and provides superior financial performance. Multichannel retailing is definitely a winning concept, if adequately implemented. However, wrongly implemented it can negatively influence business performance.

  20. Dense Clustered Multi-Channel Wireless Sensor Cloud

    Directory of Open Access Journals (Sweden)

    Sivaramakrishnan Sivakumar

    2015-08-01

    Full Text Available Dense Wireless Sensor Network Clouds have an inherent issue of latency and packet drops with regards to data collection. Though there is extensive literature that tries to address these issues through either scheduling, channel contention or a combination of the two, the problem still largely exists. In this paper, a Clustered Multi-Channel Scheduling Protocol (CMSP is designed that creates a Voronoi partition of a dense network. Each partition is assigned a channel, and a scheduling scheme is adopted to collect data within the Voronoi partitions. This scheme collects data from the partitions concurrently and then passes it to the base station. CMSP is compared using simulation with other multi-channel protocols like Tree-based Multi-Channel, Multi-Channel MAC and Multi-frequency Media Access Control for wireless sensor networks. Results indicate CMSP has higher throughput and data delivery ratio at a lower power consumption due to network partitioning and hierarchical scheduling that minimizes load on the network.

  1. TUKAN—An 8K Pulse Height Analyzer and Multi-Channel Scaler With a PCI or a USB Interface

    Science.gov (United States)

    Guzik, Z.; Borsuk, S.; Traczyk, K.; Plominski, M.

    2006-02-01

    In this paper we present two types of 8K-channel analyzers designed for spectroscopy and intensity versus time measurements. The first type (Tukan-8K-PCI) incorporates a PCI interface and is designed to be plugged into a PCI slot of a normal PC. The second type (Tukan-8K-USB) incorporates a USB interface. It is mounted in a separate screened box and can be powered either directly from the USB port or from an external dc source (wall adapter or battery). Each type of device may operate in either of two independent operational modes: Multi Channel Analysis (MCA) and Multi-Channel Scaling (MCS). The most crucial component for the MCA mode-the Peak Detect and Hold circuit-is featuring a novel architecture based on a diamond transistor. Its analog stage can accept analog pulses with rise times as short as 100 ns and has a differential linearity below 1% with sliding scale averaging over the full scale. The functionality includes automatic stop on a programmable count in the Region-Of-Interest (ROI) and on preset live- or real time. The MCS mode works at medium counting rates of up to 8 MHz. The dwell time, the number of channels and single or multi-sweep mode may be preset. Each of these parameters can also be controlled externally via four user configurable logical I/O lines. A single Altera FLEX 10KE30 FPGA provides all control functions and incorporates PCI interface. The USB interface is based on FTDI FIFO controller. Advanced and user-friendly software has been developed for the analyzer

  2. Multimode laser beam analyzer instrument using electrically programmable optics.

    Science.gov (United States)

    Marraccini, Philip J; Riza, Nabeel A

    2011-12-01

    Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M(2). Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M(2) experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.

  3. Designing a Multichannel Map Service Concept

    Directory of Open Access Journals (Sweden)

    Hanna-Marika Halkosaari

    2013-01-01

    Full Text Available This paper introduces a user-centered design process for developing a multichannel map service. The aim of the service is to provide hikers with interactive maps through several channels. In a multichannel map service, the same spatial information is available through various channels, such as printed maps, Web maps, mobile maps, and other interactive media. When properly networked, the channels share a uniform identity so that the user experiences the different channels as a part of a single map service. The traditional methods of user-centered design, such as design probes, personas, and scenarios, proved useful even in the emerging field of developing multichannel map services. The findings emphasize the need to involve users and multidisciplinary teams in the conceptual phases of designing complex services aimed at serving various kinds of users.

  4. Magneto-optic Doppler analyzer: a new instrument to measure mesopause winds

    Science.gov (United States)

    Williams, Bifford P.; Tomczyk, Steven

    1996-11-01

    The magneto-optic Doppler analyzer (MODA) is a new type of passive optical instrument that one can use to measure the Doppler shift of the sodium nightglow emitted at approximately 91 km near the mesopause. From this measurement, horizontal wind signatures are inferred. The MODA is based on a sodium vapor magneto-optic filter that provides inherent wavelength stability at a low cost. The instrument has been used to take nightly zonal and meridional wind measurements since October 1994 at Niwot Ridge, Colorado (40 N, 105 W). We obtained an internally consistent wind signal and measured the semidiurnal tide for several seasons.

  5. Evaluation of multichannel reproduced sound

    DEFF Research Database (Denmark)

    Choisel, Sylvain; Wickelmaier, Florian Maria

    2007-01-01

    A study was conducted with the goal of quantifying auditory attributes which underlie listener preference for multichannel reproduced sound. Short musical excerpts were presented in mono, stereo and several multichannel formats to a panel of forty selected listeners. Scaling of auditory attributes......, as well as overall preference, was based on consistency tests of binary paired-comparison judgments and on modeling the choice frequencies using probabilistic choice models. As a result, the preferences of non-expert listeners could be measured reliably at a ratio scale level. Principal components derived...

  6. Multi-channel data acquisition system for CT

    International Nuclear Information System (INIS)

    Cao Fuqiang; He Bin; Liu Guohua; Xu Minjian

    2009-01-01

    The architecture design and realization of a data acquisition system for multi-channel CT is described. The article introduces the conversion of analog signal to digital signal, the data cache and transmission. This data acquisition system can be widely used in the system which requires the multi-channel, weak current signal detection. (authors)

  7. Development and implementation of own software for dosimetry multichannel film

    International Nuclear Information System (INIS)

    Jimenez Feltstrom, D.; Reyes Garcia, R.; Luis Simon, F. J.; Carrasco Herrera, M.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2013-01-01

    The objective of this work is to develop its own software for multichannel film dosimetry Radiochromic EBT2. Compare the results obtained with its use in multichannel and single-channel dosimetry. Check that the multi-channel dosimetry eliminates much of the artifacts caused by dirt, fingerprints, scratches, etc. Radiochromic in film and scanner devices. (Author)

  8. Modal analysis and cut-off conditions of multichannel surface-acoustic-waveguide structures.

    Science.gov (United States)

    Griffel, G; Golan, G; Ruschin, S; Seidman, A; Croitoru, N

    1988-01-01

    Multichannel guides for surface acoustic waves can improve the efficiency of SAW (surface acoustic-wave) devices significantly. Focusing, steering, and modulating the propagating acoustical modes can be achieved similarly to optical waveguided devices. A general formulation is presented for the analysis of the lateral waveguiding properties of Rayleigh modes in surfaces loaded with deposited strips of different materials. General expressions are obtained for the number of modes and cutoff conditions in these structures. As examples of applications, a simple directional coupler and an electrically controlled coupler are proposed.

  9. Modified signed-digit trinary arithmetic by using optical symbolic substitution

    Science.gov (United States)

    Awwal, A. A. S.; Islam, M. N.; Karim, M. A.

    1992-04-01

    Carry-free addition and borrow-free subtraction of modified signed-digit trinary numbers with optical symbolic substitution are presented. The proposed two-step and three-step algorithms can be easily implemented by using phase-only holograms, optical content-addressable memories, a multichannel correlator, or a polarization-encoded optical shadow-casting system.

  10. Improvement of force-sensor-based heart rate estimation using multichannel data fusion.

    Science.gov (United States)

    Bruser, Christoph; Kortelainen, Juha M; Winter, Stefan; Tenhunen, Mirja; Parkka, Juha; Leonhardt, Steffen

    2015-01-01

    The aim of this paper is to present and evaluate algorithms for heartbeat interval estimation from multiple spatially distributed force sensors integrated into a bed. Moreover, the benefit of using multichannel systems as opposed to a single sensor is investigated. While it might seem intuitive that multiple channels are superior to a single channel, the main challenge lies in finding suitable methods to actually leverage this potential. To this end, two algorithms for heart rate estimation from multichannel vibration signals are presented and compared against a single-channel sensing solution. The first method operates by analyzing the cepstrum computed from the average spectra of the individual channels, while the second method applies Bayesian fusion to three interval estimators, such as the autocorrelation, which are applied to each channel. This evaluation is based on 28 night-long sleep lab recordings during which an eight-channel polyvinylidene fluoride-based sensor array was used to acquire cardiac vibration signals. The recruited patients suffered from different sleep disorders of varying severity. From the sensor array data, a virtual single-channel signal was also derived for comparison by averaging the channels. The single-channel results achieved a beat-to-beat interval error of 2.2% with a coverage (i.e., percentage of the recording which could be analyzed) of 68.7%. In comparison, the best multichannel results attained a mean error and coverage of 1.0% and 81.0%, respectively. These results present statistically significant improvements of both metrics over the single-channel results (p < 0.05).

  11. Order fulfillment and logistics considerations for multichannel retailers

    NARCIS (Netherlands)

    Roodbergen, Kees Jan; Kolman, Inger B.; Zijm, W.H.M.; Klumpp, M.; Clausen, V.; Ten Hompel, M.

    2016-01-01

    This paper addresses the challenge of making multichannel decisions for order fulfillment and logistics. We present a framework for multichannel strategies consisting of seven elements. Some channel decisions are part of the marketing mix, with the ultimate choice left to the customer. Other channel

  12. Multichannel, sequential or combined X-ray spectrometry

    International Nuclear Information System (INIS)

    Florestan, J.

    1979-01-01

    X-ray spectrometer qualities and defects are evaluated for sequential and multichannel categories. Multichannel X-ray spectrometer has time-coherency advantage and its results could be more reproducible; on the other hand some spatial incoherency limits low percentage and traces applications, specially when backgrounds are very variable. In this last case, sequential X-ray spectrometer would find again great usefulness [fr

  13. The design of the layout of faceted multi-channel electro-optical spatial coordinates measuring instrument for point-like bright objects

    Science.gov (United States)

    Repin, Vladislav A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Korotaev, Valery V.

    2017-06-01

    For many applied problems it is necessary to obtain information about the situation in a wide angular field in order to measure various parameters of objects: their spatial coordinates, instantaneous velocities, and so on. In this case, one interesting bionic approach can be used - a mosaic (or discrete, otherwise, facet) angular field. Such electro-optical system constructively imitates the visual apparatus of insects: many photodetectors like ommatidia (elements of the facet eye structure) are located on a non-planar surface. Such devices can be used in photogrammetry and aerial photography systems (if the space is sufficient), in the transport sector as vehicle orientation organs, as systems for monitoring in unmanned aerial vehicles, in endoscopy for obtaining comprehensive information on the state of various cavities, in intelligent robotic systems. In this manuscript discusses the advantages and disadvantages of multi-channeled optoelectronic systems with a mosaic angular field, presents possible options for their use, and discusses some of the design procedures performed when developing a layout of a coordinate measuring device.

  14. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    International Nuclear Information System (INIS)

    Hu Xiaoyong; Liu Zheng; Gong Qihuang

    2008-01-01

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed

  15. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: xiaoyonghu@pku.edu.cn; Liu Zheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: qhgong@pku.edu.cn

    2008-01-14

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed.

  16. The Buywell Way: seven essential practices of a highly successful multi-channel e-tailer

    Directory of Open Access Journals (Sweden)

    Mary Tate

    2005-05-01

    Full Text Available After the dot-com bust there is considerable evidence that multi-channel retailers are more successful than purely on-line retailers. Multi-channel retailing is becoming mainstream and considerable research exists on successful multi-channel strategies. Despite this, some organisations are having more success than others with their multi-channel approach. We talked to the management of one of Australasia’s most successful multi-channel apparel and home-ware retailers about the theory and practice of multi-channel retailing, with the aim of building on existing theory in multi-channel e-commerce.

  17. Highly Efficient Compression Algorithms for Multichannel EEG.

    Science.gov (United States)

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  18. A high-throughput, multi-channel photon-counting detector with picosecond timing

    Science.gov (United States)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  19. A high-throughput, multi-channel photon-counting detector with picosecond timing

    International Nuclear Information System (INIS)

    Lapington, J.S.; Fraser, G.W.; Miller, G.M.; Ashton, T.J.R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  20. High-pressure duo-multichannel soft x-ray spectrometer for tokamak plasma diagnostics

    International Nuclear Information System (INIS)

    Schwob, J.L.; Wouters, A.W.; Suckewer, S.

    1987-03-01

    A high-resolution, time-resolving soft X-ray multichannel spectrometer (SOXMOS) that permits the simultaneous measurement of emission in two different spectral ranges has been developed and tested extensively for tokamak plasma diagnostics. The basic instrument is a high-resolution, interferometrically adjusted, extreme grazing incidence Schwob-Fraenkel duochromator. The instrument is equipped with two multichannel detectors that are adjusted interferometrically and scan along the Rowland circle. Each consists of an MgF 2 coated, funneled microchannel plate, associated with a phosphor screen image intensifier that is coupled to a 1024-element photodiode array by a flexible fibrer optic conduit. The total wavelength coverage of the instrument is 5 to 340 0 A with a measured resolution (FWHM) of about 0.2 A when equipped with a 600 g/mm grating, and 5 to 85 A with a resolution of about 0.06 A using a 2400 g/mm grating. The simultaneous spectral coverage of each detector varies from 15 A at the short wavelength limit to 70 A at the long wavelength limit with the lower dispersion grating. The minimum read-out time for a full spectral portion is 17 ms, but several individual lines can be measured with 1 ms time resolution by selected pixel readout. Higher time resolution can be achieved by replacing one multichannel detector with a single channel electron multiplier detector. Examples of data from the PLT and TFTR tokamaks are presented to illustrate the instrument's versatility, high spectral resolution, and high signal-to-noise ratio even in the 10 A region. 44 refs., 20 figs

  1. Multi-channel software defined radio experimental evaluation and analysis

    CSIR Research Space (South Africa)

    Van der Merwe, JR

    2014-09-01

    Full Text Available Multi-channel software-defined radios (SDRs) can be utilised as inexpensive prototyping platforms for transceiver arrays. The application for multi-channel prototyping is discussed and measured results of coherent channels for both receiver...

  2. A multichannel magnetic β-ray spectrometer for rapid measurements of electron spectra

    International Nuclear Information System (INIS)

    Kariya, Komyo; Morikawa, Kaoru.

    1989-01-01

    In order to make the magnetic β-ray spectrometer suitable for rapid measurements of electron spectra with short-lived nuclides, twelve small GM counters have been arrayed along the focal plane of a 180deg focusing flat type design. All the signal pulses from each one of these detectors are mixed together onto a single cable. By means of multichannel PHA, each pulse can be traced back to the specific detector which sent it out. In order to avoid time consuming evacuation procedures, the sample source is placed outside a thin window of the preevacuated analyzer chamber. By the use of this multichannel spectrometer a β-ray spectrum with maximum energy up to about 10 MeV can be measured within 1 min or so. Electron spectra measured with 113m In, 119m In and 144 Pr source are shown. (author)

  3. Multi-channel, passive, short-range anti-aircraft defence system

    Science.gov (United States)

    Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew

    2018-01-01

    The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.

  4. Synthesis of Gold Nanoparticles to Capture Lifelike Proteins: Application on the Multichannel Sensor Array Design

    Directory of Open Access Journals (Sweden)

    Yumin Leng

    2018-01-01

    Full Text Available The chemical elements of proteins are similar to that of DNA (e.g., C, H, O, and N, and DNA shows different knotted architectures. So we imagine that proteins may show a wealth of highly complex structures, especially when proteins interact with each other. The imagination was proved by synthesizing gold nanoparticles (GNPs to capture the lifelike protein structures. The optical responses (i.e., color of as-prepared GNPs are found to be characteristic to a given protein (or heavy metal ion. Based on the “three colors” principle of Thomas Young, we extracted the red, green, and blue (RGB alterations of as-synthesized GNPs to fabricate multichannel sensor arrays for proteins (or heavy metal ions discrimination. The designed multichannel sensor arrays demonstrate possibilities in semiquantitative analysis of multiple analytes (e.g., proteins and heavy metal ions. This work is believed to open new opportunities for GNPs-based label-free sensing.

  5. Multichannel compressive sensing MRI using noiselet encoding.

    Directory of Open Access Journals (Sweden)

    Kamlesh Pawar

    Full Text Available The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS. In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding.

  6. Essays on Online and Multi-Channel Marketing

    OpenAIRE

    Zhang, Lingling

    2016-01-01

    Firms increasingly adopt online and multi-channel marketing strategies to reach and persuade consumers. Therefore, designing an effective marketing mix is critical to their success. The aim of my dissertation is to understand the strategy behind firms’ channel choices and assess marketing effectiveness. It consists of three large-scale empirical studies examining several important aspects of online and multi-channel marketing. My first essay focuses on the business-to-business (B2B) inte...

  7. A scalable, self-analyzing digital locking system for use on quantum optics experiments.

    Science.gov (United States)

    Sparkes, B M; Chrzanowski, H M; Parrain, D P; Buchler, B C; Lam, P K; Symul, T

    2011-07-01

    Digital control of optics experiments has many advantages over analog control systems, specifically in terms of the scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrödinger cat states.

  8. Multichannel biomedical time series clustering via hierarchical probabilistic latent semantic analysis.

    Science.gov (United States)

    Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary

    2014-11-01

    Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Spectrum analysis with indoor multi-channels gamma-rays spectrometer (NaI(Tl))

    International Nuclear Information System (INIS)

    Hou Shengli; Fan Weihua

    2005-01-01

    Two calculational methods for analyzing the spectrum which measured by indoor low background multi-channels gamma-rays spectrometer (Na(Tl)) to get the specific activity of 226 Ra, 232 Th and 40 K of the sample are discussed, they are the spectrum analysis method and the characteristic energy peak method (inverse matrix method) respectively. The sample spectrum are analyzed with the program designed according to the two methods, and compared with the results by HPGe gamma-rays spectrometer, showing that the relative deviation is ≤10% with the two methods. (authors)

  10. Multi-channel phase-equivalent transformation and supersymmetry

    OpenAIRE

    Shirokov, A. M.; Sidorenko, V. N.

    2000-01-01

    Phase-equivalent transformation of local interaction is generalized to the multi-channel case. Generally, the transformation does not change the number of the bound states in the system and their energies. However, with a special choice of the parameters, the transformation removes one of the bound states and is equivalent to the multi-channel supersymmetry transformation recently suggested by Sparenberg and Baye. Using the transformation, it is also possible to add a bound state to the discr...

  11. Mapping customer journeys in multichannel decision-making

    OpenAIRE

    Wolny, Julia; Charoensuksai, Nipawan

    2014-01-01

    This study is focused on multi-channel shopping, which refers to the integration of various channels in the consumer decision-making process. The term was coined in the early 2000s to signify the integration of offline and online shopping channels. It has since evolved to encompass the proliferating number of channels and media used to formulate, evaluate and execute buying decisions. With the explosion of mobile technologies and social media, multi-channel shopping has indeed become a journe...

  12. Multi-channel Kondo necklace

    International Nuclear Information System (INIS)

    Fazekas, P.; Kee Haeyoung.

    1993-06-01

    A multi-channel generalization of Doniach's Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins τ J , j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig

  13. Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect.

    Science.gov (United States)

    Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina

    2017-10-11

    Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.

  14. Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier.

    Science.gov (United States)

    Qin, Jun; Lu, Guo-Wei; Sakamoto, Takahide; Akahane, Kouichi; Yamamoto, Naokatsu; Wang, Danshi; Wang, Cheng; Wang, Hongxiang; Zhang, Min; Kawanishi, Tetsuya; Ji, Yuefeng

    2014-12-01

    In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR-LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10(-9). Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting.

  15. Optical fiber sensor of partial discharges in High Voltage DC experiments

    Science.gov (United States)

    Búa-Núñez, I.; Azcárraga-Ramos, C. G.; Posada-Román, J. E.; Garcia-Souto, J. A.

    2014-05-01

    A setup simulating High Voltage DC (HVDC) transformers barriers was developed to demonstrate the effectiveness of an optical fiber (OF) sensor in detecting partial discharges (PD) under these peculiar conditions. Different PD detection techniques were compared: electrical methods, and acoustic methods. Standard piezoelectric sensors (R15i-AST) and the above mentioned OF sensors were used for acoustic detection. The OF sensor was able to detect PD acoustically with a sensitivity better than the other detection methods. The multichannel instrumentation system was tested in real HVDC conditions with the aim of analyzing the behavior of the insulation (mineral oil/pressboard).

  16. Multi-component optical solitary waves

    DEFF Research Database (Denmark)

    Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.

    2000-01-01

    We discuss several novel types of multi-component (temporal and spatial) envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for highperformance computer networks......, multi-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons due to quasi-phase-matching in Fibonacci optical superlattices. (C) 2000 Elsevier Science B.V. All rights reserved....

  17. Fast multichannel analyser

    Energy Technology Data Exchange (ETDEWEB)

    Berry, A; Przybylski, M M; Sumner, I [Science Research Council, Daresbury (UK). Daresbury Lab.

    1982-10-01

    A fast multichannel analyser (MCA) capable of sampling at a rate of 10/sup 7/ s/sup -1/ has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format.

  18. Automated target recognition and tracking using an optical pattern recognition neural network

    Science.gov (United States)

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  19. Radio over fiber transceiver employing phase modulation of an optical broadband source.

    Science.gov (United States)

    Grassi, Fulvio; Mora, José; Ortega, Beatriz; Capmany, José

    2010-10-11

    This paper proposes a low-cost RoF transceiver for multichannel SCM/WDM signal distribution suitable for future broadband access networks. The transceiver is based on the phase modulation of an optical broadband source centered at third transmission window. Prior to phase modulation the optical broadband source output signal is launched into a Mach-Zehnder interferometer structure, as key device enabling radio signals propagation over the optical link. Furthermore, an optical CWDM is employed to create a multichannel scenario by performing the spectral slicing of the modulated optical signal into a number of channels each one conveying the information from the central office to different base stations. The operation range is up to 20 GHz with a modulation bandwidth around of 500 MHz. Experimental results of the transmission of SCM QPSK and 64-QAM data through 20 Km of SMF exhibit good EVM results in the operative range determined by the phase-to-intensity conversion process. The proposed approach shows a great suitability for WDM networks based on RoF signal transport and also represents a cost-effective solution for passive optical networks.

  20. A multi-channel microcomputer data acquisition system

    International Nuclear Information System (INIS)

    Loureiro, J.S.

    1987-01-01

    A data acquisition system was developed in order to transfer automatically to a 64 kb microcomputer the data generated by a nuclear spectroscopy system in a multichannel analyser. The data in the memory are stored in a floppy disk and will be further used as data entry for any spectrum analysis program, eliminating the tedious work of manually digitizing the spectrum and the possible mistakes associated with it. The developed system connected a POLYMAX 201 DP microcomputer, under CP/M operational system, to a NUCLEAR DATA MODEL ND-65 multichannel analyser and was planned for either local spectrum analysis in the microcomputer using a simplified program, or remote analysis in a mainframe using the sophisticated analysis program SAMPO. With the present system, the time spent between printing out of the 4096 channels with the multichannel analyser printer and its corresponding introduction in the analysis program has been reduced from about 6 hours to less than 2 minutes. (author)

  1. Multi-channel Kondo necklace

    Energy Technology Data Exchange (ETDEWEB)

    Fazekas, P; Haeyoung, Kee

    1993-06-01

    A multi-channel generalization of Doniach`s Kondo necklace model is formulated, and its phase diagram studied in the mean-field approximation. Our intention is to introduce the possible simplest model which displays some of the features expected from the overscreened Kondo lattice. The N conduction electron channels are represented by N sets of pseudospins {tau}{sub J}, j = 1 1,..., N which are all antiferromagnetically coupled to a periodic array of modul S = 1/2 spins. Exploiting permutation symmetry in the channel index j allows us to write down the self-consistency equation for general N. For N > 2, we find that the critical temperature is rising with increasing Kondo interaction; we interpret this effect by pointing out that the Kondo coupling creates the composite pseudospin objects which undergo an ordering transition. The relevance of our findings to the underlying fermionic multi-channel problem is discussed. (author). 33 refs, 1 fig.

  2. How to Succeed with Multichannel Management

    DEFF Research Database (Denmark)

    Madsen, Christian; Kræmmergaard, Pernille

    2016-01-01

    . This interplay between traditional and e-government channels remains to be explained. There is also a lack of empirical knowledge of how government organizations can apply findings from user studies and migrate citizens online while simultaneously reducing traffic through traditional channels. Therefore...... the authors present a detailed longitudinal case study of how public authorities collaborated to create a multichannel strategy for a mandatory online self-service application for single parents. After the strategy was carried out there was an increase in the use of the application and a substantial reduction...... in calls. The authors offer contributions to the channel choice literature and recommendations on multichannel management to practitioners....

  3. Determination of optimum "multi-channel surface wave method" field parameters.

    Science.gov (United States)

    2012-12-01

    Multi-channel surface wave methods (especially the multi-channel analyses of surface wave method; MASW) are routinely used to : determine the shear-wave velocity of the subsurface to depths of 100 feet for site classification purposes. Users are awar...

  4. Multichannel strategy - the dominant approach in modern retailing

    OpenAIRE

    Stojković Dragan; Lovreta Stipe; Bogetić Zoran

    2016-01-01

    The purpose of this paper is to thoroughly analyse the concept of multichannel strategy, focussing on retail, to enable the academic community and marketers to better understand its advantages and disadvantages. This paper presents a comprehensive literature review and financial data analysis. The authors have analysed the financial data of 88 retail companies in the 2007 to 2014 period, and have proven that the importance of multichannel strategy has grown...

  5. Generation of frequency-chirped optical pulses with felix

    Energy Technology Data Exchange (ETDEWEB)

    Knippels, G.M.H.; Meer, A.F.G. van der; Mols, R.F.X.A.M. [FOM-Institute for Plasma Physics, Nieuwegein (Netherlands)] [and others

    1995-12-31

    Frequency-chirped optical pulses have been produced in the picosecond regime by varying the energy of the electron beam on a microsecond time scale. These pulses were then compressed close to their bandwidth limit by an external pulse compressor. The amount of chirp can be controlled by varying the sweep rate on the electron beam energy and by cavity desynchronisation. To examine the generated chirp we used the following diagnostics: a pulse compressor, a crossed beam autocorrelator, a multichannel electron spectrometer and multichannel optical spectrometer. The compressor is build entirely using reflective optics to permit broad band operation. The autocorrelator is currently operating from 6 {mu}m to 30 {mu}m with one single crystal. It has been used to measure pulses as short as 500 fs. All diagnostics are evacuated to prevent pulse shape distortion or pulse lengthening caused by absorption in ambient water vapour. Pulse length measurements and optical spectra will be presented for different electron beam sweep rates, showing the presence of a frequency chirp. Results on the compression of the optical pulses to their bandwidth limit are given for different electron sweep rates. More experimental results showing the dependence of the amount of chirp on cavity desynchronisation will be presented.

  6. Multichannel quantum defect and reduced R-matrix

    International Nuclear Information System (INIS)

    Hategan, C.; Ionescu, R.A.; Cutoiu, D.; Gugiu, M.

    2002-01-01

    The collision of an electron with the atomic electronic core or the scattering of a nucleon on the atomic nucleus, usually, result into multiparticle excitations producing a resonance of a compound system, followed by its decay in reaction channels. Both in the electron-atom collisions and in nucleon-nucleus reactions, these multichannel resonances are described by poles of all R-Matrix elements. The resonances originating in single particle states, either in electron-atom collision or in nucleon-nucleus scattering, are approached in quite different descriptions. For example, the single-particle resonance in nuclear scattering is described, in R-Matrix Theory, by a perturbative method due to Bloch. The original single-nucleon state overlaps the actual states of the nucleus, resulting into a micro-giant description of the single particle resonance. The spectroscopic aspects of the single particle state, mixed with actual nuclear states, are subject of nucleon (or single particle) Strength Function. The electron, involving single particle Rydberg state in an atomic collision, 'avoids' its wave function mixing with that of inner multielectron core, because it is spatially far-away located from that core. This process is usually described by the Multichannel Quantum Defect Theory (MQDT). In the electron-atom scattering rather the effect of inner multielectron core on Rydberg electrons is studied by means of a global parameter, historically called 'Quantum Defect'. Both these types of resonances have in common the preserving of the single-particle wave function in a complex system with multiparticle excitations. In this work one approaches description of single-particle (electron or nucleon) resonance in a multichannel system. The single particle multichannel resonances are not longer described by a R-Matrix pole (specific for resonances originating in multiparticle excitations) but rather by a natural method for incorporating a single particle state in R-Matrix Theory

  7. Parametric spectro-temporal analyzer (PASTA) for ultrafast optical performance monitoring

    Science.gov (United States)

    Zhang, Chi; Wong, Kenneth K. Y.

    2013-12-01

    Ultrafast optical spectrum monitoring is one of the most challenging tasks in observing ultrafast phenomena, such as the spectroscopy, dynamic observation of the laser cavity, and spectral encoded imaging systems. However, conventional method such as optical spectrum analyzer (OSA) spatially disperses the spectrum, but the space-to-time mapping is realized by mechanical rotation of a grating, so are incapable of operating at high speed. Besides the spatial dispersion, temporal dispersion provided by dispersive fiber can also stretches the spectrum in time domain in an ultrafast manner, but is primarily confined in measuring short pulses. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a 100-MHz frame rate and can measure arbitrary waveforms. For the first time, we observe the dynamic spectrum of an ultrafast swept-source: Fourier domain mode-locked (FDML) laser, and the spectrum evolution of a laser cavity during its stabilizing process. In addition to the basic single-lens structure, the multi-lens configurations (e.g. telescope or wide-angle scope) will provide a versatile operating condition, which can zoom in to achieve 0.05-nm resolution and zoom out to achieve 10-nm observation range, namely 17 times zoom in/out ratio. In view of the goal of achieving spectrum analysis with fine accuracy, PASTA provides a promising path to study the real-time spectrum of some dynamic phenomena and non-repetitive events, with orders of magnitude enhancement in the frame rate over conventional OSAs.

  8. Subject-specific optimization of channel currents for multichannel transcranial magnetic stimulation.

    Science.gov (United States)

    Cline, Christopher C; Johnson, Nessa N; He, Bin

    2015-01-01

    The goal of this work is to develop a focal transcranial magnetic stimulation (TMS) system using a multichannel coil array for high-resolution neuromodulation. We proposed a novel spatially-distributed stimulation strategy to significantly improve the focality of TMS. Computer simulations were conducted to evaluate the proposed approach and test the merits of multichannel TMS. Three different multichannel coil arrays were modeled in addition to a conventional figure-8 coil for comparison. Simulations were performed on finite element head models of six subjects constructed from anatomical MR images via an automated pipeline. Multichannel TMS arrays exhibited significantly more focal induced electric field magnitudes compared to the figure-8 coil. Additionally, electrical steering of stimulation sites without physical movement of the coil array was demonstrated.

  9. Nanolaser spectroscopy and micro-optical resonators for detecting, analyzing, and manipulating bioparticles

    Science.gov (United States)

    Gourley, Paul L

    2012-06-26

    This invention provides a new method for rapidly analyzing single bioparticles to assess their material condition and state of health. The method is enabled by use of a resonant cavity apparatus to measure an optical property related to the bioparticle size and refractive index. Measuring the refractive index is useful for determining material properties of the bioparticle. The material properties depend on the biomolecular composition of the bioparticle. The biomolecular composition is, in turn, dependent on the state of health of the bioparticle. Thus, measured optical properties can be used to differentiate normal (healthy) and abnormal (diseased) states of bioparticles derived from cells or tissues. The method is illustrated with data obtained from a resonator with a gain medium. The invention also provides new methods for making multiple measurements in a single device and detecting, analyzing, and manipulating bioparticles that are much smaller than the wavelength of light.

  10. X-ray chemical analyzer for field applications

    International Nuclear Information System (INIS)

    Gamba, O.O.M.

    1977-01-01

    A self-supporting portable field multichannel x-ray chemical analyzer system is claimed. It comprises a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an x-ray energy dispersive spectrometry technique

  11. Inhibition of light tunneling for multichannel excitations in longitudinally modulated waveguide arrays

    International Nuclear Information System (INIS)

    Lobanov, Valery E.; Vysloukh, Victor A.; Kartashov, Yaroslav V.

    2010-01-01

    We consider the evolution of multichannel excitations in longitudinally modulated waveguide arrays where the refractive index either oscillates out-of-phase in all neighboring waveguides or when it is modulated in phase in several central waveguides surrounded by out-of-phase oscillating neighbors. Both types of modulations allow resonant inhibition of light tunneling, but only the modulation of the latter type conserves the internal structure of multichannel excitations. We show that parameter regions where light tunneling inhibition is possible depend on the symmetry and structure of multichannel excitations. Antisymmetric multichannel excitations are more robust than their symmetric counterparts and experience nonlinearity-induced delocalization at higher amplitudes.

  12. Auralization of an orchestra using multichannel and multisource technique (A)

    DEFF Research Database (Denmark)

    Vigeant, Michelle C.; Wang, Lily M.; Rindel, Jens Holger

    2006-01-01

    Previous work has shown the importance of including source directivity in computer modeling for auralizations. A newer method to capture source directivity in auralizations is the multichannel technique, which uses multichannel anechoic recordings. In this study, five-channel anechoic recordings ...... made with a single channel orchestral anechoic recording using (ii) a surface source and (iii) a single omni-directional source. [Work supported by the National Science Foundation.]......Previous work has shown the importance of including source directivity in computer modeling for auralizations. A newer method to capture source directivity in auralizations is the multichannel technique, which uses multichannel anechoic recordings. In this study, five-channel anechoic recordings...... were obtained for every orchestral part of two symphonies at the Technical University of Denmark. Five-channel auralizations were then created for each instrument, located at its typical position on-stage in a concert hall, by convolving five impulse responses from sources that each represent...

  13. Investigation of ultra wideband multi-channel dichroic beamsplitters from 0.3 to 52 microns

    Science.gov (United States)

    Zhang, K. Q.; Hunneman, R.; Seeley, J. S.; Hawkins, G. J.

    1990-01-01

    The development of a set of multi-channel dichroics which includes a 6 channel dichroic operating over the wavelength region from 0.3 to 52 microns is described. In order to achieve the optimum performance, the optical constraints of PbTe, Ge, and CdTe coatings in the strongly absorptive region have been determined by use of a new iterative method using normal incidence reflectance measurement of the multilayer together with initial values of energy gap and infinite refractive index for the semiconductor model. The design and manufacture of the dichroics is discussed and the final results are presented.

  14. Use of trapezoidal shaping algorithm in the digital multi-channel system

    International Nuclear Information System (INIS)

    Wang Jihong; Wang Lianghou; Fang Zongliang

    2011-01-01

    It discusses one kind of digital filter technology-trapezoidal algorithm based on actual need of studying the digital multi-channel. Firstly, demonstrating the feasibility of the arithmetic with theoretical analysis; secondly, predigesting the process of the arithmetic; thirdly, simulating with MATLAB; lastly, using the arithmetic to measure data. The result of testing indicates trapezoidal shaping algorithm accords with the need of digital multi-channel shaping extraordinary. The best filter can be obtained by means of setting parameter due to superiority of digital multi-channel. (authors)

  15. [Multi-channel cochlear implants in patients with Mondini malformation].

    Science.gov (United States)

    Li, Yong-xin; Han, De-min; Zhao, Xiao-tian; Chen, Xue-qing; Kong, Ying; Zheng, Jun; Liu, Bo; Liu, Sha; Mo, Ling-yan; Zhang, Hua; Wang, Shuo

    2004-02-01

    To describe clinical experiences with multi-channel cochlear implantation in patients with Mondini malformation. Among 300 patients who received multi-channel cochlear implants from 1996 to 2002 in Beijing Tongren Hospital, 15 patients were diagnosed with Mondini malformation. A retrospective analysis was performed dealing with the surgical techniques, mapping and rehabilitations characteristics after surgery. 15 patients with normal cochlear structure are consider as control group. Gusher is found more common than the normal cochlear implantation, most of them are serious. The electrodes are inserted in the "cochleostomy" in full length of 13 Patients, 2 pairs of electrodes remains outside of "cochleostomy" in 2 patients. No serious complications occurred after implantation. All patients have auditory sensations. The impedance of the electrodes, the T level, C level and the hearing threshold are similar with the normal cochlear implantation group. The results have no significant difference in compare with normal cochlear group(P > 0.05). Multi-channel cochlear implantation could be performed safely in patients with Mondini malformation. The primary outcome for patients with Mondini malformation are similar to those with normal cochlear structure following the multi-channel cochlear implantation.

  16. Microfluidic Multichannel Flow Cytometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a "Microfluidic Multichannel Flow Cytometer." Several novel concepts are integrated to produce the final design, which is compatible with...

  17. Selling to the multi-channel consumer : strategic and operational challenges for multi-channel retailers

    NARCIS (Netherlands)

    van Ameijden, D.; van Vulpen, J.; Huismans, J.; Wenting, R.; Krawczyk, A.; Weltevreden, J.W.J.; Krawczyk, A.C.

    2012-01-01

    Het ontwikkelen van een goede multichannel strategie is één van de belangrijkste uitdagingen waar retailers vandaag de dag voor staan. Een toenemend aantal ‘traditionele’ retailers ziet het opzetten van een webshop als een belangrijke aanvulling op hun fysieke winkels en probeert te profiteren van

  18. Super-resolution optics for virtual reality

    Science.gov (United States)

    Grabovičkić, Dejan; Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj; Nikolic, Milena I.; Lopez, Jesus; Gorospe, Jorge; Sanchez, Eduardo; Lastres, Carmen; Mohedano, Ruben

    2017-06-01

    In present commercial Virtual Reality (VR) headsets the resolution perceived is still limited, since the VR pixel density (typically 10-15 pixels/deg) is well below what the human eye can resolve (60 pixels/deg). We present here novel advanced optical design approaches that dramatically increase the perceived resolution of the VR keeping the large FoV required in VR applications. This approach can be applied to a vast number of optical architectures, including some advanced configurations, as multichannel designs. All this is done at the optical design stage, and no eye tracker is needed in the headset.

  19. Multichannel scattering of charge carriers on quantum well heterostructures

    CERN Document Server

    Galiev, V I; Polupanov, A F; Goldis, E M; Tansli, T L

    2002-01-01

    An efficient numerical analytical method has been developed for finding continuum spectrum states in quantum well systems with arbitrary potential profiles that are described by coupled Schroedinger equations. Scattering states and S matrix have been built for the case of multichannel scattering in one-dimensional systems with quantum wells and their symmetry properties are obtained and analyzed. The method is applied for studying hole scattering by strained GaInAs-InGaAsP quantum wells. Coefficients of the hole transmission and reflection as well as delay time are calculated as functions of the energy of the incident hole for various values of parameters of structures and values of the momentum

  20. Analysis of Few-Mode Multi-Core Fiber Splice Behavior Using an Optical Vector Network Analyzer

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, Jose Manuel Delgado; Klaus, Werner

    2017-01-01

    The behavior of splices in a 3-mode 36-core fiber is analyzed using optical vector network analysis. Time-domain response analysis confirms splices may cause significant mode-mixing, while frequency-domain analysis shows splices may affect system level mode-dependent loss both positively and negativ......The behavior of splices in a 3-mode 36-core fiber is analyzed using optical vector network analysis. Time-domain response analysis confirms splices may cause significant mode-mixing, while frequency-domain analysis shows splices may affect system level mode-dependent loss both positively...

  1. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements; Vielkanal-Spinpolarimeter fuer energie- und winkeldispersive Photoemissionsmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Michaela

    2011-09-09

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S{sup 2}I/I{sub 0}, with the asymmetry function S and the ratio between scattered and primary intensity I/I{sub 0}. State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM {approx_equal}10{sup -4}. On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 10{sup 4} data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a {mu}-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k {sub parallel} -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of {approx_equal}3 eV. This leads to a two-dimensional figure of merit of FoM{sub 2D}=1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to

  2. Multi-wavelength and multi-colour temporal and spatial optical solitons

    DEFF Research Database (Denmark)

    Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.

    2000-01-01

    We present an overview of several novel types of multi- component envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for high performance computer networks, multi......-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons in Fibonacci optical superlattices....

  3. Multi-Channel Deconvolution for Forward-Looking Phase Array Radar Imaging

    Directory of Open Access Journals (Sweden)

    Jie Xia

    2017-07-01

    Full Text Available The cross-range resolution of forward-looking phase array radar (PAR is limited by the effective antenna beamwidth since the azimuth echo is the convolution of antenna pattern and targets’ backscattering coefficients. Therefore, deconvolution algorithms are proposed to improve the imaging resolution under the limited antenna beamwidth. However, as a typical inverse problem, deconvolution is essentially a highly ill-posed problem which is sensitive to noise and cannot ensure a reliable and robust estimation. In this paper, multi-channel deconvolution is proposed for improving the performance of deconvolution, which intends to considerably alleviate the ill-posed problem of single-channel deconvolution. To depict the performance improvement obtained by multi-channel more effectively, evaluation parameters are generalized to characterize the angular spectrum of antenna pattern or singular value distribution of observation matrix, which are conducted to compare different deconvolution systems. Here we present two multi-channel deconvolution algorithms which improve upon the traditional deconvolution algorithms via combining with multi-channel technique. Extensive simulations and experimental results based on real data are presented to verify the effectiveness of the proposed imaging methods.

  4. Empirical Study on Multi-Channel Service Quality and Customer Loyalty of Retailers

    OpenAIRE

    Qi Yong-zhi

    2014-01-01

    This paper studies the influence of offline RSSQ (retailing store service quality), online store ESQ (E-service quality) and O2O MCISQ (multi-channel integration service quality) on traditional retailers' customer loyalty as well as the relation of them three in multi-channel retailing. 380 customers with both offline and online shopping experience at the same retailer's store are investigated. Through the structural equation model, we find out that in multi-channel retailing, RSSQ and MCISQ ...

  5. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    Science.gov (United States)

    Sarrazin, P.; Blake, D.; Gailhanou, M.; Marchis, F.; Chalumeau, C.; Webb, S.; Walter, P.; Schyns, E.; Thompson, K.; Bristow, T.

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shown that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.

  6. Monolithic, High-Speed Fiber-Optic Switching Array for Lidar, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed optical device is a fiber-based multi-channel switch to quickly switch a fiber-coupled laser among many possible output channels to create a fiber-based...

  7. Numerical solution of the multichannel scattering problem

    International Nuclear Information System (INIS)

    Korobov, V.I.

    1992-01-01

    A numerical algorithm for solving the multichannel elastic and inelastic scattering problem is proposed. The starting point is the system of radial Schroedinger equations with linear boundary conditions imposed at some point R=R m placed somewhere in asymptotic region. It is discussed how the obtained linear equation can be splitted into a zero-order operator and its pertturbative part. It is shown that Lentini - Pereyra variable order finite-difference method appears to be very suitable for solving that kind of problems. The derived procedure is applied to dμ+t→tμ+d inelastic scattering in the framework of the adiabatic multichannel approach. 19 refs.; 1 fig.; 1 tab

  8. A fast multichannel analyser

    International Nuclear Information System (INIS)

    Berry, A.; Przybylski, M.M.; Sumner, I.

    1982-01-01

    A fast multichannel analyser (MCA) capable of sampling at a rate of 10 7 s -1 has been developed. The instrument is based on an 8 bit parallel encoding analogue to digital converter (ADC) reading into a fast histogramming random access memory (RAM) system, giving 256 channels of 64 k count capacity. The prototype unit is in CAMAC format. (orig.)

  9. Development of refined MCNPX-PARET multi-channel model for transient analysis in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kalcheva, S.; Koonen, E. [SCK-CEN, BR2 Reactor Dept., Boeretang 200, 2400 Mol (Belgium); Olson, A. P. [RERTR Program, Nuclear Engineering Div., Argonne National Laboratory, Cass Avenue, Argonne, IL 60439 (United States)

    2012-07-01

    Reactivity insertion transients are often analyzed (RELAP, PARET) using a two-channel model, representing the hot assembly with specified power distribution and an average assembly representing the remainder of the core. For the analysis of protected by the reactor safety system transients and zero reactivity feedback coefficients this approximation proves to give adequate results. However, a more refined multi-channel model representing the various assemblies, coupled through the reactivity feedback effects to the whole reactor core is needed for the analysis of unprotected transients with excluded over power and period trips. In the present paper a detailed multi-channel PARET model has been developed which describes the reactor core in different clusters representing typical BR2 fuel assemblies. The distribution of power and reactivity feedback in each cluster of the reactor core is obtained from a best-estimate MCNPX calculation using the whole core geometry model of the BR2 reactor. The sensitivity of the reactor response to power, temperature and energy distributions is studied for protected and unprotected reactivity insertion transients, with zero and non-zero reactivity feedback coefficients. The detailed multi-channel model is compared vs. simplified fewer-channel models. The sensitivities of transient characteristics derived from the different models are tested on a few reactivity insertion transients with reactivity feedback from coolant temperature and density change. (authors)

  10. Technical Note: Statistical dependences between channels in radiochromic film readings. Implications in multichannel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    González-López, Antonio, E-mail: antonio.gonzalez7@carm.es [Hospital Clínico Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena, El Palmar, Murcia 30120 (Spain); Vera-Sánchez, Juan Antonio [Servicio de Protección Radiológica y Física Médica Hospital Universitari Sant Joan de Reus, Av. del Dr. Josep Laporte, 2, Reus, Tarragona 43204 (Spain); Ruiz-Morales, Carmen [Hospital IMED Elche, Max Planck No. 3, Elche, Alicante 03203 (Spain)

    2016-05-15

    Purpose: This note studies the statistical relationships between color channels in radiochromic film readings with flatbed scanners. The same relationships are studied for noise. Finally, their implications for multichannel film dosimetry are discussed. Methods: Radiochromic films exposed to wedged fields of 6 MV energy were read in a flatbed scanner. The joint histograms of pairs of color channels were used to obtain the joint and conditional probability density functions between channels. Then, the conditional expectations and variances of one channel given another channel were obtained. Noise was extracted from film readings by means of a multiresolution analysis. Two different dose ranges were analyzed, the first one ranging from 112 to 473 cGy and the second one from 52 to 1290 cGy. Results: For the smallest dose range, the conditional expectations of one channel given another channel can be approximated by linear functions, while the conditional variances are fairly constant. The slopes of the linear relationships between channels can be used to simplify the expression that estimates the dose by means of the multichannel method. The slopes of the linear relationships between each channel and the red one can also be interpreted as weights in the final contribution to dose estimation. However, for the largest dose range, the conditional expectations of one channel given another channel are no longer linear functions. Finally, noises in different channels were found to correlate weakly. Conclusions: Signals present in different channels of radiochromic film readings show a strong statistical dependence. By contrast, noise correlates weakly between channels. For the smallest dose range analyzed, the linear behavior between the conditional expectation of one channel given another channel can be used to simplify calculations in multichannel film dosimetry.

  11. Multichannel MAC Layer In Mobile Ad—Hoc Network

    Science.gov (United States)

    Logesh, K.; Rao, Samba Siva

    2010-11-01

    This paper we presented the design objectives and technical challenges in Multichannel MAC protocols in Mobile Ad-hoc Network. In IEEE 802.11 a/b/g standards allow use of multiple channels, only a single channel is popularly used, due to the lack of efficient protocols that enable use of Multiple Channels. Even though complex environments in ad hoc networks require a combined control of physical (PHY) and medium access control (MAC) layers resources in order to optimize performance. And also we discuss the characteristics of cross-layer frame and give a multichannel MAC approach.

  12. High performance multichannel photonic biochip sensors for future point of care diagnostics: an overview on two EU-sponsored projects

    Science.gov (United States)

    Giannone, Domenico; Kazmierczak, Andrzej; Dortu, Fabian; Vivien, Laurent; Sohlström, Hans

    2010-04-01

    We present here research work on two optical biosensors which have been developed within two separate European projects (6th and 7th EU Framework Programmes). The biosensors are based on the idea of a disposable biochip, integrating photonics and microfluidics, optically interrogated by a multichannel interrogation platform. The objective is to develop versatile tools, suitable for performing screening tests at Point of Care or for example, at schools or in the field. The two projects explore different options in terms of optical design and different materials. While SABIO used Si3N4/SiO2 ring resonators structures, P3SENS aims at the use of photonic crystal devices based on polymers, potentially a much more economical option. We discuss both approaches to show how they enable high sensitivity and multiple channel detection. The medium term objective is to develop a new detection system that has low cost and is portable but at the same time offering high sensitivity, selectivity and multiparametric detection from a sample containing various components (e.g. blood, serum, saliva, etc.). Most biological sensing devices already present on the market suffer from limitations in multichannel operation capability (either the detection of multiple analytes indicating a given pathology or the simultaneous detection of multiple pathologies). In other words, the number of different analytes that can be detected on a single chip is very limited. This limitation is a main issue addressed by the two projects. The excessive cost per test of conventional bio sensing devices is a second issue that is addressed.

  13. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    Science.gov (United States)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  14. Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor

    Science.gov (United States)

    Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.

    2016-10-01

    A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.

  15. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph

    Directory of Open Access Journals (Sweden)

    Kristen M. Warren

    2016-03-01

    Full Text Available Photoplethysmographic (PPG waveforms are used to acquire pulse rate (PR measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA, limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data.

  16. Robust adaptive multichannel SAR processing based on covariance matrix reconstruction

    Science.gov (United States)

    Tan, Zhen-ya; He, Feng

    2018-04-01

    With the combination of digital beamforming (DBF) processing, multichannel synthetic aperture radar(SAR) systems in azimuth promise well in high-resolution and wide-swath imaging, whereas conventional processing methods don't take the nonuniformity of scattering coefficient into consideration. This paper brings up a robust adaptive Multichannel SAR processing method which utilizes the Capon spatial spectrum estimator to obtain the spatial spectrum distribution over all ambiguous directions first, and then the interference-plus-noise covariance Matrix is reconstructed based on definition to acquire the Multichannel SAR processing filter. The performance of processing under nonuniform scattering coefficient is promoted by this novel method and it is robust again array errors. The experiments with real measured data demonstrate the effectiveness and robustness of the proposed method.

  17. The influence of temperature calibration on the OC–EC results from a dual-optics thermal carbon analyzer

    Science.gov (United States)

    The Sunset Laboratory Dual-Optical Carbonaceous Analyzer that simultaneously measures transmission and reflectance signals is widely used in thermal-optical analysis of particulate matter samples. Most often this instrument is used to measure total carbon (TC), organic carbon (O...

  18. Use of AI-1024 and AI-4096 analyzers in multiple regimes

    International Nuclear Information System (INIS)

    Zaika, N.D.; Kovtunenko, I.S.; Savchuk, O.G.

    1975-01-01

    The operation of pulse multichannel analyzers in the following multidimensional modes: AI-1024-4 - amplitude mode from several transducers; amplitude mode from several transducers at different time intervals; AI-4096-3M - amplitude mode at different time intervals in each of four groups with unit BVI-1

  19. Multichannel photonic Hilbert transformers based on complex modulated integrated Bragg gratings.

    Science.gov (United States)

    Cheng, Rui; Chrostowski, Lukas

    2018-03-01

    Multichannel photonic Hilbert transformers (MPHTs) are reported. The devices are based on single compact spiral integrated Bragg gratings on silicon with coupling coefficients precisely modulated by the phase of each grating period. MPHTs with up to nine wavelength channels and a single-channel bandwidth of up to ∼625  GHz are achieved. The potential of the devices for multichannel single-sideband signal generation is suggested. The work offers a new possibility of utilizing wavelength as an extra degree of freedom in designing radio-frequency photonic signal processors. Such multichannel processors are expected to possess improved capacities and a potential to greatly benefit current widespread wavelength division multiplexed systems.

  20. Fast multichannel scaler

    International Nuclear Information System (INIS)

    Okayasu, T.; Takeuchi, S.; Nagai, S.

    1987-01-01

    A fast multichannel scaler achieving the minimum dwell time of 50 ns is described. The dead time due to memory cycle is eliminated by 4-phase operation of parallel-4 groups of counter RAMs. The MCS has 4 k channels in total. Differential nonlinearity is less than 0.4%. If an input pulse arrives near the channel boundary, it is caught temporarily for both channels and then sorted to go into a proper channel. Thus, the dead time near the channel boundary is also eliminated

  1. Passive long range acousto-optic sensor

    Science.gov (United States)

    Slater, Dan

    2006-08-01

    Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).

  2. Application of a multi-channel system for continuous monitoring and an early warning system.

    Science.gov (United States)

    Lee, J H; Song, C H; Kim, B C; Gu, M B

    2006-01-01

    A multi-channel continuous toxicity monitoring system developed in our laboratory, based on two-stage mini-bioreactors, was successfully implemented in the form of computer-based data acquisition. The multi-channel system consists of a series of a two-stage minibioreactor systems connected by a fiber optic probe to a luminometer, and uses genetically engineered bioluminescent bacteria for the detection of the potential toxicity from the soluble chemicals. This system can be stably and continuously operated due to the separation of the culture reactor from the test reactor and accomplish easy and long-term monitoring without system shut down by abrupt inflows of severe polluting chemicals. Four different recombinant bioluminescent bacteria were used in different channels so that the modes of the samples toxicities can be reasonably identified and evaluated based upon the response signature of each channel. The bioluminescent signatures were delivered from four channels by switching one at once, while the data is automatically logged to an IBM compatible computer. We also achieved the enhancement of the system through the manipulation of the dilution rate and the use of thermo-lux fusion strains. Finally, this system is now being implemented to a drinking water reservoir and river for remote sensing as an early warning system.

  3. Multichannel scaler with fast channel advance

    International Nuclear Information System (INIS)

    Murphy, D.M.

    1985-01-01

    A multichannel scaler has been constructed which is capable of running as fast as 250 ns per channel. It is compact, low power and requires no special construction techniques. Readout is into a memory accessible by a microprocessor. (orig.)

  4. Multi-channel amplitude analyzer CMA-1 and CMA-2

    International Nuclear Information System (INIS)

    Czermak, A.; Jablonski, J.; Ostrowicz, A.

    1977-01-01

    Analyzer CMA is implemented in the CAMAC system. A single crate contains the required modules and is controlled by the PDP-11/10 minicomputer with 8k 16 bit word memory. Spectra can be accumulated in full 4k, 2k 1k or 0,5k. System provides: display of stored data in the form of full memory, very accurate representation of any part (44 channels) on alphanumeric display, readout of the data by paper tape punch or printing. (author)

  5. Multichannel shopper segments and their covariates

    NARCIS (Netherlands)

    Konus, U.; Verhoef, P.C.; Neslin, S.A.

    2008-01-01

    The proliferation of channels has created new challenges for research, including understanding how consumers may be segmented with respect to their information search and purchase behavior in multichannel environment. This research considers shopping a dynamic process that consists of search and

  6. Multichannel Shopper Segments and Their Covariates

    NARCIS (Netherlands)

    Konus, Umut; Verhoef, Peter C.; Neslin, Scott A.

    2008-01-01

    The proliferation of channels has created new challenges for research, including understanding how consumers may be segmented with respect to their information search and purchase behavior in multichannel environment. This research considers shopping a dynamic process that consists of search and

  7. Energy reduction using multi-channels optical wireless communication based OFDM

    Science.gov (United States)

    Darwesh, Laialy; Arnon, Shlomi

    2017-10-01

    In recent years, an increasing number of data center networks (DCNs) have been built to provide various cloud applications. Major challenges in the design of next generation DC networks include reduction of the energy consumption, high flexibility and scalability, high data rates, minimum latency and high cyber security. Use of optical wireless communication (OWC) to augment the DC network could help to confront some of these challenges. In this paper we present an OWC multi channels communication method that could lead to significant energy reduction of the communication equipment. The method is to convert a high speed serial data stream to many slower and parallel streams and vies versa at the receiver. We implement this concept of multi channels using optical orthogonal frequency division multiplexing (O-OFDM) method. In our scheme, we use asymmetrically clipped optical OFDM (ACO-OFDM). Our results show that the realization of multi channels OFDM (ACO-OFDM) methods reduces the total energy consumption exponentially, as the number of channels transmitted through them rises.

  8. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Mok, E-mail: jmkim@kriss.re.kr; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Brain Cognition Measurement Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2013-12-15

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  9. Optics of the ozone lidar ELSA

    Science.gov (United States)

    Porteneuve, J.

    1992-01-01

    In order to study the ozone layer in the Arctic, we have to define a new optical concept for a lidar. It was necessary to build a transportable system with a large collecting surface in a minimum of volume. It was too useful to have a multichannel receptor. A description of the Emettor Receptor System, collecting system, and analysis system is provided.

  10. Optical linear algebra processors - Architectures and algorithms

    Science.gov (United States)

    Casasent, David

    1986-01-01

    Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.

  11. Coi-wiz: An interactive computer wizard for analyzing cardiac optical signals.

    Science.gov (United States)

    Yuan, Xiaojing; Uyanik, Ilyas; Situ, Ning; Xi, Yutao; Cheng, Jie

    2009-01-01

    A number of revolutionary techniques have been developed for cardiac electrophysiology research to better study the various arrhythmia mechanisms that can enhance ablating strategies for cardiac arrhythmias. Once the three-dimensional high resolution cardiac optical imaging data is acquired, it is time consuming to manually go through them and try to identify the patterns associated with various arrhythmia symptoms. In this paper, we present an interactive computer wizard that helps cardiac electrophysiology researchers to visualize and analyze the high resolution cardiac optical imaging data. The wizard provides a file interface that accommodates different file formats. A series of analysis algorithms output waveforms, activation and action potential maps after spatial and temporal filtering, velocity field and heterogeneity measure. The interactive GUI allows the researcher to identify the region of interest in both the spatial and temporal domain, thus enabling them to study different heart chamber at their choice.

  12. Analysis of flow distribution instability in parallel thin rectangular multi-channel system

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G.L. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China); Su, G.H., E-mail: ghsu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an City 710049 (China); Peng, M.J. [Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University, Harbin City 150001 (China)

    2016-08-15

    Highlights: • Flow distribution instability in parallel thin rectangular multi-channel system is studied using RELAP5 codes. • Flow excursion may bring parallel heating channel into the density wave oscillations region. • Flow distribution instability is more likely to happen at low power/flow ratio conditions. • The increase of channel number will not affect the flow distribution instability boundary. • Asymmetry inlet throttling and heating will make system more unstable. - Abstract: The flow distribution instability in parallel thin rectangular multi-channel system has been researched in the present study. The research model of parallel channel system is established by using RELAP5/MOD3.4 codes. The transient process of flow distribution instability is studied at imposed inlet mass flow rate and imposed pressure drop conditions. The influence of heating power, mass flow rate, system pressure and channel number on flow distribution instability are analyzed. Furthermore, the flow distribution instability of parallel two-channel system under asymmetric inlet throttling and heating power is studied. The results show that, if multi-channel system operates at the negative slope region of channel ΔP–G curve, small disturbance in pressure drop will lead to flow redistribution between parallel channels. Flow excursion may bring the operating point of heating channel into the density-wave oscillations region, this will result in out-phase or in-phase flow oscillations. Flow distribution instability is more likely to happen at low power/flow ratio conditions, the stability of parallel channel system increases with system pressure, the channel number has a little effect on system stability, but the asymmetry inlet throttling or heating power will make the system more unstable.

  13. Development of pulse neutron coal analyzer

    International Nuclear Information System (INIS)

    Jing Shiwie; Gu Deshan; Qiao Shuang; Liu Yuren; Liu Linmao; Jing Shiwei

    2005-01-01

    This article introduced the development of pulsed neutron coal analyzer by pulse fast-thermal neutron analysis technology in the Radiation Technology Institute of Northeast Normal University. The 14 MeV pulse neutron generator and bismuth germanate detector and 4096 multichannel analyzer were applied in this system. The multiple linear regression method employed to process data solved the interferential problem of multiple elements. The prototype (model MZ-MKFY) had been applied in Changshan and Jilin power plant for about a year. The results of measuring the main parameters of coal such as low caloric power, whole total water, ash content, volatile content, and sulfur content, with precision acceptable to the coal industry, are presented

  14. Multichannel blind iterative image restoration

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Filip; Flusser, Jan

    2003-01-01

    Roč. 12, č. 9 (2003), s. 1094-1106 ISSN 1057-7149 R&D Projects: GA ČR GA102/00/1711 Institutional research plan: CEZ:AV0Z1075907 Keywords : conjugate gradient * half-quadratic regularization * multichannel blind deconvolution Subject RIV: BD - Theory of Information Impact factor: 2.642, year: 2003 http://library.utia.cas.cz/prace/20030104.pdf

  15. Optical vector network analyzer based on double-sideband modulation.

    Science.gov (United States)

    Jun, Wen; Wang, Ling; Yang, Chengwu; Li, Ming; Zhu, Ning Hua; Guo, Jinjin; Xiong, Liangming; Li, Wei

    2017-11-01

    We report an optical vector network analyzer (OVNA) based on double-sideband (DSB) modulation using a dual-parallel Mach-Zehnder modulator. The device under test (DUT) is measured twice with different modulation schemes. By post-processing the measurement results, the response of the DUT can be obtained accurately. Since DSB modulation is used in our approach, the measurement range is doubled compared with conventional single-sideband (SSB) modulation-based OVNA. Moreover, the measurement accuracy is improved by eliminating the even-order sidebands. The key advantage of the proposed scheme is that the measurement of a DUT with bandpass response can also be simply realized, which is a big challenge for the SSB-based OVNA. The proposed method is theoretically and experimentally demonstrated.

  16. Multiplex multivariate recurrence network from multi-channel signals for revealing oil-water spatial flow behavior.

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Yang, Yu-Xuan; Cai, Qing

    2017-03-01

    The exploration of the spatial dynamical flow behaviors of oil-water flows has attracted increasing interests on account of its challenging complexity and great significance. We first technically design a double-layer distributed-sector conductance sensor and systematically carry out oil-water flow experiments to capture the spatial flow information. Based on the well-established recurrence network theory, we develop a novel multiplex multivariate recurrence network (MMRN) to fully and comprehensively fuse our double-layer multi-channel signals. Then we derive the projection networks from the inferred MMRNs and exploit the average clustering coefficient and the spectral radius to quantitatively characterize the nonlinear recurrent behaviors related to the distinct flow patterns. We find that these two network measures are very sensitive to the change of flow states and the distributions of network measures enable to uncover the spatial dynamical flow behaviors underlying different oil-water flow patterns. Our method paves the way for efficiently analyzing multi-channel signals from multi-layer sensor measurement system.

  17. Night myopia studied with an adaptive optics visual analyzer.

    Directory of Open Access Journals (Sweden)

    Pablo Artal

    Full Text Available PURPOSE: Eyes with distant objects in focus in daylight are thought to become myopic in dim light. This phenomenon, often called "night myopia" has been studied extensively for several decades. However, despite its general acceptance, its magnitude and causes are still controversial. A series of experiments were performed to understand night myopia in greater detail. METHODS: We used an adaptive optics instrument operating in invisible infrared light to elucidate the actual magnitude of night myopia and its main causes. The experimental setup allowed the manipulation of the eye's aberrations (and particularly spherical aberration as well as the use of monochromatic and polychromatic stimuli. Eight subjects with normal vision monocularly determined their best focus position subjectively for a Maltese cross stimulus at different levels of luminance, from the baseline condition of 20 cd/m(2 to the lowest luminance of 22 × 10(-6 cd/m(2. While subjects performed the focusing tasks, their eye's defocus and aberrations were continuously measured with the 1050-nm Hartmann-Shack sensor incorporated in the adaptive optics instrument. The experiment was repeated for a variety of controlled conditions incorporating specific aberrations of the eye and chromatic content of the stimuli. RESULTS: We found large inter-subject variability and an average of -0.8 D myopic shift for low light conditions. The main cause responsible for night myopia was the accommodation shift occurring at low light levels. Other factors, traditionally suggested to explain night myopia, such as chromatic and spherical aberrations, have a much smaller effect in this mechanism. CONCLUSIONS: An adaptive optics visual analyzer was applied to study the phenomenon of night myopia. We found that the defocus shift occurring in dim light is mainly due to accommodation errors.

  18. Forum metrology 2009: control of optics, targets and optical analyzers

    International Nuclear Information System (INIS)

    Desenne, D.; Andre, R.

    2010-01-01

    The 1. 'Forum Metrologie' of the CEA/DAM has been held in the 'Institut Laser et Plasma' on the December 9, 2009, close to the 'Centre d'etudes Scientifiques et Techniques d'Aquitaine'. It has been set up by the 'Departement Lasers de Puissance'. The chosen thematic was the metrology around laser experiments, with a special focus on the metrology of the dedicated optics, targets and optical analysers. The talks have shown the progress and difficulties in each of these fields. (authors)

  19. Quasibound states at thresholds in multichannel impurity scattering

    International Nuclear Information System (INIS)

    Kim, Sang Wook; Park, Hwa-Kyun; Sim, H-S; Schomerus, Henning

    2003-01-01

    We investigate the threshold behaviour of transmission resonances and quasibound states in the multichannel scattering problems of a one-dimensional (1D) time-dependent impurity potential, and the related problem of a single impurity in a quasi-1D wire. It was claimed before in the literature that a quasibound state disappears when a transmission zero collides with the subband boundary. However, the transmission line shape, the Friedel sum rule, and the delay time show that the quasibound states still survive and affect the physical quantities. We discuss the relation between threshold behaviour of transmission resonances, and quasibound states and their boundary conditions in the general context of multichannel scatterings

  20. Maritime adaptive optics beam control

    OpenAIRE

    Corley, Melissa S.

    2010-01-01

    The Navy is interested in developing systems for horizontal, near ocean surface, high-energy laser propagation through the atmosphere. Laser propagation in the maritime environment requires adaptive optics control of aberrations caused by atmospheric distortion. In this research, a multichannel transverse adaptive filter is formulated in Matlab's Simulink environment and compared to a complex lattice filter that has previously been implemented in large system simulations. The adaptive fil...

  1. Data Stream Processing Study in a Multichannel Telemetry Data Registering System

    Directory of Open Access Journals (Sweden)

    I. M. Sidyakin

    2015-01-01

    Full Text Available The paper presents the results of research that is aimed to improve the reliability of transmission of telemetry information (TMI through a communication channel with noise from the object of telemeasurements to the telemetry system for collecting and processing data. It considers the case where the quality of received information changes over time, due to movement of the object relative to the receiving station, or other factors that cause changes in the characteristics of noise in the channel, up to the total loss due to some temporary sites. To improve the reliability of transmission and ensure continuous communication with the object, it is proposed to use a multi-channel system to record the TMI. This system consists of several telemetry stations, which simultaneously register data stream transmitted from the telemetry object. The multichannel system generates a single stream of TMI for the user at the output. The stream comprises the most reliable pieces of information, being received at all inputs of the system.The paper investigates the task of constructing a multi-channel registration scheme for telemetry information (TMI to provide a simultaneous reception of the telemeasurement data by multiple telemetry stations and to form a single TMI stream containing the most reliable pieces of received data on the basis of quality analysis of information being received.In a multichannel registering system of TMI there are three main factors affecting the quality of the output of a single stream of information: 1 quality of the method used for protecting against errors during transmission over the communication channel with noise; 2 efficiency of the synchronization process of telemetry frames in the received flow of information; 3 efficiency of the applied criteria to form a single output stream from multiple input streams coming from different stations in the discussed multichannel registering system of TMI.In the paper, in practical

  2. Relativistic Multichannel Treatment of Krypton Spectra across the First Ionization Threshold

    Institute of Scientific and Technical Information of China (English)

    QU Yi-Zhi; PENG Yong-Lun

    2005-01-01

    @@ The relativistic multichannel theory has been extended to calculate both the eigen quantum defects μα, transformation matrix Uiα, and the eigen dipole matrix elements Dα of krypton. The Rydberg and autoionizationspectra of krypton across the first ionization threshold are calculated within the framework of multichannel quantum defect theory. Our calculated spectra are in agreement with the absolute measurement data.

  3. Analyzer for gamma cameras diagnostic

    International Nuclear Information System (INIS)

    Oramas Polo, I.; Osorio Deliz, J. F.; Diaz Garcia, A.

    2013-01-01

    This research work was carried out to develop an analyzer for gamma cameras diagnostic. It is composed of an electronic system that includes hardware and software capabilities, and operates from the acquisition of the 4 head position signals of a gamma camera detector. The result is the spectrum of the energy delivered by nuclear radiation coming from the camera detector head. This system includes analog processing of position signals from the camera, digitization and the subsequent processing of the energy signal in a multichannel analyzer, sending data to a computer via a standard USB port and processing of data in a personal computer to obtain the final histogram. The circuits are composed of an analog processing board and a universal kit with micro controller and programmable gate array. (Author)

  4. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  5. A simple multipurpose double-beam optical image analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Popowicz, A., E-mail: adam.popowicz@polsl.pl [Institute of Automatic Control, Silesian University of Technology, Akademicka Str. 16, 44-100 Gliwice (Poland); Blachowicz, T. [Institute of Physics - Center for Science and Education, Silesian University of Technology, S. Konarskiego 22B Str., 44-100 Gliwice (Poland)

    2016-07-15

    In the paper we present a low cost optical device which splits the light in the focal plane into two separate optical paths and collimates it back into a single image plane, and where a selective information processing can be carried out. The optical system is straightforward and easily implementable as it consists of only three lenses and two mirrors. The system is dedicated for imaging in low-light-level conditions in which widely used optical devices, based on beam splitters or dichroic mirrors, suffer from light loss. We expose examples of applications of our device, using a prototype model. The proposed optical system may be employed for: monitoring the objects located at different distances from observer (1), creating regions of different magnification within a single image plane (2), high dynamic range photometry (3), or imaging in two wavelength bands simultaneously (4).

  6. Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

    DEFF Research Database (Denmark)

    Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang

    2010-01-01

    We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...

  7. A multi-channel isolated power supply in non-equipotential circuit

    Science.gov (United States)

    Li, Xiang; Zhao, Bo-Wen; Zhang, Yan-Chi; Xie, Da

    2018-04-01

    A multi-channel isolation power supply is designed for the problems of different MOSFET or IGBT in the non-equipotential circuit in this paper. It mainly includes the square wave generation circuit, the high-frequency transformer and the three-terminal stabilized circuit. The first part is used to generate the 24V square wave, and as the input of the magnetic ring transformer. In the second part, the magnetic ring transformer consists of one input and three outputs to realize multi-channel isolation output. The third part can output different potential and realize non-equal potential function through the three-terminal stabilized chip. In addition, the multi-channel isolation power source proposed in this paper is Small size, high reliability and low price, and it is convenient for power electronic switches that operate on multiple different potentials. Therefore, the research on power supply of power electronic circuit has practical significance.

  8. Evaluation of Multi-Channel ADCs for Gamma-Ray Spectroscopy

    Science.gov (United States)

    Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson

    2013-04-01

    As nuclear physicists increasingly design large scale experiments with hundreds or thousands of detector channels, there are growing needs for high density readout electronics with good timing and energy resolution that at the same time offer lower cost per channel compared to existing commercial solutions. Recent improvements in the design of commercial analog to digital converters (ADCs) have resulted in a variety of multi-channel ADCs that are natural choice for designing such high density readout modules. However, multi-channel ADCs typically are designed for medical imaging/ultrasound applications and therefore are not rated for their spectroscopic characteristics. In this work, we evaluated the gamma-ray spectroscopic performance of several multi-channel ADCs, including their energy resolution, nonlinearity, and timing resolution. Some of these ADCs demonstrated excellent energy resolution, 2.66% FWHM at 662 keV with a LaBr3 or 1.78 keV FWHM at 1332.5 keV with a high purity germanium (HPGe) detector, and sub-nanosecond timing resolution with LaBr 3. We present results from these measurements to illustrate their suitability for gamma-ray spectroscopy.

  9. Use of microcontroller in gamma-ray spectrometer construction using NaI(Tl) sensor, with emphasis in multichannel analyzer, to applications in nuclear and environmental geophysics

    International Nuclear Information System (INIS)

    Silva, Nilton

    2005-01-01

    In this work of nuclear geophysical instrumentation the main purpose was the development of a gamma-ray spectrometer prototype with multi channel analyzer, since the spectroscopic amplifier until your firmware. The heart of the digital part was an ATMEL 8 bits microcontroller (AT89S8252). All circuits were made and assembled in the Laboratory of Applied Geophysical Instrumentation (LIGA) of IAG-USP. A microcontroller software was completely developed in C ANSI language using the Small Device C Compiler version 2.4.8, that is a free software distributed under General Public License (GPL). At first, microcontroller was used to change all digital circuit of one classic SCINTREX GAD-6 differential gamma-ray spectrometer. Measurement times with order of 2 days became possible, and it could work in non climate ambient. Then, after this stage, had been started the development of a multichannel analyzer (MCA) working in pulse height analyzer mode with 4096 channels capacity, to use in many kinds of nuclear detection. Besides it, was developed an automatic gain system for photopeak stabilization, by the use of one radioactive source ( 133 Ba). This automatic gain system is very important in the case of NaI(Tl) scintillometric detectors, due PMT sensitivity with temperature and aging of some laboratory electronic circuits. Two power supplies with high stability, using pulse width modulation (PWM) techniques were developed, in order to all system became free of electrical line break off. One PWM power polarizes a photo multiplier tube (PMT) with high voltage and another supplies remaining developed circuits. Calibration in energy using standards sources 137 Cs and 60 Co showed that gamma detector developed has a good linearity and low thermal drift, even working in absent of air-conditioned. Concentrations measurements of K, U and Th were made in samples of soils, vegetables, etc. (author)'

  10. 3m vacuum ultraviolet spectrometer with optical multichanel detector

    International Nuclear Information System (INIS)

    Marin, P.; Peraza, C.; Blanco, F.; Campos, J.

    1993-01-01

    This paper, describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT: It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate/phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the arrays is digitized by a 12-bit analog to digital converter and stored in a computer for its later analysis. The necessary software to store and display data has been developed. (Author)

  11. Advanced freeform optics enabling ultra-compact VR headsets

    Science.gov (United States)

    Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Grabovičkić, Dejan; Buljan, Marina; Narasimhan, Bharathwaj; Gorospe, Jorge; López, Jesús; Nikolić, Milena; Sánchez, Eduardo; Lastres, Carmen; Mohedano, Ruben

    2017-06-01

    We present novel advanced optical designs with a dramatically smaller display to eye distance, excellent image quality and a large field of view (FOV). This enables headsets to be much more compact, typically occupying about a fourth of the volume of a conventional headset with the same FOV. The design strategy of these optics is based on a multichannel approach, which reduces the distance from the eye to the display and the display size itself. Unlike conventional microlens arrays, which are also multichannel devices, our designs use freeform optical surfaces to produce excellent imaging quality in the entire field of view, even when operating at very oblique incidences. We present two families of compact solutions that use different types of lenslets: (1) refractive designs, whose lenslets are composed typically of two refractive surfaces each; and (2) light-folding designs that use prism-like three-surface lenslets, in which rays undergo refraction, reflection, total internal reflection and refraction again. The number of lenslets is not fixed, so different configurations may arise, adaptable for flat or curved displays with different aspect ratios. In the refractive designs the distance between the optics and the display decreases with the number of lenslets, allowing for displaying a light-field when the lenslet becomes significantly small than the eye pupil. On the other hand, the correlation between number of lenslets and the optics to display distance is broken in light-folding designs, since their geometry permits achieving a very short display to eye distance with even a small number of lenslets.

  12. Design of multichannel counting system for IBM PC and compatibles

    International Nuclear Information System (INIS)

    Majeed, B.; Ahmad, Z.; Osman, A.; Ysain, M.M.

    1995-07-01

    A Multichannel Counting System (MCCS), based on IBM-PC and compatible computer systems have been designed. The MCCS consists of a Multichannel Counting System plug-in interface card (MCCS-PC) for IBM PC and compatibles and a NIM-BIN module (MCCS-NB). The MCCS-PC provides simultaneous monitoring of upto seven independent SCA type inputs. An on board programmable timer provides elapsed time measurement. A menu-driven program for data acquisition and timer control has also been developed. (author) 8 figs

  13. Artificial Walking Technologies to Improve Gait in Cerebral Palsy: Multichannel Neuromuscular Stimulation.

    Science.gov (United States)

    Rose, Jessica; Cahill-Rowley, Katelyn; Butler, Erin E

    2017-11-01

    Cerebral palsy (CP) is the most common childhood motor disability and often results in debilitating walking abnormalities, such as flexed-knee and stiff-knee gait. Current medical and surgical treatments are only partially effective in improving gait abnormalities and may cause significant muscle weakness. However, emerging artificial walking technologies, such as step-initiated, multichannel neuromuscular electrical stimulation (NMES), can substantially improve gait patterns and promote muscle strength in children with spastic CP. NMES may also be applied to specific lumbar-sacral sensory roots to reduce spasticity. Development of tablet computer-based multichannel NMES can leverage lightweight, wearable wireless stimulators, advanced control design, and surface electrodes to activate lower-limb muscles. Musculoskeletal models have been used to characterize muscle contributions to unimpaired gait and identify high muscle demands, which can help guide multichannel NMES-assisted gait protocols. In addition, patient-specific NMES-assisted gait protocols based on 3D gait analysis can facilitate the appropriate activation of lower-limb muscles to achieve a more functional gait: stance-phase hip and knee extension and swing-phase sequence of hip and knee flexion followed by rapid knee extension. NMES-assisted gait treatment can be conducted as either clinic-based or home-based programs. Rigorous testing of multichannel NMES-assisted gait training protocols will determine optimal treatment dosage for future clinical trials. Evidence-based outcome evaluation using 3D kinematics or temporal-spatial gait parameters will help determine immediate neuroprosthetic effects and longer term neurotherapeutic effects of step-initiated, multichannel NMES-assisted gait in children with spastic CP. Multichannel NMES is a promising assistive technology to help children with spastic CP achieve a more upright, functional gait. © 2017 International Center for Artificial Organs and

  14. Multichannel Human Body Communication

    International Nuclear Information System (INIS)

    Przystup, Piotr; Bujnowski, Adam; Wtorek, Jerzy

    2016-01-01

    Human Body Communication is an attractive alternative for traditional wireless communication (Bluetooth, ZigBee) in case of Body Sensor Networks. Low power, high data rates and data security makes it ideal solution for medical applications. In this paper, signal attenuation for different frequencies, using FR4 electrodes, has been investigated. Performance of single and multichannel transmission with frequency modulation of analog signal has been tested. Experiment results show that HBC is a feasible solution for transmitting data between BSN nodes

  15. Development of Multichannel Eddy Current Testing Instrument

    International Nuclear Information System (INIS)

    Lee, Hee Jong; Cho, Chan Hee; Nam, Min Woo; Yoon, Byung Sik; Yoo, Hyun Joo

    2010-01-01

    Four main techniques of electromagnetic testing are used for commercial applications: eddy current testing, alternating current field testing, magnetic flux leakage testing and remote field testing. Eddy current testing is a nondestructive evaluation method, which makes eddy current flow on a specimen by applying driving pulse to eddy current probe coil, by using eddy current testing device, and makes the change of eddy current which is dependently caused by flaws, material characteristics, testing condition, receiving through eddy current, and analyzes material properties, flaws, status on the specimen. Application of EC instrumentation varies widely in industry from the identification of metal heat treatment to the inspection of steam generator tubing in nuclear power plants. In this study, we have designed multichannel EC instrument which can be applicable to the NDE of the tube in heat exchanger for electric power facility, chemistry, and military industry, and finally confirmed the proper function of EC instrumentation

  16. Challenges and opportunities in multichannel customer management

    NARCIS (Netherlands)

    Neslin, Scott A.; Grewal, Dhruv; Leghorn, Robert; Shankar, Venkatesh; Teerling, Marije L.; Thomas, Jacquelyn S.; Verhoef, Peter C.

    Multichannel customer management is the design, deployment, coordination, and evaluation of channels through which firms and customers interact, with the goal of enhancing customer value through effective customer acquisition, retention, and development. The authors identify five major challenges

  17. Challenges and opportunities in multichannel customer management

    NARCIS (Netherlands)

    Neslin, Scott A.; Grewal, Dhruv; Leghorn, Robert; Shankar, Venkatesh; Teerling, Marije L.; Thomas, Jacquelyn S.; Verhoef, Peter C.

    2006-01-01

    Multichannel customer management is the design, deployment, coordination, and evaluation of channels through which firms and customers interact, with the goal of enhancing customer value through effective customer acquisition, retention, and development. The authors identify five major challenges

  18. Multichannel sound reinforcement systems at work in a learning environment

    Science.gov (United States)

    Malek, John; Campbell, Colin

    2003-04-01

    Many people have experienced the entertaining benefits of a surround sound system, either in their own home or in a movie theater, but another application exists for multichannel sound that has for the most part gone unused. This is the application of multichannel sound systems to the learning environment. By incorporating a 7.1 surround processor and a touch panel interface programmable control system, the main lecture hall at the University of Michigan Taubman College of Architecture and Urban Planning has been converted from an ordinary lecture hall to a working audiovisual laboratory. The multichannel sound system is used in a wide variety of experiments, including exposure to sounds to test listeners' aural perception of the tonal characteristics of varying pitch, reverberation, speech transmission index, and sound-pressure level. The touch panel's custom interface allows a variety of user groups to control different parts of the AV system and provides preset capability that allows for numerous system configurations.

  19. A high-throughput, multi-channel photon-counting detector with picosecond timing

    CERN Document Server

    Lapington, J S; Miller, G M; Ashton, T J R; Jarron, P; Despeisse, M; Powolny, F; Howorth, J; Milnes, J

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchanne...

  20. Rad-Tolerant, Thermally Stable, High-Speed Fiber-Optic Network for Harsh Environments

    Science.gov (United States)

    Leftwich, Matt; Hull, Tony; Leary, Michael; Leftwich, Marcus

    2013-01-01

    Future NASA destinations will be challenging to get to, have extreme environmental conditions, and may present difficulty in retrieving a spacecraft or its data. Space Photonics is developing a radiation-tolerant (rad-tolerant), high-speed, multi-channel fiber-optic transceiver, associated reconfigurable intelligent node communications architecture, and supporting hardware for intravehicular and ground-based optical networking applications. Data rates approaching 3.2 Gbps per channel will be achieved.

  1. Multi-channel motor evoked potential monitoring during anterior cervical discectomy and fusion

    Directory of Open Access Journals (Sweden)

    Dong-Gun Kim

    Full Text Available Objectives: Anterior cervical discectomy and fusion (ACDF surgery is the most common surgical procedure for the cervical spine with low complication rate. Despite the potential prognostic benefit, intraoperative neurophysiological monitoring (IONM, a method for detecting impending neurological compromise, is not routinely used in ACDF surgery. The present study aimed to identify the potential benefits of monitoring multi-channel motor evoked potentials (MEPs during ACDF surgery. Methods: We retrospectively reviewed 200 consecutive patients who received IONM with multi-channel MEPs and somatosensory evoked potentials (SSEPs. On average, 9.2 muscles per patient were evaluated under MEP monitoring. Results: The rate of MEP change during surgery in the multi-level ACDF group was significantly higher than the single-level group. Two patients from the single-level ACDF group (1.7% and four patients from the multi-level ACDF group (4.9% experienced post-operative motor deficits. Multi-channel MEPs monitoring during single and multi-level ACDF surgery demonstrated higher sensitivity, specificity, positive predictive and negative predictive value than SSEP monitoring. Conclusions: Multi-channel MEP monitoring might be beneficial for the detection of segmental injury as well as long tract injury during single- and multi-level ACDF surgery. Significance: This is first large scale study to identify the usefulness of multi-channel MEPs in monitoring ACDF surgery. Keywords: Disc disease, Somatosensory evoked potentials, Intraoperative neurophysiological monitoring, Motor evoked potentials, Anterior cervical discectomy and fusion

  2. Development of multichannel system for nuclear radiation spectrometry based on an embedded control and acquisition device Myrio-1900; Desarrollo de sistema multicanal para espectrometria de radiacion nuclear basado en un dispositivo embebido de control y adquisicion MyRIO-1900

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez D, S.

    2016-07-01

    This work describes the design a multichannel analyzer system 4096 channels (Mca) for gamma radiation spectrometry. The multichannel analyzer has as its main component an embedded company National Instruments model NI (Myrio-1900) module, which is integrated by a step of converting analog to digital signals (A / D) and digital-to-analog (D / A) a programmable gate array, and a processor real time (Rt). Through this module the pulses generated by the detector to be processed and subsequently forming the multichannel analyzer are acquired. In addition, a graphical user interface designed to make more use friendly system from a personal computer (Pc), embedded programming module and the user interface was done with the LabVIEW programming environment. tests with different sources of radiation ({sup 60}Co, {sup 226}Ra, {sup 137}Cs) and semiconductor detectors (Ge) and scintillation (Na) were made. Getting results satisfactory. (Author)

  3. Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials

    International Nuclear Information System (INIS)

    Thiel, C W; Macfarlane, R M; Cone, R L; Sun, Y; Böttger, T; Sinclair, N; Tittel, W

    2014-01-01

    A method is introduced for quantitatively analyzing photon echo decay measurements to characterize excitation-induced decoherence resulting from the phenomenon of instantaneous spectral diffusion. Detailed analysis is presented that allows fundamental material properties to be extracted that predict and describe excitation-induced decoherence for a broad range of measurements, applications and experimental conditions. Motivated by the need for a method that enables systematic studies of ultra-low decoherence systems and direct comparison of properties between optical materials, this approach employs simple techniques and analytical expressions that avoid the need for difficult to measure and often unknown material parameters or numerical simulations. This measurement and analysis approach is demonstrated for the 3 H 6 to 3 H 4 optical transition of three thulium-doped crystals, Tm 3+ :YAG, Tm 3+ :LiNbO 3 and Tm 3+ :YGG, that are currently employed in quantum information and classical signal processing demonstrations where minimizing decoherence is essential to achieve high efficiencies and large signal bandwidths. These new results reveal more than two orders of magnitude variation in sensitivity to excitation-induced decoherence among the materials studied and establish that the Tm 3+ :YGG system offers the longest optical coherence lifetimes and the lowest levels of excitation-induced decoherence yet observed for any known thulium-doped material. (paper)

  4. Multi-channel service concept design and prototyping

    NARCIS (Netherlands)

    Sperling, C.P.; Simons, L.P.A.; Bouwman, W.A.G.A.

    2007-01-01

    Designing e-services which have to function in a multi-channel context has proved to be challenging for organizations. Previous research has shown that structured design methods are useful to structure the design process. In this paper we proceed from an existing method (which identifies

  5. Wavelet compression of multichannel ECG data by enhanced set partitioning in hierarchical trees algorithm.

    Science.gov (United States)

    Sharifahmadian, Ershad

    2006-01-01

    The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.

  6. Multichannel modeling and two-photon coherent transfer paths in NaK

    Science.gov (United States)

    Schulze, T. A.; Temelkov, I. I.; Gempel, M. W.; Hartmann, T.; Knöckel, H.; Ospelkaus, S.; Tiemann, E.

    2013-08-01

    We explore possible pathways for the creation of ultracold polar NaK molecules in their absolute electronic and rovibrational ground state starting from ultracold Feshbach molecules. In particular, we present a multichannel analysis of the electronic ground and K(4p)+Na(3s) excited-state manifold of NaK, analyze the spin character of both the Feshbach molecular state and the electronically excited intermediate states and discuss possible coherent two-photon transfer paths from Feshbach molecules to rovibronic ground-state molecules. The theoretical study is complemented by the demonstration of stimulated Raman adiabatic passage from the X1Σ+(v=0) state to the a3Σ+ manifold on a molecular beam experiment.

  7. Computationally Developed Sham Stimulation Protocol for Multichannel Desynchronizing Stimulation

    Directory of Open Access Journals (Sweden)

    Magteld Zeitler

    2018-05-01

    Full Text Available A characteristic pattern of abnormal brain activity is abnormally strong neuronal synchronization, as found in several brain disorders, such as tinnitus, Parkinson's disease, and epilepsy. As observed in several diseases, different therapeutic interventions may induce a placebo effect that may be strong and hinder reliable clinical evaluations. Hence, to distinguish between specific, neuromodulation-induced effects and unspecific, placebo effects, it is important to mimic the therapeutic procedure as precisely as possibly, thereby providing controls that actually lack specific effects. Coordinated Reset (CR stimulation has been developed to specifically counteract abnormally strong synchronization by desynchronization. CR is a spatio-temporally patterned multichannel stimulation which reduces the extent of coincident neuronal activity and aims at an anti-kindling, i.e., an unlearning of both synaptic connectivity and neuronal synchrony. Apart from acute desynchronizing effects, CR may cause sustained, long-lasting desynchronizing effects, as already demonstrated in pre-clinical and clinical proof of concept studies. In this computational study, we set out to computationally develop a sham stimulation protocol for multichannel desynchronizing stimulation. To this end, we compare acute effects and long-lasting effects of six different spatio-temporally patterned stimulation protocols, including three variants of CR, using a no-stimulation condition as additional control. This is to provide an inventory of different stimulation algorithms with similar fundamental stimulation parameters (e.g., mean stimulation rates but qualitatively different acute and/or long-lasting effects. Stimulation protocols sharing basic parameters, but inducing nevertheless completely different or even no acute effects and/or after-effects, might serve as controls to validate the specific effects of particular desynchronizing protocols such as CR. In particular, based on

  8. HEXEREI: a multi-channel heat conduction convection code for use in transient thermal hydraulic analysis of high-temperature, gas-cooled reactors. Interim report

    International Nuclear Information System (INIS)

    Giles, G.E.; DeVault, R.M.; Turner, W.D.; Becker, B.R.

    1976-05-01

    A description is given of the development and verification of a generalized coupled conduction-convection, multichannel heat transfer computer program to analyze specific safety questions involving high temperature gas-cooled reactors (HTGR). The HEXEREI code was designed to provide steady-state and transient heat transfer analysis of the HTGR active core using a basic hexagonal mesh and multichannel coolant flow. In addition, the core auxiliary cooling systems were included in the code to provide more complete analysis of the reactor system during accidents involving reactor trip and cooling down on the auxiliary systems. Included are brief descriptions of the components of the HEXEREI code and sample HEXEREI analyses compared with analytical solutions and other heat transfer codes

  9. Multichannel CdZnTe Gamma Ray Spectrometer

    International Nuclear Information System (INIS)

    Doty, F.P.; Lingren, C. L.; Apotovsky, B. A.; Brunsch, J.; Butler, J. F.; Collins, T.; Conwell, R.L.; Friesenhahn, S.; Gormley, J.; Pi, B.; Zhao, S.; Augustine, F.L.; Bennet, B. A.; Cross, E.; James, R. B.

    1998-01-01

    A 3 cm 3 multichannel gamma spectrometer for DOE applications is under development by Digirad Corporation. The device is based on a position sensitive detector packaged in a compact multi-chip module (MCM) with integrated readout circuitry. The modular, multichannel design will enable identification and quantitative analysis of radionuclides in extended sources, or sources containing low levels of activity. The MCM approach has the advantages that the modules are designed for imaging applications, and the sensitivity can be arbitrarily increased by increasing the number of pixels, i.e. adding modules to the instrument. For a high sensitivity probe, the outputs for each pixel can be corrected for gain and offset variations, and summed digitally. Single pixel results obtained with discrete low noise readout indicate energy resolution of 3 keV can be approached with currently available CdZnTe. The energy resolution demonstrated to date with MCMs for 511 keV gamma rays is 10 keV

  10. Multichannel simultaneous magnetic induction measurement system (MUSIMITOS)

    International Nuclear Information System (INIS)

    Steffen, Matthias; Leonhardt, Steffen; Heimann, Konrad; Bernstein, Nina

    2008-01-01

    Non-contact heart and lung activity monitoring would be a desirable supplement to conventional monitoring techniques. Based on the potential of non-contact magnetic induction measurements, requirements for an adequate monitoring system were estimated. This formed the basis for the development of the presented extendable multichannel simultaneous magnetic induction measurement system (MUSIMITOS). Special focus was given to the dynamic behaviour and simultaneous multichannel measurements, so that the system allows for up to 14 receiver coils working simultaneously at 6 excitation frequencies. Moreover, a real-time software concept for online signal processing visualization in combination with a fast software demodulation is presented. Finally, first steps towards a clinical application are pointed out and technical performance as well as first in vivo measurements are presented. This paper covers some aspects previously presented in Steffen and Leonhardt (2007 Proc. 13th Int. Conf. on Electrical Bioimpedance and the 8th Conf. on Electrical Impedance Tomography, Graz 2007)

  11. Theoretical Analysis of the Optical Propagation Characteristics in a Fiber-Optic Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Xiaolin Zheng

    2013-06-01

    Full Text Available Surface plasmon resonance (SPR sensor is widely used for its high precision and real-time analysis. Fiber-optic SPR sensor is easy for miniaturization, so it is commonly used in the development of portable detection equipment. It can also be used for remote, real-time, and online detection. In this study, a wavelength modulation fiber-optic SPR sensor is designed, and theoretical analysis of optical propagation in the optical fiber is also done. Compared with existing methods, both the transmission of a skew ray and the influence of the chromatic dispersion are discussed. The resonance wavelength is calculated at two different cases, in which the chromatic dispersion in the fiber core is considered. According to the simulation results, a novel multi-channel fiber-optic SPR sensor is likewise designed to avoid defaults aroused by the complicated computation of the skew ray as well as the chromatic dispersion. Avoiding the impact of skew ray can do much to improve the precision of this kind of sensor.

  12. SU-E-T-10: A Clinical Implementation and the Dosimetric Evidence in High Dose Rate Vaginal Multichannel Applicator Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Syh, J; Syh, J; Patel, B; Zhang, J; Wu, H; Rosen, L [Willis-Knighton Medical Center, Shreveport, LA (United States)

    2015-06-15

    Purpose: The multichannel cylindrical applicator has a distinctive modification of the traditional single channel cylindrical applicator. The novel multichannel applicator has additional peripheral channels that provide more flexibility both in treatment planning process and outcomes. To protect by reducing doses to adjacent organ at risk (OAR) while maintaining target coverage with inverse plan optimization are the goals for such novel Brachytherapy device. Through a series of comparison and analysis of reults in more than forty patients who received HDR Brachytherapy using multichannel vaginal applicator, this procedure has been implemented in our institution. Methods: Multichannel planning was CT image based. The CTV of 5mm vaginal cuff rind with prescribed length was well reconstructed as well as bladder and rectum. At least D95 of CTV coverage is 95% of prescribed dose. Multichannel inverse plan optimization algorithm not only shapes target dose cloud but set dose avoids to OAR’s exclusively. The doses of D2cc, D5cc and D5; volume of V2Gy in OAR’s were selected to compare with single channel results when sole central channel is only possibility. Results: Study demonstrates plan superiorly in OAR’s doe reduction in multi-channel plan. The D2cc of the rectum and bladder were showing a little lower for multichannel vs. single channel. The V2Gy of the rectum was 93.72% vs. 83.79% (p=0.007) for single channel vs. multichannel respectively. Absolute reduced mean dose of D5 by multichannel was 17 cGy (s.d.=6.4) and 44 cGy (s.d.=15.2) in bladder and rectum respectively. Conclusion: The optimization solution in multichannel was to maintain D95 CTV coverage while reducing the dose to OAR’s. Dosimetric advantage in sparing critical organs by using a multichannel applicator in HDR Brachytherapy treatment of the vaginal cuff is so promising and has been implemented clinically.

  13. Recent advances in Multi-Channel Algebraic Scattering

    International Nuclear Information System (INIS)

    Karataglidis, S.; Fraser, P. R.; Amos, K.; Canton, L.; Pisent, G.; Svenne, J. P.; Knijff, D. van der

    2011-01-01

    For coupled-channel descriptions of low-energy nucleon-induced interactions involving nuclei with particle-unstable exited states, it is necessary to include the widths of the target states. How those widths may affect the elastic scattering cross sections is examined within the framework of the Multi-Channel Algebraic Scattering (MCAS) method.

  14. Design And Construction Of The 8K Multi-Channel GAMMA Spectrometer Module (AMPLIFIER+ADC+MCD)

    International Nuclear Information System (INIS)

    Truong Van Dat; Hoang Thi Ngoc Bich; Pham Ngoc Tuan; Dang Lanh; Tuong Thi Thu Huong; Vu Xuan Cach

    2007-01-01

    A multichannel pulse-height analyzer system (MCA) consists of an spectroscopy Amplifier, ADC with 8192 channel performance, a histogramming memory, and a visual display of the histogram implemented on a Personal Computer (PC). The purpose of the analog-to-digital converter (ADC) is to measure the maximum amplitude of an analog pulse, and convert that value into a digital number. This digital output is a proportional representation of the analog amplitude at the ADC input. The digital ADC outputs are stored in a histogram memory, where each bin represents a pulse height interval and the number of events in each bin represents the number of events in that interval. The combination of ADC, histogramming memory and display functions are the minimum to constitute a multichannel analyzer or MCA based on PC. It is designed and fabricated on a single NIM module. The communication between MCA module and PC implements via USB bus. In our application, performance of the USB standard version 1.1 is good enough for purposes. The application program was designed in LabWIEW 8.0 software. This application is the main display and acquisition software for the MCA module. It is compatible with Windows 98SE/XP. The libraries USB driver, with their supporting files, are in the FTD2XX driver DLL Package and D2XX function 7.0 for LabWIEW supporting. These libraries are used to write custom code to control the MCA module. (author)

  15. A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording.

    Science.gov (United States)

    Gagnon-Turcotte, Gabriel; LeChasseur, Yoan; Bories, Cyril; Messaddeq, Younes; De Koninck, Yves; Gosselin, Benoit

    2017-02-01

    This paper presents a wireless headstage with real-time spike detection and data compression for combined optogenetics and multichannel electrophysiological recording. The proposed headstage, which is intended to perform both optical stimulation and electrophysiological recordings simultaneously in freely moving transgenic rodents, is entirely built with commercial off-the-shelf components, and includes 32 recording channels and 32 optical stimulation channels. It can detect, compress and transmit full action potential waveforms over 32 channels in parallel and in real time using an embedded digital signal processor based on a low-power field programmable gate array and a Microblaze microprocessor softcore. Such a processor implements a complete digital spike detector featuring a novel adaptive threshold based on a Sigma-delta control loop, and a wavelet data compression module using a new dynamic coefficient re-quantization technique achieving large compression ratios with higher signal quality. Simultaneous optical stimulation and recording have been performed in-vivo using an optrode featuring 8 microelectrodes and 1 implantable fiber coupled to a 465-nm LED, in the somatosensory cortex and the Hippocampus of a transgenic mouse expressing ChannelRhodospin (Thy1::ChR2-YFP line 4) under anesthetized conditions. Experimental results show that the proposed headstage can trigger neuron activity while collecting, detecting and compressing single cell microvolt amplitude activity from multiple channels in parallel while achieving overall compression ratios above 500. This is the first reported high-channel count wireless optogenetic device providing simultaneous optical stimulation and recording. Measured characteristics show that the proposed headstage can achieve up to 100% of true positive detection rate for signal-to-noise ratio (SNR) down to 15 dB, while achieving up to 97.28% at SNR as low as 5 dB. The implemented prototype features a lifespan of up to 105

  16. Software for a multichannel acquisition card

    International Nuclear Information System (INIS)

    Arista Romeu, E. J.; Diaz Garcia, A.; Vela Morales, O.

    2013-01-01

    A software developed in C++ for a multichannel acquisition card is presented. The use of an acquisition add-on card with multiple channels is a suitable solution to substitute several instruments, allowing simultaneous acquisition with each channel. In this work, the limitations of a concrete hardware are discussed and also several different approaches have been suggested. Some preliminary results obtained in laboratory conditions are shown. (Author)

  17. A multi-channel waveform digitizer system

    International Nuclear Information System (INIS)

    Bieser, F.; Muller, W.F.J.

    1990-01-01

    The authors report on the design and performance of a multichannel waveform digitizer system for use with the Multiple Sample Ionization Chamber (MUSIC) Detector at the Bevalac. 128 channels of 20 MHz Flash ADC plus 256 word deep memory are housed in a single crate. Digital thresholds and hit pattern logic facilitate zero suppression during readout which is performed over a standard VME bus

  18. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation

    Science.gov (United States)

    Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li

    2013-01-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378

  19. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation.

    Science.gov (United States)

    Paulk, Angelique C; Zhou, Yanqiong; Stratton, Peter; Liu, Li; van Swinderen, Bruno

    2013-10-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel "whole brain" readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior.

  20. Evidence of echoic memory with a multichannel cochlear prosthesis.

    Science.gov (United States)

    Jerger, S; Watkins, M J

    1988-10-01

    Short-term memory was examined in a subject with a multichannel cochlear prosthesis. Serial recall for lists of digits revealed what are widely regarded as the principal hallmarks of echoic memory, namely the recency effect and the suffix effect. Thus, probability of recall increased for the last one or two digits, except when a nominally irrelevant but spoken item was appended to the to-be-remembered list. It appears, therefore, that a multichannel cochlear implant can give rise to not only the perception of, but also an echoic memory for, speech. As with normal subjects, the suffix effect did not occur with a nonspeech suffix, implying that the echoic memory from the prosthesis shows normal sensitivity to the distinction between speech and nonspeech.

  1. Multi-channel grouping techniques for conducting reactor safety studies

    International Nuclear Information System (INIS)

    Waltar, A.E.; Wilburn, N.P.

    1975-01-01

    In conducting safety studies for postulated unprotected accidents in an LMFBR system, it is common practice to employ multi-channel coupled neutronics, thermal hydraulics computer programs such as SAS3A or MELT-III. The multichannel feature of such code systems is important if the natural fuel failure incoherencies and the resulting sodium void/fuel motion reactivity feedbacks--which have strong spatial variations--are to be properly modeled. Because of the large amounts of computer time associated with many channel runs, however, there is a strong incentive to conduct parametric studies with as few channels as possible. The paper presented is focused on methods successfully employed to accomplish this end for a study of the hypothetical unprotected transient overpower accident conducted for the FFTF

  2. Multichannel interval timer

    International Nuclear Information System (INIS)

    Turko, B.T.

    1983-10-01

    A CAMAC based modular multichannel interval timer is described. The timer comprises twelve high resolution time digitizers with a common start enabling twelve independent stop inputs. Ten time ranges from 2.5 μs to 1.3 μs can be preset. Time can be read out in twelve 24-bit words either via CAMAC Crate Controller or an external FIFO register. LSB time calibration is 78.125 ps. An additional word reads out the operational status of twelve stop channels. The system consists of two modules. The analog module contains a reference clock and 13 analog time stretchers. The digital module contains counters, logic and interface circuits. The timer has an excellent differential linearity, thermal stability and crosstalk free performance

  3. EDMC: An enhanced distributed multi-channel anti-collision algorithm for RFID reader system

    Science.gov (United States)

    Zhang, YuJing; Cui, Yinghua

    2017-05-01

    In this paper, we proposes an enhanced distributed multi-channel reader anti-collision algorithm for RFID environments which is based on the distributed multi-channel reader anti-collision algorithm for RFID environments (called DiMCA). We proposes a monitor method to decide whether reader receive the latest control news after it selected the data channel. The simulation result shows that it improves interrogation delay.

  4. Enhancement of magneto-optical Faraday effects and extraordinary optical transmission in a tri-layer structure with rectangular annular arrays.

    Science.gov (United States)

    Lei, Chengxin; Chen, Leyi; Tang, Zhixiong; Li, Daoyong; Cheng, Zhenzhi; Tang, Shaolong; Du, Youwei

    2016-02-15

    The properties of optics and magneto-optical Faraday effects in a metal-dielectric tri-layer structure with subwavelength rectangular annular arrays are investigated. It is noteworthy that we obtained the strongly enhanced Faraday rotation of the desired sign along with high transmittance by optimizing the parameters of the nanostructure in the visible spectral ranges. In this system, we obtained two extraordinary optical transmission (EOT) resonant peaks with enhanced Faraday rotations, whose signs are opposite, which may provide the possibility of designing multi-channel magneto-optical devices. Study results show that the maximum of the figure of merit (FOM) of the structure can be obtained between two EOT resonant peaks accompanied by an enhanced Faraday rotation. The positions of the maximum value of the FOM and resonant peaks of transmission along with a large Faraday rotation can be tailored by simply adjusting the geometric parameters of our models. These research findings are of great importance for future applications of magneto-optical devices.

  5. Front-end electronics for multichannel semiconductor detector systems

    CERN Document Server

    Grybos, P

    2010-01-01

    Front-end electronics for multichannel semiconductor detektor systems Volume 08, EuCARD Editorial Series on Accelerator Science and Technology The monograph is devoted to many different aspects related to front-end electronics for semiconductor detector systems, namely: − designing and testing silicon position sensitive detectors for HEP experiments and X-ray imaging applications, − designing and testing of multichannel readout electronics for semiconductor detectors used in X-ray imaging applications, especially for noise minimization, fast signal processing, crosstalk reduction and good matching performance, − optimization of semiconductor detection systems in respect to the effects of radiation damage. The monograph is the result mainly of the author's experience in the above-mentioned areas and it is an attempt of a comprehensive presentation of issues related to the position sensitive detection system working in a single photon counting mode and intended to X-ray imaging applications. The structure...

  6. Closed-loop, multichannel experimentation using the open-source NeuroRighter electrophysiology platform

    Directory of Open Access Journals (Sweden)

    Jonathan Paul Newman

    2013-01-01

    Full Text Available Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand alone application, its plugin API, and an extensive set of case studies that highlight the system's abilities for conducting closed-loop, multichannel interfacing experiments.

  7. RAC-Multi: Reader Anti-Collision Algorithm for Multichannel Mobile RFID Networks

    Directory of Open Access Journals (Sweden)

    Kwangcheol Shin

    2009-12-01

    Full Text Available At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks.

  8. Multichannel conformal blocks for scattering amplitudes

    Science.gov (United States)

    Belitsky, A. V.

    2018-05-01

    By performing resummation of small fermion-antifermion pairs within the pentagon form factor program to scattering amplitudes in planar N = 4 superYang-Mills theory, we construct multichannel conformal blocks within the flux-tube picture for N-sided NMHV polygons. This procedure is equivalent to summation of descendants of conformal primaries in the OPE framework. The resulting conformal partial waves are determined by multivariable hypergeometric series of Lauricella-Saran type.

  9. Mobile micro-colorimeter and micro-spectrometer sensor modules as enablers for the replacement of subjective inspections by objective measurements for optically clear colored liquids in-field

    Science.gov (United States)

    Dittrich, Paul-Gerald; Grunert, Fred; Ehehalt, Jörg; Hofmann, Dietrich

    2015-03-01

    Aim of the paper is to show that the colorimetric characterization of optically clear colored liquids can be performed with different measurement methods and their application specific multichannel spectral sensors. The possible measurement methods are differentiated by the applied types of multichannel spectral sensors and therefore by their spectral resolution, measurement speed, measurement accuracy and measurement costs. The paper describes how different types of multichannel spectral sensors are calibrated with different types of calibration methods and how the measurement values can be used for further colorimetric calculations. The different measurement methods and the different application specific calibration methods will be explained methodically and theoretically. The paper proofs that and how different multichannel spectral sensor modules with different calibration methods can be applied with smartpads for the calculation of measurement results both in laboratory and in field. A given practical example is the application of different multichannel spectral sensors for the colorimetric characterization of petroleum oils and fuels and their colorimetric characterization by the Saybolt color scale.

  10. Note: Design and investigation of a multichannel plasma-jet triggered gas switch.

    Science.gov (United States)

    Tie, Weihao; Liu, Xuandong; Zhang, Qiaogen; Liu, Shanhong

    2014-07-01

    We described the fabrication and testing of a multichannel plasma-jet triggered gas switch (MPJTGS). A novel six-channel annular micro-plasma-gun was embedded in the trigger electrode to generate multichannel plasma jets as a nanosecond trigger pulse arrived. The gas breakdown in multiple sites of the spark gap was induced and fixed around jet orifices by the plasma jets. We tested the multichannel discharge characteristics of the MPJTGS in two working modes with charge voltage of 50 kV, trigger voltage of +40 kV (25 ns rise time), and trigger energy of 240 J, 32 J, and 2 J, respectively, at different working coefficients. Results show that the average number of discharge channels increased as the trigger energy increased, and decreased as the working coefficient decreased. At a working coefficient of 87.1% and trigger energy of 240 J, the average number of discharge channels in Mode II could reach 4.1.

  11. Software filtering method to suppress spike pulse interference in multi-channel scaler

    International Nuclear Information System (INIS)

    Huang Shun; Zhao Xiuliang; Li Zhiqiang; Zhao Yanhui

    2008-01-01

    In the test on anti-jamming function of a multi-channel scaler, we found that the spike pulse interference on the second level counter caused by the motor start-stop operations brings a major count error. There are resolvable characteristics between effective signal and spike pulse interference, and multi-channel hardware filtering circuit is too huge and can't filter thoroughly, therefore we designed a software filtering method. In this method based on C8051F020 MCU, we dynamically store sampling values of one channel in only a one-byte variable and distinguish the rise-trail edge of a signal and spike pulse interference because of value changes of the variable. Test showed that the filtering software method can solve the error counting problem of the multi-channel scaler caused by the motor start-stop operations. The flow chart and source codes of the method were detailed in this paper. (authors)

  12. Non-local effect in Brillouin optical time-domain analyzer based on Raman amplification

    International Nuclear Information System (INIS)

    Jia Xinhong; Rao Yunjiang; Wang Zinan; Zhang Weili; Ran Zengling; Deng Kun; Yang Zixin

    2012-01-01

    Compared with conventional Brillouin optical time-domain analyzer (BOTDA), the BOTDA based on Raman amplification allows longer sensing range, higher signal-to-noise ratio and higher measurement accuracy. However, the non-local effect induced by pump depletion significantly restricts the probe optical power injected to sensing fiber, thereby limiting the further extension for sensing distance. In this paper, the coupled equations including the interaction of probe light, Brillouin and Raman pumps are applied to the study on the non-local characteristics of BOTDA based on Raman amplification. The results show that, the system error induced by non-local effect worsens with increased powers of probe wave and Raman pump. The frequency-division-multiplexing (cascading the fibers with various Brillouin frequency shifts) and time-division-multiplexing (modulating both of the Brillouin pump and probe lights) technologies are efficient approaches to suppress the non-local effect, through shortening the effective interaction range between Brillouin pump and probe lights. (authors)

  13. Multi-sample immunoassay inside optical fiber capillary enabled by evanescent wave detection

    Directory of Open Access Journals (Sweden)

    Chun-Wei Wang

    2016-03-01

    Full Text Available A novel evanescent wave-based (EW microfluidic capillary fiber-optic biosensor (MCFOB has been developed using capillaries as a transducer embedded in a multichannel device to enhance the collection efficiency of the fluorescence signal. The capillary serves dual roles as a waveguide and a container, enabling more straightforward, consistent, and compact biosensor packaging compared to conventional optical fiber biosensors and microfluidic systems. In order to detect multiple samples in one device, the biosensor incorporates a polydimethysiloxane (PDMS multi-channel device, which also serves as cladding for the biosensor. In addition, this biosensor only consumes 10 μl of a sample and does not require hydrofluoric acid etching in the fabrication process. The orientation for signal collection is optimized by comparing the lateral and normal signal directions for detected glyceraldehyde 3-phosphate dehydrogenase (GAPDH. C-reactive protein (CRP is used to validate the MCFOB, and the limit of detection (LOD for CRP in the MCFOB is 1.94 ng/ml (74 pM. Moreover, the real-time measurement is demonstrated to verify that the evanescent wave is the only exciting light source in the MCFOB, which gives the potential for real-time measurement applications. Keywords: C-reactive protein, Capillary, Fiber-optic, Microfluidic, Evanescent wave, Immunoassay

  14. Multichannel perimetric alterations in systemic lupus erythematosus treated with hydroxychloroquine.

    Science.gov (United States)

    Piñero, David P; Monllor, Begoña; Camps, Vicente J; de Fez, Dolores

    Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disease of unknown etiology with many clinical manifestations. We report the first case of SLE in which visual alterations were evaluated with multichannel perimetry. Some achromatic and color vision alterations may be present in SLE, especially when treated with hydroxychloroquine. The sensitivity losses detected in the chromatic channels in the central zone of the visual field were consistent with the results of the FM 100 Hue color test. Likewise, the multichannel perimetry detected sensitivity losses in the parafoveal area for both chromatic channels, especially for the blue-yellow. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  15. Efficient Numerical Solution of Coupled Radial Differential Equations in Multichannel Scattering Problems

    International Nuclear Information System (INIS)

    Houfek, Karel

    2008-01-01

    Numerical solution of coupled radial differential equations which are encountered in multichannel scattering problems is presented. Numerical approach is based on the combination of the exterior complex scaling method and the finite-elements method with the discrete variable representation. This method can be used not only to solve multichannel scattering problem but also to find bound states and resonance positions and widths directly by diagonalization of the corresponding complex scaled Hamiltonian. Efficiency and accuracy of this method is demonstrated on an analytically solvable two-channel problem.

  16. The design and implementation of a PC based multi-channel scaler system

    International Nuclear Information System (INIS)

    Wang Qiang; Chinese Academy of Sciences, Beijing; Jin Dapeng; Liu Zhen'an; Zhao Dixin

    2007-01-01

    A multi-channel scaler system is designed for the system check and status monitoring of the BESIII trigger system. It is composed of a PC, two PCI interface multi-channel scaler cards, the corresponding drivers and user programs. Total 64 signals can be scaled and monitored in real time. The scaled data are recorded locally and some of them are distributed to the online system. In this paper, the hardware structure, software development and long time running stability of the system are introduced. (authors)

  17. Disorder-induced topological transitions in multichannel Majorana wires

    NARCIS (Netherlands)

    Pekerten, B.; Teker, A.; Bozat, Ö.; Wimmer, M.T.; Adagideli, I

    2017-01-01

    In this work, we investigate the effect of disorder on the topological properties of multichannel superconductor nanowires. While the standard expectation is that the spectral gap is closed and opened at transitions that change the topological index of the wire, we show that the closing and

  18. The Art of Multi-channel Hypermedia Application Development

    NARCIS (Netherlands)

    Synodinos, Dionysios G.; Avgeriou, Paris

    2003-01-01

    The plethora of networked devices and platforms that continuously come to light, as well as the emergence of alternative ways to access the internet, have increased the demand for multi-channel access to hypermedia applications. Researchers and practitioners nowadays not only have to deal with the

  19. A new uranium automatic analyzer

    International Nuclear Information System (INIS)

    Xia Buyun; Zhu Yaokun; Wang Bin; Cong Peiyuan; Zhang Lan

    1993-01-01

    A new uranium automatic analyzer based on the flow injection analysis (FIA) principle has been developed. It consists of a multichannel peristaltic pump, an injection valve, a photometric detector, a single-chip microprocessor system and electronic circuit. The new designed multifunctional auto-injection valve can automatically change the injection volume of the sample and the channels so that the determination ranges and items can easily be changed. It also can make the instrument vary the FIA operation modes that it has functions of a universal instrument. A chromatographic column with extractant-containing resin was installed in the manifold of the analyzer for the concentration and separation of trace uranium. The 2-(5-bromo-2-pyridylazo)-5-diethyl-aminophenol (Br-PADAP) was used as colour reagent. Uranium was determined in the aqueous solution by adding cetyl-pyridium bromide (CPB). The uranium in the solution in the range 0.02-500 mg · L -1 can be directly determined without any pretreatment. A sample throughput rate of 30-90 h -1 and reproducibility of 1-2% were obtained. The analyzer has been satisfactorily applied to the laboratory and the plant

  20. Multi-channel near infrared spectroradiometer

    International Nuclear Information System (INIS)

    Joseph, G.B.; Biddles, B.J.; D'silva, R.A.; Picot, A.J.; Ackerman, M.J.

    1988-01-01

    A multichannel spectroradiometer has been developed by Sira Ltd. for the study of rapidly varying events in the near infrared. The instrument is being used in the examination of gun flashes, rocket motor exhaust efflux analysis and ordnance or pyrotechnic flash studies. The spectral range of about 1.4 to 5.2 microns is covered in two bands with the first order dispersion from a pair of ruled blazed gratings being imaged onto a pair of detector arrays. Data may be logged at a rate of 1000 complete spectra per second

  1. The investigation of multi-channel splitters and big-bend waveguides based on 2D sunflower-typed photonic crystals

    Science.gov (United States)

    Liu, Wei; Sun, XiaoHong; Fan, QingBin; Wang, Shuai; Qi, YongLe

    2016-12-01

    Different kinds of multi-channel splitters and big-bend waveguides have been designed and investigated by using sunflower-typed photonic crystals. By comparing the transmission spectra of two kinds of 4-channels beam splitters, we find that "C" type splitter has a relative uniform splitting ratio for different channels in a certain wavelength range. Furthermore three types of waveguides with different bending degrees have been investigated. Except for a little loss in the short wavelength with the increase of the bending degrees, they have almost the same transmission spectra structures. The result can be extended to big-bend waveguides with arbitrary bending degrees. This research is valuable for developing new-typed integrated optical communication devices.

  2. Multichannel signal enhancement using a remote wireless microphone

    NARCIS (Netherlands)

    Bloemendal, Brian; Van De Laar, Jakob; Sommen, Piet

    2012-01-01

    A novel approach to multichannel signal enhancement is presented that exploits data from a remote wireless microphone (RWM). This RWM is placed near an interfering source and transmits only autocorrelation data of its observations to a host, i.e., not the entire signal. The host has access to the

  3. Classification of Multichannel ECG Signals Using a Cross-Distance Analysis

    National Research Council Canada - National Science Library

    Shahram, Morteza

    2001-01-01

    This paper presents a multi-stage algorithm for multi-channel ECG beat classification into normal and abnormal categories using a sequential beat clustering and a cross- distance analysis algorithm...

  4. Multi-channel electronically scanned cryogenic pressure sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Kruse, Nancy M. H. (Inventor)

    1995-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multielement array. These dies are bonded at specific sites on a glass, prepatterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  5. Development of Multi-Channel Photoelectric Photometer Using Optical Fiber

    Directory of Open Access Journals (Sweden)

    Woo-Baik Lee

    1993-06-01

    Full Text Available We have developed a four-channel photoelectric photometer for the 61cm telescope of Sobaeksan Astronomy Observatory using optical fiber. We observed a standard star with each channel to check the efficiency difference between the channels, and found no differences. To calibrate the observing accuracy and efficiency, we have observed a short period WUMa type eclipsing binary star, BV Dra. Test observations show that the photometer is very stable and the accuracy of the data is also increased. The observing efficiency is very increased compared with that of single channel photometer; at least five times faster than older one in the case of one filter observation.

  6. Simulation study on vertically distributed multi-channel tangential interferometry for KSTAR

    International Nuclear Information System (INIS)

    Nam, Y U; Juhn, J W

    2012-01-01

    Interferometry is powerful and reliable diagnostics which measures line-integrated electron density. Since this technique only measures an averaged value over whole probing line, a multi-channel scheme is used for an analysis for spatial distribution and variation of electron density. Typical setups of the multi-channel measurement are schemes of radially distributed vertical lines, vertically distributed horizontal lines and horizontally distributed tangential lines. In Korea Superconducting Tokamak Advanced Research, a vertically distributed multi-channel tangential interferometry is planned instead of above typical schemes due to limitation of complex in-vessel geometry and narrow diagnostics port through cryostat. Total 5-channels will be vertically placed as symmetric with the mid-plain. One of the characteristic features of the vertically distributed channels is that each channel is viewing different poloidal angle, while the horizontally distributed channels are viewing different toroidal angle. This scheme also can be used on an investigation of the up-down asymmetry and the vertical oscillation of plasma. Simulation has been performed and the result will be discussed to verify the possibility and the estimated effectiveness of the scheme on this paper.

  7. Compact multichannel MEMS based spectrometer for FBG sensing

    DEFF Research Database (Denmark)

    Ganziy, Denis; Rose, Bjarke; Bang, Ole

    2017-01-01

    We propose a novel type of compact multichannel MEMS based spectrometer, where we replace the linear detector with a Digital Micromirror Device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used in the 1550 nm range, which leads to cost reduction...

  8. A lossless multichannel bio-signal compression based on low-complexity joint coding scheme for portable medical devices.

    Science.gov (United States)

    Kim, Dong-Sun; Kwon, Jin-San

    2014-09-18

    Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor.

  9. Multiple scattering theory for non-local and multichannel potentials

    Czech Academy of Sciences Publication Activity Database

    Natoli, C.R.; Krüger, P.; Hatada, K.; Hayakawa, K.; Sébilleau, D.; Šipr, Ondřej

    2012-01-01

    Roč. 24, č. 36 (2012), s. 1-20 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : multichannel scattering * correlation s * density matrix Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.355, year: 2012

  10. Behind the web store: the organisational and spatial evolution of multichannel retailing in Toronto

    OpenAIRE

    Andrew Currah

    2002-01-01

    In this paper I address two issues of general relevance to contemporary debates in economic geography: first, the organisational and spatial implications of new information technologies for the economic landscape; and, second, the enduring role of place to digital capitalism. Specifically, I examine the organisational evolution of multichannel retailing in Toronto from a geographical perspective. Bricks-and-mortar retailers are increasingly pursuing a multichannel strategy by operating an Int...

  11. Retail business model transformation in multichannel environment

    OpenAIRE

    Chapagain, B. (Bimala)

    2015-01-01

    Abstract With the advent of internet and e-commerce, the way of carrying out business and transactions has changed to a great extent. Consumers are continuously changing the way they do shopping and this has forced retail business to transform their traditional brick and mortar into adopting multi-channel business models. Retailing is one of the most dynamic and competitive areas of business organization. Effective marketin...

  12. Implantable optical-electrode device for stimulation of spinal motoneurons

    International Nuclear Information System (INIS)

    Matveev, M V; Erofeev, A I; Zakharova, O A; Vlasova, O L; Pyatyshev, E N; Kazakin, A N

    2016-01-01

    Recent years, optogenetic method of scientific research has proved its effectiveness in the nerve cell stimulation tasks. In our article we demonstrate an implanted device for the spinal optogenetic motoneurons activation. This work is carried out in the Laboratory of Molecular Neurodegeneration of the Peter the Great St. Petersburg Polytechnic University, together with Nano and Microsystem Technology Laboratory. The work of the developed device is based on the principle of combining fiber optic light stimulation of genetically modified cells with the microelectrode multichannel recording of neurons biopotentials. The paper presents a part of the electrode implant manufacturing technique, combined with the optical waveguide of ThorLabs (USA). (paper)

  13. Ion optics of a time-of-flight mass spectrometer with electrostatic sector analyzers

    International Nuclear Information System (INIS)

    Sakurai, T.; Ito, H.; Matsuo, T.

    1995-01-01

    The ion optics for a high resolution time-of-flight mass spectrometer with electrostatic sector analyzers have been investigated. The multiple focusing (triple isochronous focusing and triple spacial focusing) conditions can be achieved by using a symmetrical arrangement of the sectors in a mass spectrometer. Both high mass resolution and high ion transmission can be accomplished simultaneously. The principles of MS/MS and MS/MS/MS analyses using a TOF mass spectrometer with electrostatic sector analyzers have been proposed. Product ion spectra can be obtained by measuring the total flight times and the kinetic energy of the products without any additional separation processes, any coincidence techniques or any special timing circuits. In an experiment, MS/MS and MS/MS/MS mass spectra have been obtained. The first generation product ions have been produced by a metastable decay, and the second generation products have been produced by a sequential decay. (orig.)

  14. E-Fulfillment and Multi-Channel Distribution – A Review

    NARCIS (Netherlands)

    N.A.H. Agatz (Niels); M. Fleischmann (Moritz); J.A.E.E. van Nunen (Jo)

    2006-01-01

    textabstractThis review addresses the specific supply chain management issues of Internet fulfillment in a multi-channel environment. It provides a systematic overview of managerial planning tasks and reviews corresponding quantitative models. In this way, we aim to enhance the understanding of

  15. On iteration-separable method on the multichannel scattering theory

    International Nuclear Information System (INIS)

    Zubarev, A.L.; Ivlieva, I.N.; Podkopaev, A.P.

    1975-01-01

    The iteration-separable method for solving the equations of the Lippman-Schwinger type is suggested. Exponential convergency of the method of proven. Numerical convergency is clarified on the e + H scattering. Application of the method to the theory of multichannel scattering is formulated

  16. Magnetic systems for wide-aperture neutron polarizers and analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Gilev, A.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Bazarov, B.A.; Bulkin, A.P.; Schebetov, A.F. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Syromyatnikov, V.G. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation); Physical Department, St. Petersburg State University, Ulyanovskaya, 1, Petrodvorets, St. Petersburg 198504 (Russian Federation); Tarnavich, V.V.; Ulyanov, V.A. [Neutron Research Department, Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Roscha, Gatchina, St. Petersburg 188300 (Russian Federation)

    2016-10-11

    Requirements on the field uniformity in neutron polarizers are analyzed in view of the fact that neutron polarizing coatings have been improved during the past decade. The design of magnetic systems that meet new requirements is optimized by numerical simulations. Magnetic systems for wide-aperture multichannel polarizers and analyzers are represented, including (a) the polarizer to be built at channel 4-4′ of the reactor PIK (Gatchina, Russia) for high-flux experiments with a 100×150 mm{sup 2} beam of polarized cold neutrons; (b) the fan analyzer covering a 150×100 mm{sup 2} window of the detector at the Magnetism Reflectometer (SNS, ORNL, USA); (c) the polarizer and (d) the fan analyzer covering a 220×110 mm{sup 2} window of the detector at the reflectometer NERO, which is transferred to PNPI (Russia) from HZG (Germany). Deviations of the field from the vertical did not exceed 2°. The polarizing efficiency of the analyzer at the Magnetism Reflectometer reached 99%, a record level for wide-aperture supermirror analyzers.

  17. A multi-channel coronal spectrophotometer.

    Science.gov (United States)

    Landman, D. A.; Orrall, F. Q.; Zane, R.

    1973-01-01

    We describe a new multi-channel coronal spectrophotometer system, presently being installed at Mees Solar Observatory, Mount Haleakala, Maui. The apparatus is designed to record and interpret intensities from many sections of the visible and near-visible spectral regions simultaneously, with relatively high spatial and temporal resolution. The detector, a thermoelectrically cooled silicon vidicon camera tube, has its central target area divided into a rectangular array of about 100,000 pixels and is read out in a slow-scan (about 2 sec/frame) mode. Instrument functioning is entirely under PDP 11/45 computer control, and interfacing is via the CAMAC system.

  18. The design of portable X-ray fluorescence analyzer based on PDA

    International Nuclear Information System (INIS)

    Zhou Jianbin; Ma Yingjie; Wang Lei; Tong Yunfu

    2010-01-01

    It designs a portable x-ray fluorescence analyzer based on PDA. The high performance Single Chip Microcomputer-C8051F060 works as the core controller on the measure-control board. The communication between PDA and measure-control board is based on Bluetooth technology. Benefiting from the rich resource on the chip of C8051F060, it's very easy to design the MCA (Multi-Channel Analyzer), detection-control circuit, peak-detection circuit compactly. WinCE OS runs on the PDA, and the analysis software is designed on the Visual Studio2005 in C++. The power of the system is supplied by the lithium battery. (authors)

  19. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Buckley, W.M.

    1989-01-01

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications

  20. Fiber-optic dipping liquid analyzer: theoretical and experimental study of light transmission

    International Nuclear Information System (INIS)

    Zhou Ai; Liu Zhihai; Yuan Libo

    2009-01-01

    A fiber-optic dipping liquid analyzer (FDLA) is developed for measuring liquid properties such as concentration, refractive index, surface tension, and viscosity. An important feature of the FDLA is that a liquid drop is introduced on the end face of a fiber probe, and the drop can be regarded as a planar-convex lens. The light transmitting path and receiving power are affected by the refractive index of the liquid drop. We present a theoretical and experimental analysis of the light transmission. A mathematical model of receiving power is established based on paraxial refraction imaging and fiber reflective intensity modulation methods. Sucrose-water solutions were tested with the FDLA. The experimental results agree well with the theoretical analysis.

  1. Exploration of operator method digital optical computers for application to NASA

    Science.gov (United States)

    1990-01-01

    Digital optical computer design has been focused primarily towards parallel (single point-to-point interconnection) implementation. This architecture is compared to currently developing VHSIC systems. Using demonstrated multichannel acousto-optic devices, a figure of merit can be formulated. The focus is on a figure of merit termed Gate Interconnect Bandwidth Product (GIBP). Conventional parallel optical digital computer architecture demonstrates only marginal competitiveness at best when compared to projected semiconductor implements. Global, analog global, quasi-digital, and full digital interconnects are briefly examined as alternative to parallel digital computer architecture. Digital optical computing is becoming a very tough competitor to semiconductor technology since it can support a very high degree of three dimensional interconnect density and high degrees of Fan-In without capacitive loading effects at very low power consumption levels.

  2. A multichannel frequency response analyser for impedance spectroscopy on power sources

    Directory of Open Access Journals (Sweden)

    DANIEL J. L. BRETT

    2013-06-01

    Full Text Available A low-cost multi-channel frequency response analyser (FRA has been developed based on a DAQ (data acquisition/LabVIEW interface. The system has been tested for electric and electrochemical impedance measurements. This novel association of hardware and software demonstrated performance comparable to a commercial potentiostat / FRA for passive electric circuits. The software has multichannel capabilities with minimal phase shift for 5 channels when operated below 3 kHz. When applied in active (galvanostatic mode in conjunction with a commercial electronic load (by discharging a lead acid battery at 1.5 A the performance was fit for purpose, providing electrochemical information to characterize the performance of the power source.

  3. Novel concept of multi-channel fiber optic surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Špačková, Barbora; Piliarik, Marek; Kvasnička, Pavel; Rajarajan, M.; Homola, Jiří

    2009-01-01

    Roč. 139, č. 1 (2009), s. 199-203 ISSN 0925-4005 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : . Surface plasmon resonance * Fiber optic * Bragg grating * Biosensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.083, year: 2009

  4. A fully algebraic solution for multichannel scattering of neutrons from nuclei

    International Nuclear Information System (INIS)

    Amos, K.

    2001-01-01

    In this report I give the prescription by which an algebraic solution can be found for multichannel scattering of neutrons from nuclei. The theory, developed by the Padova group, is built upon the work of Rawitscher and Delic. The approach is predicated upon finite rank representations of realistic interaction potentials and the properties of scattering matrices for separable Schrodinger interactions. The Padova approach starts with a solvable auxiliary Sturmian function (Weinberg state) problem from which a first generation set of Sturmians are defined. That basis set is formed by choosing a solvable problem at a fixed negative energy, and thereby those Sturmians can be specified in closed analytic form. Second generation Sturmians built upon the interaction potential matrices for a multichannel scattering problem of interest then can be found as linear combinations of the first generation set. The expansion coefficients result from a matrix diagonalization process. The scheme enables an expansion (usually truncated to finite rank for convenience) of the interaction potential in terms of those second generation Sturmians and in the form of a sum of separable interactions. The analytic properties of the scattering matrix from a separable Schroedinger potential gives the means by which a full algebraic solution of the multichannel scattering problem can be realized. (author)

  5. In vivo endoscopic multi-beam optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Standish, Beau A; Mariampillai, Adrian; Munce, Nigel R; Leung, Michael K K; Vitkin, I Alex [Deptartment of Medical Biophysics, University of Toronto, Toronto (Canada); Lee, Kenneth K C; Yang, Victor X D [Ontario Cancer Institute/University Health Network, Toronto (Canada)], E-mail: standish@ee.ryerson.ca

    2010-02-07

    A multichannel optical coherence tomography (multi-beam OCT) system and an in vivo endoscopic imaging probe were developed using a swept-source OCT system. The distal optics were micro-machined to produce a high numerical aperture, multi-focus fibre optic array. This combination resulted in a transverse design resolution of <10 {mu}m full width half maximum (FWHM) throughout the entire imaging range, while also increasing the signal intensity within the focus of the individual channels. The system was used in a pre-clinical rabbit study to acquire in vivo structural images of the colon and ex vivo images of the oesophagus and trachea. A good correlation between the structural multi-beam OCT images and H and E histology was achieved, demonstrating the feasibility of this high-resolution system and its potential for in vivo human endoscopic imaging.

  6. In vivo endoscopic multi-beam optical coherence tomography

    International Nuclear Information System (INIS)

    Standish, Beau A; Mariampillai, Adrian; Munce, Nigel R; Leung, Michael K K; Vitkin, I Alex; Lee, Kenneth K C; Yang, Victor X D

    2010-01-01

    A multichannel optical coherence tomography (multi-beam OCT) system and an in vivo endoscopic imaging probe were developed using a swept-source OCT system. The distal optics were micro-machined to produce a high numerical aperture, multi-focus fibre optic array. This combination resulted in a transverse design resolution of <10 μm full width half maximum (FWHM) throughout the entire imaging range, while also increasing the signal intensity within the focus of the individual channels. The system was used in a pre-clinical rabbit study to acquire in vivo structural images of the colon and ex vivo images of the oesophagus and trachea. A good correlation between the structural multi-beam OCT images and H and E histology was achieved, demonstrating the feasibility of this high-resolution system and its potential for in vivo human endoscopic imaging.

  7. Design and Construction of an Autonomous Low-Cost Pulse Height Analyzer and a Single Channel Analyzer for Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Velasquez, A.A.; Trujillo, J.M.; Morales, A.L.; Tobon, J.E.; Gancedo, J.R.; Reyes, L.

    2005-01-01

    A multichannel analyzer (MCA) and a single channel-analyzer (SCA) for Moessbauer spectrometry application have been designed and built. Both systems include low-cost digital and analog components. A microcontroller manages, either in PHA or MCS mode, the data acquisition, data storage and setting of the pulse discriminator limits. The user can monitor the system from an external PC through the serial port with the RS232 communication protocol. A graphic interface made with the LabVIEW software allows the user to adjust digitally the lower and upper limits of the pulse discriminator, and to visualize as well as save the PHA spectra in a file. The system has been tested using a 57Co radioactive source and several iron compounds, yielding satisfactory results. The low cost of its design, construction and maintenance make this equipment an attractive choice when assembling a Moessbauer spectrometer

  8. A multi-channel high-resolution time recorder system

    International Nuclear Information System (INIS)

    Zhang Lingyun; Yang Xiaojun; Song Kezhu; Wang Yanfang

    2004-01-01

    This paper introduces a multi-channel and high-speed time recorder system, which was originally designed to work in the experiments of quantum cryptography research. The novelty of the system is that all the hardware logic is performed by only one FPGA. The system can achieve several desirable features, such as simplicity, high resolution and high processing speed. (authors)

  9. Effect of flow rate distribution at the inlet on hydrodynamic mixing in narrow rectangular multi-channel

    International Nuclear Information System (INIS)

    Xu Jianjun; Chen Bingde; Wang Xiaojun

    2008-01-01

    Flow and heat transfer in the narrow rectangular multi-channel is widely en- countered in the engineering application, hydrodynamic mixing in the narrow rectangular multi-channel is one of the important concerns. With the help of the Computational Fluid Dynamics code CFX, the effect of flow rate distribution of the main channel at the inlet on hydrodynamic mixing in the narrow rectangular multi-channel is numerical simulated. The results show that the flow rate distributions at the inlet have a great effect on hydrodynamics mixing in multi-channel, the flow rate in the main channel doesn't change with increasing the axial mixing section when the average flow rate at the inlet is set. Hydrodynamic mixing will arise in the mixing section when the different ratio of the flow rate distribution at the inlet is set, and hydrodynamic mixing increases with the difference of the flow rate distribution at the inlet increase. The trend of the flow rate distribution of the main channel is consistent during the whole axial mixing section, and hydrodynamic mixing in former 4 mixing section is obvious. (authors)

  10. Generation of optical frequencies out of the frequency comb of a femtosecond laser for DWDM telecommunication

    International Nuclear Information System (INIS)

    Kim, Y-J; Chun, B J; Kim, Y; Hyun, S; Kim, S-W

    2010-01-01

    We exploit the frequency comb of a fs laser as the frequency ruler to generate reference optical frequencies for multi-channel DWDM (dense wavelength-division-multiplexing) telecommunication. Our fiber-based scheme of single-mode extraction enables on-demand generation of optical frequencies within the telecommunication band with an absolute frequency uncertainty of 9.1×10 -13 . The linewidth of extracted optical modes is less than 1 Hz, and the instability is measured 2.3×10 -15 at 10 s averaging. This outstanding performance of optical frequency generation would lead to a drastic improvement of the spectral efficiency for the next-generation DWDM telecommunication

  11. Robust, highly customizable, and economical multi-channel electrode for chronic multi-unit recording in behaving animals.

    Science.gov (United States)

    Tateyama, Yukina; Oyama, Kei; Shiraishi, Masaru; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2017-12-01

    Multi-unit recording has been one of the most widely used techniques to investigate the correlation between multiple neuronal activities and behavior. However, a common problem of currently used multi-channel electrodes is their physical weakness. In this study, we developed a novel multi-channel electrode with sufficient physical strength to penetrate a thickened dura mater. This electrode consists of low-cost materials and is easily fabricated, and it enables recording without removing dura mater, thereby reducing the risk of inflammation, infection, or brain herniation. The low-cost multi-channel electrode developed in this study would be a useful tool for chronic recording in behaving animals. Copyright © 2017. Published by Elsevier B.V.

  12. Multi-channel spintronic transistor design based on magnetoelectric barriers and spin-orbital effects

    International Nuclear Information System (INIS)

    Fujita, T; Jalil, M B A; Tan, S G

    2008-01-01

    We present a spin transistor design based on spin-orbital interactions in a two-dimensional electron gas, with magnetic barriers induced by a patterned ferromagnetic gate. The proposed device overcomes certain shortcomings of previous spin transistor designs such as long device length and degradation of conductance modulation for multi-channel transport. The robustness of our device for multi-channel transport is unique in spin transistor designs based on spin-orbit coupling. The device is more practical in fabrication and experimental respects compared to previously conceived single-mode spin transistors

  13. Multi-channel temperature measurement system for automotive battery stack

    Science.gov (United States)

    Lewczuk, Radoslaw; Wojtkowski, Wojciech

    2017-08-01

    A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.

  14. A magneto-optically modulated CH3OH laser for Faraday rotation measurements in tokamaks

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Johnson, L.C.

    1981-01-01

    Distortion-free intracavity polarization modulation of an optically pumped CH3OH laser is shown to be viable. The possible use of this modulation technique to make a multichannel Faraday rotation measurement on a tokamak device is discussed. In addition, the CdTe Faraday modulator employed in this study is shown to have an anomalously large Verdet constant

  15. Very Fast Algorithms and Detection Performance of Multi-Channel and 2-D Parametric Adaptive Matched Filters for Airborne Radar

    National Research Council Canada - National Science Library

    Marple, Jr., S. L; Corbell, Phillip M; Rangaswamy, Muralidhar

    2007-01-01

    ...) detection statistics under exactly known covariance (the clairvoyant case). Improved versions of the two original multichannel PAMF algorithms, one new multichannel PAMF algorithm, and a new two-dimensional (2D) PAMF algorithm...

  16. ABORt: Acknowledgement-Based Opportunistic Routing Protocol for High Data Rate Multichannel WSNs

    Directory of Open Access Journals (Sweden)

    Hamadoun Tall

    2017-10-01

    Full Text Available The ease of deployment and the auto-configuration capabilities of Wireless Sensor Networks (WSNs make them very attractive in different domains like environmental, home automation or heath care applications. The use of multichannel communications in WSNs helps to improve the overall performance of the network. However, in heavy traffic scenarios, routing protocols should be adapted to allow load balancing and to avoid losing data packets due to congestion and queue overflow. In this paper, we present an Acknowledgement-Based Opportunistic Routing (ABORt protocol designed for high data rate multichannel WSNs. It is a low overhead protocol that does not rely on synchronization for control traffic exchange during the operational phase of the network. ABORt is an opportunistic protocol that relies on link layer acknowledgements to disseminate routing metrics, which helps to reduce overhead. The performance of ABORt is evaluated using the Cooja simulator and the obtained results show that ABORt has a high packet delivery ratio with reduced packet end-to-end delay compared to two single channel routing protocols and two multichannel routing protocols that use number of hops and expected transmission count as routing metrics.

  17. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    OpenAIRE

    Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerv...

  18. Automatic target recognition using a feature-based optical neural network

    Science.gov (United States)

    Chao, Tien-Hsin

    1992-01-01

    An optical neural network based upon the Neocognitron paradigm (K. Fukushima et al. 1983) is introduced. A novel aspect of the architectural design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by iteratively feeding back the output of the feature correlator to the input spatial light modulator and updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intra-class fault tolerance and inter-class discrimination is achieved. A detailed system description is provided. Experimental demonstration of a two-layer neural network for space objects discrimination is also presented.

  19. The development of a digital multi-channel pulse height analysis

    International Nuclear Information System (INIS)

    Huang Shanshan; Sang Ziru; Liang Futian; Chen Lian; Liang Hao; Jin Ge

    2012-01-01

    A kind of digital multi-channel analyzer which was developed for Nuclear and Particle Experiment of Undergraduate Student in university was introduced. The input signal is digitalized with a high speed ADC, and feed to a FPGA for seeking peak, recording, spectrometer processing and displaying automatically. The principle of digital searching peck was given in the paper. In order to improve the capability of anti-noise, a dual digital thresholds and dual buffer memories was designed. Aiming at the influence of nonlinear of ADC to the system, a revised algorithm was designed to ensure the channel width uniformity. Since the huge sampling and storaging data of MCA, a method of parallel work of double memory was used, just separated empty transmit data and stored count, reduced the dead time and data overflowing. The host computer can set up and monitor MCA real-time, read and write data from MCA by an USB interface. Contrasts commercial MCA, the MCA has a good result in function and price. (authors)

  20. Intracavitary in vivo dosimetry based on multichannel fiber-coupled optically stimulated luminescence (OSL) of Al2O3:C for Curietherapy

    International Nuclear Information System (INIS)

    Spasic, Estelle

    2012-01-01

    The brachytherapy is an old technique using sealed radioactive sources of low or average energy. This technique is still therapeutically and economically relevant today and always evolving (e.g. High Dose Rate (HDR) brachytherapy). This treatment enables to deliver a high dose of irradiation in a limited tumoral volume and enables to minimize the risk of radiation-induced cancer as preserving the Organs at Risks (OAR). However, this technique generates high dose gradients, which makes in vivo dosimetry difficult to implement. Hence, the deviations observed between doses delivered and prescribed are often up to the maximal deviation tolerated by the nuclear safety regulations (± 5%) in conformational radiotherapy. Those regulations have been made mandatory in France since 2011. This thesis has been done within the framework of the ANR-TECSAN INTRADOSE project and is based on the past technological benefits demonstrated during the MAESTRO European project and the ANR-TECSAN CODOFER project, in particular a RL/OSL multichannel instrumentation (Radioluminescence - Optically Stimulated Luminescence) made and validated in preclinical evaluation during the MAESTRO project. The purpose of the INTRADOSE project is to demonstrate the feasibility of the intracavitary In Vivo Dosimetry (IVD) by dosimetric catheter using optical fibers and alumina crystals Al 2 O 3 :C with the aim of improving the safety of patients treated by HDR brachytherapy. This new probe enables to measure a dose distribution (several points) close to the OAR, it offers a little diameter (≤ 3 mm) designed for an intracavitary use (e.g. to insert in the urethra), it is transparent, radiation stable and reusable after dose reading and sterilization. During this study, we have first developed this new dosimetric sensor based on the OSL using the properties of the alumina crystal. Several tests have been done in order to evaluate the feasibility and the compatibility with a medical application. Then

  1. Immune mapping of the peripheral part of the visual analyzer and optic nerve

    Directory of Open Access Journals (Sweden)

    V. G. Likhvantseva

    2014-10-01

    Full Text Available Aim. To perform immune mapping of the peripheral part of visual analyzer and optic nerve in order to identify potential antigenic targets of autoimmune attack. Methods. Eyes enucleated for terminal painful glaucoma (n = 30 were studied. Immunohistochemistry (IHC was performed on paraffin-embedded sections of isolated retina and optic nerve using a broad panel of antibodies, i.e., monoclonal murine anti-MBP (myelin basic protein antibodies, polyclonal rabbit anti-alpha fodrin antibodies, monoclonal murine anti-NSE2 (neuron-specific enolase antibodies, monoclonal murine anti-GFAP (glial fibrillary acidic protein, and polyclonal rabbit anti-S100 antibodies. IHC reaction was visualized using Mouse and Rabbit Specific HRP / AEC Detection IHC Kit. IHC reaction without primary antibodies included was a negative control. IHC reaction was considered as follows: negative — no specific cellular staining or less than 10 % of cells are stained; mild — 10‑30 % of cells are stained (+; moderate — 30‑75 % of cells are stained (++; marked — more than 75 % of cells are stained (+++; overexpression — 100 % of cells intensively express markers. Additionally, staining intensity was considered as mild (+1, moderate (+2, strong (+3 and intense (+4.Results. Immune mapping with a broad panel of monoclonal antibodies identified ocular structures which were stained with IHC markers. Retina was stained with almost all markers of neural differentiation (i.e., antibodies against NSE, GFAP, S100, and α-fodrin excepting anti-MBP autoantibodies. IHC reaction intensity in retinal layers and structures varied and depended on markers. Moderate (2+ staining with antibodies against MBP, NSE, GFAP, and S100 and marked (3+ staining with antibodies against alpha-fodrin was detected in the cytoplasm of optic nerve glia.Conclusion. Complete labelling of retina structures was performed. As a result, IHC profiles of retinal neurons, optic nerve axons

  2. Immune mapping of the peripheral part of the visual analyzer and optic nerve

    Directory of Open Access Journals (Sweden)

    V. G. Likhvantseva

    2014-01-01

    Full Text Available Aim. To perform immune mapping of the peripheral part of visual analyzer and optic nerve in order to identify potential antigenic targets of autoimmune attack. Methods. Eyes enucleated for terminal painful glaucoma (n = 30 were studied. Immunohistochemistry (IHC was performed on paraffin-embedded sections of isolated retina and optic nerve using a broad panel of antibodies, i.e., monoclonal murine anti-MBP (myelin basic protein antibodies, polyclonal rabbit anti-alpha fodrin antibodies, monoclonal murine anti-NSE2 (neuron-specific enolase antibodies, monoclonal murine anti-GFAP (glial fibrillary acidic protein, and polyclonal rabbit anti-S100 antibodies. IHC reaction was visualized using Mouse and Rabbit Specific HRP / AEC Detection IHC Kit. IHC reaction without primary antibodies included was a negative control. IHC reaction was considered as follows: negative — no specific cellular staining or less than 10 % of cells are stained; mild — 10‑30 % of cells are stained (+; moderate — 30‑75 % of cells are stained (++; marked — more than 75 % of cells are stained (+++; overexpression — 100 % of cells intensively express markers. Additionally, staining intensity was considered as mild (+1, moderate (+2, strong (+3 and intense (+4.Results. Immune mapping with a broad panel of monoclonal antibodies identified ocular structures which were stained with IHC markers. Retina was stained with almost all markers of neural differentiation (i.e., antibodies against NSE, GFAP, S100, and α-fodrin excepting anti-MBP autoantibodies. IHC reaction intensity in retinal layers and structures varied and depended on markers. Moderate (2+ staining with antibodies against MBP, NSE, GFAP, and S100 and marked (3+ staining with antibodies against alpha-fodrin was detected in the cytoplasm of optic nerve glia.Conclusion. Complete labelling of retina structures was performed. As a result, IHC profiles of retinal neurons, optic nerve axons

  3. Performance Analysis of the IEEE 802.11p Multichannel MAC Protocol in Vehicular Ad Hoc Networks.

    Science.gov (United States)

    Song, Caixia

    2017-12-12

    Vehicular Ad Hoc Networks (VANETs) employ multichannel to provide a variety of safety and non-safety applications, based on the IEEE 802.11p and IEEE 1609.4 protocols. The safety applications require timely and reliable transmissions, while the non-safety applications require efficient and high throughput. In the IEEE 1609.4 protocol, operating interval is divided into alternating Control Channel (CCH) interval and Service Channel (SCH) interval with an identical length. During the CCH interval, nodes transmit safety-related messages and control messages, and Enhanced Distributed Channel Access (EDCA) mechanism is employed to allow four Access Categories (ACs) within a station with different priorities according to their criticality for the vehicle's safety. During the SCH interval, the non-safety massages are transmitted. An analytical model is proposed in this paper to evaluate performance, reliability and efficiency of the IEEE 802.11p and IEEE 1609.4 protocols. The proposed model improves the existing work by taking serval aspects and the character of multichannel switching into design consideration. Extensive performance evaluations based on analysis and simulation help to validate the accuracy of the proposed model and analyze the capabilities and limitations of the IEEE 802.11p and IEEE 1609.4 protocols, and enhancement suggestions are given.

  4. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  5. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  6. Comb-like optical transmission spectrum resulting from a four-cornered two-waveguide-connected network

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiangbo, E-mail: xbyang@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006 (China); Song, Huanhuan [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Liu, Timon Chengyi [School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006 (China)

    2013-12-06

    In this Letter a four-cornered two-waveguide-connected network (FCTWCN) is proposed to generate comb-like optical transmission spectrum, where nearest-neighbor nodes are connected by two segments of one-dimensional waveguides. We investigate the band structure and transmission spectrum of electromagnetic waves propagating through FCTWCNs and find that the transmission through a FCTWCN exhibits periodic comb-like characteristic and the range, number and width of continuous equidistant frequency bands can be controlled by adjusting the lengths of the two types of segments. The comb-like frequency bands may be useful for the designing of optical switches, optical narrowband filters, high capacity telecommunications, and multichannel filters, etc.

  7. Plutonium solution analyzer

    International Nuclear Information System (INIS)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded)

  8. Plutonium solution analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  9. Numerical investigation of multichannel laser beam phase locking in turbulent atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V A; Volkov, M V; Garanin, S G; Starikov, F A [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2015-12-31

    The efficiency of coherent multichannel beam combining under focusing through a turbulent medium on a target in the cases of phase conjugation and target irradiation in the feedback loop is investigated numerically in various approximations. The conditions of efficient focusing of multichannel radiation on the target are found. It is shown that the coherent beam combining with target irradiation in the feedback loop, which does not require a reference beam and wavefront measurements, is as good as the phase conjugation approach in the efficiency of focusing. It is found that the main effect of focusing is provided by properly chosen phase shifts in the channels, whereas taking into account local wavefront tip tilts weakly affects the result. (control of laser radiation parameters)

  10. Spatially resolvable optical emission spectrometer for analyzing density uniformity of semiconductor process plasma

    International Nuclear Information System (INIS)

    Oh, Changhoon; Ryoo, Hoonchul; Lee, Hyungwoo; Hahn, Jae W.; Kim, Se-Yeon; Yi, Hun-Jung

    2010-01-01

    We proposed a spatially resolved optical emission spectrometer (SROES) for analyzing the uniformity of plasma density for semiconductor processes. To enhance the spatial resolution of the SROES, we constructed a SROES system using a series of lenses, apertures, and pinholes. We calculated the spatial resolution of the SROES for the variation of pinhole size, and our calculated results were in good agreement with the measured spatial variation of the constructed SROES. The performance of the SROES was also verified by detecting the correlation between the distribution of a fluorine radical in inductively coupled plasma etch process and the etch rate of a SiO 2 film on a silicon wafer.

  11. The Role of Multichannel Marketing in Customer Retention and Loyalty: Study in Emerald Bank Customer in Indonesia

    Directory of Open Access Journals (Sweden)

    Ambarwati Ambarwati

    2015-09-01

    Full Text Available Attention on the relationship between customer retention, customer loyalty, and customer satisfaction that serves as "seed" of customer loyalty highlight the important factors for multichannel management. With the growing trends of people in investing their money in bank for securities need to be responded by the marketing department to create better marketing strategies. The purpose of this study is to examine and explain the effect of a multichannel bank on emerald customers retention   in one of the largest SOE bank in Indonesia, in the city of Surabaya, BNI (Bank Negara Indonesia toward customer  satisfaction, loyalty and customer  retention. This study develops the theory  of  mix marketing by using multichannel  as one of the elements that can increase customer retention   using satisfaction mediation and customer loyalty. Mechanical determination of sample units in this study is a  purposive sampling, of 89 respondents. Generalized Structured Component Analysis (GSCA was applied to test the hypotheses. The results of this study indicate that direct multichannel not  significantly effect the customer retention. Customer satisfaction can not be a perfect mediation  and the customer loyalty can be a perfect mediation in the relationship between multichannel and customer retention. This study contributes to the banking industry in applying the concept of the mix marketing.

  12. Multi-Channel Maximum Likelihood Pitch Estimation

    DEFF Research Database (Denmark)

    Christensen, Mads Græsbøll

    2012-01-01

    In this paper, a method for multi-channel pitch estimation is proposed. The method is a maximum likelihood estimator and is based on a parametric model where the signals in the various channels share the same fundamental frequency but can have different amplitudes, phases, and noise characteristics....... This essentially means that the model allows for different conditions in the various channels, like different signal-to-noise ratios, microphone characteristics and reverberation. Moreover, the method does not assume that a certain array structure is used but rather relies on a more general model and is hence...

  13. Simple multifunction discriminator for multichannel triggers

    International Nuclear Information System (INIS)

    Maier, M.R.

    1982-10-01

    A simple version of a multifunction timing discriminator using only two integrated circuits is presented. It can be configured as a leading edge, a constant fraction, a zero cross or a dual threshold timing discriminator. Since so few parts are used, it is well suited for building multichannel timing discriminators. Two versions of this circuit are described: a quadruple multifunction discriminator and an octal constant fraction trigger. The different compromises made in these units are discussed. Results for walk and jitter obtained with these are presented and possible improvements are disussed

  14. Conceptual Design Studies of the KSTAR Bay-Nm Cassette and Thomson Scattering Optics

    International Nuclear Information System (INIS)

    Feder, R.; Ellis, R.; Johnson, D.; Park, H.; Lee, H.G.

    2005-01-01

    A Multi-Channel Thomson Scattering System viewing the edge and core of the KSTAR plasma will be installed at the mid-plane port Bay-N. An engineering design study was undertaken at PPPL in collaboration with the Korea Basic Science Institute (KBSI) to determine the optimal optics and cassette design. Design criteria included environmental, mechanical and optical factors. All of the optical design options have common design features; the Thomson Scattering laser, an in-vacuum shutter, a quartz heat shield and primary vacuum window, a set of optical elements and a fiber optic bundle. Neutron radiation damage was a major factor in the choice of competing lens-based and mirror-based optical designs. Both the mirror based design and the lens design are constrained by physical limits of the Bay-N cassette and interference with the Bay-N micro-wave launcher. The cassette will contain the optics and a rail system for maintenance of the optics

  15. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Pu, Minhao

    2010-01-01

    We comprehensively analyze multiple WDM channels RZ-to- NRZ format conversion using a single microring resonator. The scheme relies on simultaneous suppression of the first order harmonic components in the spectra of all the RZ channels. An optimized silicon microring resonator with free spectral...... range of 100 GHz and Q value of 7900 is designed and fabricated for this purpose. Multi-channel RZ-to-NRZ format conversion is demonstrated experimentally at 50 Gbit/s for WDM channels with 200 GHz channel spacing using the fabricated device. Bit error rate (BER)measurements show very good conversion...

  16. Feasibility study of applying a multi-channel analysis model to on-line core monitoring system

    International Nuclear Information System (INIS)

    In, W. K.; Yoo, Y. J.; Hwang, D. H.; Jun, T. H.

    1998-01-01

    A feasibility study was performed to evaluate the effect of implementing a multi-channel analysis model in on-line core monitoring system. A simplified thermal-hydraulic model has been used in the on-line core monitoring system of digital PWR. The design procedure, core thermal margin and computation time were investigated in case of replacing the simplified model with the multi-channel analysis model. For the given ranges of limiting conditions for operation in Yonggwang Unit 3 Cycle 1, the minimum DNBR of the simplified thermal-hydraulic code CETOP-D was compared to that of the multi-channel analysis code MATRA. A CETOP-D tuning is additionally required to ensure the accurate and conservative DNBR calculation but the MATRA tuning is not necessary. MATRA appeared to increase the DNBR overpower margin from 2.5% to 6% over the CETOP-D margin. MATRA took approximately 1 second to compute DNBR on the HP9000 workstation system, which is longer than the DNBR computation time of CETOP-D. It is, however, fast enough to perform the on-line monitoring of DNBR. It can be therefore concluded that the application of the multi-channel analysis model MATRA in the on-line core monitoring system is feasible

  17. Field microcomputerized multichannel γ ray spectrometer based on notebook computer

    International Nuclear Information System (INIS)

    Jia Wenyi; Wei Biao; Zhou Rongsheng; Li Guodong; Tang Hong

    1996-01-01

    Currently, field γ ray spectrometry can not rapidly measure γ ray full spectrum, so a field microcomputerized multichannel γ ray spectrometer based on notebook computer is described, and the γ ray full spectrum can be rapidly measured in the field

  18. Design and Construction of an Autonomous Low-Cost Pulse Height Analyzer and a Single Channel Analyzer for Mössbauer Spectroscopy

    Science.gov (United States)

    Velásquez, A. A.; Gancedo, J. R.; Trujillo, J. M.; Morales, A. L.; Tobón, J. E.; Reyes, L.

    2005-04-01

    A multichannel analyzer (MCA) and a single channel-analyzer (SCA) for Mössbauer spectrometry application have been designed and built. Both systems include low-cost digital and analog components. A microcontroller manages, either in PHA or MCS mode, the data acquisition, data storage and setting of the pulse discriminator limits. The user can monitor the system from an external PC through the serial port with the RS232 communication protocol. A graphic interface made with the LabVIEW software allows the user to adjust digitally the lower and upper limits of the pulse discriminator, and to visualize as well as save the PHA spectra in a file. The system has been tested using a 57Co radioactive source and several iron compounds, yielding satisfactory results. The low cost of its design, construction and maintenance make this equipment an attractive choice when assembling a Mössbauer spectrometer.

  19. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Ruhter, W.D.; Buckley, W.M.

    1989-01-01

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: (1) a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, (2) a data-analysis application to analyze plutonium gamma-ray spectra for plutonium isotopic ratios and weight percents of total plutonium, (3) and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 2 describes the operations of these applications and the installation and maintenance of the software

  20. Online purchase intentions: A multi-channel store image perspective

    NARCIS (Netherlands)

    Verhagen, T.; van Dolen, W.

    2009-01-01

    The advantages of the bricks-and-clicks retail format in the battle for the online customer has been widely discussed but empirical research on it has been limited. We applied a multi-channel store image perspective to assess its influence on online purchase intentions. Drawing on a sample of 630

  1. Salt Intrusion, Tides and Mixing in Multi-channel Estuaries

    NARCIS (Netherlands)

    Nguyen, A.D.

    2008-01-01

    Multi-channel estuaries, such as the Mekong Delta in Vietnam and the Scheldt in the Netherlands, have characteristics of both the river and the sea, forming a unique environment influenced by tidal movements of the sea and freshwater flow of the river. This study addresses a number of knowledge gaps

  2. Software Configurable Multichannel Transceiver

    Science.gov (United States)

    Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter

    2009-01-01

    Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.

  3. Fundamental Frequency and Direction-of-Arrival Estimation for Multichannel Speech Enhancement

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam

    Audio systems receive the speech signals of interest usually in the presence of noise. The noise has profound impacts on the quality and intelligibility of the speech signals, and it is therefore clear that the noisy signals must be cleaned up before being played back, stored, or analyzed. We can...... estimate the speech signal of interest from the noisy signals using a priori knowledge about it. A human speech signal is broadband and consists of both voiced and unvoiced parts. The voiced part is quasi-periodic with a time-varying fundamental frequency (or pitch as it is commonly referred to). We...... their time differences which eventually may further reduce the effects of noise. This thesis introduces a number of principles and methods to estimate periodic signals in noisy environments with application to multichannel speech enhancement. We propose model-based signal enhancement concerning the model...

  4. Experimental researches and comparison on aerodynamic parameters and cleaning efficiency of multi-level multi-channel cyclone

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2015-10-01

    Full Text Available Multi-level multi-channel cyclone – the lately designed air cleaning device that can remove ultra-fine 20 μm particulatematter (PM from dusted air and reach over 95% of the overall cleaning efficiency. Multi-channel cyclone technology is based on centrifugal forces and has the resulting additional filtering process operation. Multi-level structure of cyclone allows to achieve higher air flow cleaning capacity at the same dimensions of the device, thus saving installation space required for the job, production and operating costs. Studies have examined the air flow parameters change in one–, two– and three–levels multichannel cyclone. These constructions differ according to the productivity of cleaned air under the constant peripheral and transitional (50/50 case air flow relations. Accordance with the results of air flow dynamics – velocity distribution of multi-channel cyclone, aerodynamic resistance and efficiency can be judged on the flow turbulence, the flow channel cross-section and select the most appropriate application. Cleaning efficiency studies were carried out using fine granite and wood ashes PM. The maximum cleaning efficiency was 93.3%, at an average of 4.5 g/m3, the aerodynamic resistance was equal to 1525 Pa.

  5. A Novel Spectrally Efficient Asynchronous Multi-Channel MAC Using a Half-Duplex Transceiver for Wireless Networks

    Directory of Open Access Journals (Sweden)

    Abdullah Devendiran

    2018-01-01

    Full Text Available Multi-channel medium access control (MAC protocols maximize network performance by enabling concurrent wireless transmissions over non-interfering channels. Despite physical layer advancements, the underlying IEEE 802.11 MAC standard cannot fully exploit features and support high-performance applications. In this work, we propose the novel spectrally efficient asynchronous multi-channel MAC (SA-MMAC protocol for wireless networks using a single half-duplex transceiver. A full-duplex mode of operation on data channels reduces the signaling overhead and boosts the spectrum efficiency. A revamped contention mechanism of IEEE 802.11 addresses the multi-channel hidden terminal problem, and a jamming signal from the receiver addresses the collisions in control signals. Furthermore, the control channel is used for data transmissions to increase the bandwidth utilization but under a restricted half-duplex mode to avoid causing a bottleneck situation. The simulator is tested for correctness. The results suggest that the protocol can work well on 3, 4, or 12 concurrent channels with high node density, providing about 12.5 times more throughput than IEEE 802.11 and 18% to 95% more throughput than its multi-channel variants under saturated traffic conditions.

  6. Optical position meters analyzed in the noninertial reference frames

    International Nuclear Information System (INIS)

    Tarabrin, Sergey P.; Seleznyov, Alexander A.

    2008-01-01

    In the framework of general relativity we develop a method for the analysis of the operation of the optical position meters in their photodetectors proper reference frames. These frames are noninertial in general due to the action of external fluctuative forces on meters test masses, including detectors. For comparison we also perform the calculations in the laboratory (globally inertial) reference frame and demonstrate that for certain optical schemes laboratory-based analysis results in unmeasurable quantities, in contrast to the detector-based analysis. We also calculate the response of the simplest optical meters to weak plane gravitational waves and fluctuative motions of their test masses. It is demonstrated that for the round-trip meter analysis in both the transverse-traceless (TT) and local Lorentz (LL) gauges produces equal results, while for the forward-trip meter corresponding results differ in accordance with different physical assumptions (e.g. procedure of clocks synchronization) implicitly underlying the construction of the TT and LL gauges.

  7. Scale-free brain quartet: artistic filtering of multi-channel brainwave music.

    Science.gov (United States)

    Wu, Dan; Li, Chaoyi; Yao, Dezhong

    2013-01-01

    To listen to the brain activities as a piece of music, we proposed the scale-free brainwave music (SFBM) technology, which translated scalp EEGs into music notes according to the power law of both EEG and music. In the present study, the methodology was extended for deriving a quartet from multi-channel EEGs with artistic beat and tonality filtering. EEG data from multiple electrodes were first translated into MIDI sequences by SFBM, respectively. Then, these sequences were processed by a beat filter which adjusted the duration of notes in terms of the characteristic frequency. And the sequences were further filtered from atonal to tonal according to a key defined by the analysis of the original music pieces. Resting EEGs with eyes closed and open of 40 subjects were utilized for music generation. The results revealed that the scale-free exponents of the music before and after filtering were different: the filtered music showed larger variety between the eyes-closed (EC) and eyes-open (EO) conditions, and the pitch scale exponents of the filtered music were closer to 1 and thus it was more approximate to the classical music. Furthermore, the tempo of the filtered music with eyes closed was significantly slower than that with eyes open. With the original materials obtained from multi-channel EEGs, and a little creative filtering following the composition process of a potential artist, the resulted brainwave quartet opened a new window to look into the brain in an audible musical way. In fact, as the artistic beat and tonal filters were derived from the brainwaves, the filtered music maintained the essential properties of the brain activities in a more musical style. It might harmonically distinguish the different states of the brain activities, and therefore it provided a method to analyze EEGs from a relaxed audio perspective.

  8. Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias D., E-mail: Tobias.Schmidt@physik.uni-augsburg.de; Jäger, Lars; Brütting, Wolfgang, E-mail: Wolfgang.Bruetting@physik.uni-augsburg.de [Institute of Physics, University of Augsburg, Augsburg (Germany); Noguchi, Yutaka [Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki (Japan); Center of Frontier Science, Chiba University, Chiba (Japan); Ishii, Hisao [Center of Frontier Science, Chiba University, Chiba (Japan)

    2015-06-07

    Although the long-term stability of organic light-emitting diodes (OLEDs) under electrical operation made significant progress in recent years, the fundamental underlying mechanisms of the efficiency decrease during operation are not well understood. Hence, we present a comprehensive degradation study of an OLED structure comprising the well-known green phosphorescent emitter Ir(ppy){sub 3}. We use transient methods to analyze both electrical and optical changes during an accelerated aging protocol. Combining the results of displacement current measurements with time-resolved investigation of the excited states lifetimes of the emitter allows for a correlation of electrical (e.g., increase of the driving voltage due to trap formation) and optical (e.g., decrease of light-output) changes induced by degradation. Therewith, it is possible to identify two mechanisms resulting in the drop of the luminance: a decrease of the radiative quantum efficiency of the emitting system due to triplet-polaron-quenching at trapped charge carriers and a modified charge carrier injection and transport, as well as trap-assisted non-radiative recombination resulting in a deterioration of the charge carrier balance of the device.

  9. Magneto-optically modulated CH/sub 3/OH laser For faraday rotation measurements in tokamaks

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Johnson, L.C.

    1981-01-01

    Distortion-free intracavity polarization modulation of an optically pumped CH/sub 3/OH laser is shown to be viable. The possible use of this modulation technique to make a multichannel Faraday rotation measurement on a Tokamak device is discussed. In addition, the CdTe Faraday modulator employed in this study is shown to have an anomalously large Verdet constant. 12 refs

  10. Integrated multi-channel vehicle-vehicle and vehicle-roadside communications for ITS

    Science.gov (United States)

    2008-12-01

    This research describes a medium access control (MAC) protocol to Enable multi-channel operation for dedicated short-range communication (DSRC). In particular, we focus on the challenge of supporting potentially high-bandwidth commercial or infotainm...

  11. Optimization of the SNS magnetism reflectometer neutron-guide optics using Monte Carlo simulations

    CERN Document Server

    Klose, F

    2002-01-01

    The magnetism reflectometer at the spallation neutron source SNS will employ advanced neutron optics to achieve high data rate, improved resolution, and extended dynamic range. Optical components utilized will include a multi-channel polygonal curved bender and a tapered neutron-focusing guide section. The results of a neutron beam interacting with these devices are rather complex. Additional complexity arises due to the spectral/time-emission profile of the moderator and non-perfect neutron optical coatings. While analytic formulae for the individual components provide some design guidelines, a realistic performance assessment of the whole instrument can only be achieved by advanced simulation methods. In this contribution, we present guide optics optimizations for the magnetism reflectometer using Monte Carlo simulations. We compare different instrument configurations and calculate the resulting data rates. (orig.)

  12. Skyrmion-based multi-channel racetrack

    Science.gov (United States)

    Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Xia, Haiyan; Wang, Jianbo; Liu, Qingfang

    2017-11-01

    Magnetic skyrmions are promising for the application of racetrack memories, logic gates, and other nano-devices, owing to their topologically protected stability, small size, and low driving current. In this work, we propose a skyrmion-based multi-channel racetrack memory where the skyrmion moves in the selected channel by applying voltage-controlled magnetic anisotropy gates. It is demonstrated numerically that a current-dependent skyrmion Hall effect can be restrained by the additional potential of the voltage-controlled region, and the skyrmion velocity and moving channel in the racetrack can be operated by tuning the voltage-controlled magnetic anisotropy, gate position, and current density. Our results offer a potential application of racetrack memory based on skyrmions.

  13. Development of multi-channel gated integrator and PXI-DAQ system for nuclear detector arrays

    International Nuclear Information System (INIS)

    Kong Jie; Su Hong; Chen Zhiqiang; Dong Chengfu; Qian Yi; Gao Shanshan; Zhou Chaoyang; Lu Wan; Ye Ruiping; Ma Junbing

    2010-01-01

    A multi-channel gated integrator and PXI based data acquisition system have been developed for nuclear detector arrays with hundreds of detector units. The multi-channel gated integrator can be controlled by a programmable GI controller. The PXI-DAQ system consists of NI PXI-1033 chassis with several PXI-DAQ cards. The system software has a user-friendly GUI which is written in C language using LabWindows/CVI under Windows XP operating system. The performance of the PXI-DAQ system is very reliable and capable of handling event rate up to 40 kHz.

  14. HAIFA: A modular, fiber-optic coupled, spectroscopic diagnostic for plasmas

    International Nuclear Information System (INIS)

    Ramsey, A.T.; Turner, S.L.

    1987-01-01

    HAIFA is a modular, multichannel, fiber optically coupled spectroscopy diagnostic for tokamak plasmas. It operates in the visible, measuring H/sub α/ radiation, the visible continuum from thermal bremsstrahlung, and selected impurity lines. HAIFA is characterized by high modularity and flexibility, good radiation resistance, high noise immunity, and low cost. Details of design, construction, and calibration are given. The analysis of visible bremsstrahlung radiation measurements to deduce the effective ionic charge in a plasma is discussed

  15. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

    Directory of Open Access Journals (Sweden)

    Hsien-Chin Wei

    2017-02-01

    Full Text Available Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA platform. An adjustable microampere constant-current (AMCC source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives.

  16. Coordinating Multi-Channel Pricing of Seasonal Goods

    OpenAIRE

    Preetam Basu

    2012-01-01

    Advancement in information technology has opened new avenues for traditional retailers to expand their operations. Pricing, which has been a critical issue, is more important than ever before as traditional retailers pursue multi-channel sales. In this paper the author studies the pricing problem of a retailer selling a seasonal product simultaneously in a ‘brick and mortar’ store as well as online. Optimal prices are derived and different product-market conditions are determined under wh...

  17. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2016-07-01

    Full Text Available With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC. The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  18. Measurement of cell respiration and oxygenation in standard multichannel biochips using phosphorescent O2-sensitive probes.

    Science.gov (United States)

    Kondrashina, Alina V; Papkovsky, Dmitri B; Dmitriev, Ruslan I

    2013-09-07

    Measurement of cell oxygenation and oxygen consumption is useful for studies of cell bioenergetics, metabolism, mitochondrial function, drug toxicity and common pathophysiological conditions. Here we present a new platform for such applications which uses commercial multichannel biochips (μ-slides, Ibidi) and phosphorescent O2 sensitive probes. This platform was evaluated with both extracellular and intracellular O2 probes, several different cell types and treatments including mitochondrial uncoupling and inhibition, depletion of extracellular Ca(2+) and inhibition of V-ATPase and histone deacetylases. The results show that compared to the standard microwell plates currently used, the μ-slide platform provides facile O2 measurements with both suspension and adherent cells, higher sensitivity and reproducibility, and faster measurement time. It also allows re-perfusion and multiple treatments of cells and multi-parametric analyses in conjunction with other probes. Optical measurements are conducted on standard fluorescence readers and microscopes.

  19. A dialog program for the evaluation of multichannel spectra

    International Nuclear Information System (INIS)

    Dietze, G.

    1978-06-01

    The computer code SPEKT is described for the analysis and manipulation of multichannel spectra in neutron dosimetry. It is a dialog system with a simple command string. The code has mainly been written in FORTRAN. Because of the modular structure of the program a user can add new routines in a simple way. (orig./HP) [de

  20. Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system

    Science.gov (United States)

    Kaźmierczak, Andrzej; Dortu, Fabian; Schrevens, Olivier; Giannone, Domenico; Bouville, David; Cassan, Eric; Gylfason, Kristinn B.; Sohlström, Hans; Sanchez, Benito; Griol, Amadeu; Hill, Daniel

    2009-01-01

    We present an efficient and highly alignment-tolerant light coupling and distribution system for a multichannel Si3N4/SiO2 single-mode photonics sensing chip. The design of the input and output couplers and the distribution splitters is discussed. Examples of multichannel data obtained with the system are given.

  1. Ultrasmall and customizable multichannel electrodes for extracellular recordings.

    Science.gov (United States)

    Piironen, Arto; Weckström, Matti; Vähäsöyrinki, Mikko

    2011-03-01

    Increasing demand exists for smaller multichannel electrodes that enable simultaneous recordings of many neurons in a noninvasive manner. We report a novel method for manufacturing ultrasmall carbon fiber electrodes with up to seven closely spaced recording sites. The electrodes were designed to minimize damage to neuronal circuitry and to be fully customizable in three dimensions so that their dimensions can be optimally matched to those of the targeted neuron population.

  2. Regret of Multi-Channel Bandit Game in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Ma Jun

    2016-01-01

    Full Text Available The problem of how to evaluate the rate of convergence to Nash equilibrium solutions in the process of channel selection under incomplete information is studied. In this paper, the definition of regret is used to reflect the convergence rates of online algorithms. The process of selecting an idle channel for each secondary user is modeled as a multi-channel bandit game. The definition of the maximal averaged regret is given. Two existing online learning algorithms are used to obtain the Nash equilibrium for each SU. The maximal averaged regrets are used to evaluate the performances of online algorithms. When there is a pure strategy Nash equilibrium in the multi-channel bandit game, the maximal averaged regrets are finite. A cooperation mechanism is also needed in the process of calculating the maximal averaged regrets. Simulation results show the maximal averaged regrets are finite and the online algorithm with greater convergence rate has less maximal averaged regrets.

  3. Car-borne multichannel gamma-ray spectrometric system model CZD-6

    International Nuclear Information System (INIS)

    Lu Shili; Zhai Yugui; Ma Yanfang; Jiao Cangwen; Zhang Biao

    1998-01-01

    The car-borne multichannel gamma-ray spectrometric system Mode CZD-6 is composed of a HDY-256 of portable multichannel gamma-ray spectrometer developed by the Beijing Research Institute of Uranium Geology and a large volume scintillation detector. the position for each measurement point is determined by the GPS instrument. Its latitude and longitude, as well as measured 256 channels of γ-spectrometric data are collected by a notebook computer, which can show the 256 channels of spectra for each point during measuring processes. The complete system can be loaded in a field car. This system has been used to environmental radioactive monitoring after calibration by airborne radiometric models in Shijiazhuang, Hebei province. A lot of data confirm that the system works stably and reliably, and is a fast and advanced approach for environmental γ-spectrometric monitoring. It can be used not only to determination of contents of natural radioactive elements in environments, but also to monitoring nuclear pollution and emergency treatment in nuclear accidents significantly

  4. Near-lossless multichannel EEG compression based on matrix and tensor decompositions.

    Science.gov (United States)

    Dauwels, Justin; Srinivasan, K; Reddy, M Ramasubba; Cichocki, Andrzej

    2013-05-01

    A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of “lossy plus residual coding,” consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.

  5. Novel Methods for Measuring Depth of Anesthesia by Quantifying Dominant Information Flow in Multichannel EEGs

    Directory of Open Access Journals (Sweden)

    Kab-Mun Cha

    2017-01-01

    Full Text Available In this paper, we propose novel methods for measuring depth of anesthesia (DOA by quantifying dominant information flow in multichannel EEGs. Conventional methods mainly use few EEG channels independently and most of multichannel EEG based studies are limited to specific regions of the brain. Therefore the function of the cerebral cortex over wide brain regions is hardly reflected in DOA measurement. Here, DOA is measured by the quantification of dominant information flow obtained from principle bipartition. Three bipartitioning methods are used to detect the dominant information flow in entire EEG channels and the dominant information flow is quantified by calculating information entropy. High correlation between the proposed measures and the plasma concentration of propofol is confirmed from the experimental results of clinical data in 39 subjects. To illustrate the performance of the proposed methods more easily we present the results for multichannel EEG on a two-dimensional (2D brain map.

  6. Multichannel deconvolution and source detection using sparse representations: application to Fermi project

    International Nuclear Information System (INIS)

    Schmitt, Jeremy

    2011-01-01

    This thesis presents new methods for spherical Poisson data analysis for the Fermi mission. Fermi main scientific objectives, the study of diffuse galactic background et the building of the source catalog, are complicated by the weakness of photon flux and the point spread function of the instrument. This thesis proposes a new multi-scale representation for Poisson data on the sphere, the Multi-Scale Variance Stabilizing Transform on the Sphere (MS-VSTS), consisting in the combination of a spherical multi-scale transform (wavelets, curvelets) with a variance stabilizing transform (VST). This method is applied to mono- and multichannel Poisson noise removal, missing data interpolation, background extraction and multichannel deconvolution. Finally, this thesis deals with the problem of component separation using sparse representations (template fitting). (author) [fr

  7. A Receiver-Initiated Collision-Avoidance Protocol for Multi-Channel Networks

    Science.gov (United States)

    2001-01-01

    00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE A Receiver-Initiated Collision-Avoidance Protocol for Multi-Channel Netowrks 5a. CONTRACT NUMBER...images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 10 19a. NAME OF RESPONSIBLE

  8. An optimal multi-channel memory controller for real-time systems

    NARCIS (Netherlands)

    Gomony, M.D.; Akesson, K.B.; Goossens, K.G.W.

    2013-01-01

    Optimal utilization of a multi-channel memory, such as Wide IO DRAM, as shared memory in multi-processor platforms depends on the mapping of memory clients to the memory channels, the granularity at which the memory requests are interleaved in each channel, and the bandwidth and memory capacity

  9. The designing principle and implementation of multi-channel intelligence isotope thickness gauge based on multifunction card PCI-1710

    International Nuclear Information System (INIS)

    Zhang Bin; Zhao Shujun; Guo Maotian; He Jintian

    2006-01-01

    The designing principle, the constitution of system and the implementation of multi-channel intelligence isotope thickness gauge are introduced in the paper in detail, which are based on multifunction card PCI-1710. The paper also discusses the primaryprinciple of isotope thickness gauge, correct factor in measurement and complication of calibration. In the following, the whole frame of multi-channel intelligence isotope thickness gauge is given. The functions, the characteristics and the usage of multifunction card PCI-1710 are described. Furthermore, the developing process and the function modules of software are presented. Finally, the real prototype of multi-channel intelligence isotope thickness gauge is introduced, using 241 Am as a radioactive element. (authors)

  10. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    Science.gov (United States)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  11. Multichannel Seismic Reflection - SCAR- Prydz Bay 1980 SDLS CD-ROM vol 8

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1980 in the Prydz Bay region, by Australian Geological Survey Organization. The...

  12. Optical implementation of a feature-based neural network with application to automatic target recognition

    Science.gov (United States)

    Chao, Tien-Hsin; Stoner, William W.

    1993-01-01

    An optical neural network based on the neocognitron paradigm is introduced. A novel aspect of the architecture design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by feeding back the ouput of the feature correlator interatively to the input spatial light modulator and by updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved. A detailed system description is provided. Experimental demonstrations of a two-layer neural network for space-object discrimination is also presented.

  13. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  14. High-frequency acoustic spectrum analyzer based on polymer integrated optics

    Science.gov (United States)

    Yacoubian, Araz

    This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.

  15. Multichannel far-infrared phase imaging for fusion plasmas

    International Nuclear Information System (INIS)

    Young, P.E.; Neikirk, D.P.; Tong, P.P.; Rutledge, D.B.; Luhmann, N.C. Jr.

    1985-01-01

    A 20-channel far-infrared imaging interferometer system has been used to obtain single-shot density profiles in the UCLA Microtor tokamak. This system differs from conventional multichannel interferometers in that the phase distribution produced by the plasma is imaged onto a single, monolithic, integrated microbolometer linear detector array and provides significantly more channels than previous far-infrared interferometers. The system has been demonstrated to provide diffraction-limited phase images of dielectric targets

  16. Multichannel Seismic Reflection Data, SCAR - Wilkes Land 1982, SDLS, CD-ROM 15

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data from thirteen lines recorded during 1983 off Wilkes Island, Antarctica, by the U.S. Geological...

  17. A new method for multi-channel Fabry-Perot spectroscopy of light pulses in the nanosecond regime

    International Nuclear Information System (INIS)

    Behn, R.

    1975-01-01

    The demand for powerful multichannel spectrometers raised, e.g., in laser scattering plasma diagnostics, gave rise to the question if it would not be possible to avoid the light losses occuring in the use of multichannel Fabry-Perot spectrometers. These losses can be avoided with the technique presented here. The reflected light is collected and fed back to the interferometer at a different angle. It can thus be recovered for registration in another spectral channel. This method is particularly suitable for the investigation of short light pulses. A spectrum can thus be scanned step by step with full utilization of the transit time of the light pulse. In addition to light recovery, there is another advantage in that only one detector is used for multichannel analysis, thus eliminating calibration problems. In the annex to the report, emission spectres of different dye laser versions are presented and explained. (orig./GG) [de

  18. MHD flow in multichannel U-bends: Screening experiments and theoretical analysis

    International Nuclear Information System (INIS)

    Reimann, J.; Molokov, S.; Platnieks, I.; Platacis, E.

    1993-02-01

    In electrically coupled multichannel ducts with a U-bend geometry magnetohydrodynamic effects are expected to cause strongly ununiform distributions of flow rates Q i and pressure drops Δp i in the individual channels. A multichannel U-bend geometry is part of the KfK self-cooled Pb-17 Li blanket design (radial-toroidal-radial channels). However, inserts are proposed which isolate electrically the radial channels (not the toroidal ones). To investigate the multichannel effect (MCE), screening experiments were performed at LAS, Riga, with different flow channel geometries and channel numbers between 1 and 5 and using InGaSn as liquid metal. These experiments were carried out with either Δp i ∼const or Q i ∼const. Hartmann Numbers were varied between 0 and ∼1600 (maximum magnetic field strength: 4.1 T) and Interaction Parameters between 0 and 10000. For experiments with electrically conducting walls between the channels, the volume flow rates in the outer channels are significantly larger than those in the inner channels in the experiments with Δp i ∼const. For Q i ∼const., this tendency is reversed, with the highest pressure drop in the middle channel and the lowest in the outer channels. The flow geometry with electrically separated radial channels, similar to the KfK-design result in a fairly even flow rate and pressure drop distribution. The single channels behave approximately like electrically separated channels; no marked MCE occurrs. A theoretical analysis was carried out to describe the MCE for the multichannel U-bend with thin electrically conducting outside walls. This analysis is based on the Core Flow Approximation (CFA), valid for infinitely large Interaction Parameters and Hartmann Numbers. The theory predicts correctly all tendencies observed for the pressure measurements. Moreover, the method is able to describe in detail the flow structure in the toroidal channel. The most essential result is that the flow rate in the layer close to the

  19. Low-Power Architecture for an Optical Life Gas Analyzer

    Science.gov (United States)

    Pilgrim, Jeffrey; Vakhtin, Andrei

    2012-01-01

    Analog and digital electronic control architecture has been combined with an operating methodology for an optical trace gas sensor platform that allows very low power consumption while providing four independent gas measurements in essentially real time, as well as a user interface and digital data storage and output. The implemented design eliminates the cross-talk between the measurement channels while maximizing the sensitivity, selectivity, and dynamic range for each measured gas. The combination provides for battery operation on a simple camcorder battery for as long as eight hours. The custom, compact, rugged, self-contained design specifically targets applications of optical major constituent and trace gas detection for multiple gases using multiple lasers and photodetectors in an integrated package.

  20. Programmable calculator: alternative to minicomputer-based analyzer

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1979-01-01

    Described are a number of typical field and laboratory counting systems that use standard stand-alone multichannel analyzers (MCA) interfaced to a Hewlett-Packard Company (HP 9830) programmable calculator. Such systems can offer significant advantages in cost and flexibility over a minicomputyr-based system. Because most laboratories tend to accumulate MCA's over the years, the programmable calculator also offers an easy way to upgrade the laboratory while making optimum use of existing systems. Software programs are easily tailored to fit a variety of general or specific applications. The only disadvantage of the calculator vs a computer-based system is in speed of analyses; however, for most applications this handicap is minimal. Applications discussed give a brief overview of the power and flexibility of the MCA-calculator approach to automated counting and data reduction

  1. Multichannel approach to studying scalar resonances

    International Nuclear Information System (INIS)

    Krupa, D.; Surovtsev, Yu.S.

    1995-11-01

    The multichannel approach to the investigation of resonances is given in order to determine their quantum chromodynamical nature. The formula for the analytic continuation of the N-channel S-matrix to the unphysical sheets of the Riemann surface is given, which is a solution of the N-channel problem in that it enables a prediction of the coupled-process amplitudes on the uniformization plane of the S-matrix. The resonance representations by pairs of complex-conjugate clusters of poles and zeros on the Riemann surface are discussed. The concept of standard clusters as model-independent characteristics of the resonance is developed. 32 refs, 5 figs, 4 tabs

  2. Multichannel Baseband Processor for Wideband CDMA

    Science.gov (United States)

    Jalloul, Louay M. A.; Lin, Jim

    2005-12-01

    The system architecture of the cellular base station modem engine (CBME) is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA) signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.

  3. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) By Prabhakara

    Data.gov (United States)

    National Aeronautics and Space Administration — SMMR_ALW_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) data by Prabhakara.The Prabhakara Scanning...

  4. Architecture and Design of IP Broadcasting System Using Passive Optical Network

    Science.gov (United States)

    Ikeda, Hiroki; Sugawa, Jun; Ashi, Yoshihiro; Sakamoto, Kenichi

    We propose an IP broadcasting system architecture using passive optical networks (PON) utilizing the optical broadcast links of a PON with a downstream bandwidth allocation algorithm to provide a multi-channel IP broadcasting service to home subscribers on single broadband IP network infrastructures. We introduce the design and adaptation of the optical broadcast links to effectively broadcast video contents to home subscribers. We present a performance analysis that includes the downstream bandwidth utilization efficiency of the broadcast link and the bandwidth control of the IP broadcasting and Internet data. Our analysis and simulation results show that the proposed system can provide 100 HDTV channels to every user over fiber lines. We also propose an IPTV channel selection mechanism in an ONT by selecting a broadcast stream. We developed and evaluated a prototype that can achieve a 15-msec IPTV channel selection speed.

  5. Deconvolution of H-alpha profiles measured by Thompson scattering collecting optics

    International Nuclear Information System (INIS)

    LeBlanc, B.; Grek, B.

    1986-01-01

    This paper discusses that optically fast multichannel Thomson scattering optics that can be used for H-alpha emission profile measurement. A technique based on the fact that a particular volume element of the overall field of view can be seen by many channels, depending on its location, is discussed. It is applied to measurement made on PDX with the vertically viewing TVTS collecting optics (56 channels). The authors found that for this case, about 28 Fourier modes are optimum to represent the spatial behavior of the plasma emissivity. The coefficients for these modes are obtained by doing a least-square-fit to the data subjet to certain constraints. The important constraints are non-negative emissivity, the assumed up and down symmetry and zero emissivity beyond the liners. H-alpha deconvolutions are presented for diverted and circular discharges

  6. The impact of the multi-channel retail mix on online store choice: Does online experience matter?

    OpenAIRE

    Melis, Kristina; Campo, Katia; Breugelmans, Els; Lamey, Lien

    2015-01-01

    More and more grocery retailers are becoming multi-channel retailers, as they are opening an online alternative next to their traditional offline supermarkets. While the number of multi-channel grocery shoppers is also expanding at a fast growth rate, there are still large differences in online shopping frequency, and as a result, in the levels of experience with buying in the online grocery channel. This study wants to (i) identify the underlying drivers of online store choice and (ii) explo...

  7. Objective ARX Model Order Selection for Multi-Channel Human Operator Identification

    NARCIS (Netherlands)

    Roggenkämper, N; Pool, D.M.; Drop, F.M.; van Paassen, M.M.; Mulder, M.

    2016-01-01

    In manual control, the human operator primarily responds to visual inputs but may elect to make use of other available feedback paths such as physical motion, adopting a multi-channel control strategy. Hu- man operator identification procedures generally require a priori selection of the model

  8. Rectennas at optical frequencies: How to analyze the response

    International Nuclear Information System (INIS)

    Joshi, Saumil; Moddel, Garret

    2015-01-01

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun

  9. Rectennas at optical frequencies: How to analyze the response

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Saumil; Moddel, Garret, E-mail: moddel@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309-0425 (United States)

    2015-08-28

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  10. Rectennas at optical frequencies: How to analyze the response

    Science.gov (United States)

    Joshi, Saumil; Moddel, Garret

    2015-08-01

    Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.

  11. 3D Multi-Channel Networked Visualization System for National LambdaRail, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Multichannel virtual reality visualization is the future of complex simulation with a large number of visual channels rendered and transmitted over high-speed...

  12. ON SCALAR MESONS FROM THE COMBINED ANALYSIS OF MULTI-CHANNEL pi pi SCATTERING AND J/psi DECAYS

    Czech Academy of Sciences Publication Activity Database

    Surovtsev, Yu .S.; Bydžovský, Petr; Gutsche, T.; Lyubovitskij, V. E.

    2011-01-01

    Roč. 26, 3-4 (2011), s. 610-612 ISSN 0217-751X. [11th International Workshop on Meson Production , Properties and Interaction. Krakow, 10.06.2010-15.06.2010] R&D Projects: GA ČR GA202/08/0984 Institutional research plan: CEZ:AV0Z10480505 Keywords : Multi-channel pion-pion scattering * scalar-isoscalar resonances * multichannel analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.053, year: 2011

  13. Metasurface for multi-channel terahertz beam splitters and polarization rotators

    Science.gov (United States)

    Zang, XiaoFei; Gong, HanHong; Li, Zhen; Xie, JingYa; Cheng, QingQing; Chen, Lin; Shkurinov, Alexander P.; Zhu, YiMing; Zhuang, SongLin

    2018-04-01

    Terahertz beam splitters and polarization rotators are two typical devices with wide applications ranging from terahertz communication to system integration. However, they are faced with severe challenges in manipulating THz waves in multiple channels, which is desirable for system integration and device miniaturization. Here, we propose a method to design ultra-thin multi-channel THz beam splitters and polarization rotators simultaneously. The reflected beams are divided into four beams with nearly the same density under illumination of linear-polarized THz waves, while the polarization of reflected beams in each channel is modulated with a rotation angle or invariable with respect to the incident THz waves, leading to the multi-channel polarization rotator (multiple polarization rotation in the reflective channels) and beam splitter, respectively. Reflective metasurfaces, created by patterning metal-rods with different orientations on a polyimide film, were fabricated and measured to demonstrate these characteristics. The proposed approach provides an efficient way of controlling polarization of THz waves in various channels, which significantly simplifies THz functional devices and the experimental system.

  14. Analyzing Fourier Transforms for NASA DFRC's Fiber Optic Strain Sensing System

    Science.gov (United States)

    Fiechtner, Kaitlyn Leann

    2010-01-01

    This document provides a basic overview of the fiber optic technology used for sensing stress, strain, and temperature. Also, the document summarizes the research concerning speed and accuracy of the possible mathematical algorithms that can be used for NASA DFRC's Fiber Optic Strain Sensing (FOSS) system.

  15. Scene text detection by leveraging multi-channel information and local context

    Science.gov (United States)

    Wang, Runmin; Qian, Shengyou; Yang, Jianfeng; Gao, Changxin

    2018-03-01

    As an important information carrier, texts play significant roles in many applications. However, text detection in unconstrained scenes is a challenging problem due to cluttered backgrounds, various appearances, uneven illumination, etc.. In this paper, an approach based on multi-channel information and local context is proposed to detect texts in natural scenes. According to character candidate detection plays a vital role in text detection system, Maximally Stable Extremal Regions(MSERs) and Graph-cut based method are integrated to obtain the character candidates by leveraging the multi-channel image information. A cascaded false positive elimination mechanism are constructed from the perspective of the character and the text line respectively. Since the local context information is very valuable for us, these information is utilized to retrieve the missing characters for boosting the text detection performance. Experimental results on two benchmark datasets, i.e., the ICDAR 2011 dataset and the ICDAR 2013 dataset, demonstrate that the proposed method have achieved the state-of-the-art performance.

  16. Development of data acquisition and analysis software for multichannel detectors

    International Nuclear Information System (INIS)

    Chung, Y.

    1988-06-01

    This report describes the development of data acquisition and analysis software for Apple Macintosh computers, capable of controlling two multichannel detectors. With the help of outstanding graphics capabilities, easy-to-use user interface, and several other built-in convenience features, this application has enhanced the productivity and the efficiency of data analysis. 2 refs., 6 figs

  17. Mimicking multi-channel scattering with single-channel approaches

    OpenAIRE

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2009-01-01

    The collision of two atoms is an intrinsic multi-channel (MC) problem as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold 6Li and 87Rb atoms in the ground state and in the ...

  18. Multichannel tunable omnidirectional photonic band gaps of 1D ternary photonic crystal containing magnetized cold plasma

    Science.gov (United States)

    Awasthi, Suneet Kumar; Panda, Ranjita; Chauhan, Prashant Kumar; Shiveshwari, Laxmi

    2018-05-01

    By using the transfer matrix method, theoretical investigations have been carried out in the microwave region to study the reflection properties of multichannel tunable omnidirectional photonic bandgaps (OPBGs) based on the magneto-optic Faraday effect. The proposed one dimensional ternary plasma photonic crystal consists of alternate layers of quartz, magnetized cold plasma (MCP), and air. In the absence of an external magnetic field, the proposed structure possesses two OPBGs induced by Bragg scattering and is strongly dependent on the incident angle, the polarization of the incident light, and the lattice constant unlike to the single-negative gap and zero- n ¯ gap. Next, the reflection properties of OPBGs have been made tunable by the application of external magnetic field under right hand and left hand polarization configurations. The results of this manuscript may be utilized for the development of a new kind of tunable omnidirectional band stop filter with ability to completely stop single to multiple bands (called channels) of microwave frequencies in the presence of external static magnetic field under left-hand polarization and right-hand polarization configurations, respectively. Moreover, outcomes of this study open a promising way to design tunable magneto-optical devices, omnidirectional total reflectors, and planar waveguides of high Q microcavities as a result of evanescent fields in the MCP layer to allow propagation of light.

  19. The Role of Multichannel Marketing in Customer Retention and Loyalty: Study in Emerald Bank Customer in Indonesia

    OpenAIRE

    Ambarwati Ambarwati; Djumilah Zain Hadiwidjojo; Achmad Sudiro; Fatchur Rohman

    2015-01-01

    Attention on the relationship between customer retention, customer loyalty, and customer satisfaction that serves as "seed" of customer loyalty highlight the important factors for multichannel management. With the growing trends of people in investing their money in bank for securities need to be responded by the marketing department to create better marketing strategies. The purpose of this study is to examine and explain the effect of a multichannel bank on emerald customers retention   in ...

  20. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  1. Multichannel Baseband Processor for Wideband CDMA

    Directory of Open Access Journals (Sweden)

    Jim Lin

    2005-07-01

    Full Text Available The system architecture of the cellular base station modem engine (CBME is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.

  2. Multichannel Seismic Reflection - SCAR- Antarctic Penn. 1987-88 SDLS CD-ROM vol 27

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1987-88 in the Antarctica Peninsula region, by Petrobras, Brazil. The following...

  3. Multichannel Seismic Reflection - SCAR- Antarctic Penn. 1987-88 SDLS CD-ROM vol 26

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1987-88 in the Antarctica Peninsula region, by Petrobras, Brazil. The following...

  4. Personalized multi-channel headphone sound reproduction based on active noise cancellation

    NARCIS (Netherlands)

    Schobben, D.W.E.; Aarts, R.M.

    2005-01-01

    A system for headphone signal processing is discussed which gives a listener the same impression as listening to a multi-channel loudspeaker set-up. It is important that this processing is optimized for each individual listener. If this is not the case, large localization errors may occur. In the

  5. Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-09-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in WMNs. Previous studies have emphasized through- put maximization in such systems as the main design challenge and transmission power control treated as a secondary issue...

  6. Autonomous transmission power adaptation for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2008-09-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in WMNs. Previous studies have emphasized throughput maximization in such systems as the main design challenge and transmission power control treated as a secondary issue...

  7. Spatial aspects of sound quality - and by multichannel systems subjective assessment of sound reproduced by stereo

    DEFF Research Database (Denmark)

    Choisel, Sylvain

    the fidelity with which sound reproduction systems can re-create the desired stereo image, a laser pointing technique was developed to accurately collect subjects' responses in a localization task. This method is subsequently applied in an investigation of the effects of loudspeaker directivity...... on the perceived direction of panned sources. The second part of the thesis addresses the identification of auditory attributes which play a role in the perception of sound reproduced by multichannel systems. Short musical excerpts were presented in mono, stereo and several multichannel formats to evoke various...

  8. Development and implementation of own software for dosimetry multichannel film; Desarrollo e implementacion de un software propio para la dosimetria multicanal con pelicula radiocromica EBT2

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Feltstrom, D.; Reyes Garcia, R.; Luis Simon, F. J.; Carrasco Herrera, M.; Sanchez Carmona, G.; Herrador Cordoba, M.

    2013-07-01

    The objective of this work is to develop its own software for multichannel film dosimetry Radiochromic EBT2. Compare the results obtained with its use in multichannel and single-channel dosimetry. Check that the multi-channel dosimetry eliminates much of the artifacts caused by dirt, fingerprints, scratches, etc. Radiochromic in film and scanner devices. (Author)

  9. Multichannel Seismic Reflection Data - SCAR - Ross Sea - 1987, SDLS CD-ROM vol 13

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during the 1987 field season in the Ross Sea, Antarctica, by SEVMORGEOLOGIA, RUSSIA. The...

  10. Multichannel Seismic Reflection Data - SCAR - Ross Sea - 1980, SDLS CD-ROM vol 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data from four lines recorded during 1980 in the Ross Sea, Antarctica, by the Bundesanstalt fur...

  11. Multichannel Seismic Reflection Data - SCAR - Ross Sea - 1980, SDLS, CD-ROM vol 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data from seven lines recorded during 1980 in the Ross Sea, Antarctica, by the Bundesanstalt fur...

  12. Multichannel Seismic Reflection Data - SCAR - Ross Sea - 1989, SDLS CD-ROM vol 14

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1989 field season in the Ross Sea, Antarctica, by the SEVMORGEOLOGIA, RUSSIS. The...

  13. Multichannel Seismic Reflection Data - SCAR - Ross Sea 1980, SDLS, CD-ROM vol 5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data from eleven lines recorded during 1980 in the Ross Sea, Antarctica, by the Bundesanstalt fur...

  14. Multichannel Seismic Reflection Data - SCAR - Wilkes Land, 1983, SDLS CD-ROM vol 10

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data from thirteen lines recorded during 1983 off Wilkes Island, Antarctica, by the Japan National Oil...

  15. Multichannel Seismic Reflection Data - SCAR - Wilkes Land 1982, SDLS CD-ROM vol 11

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data from sixteen lines recorded during 1982 off Wilkes Island, Antarctica, by the Institut Francais du...

  16. Multichannel Seismic Reflection Data - SCAR - Weddell Sea - 1978, SDLS CD-ROM vol 19

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1978 in the Weddell Sea and Queen Maud Land, Antarctica, by the Bundesanstalt fur...

  17. Multichannel Seismic Reflection Data - SCAR, Ross Sea - 1982-1983, CD-ROM vol 9

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data from fourteen lines recorded during 1982 in the Ross Sea and Wilkes Island, Antarctica, by the...

  18. Multichannel Seismic Reflection Data - SCAR - Weddell Sea - 1978, SDLS CD-ROM vol 18

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1978 in the Weddell Sea and Queen Maud Land, Antarctica, by the Bundesanstalt fur...

  19. Multichannel Seismic Reflection Data - SCAR - Weddell Sea - 1978, SDLS CD-ROM vol 17

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1978 in the Weddell Sea and Queen Maud Land, Antarctica, by the Bundesanstalt fur...

  20. Multichannel Seismic Reflection Data - SCAR - Antarctic Peninsula - 1985, SDLS CD-ROM vol 16

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1985 field season along the north side of the Antarctic-Peninsula by the British...

  1. Multichannel Seismic Reflection Data - SCAR - Ross Sea 1982, SDLS CD-ROM vol 12

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data from seven lines recorded during 1982 in the Ross Sea, Antarctica, by the Institut Francais du...

  2. A new implementation of multichannel radiochromic film dosimetry; Una nueva implementacion del analisis multicanal para la dosimetria mediante peliculas radiocromicas

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Rodriguez, C.; Martin Martin, G.; Bermudez Luna, R.; Lopez Fernandez, A.; Tores Olombrada, M. V. de

    2014-07-01

    The aims of this paper are to carry out a new implementation of the multichannel radiochromic film dosimetry (Micke A, Lewis D, Yu X. Multichannel film dosimetry with nonuniformity correction. Med Phys 2011;38:2523-34), to quantify the variation in gamma index as compared to the single channel film dosimetry, and to determine if the procedure achieves similar results by means of a different scanner that the one used by Micke et al. Radiochromic EBT2 films and a Microtek 9000 XL scanner were used. Our procedure simplifies the system calibration splitting it into two factors, manufactured batch and digitalization specific. Absorbed dose spatial distributions from an open radiotherapy beam without any modulation and 20 IMRT treatments were determined. Their gamma index maps were calculated and a comparison of the results from single channel and multichannel dosimetry was performed. A 5% mean increase in concordance was obtained by using the multichannel film dosimetry. Our results are similar to those reported by Micke et al. even though we are using a different scanner. (Author)

  3. Calibration of gamma-ray detectors using Gaussian photopeak fitting in the multichannel spectra with a LabVIEW-based digital system

    Science.gov (United States)

    Schlattauer, Leo; Parali, Levent; Pechousek, Jiri; Sabikoglu, Israfil; Celiktas, Cuneyt; Tektas, Gozde; Novak, Petr; Jancar, Ales; Prochazka, Vit

    2017-09-01

    This paper reports on the development of a gamma-ray spectroscopic system for the (i) recording and (ii) processing of spectra. The utilized data read-out unit consists of a PCI digital oscilloscope, personal computer and LabVIEW™ programming environment. A pulse-height spectra of various sources were recorded with two NaI(Tl) detectors and analyzed, demonstrating the proper usage of the detectors. A multichannel analyzer implements the Gaussian photopeak fitting. The presented method provides results which are in compliance to the ones taken from commercial spectroscopy systems. Each individual hardware or software unit can be further utilized in different spectrometric user-systems. An application of the developed system for research and teaching purposes regarding the design of digital spectrometric systems has been successfully tested at the laboratories of the Department of Experimental Physics.

  4. The Single- and Multichannel Audio Recordings Database (SMARD)

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Jesper Rindom; Jensen, Søren Holdt

    2014-01-01

    A new single- and multichannel audio recordings database (SMARD) is presented in this paper. The database contains recordings from a box-shaped listening room for various loudspeaker and array types. The recordings were made for 48 different configurations of three different loudspeakers and four...... different microphone arrays. In each configuration, 20 different audio segments were played and recorded ranging from simple artificial sounds to polyphonic music. SMARD can be used for testing algorithms developed for numerous application, and we give examples of source localisation results....

  5. Simultaneous Detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a Very Low Level Using Simultaneous Enrichment Broth and Multichannel SPR Biosensor.

    Science.gov (United States)

    Zhang, Xiaoguang; Tsuji, Sachiko; Kitaoka, Hayato; Kobayashi, Hiroshi; Tamai, Mitsuru; Honjoh, Ken-Ichi; Miyamoto, Takahisa

    2017-10-01

    Detection of foodborne pathogens at very low levels is still a challenge. A custom-built multichannel surface plasmon resonance (SPR) biosensor and simultaneous enrichment broth (SEB) were used to develop a simultaneous detection method for 3 important foodborne pathogens, Escherichia coli O157:H7 (O157:H7), Salmonella enteritidis, and Listeria monocytogenes, at a very low level. These 3 foodborne pathogens at a very low level (14, 6, and 28 CFU/25 g (mL) for O157:H7, S. enteritidis, and L. monocytogenes, respectively) were inoculated in SEB and incubated at 37 ˚C for 24 h. Sample prepared from the simultaneous enrichment culture was analyzed using the multichannel SPR biosensor and sensor chip immobilized with polyclonal antibodies specific to each of the target pathogens. O157:H7, S. enteritidis, and L. monocytogenes in chicken were detected simultaneously at an inoculum dose of 14, 6, and 28 CFU/25 g, respectively. Our method using a custom-built multichannel SPR biosensor and enrichment in SEB is expected as a rapid and simultaneous detection method for low levels of O157:H7, S. enteritidis, and L. monocytogenes in food. Our method is expected as a rapid and simultaneous detection method for pathogens at very low levels. It has great potential for safety control of food and microbiological detection applications. © 2017 Institute of Food Technologists®.

  6. Control of a pulse height analyzer using an RDX workstation

    International Nuclear Information System (INIS)

    Montelongo, S.; Hunt, D.N.

    1984-12-01

    The Nuclear Chemistry Division of Lawrence Livermore National laboratory is in the midst of upgrading its radiation counting facilities to automate data acquisition and quality control. This upgrade requires control of a pulse height analyzer (PHA) from an interactive LSI-11/23 workstation running RSX-11M. The PHA is a micro-computer based multichannel analyzer system providing data acquisition, storage, display, manipulation and input/output from up to four independent acquisition interfaces. Control of the analyzer includes reading and writing energy spectra, issuing commands, and servicing device interrupts. The analyzer communicates to the host system over a 9600-baud serial line using the Digital Data Communications link level Protocol (DDCMP). We relieved the RSX workstation CPU from the DDCMP overhead by implementing a DEC compatible in-house designed DMA serial line board (the ISL-11) to communicate with the analyzer. An RSX I/O device driver was written to complete the path between the analyzer and the RSX system by providing the link between the communication board and an application task. The I/O driver is written to handle several ISL-11 cards all operating in parallel thus providing support for control of multiple analyzers from a single workstation. The RSX device driver, its design and use by application code controlling the analyzer, and its operating environment will be discussed

  7. Autonomous miniaturised device with USB interface for pulse height analysis and multi-channel scaling (TUKAN-8K-USB)

    International Nuclear Information System (INIS)

    Guzik, Z.; Borsuk, S.; Plominski, M.; Traczyk, K.

    2005-01-01

    We present autonomous a 8K-channel miniature device designed for spectroscopy or intensity vs. time measurements. The device (TUKAN-8K-USB) is based on the USB interface, and is contained in a screened separate box - it can be proved either directly from the USB port or from an external DC source (wall adapter of battery). The device may work in two independent operational modes: Multi-Channel Analysis (MCA) and Multi-Channel Scaling (MCS). The crucial MCA component - Peak detect and Hold circuitry - is featuring a novel architecture based on a diamond transistor. Its analog stage can accept analog pulses with front edges down to 100 ns and has a differential linearity below 0.5% (full scale sliding scale averaging). Automatic stops on count in Region-Of-Interest (ROI) and on preset live or real time are implemented. The MCS works at medium speed counting rates (up to 8 MHz), with preset dwell time, number of channels and multi-sweep mode. Each these parameters can also be controlled externally. Digital interfacing is based on four used configurable logical I/O lines. A single CYCLONE EP1C3 Altera FPGA provides all control functions. The USB communication is based on FYDI FIFO controller. The analyzer is equipped with advanced, user-friendly software, which is subjected of another publication. )author)

  8. Multi-channel non-invasive fetal electrocardiography detection using wavelet decomposition

    Science.gov (United States)

    Almeida, Javier; Ruano, Josué; Corredor, Germán.; Romo-Bucheli, David; Navarro-Vargas, José Ricardo; Romero, Eduardo

    2017-11-01

    Non-invasive fetal electrocardiography (fECG) has attracted the medical community because of the importance of fetal monitoring. However, its implementation in clinical practice is challenging: the fetal signal has a low Signal- to-Noise-Ratio and several signal sources are present in the maternal abdominal electrocardiography (AECG). This paper presents a novel method to detect the fetal signal from a multi-channel maternal AECG. The method begins by applying filters and signal detrending the AECG signals. Afterwards, the maternal QRS complexes are identified and subtracted. The residual signals are used to detect the fetal QRS complex. Intervals of these signals are analyzed by using a wavelet decomposition. The resulting representation feds a previously trained Random Forest (RF) classifier that identifies signal intervals associated to fetal QRS complex. The method was evaluated on a public available dataset: the Physionet2013 challenge. A set of 50 maternal AECG records were used to train the RF classifier. The evaluation was carried out in signals intervals extracted from additional 25 maternal AECG. The proposed method yielded an 83:77% accuracy in the fetal QRS complex classification task.

  9. On multichannel film dosimetry with channel-independent perturbations

    International Nuclear Information System (INIS)

    Méndez, I.; Peterlin, P.; Hudej, R.; Strojnik, A.; Casar, B.

    2014-01-01

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  10. On multichannel film dosimetry with channel-independent perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, I., E-mail: nmendez@onko-i.si; Peterlin, P.; Hudej, R.; Strojnik, A.; Casar, B. [Department of Medical Physics, Institute of Oncology Ljubljana, Zaloška cesta 2, Ljubljana 1000 (Slovenia)

    2014-01-15

    Purpose: Different multichannel methods for film dosimetry have been proposed in the literature. Two of them are the weighted mean method and the method put forth byMicke et al. [“Multichannel film dosimetry with nonuniformity correction,” Med. Phys. 38, 2523–2534 (2011)] and Mayer et al. [“Enhanced dosimetry procedures and assessment for EBT2 radiochromic film,” Med. Phys. 39, 2147–2155 (2012)]. The purpose of this work was to compare their results and to develop a generalized channel-independent perturbations framework in which both methods enter as special cases. Methods: Four models of channel-independent perturbations were compared: weighted mean, Micke–Mayer method, uniform distribution, and truncated normal distribution. A closed-form formula to calculate film doses and the associated type B uncertainty for all four models was deduced. To evaluate the models, film dose distributions were compared with planned and measured dose distributions. At the same time, several elements of the dosimetry process were compared: film type EBT2 versus EBT3, different waiting-time windows, reflection mode versus transmission mode scanning, and planned versus measured dose distribution for film calibration and for γ-index analysis. The methods and the models described in this study are publicly accessible through IRISEU. Alpha 1.1 ( http://www.iriseu.com ). IRISEU. is a cloud computing web application for calibration and dosimetry of radiochromic films. Results: The truncated normal distribution model provided the best agreement between film and reference doses, both for calibration and γ-index verification, and proved itself superior to both the weighted mean model, which neglects correlations between the channels, and the Micke–Mayer model, whose accuracy depends on the properties of the sensitometric curves. With respect to the selection of dosimetry protocol, no significant differences were found between transmission and reflection mode scanning

  11. Multiple capillary biochemical analyzer

    Science.gov (United States)

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  12. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system.

    Science.gov (United States)

    Peng, Feng; Li, Chuang; Yang, Jun; Hou, Chengcheng; Zhang, Haoliang; Yu, Zhangjun; Yuan, Yonggui; Li, Hanyang; Yuan, Libo

    2017-07-10

    We propose a dual-channel measurement system for evaluating the optical path symmetry of an interferometric fiber optic gyro (IFOG) coil. Utilizing a bidirectional distributed polarization measurement system, the forward and backward transmission performances of an IFOG coil are characterized simultaneously by just a one-time measurement. The simple but practical configuration is composed of a bidirectional Mach-Zehnder interferometer and multichannel transmission devices connected to the IFOG coil under test. The static and dynamic temperature results of the IFOG coil reveal that its polarization-related symmetric properties can be effectively obtained with high accuracy. The optical path symmetry investigation is highly beneficial in monitoring and improving the winding technology of an IFOG coil and reducing the nonreciprocal effect of an IFOG.

  13. BOA, Beam Optics Analyzer A Particle-In-Cell Code

    International Nuclear Information System (INIS)

    Bui, Thuc

    2007-01-01

    The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.

  14. Modeling and optimization of the multichannel spark discharge

    International Nuclear Information System (INIS)

    Zhang Zhi-Bo; Wu Yun; Jia Min; Song Hui-Min; Li Ying-Hong; Sun Zheng-Zhong

    2017-01-01

    This paper reports a novel analytic model of this multichannel spark discharge, considering the delay time in the breakdown process, the electric transforming of the discharge channel from a capacitor to a resistor induced by the air breakdown, and the varying plasma resistance in the discharge process. The good agreement between the experimental and the simulated results validated the accuracy of this model. Based on this model, the influence of the circuit parameters on the maximum discharge channel number (MDCN) is investigated. Both the input voltage amplitude and the breakdown voltage threshold of each discharge channel play a critical role. With the increase of the input voltage and the decrease of the breakdown voltage, the MCDN increases almost linearly. With the increase of the discharge capacitance, the MDCN first rises and then remains almost constant. With the increase of the circuit inductance, the MDCN increases slowly but decreases quickly when the inductance increases over a certain value. There is an optimal value of the capacitor connected to the discharge channel corresponding to the MDCN. Finally, based on these results, to shorten the discharge time, a modified multichannel discharge circuit is developed and validated by the experiment. With only 6-kV input voltage, 31-channels discharge is achieved. The breakdown voltage of each electrode gap is larger than 3 kV. The modified discharge circuit is certain to be widely used in the PSJA flow control field. (paper)

  15. Multichannel interictal spike activity detection using time-frequency entropy measure.

    Science.gov (United States)

    Thanaraj, Palani; Parvathavarthini, B

    2017-06-01

    Localization of interictal spikes is an important clinical step in the pre-surgical assessment of pharmacoresistant epileptic patients. The manual selection of interictal spike periods is cumbersome and involves a considerable amount of analysis workload for the physician. The primary focus of this paper is to automate the detection of interictal spikes for clinical applications in epilepsy localization. The epilepsy localization procedure involves detection of spikes in a multichannel EEG epoch. Therefore, a multichannel Time-Frequency (T-F) entropy measure is proposed to extract features related to the interictal spike activity. Least squares support vector machine is used to train the proposed feature to classify the EEG epochs as either normal or interictal spike period. The proposed T-F entropy measure, when validated with epilepsy dataset of 15 patients, shows an interictal spike classification accuracy of 91.20%, sensitivity of 100% and specificity of 84.23%. Moreover, the area under the curve of Receiver Operating Characteristics plot of 0.9339 shows the superior classification performance of the proposed T-F entropy measure. The results of this paper show a good spike detection accuracy without any prior information about the spike morphology.

  16. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex

    Directory of Open Access Journals (Sweden)

    Cynthia Kay Overstreet

    2016-12-01

    Full Text Available The addition of tactile and proprioceptive feedback to neuroprosthetic limbs is expected to significantly improve the control of these devices. Intracortical microstimulation (ICMS of somatosensory cortex is a promising method of delivering this sensory feedback. To date, the main focus of somatosensory ICMS studies has been to deliver discriminable signals, corresponding to varying intensity, to a single location in cortex. However, multiple independent and simultaneous streams of sensory information will need to be encoded by ICMS to provide functionally relevant feedback for a neuroprosthetic limb (e.g. encoding contact events and pressure on multiple digits.In this study, we evaluated the ability of an awake, behaving non-human primate (Macaca mulatta to discriminate ICMS stimuli delivered on multiple electrodes spaced within somatosensory cortex. We delivered serial stimulation on single electrodes to evaluate the discriminability of sensations corresponding to ICMS of distinct cortical locations. Additionally, we delivered trains of multichannel stimulation, derived from a tactile sensor, synchronously across multiple electrodes. Our results indicate that discrimination of multiple ICMS stimuli is a challenging task, but that discriminable sensory percepts can be elicited by both single and multichannel ICMS on electrodes spaced within somatosensory cortex.

  17. How to evaluate multichannel communication packages: a case study on mortgage information

    NARCIS (Netherlands)

    Herijgers, M.L.C.; Pander Maat, H.L.W.

    2015-01-01

    Complex decision-making is often supported not by single messages but by multichannel communication packages that need to be evaluated in their own right. The purpose of this paper is to present a new analytic approach to this package evaluation task combining textual analysis, functionalanalysis

  18. A multi-channel data acquisition system with high resolution based on microcomputer

    International Nuclear Information System (INIS)

    An Qi; Wang Yanfang; Xing Tao

    1995-01-01

    The paper introduces the principle of a multi-channel data acquisition system with high resolution based on the microcomputer.The system consists of five parts.They are analog-to-digital converter, data buffer area, trigger logic circuit, control circuit, and digital-to-analog converter

  19. Range based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-08-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in Wireless Mesh Networks (WMNs). In this paper, researchers present a range based dynamic power control for MRMC WMNs. First, WMN is represented as a set of disjoint Unified...

  20. Analyzing the Formation, Physicochemical, and Optical Properties of Aging Biomass Burning Aerosol Using an Indoor Smog Chamber

    Science.gov (United States)

    Smith, D. M.; Fiddler, M. N.; Bililign, S.; Spann, M.

    2017-12-01

    Biomass burning (BB) is recognized as one of the largest sources of absorbing aerosols in the atmosphere and significantly influences the radiative properties of the atmosphere. The chemical composition and physical properties of particles evolve during their atmospheric lifetime due to condensation, oxidation reactions, etc., which alters their optical properties. To this end, an indoor smog chamber was constructed to study aging BB aerosol in a laboratory setting. Injections to the chamber, including NOx, O3, and various biogenic and anthropogenic VOCs, can simulate a variety of atmospheric conditions. These components and some of their oxidation products are monitored during the aging process. A tube furnace is used for combustion of biomass to be introduced to the chamber, while size distributions are taken as the aerosol ages. Online measurements of optical properties are determined using a Cavity Ring-down Spectrometry and Integrating Nephelometry system. Chemical properties are measured from samples captured on filters and analyzed using Ultra-Performance Liquid Chromatography coupled in-line to both a Diode Array Detector and High-Resolution Time-of-Flight Mass Spectrometer equipped with electrospray ionization. The measured changes in the optical properties as a function of particle size, aging, and chemical properties are presented for fuel sources used in Africa.

  1. Outer Electrospun Polycaprolactone Shell Induces Massive Foreign Body Reaction and Impairs Axonal Regeneration through 3D Multichannel Chitosan Nerve Guides

    Directory of Open Access Journals (Sweden)

    Sven Duda

    2014-01-01

    Full Text Available We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT. The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.

  2. Outer electrospun polycaprolactone shell induces massive foreign body reaction and impairs axonal regeneration through 3D multichannel chitosan nerve guides.

    Science.gov (United States)

    Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten

    2014-01-01

    We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts.

  3. Multichannel electrogastrography under a magnifying glass--an in-depth study on reproducibility of fed state electrogastrograms.

    Science.gov (United States)

    Krusiec-Swidergoł, B; Jonderko, K

    2008-06-01

    We checked on reproducibility of parameters of a multichannel electrogastrogram in adults after intake of typical, applied in electrogastrography, test meals. Recordings of multichannel electrogastrograms were accomplished in four blocks comprising 18 subjects (nine healthy volunteers and nine patients with functional GI disorders) each. Every subject had two examinations taken 1-2 days apart, and a third one was accomplished at least 2 weeks before or after the two other sessions. The registration involved a 30-min fasted and a 2-h postprandial period after one of the meal stimuli tested within a given block: 400 mL water, 400 g yoghurt (378 kcal), a scrambled eggs sandwich (370 kcal), a pancake (355 kcal). From among the parameters reflecting the propagation of the gastric slow waves, the average percentage of slow wave coupling (APSWC) exhibited a good (coefficient of variation for paired examinations CV(p) < or = 10%) to moderate (10 < CV(p) < or = 30%) reproducibility. On the other hand, the reproducibility of the maximum dominant frequency difference and the spatial dominant power difference was found to be unsatisfactory. The reproducibility of the multichannel electrogastrographic parameters did not differ between healthy volunteers and patients with functional GI disorders. Gender or the kind of a test meal did not affect the reproducibility of the electrogastrographic parameters either. The medium-term reproducibility was not any worse than the short-term one. From among the parameters of a multichannel electrogastrogram intended to quantify the propagation of slow waves, only the APSWC offers a reproducibility potentially good enough for clinical applications.

  4. Optical fibre multi-parameter sensing with secure cloud based signal capture and processing

    Science.gov (United States)

    Newe, Thomas; O'Connell, Eoin; Meere, Damien; Yuan, Hongwei; Leen, Gabriel; O'Keeffe, Sinead; Lewis, Elfed

    2016-05-01

    Recent advancements in cloud computing technologies in the context of optical and optical fibre based systems are reported. The proliferation of real time and multi-channel based sensor systems represents significant growth in data volume. This coupled with a growing need for security presents many challenges and presents a huge opportunity for an evolutionary step in the widespread application of these sensing technologies. A tiered infrastructural system approach is adopted that is designed to facilitate the delivery of Optical Fibre-based "SENsing as a Service- SENaaS". Within this infrastructure, novel optical sensing platforms, deployed within different environments, are interfaced with a Cloud-based backbone infrastructure which facilitates the secure collection, storage and analysis of real-time data. Feedback systems, which harness this data to affect a change within the monitored location/environment/condition, are also discussed. The cloud based system presented here can also be used with chemical and physical sensors that require real-time data analysis, processing and feedback.

  5. A Low-cost Multi-channel Analogue Signal Generator

    CERN Document Server

    Muller, F; Shen, W; Stamen, R

    2009-01-01

    A scalable multi-channel analogue signal generator is presented. It uses a commercial low-cost graphics card with multiple outputs in a standard PC as signal source. Each color signal serves as independent channel to generate an analogue signal. A custom-built external PCB was developed to adjust the graphics card output voltage levels for a specific task, which needed differential signals. The system furthermore comprises a software package to program the signal shape. The implementation of the signal generator is presented as well as an application where it was successfully utilized.

  6. Multiple multichannel spectra acquisition and processing system with intelligent interface

    International Nuclear Information System (INIS)

    Chen Ying; Wei Yixiang; Qu Jianshi; Zheng Futang; Xu Shengkui; Xie Yuanming; Qu Xing; Ji Weitong; Qiu Xuehua

    1986-01-01

    A Multiple multichannel spectra acquisition and processing system with intelligent interface is described. Sixteen spectra measured with various lengths, channel widths, back biases and acquisition times can be identified and collected by the intelligent interface simultaneously while the connected computer is doing data processing. The execution time for the Ge(Li) gamma-ray spectrum analysis software on IBM PC-XT is about 55 seconds

  7. Asymptotically exact solution of the multi-channel resonant-level model

    International Nuclear Information System (INIS)

    Zhang Guangming; Su Zhaobin; Yu Lu.

    1994-01-01

    An asymptotically exact partition function of the multi-channel resonant-level model is obtained through Tomonaga-Luttinger bosonization. A Fermi-liquid vs. non-Fermi-liquid transition, resulting from a competition between the Kondo and X-ray edge physics, is elucidated explicitly via the renormalization group theory. In the strong-coupling limit, the model is renormalized to the Toulouse limit. (author). 20 refs, 1 fig

  8. A multichannel bioimpedance monitor for full-body blood flow monitoring

    Czech Academy of Sciences Publication Activity Database

    Vondra, Vlastimil; Jurák, Pavel; Viščor, Ivo; Halámek, Josef; Leinveber, P.; Matějková, M.; Soukup, L.

    2016-01-01

    Roč. 61, č. 1 (2016), s. 107-118 ISSN 0013-5585 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA ČR GAP102/12/2034 Institutional support: RVO:68081731 Keywords : bioimpedance * blood flow * cardiac output * multichannel measurement * non- invasive measurements * pulse wave velocity Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 0.915, year: 2016

  9. Multichannel perimetric alterations in systemic lupus erythematosus treated with hydroxychloroquine

    Directory of Open Access Journals (Sweden)

    David P. Piñero

    2017-04-01

    Some achromatic and color vision alterations may be present in SLE, especially when treated with hydroxychloroquine. The sensitivity losses detected in the chromatic channels in the central zone of the visual field were consistent with the results of the FM 100 Hue color test. Likewise, the multichannel perimetry detected sensitivity losses in the parafoveal area for both chromatic channels, especially for the blue-yellow.

  10. Improving Beamline X-ray Optics by Analyzing the Damage to Crystallographic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Zientek, John; Maj, Jozef; Navrotski, Gary; Srajer, George; Harmata, Charles; Maj, Lech; Lazarski, Krzysztof; Mikula, Stanislaw

    2015-01-02

    The mission of the X-ray Characterization Laboratory in the X-ray Science Division (XSD) at the Advanced Photon Source (APS) is to support both the users and the Optics Fabrication Facility that produces high performance optics for synchrotron X-ray beamlines. The Topography Test Unit (TTU) in the X-ray Lab has been successfully used to characterize diffracting crystals and test monochromators by quantifying residual surface stresses. This topographic method has also been adapted for testing standard X-ray mirrors, characterizing concave crystal optics and in principle, can be used to visualize residual stresses on any optic made from single crystalline material. The TTU has been instrumental in quantitatively determining crystal mounting stresses which are mechanically induced by positioning, holding, and cooling fixtures. It is this quantitative aspect that makes topography so useful since the requirements and responses for crystal optics and X-ray mirrors are quite different. In the case of monochromator crystals, even small residual or induced stresses, on the order of tens of kPa, can cause detrimental distortions to the perfect crystal rocking curves. Mirrors, on the other hand, are much less sensitive to induced stresses where stresses that are an order of magnitude greater can be tolerated. This is due to the fact that the surface rather than the lattice-spacing determines a mirror’s performance. For the highly sensitive crystal optics, it is essential to measure the in-situ rocking curves using topographs as mounting fixtures are adjusted. In this way, high heat-load monochromator crystals can be successfully mounted with minimum stress. Topographical analysis has been shown to be a highly effective method to visualize and quantify the distribution of stresses, to help identify methods that mitigate stresses, and most notably to improve diffractive crystal optic rocking curves.

  11. Optimization of multi-channel neutron focusing guides for extreme sample environments

    International Nuclear Information System (INIS)

    Di Julio, D D; Lelièvre-Berna, E; Andersen, K H; Bentley, P M; Courtois, P

    2014-01-01

    In this work, we present and discuss simulation results for the design of multichannel neutron focusing guides for extreme sample environments. A single focusing guide consists of any number of supermirror-coated curved outer channels surrounding a central channel. Furthermore, a guide is separated into two sections in order to allow for extension into a sample environment. The performance of a guide is evaluated through a Monte-Carlo ray tracing simulation which is further coupled to an optimization algorithm in order to find the best possible guide for a given situation. A number of population-based algorithms have been investigated for this purpose. These include particle-swarm optimization, artificial bee colony, and differential evolution. The performance of each algorithm and preliminary results of the design of a multi-channel neutron focusing guide using these methods are described. We found that a three-channel focusing guide offered the best performance, with a gain factor of 2.4 compared to no focusing guide, for the design scenario investigated in this work.

  12. Galvanically Decoupled Current Source Modules for Multi-Channel Bioimpedance Measurement Systems

    Directory of Open Access Journals (Sweden)

    Roman Kusche

    2017-10-01

    Full Text Available Bioimpedance measurements have become a useful technique in the past several years in biomedical engineering. Especially, multi-channel measurements facilitate new imaging and patient monitoring techniques. While most instrumentation research has focused on signal acquisition and signal processing, this work proposes the design of an excitation current source module that can be easily implemented in existing or upcoming bioimpedance measurement systems. It is galvanically isolated to enable simultaneous multi-channel bioimpedance measurements with a very low channel-coupling. The system is based on a microcontroller in combination with a voltage-controlled current source circuit. It generates selectable sinusoidal excitation signals between 0.12 and 1.5 mA in a frequency range from 12 to 250 kHz, whereas the voltage compliance range is ±3.2 V. The coupling factor between two current sources, experimentally galvanically connected with each other, is measured to be less than −48 dB over the entire intended frequency range. Finally, suggestions for developments in the future are made.

  13. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    KAUST Repository

    Yong Wan,

    2009-11-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist\\'s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.

  14. Multichannel euv spectroscopy of high temperature plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities

  15. Multi-channel electrical impedance tomography for regional tissue hydration monitoring

    International Nuclear Information System (INIS)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-01-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ∼35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in

  16. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    Science.gov (United States)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical

  17. Technical features of the system used to perform multichannel urethral pressure profilometry

    NARCIS (Netherlands)

    Messelink, E. J.; Dobbe, I.; Kools, C.; Dabhoiwala, N. F.; Dijkhuizen, T.; Schneider, P.; Lettinga, K. P.; Kurth, K.

    1997-01-01

    Multichannel Urethral Pressure Profilometry (MCUPP) is a method used to get more information on the pressure distribution within the female urethra. This information may be of value in the diagnostic work up of women with urinary incontinence. Different systems are used for this technique. The pump

  18. Exploiting the opportunities of Internet and multi-channel pricing : An exploratory research

    NARCIS (Netherlands)

    Sotgiu, Francesca; Ancarani, Fabio

    2004-01-01

    Smart firms are not worried about the impact of the Internet on pricing, but realise that they have the unique opportunity to exploit new options and improve their marketing performance. Multi-channel pricing is one of the most interesting opportunities firms can exploit in the digital economy.

  19. Analysis and compensation of synchronous measurement error for multi-channel laser interferometer

    International Nuclear Information System (INIS)

    Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong

    2017-01-01

    Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s −1 , the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay. (paper)

  20. Randomised multichannel singular spectrum analysis of the 20th century climate data

    Directory of Open Access Journals (Sweden)

    Teija Seitola

    2015-12-01

    Full Text Available In this article, we introduce a new algorithm called randomised multichannel singular spectrum analysis (RMSSA, which is a generalisation of the traditional multichannel singular spectrum analysis (MSSA into problems of arbitrarily large dimension. RMSSA consists of (1 a dimension reduction of the original data via random projections, (2 the standard MSSA step and (3 a recovery of the MSSA eigenmodes from the reduced space back to the original space. The RMSSA algorithm is presented in detail and additionally we show how to integrate it with a significance test based on a red noise null-hypothesis by Monte-Carlo simulation. Finally, RMSSA is applied to decompose the 20th century global monthly mean near-surface temperature variability into its low-frequency components. The decomposition of a reanalysis data set and two climate model simulations reveals, for instance, that the 2–6 yr variability centred in the Pacific Ocean is captured by all the data sets with some differences in statistical significance and spatial patterns.

  1. Analysis and compensation of synchronous measurement error for multi-channel laser interferometer

    Science.gov (United States)

    Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong

    2017-05-01

    Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s-1, the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay.

  2. Schwinger variational principle in the nuclear two-body problem and multichannel theory

    International Nuclear Information System (INIS)

    Zubarev, A.L.; Podkopaev, A.P.

    1978-01-01

    The aim of the investigation is to study the Schwinger variational principle in the nuclear two-body problem and the multichannel theory. An approach is proposed to problems of the potential scattering based on the substitution of the exact potential operator V by the finite rank operator Vsup((n)) with which the dynamic equations are solved exactly. The functionals obtained for observed values coincide with corresponding expressions derived by the Schwinger variational principle with the set of test functions. The determination of the Schwinger variational principle is given. The method is given for finding amplitude of the double-particle scattering with the potential Vsup((n)). The corresponding amplitudes are constructed within the framework of the multichannel potential model. Interpolation formula for determining amplitude, which describes with high accuracy a process of elastic scattering for any energies, is obtained. On the basis of the above method high-energy amplitude may be obtained within the range of small and large scattering angles

  3. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-01-01

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO 2 ) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO 2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO 2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P 2 and tHb

  4. Photoabsorption Spectrum and Optically Forbidden Transitions of Krypton by Electron Impact

    Institute of Scientific and Technical Information of China (English)

    苑震生; 朱林繁; 李文斌; 成华东; 徐克尊

    2002-01-01

    A high resolution fast electron energy loss spectrometer with multi-channel energy analysis was employed. The maxima just above the threshold 4p-1(2P1/2), which is regarded as a shape resonance, was obtained at 16.3 eV. The optically forbidden excitations of 4s electron were measured for the first time, and the energy positions are 23.75 eV(4s-15s), 25.66 eV (4s-16s/4d) and 26.60 eV(4s-17s/5d).

  5. The Performance of Reflecting Multichannel Collimators as a Neutron Beam Filter and Polarizer

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Passell, L.; Stecher-Rasmussen, F.

    1963-01-01

    Summarizes the results obtained to date from a study of the properties of reflecting multi-channel collimators. The measurements have not yet been completed but enough information is available to give an indication of the capabilities of the system....

  6. Multichannel Seismic Reflection Data - SCAR - Antarctic Peninsula 1987-88, SDLS CD-ROM vol 24

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1987-88 in the Antarctic Peninsula, Antarctica, by the Japan National Oil...

  7. Multichannel Seismic Reflection Data - SCAR - Antarctic Peninsula - 1988-1989, SDLS CD-ROM vol 25

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1988-89 in the Antarctic Peninsula, Antarctica, by the Japan National Oil...

  8. Crosstalk in 1.5-μm InGaAsP optical amplifiers

    DEFF Research Database (Denmark)

    Lassen, H. E.; Hansen, Peter Bukhave; Stubkjær, Kristian

    1988-01-01

    A dynamical model for multichannel amplification by near-traveling-wave optical amplifiers is presented, and results on crosstalk induced by either amplitude modulation or frequency modulation are given. The mechanisms influencing the crosstalk most are the residual facet reflectivities...... and the detuning of the channels relative to the amplifier Fabry-Perot spectrum. Calculations of worst-case crosstalk levels are included. The model is verified experimentally for amplitude-modulated signals, and crosstalk levels up to -7 dB are reported. For frequency-modulated signals, estimated crosstalk...

  9. On the relationship between multi-channel envelope and temporal fine structure

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel; Decorsiere, Remi Julien Blaise; Dau, Torsten

    2011-01-01

    The envelope of a signal is broadly defined as the slow changes in time of the signal, where as the temporal fine structure (TFS) are the fast changes in time, i.e. the carrier wave(s) of the signal. The focus of this paper is on envelope and TFS in multi-channel systems. We discuss the differenc...

  10. Processing and Analysis of Multichannel Extracellular Neuronal Signals: State-of-the-art and Challenges

    Directory of Open Access Journals (Sweden)

    Mufti eMahmud

    2016-06-01

    Full Text Available In recent years multichannel neuronal signal acquisition systems have allowed scientists to focus on research questions which were otherwise impossible. They act as a powerful means to study brain (dysfunctions in in-vivo and in in-vitro animal models. Typically, each session of electrophysiological experiments with multichannel data acquisition systems generate large amount of raw data. For example, a 128 channel signal acquisition system with 16 bits A/D conversion and 20 kHz sampling rate will generate approximately 17 GB data per hour (uncompressed. This poses an important and challenging problem of inferring conclusions from the large amounts of acquired data. Thus, automated signal processing and analysis tools are becoming a key component in neuroscience research, facilitating extraction of relevant information from neuronal recordings in a reasonable time. The purpose of this review is to introduce the reader to the current state-of-the-art of open-source packages for (semiautomated processing and analysis of multichannel extracellular neuronal signals (i.e., neuronal spikes, local field potentials, electroencephalogram, etc., and the existing Neuroinformatics infrastructure for tool and data sharing. The review is concluded by pinpointing some major challenges that are to be faced, which include the development of novel benchmarking techniques, cloud-based distributed processing and analysis tools, as well as defining novel means to share and standardize data.

  11. [Analysis of the Muscle Fatigue Based on Band Spectrum Entropy of Multi-channel Surface Electromyography].

    Science.gov (United States)

    Liu, Jian; Zou, Renling; Zhang, Dongheng; Xu, Xiulin; Hu, Xiufang

    2016-06-01

    Exercise-induced muscle fatigue is a phenomenon that the maximum voluntary contraction force or power output of muscle is temporarily reduced due to muscular movement.If the fatigue is not treated properly,it will bring about a severe injury to the human body.With multi-channel collection of lower limb surface electromyography signals,this article analyzes the muscle fatigue by adoption of band spectrum entropy method which combined electromyographic signal spectral analysis and nonlinear dynamics.The experimental result indicated that with the increase of muscle fatigue,muscle signal spectrum began to move to low frequency,the energy concentrated,the system complexity came down,and the band spectrum entropy which reflected the complexity was also reduced.By monitoring the entropy,we can measure the degree of muscle fatigue,and provide an indicator to judge fatigue degree for the sports training and clinical rehabilitation training.

  12. Data-Driven Visualization and Group Analysis of Multichannel EEG Coherence with Functional Units

    NARCIS (Netherlands)

    Caat, Michael ten; Maurits, Natasha M.; Roerdink, Jos B.T.M.

    2008-01-01

    A typical data- driven visualization of electroencephalography ( EEG) coherence is a graph layout, with vertices representing electrodes and edges representing significant coherences between electrode signals. A drawback of this layout is its visual clutter for multichannel EEG. To reduce clutter,

  13. Multichannel customer segmentation : does the after-sales channel matter? : a replication and extension

    NARCIS (Netherlands)

    Keyser, A.; Schepers, J.J.L.; Konus, U.

    2015-01-01

    Segmentation is critical in developing a successful multichannel customer management strategy. Multiple researchers recognized the need to adopt a multi-stage customer journey perspective, taking into account the channels used for information search and product purchase. This paper aims to advance

  14. Electro-optical characteristics of a liquid crystal cell with graphene electrodes

    Directory of Open Access Journals (Sweden)

    Nune H. Hakobyan

    2017-12-01

    Full Text Available In liquid crystal devices (LCDs the indium tin oxide (ITO films are traditionally used as transparent and conductive electrodes. However, today, due to the development of multichannel optical communication, the need for flexible LCDs and multilayer structures has grown. For this application ITO films cannot be used in principle. For this problem, graphene (an ultrathin material with unique properties, e.g., high optical transparency, chemical inertness, excellent conductivity is an excellent candidate. In this work, the electro-optical and dynamic characteristics of a liquid crystal (LC cell with graphene and ITO transparent conducting layers are investigated. To insure uniform thickness of the LC layer, as well as the same orientation boundary conditions, a hybrid LC cell containing graphene and ITO conductive layers has been prepared. The characteristics of LC cells with both types of conducting layers were found to be similar, indicating that graphene can be successfully used as a transparent conductive layer in LC devices.

  15. Multichannel Seismic Reflection Data - SCAR - Ross Sea 1987-1988, SDLS CD-ROM vol 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data from six lines recorded during 1988 in the Ross Sea, Antarctica, by the Bundesanstalt fur...

  16. Multichannel Seismic Reflection Data - SCAR - Prydz Bay - 1984-1985, SDLS CD-ROM vol 21

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1984-85 in the Prydz Bay region, Antarctica, by the Japan National Oil...

  17. Multichannel Seismic Reflection Data - SCAR - Amundsen Sea - 1986-1987, SDLS CD-ROM vol 23

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1986-87 in the Amundsen Sea, Antarctica, by the Japan National Oil Corporation....

  18. Single and multichannel scintillating fiber dosimeter for radiotherapic beams with SiPM readout

    Energy Technology Data Exchange (ETDEWEB)

    Berra, A., E-mail: alessandro.berra@gmail.it [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Ferri, A. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (Italy); Novati, C. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Ostinelli, A. [Ospedale Sant' Anna, Servizio di Fisica Sanitaria (Italy); Paternoster, G.; Piemonte, C. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (Italy); Prest, M. [Università degli Studi dell' Insubria e INFN sezione di Milano Bicocca (Italy); Vallazza, E. [INFN Sezione di Trieste (Italy)

    2016-12-01

    The treatment of many neoplastic diseases requires the use of radiotherapy, which consists in the irradiation of the tumor, identified as the target volume, with ionizing radiations generated both by administered radiopharmaceuticals or by linear particle accelerators (LINACs). The radiotherapy beam delivered to the patient must be regularly checked to assure the best tumor control probability: this task is performed with dosimeters, i.e. devices able to provide a measurement of the dose deposited in their sensitive volume. This paper describes the development of two scintillator dosimeter prototypes for radiotherapic applications based on plastic scintillating fibers read out by high dynamic range Silicon PhotoMultipliers. The first dosimeter, consisting of a single-channel prototype with a pair of optical fibers, a scintillating and a white one, read out by two SiPMs, has been fully characterized and led to the development of a second multi-channel dosimeter based on an array of scintillating fibers: this device represents the first step towards the assembly of a “one-shot” device, capable to perform some of the daily quality controls in a few seconds. The dosimeters characterization was performed with a Varian Clinac iX linear accelerator at the Radiotherapy Department of the St. Anna Hospital in Como (IT).

  19. Optimal spatiotemporal representation of multichannel EEG for recognition of brain states associated with distinct visual stimulus

    Science.gov (United States)

    Hramov, Alexander; Musatov, Vyacheslav Yu.; Runnova, Anastasija E.; Efremova, Tatiana Yu.; Koronovskii, Alexey A.; Pisarchik, Alexander N.

    2018-04-01

    In the paper we propose an approach based on artificial neural networks for recognition of different human brain states associated with distinct visual stimulus. Based on the developed numerical technique and the analysis of obtained experimental multichannel EEG data, we optimize the spatiotemporal representation of multichannel EEG to provide close to 97% accuracy in recognition of the EEG brain states during visual perception. Different interpretations of an ambiguous image produce different oscillatory patterns in the human EEG with similar features for every interpretation. Since these features are inherent to all subjects, a single artificial network can classify with high quality the associated brain states of other subjects.

  20. Multiple-state based power control for multi-radio multi-channel wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint...