WorldWideScience

Sample records for optical monochromators

  1. Double-crystal monochromator as the first optical element in BESSRC-CAT beamlines (abstract)

    Science.gov (United States)

    Beno, Mark A.; Ramanathan, Mohan

    1996-09-01

    The first optical element in the BESSRC-CAT beamlines at the Advanced Photon Source will be a monochromator, so that a standard design for this critical component is advantageous. The monochromator we have designed is a double-crystal, fixed-exit scheme with a constant offset designed for UHV operation, thereby allowing windowless operation of the beamlines. The crystals are mounted on a turntable with the first crystal at the center of rotation. A mechanical linkage is used to correctly position the second crystal and maintain a constant offset. The main drive for the rotary motion is provided by a vacuum-compatible Huber goniometer isolated from the main vacuum chamber. Rotary motion of the primary monochromator stage is accomplished by using two adjacent vacuum chambers connected only by the small annular opening around a hollow stainless steel shaft, which connects the Huber goniometer to the turntable on which the crystals are mounted. The design of the monochromator is such that it can accommodate both water and liquid nitrogen cooling for the crystal optics. The basic design for the monochromator linkage mechanism will be presented along with details of the monochromator chamber. The results of initial optical tests of the monochromator system using tilt sensors and a precision autocollimator will also be given.

  2. Optimization of the polyplanar optical display electronics for a monochrome B-52 display

    Energy Technology Data Exchange (ETDEWEB)

    DeSanto, L.

    1998-04-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.

  3. Mirror monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States); Shadman, Khashayar [Electron Optica, Inc., Palo Alto, CA (United States)

    2014-12-02

    energy of 80-120 keV). Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key monochromator components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded into a model describing the key electron-optical parameters of the complete monochromator. The simulations reveal that the mirror monochromator can reduce the energy spread of a Schottky electron source, an established electron emitter used widely in EMs, to 10 meV for practical beam current values and that further reduction of the energy spread down to 3 meV is possible for low current applications with a Cold Field Emitter (an electron source with 10x the brightness of a Schottky source). MirrorChroms can be designed and built to attach to different types of TEMs and SEMs, thus making them suitable for enhancing the study of the structure, composition, and bonding states of new materials at the nanoscale to advance material science research in the field of nanotechnology as well as biomedical research.

  4. All-diamond optical assemblies for a beam-multiplexing X-ray monochromator at the Linac Coherent Light Source

    CERN Document Server

    Stoupin, S; Blank, V D; Shvyd'ko, Yu V; Goetze, K; Assoufid, L; Polyakov, S N; Kuznetsov, M S; Kornilov, N V; Katsoudas, J; Alonso-Mori, R; Chollet, M; Feng, Y; Glownia, J M; Lemke, H; Robert, A; Song, S; Sikorski, M; Zhu, D

    2014-01-01

    A double-crystal diamond (111) monochromator recently implemented at the Linac Coherent Light Source (LCLS) enables splitting of the primary X-ray beam into a pink (transmitted) and a monochromatic (reflected) branch. The first monochromator crystal with a thickness of 100 um provides sufficient X-ray transmittance to enable simultaneous operation of two beamlines. Here we report on the design, fabrication, and X-ray characterization of the first and second (300-um-thick) crystals utilized in the monochromator and the optical assemblies holding these crystals. Each crystal plate has a region of about 5 X 2 mm2 with low defect concentration, sufficient for use in X-ray optics at the LCLS. The optical assemblies holding the crystals were designed to provide mounting on a rigid substrate and to minimize mounting-induced crystal strain. The induced strain was evaluated using double-crystal X-ray topography and was found to be small over the 5 X 2 mm2 working regions of the crystals.

  5. Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy

    Science.gov (United States)

    Zhan, W.; Granerød, C. S.; Venkatachalapathy, V.; Johansen, K. M. H.; Jensen, I. J. T.; Kuznetsov, A. Yu; Prytz, Ø.

    2017-03-01

    Using monochromated electron energy loss spectroscopy in a probe-corrected scanning transmission electron microscope we demonstrate band gap mapping in ZnO/ZnCdO thin films with a spatial resolution below 10 nm and spectral precision of 20 meV.

  6. HIRDLS monochromator calibration equipment

    Science.gov (United States)

    Hepplewhite, Christopher L.; Barnett, John J.; Djotni, Karim; Whitney, John G.; Bracken, Justain N.; Wolfenden, Roger; Row, Frederick; Palmer, Christopher W. P.; Watkins, Robert E. J.; Knight, Rodney J.; Gray, Peter F.; Hammond, Geoffory

    2003-11-01

    A specially designed and built monochromator was developed for the spectral calibration of the HIRDLS instrument. The High Resolution Dynamics Limb Sounder (HIRDLS) is a precision infra-red remote sensing instrument with very tight requirements on the knowledge of the response to received radiation. A high performance, vacuum compatible monochromator, was developed with a wavelength range from 4 to 20 microns to encompass that of the HIRDLS instrument. The monochromator is integrated into a collimating system which is shared with a set of tiny broad band sources used for independent spatial response measurements (reported elsewhere). This paper describes the design and implementation of the monochromator and the performance obtained during the period of calibration of the HIRDLS instrument at Oxford University in 2002.

  7. Angular vibrations of cryogenically cooled double-crystal monochromators.

    Science.gov (United States)

    Sergueev, I; Döhrmann, R; Horbach, J; Heuer, J

    2016-09-01

    The effect of angular vibrations of the crystals in cryogenically cooled monochromators on the beam performance has been studied theoretically and experimentally. A simple relation between amplitude of the vibrations and size of the focused beam is developed. It is shown that the double-crystal monochromator vibrations affect not only the image size but also the image position along the optical axis. Several methods to measure vibrations with the X-ray beam are explained and analyzed. The methods have been applied to systematically study angular crystal vibrations at monochromators installed at the PETRA III light source. Characteristic values of the amplitudes of angular vibrations for different monochromators are presented.

  8. Practical aspects of monochromators developed for transmission electron microscopy

    Science.gov (United States)

    Kimoto, Koji

    2014-01-01

    A few practical aspects of monochromators recently developed for transmission electron microscopy are briefly reviewed. The basic structures and properties of four monochromators, a single Wien filter monochromator, a double Wien filter monochromator, an omega-shaped electrostatic monochromator and an alpha-shaped magnetic monochromator, are outlined. The advantages and side effects of these monochromators in spectroscopy and imaging are pointed out. A few properties of the monochromators in imaging, such as spatial or angular chromaticity, are also discussed. PMID:25125333

  9. APS high heat load monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.K.; Mills, D.

    1993-02-01

    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach.

  10. High-heat-load monochromator options for the RIXS beamline at the APS with the MBA lattice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zunping, E-mail: zpliu@anl.gov; Gog, Thomas, E-mail: gog@aps.anl.gov; Stoupin, Stanislav A.; Upton, Mary H.; Ding, Yang; Kim, Jung-Ho; Casa, Diego M.; Said, Ayman H.; Carter, Jason A.; Navrotski, Gary [Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States)

    2016-07-27

    With the MBA lattice for APS-Upgrade, tuning curves of 2.6 cm period undulators meet the source requirements for the RIXS beamline. The high-heat-load monochromator (HHLM) is the first optical white beam component. There are four options for the HHLM such as diamond monochromators with refrigerant of either water or liquid nitrogen (LN{sub 2}), and silicon monochromators of either direct or indirect cooling system. Their performances are evaluated at energy 11.215 keV (Ir L-III edge). The cryo-cooled diamond monochromator has similar performance as the water-cooled diamond monochromator because GaIn of the Cu-GaIn-diamond interface becomes solid. The cryo-cooled silicon monochromators perform better, not only in terms of surface slope error due to thermal deformation, but also in terms of thermal capacity.

  11. A vacuum ultraviolet filtering monochromator for synchrotron-based spectroscopy

    Science.gov (United States)

    Janik, Ireneusz; Marin, Timothy W.

    2013-01-01

    We describe the design, characterization, and implementation of a vacuum ultraviolet (VUV) monochromator for use in filtering stray and scattered light from the principal monochromator output of the Stainless Steel Seya VUV synchrotron beam line at the Synchrotron Radiation Center, University of Wisconsin-Madison. We demonstrate a reduction of three orders of magnitude of stray and scattered light over the wavelength range 1400-2000 Å with minimal loss of light intensity, allowing for over six orders of magnitude of dynamic range in light detection. We suggest that a similar filtering scheme can be utilized in any variety of spectroscopic applications where a large dynamic range and low amount of background signal are of import, such as in transmittance experiments with very high optical density.

  12. Large monochromator systems at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Horbach, J., E-mail: Jan.Horbach@desy.de [Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Degenhardt, M.; Hahn, U.; Heuer, J.; Peters, H.B.; Schulte-Schrepping, H. [Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Donat, A.; Luedecke, H. [Deutsches Elektronen-Synchrotron Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)

    2011-09-01

    For the beamlines of the new synchrotron radiation source PETRA III, fixed exit double crystal monochromators with specific features were developed. To achieve a compact arrangement of the canted undulator beamlines at Sectors 2 and 6, it is necessary to shift one of the two beamlines in vertical direction. This is done by Large Offset Monochromators (LOM). One of these monochromators (LOM500, installed at beamline P03) is cooled with liquid nitrogen as it accepts the white beam. LOM1250 (installed at beamline P08) accepts a monochromatic beam and therefore needs no cooling system. The challenge with this monochromator is its large beam offset by 1.25 m. The energy range in combination with this large vertical beam offset demands for a relative crystal movement of roughly 3 m along the beam direction. This is solved by translating each crystal by up to 1.5 m. LOM1250 is equipped with a laser-based stabilisation, which allows compensating the thermal drift of the mechanical components involved in the positioning of the crystals. This is done by piezo actors below the crystals using the laser beam position after passing each crystal as feedback. With this approach we provide a closed loop system without attenuation of the X-ray beam by position monitors. The third monochromator at beamline P06 shifts the beam only by 21 mm upwards but has a linear travel of one crystal by 3.9 m. This is due to its large energy range of 4.4-90 keV using multilayer crystals. The technical design and mechanical engineering issues of the three Large Monochromator Systems at beamlines P03, P06 and P08 are highlighted in this article.

  13. Cascade self-seeding scheme with wake monochromator for narrow-bandwidth X-ray FELs

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2010-01-01

    Three different approaches have been proposed so far for production of highly monochromatic X-rays from a baseline XFEL undulator: (i) single-bunch self-seeding scheme with a four crystal monochromator in Bragg reflection geometry; (ii) double-bunch self-seeding scheme with a four-crystal monochromator in Bragg reflection geometry; (iii) single-bunch self-seeding scheme with a wake monochromator. A unique element of the X-ray optical design of the last scheme is the monochromatization of X-rays using a single crystal in Bragg-transmission geometry. A great advantage of this method is that the monochromator introduces no path delay of X-rays. This fact eliminates the need for a long electron beam bypass, or for the creation of two precisely separated, identical electron bunches, as required in the other two self-seeding schemes. In its simplest configuration, the self-seeded XFEL consists of an input undulator and an output undulator separated by a monochromator. In some experimental situations this simplest t...

  14. Monochromator design for the HADAS reflectometer in Jülich

    Science.gov (United States)

    Rücker, U.; Alefeld, B.; Kentzinger, E.; Brückel, Th

    2000-06-01

    A reflectometer with polarization analysis is being built on the basis of the HADAS spectrometer in the neutron guide hall at the research reactor FRJ-2 (DIDO) in Jülich. For obtaining the optimal flux at the sample position, the performances of several monochromator designs have been calculated, e.g. focusing mirrors, mosaic monochromator crystals and bent perfect crystal monochromators. Under the given geometrical limitations a double monochromator with bent perfect Si crystals and vertical focusing has the best performance.

  15. Effective temperature and exergy of monochromic blackbody radiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new parameter named monochromic effective temperature Tλ is proposed, which represents the thermodynamic quality of monochromic blackbody radiation. The exergy of the monochromic blackbody radiation is expressed by Tλ. The monochromic effective temperature equation is developed, which shows that the produci of Tλ and the wavelength is constant, which equals 5.33016×10-3 tion in photosynthesis can be explained by the results of this work.

  16. A double multilayer monochromator for the B16 Test beamline at the Diamond Light Source

    Science.gov (United States)

    Sawhney, K. J. S.; Dolbnya, I. P.; Scott, S. M.; Tiwari, M. K.; Preece, G. M.; Alcock, S. G.; Malandain, A. W.

    2011-09-01

    The B16 Test beamline at the Diamond Light Source is in user operation. It has been recently upgraded with the addition of a double multilayer monochromator (DMM), which provides further functionality and versatility to the beamline. The multilayer monochromator is equipped with two pairs of multilayer optics (Ni/B4C and Ru/B4C) to cover the wide photon energy range of 2 - 20 keV, with good efficiency. The DMM provides a broad bandpass / high flux operational mode for the beamline and, when used in tandem with the Si (111) double crystal monochromator, it gives a very high higher-order harmonics suppression. The design details of the DMM and the first commissioning results obtained using the DMM are presented.

  17. MACS low-background doubly focusing neutron monochromator

    CERN Document Server

    Smee, S A; Scharfstein, G A; Qiu, Y; Brand, P C; Anand, D K; Broholm, C L

    2002-01-01

    A novel doubly focusing neutron monochromator has been developed as part of the Multi-Analyzer Crystal Spectrometer (MACS) at the NIST Center for Neutron Research. The instrument utilizes a unique vertical focusing element that enables active vertical and horizontal focusing with a large, 357-crystal (1428 cm sup 2), array. The design significantly reduces the amount of structural material in the beam path as compared to similar instruments. Optical measurements verify the excellent focal performance of the device. Analytical and Monte Carlo simulations predict that, when mounted at the NIST cold-neutron source, the device should produce a monochromatic beam (DELTA E=0.2 meV) with flux phi>10 sup 8 n/cm sup 2 s. (orig.)

  18. Monochromator-Based Absolute Calibration of Radiation Thermometers

    Science.gov (United States)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Hartmann, J.

    2011-08-01

    A monochromator integrating-sphere-based spectral comparator facility has been developed to calibrate standard radiation thermometers in terms of the absolute spectral radiance responsivity, traceable to the PTB cryogenic radiometer. The absolute responsivity calibration has been improved using a 75 W xenon lamp with a reflective mirror and imaging optics to a relative standard uncertainty at the peak wavelength of approximately 0.17 % ( k = 1). Via a relative measurement of the out-of-band responsivity, the spectral responsivity of radiation thermometers can be fully characterized. To verify the calibration accuracy, the absolutely calibrated radiation thermometer is used to measure Au and Cu freezing-point temperatures and then to compare the obtained results with the values obtained by absolute methods, resulting in T - T 90 values of +52 mK and -50 mK for the gold and copper fixed points, respectively.

  19. Grating monochromator for soft X-ray self-seeding the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2013-02-15

    Self-seeding is a promising approach to significantly narrow the SASE bandwidth of XFELs to produce nearly transform-limited pulses. The implementation of this method in the soft X-ray wavelength range necessarily involves gratings as dispersive elements. We study a very compact self-seeding scheme with a grating monochromator originally designed at SLAC, which can be straightforwardly installed in the SASE3 type undulator beamline at the European XFEL. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without entrance slit. It covers the spectral range from 300 eV to 1000 eV. The optical system was studied using wave optics method (in comparison with ray tracing) to evaluate the performance of the self-seeding scheme. Our wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations, and errors from each optical element. Wave optics is the only method available, in combination with FEL simulations, for the design of a self-seeding monochromator without exit slit. We show that, without exit slit, the self-seeding scheme is distinguished by the much needed experimental simplicity, and can practically give the same resolving power (about 7000) as with an exit slit. Wave optics is also naturally applicable to calculations of the self-seeding scheme efficiency, which include the monochromator transmittance and the effect of the mismatching between seed beam and electron beam. Simulations show that the FEL power reaches 1 TW and that the spectral density for a TW pulse is about two orders of magnitude higher than that for the SASE pulse at saturation.

  20. Design and optimization of the grating monochromator for soft X-ray self-seeding FELs

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar

    2015-10-15

    The emergence of Free Electron Lasers (FEL) as a fourth generation of light sources is a breakthrough. FELs operating in the X-ray range (XFEL) allow one to carry out completely new experiments that probably most of the natural sciences would benefit. Self-amplified spontaneous emission (SASE) is the baseline FEL operation mode: the radiation pulse starts as a spontaneous emission from the electron bunch and is being amplified during an FEL process until it reaches saturation. The SASE FEL radiation usually has poor properties in terms of a spectral bandwidth or, on the other side, longitudinal coherence. Self-seeding is a promising approach to narrow the SASE bandwidth of XFELs significantly in order to produce nearly transformlimited pulses. It is achieved by the radiation pulse monochromatization in the middle of an FEL amplification process. Following the successful demonstration of the self-seeding setup in the hard X-ray range at the LCLS, there is a need for a self-seeding extension into the soft X-ray range. Here a numerical method to simulate the soft X-ray self seeding (SXRSS) monochromator performance is presented. It allows one to perform start-to-end self-seeded FEL simulations along with (in our case) GENESIS simulation code. Based on this method, the performance of the LCLS self-seeded operation was simulated showing a good agreement with an experiment. Also the SXRSS monochromator design developed in SLAC was adapted for the SASE3 type undulator beamline at the European XFEL. The optical system was studied using Gaussian beam optics, wave optics propagation method and ray tracing to evaluate the performance of the monochromator itself. Wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations and height errors from each optical element. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without both entrance and exit

  1. High heat flux x-ray monochromators: What are the limits?

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.S.

    1997-06-01

    First optical elements at third-generation, hard x-ray synchrotrons, such as the Advanced Photon Source (APS), are subjected to immense heat fluxes. The optical elements include crystal monochromators, multilayers and mirrors. This paper presents a mathematical model of the thermal strain of a three-layer (faceplate, heat exchanger, and baseplate), cylindrical optic subjected to narrow beam of uniform heat flux. This model is used to calculate the strain gradient of a liquid-gallium-cooled x-ray monochromator previously tested on an undulator at the Cornell High Energy Synchrotron Source (CHESS). The resulting thermally broadened rocking curves are calculated and compared to experimental data. The calculated rocking curve widths agree to within a few percent of the measured values over the entire current range tested (0 to 60 mA). The thermal strain gradient under the beam footprint varies linearly with the heat flux and the ratio of the thermal expansion coefficient to the thermal conductivity. The strain gradient is insensitive to the heat exchanger properties and the optic geometry. This formulation provides direct insight into the governing parameters, greatly reduces the analysis time, and provides a measure of the ultimate performance of a given monochromator.

  2. New method for spectrofluorometer monochromator wavelength calibration.

    Science.gov (United States)

    Paladini, A A; Erijman, L

    1988-09-01

    A method is presented for wavelength calibration of spectrofluorometer monochromators. It is based on the distortion that the characteristic absorption bands of glass filters (holmium or didymium oxide), commonly used for calibration of spectrophotometers, introduce in the emitted fluorescence of fluorophores like indole, diphenyl hexatriene, xylene or rhodamine 6G. Those filters or a well characterized absorber with sharp bands like benzene vapor can be used for the same purpose. The wavelength calibration accuracy obtained with this method is better than 0.1 nm, and requires no modification in the geometry of the spectrofluorometer sample compartment.

  3. FEA analysis of diamond as IMCA{close_quote}s monochromator crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chrzas, J.; Cimpoes, S.; Ivanov, I.N. [CSRRI, Illinois Institute of Technology, 3301 S. Dearborn Street, Chicago, IL 60616 (United States)

    1996-09-01

    A great deal of effort has been make in recent years in the field of undulator high heat load optics, and currently there are several tractable options [Rev. Sci. Instrum. {bold 69}, 2792 (1994); Nucl. Instrum. Methods A {bold 266}, 517 (1988); Nucl. Instrum. Methods A {bold 239}, 555 (1993)]. Diamond crystals offer some attractive options{endash}water as the coolant, the use of established monochromator mechanisms, simpler monochromator design as compared to the use of liquid nitrogen or gallium. The use of diamond crystals as the optical elements in a double-crystal monochromator for the IMCA-CAT and MR-CAT ID beamlines has been studied. A first crystal mounting scheme using an indium-gallium eutectic as the heat transfer medium developed in collaboration with DND-CAT and M. Hart will be presented. A FEA analysis of the IMCA-CAT ID beamline arrangement using the APS undulator A as the radiaiton source will be presented. {copyright} {ital 1996 American Institute of Physics.}

  4. Ultra high energy resolution focusing monochromator for inelastic X-ray scattering spectrometer

    CERN Document Server

    Suvorov, A; Chubar, O; Cai, Y Q

    2015-01-01

    A further development of a focusing monochromator concept for X-ray energy resolution of 0.1 meV and below is presented. Theoretical analysis of several optical layouts based on this concept was supported by numerical simulations performed in the "Synchrotron Radiation Workshop" software package using the physical-optics approach and careful modeling of partially-coherent synchrotron (undulator) radiation. Along with the energy resolution, the spectral shape of the energy resolution function was investigated. It was shown that under certain conditions the decay of the resolution function tails can be faster than that of the Gaussian function.

  5. Bent Crystal Monochromator with Constant Crystal Center Position and 2-theta Arm for a Dispersive Beamline

    Science.gov (United States)

    Neuenschwander, Regis T.; Tolentino, Hélio C. N.

    2004-05-01

    For the new LNLS dispersive beam line it was designed a single-crystal monochromator and a 2-theta arm. The monochromator uses a new bender design assembled on the top of an in-vacuum HUBER goniometer. This bender is able to apply independent torque on each extremity of the crystal in a way that changes in the curvature radius do not affect the position of the center of the crystal. It also has a twist mechanism, based on eccentric bearings and elastic components. The crystal extremities are clamped to the bender using two water-cooled copper blocks, for thermal stabilization. All the bender's movements are done with vacuum compatible stepping-motors. The vacuum chamber was built with enough space to allow future installation of another bender for crystals with different Bragg planes. The internal mechanics is isolated from the vacuum chamber and can move up and down with three high precision jacks. The design of the 2-theta arm is based on two linear translation stages and some special bearings. The two stages are equipped with linear encoders, ball screws end linear bearings. With a proper alignment procedure, it is possible to find the equations that controls each translation stage in order to get a virtual rotation referenced to the monochromator center. The main arm is composed of a steel frame, a 3m long granite block, a central aluminum optical rail and two auxiliary side rails.

  6. Milli-electronvolt monochromatization of hard X-rays with a sapphire backscattering monochromator

    Science.gov (United States)

    Sergueev, I.; Wille, H.-C.; Hermann, R. P.; Bessas, D.; Shvyd’ko, Yu. V.; Zając, M.; Rüffer, R.

    2011-01-01

    A sapphire backscattering monochromator with 1.1 (1) meV bandwidth for hard X-rays (20–40 keV) is reported. The optical quality of several sapphire crystals has been studied and the best crystal was chosen to work as the monochromator. The small energy bandwidth has been obtained by decreasing the crystal volume impinged upon by the beam and by choosing the crystal part with the best quality. The monochromator was tested at the energies of the nuclear resonances of 121Sb at 37.13 keV, 125Te at 35.49 keV, 119Sn at 23.88 keV, 149Sm at 22.50 keV and 151Eu at 21.54 keV. For each energy, specific reflections with sapphire temperatures in the 150–300 K region were chosen. Applications to nuclear inelastic scattering with these isotopes are demonstrated. PMID:21862862

  7. IMCA-CAT BM first monochromator crystal optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, I.N.; Cimpoes, S.; Chrzas, J. [CSRRI, Illinois Institute of Technology, 3301 S. Dearborn Street, Chicago, Il 60616 (United States)

    1996-09-01

    The high heat load at the surfaces of the first x-ray optical elements at the APS requires special measures to be taken to more completely utilize the beam. A conceptually new design for such an element, proposed, realized, and tested by M. Hart and conveniently called {open_quote}{open_quote}matchbox,{close_quote}{close_quote} is to be implemented at the IMCA-CAT BM beamline as the first monochromator crystal. The requirements of the IMCA-CAT companies for the BM beamline dictate that an optimization of the design is made for a given x-ray energy range E=13 keV {plus_minus}1 keV. A modification of the original design to improve the vacuum compatibility of the device was made in collaboration with M. Hart. A FEA optimization of the geometry is made using the ALGOR and ABAQUS programs. Determination of the resulting slopes and the useful crystal surface after the best compensation of the thermal distortions are also made. The surface profile obtained by the FEA study was used to perform a ray-tracing analysis of the IMCA-CAT BM beamline. The results of the ray-tracing study will be presented. {copyright} {ital 1996 American Institute of Physics.}

  8. Moessbauer-Fresnel zone plate as nuclear monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, T.M.; Alp, E.E.; Yun, W.B.

    1992-06-01

    Zone plates currently used in x-ray optics derive their focusing power from (a spatial variation of) the electronic refractive index -- that is, from the collective effect of electronic x-ray-scattering amplitudes. Nuclei also scatter x rays, and resonant nuclear-scattering amplitudes, particularly those associated with Moessbauer fluorescence, can dominate the refractive index for x-rays whose energies are very near the nuclear-resonance energy. A zone plate whose Fresnel zones are filled alternately with {sup 57}Fe and {sup 56}Fe ({sup 57}Fe has a nuclear resonance of natural width {Gamma} = 4.8 nano-eV at 14.413 keV; {sup 56}Fe has no such resonance) has a resonant focusing efficiency; it focuses only those x-rays whose energies are within several {Gamma} of resonance. When followed by an absorbing screen with a small pinhole, such a zone plate can function as a synchrotron-radiation monochromator with an energy resolution of a few parts in 10{sup 12}. The energy-dependent focusing efficiency and the resulting time-dependent response of a resonant zone plate are discussed.

  9. Grating monochromator for soft X-ray self-seeding the European XFEL

    CERN Document Server

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni

    2013-01-01

    Self-seeding is a promising approach to significantly narrow the SASE bandwidth of XFELs to produce nearly transform-limited pulses. The implementation of this method in the soft X-ray wavelength range necessarily involves gratings as dispersive elements. We study a very compact self-seeding scheme with a grating monochromator originally designed at SLAC, which can be straightforwardly installed in the SASE3 type undulator beamline at the European XFEL. The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without entrance slit. It covers the spectral range from 300 eV to 1000 eV. The optical system was studied using wave optics method (in comparison with ray tracing) to evaluate the performance of the self-seeding scheme. Our wave optics analysis takes into account the actual beam wavefront of the radiation from the coherent FEL source, third order aberrations, and errors from each optical element. Wave optics is the only method available, in combination with...

  10. Multipurpose monochromator for the Basic Energy Science Synchrotron Radiation Center Collaborative Access Team beamlines at the Advanced Photon Source x-ray facility

    Science.gov (United States)

    Ramanathan, M.; Beno, M. A.; Knapp, G. S.; Jennings, G.; Cowan, P. L.; Montano, P. A.

    1995-02-01

    The Basic Energy Science Synchrotron Radiation Center (BESSRC) Collaborative Access Team (CAT) will construct x-ray beamlines at two sectors of the Advanced Photon Source facility. In most of the beamlines the first optical element will be a monochromator, so that a standard design for this critical component is advantageous. The monochromator is a double-crystal, fixed exit scheme with a constant offset designed for ultrahigh vacuum windowless operation. In this design, the crystals are mounted on a turntable with the first crystal at the center of rotation. Mechanical linkages are used to correctly position the second crystal and maintain a constant offset. The main drive for the rotary motion is provided by a vacuum compatible Huber goniometer isolated from the main vacuum chamber. The design of the monochromator is such that it can accommodate water, gallium, or liquid-nitrogen cooling for the crystal optics.

  11. Monochromator development at 4W1B beamline of BSRF

    Science.gov (United States)

    Xie, Yaning; Yan, Y.; Hu, T. D.; Liu, T.; Xian, D. C.

    2001-07-01

    The 4W1B is a X-ray monochromator beamline for XAFS at BSRF. During the upgrading phase, we have redesigned the monochromator to improve the performance of the beamline. It is a goniometer based, fixed exit double crystal monochromator. A mechanical linkage is employed to adjust the distance between the surfaces of the two crystals as the Bragg angle is changed to keep the outgoing beam direction constant. The whole mechanism is driven by only one stepping motor. The testing result shows that over the scanning range of 5-30°, the shift of outgoing beam position is less then 70 μm in the vertical direction. The basic principle, the mechanical realization, and the error analysis are discussed in detail. The performance and the testing results are also presented in this paper.

  12. Monochromator development at 4W1B beamiline of BSRF

    Institute of Scientific and Technical Information of China (English)

    YaningXie; Y.Yan; T.D.Hu; T.Liu; D.C.Xian

    2001-01-01

    The 4W1B is a X-ary monochromator beamline for XAFS at BSRF.During the upgrading phase,we have redsigned the monochromator to improve the performnce of beamline.It is a goniometer based,fixed exit double crystal monochromator.A mechanical linkage is employed to adjust the distance between the surfaces of the two crystals as the Bragg angle is changed to keep the outgoing beam direction constant.The whole mechanism is driven by only one stepping motor.The testing result shows that over the scanning range of 5-30°,the shift of outgoing beam position is less then 70μm in the vertical direction.The basic principle,the mechanical realization,and the error analysis are discussed in detail.The performance and the testing results are also presented in this paper.2001 Elsevier Science B.V.All rights reserved.

  13. A hard X-ray laboratory for monochromator characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, B. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Since their installation at ILL during the 1970`s the ILL {gamma}-ray diffractometers have been intensively used in the development of neutron monochromators. However, the ageing of the sources and new developments in hard X-ray diffractometry lead to a decision at the end of 1995 to replace the existing {gamma}-ray laboratory with a hard X-ray laboratory, based on a 420 keV generator, making available in the long term several beam-lines for rapid characterisation of monochromator crystals. The facility is now installed and its characteristics and advantages are outlined. (author). 2 refs.

  14. 1-40-keV fixed-exit monochromator for a wafer mapping TXRF facility

    Science.gov (United States)

    Comin, Fabio; Apostolo, G.; Freund, Andreas K.; Mangiagalli, P.; Navizet, M.; Troxel, C. L.

    1998-12-01

    An industrial facility for the mapping of trace impurities on the surface of 300 mm Silicon wafers will be commissioned at the end of 1998. The elements to be detected range from Na to Hg with a target routine detection limit of 108 atoms/cm2. The monochromator of the facility plays a central role and fulfills the following requirements: ease of operations and fast tuning (one single motor); extended energy range (1 - 40 KeV covered by a fixed exit Si(111) channel cut and multilayer pair); smooth and reliable running (water cooling even in the powerful ESRF undulator beams at high energies). The mechanical structure of the monochromator is based on well-established concepts: an external goniometer transfers the main rotation to the in-vacuum plateau via a hollow differentially pumped feed-through. The optical arrangement shows some novelties: the plateau can be cooled either by water or liquid nitrogen and it holds the convex- concave machined Si(111) channel-cut for fixed exit performances. The shape of the machined surfaces of the crystal helps also on to spread the power density of the beam on the silicon surface. A set of two identical multilayers are also mounted on the plateau and the transition from the Si(111) crystal to the multilayer operation is performed by rotating the wafer main axis by about 180 degrees. The whole facility is centered around the three main components: the monochromator, the wafer handling robots and the two linear arrays of solid state fluorescence detectors.

  15. Composite germanium monochromators - results for the TriCS

    Energy Technology Data Exchange (ETDEWEB)

    Schefer, J.; Fischer, S.; Boehm, M.; Keller, L.; Horisberger, M.; Medarde, M.; Fischer, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Composite germanium monochromators are in the beginning of their application in neutron diffraction. We show here the importance of the permanent quality control with neutrons on the example of the 311 wafers which will be used on the single crystal diffractometer TriCS at SINQ. (author) 2 figs., 3 refs.

  16. Monochromator on a synchrotron undulator source for liquid surface studies

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Freund, A.K.

    1992-01-01

    a monochromator made of a beryllium mosaic crystal using the (002) reflection in Laue geometry placed in undulator beams of DORIS III at the Hamburger Synchrotronstrahlungslabor and of the European Synchrotron Radiation Facility. An analysis of the diffraction properties in terms of mosaic spread, heat load...

  17. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Paw, E-mail: paw.kristiansen@fmb-oxford.com [FMB Oxford Ltd, Unit 1 Ferry Mills, Oxford OX2 0ES (United Kingdom); Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim [DESY, Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)

    2015-05-09

    Vibration measurements of a cryocooled double-crystal monochromator are presented. The origins of the vibrations are identified. The minimum achieved vibration of the relative pitch between the two crystals is 48 nrad RMS and the minimum achieved absolute vibration of the second crystal is 82 nrad RMS. The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged.

  18. A coded structured light system based on primary color stripe projection and monochrome imaging.

    Science.gov (United States)

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2013-10-14

    Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.

  19. A Coded Structured Light System Based on Primary Color Stripe Projection and Monochrome Imaging

    Directory of Open Access Journals (Sweden)

    Armando Viviano Razionale

    2013-10-01

    Full Text Available Coded Structured Light techniques represent one of the most attractive research areas within the field of optical metrology. The coding procedures are typically based on projecting either a single pattern or a temporal sequence of patterns to provide 3D surface data. In this context, multi-slit or stripe colored patterns may be used with the aim of reducing the number of projected images. However, color imaging sensors require the use of calibration procedures to address crosstalk effects between different channels and to reduce the chromatic aberrations. In this paper, a Coded Structured Light system has been developed by integrating a color stripe projector and a monochrome camera. A discrete coding method, which combines spatial and temporal information, is generated by sequentially projecting and acquiring a small set of fringe patterns. The method allows the concurrent measurement of geometrical and chromatic data by exploiting the benefits of using a monochrome camera. The proposed methodology has been validated by measuring nominal primitive geometries and free-form shapes. The experimental results have been compared with those obtained by using a time-multiplexing gray code strategy.

  20. Optimization of a constrained linear monochromator design for neutral atom beams.

    Science.gov (United States)

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam.

  1. Design and performance of the ALS double-crystal monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.; Ryce, S.; Perera, R.C.C. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new {open_quotes}Cowan type{close_quotes} double-crystal monochromator, based on the boomerang design used at NSLS beamline X-24A, has been developed for beamline 9.3.1 at the ALS, a windowless UHV beamline covering the 1-6 keV photon-energy range. Beamline 9.3.1 is designed to simultaneously achieve the goals of high energy resolution, high flux, and high brightness at the sample. The mechanical design has been simplified, and recent developments in technology have been included. Measured mechanical precision of the monochromator shows significant improvement over existing designs. In tests with x-rays at NSLS beamline X-23 A2, maximum deviations in the intensity of monochromatic light were just 7% during scans of several hundred eV in the vicinity of the Cr K edge (6 keV) with the monochromator operating without intensity feedback. Such precision is essential because of the high brightness of the ALS radiation and the overall length of beamline 9.3.1 (26 m).

  2. Adaptive silicon monochromators for high-power wigglers; design, finite-element analysis and laboratory tests.

    Science.gov (United States)

    Quintana, J P; Hart, M

    1995-05-01

    Multipole wigglers in storage rings already produce X-ray power in the range up to a few kilowatts and planned devices at third-generation facilities promise up to 30 kW. Although the power density at the monochromator position is an order of magnitude lower than that from undulators, the thermal strain field in the beam footprint can still cause severe loss of performance in X-ray optical systems. For an optimized adaptive design, the results of finite-element analysis are compared with double-crystal rocking curves obtained with a laboratory X-ray source and, in a second paper [Quintana, Hart, Bilderback, Henderson, Richter, Setterson, White, Hausermann, Krumrey & Schulte-Schrepping (1995). J. Synchotron Rad. 2, 1-5], successful tests at wiggler sources at CHESS and ESRF and in an undulator source at HASYLAB are reported.

  3. A water-cooled x-ray monochromator for using off-axis undulator beam.

    Energy Technology Data Exchange (ETDEWEB)

    Khounsary, A.; Maser, J.

    2000-12-11

    Undulator beamlines at third-generation synchrotrons x-ray sources are designed to use the high-brilliance radiation that is contained in the central cone of the generated x-ray beams. The rest of the x-ray beam is often unused. Moreover, in some cases, such as in the zone-plate-based microfocusing beamlines, only a small part of the central radiation cone around the optical axis is used. In this paper, a side-station branch line at the Advanced Photon Source that takes advantage of some of the unused off-axis photons in a microfocusing x-ray beamline is described. Detailed information on the design and analysis of a high-heat-load water-cooled monochromator developed for this beamline is provided.

  4. Holographically recorded ion-etched varied line spacing grating for a monochromator at the Photon Factory BL19B

    CERN Document Server

    Fujisawa, M; Shin, S

    2001-01-01

    Holographically recorded, ion etched ruled gratings can be obtained for the varied line spacing plane grating (VPG) monochromator at the Photon Factory BL19B. A new holographic recording method makes it possible to manufacture VPGs with large varied line coefficients for reducing the aberration terms in the optical path function. The efficiency at higher photon energies and the quantity of stray light are improved in comparison with mechanically ruled gratings. The calculation shows that the much lower efficiency at higher photon energies is not intrinsic for saw-tooth type gratings. It seems to be caused instead by carbon contamination, radiation damage, deformation at manufacturing and so on.

  5. Characterisation of a Sr-90 based electron monochromator

    CERN Document Server

    Arfaoui, S; CERN; Casella, C; ETH Zurich

    2015-01-01

    This note describes the characterisation of an energy filtered Sr-90 source to be used in laboratory studies that require Minimum Ionising Particles (MIP) with a kinetic energy of up to approx. 2 MeV. The energy calibration was performed with a LYSO scintillation crystal read out by a digital Silicon Photomultiplier (dSiPM). The LYSO/dSiPM set-up was pre-calibrated using a Na-22 source. After introducing the motivation behind the usage of such a device, this note presents the principle and design of the electron monochromator as well as its energy and momentum characterisation.

  6. In-situ metrology for the optimization of bent crystals used in hard-X-ray monochromators: Comparison between measurement and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Thomasset, Muriel, E-mail: muriel.thomasset@synchrotron-soleil.f [Synchrotron SOLEIL, L' orme des Merisiers, BP 48, 91192 Gif sur Yvette (France); Moreno, Thierry; Capitanio, Blandine; Idir, Mourad [Synchrotron SOLEIL, L' orme des Merisiers, BP 48, 91192 Gif sur Yvette (France); Bucourt, Samuel [Imagine Optic, 18 rue Charles de Gaulle, Orsay 91400 (France)

    2010-05-01

    Crystal sagittal focusing is known as one of the most efficient way of focusing synchrotron X-ray radiation from bending magnet sources, thus delivering increases photon flux at the sample position. To optimize the performance of a sagittaly bent crystal inside a monochromator, it is necessary to have knowledge of its radius of curvature. However, this measurement is not very easy to obtain. Even though the use of the X-ray beam is the ultimate source for optimizing the system, it is still necessary to have a prior knowledge of the radius of curvature as a function of the motor bender positions to avoid any catastrophic failure. In this paper, we describe a simple, efficient and accurate method of measuring the radius of curvature of sagitally bent monochromator crystals at several bending magnet beamlines at synchrotron SOLEIL. To optimize the crystal bending inside these monochromators, we used a Shack-Hartmann sensor (HP 26) developed by the Imagine Optic Company (Orsay/France). This high accuracy two-dimensional metrology tool was originally designed to be installed on a Long Trace Profiler translation stage to measure the mirrors profiles. During a period where the SOLEIL synchrotron was in shutdown, this instrument was directly mounted inside the monochromator so that the radius of curvature could be measured in-situ. This method allows us to optimize the curvature and eliminate twist before bending strongly the crystal below radii of curvature of less than 2 m. The second step in the optimization process was to use the X-ray beam for the final adjustments of the bending system, where X-ray images are then used to analyse the residual defaults of the system. Using SpotX, a ray-tracing simulation tool, these errors can be fully analysed and a fully optimized system can then be obtained. Overall, five beamlines at synchrotron SOLEIL have used in this method to optimize their monochromators.

  7. Vibrational stability of a cryocooled horizontal double-crystal monochromator

    Science.gov (United States)

    Kristiansen, Paw; Johansson, Ulf; Ursby, Thomas; Jensen, Brian Norsk

    2016-01-01

    The vibrational stability of a horizontally deflecting double-crystal monochromator (HDCM) is investigated. Inherently a HDCM will preserve the vertical beam stability better than a ‘normal’ vertical double-crystal monochromator as the vibrations of a HDCM will almost exclusively affect the horizontal stability. Here both the relative pitch vibration between the first and second crystal and the absolute pitch vibration of the second crystal are measured. All reported measurements are obtained under active cooling by means of flowing liquid nitrogen (LN2). It is found that it is favorable to circulate the LN2 at high pressures and low flow rates (up to 5.9 bar and down to 3 l min−1 is tested) to attain low vibrations. An absolute pitch stability of the second crystal of 18 nrad RMS, 2–2500 Hz, and a relative pitch stability between the two crystals of 25 nrad RMS, 1–2500 Hz, is obtained under cryocooling conditions that allow for 1516 W to be adsorbed by the LN2 before it vaporizes. PMID:27577758

  8. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    DEFF Research Database (Denmark)

    Zhu, Diling; Feng, Yiping; Stoupin, Stanislav

    2014-01-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressu...

  9. Microcontroller-based servo for two-crystal X-ray monochromators.

    Science.gov (United States)

    Siddons, D P

    1998-05-01

    Microcontrollers have become increasingly easy to incorporate into instruments as the architectures and support tools have developed. The PIC series is particularly easy to use, and this paper describes a controller used to stabilize the output of a two-crystal X-ray monochromator at a given offset from its peak intensity position, as such monochromators are generally used.

  10. SUMS: synchronous undulator-monochromator scans at Synchrotron Soleil.

    Science.gov (United States)

    Izquierdo, Manuel; Hardion, Vincent; Renaud, Guillaume; Chapuis, Lilian; Millet, Raphael; Langlois, Florent; Marteau, Fabrice; Chauvet, Christian

    2012-07-01

    A strategy for performing synchronous undulator-monochromator scans (SUMS) compatible with the control system of Synchrotron Soleil has been developed. The implementation of the acquisition scheme has required the development of an electronic interface between the undulator and the beamline. The characterization of delays and jitters in the synchronous movement of various motor axes has motivated the development of a new electronic synchronization scheme among various axes, including the case when one of the axes is electronically accessible in `read-only' mode. A software prototype has been developed to allow the existing hard continuous software to work in user units. The complete strategy has been implemented and successfully tested at the TEMPO beamline.

  11. The development of a 200 kV monochromated field emission electron source

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Masaki, E-mail: mmukai@jeol.co.jp [JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Kim, Judy S. [University of Oxford, Department of Materials, Parks Road, Oxford, OX1 3PH (United Kingdom); Omoto, Kazuya; Sawada, Hidetaka; Kimura, Atsushi; Ikeda, Akihiro; Zhou, Jun; Kaneyama, Toshikatsu [JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Young, Neil P.; Warner, Jamie H.; Nellist, Peter D.; Kirkland, Angus I. [University of Oxford, Department of Materials, Parks Road, Oxford, OX1 3PH (United Kingdom)

    2014-05-01

    We report the development of a monochromator for an intermediate-voltage aberration-corrected electron microscope suitable for operation in both STEM and TEM imaging modes. The monochromator consists of two Wien filters with a variable energy selecting slit located between them and is located prior to the accelerator. The second filter cancels the energy dispersion produced by the first filter and after energy selection forms a round monochromated, achromatic probe at the specimen plane. The ultimate achievable energy resolution has been measured as 36 meV at 200 kV and 26 meV at 80 kV. High-resolution Annular Dark Field STEM images recorded using a monochromated probe resolve Si–Si spacings of 135.8 pm using energy spreads of 218 meV at 200 kV and 217 meV at 80 kV respectively. In TEM mode an improvement in non-linear spatial resolution to 64 pm due to the reduction in the effects of partial temporal coherence has been demonstrated using broad beam illumination with an energy spread of 134 meV at 200 kV. - Highlights: • Monochromator for 200 kV aberration corrected TEM and STEM was developed. • Monochromator produces monochromated and achromatic probe at specimen plane. • Ultimate energy resolution was measured to be 36 meV at 200 kV and 26 meV at 80 kV. • Atomic resolution STEM images were recorded using monochromated electron probe. • Improvements of TEM resolution were confirmed using monochromated illumination.

  12. Realisation of a novel crystal bender for a fast double crystal monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Zaeper, R.; Richwin, M. E-mail: richwin@uni-wuppertal.de; Wollmann, R.; Luetzenkirchen-Hecht, D.; Frahm, R

    2001-07-21

    A novel crystal bender for an X-ray undulator beamline as part of a fast double crystal monochromator development for full EXAFS energy range was characterized. Rocking curves of the monochromator crystal system were recorded under different heat loads and bending forces of the indirectly cooled first Si(1 1 1) crystal. The monochromator development implements new piezo-driven tilt tables with wide angular range to adjust the crystals' Bragg angles and a high pressure actuated bender mechanism for the first crystal.

  13. Realisation of a novel crystal bender for a fast double crystal monochromator

    CERN Document Server

    Zaeper, R; Wollmann, R; Luetzenkirchen-Hecht, D; Frahm, R

    2001-01-01

    A novel crystal bender for an X-ray undulator beamline as part of a fast double crystal monochromator development for full EXAFS energy range was characterized. Rocking curves of the monochromator crystal system were recorded under different heat loads and bending forces of the indirectly cooled first Si(1 1 1) crystal. The monochromator development implements new piezo-driven tilt tables with wide angular range to adjust the crystals' Bragg angles and a high pressure actuated bender mechanism for the first crystal.

  14. Optimization of Monochromated TEM for Ultimate Resolution Imaging and Ultrahigh Resolution Electron Energy Loss Spectroscopy

    KAUST Repository

    Lopatin, Sergei

    2017-09-01

    The performance of a monochromated transmission electron microscope with Wien type monochromator is optimized to achieve an extremely narrow energy spread of electron beam and an ultrahigh energy resolution with spectroscopy. The energy spread in the beam is improved by almost an order of magnitude as compared to specified values. The optimization involves both the monochromator and the electron energy loss detection system. We demonstrate boosted capability of optimized systems with respect to ultra-low loss EELS and sub-angstrom resolution imaging (in a combination with spherical aberration correction).

  15. Backscattering analyzer geometry as a straightforward and precise method for monochromator characterization at third-generation synchrotron-radiation sources (abstract)

    Science.gov (United States)

    Snigirev, A. A.; Lequien, S.; Suvorov, A. Yu.

    1995-02-01

    With the assessment of the third generation of synchrotron-radiation sources, insertion devices (ID) are going to become extensively used. The choice of the ID field configuration allows the optimization of the photon flux at the desired energy. This attractive situation results in a much higher flux on optical elements, mainly on monochromators for which new cooling schemes have to be developed. These latter must be characterized under operating conditions and generally, the figure of merit for monochromators is the rocking curve (RC) measurement. By varying the ID field, the monochromator may be fully characterized with regard to the heat load. To achieve this aim, we have proposed and tested a double-crystal setup where a Si analyzer crystal installed in backscattering geometry (BSG) is coupled with a silicon p-i-n photodiode as the detection system (Fig. 1). The analyzer was a standard Si wafer (111) orientation, from which we used the following Bragg reflections: 333, 444, 555, 777, 888, 999, ... to measure the RCs of monochromators keeping the analyzer fixed. We were then able to probe the formers at the respective energies 5.9, 7.9, 9.9, 13.8, 15.8, 17.8 keV, etc. Setting the analyzer crystal in BSG, we get several-fold benefits from the method: (1) A very good angular resolution (˜10-6 rad) when one combines the BSG analyzer with narrow slits (˜100 μm). (2) A high-energy resolution yielding to a calibration of the monochromator with an accuracy better than 1 eV. (3) The analyzer crystal attenuates the reflected intensity which avoids the use of any scatterer foil to count the number of photons. We directly used photodiodes which are well known to respond linearly to radiation intensities and to have a high dynamic range (more than 6 decades). (4) No fine mechanics is needed for the analyzer, just a simple manual turntable can be used to set the analyzer in BSG through the utilization of a laser beam. Results on different tests for operating liquid-N2

  16. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    Science.gov (United States)

    Kristiansen, Paw; Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim

    2015-01-01

    The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged. PMID:26134790

  17. Mechanical design aspects of a soft X-ray plane grating monochromator

    CERN Document Server

    Vasina, R; Dolezel, P; Mynar, M; Vondracek, M; Chab, V; Slezak, J A; Comicioli, C; Prince, K C

    2001-01-01

    A plane grating monochromator based on the SX-700 concept has been constructed for the Materials Science Beamline, Elettra, which is attached to a bending magnet. The tuning range is from 35 to 800 eV with calculated spectral resolving power epsilon/DELTA epsilon better than 4000 in the whole range. The optical elements consist of a toroidal prefocusing mirror, polarization aperture, entrance slit, plane pre-mirror, single plane grating (blazed), spherical mirror, exit slit and toroidal refocusing mirror. The plane grating is operated in the fixed focus mode with C sub f sub f =2.4. Energy scanning is performed by rotation of the plane grating and simultaneous translation and rotation of the plane pre-mirror. A novel solution is applied for the motion of the plane pre-mirror, namely by a translation and mechanically coupling the rotation by a cam. The slits have no moving parts in vacuum to reduce cost and increase ruggedness, and can be fully closed without risk of damage. In the first tests, a resolving pow...

  18. Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Dunin-Borkowski, Rafal E.

    2010-01-01

    The latest generation of environmental transmission electron microscopes incorporates aberration correctors and monochromators, allowing studies of chemical reactions and growth processes with improved spatial resolution and spectral sensitivity. Here, we describe the performance of such an instr......The latest generation of environmental transmission electron microscopes incorporates aberration correctors and monochromators, allowing studies of chemical reactions and growth processes with improved spatial resolution and spectral sensitivity. Here, we describe the performance...

  19. Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer

    Science.gov (United States)

    Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.

    2014-04-01

    Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.

  20. Liquid-crystal displays for medical imaging: a discussion of monochrome versus color

    Science.gov (United States)

    Wright, Steven L.; Samei, Ehsan

    2004-05-01

    A common view is that color displays cannot match the performance of monochrome displays, normally used for diagnostic x-ray imaging. This view is based largely on historical experience with cathode-ray tube (CRT) displays, and does not apply in the same way to liquid-crystal displays (LCDs). Recent advances in color LCD technology have considerably narrowed performance differences with monochrome LCDs for medical applications. The most significant performance advantage of monochrome LCDs is higher luminance, a concern for use under bright ambient conditions. LCD luminance is limited primarily by backlight design, yet to be optimized for color LCDs for medical applications. Monochrome LCDs have inherently higher contrast than color LCDs, but this is not a major advantage under most conditions. There is no practical difference in luminance precision between color and monochrome LCDs, with a slight theoretical advantage for color. Color LCDs can provide visualization and productivity enhancement for medical applications, using digital drive from standard commercial graphics cards. The desktop computer market for color LCDs far exceeds the medical monitor market, with an economy of scale. The performance-to-price ratio for color LCDs is much higher than monochrome, and warrants re-evaluation for medical applications.

  1. Vibratory response of a precision double-multi-layer monochromator positioning system using a generic modeling program with experimental verification.

    Energy Technology Data Exchange (ETDEWEB)

    Barraza, J.

    1998-07-29

    A generic vibratory response-modeling program has been developed as a tool for designing high-precision optical positioning systems. The systems are modeled as rigid-body structures connected by linear non-rigid elements such as complex actuators and bearings. The full dynamic properties of each non-rigid element are determined experimentally or theoretically, then integrated into the program as inertial and stiffness matrices. Thus, it is possible to have a suite of standardize structural elements for modeling many different positioning systems that use standardized components. This paper will present the application of this program to a double-multi-layer monochromator positioning system that utilizes standardized components. Calculated results are compared to experimental modal analysis results.

  2. Double crystal monochromator controlled by integrated computing on BL07A in New SUBARU, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Okui, Masato, E-mail: okui@kohzu.co.jp [Kohzu Precision Co., Ltd., 2-6-15, Kurigi, Asao-ku, Kawasaki-shi, Kanagawa 215-8521 (Japan); Laboratory of Advanced Science and Technology for Industry, University of Hyogo (Japan); Yato, Naoki; Watanabe, Akinobu; Lin, Baiming; Murayama, Norio [Kohzu Precision Co., Ltd., 2-6-15, Kurigi, Asao-ku, Kawasaki-shi, Kanagawa 215-8521 (Japan); Fukushima, Sei, E-mail: FUKUSHIMA.Sei@nims.go.jp [Laboratory of Advanced Science and Technology for Industry, University of Hyogo (Japan); National Institute for Material Sciences (Japan); Kanda, Kazuhiro [Laboratory of Advanced Science and Technology for Industry, University of Hyogo (Japan)

    2016-07-27

    The BL07A beamline in New SUBARU, University of Hyogo, has been used for many studies of new materials. A new double crystal monochromator controlled by integrated computing was designed and installed in the beamline in 2014. In this report we will discuss the unique features of this new monochromator, MKZ-7NS. This monochromator was not designed exclusively for use in BL07A; on the contrary, it was designed to be installed at low cost in various beamlines to facilitate the industrial applications of medium-scale synchrotron radiation facilities. Thus, the design of the monochromator utilized common packages that can satisfy the wide variety of specifications required at different synchrotron radiation facilities. This monochromator can be easily optimized for any beamline due to the fact that a few control parameters can be suitably customized. The beam offset can be fixed precisely even if one of the two slave axes is omitted. This design reduces the convolution of mechanical errors. Moreover, the monochromator’s control mechanism is very compact, making it possible to reduce the size of the vacuum chamber can be made smaller.

  3. On the influence of monochromator thermal deformations on X-ray focusing

    Science.gov (United States)

    Antimonov, M. A.; Khounsary, A. M.; Sandy, A. R.; Narayanan, S.; Navrotski, G.

    2016-06-01

    A cooled double crystal monochromator system is used on many high heat load X-ray synchrotron radiation beamlines in order to select, by diffraction, a narrow spectrum of the beam. Thermal deformation of the first crystal monochromator - and the potential loss of beam brightness - is often a concern. However, if downstream beam focusing is planned, the lensing effect of the monochromator must be considered even if thermal deformations are small. In this paper we report on recent experiments at an Advanced Photon Source (APS) beamline that focuses the X-ray beam using compound refractive lenses downstream of an X-ray monochromator system. Increasing the X-ray beam power by increasing the storage ring current from 100 mA to 130 mA resulted in an effective doubling of the focal distance. We show quantitatively that this is due to a lensing effect of the distorted monochromator that results in the creation of a virtual source downstream of the actual source. An analysis of the defocusing and options to mitigate this effect are explored.

  4. On the influence of monochromator thermal deformations on X-ray focusing

    Energy Technology Data Exchange (ETDEWEB)

    Antimonov, M.A. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251 (Russian Federation); Khounsary, A.M., E-mail: amk@iit.edu [Department of Physics, Illinois Institute of Technology, Chicago, IL 60616 (United States); Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Sandy, A.R.; Narayanan, S.; Navrotski, G. [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2016-06-01

    A cooled double crystal monochromator system is used on many high heat load X-ray synchrotron radiation beamlines in order to select, by diffraction, a narrow spectrum of the beam. Thermal deformation of the first crystal monochromator – and the potential loss of beam brightness – is often a concern. However, if downstream beam focusing is planned, the lensing effect of the monochromator must be considered even if thermal deformations are small. In this paper we report on recent experiments at an Advanced Photon Source (APS) beamline that focuses the X-ray beam using compound refractive lenses downstream of an X-ray monochromator system. Increasing the X-ray beam power by increasing the storage ring current from 100 mA to 130 mA resulted in an effective doubling of the focal distance. We show quantitatively that this is due to a lensing effect of the distorted monochromator that results in the creation of a virtual source downstream of the actual source. An analysis of the defocusing and options to mitigate this effect are explored.

  5. The residual stress instrument with optimized Si(220) monochromator and position-sensitive detector at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang-Hee [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Moon, Myung-Kook [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of)]. E-mail: moonmk@kaeri.re.kr; Em, Vyacheslav T. [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Choi, Young-Hyun [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Cheon, Jong-Kyu [Korea Atomic Energy Research Institute, Yusung, Daejon 305-600 (Korea, Republic of); Nam, Uk-Won [Korea Astronomy Observatory, Yusung, Daejon 305-348 (Korea, Republic of); Kong, Kyung-Nam [Korea Astronomy Observatory, Yusung, Daejon 305-348 (Korea, Republic of)

    2005-06-11

    An upgraded residual stress instrument at the HANARO reactor of the KAERI is described. A horizontally focusing bent perfect crystal Si(220) monochromator (instead of a mosaic vertical focusing Ge monochromator) is installed in a drum with a tunable (2{theta}{sub M}=0-60{sup o}) take-off angle/wavelength. A specially designed position-sensitive detector (60% efficiency for {lambda}=1.8A) with 200mm (instead of 100mm) high-active area is used. There are no Soller type collimators in the instrument. The minimum possible monochromator to sample distance, L{sub MS}=2m, and sample to detector distance, L{sub SD}=1.2m, were found to be optimal. The new PSD and bent Si(220) monochromator combined with the possibility of selecting an appropriate wavelength resulted in about a ten-fold gain in data collection rate. The optimal reflections of austenitic and ferritic steels, aluminum and nickel for stress measurements with a Si(220) monochromator were chosen experimentally. The ability of the instrument to make strain measurements deep inside the austenitic and ferritic steels has been tested. For the chosen reflections and wavelengths, no shift of peak position (apparent strain) was observed up to 56mm length of path.

  6. Synchrotron X-ray adaptative monochromator: study and realization of a prototype; Monochromateur adaptatif pour rayonnement X synchrotron: etude et realisation d`un prototype

    Energy Technology Data Exchange (ETDEWEB)

    Dezoret, D.

    1995-12-12

    This work presents a study of a prototype of a synchrotron X-ray monochromator. The spectral qualities of this optic are sensitive to the heat loads which are particularly important on third synchrotron generation like ESRF. Indeed, powers generated by synchrotron beams can reach few kilowatts and power densities about a few tens watts per square millimeters. The mechanical deformations of the optical elements of the beamlines issue issue of the heat load can damage their spectral efficiencies. In order to compensate the deformations, wa have been studying the transposition of the adaptive astronomical optics technology to the x-ray field. First, we have considered the modifications of the spectral characteristics of a crystal induced by x-rays. We have established the specifications required to a technological realisation. Then, thermomechanical and technological studies have been required to transpose the astronomical technology to an x-ray technology. After these studies, we have begun the realisation of a prototype. This monochromator is composed by a crystal of silicon (111) bonded on a piezo-electric structure. The mechanical control is a loop system composed by a infrared light, a Shack-Hartmann CDD and wave front analyser. This system has to compensate the deformations of the crystal in the 5 kcV to 60 kcV energy range with a power density of 1 watt per square millimeters. (authors).

  7. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    OpenAIRE

    Zhu, Diling; Feng, Yiping; Stoupin, Stanislav; Terentyev, Sergey A.; Lemke, Henrik T.; Fritz, David M.; Chollet, Matthieu; Glownia, J. M.; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; Brandt van Driel, Tim; Williams, Garth J; Messerschmidt, Marc; Boutet, Sébastien

    2014-01-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ∼100 μm to allow high reflectivity within the Bragg bandwidth and good transm...

  8. Comparison of Color LCD and Medical-grade Monochrome LCD Displays in Diagnostic Radiology

    OpenAIRE

    2007-01-01

    In diagnostic radiology, medical-grade monochrome displays are usually recommended because of their higher luminance. Standard color displays can be used as a less expensive alternative, but have a lower luminance. The aim of the present study was to compare image quality for these two types of displays. Images of a CDRAD contrast-detail phantom were read by four radiologists using a 2-megapixel (MP) color display (143 cd/m2 maximum luminance) as well as 2-MP (295 cd/m2) and 3-MP monochrome d...

  9. A diffracted-beam monochromator for long linear detectors in X-ray diffractometers with Bragg-Brentano parafocusing geometry

    NARCIS (Netherlands)

    Van der Pers, N.M.; Hendrikx, R.W.A.; Delhez, R.; Böttger, A.J.

    2013-01-01

    A new diffracted-beam monochromator has been developed for Bragg-Brentano X-ray diffractometers equipped with a linear detector. The monochromator consists of a cone-shaped graphite highly oriented pyrolytic graphite crystal oriented out of the equatorial plane such that the parafocusing geometry is

  10. A spherical grating monochromator and beamline optimised for the provision of polarised synchrotron radiation in the photon energy range 20-200 eV

    Energy Technology Data Exchange (ETDEWEB)

    Finetti, P.; Holland, D.M.P. E-mail: d.m.p.holland@dl.ac.uk; Latimer, C.J.; Binns, C.; Quinn, F.M.; Bowler, M.A.; Grant, A.F.; Mythen, C.S

    2001-12-01

    The design and performance of a spherical grating monochromator and beamline optimised for experiments requiring polarised radiation are described. The beamline is mounted on a bending magnet source at the Synchrotron Radiation Source at Daresbury Laboratory, and the monochromator incorporates three gratings to cover the photon energy range 20-200 eV. The relative first- and higher-order grating efficiencies have been measured by means of photoelectron spectroscopy and have been compared to theoretical predictions. A movable aperture, placed in the optical path between the source and the first mirror, defines the photon emission directions of the beam entering the beamline. The polarisation of the radiation leaving the beamline is determined both by the vertical position of this aperture and by the modifications introduced by the beamline geometry and the optical components. The modification to the polarisation is difficult to calculate analytically, and a satisfactory quantitative assessment can only be accomplished through a combination of reflectivity and ray-tracing analysis. A reflection polarimeter has been used to obtain a full characterisation of the polarisation in the energy range 20-40 eV. These measurements have enabled the Stokes parameters to be deduced. The degree of linear polarisation has also been investigated through angle resolved photoelectron spectroscopy measurements.

  11. Information virtual indicator with combination of diffractive optical elements

    Science.gov (United States)

    Grad, Y. A.; Drozdova, E. A.; Nayden, L. A.; Nikolaev, V. V.; Odinokov, S. B.; Solomashenko, A. B.

    2016-08-01

    A combination of diffractive optical elements for monochrome information virtual indicators is described. To reduce the spectral "blurring" of image in monochrome indicators with OLED-display or LCD-display with LED backlight the possibility of using the volume reflection hologram as a spectral filter is investigated. The theoretical and experimental results show that the volume reflection hologram can be used as part of a monochrome virtual indicator containing OLED-, LCOS- or LCD-display with LED-backlight and relief-phase gratings for output of radiation from substrate to reduce the spectral "blurring" of image.

  12. Measurement & Minimization of Mount Induced Strain on Double Crystal Monochromator Crystals

    Science.gov (United States)

    Kelly, J.; Alcock, S. G.

    2013-03-01

    Opto-mechanical mounts can cause significant distortions to monochromator crystals and mirrors if not designed or implemented carefully. A slope measuring profiler, the Diamond-NOM [1], was used to measure the change in tangential slope as a function of crystal clamping configuration and load. A three point mount was found to exhibit the lowest surface distortion (Diamond Light Source.

  13. Comparison of color LCD and medical-grade monochrome LCD displays in diagnostic radiology.

    Science.gov (United States)

    Geijer, Håkan; Geijer, Mats; Forsberg, Lillemor; Kheddache, Susanne; Sund, Patrik

    2007-06-01

    In diagnostic radiology, medical-grade monochrome displays are usually recommended because of their higher luminance. Standard color displays can be used as a less expensive alternative, but have a lower luminance. The aim of the present study was to compare image quality for these two types of displays. Images of a CDRAD contrast-detail phantom were read by four radiologists using a 2-megapixel (MP) color display (143 cd/m(2) maximum luminance) as well as 2-MP (295 cd/m(2)) and 3-MP monochrome displays. Thirty lumbar spine radiographs were also read by four radiologists using the color and the 2-MP monochrome display in a visual grading analysis (VGA). Very small differences were found between the displays when reading the CDRAD images. The VGA scores were -0.28 for the color and -0.25 for the monochrome display (p = 0.24; NS). It thus seems possible to use color displays in diagnostic radiology provided that grayscale adjustment is used.

  14. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron bunch and amplified in the second undulator. The proposed setup is extremely simple, and composed of as few as two simple elements. These are the gas cell, to be filled with noble gas, and a short magnetic chicane. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. In this paper we assess the features of gas monochromator based on the use of He and Ne.We analyze the processes in the monochromator gas cell and outside it, touching upon the performance of the differential pumping system as well. We study the feasibility of using the proposed self-seeding technique to generate narrow bandwidth soft X-ray radiation in the LCLS-II soft X-ray beam line. We present conceptual design, technical implementation and expected performances of the gas monochromator self-seeding scheme. (orig.)

  15. Cryogenically cooled bent double-Laue monochromator for high-energy undulator X-rays (50-200 keV).

    Science.gov (United States)

    Shastri, S D; Fezzaa, K; Mashayekhi, A; Lee, W K; Fernandez, P B; Lee, P L

    2002-09-01

    A liquid-nitrogen-cooled monochromator for high-energy X-rays consisting of two bent Si(111) Laue crystals adjusted to sequential Rowland conditions has been in operation for over two years at the SRI-CAT sector 1 undulator beamline of the Advanced Photon Source (APS). It delivers over ten times more flux than a flat-crystal monochromator does at high energies, without any increase in energy width (DeltaE/E approximately 10(-3)). Cryogenic cooling permits optimal flux, avoiding a sacrifice from the often employed alternative technique of filtration - a technique less effective at sources like the 7 GeV APS, where considerable heat loads can be deposited by high-energy photons, especially at closed undulator gaps. The fixed-offset geometry provides a fully tunable in-line monochromatic beam. In addition to presenting the optics performance, unique crystal design and stable bending mechanism for a cryogenically cooled crystal under high heat load, the bending radii adjustment procedures are described.

  16. Calculations and surface quality measurements of high-asymmetry angle x-ray crystal monochromators for advanced x-ray imaging and metrological applications

    Science.gov (United States)

    Zápražný, Zdenko; Korytár, Dušan; Jergel, Matej; Šiffalovič, Peter; Dobročka, Edmund; Vagovič, Patrik; Ferrari, Claudio; Mikulík, Petr; Demydenko, Maksym; Mikloška, Marek

    2015-03-01

    We present the numerical optimization and the technological development progress of x-ray optics based on asymmetric germanium crystals. We show the results of several basic calculations of diffraction properties of germanium x-ray crystal monochromators and of an analyzer-based imaging method for various asymmetry factors using an x-ray energy range from 8 to 20 keV. The important parameter of highly asymmetric monochromators as image magnifiers or compressors is the crystal surface quality. We have applied several crystal surface finishing methods, including advanced nanomachining using single-point diamond turning (SPDT), conventional mechanical lapping, chemical polishing, and chemomechanical polishing, and we have evaluated these methods by means of atomic force microscopy, diffractometry, reciprocal space mapping, and others. Our goal is to exclude the chemical etching methods as the final processing technique because it causes surface undulations. The aim is to implement very precise deterministic methods with a control of surface roughness down to 0.1 nm. The smallest roughness (˜0.3 nm), best planarity, and absence of the subsurface damage were observed for the sample which was machined using an SPDT with a feed rate of 1 mm/min and was consequently polished using a fine polishing 15-min process with a solution containing SiO2 nanoparticles (20 nm).

  17. A point-focusing small angle x-ray scattering camera using a doubly curved monochromator of a W/Si multilayer

    Science.gov (United States)

    Sasanuma, Yuji; Law, Robert V.; Kobayashi, Yuji

    1996-03-01

    A point-focusing small angle x-ray scattering (SAXS) camera using a doubly curved monochromator of a W/Si multilayer has been designed, constructed, and tested. The two radii of curvature of the monochromator are 20 400 and 7.6 mm. The reflectivity of its first-order Bragg reflection for CuKα radiation was calculated to be 0.82, being comparable to that (0.81) of its total reflection. By only 10 s x-ray exposure, scattering from a high-density polyethylene film was detected on an imaging plate (IP). A rotating-anode x-ray generator operated at 40 kV and 30 mA was used. Diffraction from rat-tail collagen has shown that the optical arrangement gives the Bragg spacing up to, at least, 30 nm for CuKα radiation. Combined with IPs, the camera may permit us to carry out time-resolved SAXS measurements for phase behaviors of liquid crystals, lipids, polymer alloys, etc., on conventional x-ray generators available in laboratories.

  18. A magnetically adsorbed fine adjustment mechanism of the second crystal in a double-crystal monochromator

    Institute of Scientific and Technical Information of China (English)

    CAO Chong-Zhen; GAO Xue-Guan; MA Pei-Sun; WANG Feng-Qin; HE Dong-Qing; HUANG Yu-Ying; LIU Peng

    2005-01-01

    In a fine adjustment mechanism of the second crystal in a double-crystal monochromator, a compression spring is usually used as a return force element, but it often produces permanent deform after some time. A novel fine adjustment mechanism is put forward, which utilizes permanent-magnet as the return force element instead of a compression spring. Its principle and advantages of adjusting the pitch angle and the roll angle are analyzed, and the structure parameters of the permanent-magnet, which is the key pa rt of the fine adjustment mechanism, are optimized. The magnetically adsorbed fine adjustment mechanism has been testified and applied successfully in the double-crystal monochromator of 4W1B beam line in Beijing Synchrotron Radiation Facility (BSRF).

  19. Stress mitigation of x-ray beamline monochromators using topography test unit.

    Energy Technology Data Exchange (ETDEWEB)

    Maj, J.; Waldschmidt, G.; Baldo, P.; Macrander, A.; Koshelev, I.; Huang, R.; Maj, L.; Maj, A.; Univ. of Chicago; Northeastern Ohio Univ. Coll. of Medicine; Rosalind Franklin Univ. of Medicine and Science

    2007-01-01

    Silicon and diamond monochromators (crystals), often used in the Advanced Photon Source X-ray beamlines, require a good quality surface finish and stress-free installation to ensure optimal performance. The device used to mount the crystal has been shown to be ajor contributing source of stress. In this case, an adjustable mounting device is an effective method of reducing stresses and improve the rocking curve to levels much closer to ideal. Analysis by a topography test unit has been used to determine the distribution of stresses and to measure the rocking curve, as well as create CCD images of the crystal. This paper describes the process of measuring these stresses and manipulating the mounting device and crystal to create a substantially improved monochromator.

  20. Alignment and characterization of the two-stage time delay compensating XUV monochromator

    CERN Document Server

    Eckstein, Martin; Kubin, Markus; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Vrakking, Marc J J; Kornilov, Oleg

    2016-01-01

    We present the design, implementation and alignment procedure for a two-stage time delay compensating monochromator. The setup spectrally filters the radiation of a high-order harmonic generation source providing wavelength-selected XUV pulses with a bandwidth of 300 to 600~meV in the photon energy range of 3 to 50~eV. XUV pulses as short as $12\\pm3$~fs are demonstrated. Transmission of the 400~nm (3.1~eV) light facilitates precise alignment of the monochromator. This alignment strategy together with the stable mechanical design of the motorized beamline components enables us to automatically scan the XUV photon energ in pump-probe experiments that require XUV beam pointing stability. The performance of the beamline is demonstrated by the generation of IR-assisted sidebands in XUV photoionization of argon atoms.

  1. Fast continuous energy scan with dynamic coupling of the monochromator and undulator at the DEIMOS beamline.

    Science.gov (United States)

    Joly, L; Otero, E; Choueikani, F; Marteau, F; Chapuis, L; Ohresser, P

    2014-05-01

    In order to improve the efficiency of X-ray absorption data recording, a fast scan method, the Turboscan, has been developed on the DEIMOS beamline at Synchrotron SOLEIL, consisting of a software-synchronized continuous motion of the monochromator and undulator motors. This process suppresses the time loss when waiting for the motors to reach their target positions, as well as software dead-time, while preserving excellent beam characteristics.

  2. Focusing characteristics of diamond crystal x-ray monochromators. An experimental and theoretical comparison

    DEFF Research Database (Denmark)

    Rio, M.S. del; Grübel, G.; Als-Nielsen, J.

    1995-01-01

    Perfect crystals in transmission (Laue) geometry can be used effectively for x-ray monochromators, and moreover, perfect Laue crystals show an interesting focusing effect when the incident beam is white and divergent. This focusing is directly dependent on the incident beam divergence and on the ...... from a diamond crystal in Lane geometry, and we analyze and explain the results by comparison with ray-tracing simulations. (C) 1995 American Institute of Physics....

  3. A bent Laue-Laue monochromator for a synchrotron-based computed tomography system

    CERN Document Server

    Ren, B; Chapman, L D; Ivanov, I; Wu, X Y; Zhong, Z; Huang, X

    1999-01-01

    We designed and tested a two-crystal bent Laue-Laue monochromator for wide, fan-shaped synchrotron X-ray beams for the program multiple energy computed tomography (MECT) at the National Synchrotron Light Source (NSLS). MECT employs monochromatic X-ray beams from the NSLS's X17B superconducting wiggler beamline for computed tomography (CT) with an improved image quality. MECT uses a fixed horizontal fan-shaped beam with the subject's apparatus rotating around a vertical axis. The new monochromator uses two Czochralski-grown Si crystals, 0.7 and 1.4 mm thick, respectively, and with thick ribs on their upper and lower ends. The crystals are bent cylindrically, with the axis of the cylinder parallel to the fan beam, using 4-rod benders with two fixed rods and two movable ones. The bent-crystal feature of the monochromator resolved the difficulties we had had with the flat Laue-Laue design previously used in MECT, which included (a) inadequate beam intensity, (b) excessive fluctuations in beam intensity, and (c) i...

  4. Resolution enhancement in transmission electron microscopy with 60-kV monochromated electron source

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Shigeyuki; Mukai, Masaki; Sawada, Hidetaka [JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558 (Japan); Suenaga, Kazutomo [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2016-01-04

    Transmission electron microscopy (TEM) at low accelerating voltages is useful to obtain images with low irradiation damage. For a low accelerating voltage, linear information transfer, which determines the resolution for observation of single-layered materials, is largely limited by defocus spread, which improves when a narrow energy spread is used in the electron source. In this study, we have evaluated the resolution of images obtained at 60 kV by TEM performed with a monochromated electron source. The defocus spread has been evaluated by comparing diffractogram tableaux from TEM images obtained under nonmonochromated and monochromated illumination. The information limits for different energy spreads were precisely measured by using diffractograms with a large beam tilt. The result shows that the information limit reaches 0.1 nm with an energy width of 0.10 eV. With this monochromated source and a higher-order aberration corrector, we have obtained images of single carbon atoms in a graphene sheet by TEM at 60 kV.

  5. High efficiency diffraction grating for EUV lithography beamline monochromator

    Science.gov (United States)

    Voronov, D. L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Naulleau, P.; Artemiev, N. A.; Lum, P.; Padmore, H. A.

    2016-09-01

    A blazed diffraction grating for the EUV lithography Beamline 12.0.1 of the Advanced Light Source has been fabricated using optical direct write lithography and anisotropic wet etching technology. A variable line spacing pattern was recorded on a photoresist layer and transferred to a hard mask layer of the grating substrate by a plasma etch. Then anisotropic wet etching was applied to shape triangular grating grooves with precise control of the ultralow blaze angle. Variation of the groove density along the grating length was measured with a Long Trace Profiler (LTP). Fourier analysis of the LTP data confirmed high groove placement accuracy of the grating. The grating coated with a Ru coating demonstrated diffraction efficiency of 69.6% in the negative first diffraction order which is close to theoretical efficiency at the wavelength of 13.5 nm. This work demonstrates an alternative approach to fabrication of highly efficient and precise x-ray diffraction gratings with ultra-low blaze angles.

  6. Study of a scattering shield in a high heat load monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Rong, E-mail: rh66@cornell.edu [IMCA-CAT, Hauptman-Woodward Institute (United States); Meron, Mati [CARS, The University of Chicago (United States)

    2013-07-11

    The techniques for the cooling of the first crystal of a monochromator are by now mature and are used routinely to deal with the heat loads resulting from the intense beams generated by third generation synchrotron insertion device sources. However, the thermal stability of said monochromators, which crucially depends on proper shielding of X-ray scattering off the first crystal, remains a serious consideration. This will become even more so in the near future, as many synchrotron facilities are upgrading to higher beam currents and energies. During a recent upgrade of the 17-ID beamline at the APS it was recognized that accurate simulation of the spatial distribution of the power scattered off the first crystal was essential for the understanding and remediation of the observed large temperature increase of the first crystal's scattering shield. The calculation is complex, due to the broad energy spectrum of the undulator and the prevalence of multiple X-ray scattering events within the bulk of the crystal, thus the Monte Carlo method is the natural tool for such a task. A successful simulation was developed, for the purpose of the 17-ID upgrade, and used to significantly improve the design of the first crystal's scattering shield. -- Highlights: • We use the Monte Carlo method to simulate X-ray scattering from monochromator crystals. • Scattered X-ray power on each surface of the scattering shield has been calculated. • Overheating on the original shield is well explained with simulated scattering power. • The thermal stability of the modified scattering shield is satisfactory.

  7. Comparison of the commercial color LCD and the medical monochrome LCD using randomized object test patterns.

    Directory of Open Access Journals (Sweden)

    Jay Wu

    Full Text Available Workstations and electronic display devices in a picture archiving and communication system (PACS provide a convenient and efficient platform for medical diagnosis. The performance of display devices has to be verified to ensure that image quality is not degraded. In this study, we designed a set of randomized object test patterns (ROTPs consisting of randomly located spheres with various image characteristics to evaluate the performance of a 2.5 mega-pixel (MP commercial color LCD and a 3 MP diagnostic monochrome LCD in several aspects, including the contrast, resolution, point spread effect, and noise. The ROTPs were then merged into 120 abdominal CT images. Five radiologists were invited to review the CT images, and receiver operating characteristic (ROC analysis was carried out using a five-point rating scale. In the high background patterns of ROTPs, the sensitivity performance was comparable between both monitors in terms of contrast and resolution, whereas, in the low background patterns, the performance of the commercial color LCD was significantly poorer than that of the diagnostic monochrome LCD in all aspects. The average area under the ROC curve (AUC for reviewing abdominal CT images was 0.717±0.0200 and 0.740±0.0195 for the color monitor and the diagnostic monitor, respectively. The observation time (OT was 145±27.6 min and 127±19.3 min, respectively. No significant differences appeared in AUC (p = 0.265 and OT (p = 0.07. The overall results indicate that ROTPs can be implemented as a quality control tool to evaluate the intrinsic characteristics of display devices. Although there is still a gap in technology between different types of LCDs, commercial color LCDs could replace diagnostic monochrome LCDs as a platform for reviewing abdominal CT images after monitor calibration.

  8. Comparison of the commercial color LCD and the medical monochrome LCD using randomized object test patterns.

    Science.gov (United States)

    Wu, Jay; Wu, Tung H; Han, Rou P; Chang, Shu J; Shih, Cheng T; Sun, Jing Y; Hsu, Shih M

    2012-01-01

    Workstations and electronic display devices in a picture archiving and communication system (PACS) provide a convenient and efficient platform for medical diagnosis. The performance of display devices has to be verified to ensure that image quality is not degraded. In this study, we designed a set of randomized object test patterns (ROTPs) consisting of randomly located spheres with various image characteristics to evaluate the performance of a 2.5 mega-pixel (MP) commercial color LCD and a 3 MP diagnostic monochrome LCD in several aspects, including the contrast, resolution, point spread effect, and noise. The ROTPs were then merged into 120 abdominal CT images. Five radiologists were invited to review the CT images, and receiver operating characteristic (ROC) analysis was carried out using a five-point rating scale. In the high background patterns of ROTPs, the sensitivity performance was comparable between both monitors in terms of contrast and resolution, whereas, in the low background patterns, the performance of the commercial color LCD was significantly poorer than that of the diagnostic monochrome LCD in all aspects. The average area under the ROC curve (AUC) for reviewing abdominal CT images was 0.717±0.0200 and 0.740±0.0195 for the color monitor and the diagnostic monitor, respectively. The observation time (OT) was 145±27.6 min and 127±19.3 min, respectively. No significant differences appeared in AUC (p = 0.265) and OT (p = 0.07). The overall results indicate that ROTPs can be implemented as a quality control tool to evaluate the intrinsic characteristics of display devices. Although there is still a gap in technology between different types of LCDs, commercial color LCDs could replace diagnostic monochrome LCDs as a platform for reviewing abdominal CT images after monitor calibration.

  9. A New Flexible Monochromator Setup for Quick Scanning X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stotzel, J.; Lutzenkirchen-Hecht, D; Frahm, R

    2010-01-01

    A new monochromator setup for quick scanning x-ray absorption spectroscopy in the subsecond time regime is presented. Novel driving mechanics allow changing the energy range of the acquired spectra by remote control during data acquisition for the first time, thus dramatically increasing the flexibility and convenience of this method. Completely new experiments are feasible due to the fact that time resolution, edge energy, and energy range of the acquired spectra can be changed continuously within seconds without breaking the vacuum of the monochromator vessel and even without interrupting the measurements. The advanced mechanics are explained in detail and the performance is characterized with x-ray absorption spectra of pure metal foils. The energy scale was determined by a fast and accurate angular encoder system measuring the Bragg angle of the monochromator crystal with subarcsecond resolution. The Bragg angle range covered by the oscillating crystal can currently be changed from 0{sup o} to 3.0{sup o} within 20 s, while the mechanics are capable to move with frequencies of up to ca. 35 Hz, leading to ca. 14 ms/spectrum time resolution. A new software package allows performing programmed scan sequences, which enable the user to measure stepwise with alternating parameters in predefined time segments. Thus, e.g., switching between edges scanned with the same energy range is possible within one in situ experiment, while also the time resolution can be varied simultaneously. This progress makes the new system extremely user friendly and efficient to use for time resolved x-ray absorption spectroscopy at synchrotron radiation beamlines.

  10. A new flexible monochromator setup for quick scanning x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stoetzel, J.; Luetzenkirchen-Hecht, D.; Frahm, R. [Fachbereich C, Physik, Bergische Universitaet Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)

    2010-07-15

    A new monochromator setup for quick scanning x-ray absorption spectroscopy in the subsecond time regime is presented. Novel driving mechanics allow changing the energy range of the acquired spectra by remote control during data acquisition for the first time, thus dramatically increasing the flexibility and convenience of this method. Completely new experiments are feasible due to the fact that time resolution, edge energy, and energy range of the acquired spectra can be changed continuously within seconds without breaking the vacuum of the monochromator vessel and even without interrupting the measurements. The advanced mechanics are explained in detail and the performance is characterized with x-ray absorption spectra of pure metal foils. The energy scale was determined by a fast and accurate angular encoder system measuring the Bragg angle of the monochromator crystal with subarcsecond resolution. The Bragg angle range covered by the oscillating crystal can currently be changed from 0 deg. to 3.0 deg. within 20 s, while the mechanics are capable to move with frequencies of up to ca. 35 Hz, leading to ca. 14 ms/spectrum time resolution. A new software package allows performing programmed scan sequences, which enable the user to measure stepwise with alternating parameters in predefined time segments. Thus, e.g., switching between edges scanned with the same energy range is possible within one in situ experiment, while also the time resolution can be varied simultaneously. This progress makes the new system extremely user friendly and efficient to use for time resolved x-ray absorption spectroscopy at synchrotron radiation beamlines.

  11. A new gradient monochromator for the IN13 back-scattering spectrometer

    Science.gov (United States)

    Ciampolini, L.; Bove, L. E.; Mondelli, C.; Alianelli, L.; Labbe-Lavigne, S.; Natali, F.; Bée, M.; Deriu, A.

    2005-06-01

    We present new McStas simulations of the back-scattering thermal neutron spectrometer IN13 to evaluate the advantages of a new temperature gradient monochromator relative to a conventional one. The simulations show that a flux gain up to a factor 7 can be obtained with just a 10% loss in energy resolution and a 20% increase in beam spot size at the sample. The results also indicate that a moderate applied temperature gradient (ΔT≃16 K) is sufficient to obtain this significant flux gain.

  12. A new gradient monochromator for the IN13 back-scattering spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ciampolini, L. [Istituto Nazionale per la Fisica della Materia, Unita di Parma (Italy)]. E-mail: ciampolinil@ieee.org; Bove, L.E. [Istituto Nazionale per la Fisica della Materia, OGG, ILL Grenoble (France); Mondelli, C. [Istituto Nazionale per la Fisica della Materia, OGG, ILL Grenoble (France); Alianelli, L. [Istituto Nazionale per la Fisica della Materia, OGG, ILL Grenoble (France); Institut Laue Langevin, Grenoble (France); Labbe-Lavigne, S. [CNRS, Grenoble (France); Natali, F. [Istituto Nazionale per la Fisica della Materia, OGG, ILL Grenoble (France); Bee, M. [Universite Joseph Fourier, Grenoble (France); Deriu, A. [Istituto Nazionale per la Fisica della Materia, Unita di Parma (Italy); Dipartimento di Fisica, Universita di Parma (Italy)

    2005-06-01

    We present new McStas simulations of the back-scattering thermal neutron spectrometer IN13 to evaluate the advantages of a new temperature gradient monochromator relative to a conventional one. The simulations show that a flux gain up to a factor 7 can be obtained with just a 10% loss in energy resolution and a 20% increase in beam spot size at the sample. The results also indicate that a moderate applied temperature gradient ({delta}T{approx}16K) is sufficient to obtain this significant flux gain. n.

  13. Synchronous scanning of undulator gap and monochromator for XAFS measurements in soft x-ray region.

    Science.gov (United States)

    Tanaka, T; Matsubayashi, N; Imamura, M; Shimada, H

    2001-03-01

    Synchronous scanning of the undulator gap and a monochromator was done to obtain smooth profiles of incident x-rays that are suitable for XAFS measurements. By changing the gap from 150 mm(B=0.12 T) to 140 mm (B=0.15 T) with the use of the 3rd to 11th harmonic peaks, soft x-rays with energy from 200 eV to 1200 eV were obtained. The smooth profile of the incident x-rays provided high-quality measurement of XANES and EXAFS spectra in the soft x-ray region. Issues that would improve the synchronous scanning system are discussed.

  14. A soft X-ray plane-grating monochromator optimized for elliptical dipole radiation from modern sources

    Energy Technology Data Exchange (ETDEWEB)

    Kachel, Torsten, E-mail: torsten.kachel@helmholtz-berlin.de; Eggenstein, Frank [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Follath, Rolf [Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-07-14

    The utilization of elliptical dipole radiation in a collimated plane-grating monochromator at BESSY II is described. A new but yet well proven way of making elliptically polarized dipole radiation from the BESSY II storage ring applicable to the SX700-type collimated plane-grating monochromator PM3 is described. It is shown that due to the limited vertical acceptance of the grating a simple use of vertical apertures is not possible in this case. Rather, deflecting the beam upwards or downwards by rotating the vertically collimating toroidal mirror M1 around the light axis leads to excellent performance. The resulting detuning of the photon energy can be taken into account by a readjustment of the monochromator internal plane mirror M2. The energy resolution of the beamline is not affected by the non-zero ‘roll’ of the collimating mirror.

  15. Optimisation and fabrication of a composite pyrolytic graphite monochromator for the Pelican instrument at the ANSTO OPAL reactor

    Science.gov (United States)

    Freund, A. K.; Yu, D. H.

    2011-04-01

    The triple monochromator for the TOF neutron spectrometer Pelican at ANSTO has been fully optimised in terms of overall performance, including the determination of the thickness of the pyrolytic graphite crystals. A total of 24 composite crystals were designed and fabricated. The calculated optimum thickness of 1.3 mm and the length of 15 cm of the monochromator crystals, that are not available commercially, were obtained by cleaving and soldering with indium. An extensive characterisation of the crystals using X-ray and neutron diffraction was conducted before and after the cleaving and bonding processes. The results proved that no damage was introduced during fabrication and showed that the design goals were fully met. The measured peak reflectivity and rocking curve widths were indeed in an excellent agreement with theory. In addition to the superior efficiency of the triple monochromator achieved by this novel approach, the amount of the crystal material required could be reduced by 1/3.

  16. Optical design of the NSRL undulator beamline.

    Science.gov (United States)

    Zhang, Y W; Sheng, L S; Zhang, G B; Gao, H

    1998-05-01

    The optical design of the NSRL undulator beamline is presented. The NSRL undulator has 29 periods of 9.2 cm that produce a photon energy of 7.7-124 eV with the fundamental and third harmonics at a ring energy of 800 MeV. The beamline consists of a typical Kirkpatrick-Baez prefocusing mirror system, a modified spherical-grating monochromator (SGM) and a refocusing toroidal mirror. The monochromator has two including angles of 148 and 157 degrees with two plane mirrors inserted into the entrance arm in order to cover the wide energy range with high grating diffraction efficiency. Calculation shows that the resolving power of the monochromator can be greater than 5000 with the slits fully opened and 20000 with a 20 micro m opening of the slits. The spot at the sample is about 1.5 (H) mm x 0.5 (V) mm.

  17. Self-seeding scheme with gas monochromator for narrow-bandwidth soft X-ray FELs

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2011-01-01

    Self-seeding schemes, consisting of two undulators with a monochromator in between, aim at reducing the bandwidth of SASE X-ray FELs. We recently proposed to use a new method of monochromatization exploiting a single crystal in Bragg-transmission geometry for self-seeding in the hard X-ray range. Here we consider a possible extension of this method to the soft X-ray range using a cell filled with resonantly absorbing gas as monochromator. The transmittance spectrum in the gas exhibits an absorbing resonance with narrow bandwidth. Then, similarly to the hard X-ray case, the temporal waveform of the transmitted radiation pulse is characterized by a long monochromatic wake. In fact, the FEL pulse forces the gas atoms to oscillate in a way consistent with a forward-propagating, monochromatic radiation beam. The radiation power within this wake is much larger than the equivalent shot noise power in the electron bunch. Further on, the monochromatic wake of the radiation pulse is combined with the delayed electron b...

  18. $YB_{66} a new soft X-ray monochromator for synchrotron radiation

    CERN Document Server

    Wong, J; Rowen, M; Schäfers, F; Müller, B R; Rek, Z U

    1999-01-01

    For pt.I see Nucl. Instrum. Methods Phys. Res., vol.A291, p.243-8, 1990. YB/sub 66/, a complex boron-rich man-made crystal, has been singled out as a potential monochromator material to disperse synchrotron soft X-rays in the 1-2 keV region. Results of a series of systematic property characterizations pertinent for this application are presented in this paper. These include Laue diffraction patterns and high-precision lattice-constant determination, etch rate, stoichiometry, thermal expansion, soft X-ray reflectivity and rocking-curve measurements, thermal load effects on monochromator performance, nature of intrinsic positive glitches and their reduction. The 004 reflection of YB/sub 66/ has a reflectance of ~3 in this spectral region. The width of the rocking curve varies from 0.25 eV at 1.1 keV to 1.0 eV at 2 keV, which is a factor of two better than that of beryl(1010) in the same energy range, and enables measurements of high-resolution XANES spectra at the Mg, Al and Si K- edges. The thermal bump on the...

  19. An independent survey of monochrome and color low light level TV cameras

    Science.gov (United States)

    Preece, Bradley L.; Tomkinson, David M.; Reynolds, Joseph P.

    2015-05-01

    Using the latest models from the U.S. Army Night Vision Electronic Sensors Directorate (NVESD), a survey of monochrome and color imaging systems at daylight and low light levels is conducted. Each camera system is evaluated and compared under several different assumptions, such as equivalent field of view with equal and variable f/#, common lens focal length and aperture, with high dynamic range comparisons and over several light levels. The modeling is done by use of the Targeting Task Performance (TTP) metric using the latest version of the Night Vision Integrated Performance Model (NV⁸IPM). The comparison is performed over the V parameter, the main output of the TTP metric. Probability of identification (PID) versus range predictions are a direct non-linear mapping of the V parameter as a function of range. Finally, a comparison between the performance of a Bayer-filtered color camera, the Bayer-filtered color camera with the IR block filter removed, and a monochrome version of the same camera is also conducted.

  20. Italian panoramic monochromator for the THEMIS telescope: the first results and instrument evaluation

    Science.gov (United States)

    Cavallini, Fabio; Berrilli, Francesco; Caccin, Bruno; Cantarano, Sergio; Ceppatelli, Guido; Egidi, Alberto; Righini, Alberto

    1998-07-01

    We briefly describe the design and the characteristics of the Italian Panoramic Monochromator installed at the focal plane of the THEMIS telescope built in Izana by a joint venture of the French and Italian National Research Councils. The Panoramic Monochromator substantially is a narrow band filter (approximately equals 22 mAngstrom bandwidth) tunable on the visible spectrum for quasi simultaneous bidimensional spectrometry of the solar atmosphere. The narrow bandwidth is obtained by using a non standard birefringent filter and a Fabry Perot interferometer mounted in series. This assembly has the advantage of the spectral purity of one channel of the Fabry Perot interferometer and a very large free spectral range. Moreover the spectral stability depends on the interferometer, the environment of which may be carefully controlled. The design of this instrument is not really new, but, only now it has been possible to build it thanks to the development of servo controlled Fabry Perot interferometers, which are stable in time and may easily be tuned. The system seems to perform well. It is stable in wavelength and the spectral pass band and stray light are within the expected values, as it may be deduced by very preliminary tests performed at the THEMIS Telescope and in Arcetri (Firenze) at the 'G. B. Donati' solar tower.

  1. Design and fabrication of an active polynomial grating for soft-X-ray monochromators and spectrometers

    CERN Document Server

    Chen, S J; Perng, S Y; Kuan, C K; Tseng, T C; Wang, D J

    2001-01-01

    An active polynomial grating has been designed for use in synchrotron radiation soft-X-ray monochromators and spectrometers. The grating can be dynamically adjusted to obtain the third-order-polynomial surface needed to eliminate the defocus and coma aberrations at any photon energy. Ray-tracing results confirm that a monochromator or spectrometer based on this active grating has nearly no aberration limit to the overall spectral resolution in the entire soft-X-ray region. The grating substrate is made of a precisely milled 17-4 PH stainless steel parallel plate, which is joined to a flexure-hinge bender shaped by wire electrical discharge machining. The substrate is grounded into a concave cylindrical shape with a nominal radius and then polished to achieve a roughness of 0.45 nm and a slope error of 1.2 mu rad rms. The long trace profiler measurements show that the active grating can reach the desired third-order polynomial with a high degree of figure accuracy.

  2. Design and fabrication of an active polynomial grating for soft-X-ray monochromators and spectrometers

    Science.gov (United States)

    Chen, S.-J.; Chen, C. T.; Perng, S. Y.; Kuan, C. K.; Tseng, T. C.; Wang, D. J.

    2001-07-01

    An active polynomial grating has been designed for use in synchrotron radiation soft-X-ray monochromators and spectrometers. The grating can be dynamically adjusted to obtain the third-order-polynomial surface needed to eliminate the defocus and coma aberrations at any photon energy. Ray-tracing results confirm that a monochromator or spectrometer based on this active grating has nearly no aberration limit to the overall spectral resolution in the entire soft-X-ray region. The grating substrate is made of a precisely milled 17-4 PH stainless steel parallel plate, which is joined to a flexure-hinge bender shaped by wire electrical discharge machining. The substrate is grounded into a concave cylindrical shape with a nominal radius and then polished to achieve a roughness of 0.45 nm and a slope error of 1.2 μrad rms. The long trace profiler measurements show that the active grating can reach the desired third-order polynomial with a high degree of figure accuracy.

  3. High-resolution monochromator for iron nuclear resonance vibrational spectroscopy of biological samples

    Science.gov (United States)

    Yoda, Yoshitaka; Okada, Kyoko; Wang, Hongxin; Cramer, Stephen P.; Seto, Makoto

    2016-12-01

    A new high-resolution monochromator for 14.4-keV X-rays has been designed and developed for the Fe nuclear resonance vibrational spectroscopy of biological samples. In addition to high resolution, higher flux and stability are especially important for measuring biological samples, because of the very weak signals produced due to the low concentrations of Fe-57. A 24% increase in flux while maintaining a high resolution better than 0.9 meV is achieved in the calculation by adopting an asymmetric reflection of Ge, which is used as the first crystal of the three-bounce high-resolution monochromator. A 20% increase of the exit beam size is acceptable to our biological applications. The higher throughput of the new design has been experimentally verified. A fine rotation mechanics that combines a weak-link hinge with a piezoelectric actuator was used for controlling the photon energy of the monochromatic beam. The resulting stability is sufficient to preserve the intrinsic resolution.

  4. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  5. A diffracted-beam monochromator for long linear detectors in X-ray diffractometers with Bragg-Brentano parafocusing geometry.

    Science.gov (United States)

    van der Pers, N M; Hendrikx, R W A; Delhez, R; Böttger, A J

    2013-04-01

    A new diffracted-beam monochromator has been developed for Bragg-Brentano X-ray diffractometers equipped with a linear detector. The monochromator consists of a cone-shaped graphite highly oriented pyrolytic graphite crystal oriented out of the equatorial plane such that the parafocusing geometry is preserved over the whole opening angle of the linear detector. In our standard setup a maximum wavelength discrimination of 3% is achieved with an overall efficiency of 20% and a small decrease in angular resolution of only 0.02 °2θ. In principle, an energy resolution as low as 1.5% can be achieved.

  6. Nanoradian angular stabilization of x-ray optical components.

    Science.gov (United States)

    Stoupin, Stanislav; Lenkszus, Frank; Laird, Robert; Goetze, Kurt; Kim, Kwang-Je; Shvyd'ko, Yuri

    2010-05-01

    An x-ray free-electron laser oscillator (XFELO) has been recently proposed [K. Kim et al., Phys. Rev. Lett. 100, 244802 (2008)]. Angular orientation and position in space of Bragg mirrors of the XFELO optical cavity must be continuously adjusted to compensate for the instabilities and maximize the output intensity. An angular stability of about 10 nrad (rms) is required [K. Kim and Y. Shvyd'ko, Phys. Rev. ST Accel. Beams 12, 030703 (2009)]. To approach this goal, a feedback loop based on a null-detection principle was designed and used for stabilization of a high-energy-resolution x-ray monochromator (DeltaE/E approximately 4 x 10(-8), E=23.7 keV) and a high-heat-load monochromator. Angular stability of about 13 nrad (rms) has been demonstrated for x-ray optical elements of the monochromators.

  7. Nanoradian angular stabilization of x-ray optical components

    CERN Document Server

    Stoupin, Stanislav; Laird, Robert; Goetze, Kurt; Kim, Kwang-Je; Shvydko, Yuri

    2010-01-01

    An x-ray free electron laser oscillator (XFELO) has been recently proposed [K. Kim, Y. Shvyd'ko, and S. Reiche, Phys. Rev. Lett. 100, 244802 (2008)]. Angular orientation and position in space of Bragg mirrors of the XFELO optical cavity must be continuously adjusted to compensate instabilities and maximize the output intensity. An angular stability of about 10 nrad (rms) is required [K. Kim and Y. Shvyd'ko Phys. Rev. STAB 12, 030703 (2009)]. To approach this goal, a feedback loop based on a null-detection principle was designed and used for stabilization of a high energy resolution x-ray monochromator ($\\Delta E/E \\simeq 4 \\times 10^{-8}$, $E$ = 23.7 keV) and a high heat load monochromator. Angular stability of about 13 nrad (rms) has been demonstrated for x-ray optical elements of the monochromators.

  8. Multispectral integral imaging acquisition and processing using a monochrome camera and a liquid crystal tunable filter.

    Science.gov (United States)

    Latorre-Carmona, Pedro; Sánchez-Ortiga, Emilio; Xiao, Xiao; Pla, Filiberto; Martínez-Corral, Manuel; Navarro, Héctor; Saavedra, Genaro; Javidi, Bahram

    2012-11-01

    This paper presents an acquisition system and a procedure to capture 3D scenes in different spectral bands. The acquisition system is formed by a monochrome camera, and a Liquid Crystal Tunable Filter (LCTF) that allows to acquire images at different spectral bands in the [480, 680]nm wavelength interval. The Synthetic Aperture Integral Imaging acquisition technique is used to obtain the elemental images for each wavelength. These elemental images are used to computationally obtain the reconstruction planes of the 3D scene at different depth planes. The 3D profile of the acquired scene is also obtained using a minimization of the variance of the contribution of the elemental images at each image pixel. Experimental results show the viability to recover the 3D multispectral information of the scene. Integration of 3D and multispectral information could have important benefits in different areas, including skin cancer detection, remote sensing and pattern recognition, among others.

  9. The sapphire backscattering monochromator at the Dynamics beamline P01 of PETRA III

    Science.gov (United States)

    Alexeev, P.; Asadchikov, V.; Bessas, D.; Butashin, A.; Deryabin, A.; Dill, F.-U.; Ehnes, A.; Herlitschke, M.; Hermann, R. P.; Jafari, A.; Prokhorov, I.; Roshchin, B.; Röhlsberger, R.; Schlage, K.; Sergueev, I.; Siemens, A.; Wille, H.-C.

    2016-12-01

    We report on a high resolution sapphire backscattering monochromator installed at the Dynamics beamline P01 of PETRA III. The device enables nuclear resonance scattering experiments on Mössbauer isotopes with transition energies between 20 and 60 keV with sub-meV to meV resolution. In a first performance test with 119Sn nuclear resonance at a X-ray energy of 23.88 keV an energy resolution of 1.34 meV was achieved. The device extends the field of nuclear resonance scattering at the PETRA III synchrotron light source to many further isotopes like 151Eu, 149Sm, 161Dy, 125Te and 121Sb.

  10. A high-precision cryogenically-cooled crystal monochromator for the APS diagnostics beamline

    Energy Technology Data Exchange (ETDEWEB)

    Rotela, E.; Yang, B.; Sharma, s.; Barcikowski, A.

    2000-07-24

    A high-precision cryogenically-cooled crystal monochromator has been developed for the APS diagnostics beamline. The design permits simultaneous measurements of the particle beam size and divergence. It provides for a large rotation angle, {minus}15{degree} to 180{degree}, with a resolution of 0.0005{degree}. The roll angle of the crystal can be adjusted by up to {+-}3{degree} with a resolution of 0.0001{degree}. A vertical translational stage, with a stroke of {+-}25 mm and resolution of 8 {micro}m, is provided to enable using different parts of the same crystal or to retract the crystal from the beam path. The modular design will allow optimization of cooling schemes to minimize thermal distortions of the crystal under high heat loads.

  11. Flux-enhanced monochromator by ultrasound excitation of annealed Czochralski-grown silicon crystals

    CERN Document Server

    Koehler, S; Seitz, C; Magerl, A; Mashkina, E; Demin, A

    2003-01-01

    The neutron flux from monochromator crystals can be increased by ultrasound excitation or by strain fields. Rocking curves of both a perfect float-zone silicon crystal and an annealed Czochralski silicon crystal with oxygen precipitates were measured at various levels of ultrasound excitation on a cold-neutron backscattering spectrometer. We find that the effects of the dynamic strain field from the ultrasound and the static strain field from the defects are not additive. Rocking curves were also taken at different ultrasound frequencies near resonance of the crystal/ultrasound-transducer system with a time resolution of 1 min. Pronounced effects of crystal heating are observed, which render the conditions for maximum neutron reflectivity delicate. (orig.)

  12. Measuring the criticality of the `magic condition' for a beam-expanding monochromator.

    Science.gov (United States)

    Martinson, Mercedes; Chapman, Dean

    2016-11-01

    It has been established that for cylindrically bent crystals the optimal beam characteristics occur when the geometric and single-ray foci are matched. In the beam-expanding monochromator developed for the BioMedical Imaging and Therapy beamlines at the Canadian Light Source, it was unclear how critical this `magic condition' was for preserving the transverse coherence of the beam. A study was conducted to determine whether misalignments away from the ideal conditions would severely affect the transverse coherence of the beam, thereby limiting phase-based imaging techniques. The results were that the magic condition has enough flexibility to accommodate deviations of about ±1° or ±5 keV.

  13. A methodology for visually lossless JPEG2000 compression of monochrome stereo images.

    Science.gov (United States)

    Feng, Hsin-Chang; Marcellin, Michael W; Bilgin, Ali

    2015-02-01

    A methodology for visually lossless compression of monochrome stereoscopic 3D images is proposed. Visibility thresholds are measured for quantization distortion in JPEG2000. These thresholds are found to be functions of not only spatial frequency, but also of wavelet coefficient variance, as well as the gray level in both the left and right images. To avoid a daunting number of measurements during subjective experiments, a model for visibility thresholds is developed. The left image and right image of a stereo pair are then compressed jointly using the visibility thresholds obtained from the proposed model to ensure that quantization errors in each image are imperceptible to both eyes. This methodology is then demonstrated via a particular 3D stereoscopic display system with an associated viewing condition. The resulting images are visually lossless when displayed individually as 2D images, and also when displayed in stereoscopic 3D mode.

  14. Image-quality assessment of monochrome monitors for medical soft copy display

    Science.gov (United States)

    Weibrecht, Martin; Spekowius, Gerhard; Quadflieg, Peter; Blume, Hartwig R.

    1997-05-01

    Soft-copy presentation of medical images is becoming part of the medical routine as more and more health care facilities are converted to digital filmless hospital and radiological information management. To provide optimal image quality, display systems must be incorporated when assessing the overall system image quality. We developed a method to accomplish this. The proper working of the method is demonstrated with the analysis of four different monochrome monitors. We determined display functions and veiling glare with a high-performance photometer. Structure mottle of the CRT screens, point spread functions and images of stochastic structures were acquired by a scientific CCD camera. The images were analyzed with respect to signal transfer characteristics and noise power spectra. We determined the influence of the monitors on the detective quantum efficiency of a simulated digital x-ray imaging system. The method follows a physical approach; nevertheless, the results of the analysis are in good agreement with the subjective impression of human observers.

  15. A Drabkin-type spin resonator as tunable neutron beam monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Piegsa, F.M., E-mail: florian.piegsa@phys.ethz.ch [ETH Zürich, Institute for Particle Physics, CH-8093 Zürich (Switzerland); Ries, D. [ETH Zürich, Institute for Particle Physics, CH-8093 Zürich (Switzerland); Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Filges, U.; Hautle, P. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2015-09-11

    A Drabkin-type spin resonator was designed and successfully implemented at the multi-purpose beam line BOA at the spallation neutron source SINQ at the Paul Scherrer Institute. The device selectively acts on the magnetic moment of neutrons within an adjustable velocity band and hence can be utilized as a tunable neutron beam monochromator. Several neutron time-of-flight (TOF) spectra have been recorded employing various settings in order to characterize its performance. In a first test application the velocity dependent transmission of a beryllium filter was determined. In addition, we demonstrate that using an exponential current distribution in the spin resonator coil the side-maxima in the TOF spectra usually associated with a Drabkin setup can be strongly suppressed.

  16. Diffraction imaging for in-situ characterization of double-crystal x-ray monochromators

    CERN Document Server

    Stoupin, Stanislav; Heald, Steve M; Brewe, Dale; Meron, Mati

    2015-01-01

    Imaging of the Bragg reflected x-ray beam is proposed and validated as an in-situ method for characterization of performance of double-crystal monochromators under the heat load of intense synchrotron radiation. A sequence of images is collected at different angular positions on the reflectivity curve of the second crystal and analyzed. The method provides rapid evaluation of the wavefront of the exit beam, which relates to local misorientation of the crystal planes along the beam footprint on the thermally distorted first crystal. The measured misorientation can be directly compared to results of finite element analysis. The imaging method offers an additional insight on the local intrinsic crystal quality over the footprint of the incident x-ray beam.

  17. Bragg prism monochromator and analyser for super ultra-small angle neutron scattering studies

    Indian Academy of Sciences (India)

    Apoorva G Wagh; Sohrab Abbas; Markus Strobl; Wolfgang Treimer

    2008-11-01

    We have designed, fabricated and operated a novel Bragg prism monochromator–analyser combination. With a judicious choice of the Bragg reflection, its asymmetry and the apex angle of the silicon single crystal prism, the monochromator has produced a neutron beam with sub-arcsec collimation. A Bragg prism analyser with the opposite asymmetry has been tailored to accept a still sharper angular profile. With this optimized monochromator–analyser pair, we have attained the narrowest and sharpest neutron angular profile to date. At this facility, we have recorded the first SUSANS spectra spanning wave vector transfers ∼ 10−6 Å-1 to characterize samples containing agglomerates up to tens of micrometres in size.

  18. On the sagittal focusing of synchrotron radiation with a double crystal monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Kushnir, V.I.; Quintana, J.P.; Georgopoulos, P. (DUNU Synchrotron Research Center, Robert R. McCormick School of Engineering and Applied Science, Northwestern Univ., Evanston, IL (United States))

    1993-05-01

    A method to avoid the anticlastic bending of the second crystal in a two-crystal monochromator for synchrotron radiation is proposed. It is analytically shown that the anticlastic curvature is zero at the center of the crystal for a simply supported isotropic crystal loaded with a constant moment provided that the crystal's aspect ratio is equal to a 'golden value' dependent on the Poisson coefficient [nu]. For [nu]=0.262 (equal to [nu] in the Si(111) plane) this ratio is 2.360. Finite element results are presented on the case of the clamped crystal and show that there is a similar 'golden value' approximately equal to 1.42 for [nu]=0.262. (orig.).

  19. High-aperture monochromator-reflectometer and its usefulness for CCD calibration

    Science.gov (United States)

    Vishnyakov, Eugene A.; Shcherbakov, Alexander V.; Pertsov, Andrei A.; Polkovnikov, Vladimir N.; Pestov, Alexey E.; Pariev, Dmitry E.; Chkhalo, Nikolai I.

    2017-05-01

    We present a laboratory high-aperture monochromator-reflectometer employing laser-plasma radiation source and three replaceable Schwarzschild objectives for a certain range of applications in the soft X-ray spectral waveband. Three sets of X-ray multilayer mirrors for the Schwarzschild objectives enable operation of the reflectometer at the wavelengths of 135, 171 and 304 Å, while a goniometer with three degrees of freedom allows different measurement modes. We have used the facility for a laboratory CCD calibration at the wavelengths specified. Combined with the results of the CCD sensitivity measurements conducted in the VUV spectral waveband, the total outcome provides a more comprehensive understanding of the CCD effectivity in a wide spectral range.

  20. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    Science.gov (United States)

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-09-01

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C60). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan(3) 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Rotation of X-ray polarization in the glitches of a silicon crystal monochromator.

    Science.gov (United States)

    Sutter, John P; Boada, Roberto; Bowron, Daniel T; Stepanov, Sergey A; Díaz-Moreno, Sofía

    2016-08-01

    EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the 'glitches' produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample's quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni K edge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample's quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches.

  2. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  3. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated.

  4. 极高分辨变包含角平面光栅单色器关键技术及检测方法研究%Key technologies and the performance measuring methods in variable included angle plane grating monochromator

    Institute of Scientific and Technical Information of China (English)

    卢启鹏; 宋源; 龚学鹏; 马磊

    2016-01-01

    变包含角平面光栅单色器具有分辨率高和光通量高等优点,被广泛应用于各科研领域,并且随着相关领域研究的不断深入,迫切需要提高其光谱分辨率,以满足使用需求。为研究探索极高分辨率变包含角平面光栅单色器,结合上海同步辐射光源光束线,重点研究影响单色器分辨率的关键因素;对单色器光学元件表面热负载进行分析,设计冷却系统,降低热负载产生的影响;研究变包含角平面光栅单色器转角精度等检测方法。结果表明,根据推导出的变包含角平面光栅单色器光学放大倍数与单色器分辨率的关系式,达到优选极高分辨率工作模式的目的;加入冷却系统后,单色器前置平面镜因受热负载影响而产生的最大斜率误差由8.1μrad降到3.1μrad;设计可应用于变包含角光栅单色器分辨率达5×104的转角精度检测方法,检测精度可达0.026″。该研究将为第三代同步辐射光源中建造极高分辨变包含角单色器提供帮助。%The variable-included-angle plane grating monochromator is broadly used in high performance soft X-ray due to its superior performance,such as high throughput and high resolution.With the development of Science,improving and optimizing the resolution of variables-included-angle plane grating monochromator is necessary and urgently.In order to study and explore the ultra-high resolution of variables-included-angle plane grating monochromator in synchrotron radiation,some issues were researched in this work.Firstly,the relationship between working modes of variables-included-angle plane grating monochromator with different cf is emphatically researched.According to the relationship,the high resolution working modes of the mono-chromator can be selected.Secondly,we studied the effects of high heat load on the optical system by using the simulation software and designed an appropriate cooling system in

  5. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  6. Thermal and structural finite element analysis of water cooled silicon monochromator for synchrotron radiation comparison of two different cooling schemes

    CERN Document Server

    Artemiev, A I; Busetto, E; Hrdy, J; Mrazek, D; Plesek, I; Savoia, A

    2001-01-01

    The article describes the results of Finite Element Analysis (FEA) of the first Si monochromator crystal distortions due to Synchrotron Radiation (SR) heat load and consequent analysis of the influence of the distortions on a double crystal monochromator performance. Efficiencies of two different cooling schemes are compared. A thin plate of Si crystal is lying on copper cooling support in both cases. There are microchannels inside the cooling support. In the first model the direction of the microchannels is parallel to the diffraction plane. In the second model the direction of the microchannels is perpendicular to the diffraction plane or in other words, it is a conventional cooling scheme. It is shown that the temperature field along the crystal volume is more uniform and more symmetrical in the first model than in the second (conventional) one.

  7. Optimization of bent perfect Si(220)-crystal monochromator for residual strain/stress instrument-Part II

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myung-Kook [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of)]. E-mail: moonmk@kaeri.re.kr; Em, Vyacheslav T. [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Lee, Chang-Hee [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Mikula, Pavol [Nuclear Physics Institute and Research Centre Rez Ltd., 250 68 Rez (Czech Republic); Hong, Kwang-Pyo [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Choi, Young-Hyun [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Cheon, Jong-Kyu [Neutron Beam Application, Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Nam, Uk-Won [Nuclear Physics Institute and Research Centre Rez Ltd., 250 68 Rez (Czech Republic); Kong, Kyung-Nam [Nuclear Physics Institute and Research Centre Rez Ltd., 250 68 Rez (Czech Republic); Korea Astronomy Observatory, Yusung, Daejeon 305-348 (Korea, Republic of); Jin, Kyung-Chan [Korea Institute of Industrial Technology, 35-3 Hongchon-Ri, Ipchang-Myun, Chonan-Si, Chungnam, 330-825 (Korea, Republic of)

    2005-11-01

    Optimized diffractometer arrangements for residual strain measurements employing curved crystal monochromators provide good luminosity and a high {delta}d/d resolution in the vicinity of usually used scattering angle 2{theta}{sub S}{approx}+/-90{sup o}. Due to a variety of designs of the diffractometers which could be installed at a constant or different take-off angles, except a few attempts, there is a lack of experimental evidence providing a help in a choice of parameters for an optimum performance. In addition to our earlier investigations with curved Si(311) monochromator employed in different diffraction geometries (see paper I [M.K. Moon et al., Physica B, submitted [1

  8. Design, Build & Test of a Double Crystal Monochromator for Beamlines I09 & I23 at the Diamond Light Source

    Science.gov (United States)

    Kelly, J.; Lee, T.; Alcock, S.; Patel, H.

    2013-03-01

    A high stability Double Crystal Monochromator has been developed at The Diamond Light Source for beamlines I09 and I23. The design specification was a cryogenic, fixed exit, energy scanning monochromator, operating over an energy range of 2.1 - 25 keV using a Si(111) crystal set. The novel design concepts are the direct drive, air bearing Bragg axis, low strain crystal mounts and the cooling scheme. The instrument exhibited superb stability and repeatability on the B16 Test Beamline. A 20 keV Si(555), 1.4 μrad rocking curve was demonstrated. The DCM showed good stability without any evidence of vibration or Bragg angle nonlinearity.

  9. Double-crystal monochromator for a PF 60-period soft x-ray undulator (abstract)

    Science.gov (United States)

    Ishikawa, T.; Maezawa, H.; Nomura, M.; Ando, M.

    1989-07-01

    Since undulator light is sharply collimated itself, it can be effectively monochromatized by a perfect crystal. An x-ray double-crystal monochromator with a fixed exit has been designed and built for the use of undulator light from a 60-period undulator at Photon Factory (beamline 2A). Available Bragg angle ranges from 7° to 80°. Angle scan is made by means of a goniometer outside the vacuum chamber, with the finest step of 0.1 arcsec. Magnetic fluid is used as the vacuum seal of the feedthrough. The fixed exit beam position is kept by translating the second crystal along the two mechanical guides: one for normal and the other for parallel to the crystal surface. Adjustment of the parallelity of two crystals is made manually with flexible wires. Since a total power in the central coherent portion which is limited by a 1×1-mm2 slit is not so much, a stable operation is possible without cooling the crystal. Currently, InSb (111) reflection is used. The diffracting planes of the first cyrstal is 1° off from the surface and the second is the symmetric reflection. At its fifth harmonics, brilliant undulator light of approximately 1012 photons/s mm2 with 1-eV energy resolution is available (E=2 keV).

  10. Quick scanning monochromator for millisecond in situ and in operando X-ray absorption spectroscopy

    Science.gov (United States)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-09-01

    The design and capabilities of a novel Quick scanning Extended X-ray Absorption Fine Structure (QEXAFS) monochromator are presented. The oscillatory movement of the crystal stage is realized by means of a unique open-loop driving scheme operating a direct drive torque motor. The entire drive mechanics are installed inside of a goniometer located on the atmospheric side of the vacuum chamber. This design allows remote adjustment of the oscillation frequency and spectral range, giving complete control of QEXAFS measurements. It also features a real step-scanning mode, which operates without a control loop to prevent induced vibrations. Equipped with Si(111) and Si(311) crystals on a single stage, it facilitates an energy range from 4.0 keV to 43 keV. Extended X-ray absorption fine structure spectra up to k = 14.4 Å-1 have been acquired within 17 ms and X-ray absorption near edge structure spectra covering more than 200 eV within 10 ms. The achieved data quality is excellent as shown by the presented measurements.

  11. Design, Fabrication and Measurement of Ni/Ti Multilayer Used for Neutron Monochromator

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong; WANG Zhan-Shan; ZHU Jing-Tao; WU Yong-Rong; MU Bao-Zhong; WANG Feng-Li; QIN Shu-Ji; CHEN Ling-Yan

    2007-01-01

    Ni/Ti multilayers.which can be used for neutron monochromators,are designed,fabricated and measured.Firstly,their reflectivities are simulated based on the Nevot-Croce model.Reflectivities of two Ni/Ti multilayer mirrors with periods d=10.3nm(M1)and d=7.8nm(M2) are calculated.In the calculation,the reflectivity of the Ni/Ti multilayer is taken as a function of the gazing angle with different roughness factors δ=1.0nm and δ=1.5nm.Secondly,these two multilayers are fabricated by the direct current magnetron sputtering technology.Thirdly their structures are characterized by small-angle x-ray diffraction.The roughness factors are fitted to be O.68nm and 1.16nm for M1 and M2.respectively.Finally their reflective performances are measured on the V14 neutron beam line at the Bedin Neutron Scattering Centre(BENSC),Germany.The experimental data show that the grazing angle of the reflected neutron intensity peak increases,but the reflected neutron intensity decreases.with the decreasing periods of the multilayers.

  12. The performance of a cryogenically cooled monochromator for an in-vacuum undulator beamline.

    Science.gov (United States)

    Zhang, Lin; Lee, Wah Keat; Wulff, Michael; Eybert, Laurent

    2003-07-01

    The channel-cut silicon monochromator on beamline ID09 at the European Synchrotron Radiation Facility is indirectly cooled from the sides by liquid nitrogen. The thermal slope error of the diffracting surface is calculated by finite-element analysis and the results are compared with experiments. The slope error is studied as a function of cooling coefficients, beam size, position of the footprint and power distribution. It is found that the slope error versus power curve can be divided into three regions: (i). The linear region: the thermal slope error is linearly proportional to the power. (ii). The transition region: the temperature of the Si crystal is close to 125 K; the thermal slope error is below the straight line extrapolated from the linear curve described above. (iii). The non-linear region: the temperature of the Si crystal is higher than 125 K and the thermal slope error increases much faster than the power. Heat-load tests were also performed and the measured rocking-curve widths are compared with those calculated by finite-element modeling. When the broadening from the intrinsic rocking-curve width and mounting strain are included, the calculated rocking-curve width versus heat load is in excellent agreement with experiment.

  13. Beryllium, zinc and lead single crystals as a thermal neutron monochromators

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Habib, N. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Bashter, I.I. [Physics Department, Faculty of Science, Zagazig University (Egypt); Morcos, H.N.; El-Mesiry, M.S. [Reactor Physics Department, NRC, Atomic Energy Authority, Cairo (Egypt); Mansy, M.S., E-mail: drmohamedmansy88@hotmail.com [Physics Department, Faculty of Science, Zagazig University (Egypt)

    2015-03-15

    Highlights: •Monochromatic features of Be, Zn and Pb single crystals. •Calculations of neutron reflectivity using a computer program MONO. •Optimum mosaic spread, thickness and cutting plane of single crystals. -- Abstract: The monochromatic features of Be, Zn and Pb single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.04 up to 0.5 nm. A computer program MONO written in “FORTRAN-77”, has been adapted to carry out the required calculations. Calculations show that a 5 mm thick of beryllium (HCP structure) single crystal cut along its (0 0 2) plane having 0.6° FWHM are the optimum parameters when it is used as a monochromator with high reflected neutron intensity from a thermal neutron flux. Furthermore, at wavelengths shorter than 0.16 nm it is free from the accompanying higher order ones. Zinc (HCP structure) has the same parameters, with intensity much less than the latter. The same features are seen with lead (FCC structure) cut along its (3 1 1) plane with less reflectivity than the former. However, Pb (3 1 1) is more preferable than others at neutron wavelengths ⩽ 0.1 nm, since the glancing angle (θ ∼ 20°) is more suitable to carry out diffraction experiments. For a cold neutron flux, the first-order neutrons reflected from beryllium is free from the higher orders up to 0.36 nm. While for Zn single crystal is up to 0.5 nm.

  14. New high-brightness monochrome monitor based on color CRT technology

    Science.gov (United States)

    Spekowius, Gerhard; Weibrecht, Martin; D'Adda, Carlo; Antonini, Antonio; Casale, Carlo; Blume, Hartwig R.

    1997-05-01

    With increasing availability of medical image communication infrastructures, medical images are more and more displayed as soft-copies rather than as hard-copies. Often however, the image viewing environment is characterized by high ambient light, such as in surgery rooms or offices illuminated by daylight. We are describing a very-high- brightness cathode-ray-tube (CRT) monitor which accommodates these viewing conditions without the typical deterioration in resolution due to electron focal spot blooming. The three guns of a standard color CRT are used to create a high brightness monochrome monitor. The CRT has no shadow-mask, and a homogeneous P45 phosphor layer has been deposited instead of the structured red-green-blue color phosphor screen. The electron spots of the three guns are dynamically matched by applying appropriate waveforms to four additional multiple magnetic fields around the gun assembly. We evaluated the image quality of the triple-gun CRT monitor concerning parameters which are especially relevant for medical imaging applications. We have measured characteristic curves, dynamic range, veiling glare, resolution, spot profiles, and screen noise. The monitor can provide a high luminance of more than 200 fL. Due to nearly perfect matching of the three spots, the resolution is mainly determined by the beam profile of a single gun and is remarkably high even at these high luminance values. The P45 phosphor shows very little structure noise, which is an advantage for medical desktop applications. Since all relevant monitor parameters are digitally controlled, the status of the monitor can be fully characterized at any time. This feature particularly facilitates the reproduction of brightness and contrast values and hence allows easy implementation of a display function standard or to return to a desired display function that has been found useful for a given application in the past.

  15. Soil-Structure Interaction Analysis of Jack-up Platforms Subjected to Monochrome and Irregular Waves

    Institute of Scientific and Technical Information of China (English)

    Maziar Gholami KORZANI; Ali Akbar AGHAKOUCHAK

    2015-01-01

    As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudcan performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling—which is based on using nonlinear springs and dampers instead of a continuum soil media—is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudcans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment-rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil-foundation interface.

  16. Polyplanar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.; Biscardi, C.; Brewster, C.; DeSanto, L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Beiser, L. [Leo Beiser Inc., Flushing, NY (United States)

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.

  17. A method for evaluating image quality of monochrome and color displays based on luminance by use of a commercially available color digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Tokurei, Shogo, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan and Department of Radiology, Yamaguchi University Hospital, 1-1-1 Minamikogushi, Ube, Yamaguchi 755-8505 (Japan); Morishita, Junji, E-mail: shogo.tokurei@gmail.com, E-mail: junjim@med.kyushu-u.ac.jp [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan)

    2015-08-15

    Purpose: The aim of this study is to propose a method for the quantitative evaluation of image quality of both monochrome and color liquid-crystal displays (LCDs) using a commercially available color digital camera. Methods: The intensities of the unprocessed red (R), green (G), and blue (B) signals of a camera vary depending on the spectral sensitivity of the image sensor used in the camera. For consistent evaluation of image quality for both monochrome and color LCDs, the unprocessed RGB signals of the camera were converted into gray scale signals that corresponded to the luminance of the LCD. Gray scale signals for the monochrome LCD were evaluated by using only the green channel signals of the camera. For the color LCD, the RGB signals of the camera were converted into gray scale signals by employing weighting factors (WFs) for each RGB channel. A line image displayed on the color LCD was simulated on the monochrome LCD by using a software application for subpixel driving in order to verify the WF-based conversion method. Furthermore, the results obtained by different types of commercially available color cameras and a photometric camera were compared to examine the consistency of the authors’ method. Finally, image quality for both the monochrome and color LCDs was assessed by measuring modulation transfer functions (MTFs) and Wiener spectra (WS). Results: The authors’ results demonstrated that the proposed method for calibrating the spectral sensitivity of the camera resulted in a consistent and reliable evaluation of the luminance of monochrome and color LCDs. The MTFs and WS showed different characteristics for the two LCD types owing to difference in the subpixel structure. The MTF in the vertical direction of the color LCD was superior to that of the monochrome LCD, although the WS in the vertical direction of the color LCD was inferior to that of the monochrome LCD as a result of luminance fluctuations in RGB subpixels. Conclusions: The authors

  18. Development of a bent Laue beam-expanding double-crystal monochromator for biomedical X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Mercedes, E-mail: mercedes.m@usask.ca [University of Saskatchewan, 116 Science Place, Room 163, Saskatoon, Saskatchewan (Canada); Samadi, Nazanin [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); Belev, George [Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan (Canada); Bassey, Bassey [University of Saskatchewan, 116 Science Place, Room 163, Saskatoon, Saskatchewan (Canada); Lewis, Rob [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); Monash University, Clayton, Victoria 3800 (Australia); Aulakh, Gurpreet [University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada); Chapman, Dean [University of Saskatchewan, 116 Science Place, Room 163, Saskatoon, Saskatchewan (Canada); University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan (Canada)

    2014-03-13

    A bent Laue beam-expanding double-crystal monochromator was developed and tested at the Biomedical Imaging and Therapy beamline at the Canadian Light Source. The expander will reduce scanning time for micro-computed tomography and allow dynamic imaging that has not previously been possible at this beamline. The Biomedical Imaging and Therapy (BMIT) beamline at the Canadian Light Source has produced some excellent biological imaging data. However, the disadvantage of a small vertical beam limits its usability in some applications. Micro-computed tomography (micro-CT) imaging requires multiple scans to produce a full projection, and certain dynamic imaging experiments are not possible. A larger vertical beam is desirable. It was cost-prohibitive to build a longer beamline that would have produced a large vertical beam. Instead, it was proposed to develop a beam expander that would create a beam appearing to originate at a source much farther away. This was accomplished using a bent Laue double-crystal monochromator in a non-dispersive divergent geometry. The design and implementation of this beam expander is presented along with results from the micro-CT and dynamic imaging tests conducted with this beam. Flux (photons per unit area per unit time) has been measured and found to be comparable with the existing flat Bragg double-crystal monochromator in use at BMIT. This increase in overall photon count is due to the enhanced bandwidth of the bent Laue configuration. Whilst the expanded beam quality is suitable for dynamic imaging and micro-CT, further work is required to improve its phase and coherence properties.

  19. Characterization of InGaN/GaN quantum well growth using monochromated valence electron energy loss spectroscopy

    OpenAIRE

    Palisaitis, J.; Lundskog, A.; Forsberg, U.; Janzén, E.; Birch, J.; Hultman, L.; Persson, P. O. Å.

    2014-01-01

    The early stages of InGaN/GaN quantum wells growth for In reduced conditions have been investigated for varying thickness and composition of the wells. The structures were studied by monochromated STEM–VEELS spectrum imaging at high spatial resolution. It is found that beyond a critical well thickness and composition, quantum dots (>20 nm) are formed inside the well. These are buried by compositionally graded InGaN, which is formed as GaN is grown while residual In is incorporated into the...

  20. Replacement of monochromator and proportional gas counter by mercuric iodide detector in X-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Nissenbaum, J.; Levi, A.; Burger, A.; Schieber, M. (Hebrew Univ., Jerusalem (Israel). School of Applied Science and Technology)

    1983-02-01

    Low resolution and therefore low-cost mercuric iodide detectors have successfully been applied to replace the combination of a graphite monochromator and a proportional gas radiation counter used in X-ray diffractometers. The mercuric iodide detector requires a lower DC bias of only 200 V rather than the 1500 V bias needed for the proportional gas counter. The much better stopping power of HgI/sub 2/ allows higher counting efficiency and therefore a better signal-to-noise ratio. Results are shown for X-ray powder diffractions of polycrystalline cubic silicon and tetragonal HgI/sub 2/.

  1. Optimization of the bent perfect Si(311)-crystal monochromator for a residual strain/stress instrument at the HANARO reactor-Part I

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myung-Kook [Korea Atomic Energy Research Institute, Neutron Beam Application, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of)]. E-mail: moonmk@kaeri.re.kr; Lee, Chang-Hee [Korea Atomic Energy Research Institute, Neutron Beam Application, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Em, Vyacheslav T. [Korea Atomic Energy Research Institute, Neutron Beam Application, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Mikula, Pavol [Nuclear Physics Institute and Research Centre Rez, Ltd., 250 68 Rez (Czech Republic); Hong, Kwang-Pyo [Korea Atomic Energy Research Institute, Neutron Beam Application, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Choi, Young-Hyun [Korea Atomic Energy Research Institute, Neutron Beam Application, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Cheon, Jong-Kyu [Korea Atomic Energy Research Institute, Neutron Beam Application, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Choi, Young-Nam [Korea Atomic Energy Research Institute, Neutron Beam Application, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Kim, Shin-Ae [Korea Atomic Energy Research Institute, Neutron Beam Application, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Kim, Sung-Kyu [Korea Atomic Energy Research Institute, Neutron Beam Application, 150 Duckjin-Dong, Yusung, Daejon 305-600 (Korea, Republic of); Jin, Kyung-Chan [Korea Institute of Industrial Technology 35-3 Hongchon-Ri, Ipchang-Myun, Chonan-Si, Chungnam 330-825 (Korea, Republic of)

    2005-12-01

    Reflectivity and resolution properties of a variety of optimized focusing monochromator performances based on cylindrically bent perfect Si-crystals were tested with the aim of evaluating their possible use in a strain/stress diffractometer. It has been found that the optimized monochromator performances of the curved Si(311) crystals (for the take-off angle 2{theta}{sub M}=60 deg.) provide a good luminosity and a sufficiently high resolution (full width at half maximum (FWHM) of the instrumental {delta}d/d-profile can be about 2x10{sup -3} in the vicinity of the lattice spacing d=0.117nm for 2{theta}{sub S}{approx}90 deg.) of the strain/stress diffractometer with the figure of merit more than one order of magnitude larger than that related to the conventional flat mosaic Ge(220) monochromator of {eta}=15{sup '}.

  2. Wake monochromator in asymmetric and symmetric Bragg and Laue geometry for self-seeding the European X-ray FEL

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni; Serkez, Svitozar; Tolkiehn, Martin

    2013-01-01

    We discuss the use of self-seeding schemes with wake monochromators to produce TW power, fully coherent pulses for applications at the dedicated bio-imaging bealine at the European X-ray FEL, a concept for an upgrade of the facility beyond the baseline previously proposed by the authors. We exploit the asymmetric and symmetric Bragg and Laue reflections (sigma polarization) in diamond crystal. Optimization of the bio-imaging beamline is performed with extensive start-to-end simulations, which also take into account effects such as the spatio-temporal coupling caused by the wake monochromator. The spatial shift is maximal in the range for small Bragg angles. A geometry with Bragg angles close to pi/2 would be a more advantageous option from this viewpoint, albeit with decrease of the spectral tunability. We show that it will be possible to cover the photon energy range from 3 keV to 13 keV by using four different planes of the same crystal with one rotational degree of freedom.

  3. Wake monochromator in asymmetric and symmetric Bragg and Laue geometry for self-seeding the European X-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni; Serkez, Svitozar; Tolkiehn, Martin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-01-15

    We discuss the use of self-seeding schemes with wake monochromators to produce TW power, fully coherent pulses for applications at the dedicated bio-imaging beamline at the European X-ray FEL, a concept for an upgrade of the facility beyond the baseline previously proposed by the authors. We exploit the asymmetric and symmetric Bragg and Laue reflections (sigma polarization) in diamond crystal. Optimization of the bio-imaging beamline is performed with extensive start-to-end simulations, which also take into account effects such as the spatio-temporal coupling caused by the wake monochromator. The spatial shift is maximal in the range for small Bragg angles. A geometry with Bragg angles close to {pi}/2 would be a more advantageous option from this viewpoint, albeit with decrease of the spectral tunability. We show that it will be possible to cover the photon energy range from 3 keV to 13 keV by using four different planes of the same crystal with one rotational degree of freedom.

  4. Design and analysis of a high heat load pin-post monochromator crystal with an integral water manifold

    Energy Technology Data Exchange (ETDEWEB)

    Schildkamp, W. [Consortium for Advanced Radiation Sources, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Tonnessen, T. [Rocketdyne Albuquerque Operations, 2511 C. Broadbent Parkway, N.E., Albuquerque, NM 87107 (United States)

    1996-09-01

    Conventional minichannel water cooling geometry will not perform satisfactorily for x-radiation from a wiggler source at the Advanced Photon Source. For closed-gap wiggler operation, cryogenic silicon appears to be the only option for crystals in Bragg-Bragg geometry. For operation of the wiggler at more modest critical energies ({lt}17 keV), the first crystal can be cooled by a pin-post cooling scheme, using water at room temperature as a coolant. In order to limit the water consumption to 4 gpm and hence the risk of introducing vibrations to the crystal, the intensely cooled area of the crystal was matched to the footprint of the beam, leaving a less cooled area of the crystal subject to survival in a missteered beam but not to perform as a monochromator. The manifold design avoids large areas of high water pressure that would bow the crystal. We present here the design of a pin-post monochromator consisting of a four-layer silicon manifold system and an integrally bonded 39{percent} nickel-iron alloy base plate. A transparent prototype of the design will be exhibited. Fabrication techniques and design advantages will be discussed. {copyright} {ital 1996 American Institute of Physics.}

  5. A medium-resolution monochromator for 73 keV x-rays - Nuclear resonant scattering of synchrotron radiation from 193-Ir

    CERN Document Server

    Alexeev, Pavel; Wille, Hans-Christian; Sergeev, Ilya; Herlitschke, Marcus; Leupold, Olaf; McMorrow, Desmond F; Röhlsberger, Ralf

    2016-01-01

    We report on the development and characterization of a medium resolution monochromator for synchrotron-based hyperfine spectroscopy at the 73 keV nuclear resonance of 193-Ir. The device provides high throughput of 6*10^8 ph/s in an energy bandwidth of 300(20) meV. We excited the nuclear resonance in 193-Ir at 73.04 keV and observed nuclear fluorescence of 193-Ir in Iridium metal. The monochromator allows for Nuclear Forward Scattering spectroscopy on Ir and its compounds.

  6. Comparison of detectability of a simple object with low contrast displayed on a high-brightness color LCD and a monochrome LCD.

    Science.gov (United States)

    Takahashi, Keita; Morishita, Junji; Hiwasa, Takeshi; Hatanaka, Shiro; Sakai, Shuji; Hashimoto, Noriyuki; Nakamura, Yasuhiko; Toyofuku, Fukai; Higashida, Yoshiharu; Ohki, Masafumi

    2010-07-01

    The goal of this study was to investigate the effect of the different luminance settings of a high-brightness color liquid-crystal display (LCD) on the detectability of a simple grayscale object with low contrast by use of receiver operating characteristic (ROC) analysis. The detectability of a high-brightness color LCD with two maximum-luminance settings (500 and 170 cd/m(2)) was compared with the detectability of a monochrome LCD (500 cd/m(2)). The two LCDs used in this study were calibrated to the grayscale standard display function. The average areas under the ROC curve (AUCs) and the standard deviations for all thirteen observers for the 500 cd/m(2) color LCD, 500 cd/m(2) monochrome LCD, and 170 cd/m(2) color LCD were 0.937 +/- 0.040, 0.924 +/- 0.056, and 0.915 +/- 0.068, respectively. There were no statistically significant differences in the average AUCs among the three LCD monitor conditions. On the other hand, the total observation time for the 170 cd/m(2) color LCD was significantly shorter than that for the 500 cd/m(2) color and monochrome LCDs (p LCD provided a performance comparable to the monochrome LCD for detection of a simple grayscale object with low contrast.

  7. First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope.

    Science.gov (United States)

    Walther, T; Quandt, E; Stegmann, H; Thesen, A; Benner, G

    2006-01-01

    The first 200 kV scanning transmission electron microscope (STEM) with an imaging energy filter, a monochromator and a corrector for the spherical aberration (Cs-corrector) of the illumination system has been built and tested. The STEM/TEM concept with Koehler illumination allows to switch easily between STEM mode for analytical and TEM mode for high-resolution or in situ studies. The Cs-corrector allows the use of large illumination angles for retaining a sufficiently high beam current despite the intensity loss in the monochromator. With the monochromator on and a 3 microm slit in the dispersion plane that gives 0.26 eV full-width at half-maximum (FWHM) energy resolution we have obtained so far an electron beam smaller than 0.20 nm in diameter (FWHM as measured by scanning the spot quickly over the CCD) which contains 7 pA current and, according to simulations, should be around 0.12 nm in true size. A high-angle annular dark field (ADF) image with isotropic resolution better than 0.28 nm has been recorded with the monochromator in the above configuration and the Cs-corrector on. The beam current is still somewhat low for electron energy-loss spectroscopy (EELS) but is expected to increase substantially by optimising the condenser set-up and using a somewhat larger condenser aperture.

  8. First experimental test of a new monochromated and aberration-corrected 200 kV field-emission scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Walther, T. [Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany)]. E-mail: walther@caesar.de; Quandt, E. [Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, D-53175 Bonn (Germany); Stegmann, H. [Carl Zeiss Nano Technology Systems GmbH, Carl-Zeiss-Str. 56, D-73447 Oberkochen (Germany); Thesen, A. [Carl Zeiss Nano Technology Systems GmbH, Carl-Zeiss-Str. 56, D-73447 Oberkochen (Germany); Benner, G. [Carl Zeiss Nano Technology Systems GmbH, Carl-Zeiss-Str. 56, D-73447 Oberkochen (Germany)

    2006-10-15

    The first 200 kV scanning transmission electron microscope (STEM) with an imaging energy filter, a monochromator and a corrector for the spherical aberration (C {sub s}-corrector) of the illumination system has been built and tested. The STEM/TEM concept with Koehler illumination allows to switch easily between STEM mode for analytical and TEM mode for high-resolution or in situ studies. The C{sub s}-corrector allows the use of large illumination angles for retaining a sufficiently high beam current despite the intensity loss in the monochromator. With the monochromator on and a 3 {mu}m slit in the dispersion plane that gives 0.26 eV full-width at half-maximum (FWHM) energy resolution we have obtained so far an electron beam smaller than 0.20 nm in diameter (FWHM as measured by scanning the spot quickly over the CCD) which contains 7 pA current and, according to simulations, should be around 0.12 nm in true size. A high-angle annular dark field (ADF) image with isotropic resolution better than 0.28 nm has been recorded with the monochromator in the above configuration and the C {sub s}-corrector on. The beam current is still somewhat low for electron energy-loss spectroscopy (EELS) but is expected to increase substantially by optimising the condenser set-up and using a somewhat larger condenser aperture.

  9. Interface of the transport systems research vehicle monochrome display system to the digital autonomous terminal access communication data bus

    Science.gov (United States)

    Easley, W. C.; Tanguy, J. S.

    1986-01-01

    An upgrade of the transport systems research vehicle (TSRV) experimental flight system retained the original monochrome display system. The original host computer was replaced with a Norden 11/70, a new digital autonomous terminal access communication (DATAC) data bus was installed for data transfer between display system and host, while a new data interface method was required. The new display data interface uses four split phase bipolar (SPBP) serial busses. The DATAC bus uses a shared interface ram (SIR) for intermediate storage of its data transfer. A display interface unit (DIU) was designed and configured to read from and write to the SIR to properly convert the data from parallel to SPBP serial and vice versa. It is found that separation of data for use by each SPBP bus and synchronization of data tranfer throughout the entire experimental flight system are major problems which require solution in DIU design. The techniques used to accomplish these new data interface requirements are described.

  10. Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy-electron energy loss spectroscopy.

    Science.gov (United States)

    Miyata, Tomohiro; Fukuyama, Mao; Hibara, Akihide; Okunishi, Eiji; Mukai, Masaki; Mizoguchi, Teruyasu

    2014-10-01

    Investigations on the dynamic behavior of molecules in liquids at high spatial resolution are greatly desired because localized regions, such as solid-liquid interfaces or sites of reacting molecules, have assumed increasing importance with respect to improving material performance. In application to liquids, electron energy loss spectroscopy (EELS) observed with transmission electron microscopy (TEM) is a promising analytical technique with the appropriate resolutions. In this study, we obtained EELS spectra from an ionic liquid, 1-ethyl-3-methylimidazolium bis (trifluoromethyl-sulfonyl) imide (C2mim-TFSI), chosen as the sampled liquid, using monochromated scanning TEM (STEM). The molecular vibrational spectrum and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of the liquid were investigated. The HOMO-LUMO gap measurement coincided with that obtained from the ultraviolet-visible spectrum. A shoulder in the spectrum observed ∼0.4 eV is believed to originate from the molecular vibration. From a separately performed infrared observation and first-principles calculations, we found that this shoulder coincided with the vibrational peak attributed to the C-H stretching vibration of the [C2mim(+)] cation. This study demonstrates that a vibrational peak for a liquid can be observed using monochromated STEM-EELS, and leads one to expect observations of chemical reactions or aids in the analysis of the dynamic behavior of molecules in liquid. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Optical design and performance of the phase II inelastic scattering beamline at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Caliebe, W.A.; Kao, C.-C.; Oversluizen, T.; Montanez, P.; Hastings, J.B. [National Synchrotron Light Source, Brookhaven National Laboratory, Upton New York, 11973 (United States); Caliebe, W.A. [Hamburger Synchrotronstrahlungslabor HASYLAB, Deutsches Elektronen-Synchrotron DESY, 22603Hamburg (Germany)] Krisch, M. [European Synchrotron Radiation Facility, F-38043Grenoble Cedex (France)

    1997-07-01

    We report the optical design and performance of the phase II inelastic scattering beamline at the National Synchrotron Light Source. The new beamline consists of a four-crystal Si(220) monochromator followed by a bent cylinder mirror. The monochromator is tunable from 5 to 10 keV with about 0.2 eV energy resolution throughout the tuning range. The size of the focused beam is about 0.5mm(H){times}0.3mm(V). {copyright} {ital 1997 American Institute of Physics.}

  12. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald H

    2009-01-01

    This reference monograph covers all theoretical aspects of modern geometrical charged-particle optics. It is intended as a guide for researchers, who are involved in the design of electron optical instruments and beam-guiding systems for charged particles, and as a tutorial for graduate students seeking a comprehensive treatment. Procedures for calculating the properties of systems with arbitrarily curved axes are outlined in detail and methods are discussed for designing and optimizing special components such as aberration correctors, spectrometers, energy filters, monochromators, ion traps, electron mirrors and cathode lenses. Also addressed is the design of novel electron optical components enabling sub-Angstroem spatial resolution and sub-0.1eV energy resolution. Relativistic motion and spin precession of the electron is treated in a concise way by employing a covariant five-dimensional procedure.

  13. Application of inductively coupled plasma atomic emission spectroscopy analysis with a polychromator/monochromator combination the byproducts of coal-fired power stations

    Science.gov (United States)

    Weers, C. A.

    The by-products of coal-fired power plants may be hazardous for the environment. Good analysis methods are therefore required in order to establish either a possible usage of the by-products or their possible storage. Preliminary experiments performed with inductively coupled plasma atomic emission spectroscopy have proven very successful. Moreover, the method is cost-effective. A short description is given of the optimized system for routine analysis. The system consists of a 2- and a 15-channel polychromator in combination with a monochromator. The opportunities is provides are also described. Use of the monochromator to analyze coal and run-off water from the flue-gases desulphurization, and of the polychromators to analyze coal fly-ash is described separately.

  14. A possibility of parallel and anti-parallel diffraction measurements on neutron diffractometer employing bent perfect crystal monochromator at the monochromatic focusing condition

    Indian Academy of Sciences (India)

    Yong Nam Choi; Shin Ae Kim; Sung Kyu Kim; Sung Baek Kim; Chang-Hee Lee; Pivel Mikula

    2004-07-01

    In a conventional diffractometer having single monochromator, only one position, parallel position, is used for the diffraction experiment (i.e. detection) because the resolution property of the other one, anti-parallel position, is very poor. However, a bent perfect crystal (BPC) monochromator at monochromatic focusing condition can provide a quite flat and equal resolution property at both parallel and anti-parallel positions and thus one can have a chance to use both sides for the diffraction experiment. From the data of the FWHM and the / measured on three diffraction geometries (symmetric, asymmetric compression and asymmetric expansion), we can conclude that the simultaneous diffraction measurement in both parallel and anti-parallel positions can be achieved.

  15. 中子单色器模拟分析研究%Simulation and Analysis of Spectrum Selection Affected by Neutron Monochromator's Parameters

    Institute of Scientific and Technical Information of China (English)

    霍合勇; 唐科; 唐彬; 刘斌; 曹超

    2014-01-01

    为研究单色器对中子能谱的选择规律,本文利用MCSTAS程序模拟分析了机械速度选择器与晶体单色器几个特征参数对中子能量选择影响。分析结果显示经机械速度选择器单色选择中子注量率要下降1~2个量级,而晶体单色器要下降2~3个量级。因此,对于单色化要求比较高选用晶体单色器,对于实验时间要求较高的选用机械速度选择器。%To comprehend the selective rule of monochromator for neutron spectrum , the paper analyzes the effects of several characteristic parameters on neutron energy selection .The simulated results indicate that ve-locity selector could get high neutron flux , whose energy width -broadening becomes larger along with selected neutron peak wavelength , and crystal monochromator could get high energy resolution , whose energy width -broadening becomes narrower along with selected neutron peak wavelength .So it is suggested that crystal mono-chromator can be selected if high energy resolution is required , and mechanical velocity selector can be used if high neutron flux is required .

  16. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald

    2012-01-01

    This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...

  17. Noite e dia e alguns monocromos psíquicos Night and day - and some psychical monochromes

    Directory of Open Access Journals (Sweden)

    Edson Luiz André de Sousa

    2006-06-01

    Full Text Available O artigo apresenta uma leitura do conto de Jack London "A sombra e o brilho" mostrando o funcionamento do princípio da mímesis no processo de identificação. Propõe-se a expressão monocromos psíquicos para esses espaços mentais de indiferenciação entre o eu e o Outro. Adota-se a tese de Caillois, que afirma que o eu é permeável ao espaço. Nessa perspectiva, o tema do duplo, amplamente desenvolvido por Freud, é fundamental. Partindo-se de notas sobre o trabalho do fotógrafo cego Bavcar, procura-se mostrar alguns traços da estrutura do olhar. O artigo finaliza mostrando as conexões possíveis dessas reflexões para a prática psicanalítica.The paper presents a reading of Jack London's tale "The Shadow and the brightness", showing how the principle of mimesis works in the process of the identification. We propose to call psychical monochromes the spaces of mental indifference between the self and the other. We follow the thesis of Roger Caillois: "the self is permeable in the space". In this perspective, the subject of the double, developped by Freud is essential. We try to show the dialectic of the structure of the look based in some notes about the work of the blind photographer Bavcar. The article finish with showing the possibles connections of all these points with the clinical work.

  18. Semi-automatic, octave-spanning optical frequency counter.

    Science.gov (United States)

    Liu, Tze-An; Shu, Ren-Huei; Peng, Jin-Long

    2008-07-07

    This work presents and demonstrates a semi-automatic optical frequency counter with octave-spanning counting capability using two fiber laser combs operated at different repetition rates. Monochromators are utilized to provide an approximate frequency of the laser under measurement to determine the mode number difference between the two laser combs. The exact mode number of the beating comb line is obtained from the mode number difference and the measured beat frequencies. The entire measurement process, except the frequency stabilization of the laser combs and the optimization of the beat signal-to-noise ratio, is controlled by a computer running a semi-automatic optical frequency counter.

  19. A belief-propagation-based decoding method for two-dimensional barcodes with monochrome auxiliary lines robust against non-uniform geometric distortion

    Science.gov (United States)

    Kamizuru, Kohei; Nakamura, Kazuya; Kawasaki, Hiroshi; Ono, Satoshi

    2017-03-01

    Two-dimensional (2D) codes are widely used for various fields such as production, logistics, and marketing thanks to their larger capacity than one-dimensional barcodes. However, they are subject to distortion when printed on non-rigid materials, such as papers and clothes. Although general 2D code decoders correct uniform distortion such as perspective distortion, it is difficult to correct non-uniform and irregular distortion of the 2D code itself. This paper proposes a decoding method for the 2D code, which models monochrome auxiliary line recognition as Markov random field, and solves it using belief propagation.

  20. Laser-driven polyplanar optic display

    Energy Technology Data Exchange (ETDEWEB)

    Veligdan, J.T.; Biscardi, C.; Brewster, C.; DeSanto, L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Beiser, L. [Leo Beiser Inc., Flushing, NY (United States)

    1998-01-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the DLP chip, the optomechanical design and viewing angle characteristics.

  1. A numerical wave-optical approach for the simulation of analyzer-based x-ray imaging.

    Science.gov (United States)

    Bravin, A; Mocella, V; Coan, P; Astolfo, A; Ferrero, C

    2007-04-30

    An advanced wave-optical approach for simulating a monochromator-analyzer set-up in Bragg geometry with high accuracy is presented. The polychromaticity of the incident wave on the monochromator is accounted for by using a distribution of incoherent point sources along the surface of the crystal. The resulting diffracted amplitude is modified by the sample and can be well represented by a scalar representation of the optical field where the limitations of the usual 'weak object' approximation are removed. The subsequent diffraction mechanism on the analyzer is described by the convolution of the incoming wave with the Green-Riemann function of the analyzer. The free space propagation up to the detector position is well reproduced by a classical Fresnel-Kirchhoff integral. The preliminary results of this innovative approach show an excellent agreement with experimental data.

  2. Design,Simulation and Test for Double Focusing Si Monochromator of Neutron Residual Stress Diff ractometer%中子应力谱仪双聚焦 Si 单色器设计、模拟与测试

    Institute of Scientific and Technical Information of China (English)

    胡瑞; 刘蕴韬; 王玮; 刘中孝; 李峻宏; 高建波; 王洪立; 陈东风

    2015-01-01

    The double focusing Si monochromator was designed ,simulated and tested for the neutron residual stress diffractometer on China Advanced Research Reactor .T he optimal vertical curvature and the optimal thickness of Si wafers were obtained by SIMRES simulation program .In addition ,the figure of merit in dependence on the scattering angle ,monochromator horizontal curvature and wavelength was also deter‐mined by this program . The neutron beam test results indicate that the intensity of neutron increases by 15 times by using double focusing Si monochromator in comparison with Cu monochromator .%本文对中国先进研究堆中子应力谱仪使用的双聚焦 Si单色器进行了设计、模拟和测试。采用SIM RES模拟程序确定了单色器垂直曲率及Si片厚度的最优值,并得到品质因数与散射角、单色器水平曲率和波长的依赖关系。实际测试结果表明,与平板Cu单色器相比,使用双聚焦Si单色器样品处中子强度提高了15倍。

  3. High-Pressure-Hydrogen-Induced Spin Reconfiguration in GdFe2 Observed by 57Fe-Polarized Synchrotron Radiation Mössbauer Spectroscopy with Nuclear Bragg Monochromator

    Science.gov (United States)

    Mitsui, Takaya; Imai, Yasuhiko; Hirao, Naohisa; Matsuoka, Takahiro; Nakamura, Yumiko; Sakaki, Kouji; Enoki, Hirotoshi; Ishimatsu, Naoki; Masuda, Ryo; Seto, Makoto

    2016-12-01

    57Fe-polarized synchrotron radiation Mössbauer spectroscopy (PSRMS) with an X-ray phase plate and a nuclear Bragg monochromator was used to study ferrimagnetic GdFe2 in high-pressure hydrogen. The pressure-dependent spectra clearly showed a two-step magnetic transition of GdFe2. 57Fe-PSRMS with circular polarization gave direct evidence that the Fe moment was directed parallel to the net magnetization of the GdFe2 hydride at 20 GPa. This spin configuration was opposite to that of the initial GdFe2, suggesting an extreme weakening of the antiferromagnetic interaction between Fe and Gd. 57Fe-PSRMS enables the characterization of the nonuniform properties of iron-based polycrystalline powder alloys. The excellent applicability of 57Fe-PSRMS covers a wide range of scientific fields.

  4. A table-top monochromator for tunable femtosecond XUV pulses generated in a semi-infinite gas cell: Experiment and simulations.

    Science.gov (United States)

    von Conta, A; Huppert, M; Wörner, H J

    2016-07-01

    We present a new design of a time-preserving extreme-ultraviolet (XUV) monochromator using a semi-infinite gas cell as a source. The performance of this beamline in the photon-energy range of 20 eV-42 eV has been characterized. We have measured the order-dependent XUV pulse durations as well as the flux and the spectral contrast. XUV pulse durations of ≤40 fs using 32 fs, 800 nm driving pulses were measured on the target. The spectral contrast was better than 100 over the entire energy range. A simple model based on the strong-field approximation is presented to estimate different contributions to the measured XUV pulse duration. On-axis phase-matching calculations are used to rationalize the variation of the photon flux with pressure and intensity.

  5. A compact low cost “master–slave” double crystal monochromator for x-ray cameras calibration of the Laser MégaJoule Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, S., E-mail: sebastien.hubert@cea.fr; Prévot, V.

    2014-12-21

    The Alternative Energies and Atomic Energy Commission (CEA-CESTA, France) built a specific double crystal monochromator (DCM) to perform calibration of x-ray cameras (CCD, streak and gated cameras) by means of a multiple anode diode type x-ray source for the MégaJoule Laser Facility. This DCM, based on pantograph geometry, was specifically modeled to respond to relevant engineering constraints and requirements. The major benefits are mechanical drive of the second crystal on the first one, through a single drive motor, as well as compactness of the entire device. Designed for flat beryl or Ge crystals, this DCM covers the 0.9–10 keV range of our High Energy X-ray Source. In this paper we present the mechanical design of the DCM, its features quantitatively measured and its calibration to finally provide monochromatized spectra displaying spectral purities better than 98%.

  6. Optics/Optical Diagnostics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optics/Optical Diagnostics Laboratory supports graduate instruction in optics, optical and laser diagnostics and electro-optics. The optics laboratory provides...

  7. Development and Application of Fiber-Optic Sensors in Environmental and Life Sciences

    DEFF Research Database (Denmark)

    Rickelt, Lars Fledelius

    of sensing materials includes imbedded luminescent dyes and all O2 fiber-optic sensors are based on O2 quenching of a luminophore. The mechanisms of luminescence and O2 quenching are described. A new procedure for etching a recess in the tip of multimode graded index optical glass fibers was used to improve....... A simple ratiometric intensity based O2 imaging protocol was developed using a conventional digital camera and the O2 distribution images were compared to life-time images obtained using a monochrome fast gate-able CCD camera. The method was applied to a biofilm growth incubator incubated with bacteria...

  8. Optical color image hiding scheme based on chaotic mapping and Hartley transform

    Science.gov (United States)

    Liu, Zhengjun; Zhang, Yu; Liu, Wei; Meng, Fanyi; Wu, Qun; Liu, Shutian

    2013-08-01

    We present a color image encryption algorithm by using chaotic mapping and Hartley transform. The three components of color image are scrambled by Baker mapping. The coordinates composed of the scrambled monochrome components are converted from Cartesian coordinates to spherical coordinates. The data of azimuth angle is normalized and regarded as the key. The data of radii and zenith angle are encoded under the help of optical Hartley transform with scrambled key. An electro-optical encryption structure is designed. The final encrypted image is constituted by two selected color components of output in real number domain.

  9. Polyplanar optical display electronics

    Energy Technology Data Exchange (ETDEWEB)

    DeSanto, L.; Biscardi, C. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  10. Method for characterization of a spherically bent crystal for K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry

    Science.gov (United States)

    Kugland, Nathan; Doeppner, Tilo; Glenzer, Siegfried; Constantin, Carmen; Niemann, Chris; Neumayer, Paul

    2015-04-07

    A method is provided for characterizing spectrometric properties (e.g., peak reflectivity, reflection curve width, and Bragg angle offset) of the K.alpha. emission line reflected narrowly off angle of the direct reflection of a bent crystal and in particular of a spherically bent quartz 200 crystal by analyzing the off-angle x-ray emission from a stronger emission line reflected at angles far from normal incidence. The bent quartz crystal can therefore accurately image argon K.alpha. x-rays at near-normal incidence (Bragg angle of approximately 81 degrees). The method is useful for in-situ calibration of instruments employing the crystal as a grating by first operating the crystal as a high throughput focusing monochromator on the Rowland circle at angles far from normal incidence (Bragg angle approximately 68 degrees) to make a reflection curve with the He-like x-rays such as the He-.alpha. emission line observed from a laser-excited plasma.

  11. Advances in thin film diffraction instrumentation by X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A. [Rich. Seifert and Co., Analytical X-ray Systems, Ahrensburg (Germany)

    1996-09-01

    The structural characterisation of thin films requires a parallel X-ray beam of high intensity. Parallel beam geometry is commonly used in high resolution and single crystal experiments, but also in the field of X-ray diffraction for polycrystalline material (e.g. in phase, texture and stress analysis). For grazing incidence diffraction (GID), the use of small slits on the primary side and of long soller slits with a flat monochromator on the secondary side is standard. New optical elements have been introduced with polychromatic or monochromatic radiation. By means of different applications the results are compared with those of classical beam optics. X-ray fiber optics utilize total external reflection of X-rays on smooth surfaces. Effects of monochromatization are presented. In many fields of application, fiber optics may replace conventional collimators. The use of primary and secondary channel cut crystals can also produce a high parallel monochromatic X-ray beam. A parabolically bent graded multilayer produces a monochromatic parallel beam of high intensity. Compared with classical Bragg-Brentano (focussing) geometry, excellent results have been obtained, especially for samples with an irregular shape. In combination with a channel cut monochromator there is a substantial gain in intensity leading to an increase of the dynamic intensity range of rocking curves.

  12. Optic glioma

    Science.gov (United States)

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  13. Optics for coherent X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Yabashi, Makina, E-mail: yabashi@spring8.or.jp [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Tono, Kensuke [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Mimura, Hidekazu [The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan); Ohashi, Haruhiko; Goto, Shunji [Japan Synchrotron Radiation Research Institute (JASRI), Kouto 1-1-1, Sayo, Hyogo 679-5198 (Japan); Ishikawa, Tetsuya [RIKEN SPring-8 Center, Kouto 1-1-1, Sayo, Hyogo 679-5148 (Japan)

    2014-08-27

    Developments of optics for coherent X-ray applications and their role in diffraction-limited storage rings are described. Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  14. Combining flat crystals, bent crystals and compound refractive lenses for high-energy X-ray optics.

    Science.gov (United States)

    Shastri, S D

    2004-03-01

    Compound refractive lenses (CRLs) are effective for collimating or focusing high-energy X-ray beams (50-100 keV) and can be used in conjunction with crystal optics in a variety of configurations, as demonstrated at the 1-ID undulator beamline of the Advanced Photon Source. As a primary example, this article describes the quadrupling of the output flux when a collimating CRL, composed of cylindrical holes in aluminium, is inserted between two successive monochromators, i.e. a modest-energy-resolution premonochromator followed by a high-resolution monochromator. The premonochromator is a cryogenically cooled divergence-preserving bent double-Laue Si(111) crystal device delivering an energy width DeltaE/E approximately 10(-3), which is sufficient for most experiments. The high-resolution monochromator is a four-reflection flat Si(111) crystal system resembling two channel-cuts in a dispersive arrangement, reducing the bandwidth to less than 10(-4), as required for some applications. Tests with 67 and 81 keV photon energies show that the high-resolution monochromator, having a narrow angular acceptance of a few microradians, exhibits a fourfold throughput enhancement due to the insertion of a CRL that reduces the premonochromatized beam's vertical divergence from 29 micro rad to a few microradians. The ability to focus high-energy X-rays with CRLs having long focal lengths (tens of meters) is also shown by creating a line focus of 70-90 micro m beam height in the beamline end-station with both the modest-energy-resolution and the high-energy-resolution monochromatic X-rays.

  15. An efficient plane-grating monochromator based on conical diffraction for continuous tuning in the entire soft X-ray range including tender X-rays (2-8 keV).

    Science.gov (United States)

    Jark, Werner

    2016-01-01

    Recently it was verified that the diffraction efficiency of reflection gratings with rectangular profile, when illuminated at grazing angles of incidence with the beam trajectory along the grooves and not perpendicular to them, remains very high for tender X-rays of several keV photon energy. This very efficient operation of a reflection grating in the extreme off-plane orientation, i.e. in conical diffraction, offers the possibility of designing a conical diffraction monochromator scheme that provides efficient continuous photon energy tuning over rather large tuning ranges. For example, the tuning could cover photon energies from below 1000 eV up to 8 keV. The expected transmission of the entire instrument is high as all components are always operated below the critical angle for total reflection. In the simplest version of the instrument a plane grating is preceded by a plane mirror rotating simultaneously with it. The photon energy selection will then be made using the combination of a focusing mirror and exit slit. As is common for grating monochromators for soft X-ray radiation, the minimum spectral bandwidth is source-size-limited, while the bandwidth can be adjusted freely to any larger value. As far as tender X-rays (2-8 keV) are concerned, the minimum bandwidth is at least one and up to two orders of magnitude larger than the bandwidth provided by Si(111) double-crystal monochromators in a collimated beam. Therefore the instrument will provide more flux, which can even be increased at the expense of a bandwidth increase. On the other hand, for softer X-rays with photon energies below 1 keV, competitive relative spectral resolving powers of the order of 10000 are possible.

  16. Optics for coherent X-ray applications.

    Science.gov (United States)

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-09-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  17. Physics of reflective optics for the soft gamma-ray photon energy range

    DEFF Research Database (Denmark)

    Fernández-Perea, Mónica; Descalle, Marie-Anne; Soufli, Regina

    2013-01-01

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disag...... and lenses) and crystal monochromators have been available until now. © 2013 American Physical Society....... and the disagreement between experimental and theoretical optical properties of materials in the hard x-ray and gamma-ray regimes. Here, we demonstrate that multilayer reflective optics can operate efficiently and according to classical wave physics up to photon energies of at least 384 keV. We also use particle...

  18. New beamline optics of the x-ray undulator BW1 at DORIS

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, U.; Frahm, R.; Guertler, P.; Schulte-Schrepping, H. [Deutsches Elektronen-Synchrotron, Hamburg (Germany). Hamburger Synchrotronstrahlungslabor

    1996-12-31

    The X-ray undulator BW1 at the storage ring DORIS is a high brightness source for the spectral range from 2 to 20 keV. The undulator beam is used by three experiments with different distances to the source. The new optical elements allow the adaptation of the focal lengths to the needs of the experimental set-ups. The optical concept consists of a premirror with different optical surfaces, a double crystal monochromator and a focusing second mirror. Sagittal focusing is achieved either by using the cylindrical part of the premirror or by a bend crystal for a monochromatic beam, meridional focusing is done with a pneumatic driven mirror bender for the second mirror.

  19. Design of characteristics of optical filter set for prediction and visualization of fat content in raw beef cuts

    DEFF Research Database (Denmark)

    Kobayashi, Ken-ichi; Nishino, Ken; Dissing, Bjørn Skovlund

    2011-01-01

    imaging is however very expensive. We propose a way to design a simple measurement system consisting of a NIR sensitive monochrome camera together with a small set of optical filters to estimate and visualize a specific food compound without requiring a full hyperspectral device. Based on a set...... of hyperspectral measurements of beef and physical and chemical analysis of the fat within the beef, we propose a method to design a set of ideal Band Pass Filters (BPF), as small as possible while still maintaining predictability of fat content. The results show that 2 filters is a suitable amount of filters...

  20. High-efficiency B₄C/Mo₂C alternate multilayer grating for monochromators in the photon energy range from 0.7 to 3.4 keV.

    Science.gov (United States)

    Choueikani, Fadi; Lagarde, Bruno; Delmotte, Franck; Krumrey, Michael; Bridou, Françoise; Thomasset, Muriel; Meltchakov, Evgueni; Polack, François

    2014-04-01

    An alternate multilayer (AML) grating has been prepared by coating an ion etched lamellar grating with a B4C/Mo2C multilayer (ML) having a layer thickness close to the groove depth. Such a structure behaves as a 2D synthetic crystal and can reach very high efficiencies when the Bragg condition is satisfied. This AML coated grating has been characterized at the SOLEIL Metrology and Tests Beamline between 0.7 and 1.7 keV and at the four-crystal monochromator beamline of Physikalisch-Technische Bundesanstalt (PTB) at BESSY II between 1.75 and 3.4 keV. A peak diffraction efficiency of nearly 27% was measured at 2.2 keV. The measured efficiencies are well reproduced by numerical simulations made with the electromagnetic propagation code CARPEM. Such AML gratings, paired with a matched ML mirror, constitute efficient monochromators for intermediate energy photons. They will extend the accessible energy for many applications as x-ray absorption spectroscopy or x-ray magnetic circular dichroism experiments.

  1. Evaluation of an optical beam-position-monitor system with closed-loop steering capabilities

    Science.gov (United States)

    Bissen, Mark; Rogers, Greg; Wood, William; Eisert, Dave; Kleman, K. J.; Winter, William; Höchst, Hartmut

    1994-08-01

    Imaging the synchrotron source profile onto the entrance slit of a monochromator provides a stable and reproducible energy calibration which is independent of the absolute position and drift of the electron beam. Potential electron-beam motions occurring during a fill result in a loss of flux through the beamline. We have implemented two independent beam position monitors which can be used as sensors to steer the vertical entrance mirror in order to maintain a maximum flux through a spherical grating varied line-spacing monochromator beamline. The system consists of a slotted plate photodiode which intercepts 2 mrad of synchrotron radiation next to the entrance mirror and a detector utilizing the photocurrents generated at the jaws of the entrance-slit assembly. Both monitors have a wide linear response range with a vertical position resolution of beam position monitors allows an easy check on the mechanical and thermal stability of the entrance optical system as well as on the reproducibility and long-term fluctuations of the electron-beam source during user shifts. We will discuss the performance of the optical beam-position-monitor system and its implementation as a sensor in a closed-loop feedback system to maintain maximum flux through the beamline.

  2. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    Science.gov (United States)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement

  3. Optical processing

    Science.gov (United States)

    Gustafson, S. C.

    1985-12-01

    The technical contributions were as follows: (1) Optical parallel 2-D neighborhood processor and optical processor assessment technique; (2) High accuracy with moderately accurate components and optical fredkin gate architectures; (3) Integrated optical threshold computing, pipelined polynomial processor, and all optical analog/digital converter; (4) Adaptive optical associative memory model with attention; (5) Effectiveness of parallelism and connectivity in optical computers; (6) Optical systolic array processing using an integrated acoustooptic module; (7) Optical threshold elements and networks, holographic threshold processors, adaptive matched spatial filtering, and coherence theory in optical computing; (8) Time-varying optical processing for sub-pixel targets, optical Kalman filtering, and adaptive matched filtering; (9) Optical degrees of freedom, ultra short optical pulses, number representations, content-addressable-memory processors, and integrated optical Givens rotation devices; (10) Optical J-K flip flop analysis and interfacing for optical computers; (11) Matrix multiplication algorithms and limits of incoherent optical computers; (12) Architecture for machine vision with sensor fusion, pattern recognition functions, and neural net implementations; (13) Optical computing algorithms, architectures, and components; and (14) Dynamic optical interconnections, advantages and architectures.

  4. Development of a fiber optic sensor based on gold island plasmon resonance

    Science.gov (United States)

    Meriaudeau, Fabrice; Downey, Todd R.; Passian, A.; Wig, A. G.; Mangeant, S.; Crilly, P. B.; Ferrell, Trinidad L.

    1998-12-01

    We present an optical fiber chemical sensor based on gold- island surface plasmon excitation. The sensing part of the fiber is a one inch portion on which cladding has been removed and onto which a thin layer of gold (40 angstroms) has been deposited to form a particulate surface. Annealing the gold reshapes the particles and produces an absorbance near 535 nm when the only medium residing outside the surface is air. A range of wavelengths provided by a white light source and monochromator is launched through the optical fiber. The transmitted spectra display shifts in the resonance absorption due to any changes in the medium surrounding, or adsorbed onto the fiber. Experimental results for the sensitivity and dynamic range in the measurement of liquid solutions are in agreement with a basic theoretical model which characterizes the surface plasmon using nonretarded electrodynamics. Furthermore, the model assumes the particles are isolated oblate spheroids with a distribution of eccentricities.

  5. Extension of self-seeding scheme with single crystal monochromator to lower energy < 5 keV as a way to generate multi-TW scale pulses at the European XFEL

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2012-01-01

    We propose a use of the self-seeding scheme with single crystal monochromator to produce high power, fully-coherent pulses for applications at a dedicated bio-imaging beamline at the European X-ray FEL in the photon energy range between 3.5 keV and 5 keV. We exploit the C(111) Bragg reflection (pi-polarization) in diamond crystals with a thickness of 0.1 mm, and we show that, by tapering the 40 cells of the SASE3 type undulator the FEL power can reach up to 2 TW in the entire photon energy range. The present design assumes the use of a nominal electron bunch with charge 0.1 nC at nominal electron beam energy 17.5 GeV. The main application of the scheme proposed in this work is for single shot imaging of individual protein molecules.

  6. Structure Design and Accuracy Testing of Monochromator in a Soft X-Ray Spectromicroscopic Beamline%软X射线谱学显微光束线单色器结构设计及精度测试

    Institute of Scientific and Technical Information of China (English)

    龚学鹏; 卢启鹏; 彭忠琦

    2013-01-01

    In order to satisfy the technical requirement of soft X-ray microscopy beamline in Shanghai Synchrotron Radiation Facility (SSRF), whose key assembly monochromator is designed. Wavelength scanning movement principle of monochromator is described. Design scheme of wavelength scanning mechanism is discussed, and factors affecting the angular repeatability of plane mirror and plane grating are analyzed in detail; switching mechanism of plane grating is described, and horizontal deviation, vertical deviation, roll angle precision, yaw angle precision and pitch angle precision are analyzed in detail; six-bar parallel mechanism is used for adjusting the UHV-chamber, and adjusting range and resolution of the bar are analyzed. The entire structure of monochromator is presented, and its precision testing is performed. Results show that the angular repeatability of plane mirror and plane grating are 0.166" and 0.149", and roll, yaw and pitch angular repeatability of plane grating switching mechanism are 0. 08", 0.12" and 0.05", indicating that structure design and precision of monochromator satisfy the technical demand.%针对上海光源谱学显微光束线站的性能要求,对其核心部件单色器进行结构设计.阐述了单色器的扫描运动原理,论述了波长扫描机构的设计方案,具体分析平面镜和光栅的转角重复精度影响因素;描述光栅切换机构,着重分析其水平偏差、垂直偏差、滚角、摆角和投角的精度问题;采用六杆并联机构的方案完成镜箱调节机构的设计,分析其支杆的调节范围和分辨力情况.给出了单色器的结构,并且对其精度进行了测试.测试结果表明,平面镜和光栅的转角重复精度分别为0.166″和0.149″;光栅切换机构的滚角、摆角和投角的重复精度分别为0.08″、0.12″和0.05″.这说明了单色器的结构设计方案和机械精度满足技术要求.

  7. 变包含角平面光栅单色器及其关键技术%The variable included angle plane grating monochromator and the key technology

    Institute of Scientific and Technical Information of China (English)

    陈家华; 薛松; 卢启鹏; 彭忠琦; 邰仁忠; 王勇; 陈明; 吴坤

    2011-01-01

    This article discusses the design of a variable included angle plane grating monochromator (VAPGM) on the soft X-ray spectromicroscopy beam-line at Shanghai Synchrotron Radiation Facility (SSRF).The precision scanning system of sin-bar meets the requirements through resolving the high precision repeatability of mechanical transmission system; the inner path water cooling structure of the plane mirror controls the thermal deformation of the mirror surface; the huge dimension and quadrate flange chamber ensures the ultra high vacuum (UHV) which the VAPGM requires.Finally, the main capabilities of the monochromator, including the energy range, energy resolution and energy repeatability, reach the design requirements completely.%分析设计并研制了上海光源软X射线谱学显微光束线站的变包含角平面光栅单色器,经过精密加工调试,保证了扫描系统的转角重复精度;采用多孔腔内部通道水冷方法,控制了镜子表面热变形;完成真空箱体大尺寸方法兰加工与密封,达到了单色器工作所需的超高真空.通过上述关键部件的精确掌控,确保了单色器主要性能--光子能量范围、能量分辨率和能量重复性,均优于设计指标.

  8. Modern optics

    CERN Document Server

    Guenther, B D

    2015-01-01

    Modern Optics is a fundamental study of the principles of optics using a rigorous physical approach based on Maxwell's Equations. The treatment provides the mathematical foundations needed to understand a number of applications such as laser optics, fiber optics and medical imaging covered in an engineering curriculum as well as the traditional topics covered in a physics based course in optics. In addition to treating the fundamentals in optical science, the student is given an exposure to actual optics engineering problems such as paraxial matrix optics, aberrations with experimental examples, Fourier transform optics (Fresnel-Kirchhoff formulation), Gaussian waves, thin films, photonic crystals, surface plasmons, and fiber optics. Through its many pictures, figures, and diagrams, the text provides a good physical insight into the topics covered. The course content can be modified to reflect the interests of the instructor as well as the student, through the selection of optional material provided in append...

  9. Optic Neuritis

    OpenAIRE

    1989-01-01

    Demyelinating optic neuritis is the most common cause of unilateral painful visual loss in the United States. Although patients presenting with demyelinating optic neuritis have favorable long-term visual prognosis, optic neuritis is the initial clinical manifestation of multiple sclerosis in 20% of patients. The Optic Neuritis Treatment Trial (ONTT) has helped stratify the risk of developing multiple sclerosis after the first episode of optic neuritis based on abnormal findings on brain MRI....

  10. Engineering Optics

    CERN Document Server

    Iizuka, Keigo

    2008-01-01

    Engineering Optics is a book for students who want to apply their knowledge of optics to engineering problems, as well as for engineering students who want to acquire the basic principles of optics. It covers such important topics as optical signal processing, holography, tomography, holographic radars, fiber optical communication, electro- and acousto-optic devices, and integrated optics (including optical bistability). As a basis for understanding these topics, the first few chapters give easy-to-follow explanations of diffraction theory, Fourier transforms, and geometrical optics. Practical examples, such as the video disk, the Fresnel zone plate, and many more, appear throughout the text, together with numerous solved exercises. There is an entirely new section in this updated edition on 3-D imaging.

  11. 3m Vacuum Ultraviolet Spectrometer with Optical Multichannel Detector; Espectrometro de ultravioleta de vacio de 3m provisto de sistema de deteccion optical multicanal

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.; Peraza, C.; Blanco, F.; Campos, J.

    1993-07-01

    This paper describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT. It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate / phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the array is digitized by a 12-bit analog to digital converter and stored in a computer, for its later analysis. The necessary software to store and display data has been developed. (Author) 18 refs.

  12. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  13. At-wavelength metrology of x-ray optics at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Berujon, Sebastien; Sutter, John; Alcock, Simon G.; Sawhney, Kawal

    2014-09-01

    Modern, third-generation synchrotron radiation sources provide coherent and extremely bright beams of X-ray radiation. The successful exploitation of such beams depends to a significant extent on imperfections and misalignment of the optics employed on the beamlines. This issue becomes even more critical with the increasing use of active optics, and the desire to achieve diffraction-limited and coherence-preserving X-ray beams. In recent years, significant progress has been made to improve optic testing and optimization techniques, especially those using X-rays for so-called atwavelength metrology. These in-situ and at-wavelength metrology methods can be used not only to optimize the performance of X-ray optics, but also to correct and minimize the collective distortions of upstream beamline optics, including monochromators, and transmission windows. An overview of at-wavelength metrology techniques implemented at Diamond Light Source is presented, including grating interferometry and X-ray near-field speckle based techniques. Representative examples of the application of these techniques are also given, including in-situ and atwavelength calibration and optimization of: active, piezo bimorph mirrors; Kirkpatrick-Baez (KB) mirrors; and refractive optics such as compound refractive lenses.

  14. Optical Solitons

    Science.gov (United States)

    Taylor, J. R.

    2005-08-01

    1. Optical solitons in fibres: theoretical review A. Hasegawa; 2. Solitons in optical fibres: an experimental account L. F. Mollenauer; 3. All-optical long-distance soliton-based transmission systems K. Smith and L. F. Mollenauer; 4. Nonlinear propagation effects in optical fibres: numerical studies K. J. Blow and N. J. Doran; 5. Soliton-soliton interactions C. Desem and P. L. Chu; 6. Soliton amplification in erbium-doped fibre amplifiers and its application to soliton communication M. Nakazawa; 7. Nonlinear transformation of laser radiation and generation of Raman solitons in optical fibres E. M. Dianov, A. B. Grudinin, A. M. Prokhorov and V. N. Serkin; 8. Generation and compression of femtosecond solitons in optical fibers P. V. Mamyshev; 9. Optical fibre solitons in the presence of higher order dispersion and birefringence C. R. Menyuk and Ping-Kong A. Wai; 10. Dark optical solitons A. M. Weiner; 11. Soliton Raman effects J. R. Taylor; Bibliography; Index.

  15. Optical biosensors

    OpenAIRE

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biose...

  16. Optical keyboard

    Science.gov (United States)

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  17. X-ray Optics for BES Light Source Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Dennis [Argonne National Lab. (ANL), Argonne, IL (United States); Padmore, Howard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lessner, Eliane [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  18. X-ray Optics for BES Light Source Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Dennis [Argonne National Lab. (ANL), Argonne, IL (United States); Padmore, Howard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lessner, Eliane [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  19. Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements.

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Choi, Yoon Sun; Kim, Jong Min; Bjelkhagen, Hans I; Phillips, Nicholas J

    2002-03-10

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such away that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.

  20. Optical interconnects

    CERN Document Server

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical

  1. Optical fibres

    CERN Document Server

    Geisler, J; Boutruche, J P

    1986-01-01

    Optical Fibers covers numerous research works on the significant advances in optical fibers, with particular emphasis on their application.This text is composed of three parts encompassing 15 chapters. The first part deals with the manufacture of optical fibers and the materials used in their production. The second part describes optical-fiber connectors, terminals and branches. The third part is concerned with the major optoelectronic components encountered in optical-communication systems.This book will be of value to research scientists, engineers, and patent workers.

  2. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  3. Vibratory response modeling and verification of a high precision optical positioning system.

    Energy Technology Data Exchange (ETDEWEB)

    Barraza, J.; Kuzay, T.; Royston, T. J.; Shu, D.

    1999-06-18

    A generic vibratory-response modeling program has been developed as a tool for designing high-precision optical positioning systems. Based on multibody dynamics theory, the system is modeled as rigid-body structures connected by linear elastic elements, such as complex actuators and bearings. The full dynamic properties of each element are determined experimentally or theoretically, then integrated into the program as inertial and stiffness matrices. Utilizing this program, the theoretical and experimental verification of the vibratory behavior of a double-multilayer monochromator support and positioning system is presented. Results of parametric design studies that investigate the influence of support floor dynamics and highlight important design issues are also presented. Overall, good matches between theory and experiment demonstrate the effectiveness of the program as a dynamic modeling tool.

  4. Comment on {open_quote}{open_quote}Comments on the use of asymmetric monochromators for x-ray diffraction on a synchrotron source{close_quote}{close_quote} [Rev. Sci. Instrum. {bold 66}, 2174 (1995)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble-Cedex (France); Cerrina, F. [Center for X-ray Lithography, 3731 Schneider Dr., Stoughton, Wisconsin 53589 (United States)

    1996-10-01

    In the article {open_quote}{open_quote}Comments on the use of asymmetric monochromators for x-ray diffraction on a synchrotron source,{close_quote}{close_quote} by Colin Nave, Ana Gonzalez, Graham Clark, Sean McSweeney, Stewart Cummings, and Michael Hart, Rev. Sci. Instrum. {bold 66}, 2174 (1995), paragraph II, the authors{close_quote} unfamiliarity with our modeling codes leads them to claim that our approach to treat bent-asymmetrically cut crystals in ray tracing calculations is incorrect. Since SHADOW is a widely used code, it is important to correct any misunderstandings, and we give here arguments to demonstrate that our approach is perfectly valid, and the arguments used by the authors to criticize our method are based on an unwarranted conclusion extracted from one of our previous articles. We show that SHADOW, when properly run, treats the cases raised exactly. Indeed, their arguments provide a nice benchmark test for verifying the accuracy of SHADOW {copyright} {ital 1996 American Institute of Physics.}

  5. Applied optics and optical design

    CERN Document Server

    Conrady, A E

    2011-01-01

    ""For the optical engineer it is an indispensable work."" - Journal, Optical Society of America""As a practical guide this book has no rival."" - Transactions, Optical Society""A noteworthy contribution,"" - Nature (London)Part I covers all ordinary ray-tracing methods, together with the complete theory of primary aberrations and as much of higher aberration as is needed for the design of telescopes, low-power microscopes and simple optical systems. Chapters: Fundamental Equations, Spherical Aberration, Physical Aspect of Optical Images, Chromatic Aberration, Design of Achromatic Object-Glass

  6. Full-color structured illumination optical sectioning microscopy

    Science.gov (United States)

    Qian, Jia; Lei, Ming; Dan, Dan; Yao, Baoli; Zhou, Xing; Yang, Yanlong; Yan, Shaohui; Min, Junwei; Yu, Xianghua

    2015-09-01

    In merits of super-resolved resolution and fast speed of three-dimensional (3D) optical sectioning capability, structured illumination microscopy (SIM) has found variety of applications in biomedical imaging. So far, most SIM systems use monochrome CCD or CMOS cameras to acquire images and discard the natural color information of the specimens. Although multicolor integration scheme are employed, multiple excitation sources and detectors are required and the spectral information is limited to a few of wavelengths. Here, we report a new method for full-color SIM with a color digital camera. A data processing algorithm based on HSV (Hue, Saturation, and Value) color space is proposed, in which the recorded color raw images are processed in the Hue, Saturation, Value color channels, and then reconstructed to a 3D image with full color. We demonstrated some 3D optical sectioning results on samples such as mixed pollen grains, insects, micro-chips and the surface of coins. The presented technique is applicable to some circumstance where color information plays crucial roles, such as in materials science and surface morphology.

  7. Possibilities and limitations of synchrotron X-ray powder diffraction with double crystal and double multilayer monochromators for microscopic speciation studies

    Energy Technology Data Exchange (ETDEWEB)

    De Nolf, Wout [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium)], E-mail: wout.denolf@ua.ac.be; Jaroszewicz, Jakub [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium); Terzano, Roberto [Dipartimento di Biologia e Chimica Agro-forestale ed Ambientale, Via Amendola 165/A, I-70126, University of Bari, Bari (Italy); Lind, Ole Christian; Salbu, Brit [Isotope Laboratory, Norwegian University of Life Sciences, PO Box 5003, N-1432 As (Norway); Vekemans, Bart [Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000 Gent (Belgium); Janssens, Koen [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium); Falkenberg, Gerald [HASYLAB at DESY, Beamline L, Notkestraat 85, D-22603, Hamburg (Germany)

    2009-08-15

    The performance of a combined microbeam X-ray fluorescence/X-ray powder diffraction (XRF/XRPD) measurement station at Hamburger Synchrotronstrahlungslabor (HASYLAB) Beamline L is discussed in comparison to that at European Synchrotron Radiation Facility (ESRF) ID18F/ID22. The angular resolution in the X-ray diffractograms is documented when different combinations of X-ray source, optics and X-ray diffraction detectors are employed. Typical angular resolution values in the range 0.3-0.5 deg. are obtained at the bending magnet source when a 'pink' beam form of excitation is employed. A similar setup at European Synchrotron Radiation Facility beamlines ID18F and ID22 allows to reach angular resolution values of 0.1-0.15 deg. In order to document the possibilities and limitations for speciation of metals in environmental materials by means of Hamburger Synchrotronstrahlungslabor Beamline L X-ray fluorescence/X-ray powder diffraction setup, two case studies are discussed, one involved in the identification of the crystal phases in which heavy metals such as chromium, iron, barium and lead are present in polluted soils of an industrial site (Val Basento, Italy) and another involved in the speciation of uranium in depleted uranium particles (Ceja Mountains, Kosovo). In the former case, the angular resolution is sufficient to allow identification of most crystalline phases present while in the latter case, it is necessary to dispose of an angular resolution of ca. 0.2 deg. to distinguish between different forms of oxidized uranium.

  8. Optical electronics

    CERN Document Server

    Yariv, Amnon

    1991-01-01

    This classic text introduces engineering students to the first principles of major phenomena and devices of optoelectronics and optical communication technology. Yariv's "first principles" approach employs real-life examples and extensive problems. The text includes separate chapters on quantum well and semiconductor lasers, as well as phase conjugation and its applications. Optical fiber amplification, signal and noise considerations in optical fiber systems, laser arrays and distributed feedback lasers all are covered extensively in major sections within chapters.

  9. [Optic neuritis].

    Science.gov (United States)

    Wilhelm, H; Heine, C; Tonagel, F

    2014-11-01

    Optic neuritis is a frequent neuro-ophthalmological disease in which the diagnosis can be based on just a few symptoms and findings. It is not only important to differentiate from other optic nerve disorders but also to recognise special types of optic neuritis, which is mostly only possible during the course of the disease. This article presents a review of the current state in diagnosis and therapy from the authors' personal point of view.

  10. The at-wavelength metrology facility for UV- and XUV-reflection and diffraction optics at BESSY-II.

    Science.gov (United States)

    Schäfers, F; Bischoff, P; Eggenstein, F; Erko, A; Gaupp, A; Künstner, S; Mast, M; Schmidt, J-S; Senf, F; Siewert, F; Sokolov, A; Zeschke, Th

    2016-01-01

    A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm(-1)) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here.

  11. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  12. Optic neuritis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Roed, H; Sellebjerg, F

    2004-01-01

    To study the involvement of the chemokine receptor CXCR3 and its ligands (CXCL9/Mig, CXCL10/IP-10, CXCL11/ITAC) in optic neuritis (ON).......To study the involvement of the chemokine receptor CXCR3 and its ligands (CXCL9/Mig, CXCL10/IP-10, CXCL11/ITAC) in optic neuritis (ON)....

  13. Optical biosensors

    Science.gov (United States)

    Damborský, Pavel; Švitel, Juraj

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  14. Lagrangian optics

    CERN Document Server

    Lakshminarayanan, Vasudevan; Thyagarajan, K

    2002-01-01

    Ingeometrical optics, light propagation is analyzed in terms of light rays which define the path of propagation of light energy in the limitofthe optical wavelength tending to zero. Many features oflight propagation can be analyzed in terms ofrays,ofcourse, subtle effects near foci, caustics or turning points would need an analysis based on the wave natureoflight. Allofgeometric optics can be derived from Fermat's principle which is an extremum principle. The counterpart in classical mechanics is of course Hamilton's principle. There is a very close analogy between mechanics ofparticles and optics oflight rays. Much insight (and useful results) can be obtained by analyzing these analogies. Asnoted by H. Goldstein in his book Classical Mechanics (Addison Wesley, Cambridge, MA, 1956), classical mechanics is only a geometrical optics approximation to a wave theory! In this book we begin with Fermat's principle and obtain the Lagrangian and Hamiltonian pictures of ray propagation through various media. Given the ...

  15. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  16. Optical holography

    CERN Document Server

    Collier, Robert

    2013-01-01

    Optical Holography deals with the use of optical holography to solve technical problems, with emphasis on the properties of holograms formed with visible light. Topics covered include the Fourier transform, propagation and diffraction, pulsed-laser holography, and optical systems with spherical lenses. A geometric analysis of point-source holograms is also presented, and holograms and hologram spatial filters formed with spatially modulated reference waves are described. This book is comprised of 20 chapters and begins with an introduction to concepts that are basic to understanding hologr

  17. Ratiometric, filter-free optical sensor based on a complementary metal oxide semiconductor buried double junction photodiode.

    Science.gov (United States)

    Yung, Ka Yi; Zhan, Zhiyong; Titus, Albert H; Baker, Gary A; Bright, Frank V

    2015-07-16

    We report a complementary metal oxide semiconductor integrated circuit (CMOS IC) with a buried double junction (BDJ) photodiode that (i) provides a real-time output signal that is related to the intensity ratio at two emission wavelengths and (ii) simultaneously eliminates the need for an optical filter to block Rayleigh scatter. We demonstrate the BDJ platform performance for gaseous NH3 and aqueous pH detection. We also compare the BDJ performance to parallel results obtained by using a slew scanned fluorimeter (SSF). The BDJ results are functionally equivalent to the SSF results without the need for any wavelength filtering or monochromators and the BDJ platform is not prone to errors associated with source intensity fluctuations or sensor signal drift.

  18. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... containing systems and are characterized using techniques in optical spectroscopy. Of the standard techniques in optical spectroscopy, particular attention has been paid to those based on time-resolved measurements and polarization, which is reflected in the experiment design in the projects. Not all...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  19. Quantum optics

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund

    2013-01-01

    Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....

  20. Quantum optics

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund

    2013-01-01

    Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves.......Further sensitivity improvements are required before advanced optical interferometers will be able to measure gravitational waves. A team has now shown that introducing quantum squeezing of light may help to detect these elusive waves....

  1. A Fast, Portable, Fiber Optic Spectrofluorometer for Eddy Correlation Flux Measurement in the Aquatic Environment

    Science.gov (United States)

    Hu, I. H.; Senft-Grupp, S.; Hemond, H.

    2014-12-01

    The measurement of chemical fluxes between natural waters and their benthic sediments by most existing methods, such as benthic chambers and sediment core incubations, is slow, cumbersome, and often inaccurate. One promising new method for determining benthic fluxes is eddy correlation (EC), a minimally invasive, in situ technique based on high-speed velocity and concentration measurements. Widespread application of EC to a large range of chemicals of interest is currently limited, however, by the availability of rapid, high-resolution chemical sensors capable of precisely measuring concentrations at a point location and at sufficient speed (several Hz). A proof of concept spectrofluorometry instrument has been created that is capable of high-frequency concentration measurements of naturally fluorescent substances. Designed with the EC application in mind, the system utilizes optical fibers to transmit excitation and emission light, enabling in situ measurements at high spatial resolution. Emitted fluorescence light is passed through a tunable monochromator before reaching a photomultiplier tube; photons are quantified by a custom miniaturized, low-power photon counting circuit board. Preliminary results indicate that individual measurements made at 100 Hz of a 10 ppm humic acid solution were precise within 10%, thus yielding a precision of the order of +/- 1% in a second. Used in an EC system, this instrument will enable flux measurements of substances such as naturally occurring fluorescent dissolved organic material (FDOM). Measurement of fluxes of FDOM is significant in its own right, and also will allow the indirect measurement of the numerous other chemical fluxes that are associated with FDOM by using tracer techniques. The use of a tunable monochromator not only allows flexibility in detection wavelength, but also enables full wavelength scans of the emission spectrum, making the spectrofluorometer a dual-function device capable of both characterizing the

  2. Ocean optics

    Energy Technology Data Exchange (ETDEWEB)

    Spinard, R.W.; Carder, K.L.; Perry, M.J.

    1994-12-31

    This volume is the twenty fifth in the series of Oxford Monographs in Geology and Geophysics. The propagation off light in the hydra-atmosphere systems is governed by the integral-differential Radiative Transfer Equation (RTE). Closure and inversion are the most common techniques in optical oceanography to understand the most basic principles of natural variability. Three types of closure are dealt with: scale closure, experimental closure, and instrument closure. The subject is well introduced by Spinard et al. in the Preface while Howard Gordon in Chapter 1 provides an in-depth introduction to the RTE and its inherent problems. Inherent and apparent optical properties are dealt with in Chapter 2 by John Kirk and the realities of optical closure are presented in the following chapter by Ronald Zaneveld. The balance of the papers in this volume is quite varied. The early papers deal in a very mathematical manner with the basics of radiative transfer and the relationship between inherent and optical properties. Polarization of sea water is discussed in a chapter that contains a chronological listing of discoveries in polarization, starting at about 1000 AD with the discovery of dichroic properties of crystals by the Vikings and ending with the demonstration of polarotaxis in certain marine organisms by Waterman in 1972. Chapter 12 on Raman scattering in pure water and the pattern recognition techniques presented in Chapter 13 on the optical effects of large particles may be of relevance to fields outside ocean optics.

  3. Optic nerve atrophy

    Science.gov (United States)

    Optic atrophy; Optic neuropathy ... There are many causes of optic atrophy. The most common is poor blood flow. This is called ischemic optic neuropathy. The problem most often affects older adults. The optic ...

  4. Reply to {open_quote}{open_quote}Comment on {open_quote}Comments on the use of asymmetric monochromators for x-ray diffraction on a synchrotron source{close_quote}{close_quote}{close_quote} [Rev. Sci. Instrum. {bold 66}, 2174 (1995)

    Energy Technology Data Exchange (ETDEWEB)

    Nave, C.; Clark, G. [Council for the Central Laboratory of the Research Councils, Daresbury Laboratory, Daresbury, Warrington WA44AD (United Kingdom); McSweeney, S. [European Molecular Biology Laboratory, 156X, 30842 Grenoble, Cedex 9 (France)

    1996-10-01

    The issue raised in Nave {ital et} {ital al}. [Rev. Sci. Instrum. {bold 66}, 2174 (1995)] is the description and results given by Sanchez del Rio and Cerrina [Nucl. Instrum. Methods A {bold 301}, 589 (1991)] and has no bearing on our understanding or otherwise of the SHADOW code (we do not refer to SHADOW in our article). The problem is whether Sanchez del Rio and Cerrina demonstrate that a demagnified image is obtained from asymmetric monochromators when operating in the white beam on a synchrotron source. {copyright} {ital 1996 American Institute of Physics.}

  5. Optics Concept for a Pair of Undulator Beamlines for MX.

    Science.gov (United States)

    Berman, L E; Allaire, M; Chance, M R; Hendrickson, W A; Héroux, A; Jakoncic, J; Liu, Q; Orville, A M; Robinson, H H; Schneider, D K; Shi, W; Soares, A S; Stojanoff, V; Stoner-Ma, D; Sweet, R M

    2011-09-01

    We describe a concept for x-ray optics to feed a pair of macromolecular crystallography (MX) beamlines which view canted undulator radiation sources in the same storage ring straight section. It can be deployed at NSLS-II and at other low-emittance third-generation synchrotron radiation sources where canted undulators are permitted, and makes the most of these sources and beamline floor space, even when the horizontal angle between the two canted undulator emissions is as little as 1-2 mrad. The concept adopts the beam-separation principles employed at the 23-ID (GM/CA-CAT) beamlines at the Advanced Photon Source (APS), wherein tandem horizontally-deflecting mirrors separate one undulator beam from the other, following monochromatization by a double-crystal monochromator. The scheme described here would, in contrast, deliver the two tunable monochromatic undulator beams to separate endstations that address rather different and somewhat complementary purposes, with further beam conditioning imposed as required. A downstream microfocusing beamline would employ dual-stage focusing for work at the micron scale and, unique to this design, switch to single stage focusing for larger beams. On the other hand, the upstream, more highly automated beamline would only employ single stage focusing.

  6. Optics Concept for a Pair of Undulator Beamlines for MX*

    Science.gov (United States)

    Berman, L.E.; Allaire, M.; Chance, M.R.; Hendrickson, W.A.; Héroux, A.; Jakoncic, J.; Liu, Q.; Orville, A.M.; Robinson, H.H.; Schneider, D.K.; Shi, W.; Soares, A.S.; Stojanoff, V.; Stoner-Ma, D.; Sweet, R.M.

    2011-01-01

    We describe a concept for x-ray optics to feed a pair of macromolecular crystallography (MX) beamlines which view canted undulator radiation sources in the same storage ring straight section. It can be deployed at NSLS-II and at other low-emittance third-generation synchrotron radiation sources where canted undulators are permitted, and makes the most of these sources and beamline floor space, even when the horizontal angle between the two canted undulator emissions is as little as 1-2 mrad. The concept adopts the beam-separation principles employed at the 23-ID (GM/CA-CAT) beamlines at the Advanced Photon Source (APS), wherein tandem horizontally-deflecting mirrors separate one undulator beam from the other, following monochromatization by a double-crystal monochromator. The scheme described here would, in contrast, deliver the two tunable monochromatic undulator beams to separate endstations that address rather different and somewhat complementary purposes, with further beam conditioning imposed as required. A downstream microfocusing beamline would employ dual-stage focusing for work at the micron scale and, unique to this design, switch to single stage focusing for larger beams. On the other hand, the upstream, more highly automated beamline would only employ single stage focusing. PMID:21822346

  7. Thin film production with a new fully automated optical thickness monitoring system (Invited Paper)

    Science.gov (United States)

    Lardon, M.; Selhofer, H.

    1986-10-01

    The increasing demand for complex multilayer optical coatings requires equipment with a completely automated process control system. The new optical thickness monitor GSM 420, which is part of the deposition control system BPU 420 allows the remotely controlled wave-length selection either with a grating monochromator combined with the appropriate order sorting filters or with a set of six narrow bandpass filters. The endpoint detection is based on the digital processing of the signal corresponding to the light intensity after transmission through or reflexion from a testglass located side by side with a quartz crystal microbalance at the center of the coating plant. Turning value monitoring or termination of the process at an arbitrary predetermined point are both possible. Single and multiple layers of silicon dioxide and titanium dioxide and combinations thereof were deposited. Excellent linear correlation between the optical thickness on the test glass and the geometrical layer thickness as measured by the quartz crystal microbalance was observed. The reproducibility for single layers of quarterwave thickness was found to be between +/- 0.7 to +/- 1.7 % of the center wavelength of the spectral extremum measured on the test glass, depending on wavelength (350 - 3200 nm) and coating material (SiO2 or TiO2 on glass).

  8. Optical memory

    Science.gov (United States)

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  9. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F

    2012-01-01

    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  10. CODEX optics

    Science.gov (United States)

    Delabre, Bernard; Manescau, Antonio

    2010-07-01

    CODEX is a high resolution spectrograph for the ESO E-ELT. A classical spectrograph can only achieve a resolution of about 120.000 on a 42 m telescope with extremely large echelle gratings and cameras. This paper describes in detail the optical concept of CODEX, which uses only optical elements size similar to those in current high resolution spectrographs. This design is based on slicers, anamorphic beams and slanted VPHG as cross dispersers. In this new version of the CODEX design, no special expensive materials as calcium fluoride or abnormal dispersion glasses are needed. The optical quality is excellent and compatible with 10K x 10K detectors with 10 μm pixels.

  11. Statistical optics

    CERN Document Server

    Goodman, Joseph W

    2015-01-01

    This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications.  The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced i

  12. Reflective optics

    CERN Document Server

    Korsch, Dietrich

    1991-01-01

    This is the first book dedicated exclusively to all-reflective imaging systems. It is a teaching tool as well as a practical design tool for anyone who specializes in optics, particularly for those interested in telescopes, infrared, and grazing-incidence systems. The first part of the book describes a unified geometric optical theory of all-reflective imaging systems (from near-normal to grazing incidence) developed from basic principles. The second part discusses correction methods and a multitude of closed-form solutions of well-corrected systems, supplemented with many conventional and unc

  13. Optical profilometer

    Science.gov (United States)

    Wieloszyńska, Aleksandra; StrÄ kowski, Marcin

    2016-09-01

    The profilometry plays a huge role in the most fields of science and technology. It allows to measure the profile of the surface with high-resolution. This technique is used in the fields like optic, electronic, medicine, automotive, and much more. The aim of the current work was to design and build optical profilometer based on the interference phenomena. The developed device has been working with He-Ne laser (632.8 nm). The optical parts have been chosen in order to reach the sized 2.0 mm x 1.6 mm of scanning area. The setup of the profilometer is based on Twyman-Green interferometer. Therefore, the phase distribution of the backreflected light from measured surface is recorded. The measurements are carried out with the aid of multiframe algorithms. In this approach we have used the Hariharan algorithm to obtain the exact value of the recorded phase. During tests, which have been carried out in order to check the functionality of the device, the interference patterns have been recoded and processed in order to obtain the 3D profile of measured surface. In this contribution the setup of the optical system, as well as signal processing methods are going to be presented. The brief discussion about the advantages and disadvantages, and usefulness of this approach will be carried out.

  14. Diophantine Optics

    Science.gov (United States)

    Rouan, D.

    2016-09-01

    What I call Diophantine optics is the exploitation in optics of some remarkable algebraic relations between powers of integers. The name comes from Diophantus of Alexandria, a greek mathematician, known as the father of algebra. He studied polynomial equations with integer coefficients and integer solutions, called diophantine equations. Since constructive or destructive interferences are playing with optical path differences which are multiple integer (odd or even) of λ/2 and that the complex amplitude is a highly non-linear function of the optical path difference (or equivalently of the phase), one can understand that any Taylor development of this amplitude implies powers of integers. This is the link with Diophantine equations. We show how, especially in the field of interferometry, remarkable relations between powers of integers can help to solve several problems, such as achromatization of a phase shifter or deep nulling efficiency. It appears that all the research that was conducted in this frame of thinking, relates to the field of detection of exoplanets, a very active domain of astrophysics today.

  15. Optical Processing.

    Science.gov (United States)

    1985-12-31

    34perceptron" (F. Rosenblatt, Principles of Neurodynamics ), workers in the neural network field have been seeking to understand how neural networks can perform...Moscow). 13. F. Rosenblatt, Principles of Neurodynamics , (Spartan, 1962). 14. W. Stoner "Incoherent optical processing via spatially offset pupil

  16. Optical correlation

    NARCIS (Netherlands)

    Boden, J.A.

    1974-01-01

    A survey is given of the most common types of coherent optical correlators, which are classified as spatial plane correlators, frequency plane correlators and special reference correlators. Only the spatial plane correlators are dealt with rather thoroughly. Basic principles, some special features,

  17. Optical metrology

    CERN Document Server

    Gåsvik, Kjell J

    2003-01-01

    New material on computerized optical processes, computerized ray tracing, and the fast Fourier transform, Bibre-Bragg sensors, and temporal phase unwrapping.* New introductory sections to all chapters.* Detailed discussion on lasers and laser principles, including an introduction to radiometry and photometry.* Thorough coverage of the CCD camera.

  18. Pulsed Optics

    Science.gov (United States)

    Hirlimann, C.

    Optics is the field of physics which comprises knowledge on the interaction between light and matter. When the superposition principle can be applied to electromagnetic waves or when the properties of matter do not depend on the intensity of light, one speaks of linear optics. This situation occurs with regular light sources such as light bulbs, low-intensity light-emitting diodes and the sun. With such low-intensity sources the reaction of matter to light can be characterized by a set of parameters such as the index of refraction, the absorption and reflection coefficients and the orientation of the medium with respect to the polarization of the light. These parameters depend only on the nature of the medium. The situation changed dramatically after the development of lasers in the early sixties, which allowed the generation of light intensities larger than a kilowatt per square centimeter. Actual large-scale short-pulse lasers can generate peak powers in the petawatt regime. In that large-intensity regime the optical parameters of a material become functions of the intensity of the impinging light. In 1818 Fresnel wrote a letter to the French Academy of Sciences in which he noted that the proportionality between the vibration of the light and the subsequent vibration of matter was only true because no high intensities were available. The intensity dependence of the material response is what usually defines nonlinear optics.

  19. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  20. Diffractive Optical Elements for Dynamic Optical Coupling

    Institute of Scientific and Technical Information of China (English)

    Changhe Zhou; Xin Zhao; Liren Liu

    2003-01-01

    Diffractive optical elements such as the complementary Dammann gratings are incorporated for dynamic optical fiber splitting and combining. Experimental results of 1′8 dynamic optical couplings are presented.

  1. Diffractive Optical Elements for Dynamic Optical Coupling

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Diffractive optical elements such as the complementary Dammann gratings are incorporated for dynamic optical fiber splitting and combining. Experimental results of 1×8 dynamic optical couplings are presented.

  2. Applied optics and optical engineering v.9

    CERN Document Server

    Shannon, Robert

    1983-01-01

    Applied Optics and Optical Engineering, Volume IX covers the theories and applications of optics and optical engineering. The book discusses the basic algorithms for optical engineering; diffraction gratings, ruled and holographic; and recording and reading of information on optical disks. The text also describes the perfect point spread function; the multiple aperture telescope diffraction images; and the displays and simulators. Ophthalmic optics, as well as the canonical and real-space coordinates used in the theory of image formation are also encompassed. Optical engineers and students tak

  3. Soft optics in intelligent optical networks

    Science.gov (United States)

    Shue, Chikong; Cao, Yang

    2001-10-01

    In addition to the recent advances in Hard-optics that pushes the optical transmission speed, distance, wave density and optical switching capacity, Soft-optics provides the necessary intelligence and control software that reduces operational costs, increase efficiency, and enhances revenue generating services by automating optimal optical circuit placement and restoration, and enabling value-added new services like Optical VPN. This paper describes the advances in 1) Overall Hard-optics and Soft-optics 2) Layered hierarchy of Soft-optics 3) Component of Soft-optics, including hard-optics drivers, Management Soft-optics, Routing Soft-optics and System Soft-optics 4) Key component of Routing and System Soft-optics, namely optical routing and signaling (including UNI/NNI and GMPLS signaling). In summary, the soft-optics on a new generation of OXC's enables Intelligent Optical Networks to provide just-in-time service delivery and fast restoration, and real-time capacity management that eliminates stranded bandwidth. It reduces operational costs and provides new revenue opportunities.

  4. The at-wavelength metrology facility for UV- and XUV-reflection and diffraction optics at BESSY-II

    Energy Technology Data Exchange (ETDEWEB)

    Schäfers, F., E-mail: franz.schaefers@helmholtz-berlin.de; Bischoff, P.; Eggenstein, F.; Erko, A.; Gaupp, A.; Künstner, S.; Mast, M.; Schmidt, J.-S.; Senf, F.; Siewert, F.; Sokolov, A.; Zeschke, Th. [Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, Berlin 12489 (Germany)

    2016-01-01

    A new optics beamline and a versatile 11-axes UHV-reflectometer for at-wavelength characterization of real life-sized UV- and XUV-reflection gratings and other (nano-) optical elements has been set up and is in operation at BESSY-II. Azimuthal rotation of samples allows for reflectometry and polarimetry measurements in s- and p-polarization. A technology center for the production of high-precision reflection gratings has been established. Within this project a new optics beamline and a versatile reflectometer for at-wavelength characterization of UV- and XUV-reflection gratings and other (nano-) optical elements has been set up at BESSY-II. The Plane Grating Monochromator beamline operated in collimated light (c-PGM) is equipped with an SX700 monochromator, of which the blazed gratings (600 and 1200 lines mm{sup −1}) have been recently exchanged for new ones of improved performance produced in-house. Over the operating range from 10 to 2000 eV this beamline has very high spectral purity achieved by (i) a four-mirror arrangement of different coatings which can be inserted into the beam at different angles and (ii) by absorber filters for high-order suppression. Stray light and scattered radiation is removed efficiently by double sets of in situ exchangeable apertures and slits. By use of in- and off-plane bending-magnet radiation the beamline can be adjusted to either linear or elliptical polarization. One of the main features of a novel 11-axes reflectometer is the possibility to incorporate real life-sized gratings. The samples are adjustable within six degrees of freedom by a newly developed UHV-tripod system carrying a load up to 4 kg, and the reflectivity can be measured between 0 and 90° incidence angle for both s- and p-polarization geometry. This novel powerful metrology facility has gone into operation recently and is now open for external users. First results on optical performance and measurements on multilayer gratings will be presented here.

  5. Optical aeronomy

    Science.gov (United States)

    Solomon, Stanley C.

    1991-01-01

    Optical measurements of thermospheric and ionospheric processes and their interpretation are reviewed and the chemical reactions and their effects on emissions are discussed. Also included are the phenomena which excite the airglow and aurora, i.e., the solar UV/EUV flux and auroral particle precipitation. Consideration is given to solar flux, atomic emissions, molecular emissions, hydrogen geocorona, and molecular oxygen and the green line nightglow.

  6. Applied Optics

    OpenAIRE

    Han, M; Wang, Anbo

    2004-01-01

    A straightforward theory is presented to accurately model the light inferences in a low-finesse multimode fiber extrinsic Fabry-Perot (FP) interferometer. The effect on the fringe visibility of the gap length, sensor structure imperfections, and modal power distributions is explored. The analysis is particularly useful in the design and optimization of sensors that use an extrinsic FP cavity as the sensing element. (C) 2004 Optical Society of America.

  7. Power optics

    Energy Technology Data Exchange (ETDEWEB)

    Apollonov, V V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2014-02-28

    By using the theory we developed in the early 1970s, a broad range of phenomena is considered for an optical surface of a solid body that is exposed to radiation arbitrarily varying in time and producing temperature fields, thermoelastic stresses and thermal deformations on the surface layer. The examination is based on the relations (which are similar to Duhamel's integral formula from the theory of heat conduction) between the quantities characterising the thermal stress state in any nonstationary regimes of energy input into a solid. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that this relation comprises time as a parameter, which in turn is a consequence of incoherence of the quasi-stationary problem of thermoelasticity. This phenomenon is particularly important for the optics of high-power, high-pulse repetition rate lasers, which are being actively developed. In the review, we have recently published in Laser Physics, the thermal stress state of a solid is analysed. In this state, time is treated as an independent variable used in differentiation. Such an approach greatly reduces the applicability of the method. The review published contains data on the use of capillary porous structures made of various materials with different degrees of the surface development. Moreover, such structures can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. In the present review we discuss the dependences of the limiting laser intensities on the duration of a pulse or a pulse train, corresponding to the three stages of the state of the reflecting surface and leading to unacceptable elastic deformations of the surface, to the plastic yield of the material accompanied by the formation of residual stresses and to the melting of the surface layer. We also analyse the problem of heat exchange in the surface layer with a liquid metal coolant pumped through it

  8. Power optics

    Science.gov (United States)

    Apollonov, V. V.

    2014-02-01

    By using the theory we developed in the early 1970s, a broad range of phenomena is considered for an optical surface of a solid body that is exposed to radiation arbitrarily varying in time and producing temperature fields, thermoelastic stresses and thermal deformations on the surface layer. The examination is based on the relations (which are similar to Duhamel's integral formula from the theory of heat conduction) between the quantities characterising the thermal stress state in any nonstationary regimes of energy input into a solid. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that this relation comprises time as a parameter, which in turn is a consequence of incoherence of the quasi-stationary problem of thermoelasticity. This phenomenon is particularly important for the optics of high-power, high-pulse repetition rate lasers, which are being actively developed. In the review, we have recently published in Laser Physics, the thermal stress state of a solid is analysed. In this state, time is treated as an independent variable used in differentiation. Such an approach greatly reduces the applicability of the method. The review published contains data on the use of capillary porous structures made of various materials with different degrees of the surface development. Moreover, such structures can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. In the present review we discuss the dependences of the limiting laser intensities on the duration of a pulse or a pulse train, corresponding to the three stages of the state of the reflecting surface and leading to unacceptable elastic deformations of the surface, to the plastic yield of the material accompanied by the formation of residual stresses and to the melting of the surface layer. We also analyse the problem of heat exchange in the surface layer with a liquid metal coolant pumped through it. The

  9. Parallel optical sampler

    Energy Technology Data Exchange (ETDEWEB)

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  10. A reflectivity profilometer for the optical characterisation of grade reflectivity mirrors in the 250 nm - 1100 nm spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Alessandro; Nichelatti, Enrico [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1998-04-01

    It`s developed the prototype of an instrument that can be used for the optical characterisation of graded reflectivity mirrors at any wavelength in the spectral region from 250 nm to 1100 nm. The instrument utilises a high-pressure Xe arc lamp as light source. Light is spectrally filtered by means of a grating monochromator. The sample is illuminated with an image of the monochromator exit slit. After reflection from the sample, this image is projected onto a 1024-elements charge-coupled device linear array driven by a digital frame board and interfaced with a personal computer. It`s tested the instrument accuracy by comparing measurement results with the corresponding ones obtained by means of a laser scanning technique. Measurement Rms repeatability has been estimated to be approximately of 0.8%. [Italiano] E` stato sviluppato il prototipo di uno strumento per la catatterizzazione ottica di specchi a riflettivita` variabile, operante a qualsiasi lunghezza d`onda nell`intervallo spettrale da 250 nm a 1100 nm. La sorgente dello strumento e` una lampada ad arco allo Xenon ad alta pressione. La luce e` filtrata spettralmente per mezzo di un monocromatore a reticolo. Il campione viene illuminato da un`immagine della fenditura d`uscita del monocromatore. Dopo essere stata riflessa dal campione, questa immagine viene proiettata su un array CCD lineare a 1024 elementi, connesso elettronicamente a una scheda digitale e interfacciato a un personal computer. L`accuratezza dello strumento e` stata verificata confrontando alcune misure con le corrispondenti misure ottenute mediante una tecnica a scansione laser. La ripetibilita` RMS delle misure e` stata stimata essere circa dello 0.8%.

  11. Hamilton optics: transformational theory of optics

    Science.gov (United States)

    Winston, Roland; Ge, Wenjun

    2013-09-01

    In 1824 William Rowan Hamilton presented a memoir to the Royal Irish Academy on Optics(Trans. R. Irish. Acacamy, XV, 1828), which was the foundation for transformational optics, classical mechanics, nonimaging optics and thermodynamical foundation of nonimaging optics,etc. It is useful for us even in 2013 to revisit the Hamilton resolution.

  12. Integrated analysis of millisecond laser irradiation of steel by comprehensive optical diagnostics and numerical simulation

    Science.gov (United States)

    Doubenskaia, M.; Smurov, I.; Nagulin, K. Yu.

    2016-04-01

    Complimentary optical diagnostic tools are applied to provide comprehensive analysis of thermal phenomena in millisecond Nd:YAG laser irradiation of steel substrates. The following optical devices are employed: (a) infrared camera FLIR Phoenix RDASTM equipped by InSb sensor with 3 to 5 µm band pass arranged on 320 × 256 pixels array, (b) ultra-rapid camera Phantom V7.1 with SR-CMOS monochrome sensor in the visible spectral range, up to 105 frames per second for 64 × 88 pixels array, (c) original multi-wavelength pyrometer in the near-infrared range (1.370-1.531 µm). The following laser radiation parameters are applied: variation of energy per pulse in the range 15-30 J at a constant pulse duration of 10 ms with and without application of protective gas (Ar). The evolution of true temperature is restored based on the method of multi-colour pyrometry; by this way, melting/solidification dynamics is analysed. Emissivity variation with temperature is studied, and hysteresis type functional dependence is found. Variation of intensity of surface evaporation visualised by the camera Phantom V7.1 is registered and linked with the surface temperature evolution, different surface roughness and influence of protective gas atmosphere. Determination of the vapour plume temperature based on relatively intensities of spectral lines is done. The numerical simulation is carried out applying the thermal model with phase transitions taken into account.

  13. Cloud optics

    CERN Document Server

    Kokhanovsky, A

    2006-01-01

    Clouds affect the climate of the Earth, and they are an important factor in the weather. Therefore, their radiative properties must be understood in great detail. This book summarizes current knowledge on cloud optical properties, for example their ability to absorb, transmit, and reflect light, which depends on the clouds' geometrical and microphysical characteristics such as sizes of droplets and crystals, their shapes, and structures. In addition, problems related to the image transfer through clouds and cloud remote sensing are addressed in this book in great detail. This book can be an im

  14. Quantum Optics

    CERN Document Server

    Garrison, J C

    2008-01-01

    Quantum optics, i.e. the interaction of individual photons with matter, began with the discoveries of Planck and Einstein, but in recent years it has expanded beyond pure physics to become an important driving force for technological innovation. This book serves the broader readership growing out of this development by starting with an elementary description of the underlying physics and then building up a more advanced treatment. The reader is led from the quantum theory of thesimple harmonic oscillator to the application of entangled states to quantum information processing. An equally impor

  15. Optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-07-13

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  16. EDITORIAL: Optical orientation Optical orientation

    Science.gov (United States)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  17. Optical Backplane Interconnection

    Science.gov (United States)

    Hendricks, Herbert D.

    1991-01-01

    Optical backplane interconnection (OBIT), method of optically interconnecting many parallel outputs from data processor to many parallel inputs of other data processors by optically changing wavelength of output optical beam. Requires only one command: exact wavelength necessary to make connection between two desired processors. Many features, including smallness advantageous to incorporate OBIT into integrated optical device. Simplifies or eliminates wiring and speeds transfer of data over existing electrical or optical interconnections. Computer hookups and fiber-optical communication networks benefit from concept.

  18. Optical Instruments

    Science.gov (United States)

    1990-01-01

    Precision Lapping and Optical Co. has developed a wide variety of hollow retroreflector systems for applications involving the entire optical spectrum; they are, according to company literature, cheaper, more accurate, lighter and capable of greater size than solid prisms. Precision Lapping's major customers are aerospace and defense companies, government organizations, R&D and commercial instrument companies. For example, Precision Lapping supplies hollow retroreflectors for the laser fire control system of the Army's Abrams tank, and retroreflectors have been and are being used in a number of space tests relative to the Air Force's Strategic Defense Initiative research program. An example of a customer/user is Chesapeake Laser Systems, producer of the Laser Tracker System CMS-2000, which has applications in SDI research and industrial robotics. Another customer is MDA Scientific, Inc., manufacturer of a line of toxic gas detection systems used to monitor hazardous gases present in oil fields, refineries, offshore platforms, chemical plants, waste storage sites and other locations where gases are released into the environment.

  19. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  20. Congenital optic tract hypoplasia.

    Science.gov (United States)

    Hatsukawa, Yoshikazu; Fujio, Takahiro; Nishikawa, Masanori; Taylor, David

    2015-08-01

    We report a case of isolated unilateral optic tract hypoplasia, described only twice previously. Bilateral optic disk hypoplasia was seen ophthalmoscopically and visual field studies showed an incongruous right homonymous hemianopia. Magnetic resonance imaging showed bilateral hypoplasia of both optic nerves and the left optic tract. Spectral domain optical coherence tomography mapping correlated well with the visual field studies.

  1. Optical manifold

    Science.gov (United States)

    Falicoff, Waqidi; Chaves, Julio C.; Minano, Juan Carlos; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-02-23

    Optical systems are described that have at least one source of a beam of blue light with divergence under 15.degree.. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15.degree.. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15.degree., 22.degree., and 45.degree.. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.

  2. Remo Dance Motion Estimation with Markerless Motion Capture Using The Optical Flow Method

    Directory of Open Access Journals (Sweden)

    Neny Kurniati

    2016-03-01

    Full Text Available Motion capture has been developed and applied in various fields, one of them is dancing. Remo dance is a dance from East Java that tells the struggle of a prince who fought on the battlefield. Remo dancer does not use body-tight costume. He wears a few costume pieces and accessories, so required a motion detection method that can detect limb motion which does not damage the beauty of the costumes and does not interfere motion of the dancer. The method is Markerless Motion Capture. Limbs motions are partial behavior. This means that all limbs do not move simultaneously, but alternately. It required motion tracking to detect parts of the body moving and where the direction of motion. Optical flow is a method that is suitable for the above conditions. Moving body parts will be detected by the bounding box. A bounding box differential value between frames can determine the direction of the motion and how far the object is moving. The optical flow method is simple and does not require a monochrome background. This method does not use complex feature extraction process so it can be applied to real-time motion capture. Performance of motion detection with optical flow method is determined by the value of the ratio between the area of the blob and the area of the bounding box. Estimate coordinates are not necessarily like original coordinates, but if the chart of estimate motion similar to the chart of the original motion, it means motion estimation it can be said to have the same motion with the original. Keywords: Motion Capture, Markerless, Remo Dance, Optical Flow

  3. Fiber optics engineering

    CERN Document Server

    Azadeh, Mohammad

    2009-01-01

    Covering fiber optics from an engineering perspective, this text emphasizes data conversion between electrical and optical domains. Techniques to improve the fidelity of this conversion (from electrical to optical domain, and vice versa) are also covered.

  4. Coding for optical channels

    CERN Document Server

    Djordjevic, Ivan; Vasic, Bane

    2010-01-01

    This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.

  5. Quantum optics for experimentalists

    CERN Document Server

    Ou, Zhe-Yu Jeff

    2017-01-01

    This book on quantum optics is from the point of view of an experimentalist. It approaches the theory of quantum optics with the language of optical modes of classical wave theory, with which experimentalists are most familiar.

  6. Applied optics and optical design, part two

    CERN Document Server

    Conrady, A E

    2014-01-01

    Classic detailed treatment for practical designer. Fundamental concepts, systematic study and design of all types of optical systems. Reader can then design simpler optical systems without aid. Part Two of Two.

  7. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  8. Intelligent Optics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Intelligent Optics Laboratory supports sophisticated investigations on adaptive and nonlinear optics; advancedimaging and image processing; ground-to-ground and...

  9. Fibre-optic communications

    CERN Document Server

    Lecoy, Pierre

    2010-01-01

    This book describes in a comprehensive manner the components and systems of fiber optic communications and networks. The first section explains the theory of multimode and single-mode fibers, then the technological features, including manufacturing, cabling, and connecting. The second section describes the various components (passive and active optical components, integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber optic systems. Finally, the optical transmission system design is explained, and applications to optical networks and fiber optic se

  10. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  11. Investigation of Optical Fibers for Nonlinear Optics.

    Science.gov (United States)

    1984-04-17

    Northwestern University, 1970. Experience Dr. Harrington has 13 years of research experi- ence in the area of optical properties of solids . Since joining...dynamics, and optical properties of solids . 34 34I ANTONIO C. PASTOR, Member of the Technical Staff, Optical Physics Department, Hughes Research

  12. Augmenting reality in Direct View Optical (DVO) overlay applications

    Science.gov (United States)

    Hogan, Tim; Edwards, Tim

    2014-06-01

    The integration of overlay displays into rifle scopes can transform precision Direct View Optical (DVO) sights into intelligent interactive fire-control systems. Overlay displays can provide ballistic solutions within the sight for dramatically improved targeting, can fuse sensor video to extend targeting into nighttime or dirty battlefield conditions, and can overlay complex situational awareness information over the real-world scene. High brightness overlay solutions for dismounted soldier applications have previously been hindered by excessive power consumption, weight and bulk making them unsuitable for man-portable, battery powered applications. This paper describes the advancements and capabilities of a high brightness, ultra-low power text and graphics overlay display module developed specifically for integration into DVO weapon sight applications. Central to the overlay display module was the development of a new general purpose low power graphics controller and dual-path display driver electronics. The graphics controller interface is a simple 2-wire RS-232 serial interface compatible with existing weapon systems such as the IBEAM ballistic computer and the RULR and STORM laser rangefinders (LRF). The module features include multiple graphics layers, user configurable fonts and icons, and parameterized vector rendering, making it suitable for general purpose DVO overlay applications. The module is configured for graphics-only operation for daytime use and overlays graphics with video for nighttime applications. The miniature footprint and ultra-low power consumption of the module enables a new generation of intelligent DVO systems and has been implemented for resolutions from VGA to SXGA, in monochrome and color, and in graphics applications with and without sensor video.

  13. Illusion optics

    Science.gov (United States)

    Lai, Yun; Ng, Jack; Chen, Huan-Yang; Zhang, Zhao-Qing; Chan, C. T.

    2010-09-01

    The technique of “transformation optics” establishes a correspondence between coordinate transformation and material constitutive parameters. Most of the transformation optics mappings give metamaterials that have graded positive refractive indices that can steer light in curves defined by the coordinate transformation. We will focus on those “folded-geometry mappings” that give negative refractive index materials that have special wave scattering properties. One interesting example is a kind of remote illusion device that can transform the stereoscopic image of an object into the illusion of some other object of our choice. The conceptual device can create the illusion without touching or encircling the object. For any incident wave, the device transforms the scattered waves of the original object into that of the object chosen for illusion outside a virtual boundary. We will illustrate some possible applications of this type of metamaterial remote device, including “cloaking at a distance,” partial cloaking, cloaking from an embedded device, revealing a hidden object inside a container, turning the image of one object into that of another object, and seeing through a wall. The feasibility of building this remote illusion device by metamaterials will also be discussed.

  14. Light Optics for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.

  15. Transformation optics and metamaterials

    Science.gov (United States)

    Chen, Huanyang; Chan, C. T.; Sheng, Ping

    2010-05-01

    Underpinned by the advent of metamaterials, transformation optics offers great versatility for controlling electromagnetic waves to create materials with specially designed properties. Here we review the potential of transformation optics to create functionalities in which the optical properties can be designed almost at will. This approach can be used to engineer various optical illusion effects, such as the invisibility cloak.

  16. Optical image encryption topology.

    Science.gov (United States)

    Yong-Liang, Xiao; Xin, Zhou; Qiong-Hua, Wang; Sheng, Yuan; Yao-Yao, Chen

    2009-10-15

    Optical image encryption topology is proposed based on the principle of random-phase encoding. Various encryption topological units, involving peer-to-peer, ring, star, and tree topologies, can be realized by an optical 6f system. These topological units can be interconnected to constitute an optical image encryption network. The encryption and decryption can be performed in both digital and optical methods.

  17. Introduction to ocean optics

    Science.gov (United States)

    Gordon, H. R.; Smith, R. C.; Zaneveld, J. R. V.

    1984-01-01

    In this introductory survey of optical oceanography, the fundamental inherent and apparent optical properties of natural waters are presented. Relationships between these inherent and apparent optical properties, as related through the radiative transfer equation, are then examined. Following the first three theoretical sections, brief discussions describing the application of ocean optics to geophysics, biological oceanography, and ocean remote sensing are then presented.

  18. Nonlinear Optical Rectennas

    CERN Document Server

    Stolz, A; Markey, L; Francs, G Colas des; Bouhelier, A

    2013-01-01

    We introduce strongly-coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion and demonstrate that a two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.

  19. Optics for dummies

    CERN Document Server

    Duree, Galen C

    2011-01-01

    The easy way to shed light on Optics In general terms, optics is the science of light. More specifically, optics is a branch of physics that describes the behavior and properties of light?including visible, infrared, and ultraviolet?and the interaction of light with matter. Optics For Dummies gives you an approachable introduction to optical science, methods, and applications. You'll get plain-English explanations of the nature of light and optical effects; reflection, refraction, and diffraction; color dispersion; optical devices, industrial, medical, and military applicatio

  20. [Hereditary optic neuropathies].

    Science.gov (United States)

    Milea, D; Verny, C

    2012-10-01

    Hereditary optic neuropathies are a group of heterogeneous conditions affecting both optic nerves, with an autosomal dominant, autosomal recessive, X-related or mitochondrial transmission. The two most common non-syndromic hereditary optic neuropathies (Leber's hereditary optic neuropathy and autosomal dominant optic atrophy) are very different in their clinical presentation and their genetic transmission, leading however to a common, non-specific optic nerve atrophy. Beyond the optic atrophy-related visual loss, which is the clinical hallmark of this group of diseases, other associated neurological signs are increasingly recognized.

  1. Spectrophotometric bench dedicated to the characterization of micro-patterned optical coatings

    Science.gov (United States)

    Sorce, Stéphane; Abel-Tiberini, Laetitia; Lequime, Michel

    2011-10-01

    Characterization of the spectral transmission of micro-patterned optical coatings requires accurate and highly localized measurement means. However, the capabilities of commercial equipments are generally limited, and either they do not provide sufficient spatial and spectral resolution, or they modify the spectral transmittance properties of the sample by using a large half angle illuminating light cone. In this work, we propose a new approach based on the recording, using a high performance photodiode array camera, of monochromatic magnified images of the sample illuminated by a filtered and fiber-coupled super-continuum laser source. In such case, the spatial resolution is directly given by the size of the individual CCD pixels and by the magnification of the imaging objective, while the spectral resolution is defined by the slit width of the filtering monochromator. This paper will give a detailed description of the main features of this spectrophotometric bench, and will demonstrate its ability to record the spectral transmittance of patterned samples with micrometer spatial resolution and sub-nanometer spectral resolution in the visible and near infrared ranges.

  2. Broadband Interferometer for Measuring Transmitted Wavefronts of Optical Bandpass Filters for HST (ACS)

    Science.gov (United States)

    Boucarut, R. A.; Leviton, D. B.

    1998-01-01

    The transmitted wavefronts of optical filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) are characterized using the Wildly and Openly Modified Broadband Achromatic Twyman Green (WOMBAT) Interferometer developed in the NASA/GSFC Optics Branch's Diffraction Grating Evaluation Facility (DGEF). Because only four of thirty-three of ACS's optical bandpass filters transmit the 633 nm light of most commercial interferometers, a broadband interferometer is required to verify specified transmitted wavefront of ACS filters. WOMBAT's design is a hybrid of the BAT interferometer developed by JPL used for HST Wide Field and Planetary Camera 2 (WFPC-2) filters and a WYKO 400 phase shifting interferometer. It includes a broadband light source, monochromator, off-axis, parabolic collimating and camera mirrors, an aluminum-coated fused silica beam splitter, flat retroreflecting mirrors for the test and reference arms, and a LTV-sensitive CCD camera. An outboarded, piezo-electric phase shifter holds the flat mirror in the interferometer's reference arm. The interferometer is calibrated through interaction between the WYKO system's software and WONMAT hardware for the test wavelength of light entering the beam splitter. Phase-shifted interferograms of the filter mounted in the test arm are analyzed using WYKO's Vision' software. Filters as large as 90 mm in diameter have been measured over a wavelength range from 200 to 1100 nm with a sensitivity of lambda/200 rms at lambda = 633 nm. Results of transmitted wavefront measurements are shown for ACS fixed band pass and spatially-variable bandpass filters for a variety of wavelengths.

  3. Broadband Interferometer for Measuring Transmitted Wavefronts of Optical Bandpass Filters for HST (ACS)

    Science.gov (United States)

    Boucarut, R. A.; Leviton, D. B.

    1998-01-01

    The transmitted wavefronts of optical filters for the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) are characterized using the Wildly and Openly Modified Broadband Achromatic Twyman Green (WOMBAT) Interferometer developed in the NASA/GSFC Optics Branch's Diffraction Grating Evaluation Facility (DGEF). Because only four of thirty-three of ACS's optical bandpass filters transmit the 633 nm light of most commercial interferometers, a broadband interferometer is required to verify specified transmitted wavefront of ACS filters. WOMBAT's design is a hybrid of the BAT interferometer developed by JPL used for HST Wide Field and Planetary Camera 2 (WFPC-2) filters and a WYKO 400 phase shifting interferometer. It includes a broadband light source, monochromator, off-axis, parabolic collimating and camera mirrors, an aluminum-coated fused silica beam splitter, flat retroreflecting mirrors for the test and reference arms, and a LTV-sensitive CCD camera. An outboarded, piezo-electric phase shifter holds the flat mirror in the interferometer's reference arm. The interferometer is calibrated through interaction between the WYKO system's software and WONMAT hardware for the test wavelength of light entering the beam splitter. Phase-shifted interferograms of the filter mounted in the test arm are analyzed using WYKO's Vision' software. Filters as large as 90 mm in diameter have been measured over a wavelength range from 200 to 1100 nm with a sensitivity of lambda/200 rms at lambda = 633 nm. Results of transmitted wavefront measurements are shown for ACS fixed band pass and spatially-variable bandpass filters for a variety of wavelengths.

  4. Ultra-wideband fiber optical parametric amplifier for spectrally-encoded microscopy (Conference Presentation)

    Science.gov (United States)

    Wei, Xiaoming; Tan, Sisi; Mussot, Arnaud; Kudlinski, Alexandre; Tsia, Kevin K.; Wong, Kenneth

    2016-03-01

    Fiber optical parametric amplifier (FOPA) has gained its popularity in the telecommunication systems at the 1.5-um window for its gain, bandwidth etc. Unfortunately, its practical application at the bio-favorable window, i.e. 1.0 um, still requires substantial efforts. Thus, here we report a versatile all-fiber optical parametric amplifier for life-science (OPALS) at 1.0 um as an add-on module for optical imaging system. The parametric gain fiber (photonic-crystal fiber (PCF), 110 m in length) is specially designed to reduce the longitudinal dispersion fluctuation, which yields a superior figure of merit, i.e. a total insertion loss of ~2.5 dB and a nonlinear coefficient of 34 /(W•km). Our OPALS delivers a superior performance in terms of gain (~158,000), bandwidth (>100 nm) and gain flatness (Experimentally, we show that: 1) a wavelength-varying quasi-monochrome pump achieves a 52-dB gain and 160-nm bandwidth, but at the expense of a larger gain-spectrum ripple, i.e. a bell-shaped; 2) the birefringence of the parametric gain medium, i.e. PCF in this case, can be utilized to improve the gain-spectrum flatness of OPALS by 10.5 dB, meanwhile a 100-nm bandwidth can be guaranteed; 3) the gain-spectrum flatness of OPALS can be further flattened by using a high-speed wavelength-sweeping pump, which exhibits a 110-nm flat gain spectrum with ripple less than 3 dB. Finally, we employ this versatile all-fiber OPALS as an add-on module to enhance the sensitivity of a spectrally-encoded microscope by 47 dB over an ultra-wide spectral range.

  5. Principles of adaptive optics

    CERN Document Server

    Tyson, Robert

    2010-01-01

    History and BackgroundIntroductionHistoryPhysical OpticsTerms in Adaptive OpticsSources of AberrationsAtmospheric TurbulenceThermal BloomingNonatmospheric SourcesAdaptive Optics CompensationPhase ConjugationLimitations of Phase ConjugationArtificial Guide StarsLasers for Guide StarsCombining the LimitationsLinear AnalysisPartial Phase ConjugationAdaptive Optics SystemsAdaptive Optics Imaging SystemsBeam Propagation Syst

  6. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J

    2009-01-01

    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  7. Design of optical switches by illusion optics

    Science.gov (United States)

    Shoorian, H. R.; Abrishamian, M. S.

    2013-05-01

    In this paper, illusion optics theory is employed to form Bragg gratings in an optical waveguide in order to design an optical switch. By using an illusion device at a certain distance from the waveguide, the effective refractive index of the waveguide is remotely modulated, turning the waveguide into a distributed Bragg reflector (DBR) which blocks the waves at a stop band. By removing the illusion device, the waves propagate through the waveguide again. In addition, this method is used to remotely tune DBR optical properties such as resonant frequency and bandwidth in a wide range, which leads to a tunable filter for optical switching applications. Finally, using an illusion device at a distance, an optical cavity is created by inserting defects remotely in a DBR without any physical damage in the primary device.

  8. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind P

    2001-01-01

    The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical

  9. Introduction to nonimaging optics

    CERN Document Server

    Chaves, Julio

    2015-01-01

    Introduction to Nonimaging Optics covers the theoretical foundations and design methods of nonimaging optics, as well as key concepts from related fields. This fully updated, revised, and expanded Second Edition: Features a new and intuitive introduction with a basic description of the advantages of nonimaging opticsAdds new chapters on wavefronts for a prescribed output (irradiance or intensity), infinitesimal étendue optics (generalization of the aplanatic optics), and Köhler optics and color mixingIncorporates new material on the simultaneous multiple surface (SMS) design method in 3-D, int

  10. Organic nonlinear optical materials

    Science.gov (United States)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  11. Latching micro optical switch

    Science.gov (United States)

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  12. Active optical zoom system

    Science.gov (United States)

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  13. Achromatic optical diode in fiber optics

    CERN Document Server

    Berent, Michal; Vitanov, Nikolay V

    2013-01-01

    We propose a broadband optical diode, which is composed of one achromatic reciprocal quarter-wave plate and one non-reciprocal quarter-wave plate, both placed between two crossed polarizers. The presented design of achromatic wave plates relies on an adiabatic evolution of the Stokes vector, thus, the scheme is robust and efficient. The possible simple implementation using fiber optics is suggested.

  14. Acousto-optic laser optical feedback imaging

    CERN Document Server

    Jacquin, Olivier; Lacot, Eric; Hugon, Olivier; De Chatellus, Hugues Guillet; François, Ramaz

    2012-01-01

    We present a photon noise and diffraction limited imaging method combining the imaging laser and ultrasonic waves. The laser optical feedback imaging (LOFI) technique is an ultrasensitive imaging method for imaging objects through or embedded within a scattering medium. However, LOFI performances are dramatically limited by parasitic optical feedback occurring in the experimental setup. In this work, we have tagged the ballistic photons by an acousto-optic effect in order to filter the parasitic feedback effect and to reach the theoretical and ultimate sensitivity of the LOFI technique. We present the principle and the experimental setup of the acousto-optic laser optical feedback imaging (AO-LOFI) technique, and we demonstrate the suppression of the parasitic feedback.

  15. Optical Quantum Computing

    National Research Council Canada - National Science Library

    Jeremy L. O'Brien

    2007-01-01

    In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors...

  16. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  17. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  18. Optical solenoid beams

    National Research Council Canada - National Science Library

    Lee, Sang-Hyuk; Roichman, Yohai; Grier, David G

    2010-01-01

    We introduce optical solenoid beams, diffractionless solutions of the Helmholtz equation whose diffraction-limited in-plane intensity peak spirals around the optical axis, and whose wavefronts carry...

  19. Optical antennas and plasmonics

    OpenAIRE

    Park, Q-Han

    2009-01-01

    Optical antenna is a nanoscale miniaturization of radio or microwave antennas that is also governed by the rule of plasmonics. We introduce various types of optical antenna and make an overview of recent developments in optical antenna research. The role of local and surface plasmons in optical antenna is explained through antenna resonance and resonance conditions for specific metal structures are explicitly obtained. Strong electric field is shown to exist within a highly localized region o...

  20. Fibre-Optic Gyroscope

    Directory of Open Access Journals (Sweden)

    V. N. Saxena

    1983-04-01

    Full Text Available Comparative study of mechanical, ring-laser and fibre-optic gyroscopes has been made. The single mode fibre-optic gyroscope having a large number of turns of the optical fibre in the spool, replacing He-Ne gas laser by a GaAs laser diode, there by reducing the noise level, and using fully integrated fibre-optics, works out to be the best in the final analysis, for safe navigation and homing of the guided missiles.

  1. Giant optical manipulation.

    Science.gov (United States)

    Shvedov, Vladlen G; Rode, Andrei V; Izdebskaya, Yana V; Desyatnikov, Anton S; Krolikowski, Wieslaw; Kivshar, Yuri S

    2010-09-10

    We demonstrate a new principle of optical trapping and manipulation increasing more than 1000 times the manipulation distance by harnessing strong thermal forces while suppressing their stochastic nature with optical vortex beams. Our approach expands optical manipulation of particles into a gas media and provides a full control over trapped particles, including the optical transport and pinpoint positioning of ∼100  μm objects over a meter-scale distance with ±10  μm accuracy.

  2. Photonic crystal optical memory

    Science.gov (United States)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  3. Progress in optics

    CERN Document Server

    Wolf, Emil

    2009-01-01

    In the fourty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. The volumes in this series which have appeared up to now contain more than 300 review articles by distinguished research workers, which have become permanent records for many important developments.- Backscattering and Anderson localization of light- Advances in oliton manipulation in optical lattices- Fundamental quantum noise in optical amplification- Invisibility cloaks

  4. Emerging Correlation Optics

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Gbur, Gregory J.; Polyanskii, Peter;

    2012-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting the state-of-the-art of correlation optics and showing synergetics between the theoretical background and experimental techniques.......This feature issue of Applied Optics contains a series of selected papers reflecting the state-of-the-art of correlation optics and showing synergetics between the theoretical background and experimental techniques....

  5. Ternary optical computer principle

    Institute of Scientific and Technical Information of China (English)

    金翊; 何华灿; 吕养天

    2003-01-01

    The fundamental principle and the characteristics of ternary optical computer, using horizontal polarized light, vertical polarized light and no-intensity to express information, are propounded in thispaper. The practicability to make key parts of the ternary optical computer from modern micro or integrated optical devices, opto-electronic and electro-photonic elements is discussed. The principle can be applied in three-state optical fiber communication via horizontal and vertical polarized light.

  6. Advanced digital optical communications

    CERN Document Server

    Binh, Le Nguyen

    2015-01-01

    This book provides a fundamental understanding of digital communication applications in optical communication technologies. Emphasizing operation principles versus mathematical analysis, the Second Edition includes new coverage of superchannel optical transmission systems, metropolitan and long-haul optical systems and networks, and Nyquist pulse shaping and high spectral efficiency of optical transmission systems, as well as new homework problems and examples. Featuring theoretical foundations as well as practical case studies, the text focuses on enhancements to digital technologies that are

  7. Adaptive optical zoom sensor.

    Energy Technology Data Exchange (ETDEWEB)

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  8. All-optical repeater.

    Science.gov (United States)

    Silberberg, Y

    1986-06-01

    An all-optical device containing saturable gain, saturable loss, and unsaturable loss is shown to transform weak, distorted optical pulses into uniform standard-shape pulses. The proposed device performs thresholding, amplification, and pulse shaping as required from an optical repeater. It is shown that such a device could be realized by existing semiconductor technology.

  9. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  10. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul V.; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  11. Optical Disk Technology.

    Science.gov (United States)

    Abbott, George L.; And Others

    1987-01-01

    This special feature focuses on recent developments in optical disk technology. Nine articles discuss current trends, large scale image processing, data structures for optical disks, the use of computer simulators to create optical disks, videodisk use in training, interactive audio video systems, impacts on federal information policy, and…

  12. Progress in optics

    CERN Document Server

    Wolf, Emil

    2015-01-01

    The Progress in Optics series contains more than 300 review articles by distinguished research workers, which have become permanent records for many important developments, helping optical scientists and optical engineers stay abreast of their fields. Comprehensive, in-depth reviewsEdited by the leading authority in the field

  13. Integrated Optics Some Aspects

    Directory of Open Access Journals (Sweden)

    R. Hradaynath

    1990-01-01

    Full Text Available Status of some key individual integrated optics components, their application in the field of telecommunications, integrated optoelectronic circuits, fibre optics sensors, optical interconnects and logic devices are highlighted in this paper. Possibilities of opto-opto processors in the computers field are also outlined.

  14. Optics and optical instruments an introduction

    CERN Document Server

    Johnson, B K

    2011-01-01

    This book illustrates basic practical applications of optical principle. Working models of telescopes, microscopes, photographic lenses, and optical projection systems are diagrammed and explained in full, as are the basic experiments for determining accuracy, power, angular field of view, amount of aberration, and all other necessary facts about the instrument. Throughout the book, only elementary mathematics is used, for the benefit of the student and the beginner in the field of optics.The author, an assistant professor at the Imperial College of Science and Technology in London, shows ho

  15. Development of a low-cost, 11 µm spectral domain optical coherence tomography surface profilometry prototype

    Science.gov (United States)

    Suliali, Nyasha J.; Baricholo, Peter; Neethling, Pieter H.; Rohwer, Erich G.

    2017-06-01

    A spectral-domain Optical Coherence Tomography (OCT) surface profilometry prototype has been developed for the purpose of surface metrology of optical elements. The prototype consists of a light source, spectral interferometer, sample fixture and software currently running on Microsoft® Windows platforms. In this system, a broadband light emitting diode beam is focused into a Michelson interferometer with a plane mirror as its sample fixture. At the interferometer output, spectral interferograms of broadband sources were measured using a Czerny-Turner mount monochromator with a 2048-element complementary metal oxide semiconductor linear array as the detector. The software performs importation and interpolation of interferometer spectra to pre-condition the data for image computation. One dimensional axial OCT images were computed by Fourier transformation of the measured spectra. A first reflection surface profilometry (FRSP) algorithm was then formulated to perform imaging of step-function-surfaced samples. The algorithm re-constructs two dimensional colour-scaled slice images by concatenation of 21 and 13 axial scans to form a 10 mm and 3.0 mm slice respectively. Measured spectral interferograms, computed interference fringe signals and depth reflectivity profiles were comparable to simulations and correlated to displacements of a single reflector linearly translated about the arm null-mismatch point. Surface profile images of a double-step-function-surfaced sample, embedded with inclination and crack detail were plotted with an axial resolution of 11 μm. The surface shape, defects and misalignment relative to the incident beam were detected to the order of a micron, confirming high resolution of the developed system as compared to electro-mechanical surface profilometry techniques.

  16. Optical Flashes Preceding GRBs

    CERN Document Server

    Paczynski, B

    2001-01-01

    Only one optical flash associated with a gamma-ray burst has been detected so far by ROTSE. There are also upper limits obtained by several groups for several bursts. Recent model calculations indicate a possibility that optical flash may precede the GRB. Such flashes are undetectable in the currently popular observing mode, with optical instruments responding to GRB triggers. There is a need to develop all sky optical monitoring system capable of recognizing flashes in real time, and more powerful instruments that could respond robotically to optical triggers and carry out follow up observations.

  17. Optical modulator including grapene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  18. Paraxial Ray Optics Cloaking

    CERN Document Server

    Choi, Joseph S

    2014-01-01

    Despite much interest and progress in optical spatial cloaking, a three-dimensional (3D), transmitting, continuously multidirectional cloak in the visible regime has not yet been demonstrated. Here we experimentally demonstrate such a cloak using ray optics, albeit with some edge effects. Our device requires no new materials, uses isotropic off-the-shelf optics, scales easily to cloak arbitrarily large objects, and is as broadband as the choice of optical material, all of which have been challenges for current cloaking schemes. In addition, we provide a concise formalism that quantifies and produces perfect optical cloaks in the small-angle (`paraxial') limit, and must be satisfied by any good cloaks.

  19. Progress in optics

    CERN Document Server

    Wolf, Emil

    1977-01-01

    In the thirty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and n

  20. Optic disc oedema

    DEFF Research Database (Denmark)

    Nielsen, Marianne Kromann; Hamann, Steffen

    2014-01-01

    Optic disc oedema describes the nonspecific, localized swelling of the optic nerve head regardless of aetiology. Therefore, differentiating among the various aetiologies depends on a thorough history and knowledge of the clinical characteristics of the underlying conditions. Papilloedema strictly...... refers to optic disc oedema as a consequence of elevated intracranial pressure. It is usually a bilateral condition and visual function is preserved until late. Optic disc oedema caused by an anterior optic neuropathy is usually unilateral and accompanied by the loss of visual function....

  1. [Adaptive optics for ophthalmology].

    Science.gov (United States)

    Saleh, M

    2016-04-01

    Adaptive optics is a technology enhancing the visual performance of an optical system by correcting its optical aberrations. Adaptive optics have already enabled several breakthroughs in the field of visual sciences, such as improvement of visual acuity in normal and diseased eyes beyond physiologic limits, and the correction of presbyopia. Adaptive optics technology also provides high-resolution, in vivo imaging of the retina that may eventually help to detect the onset of retinal conditions at an early stage and provide better assessment of treatment efficacy.

  2. Optics in aircraft engines

    Science.gov (United States)

    Vachon, James; Malhotra, Subhash

    The authors describe optical IR&D (independent research and development) programs designed to demonstrate and evaluate optical technologies for incorporation into next-generation military and commercial aircraft engines. Using a comprehensive demonstration program to validate this technology in an on-engine environment, problems encountered can be resolved early and risk can be minimized. In addition to specific activities related to the optics demonstration on the fighter engine, there are other optical programs underway, including a solenoid control system, a light off detection system, and an optical communication link. Research is also underway in simplifying opto-electronics and exploiting multiplexing to further reduce cost and weight.

  3. Magneto-optical metamaterial

    CERN Document Server

    Sadatgol, Mehdi; Forati, Ebrahim; Levy, Miguel; Guney, Durdu O

    2015-01-01

    We propose a new class of metamaterials called magneto-optical metamaterials that offer enhanced angle of rotation in polarization compared to bulk magneto-optical materials. In the proposed approach, the permittivity tensor of a magneto-optical material is tailored by embedded wire meshes behaving as artificial plasma. We have shown that the angle of rotation in the magneto-optical metamaterial can be enhanced up to 9 times compared to bulk magneto-optical material alone while the polarization extinction ratio remains below -20dB and insertion loss is less than 1.5dB.

  4. Small scale optics

    CERN Document Server

    Yupapin, Preecha

    2013-01-01

    The behavior of light in small scale optics or nano/micro optical devices has shown promising results, which can be used for basic and applied research, especially in nanoelectronics. Small Scale Optics presents the use of optical nonlinear behaviors for spins, antennae, and whispering gallery modes within micro/nano devices and circuits, which can be used in many applications. This book proposes a new design for a small scale optical device-a microring resonator device. Most chapters are based on the proposed device, which uses a configuration know as a PANDA ring resonator. Analytical and nu

  5. Progress in optics

    CERN Document Server

    Wolf, Emil

    2006-01-01

    In the thirty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and n

  6. [Aspheric optics: physical fundamentals].

    Science.gov (United States)

    Mrochen, M; Büeler, M

    2008-03-01

    Especially regarding intraocular lenses and refractive corneal surgery, one finds numerous concepts on how to improve the optical quality of the human eye through aspheric optics. Aspheric optics consists of optical surfaces in which at least one surface (for example, the corneal surface) deviates from the spherical shape. An aspheric (that is, not spherical) surface enables the correction of aberrations, especially the spherical aberration, by freely shaping the optical surface. The optical aberrations of the human eye can theoretically be minimized through the use of aspheric optics; however, the results are always affected by the optical properties of the cornea and the lens. Aspheric intraocular lenses allow a reduction of postoperative spherical aberrations of the patient's eye, but an optimal individualized conformation can result only when the shape of the cornea (asphericity) is considered. By the same token, the ideal corneal asphericity after refractive surgery for an individual eye cannot be defined without knowing the optical properties of the intraocular structure. Theoretical observations of aspheric optics in refractive surgery show that with aspheric approaches, a higher optical quality for the human eye can be attained. These theoretical advantages must, however, prove themselves in everyday clinical routine.

  7. Optical system design

    CERN Document Server

    Fischer, Robert F

    2008-01-01

    Honed for more than 20 years in an SPIE professional course taught by renowned optical systems designer Robert E. Fischer, Optical System Design, Second Edition brings you the latest cutting-edge design techniques and more than 400 detailed diagrams that clearly illustrate every major procedure in optical design. This thoroughly updated resource helps you work better and faster with computer-aided optical design techniques, diffractive optics, and the latest applications, including digital imaging, telecommunications, and machine vision. No need for complex, unnecessary mathematical derivations-instead, you get hundreds of examples that break the techniques down into understandable steps. For twenty-first century optical design without the mystery, the authoritative Optical Systems Design, Second Edition features: Computer-aided design use explained through sample problems Case studies of third-millennium applications in digital imaging, sensors, lasers, machine vision, and more New chapters on optomechanic...

  8. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch

    2005-01-01

    at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...... glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen......-oxygenase inhibitor, indomethacin, which indicates that prostaglandin metabolism plays a role. Laboratory studies suggest that carbonic anhydrase inhibitors might be useful for medical treatment of optic nerve and retinal ischemia, potentially in diseases such as glaucoma and diabetic retinopathy. However, clinical...

  9. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  10. Optical clock networks

    Science.gov (United States)

    Riehle, Fritz

    2017-01-01

    Within the last decade, optical atomic clocks have surpassed the best cesium clocks, which are used to realize the unit of time and frequency, in terms of accuracy and stability by about two orders of magnitude. When remote optical atomic clocks are connected by links without degradation in the clock signals, an optical clock network is formed, with distinct advantages for the dissemination of time, geodesy, astronomy and basic and applied research. Different approaches for time and frequency transfer in the microwave and optical regime, via satellites and free-space links, optical fibre links, or transportable optical atomic clocks, can be used to form a hybrid clock network that may allow a future redefinition of the unit of time based on an optical reference transition.

  11. Optical Robotics in Mesoscopia

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2012-01-01

    of optical forces and optical torques that, in turn, requires optimization of the underlying light-matter interactions. The requirement of having tightly focused beams in optical tweezer systems exemplifies the need for optimal light-shaping in optical trapping. On the other hand, the recently demonstrated......With light’s miniscule momentum, shrinking robotics down to the micro-scale regime creates opportunities for exploiting optical forces and torques in advanced actuation and control at the nano- and micro-scale dimensions. Advancing light-driven nano- or micro-robotics requires the optimization...... optical lift or light foil shows that optical manipulation can be achieved, even by using unshaped light, and instead applying an appropriately shaped structure. Hence, a generic approach for optimizing lightmatter interaction will involve the combination of optimal light-shaping techniques with the use...

  12. MEMS optical sensor

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising...... at least one multimode light source, one or more optical sensors comprising a multimode sensor optical waveguide accommodating a distributed Bragg reflector, at least one transmitting optical waveguide for guiding light from said at least one light source to said one or more multimode sensor optical...... waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light....

  13. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch;

    2005-01-01

    at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...... glaucoma patients is six times higher at a perfusion pressure of 30 mmHg, which corresponds to a level where the optic nerve is hypoxic in experimental animals, as compared to perfusion pressure levels above 50 mmHg where the optic nerve is normoxic. Medical intervention can affect optic nerve oxygen......-oxygenase inhibitor, indomethacin, which indicates that prostaglandin metabolism plays a role. Laboratory studies suggest that carbonic anhydrase inhibitors might be useful for medical treatment of optic nerve and retinal ischemia, potentially in diseases such as glaucoma and diabetic retinopathy. However, clinical...

  14. Fiber optic to integrated optical chip coupler

    Science.gov (United States)

    Pikulski, Joseph I. (Inventor); Ramer, O. Glenn (Inventor)

    1987-01-01

    Optical fibers are clamped by a block onto a substrate. Thereupon, metal is plated over the fibers to hold them in place upon the substrate. The clamp block is removed and the opening, resulting from the clamp block's presence, is then plated in. The built-up metallic body is a coupling which holds the fibers in position so that the ends can be polished for coupling to an integrated optical chip upon a coupling fixture.

  15. Developments in glass micro pore optics for x-ray applications

    Science.gov (United States)

    Wallace, Kotska; Collon, Maximilien; Bavdaz, Marcos; Fairbend, Ray; Séguy, Julien; Krumrey, Michael

    2006-06-01

    ESA is developing technologies for x-ray imaging to reduce the mass and volume of future missions. Applications of x-ray optics are foreseen in future planetary x-ray imagers, x-ray timing observatories and in observatories for high-energy astrophysics. With reference to planetary x-ray imagers the use of glass micro-pore material is being investigated. This technology allows the formation of a monolithic, glass structure that can be used to focus x-rays by glancing reflections off the pore walls. A technique to form x-ray focusing plates that contain thousands of square micro-pores has been developed with Photonis. The square pores are formed in a process that fuses blocks of extruded square fibres, which can then be sliced, etched and slumped to form the segment of an optic with a specific radius. A proposed imager would be created from 2 optics, slumped with different radii, and mounted to form an approximation of a Wolter I optic configuration. Reflection can be improved by coating the channel surfaces with a heavy element, such as nickel. Continuing developments have been made to enhance the manufacturing processes and improve the characteristics of the manufactured x-ray focusing plates, such as improved surface roughness and squareness of pore walls, improved pore alignment from fibre stacking through to optic segment slumping and development of pore wall coatings. In order to measure improvements x-ray measurements are performed by ESA and cosine Research BV, using the BESSY-II synchrotron facility four-crystal monochromator beamline of the Physikalisch-Technische Bundesanstalt, on multifibres, sectors and slumped sectors. A probing beam is used to investigate a number of pores to determine x-ray transmission, focussing characteristics as they relate to the overall transmission, x-ray reflectivity of channel walls, radial alignment of fibres, slumping radius and fibre position in a fused block. SEM measurements and microscope inspection have also been used

  16. Fibre-optical microendoscopy.

    Science.gov (United States)

    Gu, M; Bao, H; Kang, H

    2014-04-01

    Microendoscopy has been an essential tool in exploring micro/nano mechanisms in vivo due to high-quality imaging performance, compact size and flexible movement. The investigations into optical fibres, micro-scanners and miniature lens have boosted efficiencies of remote light delivery to sample site and signal collection. Given the light interaction with materials in the fluorescence imaging regime, this paper reviews two classes of compact microendoscopy based on a single fibre: linear optical microendoscopy and nonlinear optical microendoscopy. Due to the fact that fluorescence occurs only in the focal volume, nonlinear optical microendoscopy can provide stronger optical sectioning ability than linear optical microendoscopy, and is a good candidate for deep tissue imaging. Moreover, one-photon excited fluorescence microendoscopy as the linear optical microendoscopy suffers from severe photobleaching owing to the linear dependence of photobleaching rate on excitation laser power. On the contrary, nonlinear optical microendoscopy, including two-photon excited fluorescence microendoscopy and second harmonic generation microendoscopy, has the capability to minimize or avoid the photobleaching effect at a high excitation power and generate high image contrast. The combination of various nonlinear signals gained by the nonlinear optical microendoscopy provides a comprehensive insight into biophenomena in internal organs. Fibre-optical microendoscopy overcomes physical limitations of traditional microscopy and opens up a new path to achieve early cancer diagnosis and microsurgery in a minimally invasive and localized manner.

  17. In situ removal of carbon contamination from a chromium-coated mirror: ideal optics to suppress higher-order harmonics in the carbon K-edge region.

    Science.gov (United States)

    Toyoshima, Akio; Kikuchi, Takashi; Tanaka, Hirokazu; Mase, Kazuhiko; Amemiya, Kenta

    2015-11-01

    Carbon-free chromium-coated optics are ideal in the carbon K-edge region (280-330 eV) because the reflectivity of first-order light is larger than that of gold-coated optics while the second-order harmonics (560-660 eV) are significantly suppressed by chromium L-edge and oxygen K-edge absorption. Here, chromium-, gold- and nickel-coated mirrors have been adopted in the vacuum ultraviolet and soft X-ray branch beamline BL-13B at the Photon Factory in Tsukuba, Japan. Carbon contamination on the chromium-coated mirror was almost completely removed by exposure to oxygen at a pressure of 8 × 10(-2) Pa for 1 h under irradiation of non-monochromated synchrotron radiation. The pressure in the chamber recovered to the order of 10(-7) Pa within a few hours. The reflectivity of the chromium-coated mirror of the second-order harmonics in the carbon K-edge region (560-660 eV) was found to be a factor of 0.1-0.48 smaller than that of the gold-coated mirror.

  18. Direct optical to microwave conversion

    Science.gov (United States)

    Taylor, Henry F.

    1990-09-01

    Support of high frequency fiber optic links through development of innovative higher efficiency techniques to convert optical energy directly to RF Energy. Control of Phases Arrays by optical means in an area of expanding technology development. Fiber optics and other forms of optical waveguide can provide greater accuracy and true time delay in a phase delay network. Methods of improvement in transfer of optical energy to RF Energy are determined. Development of Direct Optical-to-RF-Direct Amplifiers will result in higher efficiency, low noise, optical receivers for fiber optic links with improved performance. This results in longer fiber optic links without repeaters and improved BER or shorter links.

  19. Measurement of X-ray beam emittance using crystal optics at an X-ray undulator beamline

    CERN Document Server

    Kohmura, Y; Awaji, M; Tanaka, T; Hara, T; Goto, S; Ishikawa, T

    2000-01-01

    We present a method of using crystal optics to measure the emittance of the X-ray source. Two perfect crystals set in (++) configuration work as a high-resolution collimator. The phase-space diagram (i.e. beam cross-section and angular distribution) could be determined without any assumptions on the light source. When the measurement is done at short wavelength radiation from undulator, the electron beam emittance is larger than the diffraction limit of the X-rays. Therefore, the electron beam emittance could be estimated. The measurement was done with the hard X-rays of 18.5 and 55 keV from an undulator beamline, BL 47XU, of SPring-8. The horizontal emittance of the X-ray beam was estimated to be about 7.6 nmrad, close to the designed electron beam emittance of the storage ring (7 nmrad). Some portions of the instrumental functions, such as the scattering by filters and windows along the beamline and the slight bent of the crystal planes of the monochromator, could not be precisely evaluated, but an upper li...

  20. Multi-mirror imaging optics for low-loss transport of divergent neutron beams and tailored wavelength spectra

    CERN Document Server

    Zimmer, Oliver

    2016-01-01

    A neutron optical transport system is proposed which comprises nested short elliptical mirrors located halfway between two common focal points M and M'. It images cold neutrons from a diverging beam or a source with finite size at M by single reflections onto a spot of similar size at M'. Direct view onto the neutron source is blocked by a central absorber with little impact on the transported solid angle. Geometric neutron losses due to source size can be kept small using modern supermirrors and distances M-M' of a few tens of metres. Very short flat mirrors can be used in practical implementations. Transport with a minimum of reflections remedies losses due to multiple reflections that are common in long elliptical neutron guides. Moreover, well-defined reflection angles lead to new possibilities for enhancing the spectral quality of primary beams, such as clear-cut discrimination of short neutron wavelengths or beam monochromation using bandpass supermirrors. Multi-mirror imaging systems may thus complemen...

  1. Optical material. Hikari zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Sakate, N.; Ueoka, T.; Iwakuni, H. (Mazda Motor Corp., Hiroshima (Japan))

    1990-06-01

    It is obvious that various electronic technologies will be positively adopted in automobiles in the future and optical materials are supporting the above trend greatly. In this article, with regard to the optical materials now adopted in automobiles or those expected to be adopted therein in the future, their principles as well as usage, etc. are outlined. Furthermore, the prospect of the materials in the future is stated. The optical materials selected in this article are as follows: as for optical communications; optical fibers, photo emission/reception components, connecting technologies, and photo switches, etc., concerning materials for display such as meters and instrument panels for automobiles, etc.; liquid crystal, electroluminescent elements, light emitting diodes, and polarization films, with regard to dimmering materials; electrochromism and photochromism, and concerning other optical materials; solar cells, and transparent electroconductive films. 13 refs., 4 figs., 6 tabs.

  2. Entanglement in Classical Optics

    CERN Document Server

    Ghose, Partha

    2013-01-01

    The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate between separable and nonseparable states in classical wave optics where no discreteness is involved. The influence of the Pancharatnam phase on a classical Bell-like state is deived. Finally, to what extent classical polarization optics can be used to simulate quantum information processing tasks is also discussed. This should be of great practical importance because coherence and entanglement are robust in classical optics but not in quantum systems.

  3. Advances in integrated optics

    CERN Document Server

    Chester, A; Bertolotti, M

    1994-01-01

    This volwne contains the Proceedings of a two-week summer conference titled "Advances in Integrated Optics" held June 1-9, 1993, in Erice, Sicily. This was the 18th annual course organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The term Integrated Optics signifies guided-wave optical circuits consisting of two or more devices on a single substrate. Since its inception in the late 1960's, Integrated Optics has evolved from a specialized research topic into a broad field of work, ranging from basic research through commercial applications. Today many devices are available on market while a big effort is devolved to research on integrated nonlinear optical devices. This conference was organized to provide a comprehensive survey of the frontiers of this technology, including fundamental concepts, nonlinear optical materials, devices both in the linear and nonlinear regimes, and selected applications. These Proceedings update a...

  4. Quantum optical waveform conversion

    CERN Document Server

    Kielpinski, D; Wiseman, HM

    2010-01-01

    Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

  5. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  6. Silicon Optical Modulator Simulation

    Directory of Open Access Journals (Sweden)

    Soon Thor LIM

    2015-04-01

    Full Text Available We developed a way of predicting and analyzing high speed optical modulator. Our research adopted a bottom-up approach to consider high-speed optical links using an eye diagram. Our method leverages on modular mapping of electrical characteristics to optical characteristics, while attaining the required accuracy necessary for device footprint approaching sub-micron scales where electrical data distribution varies drastically. We calculate for the bias dependent phase shift (2pi/mm and loss (dB/mm for the optical modulator based on the real and imaginary part of complex effective indices. Subsequently, combine effectively both the electrical and optical profiles to construct the optical eye diagram which is the essential gist of signal integrity of such devices.

  7. Silicon optical modulators

    Directory of Open Access Journals (Sweden)

    Graham T. Reed

    2005-01-01

    Full Text Available Ever since the earliest research on optical circuits, dating back to the 1970s, there have been visions of an optical superchip (see for example1,2, containing a variety of integrated optical components to carry out light generation, modulation, manipulation, detection, and amplification (Fig. 1. The early work was associated with ferroelectric materials such as lithium niobate (LiNbO3, and III-V semiconductors such as gallium arsenide (GaAs and indium phosphide (InP based systems. LiNbO3 was interesting almost solely because of the fact that it possesses a large electro-optic coefficient3, enabling optical modulation via the Pockels effect. Alternatively, the III-V compounds were interesting because of the relative ease of laser fabrication and the prospect of optical and electronic integration.

  8. Progress in optics

    CERN Document Server

    Wolf, Emil

    2008-01-01

    In the fourty-six years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. The volumes in this series which have appeared up to now contain more than 300 review articles by distinguished research workers, which have become permanent records for many important developments.- Metamaterials- Polarization Techniques- Linear Baisotropic Mediums- Ultrafast Optical Pulses- Quantum Imaging- Point-Spread Funcions- Discrete Wigner Functions

  9. Optics and Symbolic Computing

    Science.gov (United States)

    1988-03-31

    28, No. 10, 795 "- 979v 5. 6. A. Huang and S. Knauer, Starlite : A Wideband Digital Switch, Proc. IEEE Global Telecommunications Conference, Atlanta...4 31 : .-. I ?4 2A 8. A. Huang, The Relationship Between STARLITE , a Wideband Digital Switch and Optics, Proc. International Conference on...34 Applied Optics, voL 27, No. 2, pp. 202-203 (1988). [10] A. Huang. "The relationship between STARLITE . a wideband digital switch and optics". Proceedings of

  10. Optical Clocks in Space

    CERN Document Server

    Schiller, S; Nevsky, A; Koelemeij, J C J; Wicht, A; Gill, P; Klein, H A; Margolis, H S; Mileti, G; Sterr, U; Riehle, F; Peik, E; Tamm, C; Ertmer, W; Rasel, E; Klein, V; Salomon, C; Tino, G M; Lemonde, P; Holzwarth, R; Hänsch, T W; Tamm, Chr.

    2007-01-01

    The performance of optical clocks has strongly progressed in recent years, and accuracies and instabilities of 1 part in 10^18 are expected in the near future. The operation of optical clocks in space provides new scientific and technological opportunities. In particular, an earth-orbiting satellite containing an ensemble of optical clocks would allow a precision measurement of the gravitational redshift, navigation with improved precision, mapping of the earth's gravitational potential by relativistic geodesy, and comparisons between ground clocks.

  11. Optical Properties of Metals.

    Science.gov (United States)

    1983-07-15

    Elementary theory of the optical properties of solids in Advances in solid state physics, Vol. 15. Seitz, F.; Turnbull, D., ed. New York, NY: Academic Press... Properties of Solids (Academic Press, New York, 1972). 2. H.E. Bennett and J.M. Bennett, Optical Properties and Elec- tronic Structure of Metals and...34*. . . . . . . . . . . . | *.**,. ..ś . REFERENCES 1. There are many texts and review papers in this field. An excellent modern reference is F. Wooten, Optical

  12. Optical Fibre Bundle

    CERN Multimedia

    These are sample fibre optic cables which are used for networking. Optical fibers are widely used in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. This is useful for somewhere like CERN where magnets with their highly powerful magnetic fields could pose a problem.

  13. Polymer optical motherboard technology

    Science.gov (United States)

    Keil, N.; Yao, H.; Zawadzki, C.; Grote, N.; Schell, M.

    2008-02-01

    In this paper, different hybridly integrated optical devices including optical multiplexer/ demultiplexer and optical transceivers are described. The devices were made using polymer planar light wave circuit (P2LC) technology. Laser diodes, photodiodes, and thin-film filters have been integrated. Key issues involved in this technology, in particular the coupling between laser diodes and polymer waveguides, and between waveguides and photodiodes and also fibers are discussed.

  14. Optical Coherency Matrix Tomography

    Science.gov (United States)

    2015-10-19

    optics has been studied theoretically11, but has not been demonstrated experimentally heretofore. Even in the simplest case of two binary DoFs6 (e.g...coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two...dense coding, etc. CREOL, The College of Optics & Photonics, University of Central Florida, Orlando , Florida 32816, USA. Correspondence and requests

  15. Optical atomic magnetometer

    Science.gov (United States)

    Budker, Dmitry; Higbie, James; Corsini, Eric P

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  16. Concepts of classical optics

    CERN Document Server

    Strong, John

    2004-01-01

    An intermediate course in optics, this volume explores both experimental and theoretical concepts, offering practical knowledge of geometrical optics that will enhance students' comprehension of any relevant applied science. Its exposition of the concepts of classical optics is presented with a minimum of mathematical detail but presumes some knowledge of calculus, vectors, and complex numbers.Subjects include light as wave motion; superposition of wave motions; electromagnetic waves; interaction of light and matter; velocities and scattering of light; polarized light and dielectric boundarie

  17. Optical broadband monitoring of thin film growth

    Institute of Scientific and Technical Information of China (English)

    H.Ehlers; T.Groβ; M.Lappschies; D.Ristau

    2005-01-01

    This contribution is focused on applications of spectroscopic methods for the precise control of deposition processes. In this context, the present study gives a review on selected combinations of conventional and ion deposition techniques with different broadband online spectrophotometric systems. Besides two systems operating in the VIS- and NIR-spectral range in combination with ion processes, also a monochromator system developed for conventional deposition processes in the DUV/VUV-spectral range will be discussed. The considerations will be concluded by a comparison of the major advantages of the specific combinations of processes with online monitoring concepts and by a brief outlook concerning future challenges.

  18. Optical packet switching

    Science.gov (United States)

    Shekel, Eyal; Ruschin, Shlomo; Majer, Daniel; Levy, Jeff; Matmon, Guy; Koenigsberg, Lisa; Vecht, Jacob; Geron, Amir; Harlavan, Rotem; Shfaram, Harel; Arbel, Arnon; McDermott, Tom; Brewer, Tony

    2005-02-01

    We report here a scalable, multichassis, 6.3 terabit core router, which utilizes our proprietary optical switch. The router is commercially available and deployed in several customer sites. Our solution combines optical switching with electronic routing. An internal optical packet switching network interconnects the router"s electronic line cards, where routing and buffering functions take place electronically. The system architecture and performance will be described. The optical switch is based on Optical Phased Array (OPA) technology. It is a 64 x 64, fully non-blocking, optical crossbar switch, capable of switching in a fraction of a nanosecond. The basic principles of operation will be explained. Loss and crosstalk results will be presented, as well as the results of BER measurements of a 160 Gbps transmission through one channel. Basic principles of operation and measured results will be presented for the burst-mode-receivers, arbitration algorithm and synchronization. Finally, we will present some of our current research work on a next-generation optical switch. The technological issues we have solved in our internal optical packet network can have broad applicability to any global optical packet network.

  19. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  20. PILOT optical alignment

    Science.gov (United States)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  1. Optics for engineers

    CERN Document Server

    DiMarzio, Charles A

    2011-01-01

    This book is an excellent resource for teaching any student or scientist who needs to use optical systems. I particularly like the addition of MATLAB scripts and functions. Highly recommended.-Professor James C. Wyant, Dean of College of Optical Sciences, University of ArizonaHis book is clear, concise and highly readable. This is an excellent text.-Professor Changhuei Yang, California Institute of TechnologyAt last, a book on optics that is written with the practising engineer in mind. I have been teaching optics to engineers for many years and have often longed for a text aimed at my student

  2. Optical engineering of diamond

    CERN Document Server

    Rabeau, James R

    2013-01-01

    This is the first comprehensive book on the engineering of diamond optical devices. It will give readers an up-to-date account of the properties of optical quality synthetic diamond (single crystal, nanodiamond and polycrystalline) and reviews the large and growing field of engineering of diamond-based optical devices, with applications in quantum computation, nano-imaging, high performance lasers, and biomedicine. It aims to provide scientists, engineers and physicists with a valuable resource and reference book for the design and performance of diamond-based optical devices.

  3. Optics, light and lasers

    CERN Document Server

    Meschede, Dieter

    2008-01-01

    Starting from the concepts of classical optics, Optics, Light and Lasers introduces in detail the phenomena of linear and nonlinear light matter interaction, the properties of modern laser sources, and the concepts of quantum optics. Several examples taken from the scope of modern research are provided to emphasize the relevance of optics in current developments within science and technology. The text has been written for newcomers to the topic and benefits from the author's ability to explain difficult sequences and effects in a straightforward and easily comprehensible way. To this second, c

  4. Ocean Optics Instrumentation Systems

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation suites for a wide variety of measurements to characterize the ocean’s optical environment. These packages have been developed to...

  5. Highly Sensitive Optical Receivers

    CERN Document Server

    Schneider, Kerstin

    2006-01-01

    Highly Sensitive Optical Receivers primarily treats the circuit design of optical receivers with external photodiodes. Continuous-mode and burst-mode receivers are compared. The monograph first summarizes the basics of III/V photodetectors, transistor and noise models, bit-error rate, sensitivity and analog circuit design, thus enabling readers to understand the circuits described in the main part of the book. In order to cover the topic comprehensively, detailed descriptions of receivers for optical data communication in general and, in particular, optical burst-mode receivers in deep-sub-µm CMOS are presented. Numerous detailed and elaborate illustrations facilitate better understanding.

  6. Elementary wave optics

    CERN Document Server

    Webb, Robert H

    2005-01-01

    This undergraduate textbook presents thorough coverage of the standard topics of classical optics and optical instrument design; it also offers significant details regarding the concepts of modern optics. Its survey of the mathematical tools of optics grants students insights into the physical principles of quantum mechanics.Two principal concepts occur throughout: a treatment of scattering from real scatterers (leading to Huygens' principles, diffraction theory, the index of refraction, and related topics); and the difference between coherent and noncoherent wave phenomena. Examinations of su

  7. LSST Camera Optics Design

    Energy Technology Data Exchange (ETDEWEB)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  8. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  9. Innovative Solar Optical Materials

    Science.gov (United States)

    Lampert, Carl M.

    1984-02-01

    A variety of optical coatings are discussed in the context of solar energy utilization. Well-known coatings such as transparent conductors (heat mirrors), selective absorbers, and reflective films are surveyed briefly. Emphasis is placed on the materials' limitations and on use of lesser-known optical coatings and materials. Physical and optical properties are detailed for protective antireflection films, cold mirrors, fluorescent concentrator materials, radiative cooling surfaces, and optical switching films including electrochromic, thermochromic, photochromic, and liquid crystal types. For many of these materials, research has only recently been considered, so various design and durability issues need to be addressed.

  10. Deformable Nanolaminate Optics

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  11. Optical linear algebra

    Energy Technology Data Exchange (ETDEWEB)

    Casasent, D.; Ghosh, A.

    1983-01-01

    Many of the linear algebra operations and algorithms possible on optical matrix-vector processors are reviewed. Emphasis is given to the use of direct solutions and their realization on systolic optical processors. As an example, implicit and explicit solutions to partial differential equations are considered. The matrix-decomposition required is found to be the major operation recommended for optical realization. The pipelining and flow of data and operations are noted to be key issues in the realization of any algorithm on an optical systolic array processor. A realization of the direct solution by householder qr decomposition is provided as a specific case study. 19 references.

  12. Optical encryption interface

    Science.gov (United States)

    Jackson, Deborah J. (Inventor)

    1998-01-01

    An analog optical encryption system based on phase scrambling of two-dimensional optical images and holographic transformation for achieving large encryption keys and high encryption speed. An enciphering interface uses a spatial light modulator for converting a digital data stream into a two dimensional optical image. The optical image is further transformed into a hologram with a random phase distribution. The hologram is converted into digital form for transmission over a shared information channel. A respective deciphering interface at a receiver reverses the encrypting process by using a phase conjugate reconstruction of the phase scrambled hologram.

  13. Optical network democratization.

    Science.gov (United States)

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation.

  14. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI) The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from...

  15. Optical Design for Biomedical Imaging

    CERN Document Server

    Liang, Rongguang

    2010-01-01

    Designing an efficient imaging system for biomedical optics requires a solid understanding of the special requirements of the optical systems for biomedical imaging and the optical components used in the systems. However, a lack of reference books on optical design (imaging and illumination) for biomedical imaging has led to some inefficient systems. This book fills the gap between biomedical optics and optical design by addressing the fundamentals of biomedical optics and optical engineering, and biomedical imaging systems. The first half provides a brief introduction to biomedical optics and

  16. Optical Design and Active Optics Methods in Astronomy

    CERN Document Server

    Lemaitre, Gerard R

    2013-01-01

    Optical designs for astronomy involve implementation of active optics and adaptive optics from X-ray to the infrared. Developments and results of active optics methods for telescopes, spectrographs and coronagraph planet finders are presented. The high accuracy and remarkable smoothness of surfaces generated by active optics methods also allow elaborating new optical design types with high aspheric and/or non-axisymmetric surfaces. Depending on the goal and performance requested for a deformable optical surface analytical investigations are carried out with one of the various facets of elasticity theory: small deformation thin plate theory, large deformation thin plate theory, shallow spherical shell theory, weakly conical shell theory. The resulting thickness distribution and associated bending force boundaries can be refined further with finite element analysis. Keywords: active optics, optical design, elasticity theory, astronomical optics, diffractive optics, X-ray optics

  17. Performance of the optical communication adaptive optics testbed

    Science.gov (United States)

    Troy, Mitchell; Roberts, Jennifer; Guiwits, Steve; Azevedo, Steve; Bikkannavar, Siddarayappa; Brack, Gary; Garkanian, Vachik; Palmer, Dean; Platt, Benjamin; Truong, Tuan; Wilson, Keith; Wallace, Kent

    2005-01-01

    We describe the current performance of an adaptive optics testbed for optical communication. This adaptive optics system allows for simulation of night and day-time observing on a 1 meter telescope with a 97 actuator deformable mirror.

  18. Optical cryocooling of diamond

    Science.gov (United States)

    Kern, M.; Jeske, J.; Lau, D. W. M.; Greentree, A. D.; Jelezko, F.; Twamley, J.

    2017-06-01

    The cooling of solids by optical means only using anti-Stokes emission has a long history of research and achievements. Such cooling methods have many advantages ranging from no moving parts or fluids through to operation in vacuum and may have applications to cryosurgery. However, achieving large optical cryocooling powers has been difficult to manage except in certain rare-earth crystals but these are mostly toxic and not biocompatible. Through study of the emission and absorption cross sections we find that diamond, containing either nitrogen vacancy (NV) or silicon vacancy defects, shows potential for optical cryocooling and, in particular, NV doping shows promise for optical refrigeration. We study the optical cooling of doped diamond microcrystals ranging 10-250 μ m in diameter trapped either in vacuum or in water. For the vacuum case we find NV-doped microdiamond optical cooling below room temperature could exceed |Δ T |>10 K for irradiation powers of Pin<100 mW. We predict that such temperature changes should be easily observed via large alterations in the diffusion constant for optically cryocooled microdiamonds trapped in water in an optical tweezer or via spectroscopic signatures such as the zero-phonon line width or Raman line.

  19. Genetically determined optic neuropathies

    DEFF Research Database (Denmark)

    Milea, Dan; Amati-Bonneau, Patrizia; Reynier, Pascal

    2010-01-01

    The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions.......The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions....

  20. The Athena Optics

    DEFF Research Database (Denmark)

    Bavdaz, Marcos; Wille, Eric; Shortt, Brian;

    2015-01-01

    studies and in parallel a comprehensive series of technology preparation activities. [1-3].The core enabling technology for the high performance mirror is the Silicon Pore Optics (SPO), a modular X-ray optics technology, which utilises processes and equipment developed for the semiconductor industry [4...

  1. Nonlinear optical materials.

    Science.gov (United States)

    Eaton, D F

    1991-07-19

    The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.

  2. An optical vortex coronagraph

    Science.gov (United States)

    Palacios, David M.

    2005-08-01

    An optical vortex may be characterized as a dark core of destructive interference in a beam of spatially coherent light. This dark core may be used as a filter to attenuate a coherent beam of light so an incoherent background signal may be detected. Applications of such a filter include: eye and sensor protection, forward-scattered light measurement, and the detection of extra-solar planets. Optical vortices may be created by passing a beam of light through a vortex diffractive optical element, which is a plate of glass etched with a spiral pattern, such that the thickness of the glass increases in the azimuthal direction. An optical vortex coronagraph may be constructed by placing a vortex diffractive optical element near the image plane of a telescope. An optical vortex coronagraph opens a dark window in the glare of a distant star so nearby terrestrial sized planets and exo-zodiacal dust may be detected. An optical vortex coronagraph may hold several advantages over other techniques presently being developed for high contrast imaging, such as lower aberration sensitivity and multi-wavelength operation. In this manuscript, I will discuss the aberration sensitivity of an optical vortex coronagraph and the key advantages it may hold over other coronagraph architectures. I will also provide numerical simulations demonstrating high contrast imaging in the presence of low-order static aberrations.

  3. Nutritional optic neuropathy.

    Science.gov (United States)

    Sawicka-Pierko, Anna; Obuchowska, Iwona; Mariak, Zofia

    2014-01-01

    Nutritional optic neuropathy (aka deficiency optic neuropathy) is a dysfunction of the optic nerve resulting from improper dietary content of certain nutrients essential for normal functioning of the nerve fibers. Most commonly, it results from folic acid and vitamin B complex deficiency associated with malnutrition or poor dietary habits, incorrectly applied vegetarian diet, or chronic alcohol abuse. Obese patients after bariatric surgery constitute another risk group of optic neuropathy. Nutritional optic neuropathy is characterized by painless, gradually progressing, bilateral and symmetrical decrease in visual acuity, which can be accompanied by the color vision dysfunction. Progression of the neuropathy is associated with optic nerve atrophy, manifesting as complete disc pallor. Treatment of nutritional neuropathy includes dietary supplementation, aimed at compensating for the deficient nutrients. The treatment is mostly based on folic acid, vitamin B complex, and protein replacement, as well as eliminating risk factors of neuropathy. Early treatment commencement, prior to irreversible optic nerve atrophy, is a prerequisite of effective treatment. We would like to highlight this problem by presenting the case of a young woman in whom chronic use "water-based" diet resulted in anemia and bilateral nutritional optic neuropathy.

  4. Touch screens go optical

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, Michael Linde; Pedersen, Henrik Chresten

    2012-01-01

    A simple optical implementation of a touch screen is made possible by disrupting the total internal reflection in a 2D waveguide.......A simple optical implementation of a touch screen is made possible by disrupting the total internal reflection in a 2D waveguide....

  5. The Fiber Optic Connection.

    Science.gov (United States)

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  6. Optical Thermal Ratchet

    Science.gov (United States)

    Faucheux, L. P.; Bourdieu, L. S.; Kaplan, P. D.; Libchaber, A. J.

    1995-02-01

    We present an optical realization of a thermal ratchet. Directed motion of Brownian particles in water is induced by modulating in time a spatially periodic but asymmetric optical potential. The net drift shows a maximum as a function of the modulation period. The experimental results agree with a simple theoretical model based on diffusion.

  7. Fiber optic spanner

    Science.gov (United States)

    Black, Bryan; Mohanty, Samarendra

    2011-10-01

    Rotation is a fundamental function in nano/biotechnology and is being useful in a host of applications such as pumping of fluid flow in microfluidic channels for transport of micro/nano samples. Further, controlled rotation of single cell or microscopic object is useful for tomographic imaging. Though conventional microscope objective based laser spanners (based on transfer of spin or orbital angular momentum) have been used in the past, they are limited by the short working distance of the microscope objective. Here, we demonstrate development of a fiber optic spanner for rotation of microscopic objects using single-mode fiber optics. Fiber-optic trapping and simultaneous rotation of pin-wheel structure around axis perpendicular to fiber-optic axis was achieved using the fiber optic spanner. By adjusting the laser beam power, rotation speed of the trapped object and thus the microfluidic flow could be controlled. Since this method does not require special optical or structural properties of the sample to be rotated, three-dimensional rotation of a spherical cell could also be controlled. Further, using the fiber optic spanner, array of red blood cells could be assembled and actuated to generate vortex motion. Fiber optical trapping and spinning will enable physical and spectroscopic analysis of microscopic objects in solution and also find potential applications in lab- on-a-chip devices.

  8. Genetically determined optic neuropathies

    DEFF Research Database (Denmark)

    Milea, Dan; Amati-Bonneau, Patrizia; Reynier, Pascal

    2010-01-01

    The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions.......The present review focuses on recent advances in the knowledge of hereditary optic neuropathies resulting from retinal ganglion cell degeneration, mostly due to mitochondrial dysfunctions....

  9. Dominant optic atrophy

    DEFF Research Database (Denmark)

    Lenaers, Guy; Hamel, Christian; Delettre, Cécile

    2012-01-01

    DEFINITION OF THE DISEASE: Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC...

  10. POLARISATION PRESERVING OPTICAL FIBRE

    DEFF Research Database (Denmark)

    2000-01-01

    . This cladding structure provides polarisation preserving properties to the optical fibre. Optical fibres using this technology may have claddings with elements placed non-periodically as well as in a two-dimensional periodic lattice - such as cladding providing Photonic Band Gap (PBG) effects....

  11. Nanosecond Optical Shutters

    Science.gov (United States)

    King, N. S. P.; Yates, G. J.; Jaramillo, S. A.; Pagano, T. S.; Black, J. Paul

    1986-01-01

    A comparison of gated optical shuttering responses for commercially available micro-channel plate image intensifier tubes (MCPTs) with the performance of a new design for improved optical shuttering is presented. Measurements of opacity, photocathode quantum efficiency, and shutter pulse propagation characteristics are discussed.

  12. Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation

    Science.gov (United States)

    1994-02-28

    Organosilicon Polymeric Nonlinear Optical Materials for Optical C: F49620-93-C-0039 Switching and Modulation 6. AUTHOR(S) Mr. Sandip K. Sengupta, Dr...D FINAL REPORT for Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation Prepared for: USAF, AFMC (AFOSR) Air Force...34Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation," contract number F49620-93-C-0039. The work has been performed by Dr

  13. Brief Introduction to Chinese Optics and Applied Optics Abstracts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Chinese Optics and Applied Optics Abstracts,sponsored by the Documentation and Information Center of the Chinese Academy of Sciences,the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences,is one of the series of science and technology indexing periodicals published by the Chinese Academy of Sciences. The Chinese Optics and Applied Optics Abstracts started a quarterly publication in 1985,

  14. Brief Introduction to Chinese Optics and Applied Optics Abstracts

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Chinese Optics and Applied Optics Abstracts,sponsored by the Documentation andInformation Center of the Chinese Academy of Sciences,the Optical Information Networkof the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanicsand Physics of the Chinese Academy of Sciences,is one of the series of science andtechnology indexing periodicals published by the Chinese Academy of Sciences.The Chinese Optics and Applied Optics Abstracts started a quarterly publication in 1985,

  15. Brief Introduction to Chinese Optics and Applied Optics Abstracts

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Chinese Optics and Applied Optics Abstracts,sponsored by the Documentation andInformation Center of the Chinese Academy of Sciences,the Optical Information Networkof the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanicsand Physics of the Chinese Academy of Sciences,is one of the series of science andtechnology indexing periodicals published by the Chinese Academy ofSciences.The Chinese Optics and Applied Optics Abstracts started a quarterly publication in 1985,

  16. Computational optical biopsy

    Directory of Open Access Journals (Sweden)

    Jiang Ming

    2005-06-01

    Full Text Available Abstract Optical molecular imaging is based on fluorescence or bioluminescence, and hindered by photon scattering in the tissue, especially in patient studies. Here we propose a computational optical biopsy (COB approach to localize and quantify a light source deep inside a subject. In contrast to existing optical biopsy techniques, our scheme is to collect optical signals directly from a region of interest along one or multiple biopsy paths in a subject, and then compute features of an underlying light source distribution. In this paper, we formulate this inverse problem in the framework of diffusion approximation, demonstrate the solution uniqueness properties in two representative configurations, and obtain analytic solutions for reconstruction of both optical properties and source parameters.

  17. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H

    1997-01-01

    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  18. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S

    2015-01-01

    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  19. Optical atomic clocks

    CERN Document Server

    Poli, N; Gill, P; Tino, G M

    2014-01-01

    In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femto-second optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in $10^{18}$. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.

  20. Optically Induced Transparency

    CERN Document Server

    Zheng, Yuanlin; Shen, Zhenhua; Cao, Jianjun; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie

    2015-01-01

    Light-matter-light interactions serve as the backbone technology of all-optical information processing for both on-chip and long-haul communication purposes. The representative example of electromagnetically induced transparency has its unique ability of optically controlling transparency windows with relative low light in atomic systems, though its practical applications are limited due to rigid experimental requirements. Here we demonstrate a new form of optically induced transparency in a micro-cavity by introducing four-wave mixing gain in order to couple nonlinearly two separated resonances of the micro-cavity in ambient environment. A signature Fano-like resonance is also observed owing to the nonlinear interference of two coupled resonances. Moreover, we show that the unidirectional gain of four-wave mixing can lead to non-reciprocal transmission at the transparency windows. Optically induced transparency may offer a unique platform for a compact, integrated solution to all-optical processing and quant...

  1. ``OPTICAL Catalytic Nanomotors''

    Science.gov (United States)

    Rosary-Oyong, Se, Glory

    D. Kagan, et.al, 2009:'' a motion-based chemical sensing involving fuel-driven nanomotors is demonstrated. The new protocol relies on the use of an optical microscope for tracking charge in the speed of nanowire motors in the presence of target analyte''. Synthetic nanomotors are propelled by catalytic decomposition of .. they do not require external electric, magnetic or optical fields as energy..pubs.acs.org/cen/science/83/i08/8308sci1.html>. Accompanying Fig 2.6(a) of optical micrograph of a partial monolayer of silica microbeads [J.Gibbs, 2011 ] retrieves WF Paxton:''rods were characterized by transmission electron & dark-field optical microscopy..'' & LF Valadares:''dimer due to the limited resolution of optical microscopy, however the result..'. Acknowledged to HE. Mr. Prof. SEDIONO M.P. TJONDRONEGORO.

  2. Active optical clock

    Institute of Scientific and Technical Information of China (English)

    CHEN JingBiao

    2009-01-01

    This article presents the principles and techniques of active optical clock, a special laser combining the laser physics of one-atom laser, bad-cavity gas laser, super-cavity stabilized laser and optical atomic clock together. As a simple example, an active optical clock based on thermal strontium atomic beam shows a quantum-limited linewidth of 0.51 Hz, which is insensitive to laser cavity-length noise, and may surpass the recorded narrowest 6.7 Hz of Hg ion optical clock and 1.5 Hz of very recent optical lattice clock. The estimated 0.1 Hz one-second instability and 0.27 Hz uncertainty are limited only by the rela-tivistic Doppler effect, and can be improved by cold atoms.

  3. Elements of quantum optics

    CERN Document Server

    Meystre, Pierre

    2007-01-01

    Elements of Quantum Optics gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing. It also comprises discussions of cavity quantum electrodynamics and atom optics. The 4th edition includes a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light, and the input-output formalism needed to understand many problems in quantum optics. It also provides an expanded treatment of the minimum-coupling Hamiltonian and a simple derivation of the Gross-Pitaevskii equation, an important gateway to rese...

  4. Introduction to Optics

    CERN Document Server

    Chartier, Germain

    2005-01-01

    Since the discovery of the laser in 1960 and optical fibers in 1970, optics has undergone dramatic changes that accentuate its multi-disciplinary character. This text covers essential concepts and reports the key developments and progress in current knowledge in the field. Inspired by the style of Richard Feynman, the method of presentation emphasizes "telling" optics, rather than deducing it from fundamental laws, as well as tactfully using mathematical tools so as not to obscure the physical phenomena of interest. For its excellent teaching approach, the book received the Arnulf-Francon Award of the French Optical Society. The concepts are formulated in a way such that the necessary mathematical tools do not hinder comprehension of the phenomena. Global in vision, the book can also be used as a reference. In addition to the traditional aspects of optics, it includes the tools and methods currently used by researchers and engineers, as well as explanation and implications of the most recent developments.

  5. Python fiber optic seal

    Energy Technology Data Exchange (ETDEWEB)

    Ystesund, K.; Bartberger, J.; Brusseau, C.; Fleming, P.; Insch, K.; Tolk, K.

    1993-08-01

    Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

  6. What ignites optical jets?

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian Jester

    2002-12-23

    The properties of radio galaxies and quasars with and without optical or X-ray jets are compared. The majority of jets from which high-frequency emission has been detected so far (13 with optical emission, 11 with X-rays, 13 with both) are associated with the most powerful radio sources at any given redshift. It is found that optical/X-ray jet sources are more strongly beamed than the average population of extragalactic radio sources. This suggests that the detection or non-detection of optical emission from jets has so far been dominated by surface brightness selection effects, not by jet physics. It implies that optical jets are much more common than is currently appreciated.

  7. The Optics of Bruising

    Science.gov (United States)

    Randeberg, Lise Lyngsnes; Skallerud, Bjørn; Langlois, Neil E. I.; Haugen, Olav Anton; Svaasand, Lars Othar

    Forensic medicine is a field of medicine where technology plays an increasingly important role in securing and evaluating evidence in, for example, child abuse cases and cases of domestic violence. Methods from chemistry and biological sciences have found a wide application within forensic medicine. Optical technologies like microscopy are also widely used. Despite this, in vivo or post mortem optical diagnostics by spectroscopy have traditionally not had an important role in clinical or forensic examinations. Forensic medical optics as a field might include all kinds of optical analysis for use within forensic science. This includes everything from microscopic techniques to methods for examination of evidence from a crime scene. This chapter will, however, focus on the use of optical diagnostics for examining skin, with a focus on identification, characterization and age determination of minor traumatic injuries like skin bruises.

  8. Optically Anomalous Crystals

    CERN Document Server

    Shtukenberg, Alexander; Kahr, Bart

    2007-01-01

    Optical anomalies in crystals are puzzles that collectively constituted the greatest unsolved problems in crystallography in the 19th Century. The most common anomaly is a discrepancy between a crystal’s symmetry as determined by its shape or by X-ray analysis, and that determined by monitoring the polarization state of traversing light. These discrepancies were perceived as a great impediment to the development of the sciences of crystals on the basis of Curie’s Symmetry Principle, the grand organizing idea in the physical sciences to emerge in the latter half of the 19th Century. Optically Anomalous Crystals begins with an historical introduction covering the contributions of Brewster, Biot, Mallard, Brauns, Tamman, and many other distinguished crystallographers. From this follows a tutorial in crystal optics. Further chapters discuss the two main mechanisms of optical dissymmetry: 1. the piezo-optic effect, and 2. the kinetic ordering of atoms. The text then tackles complex, inhomogeneous crystals, and...

  9. High speed optical networks

    Science.gov (United States)

    Frankel, Michael Y.; Livas, Jeff

    2005-02-01

    This overview will discuss core network technology and cost trade-offs inherent in choosing between "analog" architectures with high optical transparency, and ones heavily dependent on frequent "digital" signal regeneration. The exact balance will be related to the specific technology choices in each area outlined above, as well as the network needs such as node geographic spread, physical connectivity patterns, and demand loading. Over the course of a decade, optical networks have evolved from simple single-channel SONET regenerator-based links to multi-span multi-channel optically amplified ultra-long haul systems, fueled by high demand for bandwidth at reduced cost. In general, the cost of a well-designed high capacity system is dominated by the number of optical to electrical (OE) and electrical to optical (EO) conversions required. As the reach and channel capacity of the transport systems continued to increase, it became necessary to improve the granularity of the demand connections by introducing (optical add/drop multiplexers) OADMs. Thus, if a node requires only small demand connectivity, most of the optical channels are expressed through without regeneration (OEO). The network costs are correspondingly reduced, partially balanced by the increased cost of the OADM nodes. Lately, the industry has been aggressively pursuing a natural extension of this philosophy towards all-optical "analog" core networks, with each demand touching electrical digital circuitry only at the in/egress nodes. This is expected to produce a substantial elimination of OEO costs, increase in network capacity, and a notionally simpler operation and service turn-up. At the same time, such optical "analog" network requires a large amount of complicated hardware and software for monitoring and manipulating high bit rate optical signals. New and more complex modulation formats that provide resiliency to both optical noise and nonlinear propagation effects are important for extended

  10. Integrated-optics-based optical coherence tomography

    NARCIS (Netherlands)

    Nguyen, D.V.

    2013-01-01

    Optical coherence tomography (OCT) is a high resolution, imaging technique that has developed over the last 20 years from a complicated laboratory setup into a ready-to-use commercially available device. Instead of using electronic time gating as being used by ultrasound (US) imaging, in OCT, the op

  11. On chip shapeable optical tweezers

    National Research Council Canada - National Science Library

    Renaut, C; Cluzel, B; Dellinger, J; Lalouat, L; Picard, E; Peyrade, D; Hadji, E; de Fornel, F

    2013-01-01

    Particles manipulation with optical forces is known as optical tweezing. While tweezing in free space with laser beams was established in the 1980s, integrating the optical tweezers on a chip is a challenging task...

  12. Optical design and testing: introduction.

    Science.gov (United States)

    Fang, Yi Chin; Liang, Chao-Wen; Koshel, John; Sasian, Jose; Yatagai, Toyohiko; Wang, Yongtian; Zavisian, James M

    2015-10-01

    Optical design and testing have numerous applications in industrial, military, consumer, and bio-medical settings. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, displays, and solar energy systems to novel imaging modalities from deep UV to infrared spectral imaging, a systems perspective to imaging, as well as optical measurement. In addition, new concepts and trends for optics and further optical systems will be especially highlighted in this special issue.

  13. Naval Prototype Optical Interferometer (NPOI)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used for astrometry and astronomical imaging, the Naval Prototype Optical Interferometer (NPOI) is a distributed aperture optical telescope. It is operated...

  14. Nonlinear effects in optical fibers

    CERN Document Server

    Ferreira, Mario F

    2011-01-01

    Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber

  15. Projection optics box

    Science.gov (United States)

    Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.

    2000-01-01

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  16. Trajectories in parallel optics.

    Science.gov (United States)

    Klapp, Iftach; Sochen, Nir; Mendlovic, David

    2011-10-01

    In our previous work we showed the ability to improve the optical system's matrix condition by optical design, thereby improving its robustness to noise. It was shown that by using singular value decomposition, a target point-spread function (PSF) matrix can be defined for an auxiliary optical system, which works parallel to the original system to achieve such an improvement. In this paper, after briefly introducing the all optics implementation of the auxiliary system, we show a method to decompose the target PSF matrix. This is done through a series of shifted responses of auxiliary optics (named trajectories), where a complicated hardware filter is replaced by postprocessing. This process manipulates the pixel confined PSF response of simple auxiliary optics, which in turn creates an auxiliary system with the required PSF matrix. This method is simulated on two space variant systems and reduces their system condition number from 18,598 to 197 and from 87,640 to 5.75, respectively. We perform a study of the latter result and show significant improvement in image restoration performance, in comparison to a system without auxiliary optics and to other previously suggested hybrid solutions. Image restoration results show that in a range of low signal-to-noise ratio values, the trajectories method gives a significant advantage over alternative approaches. A third space invariant study case is explored only briefly, and we present a significant improvement in the matrix condition number from 1.9160e+013 to 34,526.

  17. Handbook of optical design

    CERN Document Server

    Malacara-Hernández, Daniel

    2013-01-01

    Handbook of Optical Design, Third Edition covers the fundamental principles of geometric optics and their application to lens design in one volume. It incorporates classic aspects of lens design along with important modern methods, tools, and instruments, including contemporary astronomical telescopes, Gaussian beams, and computer lens design. Written by respected researchers, the book has been extensively classroom-tested and developed in their lens design courses. This well-illustrated handbook clearly and concisely explains the intricacies of optical system design and evaluation. It also di

  18. Handbook of optical microcavities

    CERN Document Server

    Choi, Anthony H W

    2014-01-01

    An optical cavity confines light within its structure and constitutes an integral part of a laser device. Unlike traditional gas lasers, semiconductor lasers are invariably much smaller in dimensions, making optical confinement more critical than ever. In this book, modern methods that control and manipulate light at the micrometer and nanometer scales by using a variety of cavity geometries and demonstrate optical resonance from ultra-violet (UV) to infra-red (IR) bands across multiple material platforms are explored. The book has a comprehensive collection of chapters that cover a wide range

  19. MEMS optical sensor

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising...... waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light....

  20. Quantum optics for engineers

    CERN Document Server

    Duarte, FJ

    2013-01-01

    Quantum Optics for Engineers provides a transparent and methodical introduction to quantum optics via the Dirac's bra-ket notation with an emphasis on practical applications and basic aspects of quantum mechanics such as Heisenberg's uncertainty principle and Schrodinger's equation. Self-contained and using mainly first-year calculus and algebra tools, the book:Illustrates the interferometric quantum origin of fundamental optical principles such as diffraction, refraction, and reflectionProvides a transparent introduction, via Dirac's notation, to the probability amplitude of quantum entanglem

  1. Optical imaging and metrology

    CERN Document Server

    Osten, Wolfgang

    2012-01-01

    A comprehensive review of the state of the art and advances in the field, while also outlining the future potential and development trends of optical imaging and optical metrology, an area of fast growth with numerous applications in nanotechnology and nanophysics. Written by the world's leading experts in the field, it fills the gap in the current literature by bridging the fields of optical imaging and metrology, and is the only up-to-date resource in terms of fundamental knowledge, basic concepts, methodologies, applications, and development trends.

  2. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  3. Optical materials and applications

    CERN Document Server

    Wakaki, Moriaki; Kudo, Keiei

    2012-01-01

    The definition of optical material has expanded in recent years, largely because of IT advances that have led to rapid growth in optoelectronics applications. Helping to explain this evolution, Optical Materials and Applications presents contributions from leading experts who explore the basic concepts of optical materials and the many typical applications in which they are used. An invaluable reference for readers ranging from professionals to technical managers to graduate engineering students, this book covers everything from traditional principles to more cutting-edge topics. It also detai

  4. Fundamentals of attosecond optics

    CERN Document Server

    Chang, Zenghu

    2011-01-01

    Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the next generation of ultrafast lasers. Fundamentals of Attosecond Optics provides the first focused introduction to the field. The author presents the underlying concepts and techniques required to enter the field, as well as recent research advances th

  5. TOPS optical correlation program

    Science.gov (United States)

    Lindell, Scott D.

    1993-09-01

    Martin Marietta is conducting a TOPS optical correlation program in which several algorithms and four optical correlators involving two spatial light modulator technologies will be developed and tested. The program will culminate in 1994 with an automatic target recognition flight demonstration using a UH-1 helicopter flying a Fiber Optic Guide Missile (FOG-M) mission profile. The flight demonstration will be conducted by US Army Missile Command (MICOM) and Martin Marietta and will involve detecting, locating and tracking a M60A2 tank positioned among an array of five vehicle types. Current status of the TOPS program will be given.

  6. Tuned optical cavity magnetometer

    Science.gov (United States)

    Okandan, Murat; Schwindt, Peter

    2010-11-02

    An atomic magnetometer is disclosed which utilizes an optical cavity formed from a grating and a mirror, with a vapor cell containing an alkali metal vapor located inside the optical cavity. Lasers are used to magnetically polarize the alkali metal vapor and to probe the vapor and generate a diffracted laser beam which can be used to sense a magnetic field. Electrostatic actuators can be used in the magnetometer for positioning of the mirror, or for modulation thereof. Another optical cavity can also be formed from the mirror and a second grating for sensing, adjusting, or stabilizing the position of the mirror.

  7. The ATHENA optics development

    Science.gov (United States)

    Bavdaz, Marcos; Wille, Eric; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Barriere, Nicolas; Yanson, Alexei; Vacanti, Giuseppe; Haneveld, Jeroen; van Baren, Coen; Zuknik, Karl-Heinz; Christensen, Finn; Della Monica Ferreira, Desiree; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Spiga, Daniele; Valsecchi, Giuseppe; Vernani, Dervis

    2016-07-01

    ATHENA (Advanced Telescope for High ENergy Astrophysics) is being studied by the European Space Agency (ESA) as the second large science mission, with a launch slot in 2028. System studies and technology preparation activities are on-going. The optics of the telescope is based on the modular Silicon Pore Optics (SPO), a novel X-ray optics technology significantly benefiting from spin-in from the semiconductor industry. Several technology development activities are being implemented by ESA in collaboration with European industry and institutions. The related programmatic background, technology development approach and the associated implementation planning are presented.

  8. Theoretical Optics An Introduction

    CERN Document Server

    Römer, Hartmann

    2004-01-01

    Starting from basic electrodynamics, this volume provides a solid, yet concise introduction to theoretical optics, containing topics such as nonlinear optics, light-matter interaction, and modern topics in quantum optics, including entanglement, cryptography, and quantum computation. The author, with many years of experience in teaching and research, goes way beyond the scope of traditional lectures, enabling readers to keep up with the current state of knowledge. Both content and presentation make it essential reading for graduate and phD students as well as a valuable reference for researche

  9. Optical controlled keyboard system

    Science.gov (United States)

    Budzyński, Łukasz; Długosz, Dariusz; Niewiarowski, Bartosz; Zajkowski, Maciej

    2011-06-01

    Control systems of our computers are common devices, based on the manipulation of keys or a moving ball. Completely healthy people have no problems with the operation of such devices. Human disability makes everyday activities become a challenge and create trouble. When a man can not move his hands, the work becomes difficult or often impossible. Controlled optical keyboard is a modern device that allows to bypass the limitations of disability limbs. The use of wireless optical transmission allows to control computer using a laser beam, which cooperates with the photodetectors. The article presents the construction and operation of non-contact optical keyboard for people with disabilities.

  10. Microstructured polymer optical fibres

    CERN Document Server

    Large, Maryanne; Barton, Geoff; van Eijkelenborg, Martijn A

    2008-01-01

    Microstructured Polymer Optical Fibres describes the optical properties of microstructured fibres, how they are made and modelled, and outlines some potential applications. These applications include areas where polymer fibres are already used, such as high-data rate transmission for Fibre-to-the Home or within cars, as well as completely new areas such as the photonic bandgap transmission of ""difficult"" wavelengths. Emphasising a conceptual understanding of the underlying physics, Microstructured Polymer Optical Fibres is clearly written, and includes numerous illustrations. It provides an

  11. The ANTARES Optical Module

    CERN Document Server

    Amram, P; Anvar, S; Ardellier-Desages, F E; Aslanides, Elie; Aubert, Jean-Jacques; Azoulay, R; Bailey, D; Basa, S; Battaglieri, M; Bellotti, R; Benhammou, Ya; Bernard, F; Berthier, R; Bertin, V; Billault, M; Blaes, R; Bland, R W; Blondeau, F; De Botton, N R; Boulesteix, J; Brooks, B; Brunner, J; Cafagna, F; Calzas, A; Capone, A; Caponetto, L; Cârloganu, C; Carmona, E; Carr, J; Carton, P H; Cartwright, S L; Cassol, F; Cecchini, S; Ciacio, F; Circella, M; Compere, C; Cooper, S; Coyle, P; Croquette, J; Cuneo, S; Danilov, M; Van Dantzig, R; De Marzo, C; De Vita, R; Deck, P; Destelle, J J; Dispau, G; Drougou, J F; Druillole, F; Engelen, J; Feinstein, F; Festy, D; Fopma, J; Gallone, J M; Giacomelli, G; Goret, P; Gosset, L G; Gournay, J F; Heijboer, A; Hernández-Rey, J J; Herrouin, G; Hubbard, John R; Jacquet, M; De Jong, M; Karolak, M; Kooijman, P M; Kouchner, A; Kudryavtsev, V A; Lachartre, D; Lafoux, H; Lamare, P; Languillat, J C; Laubier, L; Laugier, J P; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Lemoine, L; Lo Nigro, L; Lo Presti, D; Loucatos, Sotirios S; Louis, F; Lyashuk, V I; Magnier, P; Marcelin, M; Margiotta, A; Massol, A; Masullo, R; Mazéas, F; Mazeau, B; Mazure, A; McMillan, J E; Michel, J L; Migneco, E; Millot, C; Mols, P; Montanet, François; Montaruli, T; Morel, J P; Moscoso, L; Navas, S; Nezri, E; Nooren, G J L; Oberski, J; Olivetto, C; Oppelt-pohl, A; Palanque-Delabrouille, Nathalie; Payre, P; Perrin, P; Petruccetti, M; Petta, P; Piattelli, P; Poinsignon, J; Popa, V; Potheau, R; Queinec, Y; Racca, C; Raia, G; Randazzo, N; Rethore, F; Riccobene, G; Ricol, J S; Ripani, M; Roca-Blay, V; Rolin, J F; Rostovtsev, A A; Russo, G V; Sacquin, Yu; Salusti, E; Schuller, J P; Schuster, W; Soirat, J P; Suvorova, O; Spooner, N J C; Spurio, M; Stolarczyk, T; Stubert, D; Taiuti, M; Tao, Charling; Tayalati, Y; Thompson, L F; Tilav, S; Triay, R; Valente, V; Varlamov, I; Vaudaine, G; Vernin, P; De Witt-Huberts, P K A; De Wolf, E; Zakharov, V; Zavatarelli, S; De Dios-Zornoza-Gomez, Juan; Zúñiga, J

    2002-01-01

    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km-squared and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R & D studies and is reviewed here in detail.

  12. The ANTARES optical module

    Energy Technology Data Exchange (ETDEWEB)

    Amram, P.; Anghinolfi, M.; Anvar, S.; Ardellier-Desages, F.E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Bellotti, R.; Benhammou, Y.; Bernard, F.; Berthier, R.; Bertin, V.; Billault, M.; Blaes, R.; Bland, R.W.; Blondeau, F.; Botton, N. de; Boulesteix, J.; Brooks, C.B.; Brunner, J.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Carloganu, C.; Carmona, E.; Carr, J.; Carton, P.-H.; Cartwright, S.L.; Cassol, F.; Cecchini, S.; Ciacio, F.; Circella, M.; Compere, C.; Cooper, S.; Coyle, P.; Croquette, J.; Cuneo, S.; Danilov, M.; Dantzig, R. van; De Marzo, C.; DeVita, R.; Deck, P.; Destelle, J.-J.; Dispau, G.; Drougou, J.F.; Druillole, F.; Engelen, J.; Feinstein, F.; Festy, D.; Fopma, J.; Gallone, J.-M.; Giacomelli, G.; Goret, P.; Gosset, L.; Gournay, J.-F.; Heijboer, A.; Hernandez-Rey, J.J.; Herrouin, G.; Hubbard, J.R.; Jaquet, M.; Jong, M. de; Karolak, M.; Kooijman, P.; Kouchner, A.; Kudryavtsev, V.A.; Lachartre, D.; Lafoux, H. E-mail: lafoux@cea.fr; Lamare, P.; Languillat, J.-C.; Laubier, L.; Laugier, J.-P.; Le Guen, Y.; Le Provost, H.; Le Van Suu, A.; Lemoine, L.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Massol, A.; Masullo, R.; Mazeas, F.; Mazeau, B.; Mazure, A.; McMillan, J.E.; Michel, J.L.; Migneco, E.; Millot, C.; Mols, P.; Montanet, F.; Montaruli, T.; Morel, J.P.; Moscoso, L.; Musumeci, M.; Navas, S.; Nezri, E.; Nooren, G.J.; Oberski, J.; Olivetto, C.; Oppelt-Pohl, A.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Perrin, P.; Petruccetti, M.; Petta, C.; Piattelli, P.; Poinsignon, J.; Potheau, R.; Queinec, Y.; Racca, C.; Raia, G.; Randazzo, N.; Rethore, F.; Riccobene, G.; Ricol, J.-S.; Ripani, M.; Roca-Blay, V.; Rolin, J.F.; Rostovstev, A.; Russo, G.V.; Sacquin, Y.; Salusti, E.; Schuller, J.-P.; Schuster, W.; Soirat, J.-P.; Souvorova, O.; Spooner, N.J.C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Tao, C.; Tayalati, Y.; Thompson, L.F.

    2002-05-21

    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km{sup 2} and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R and D studies and is reviewed here in detail.

  13. Wireless optical telecommunications

    CERN Document Server

    Bouchet, Olivier

    2013-01-01

    Wireless optical communication refers to communication based on the unguided propagation of optical waves. The past 30 years have seen significant improvements in this technique - a wireless communication solution for the current millennium - that offers an alternative to radio systems; a technique that could gain attractiveness due to recent concerns regarding the potential effects of radiofrequency waves on human health.The aim of this book is to look at the free space optics that are already used for the exchange of current information; its many benefits, such as incorporating chan

  14. Imminent Cardiac Risk Assessment via Optical Intravascular Biochemical Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, D.; Wetzel, L; Wetzel, M; Lodder, R

    2009-01-01

    still the first line of defense. However, with the fidelity of 64-slice CT imaging, this technique has recently become an option when the patient presents with symptoms of reduced arterial flow. Single photon emission computerized tomography (SPECT) treadmill exercise testing is a standard non-invasive test for decreased perfusion of heart muscle, but is time consuming and not suited for emergent evaluation. Once the invasive clinical option of catherization is chosen, this provides the opportunity for intravascular ultrasound (IVUS) imaging. As the probe is pulled through the artery, the diameter at different parts is measurable, and monochrome contrast in the constricted area reveals the presence of tissue with a different ultrasonic response. Also, via an optical catheter with a fiber-optic conductor, the possibly of spectroscopic analysis of arterial walls is now a reality. In this case, the optical transducer is coupled to a near-infrared spectrometer. Revealing the arterial chemical health means that plaque vulnerability and imminent risk could be assessed by the physician. The classical emergency use of catherization involves a contrast agent and dynamic X-ray imaging to locate the constriction, determine its severity, and possibly perform angioplasty, and stent placement.

  15. The optical imaging of idiopathic paracentral acute middle maculopathy in a Chinese young man and review of the literature.

    Science.gov (United States)

    Chen, Yanyan; Hu, Yuedong

    2017-09-01

    We report a case of idiopathic paracentral acute middle maculopathy with typical optical imaging and clinical features. A 26-year-old Chinese policeman presented with a 20-day history of paracentral scotoma in the left eye after early wake-up and long-time working in front of computer the day before. He experienced sudden-onset strong flash in his left eye. Paracentral scotoma appeared in his left eye after 6hours of rest. The general history was negative. His best corrected visual acuity was 20/20 OU. Anterior segment, dilated fundus examination, papillary evaluation and intraocular pressure were normal. Fuorescein angiography and blue light fundus autofluorescence showed no significant abnormality. In multicolor photography, the lesion was visible on the monochromic infrared/blue reflectance images and not clear in green reflectance. The 10 degree visual field examination revealed superior paracentral relative scotoma. Multifocal electroretinogram revealed reduced response in central area in the left eye. Spectral-domain optical coherence tomography showed that hyperreflective plaque was present at the IPL/INL/OPL level with hyperreflective point at the GCL. The plaque became thinner 3 months later and diminished 6 months later with obviously atrophied INL. In the 3 months follow-up, transverse scan revealed that there was a well-demarcated hypo-refractive lesion in IPL and hyper-refractive lesion in INL. OCTA revealed the deceased flow signal intensity of focal deep capillaries. En face OCT imaging of the left eye revealed a relative well-defined, hypo-refractive lesion and non-flow area localized at the level of the deep capillary plexus. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Optical Microangiography Based on Optical Coherence Tomography

    Science.gov (United States)

    Reif, Roberto; Wang, Ruikang K.

    Proper homeostasis regulation of in vivo biological systems requires microvascular blood perfusion, which is the process of delivering blood into the tissue's capillary beds. Abnormal tissue vascularization has been associated with various diseases such as cancer, diabetes, neurological disorders, wounds, and inflammation. Understanding the changes in the vascular network or microangiography will have an important role in determining the causes and developing potential treatments for these diseases. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (~10 µm) and without requiring the use of contrast agents. In this chapter we review several techniques for using OCT to determine blood flow velocities and the vessel morphology (optical microangiography). Different techniques will be discussed with a brief explanation of their limitations. Also, methods for quantifying these images are presented, as well as the depiction of several applications.

  17. Methods for globally treating silica optics to reduce optical damage

    Science.gov (United States)

    Miller, Philip Edward; Suratwala, Tayyab Ishaq; Bude, Jeffrey Devin; Shen, Nan; Steele, William Augustus; Laurence, Ted Alfred; Feit, Michael Dennis; Wong, Lana Louie

    2012-11-20

    A method for preventing damage caused by high intensity light sources to optical components includes annealing the optical component for a predetermined period. Another method includes etching the optical component in an etchant including fluoride and bi-fluoride ions. The method also includes ultrasonically agitating the etching solution during the process followed by rinsing of the optical component in a rinse bath.

  18. Vertically Integrated Thermo-Optic Waveguide Switch Using Optical Polymers

    Institute of Scientific and Technical Information of China (English)

    Ki-Hong; Kim; Sang-Yung; Shin; Doo-Sun; Choi

    2003-01-01

    We propose and fabricate a vertically integrated thermo-optic waveguide switch. It controls the optical path between two vertically stacked waveguides using the thermo-optic effect of optical polymer. The measured crosstalk is less than -10 dB.

  19. Vertically Integrated Thermo-Optic Waveguide Switch Using Optical Polymers

    Institute of Scientific and Technical Information of China (English)

    Ki-Hong Kim; Sang-Yung Shin; Doo-Sun Choi

    2003-01-01

    We propose and fabricate a vertically integrated thermo-optic waveguide switch. It controls the optical path between two vertically stacked waveguides using the thermo-optic effect of optical polymer. The measured crosstalk is less than-10 dB.

  20. Brief Introduction to Chinese Optics and Applied Optics Abstracts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Chinese Optics and Applied Optics Abstracts, sponsored by the Documentation and Information Center of the Chinese Academy of Sciences, the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences, is one of the series of science and technology in-

  1. Brief Introduction to Chinese Optics and Applied Optics Abstracts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Chinese Optics and Applied Optics Abstracts,sponsored by the Documentation and Information Center of the Chinese Academy of Sciences,the Optical Information Network of the Chinese Academy of Sciences and the Changchun Institute of Optics,Fine Mechanics and Physics of the Chinese Academy of Sciences

  2. Problems in optics

    CERN Document Server

    Rousseau, Madeleine; Ter Haar, D

    1973-01-01

    This collection of problems and accompanying solutions provide the reader with a full introduction to physical optics. The subject coverage is fairly traditional, with chapters on interference and diffraction, and there is a general emphasis on spectroscopy.

  3. Stereoscopic optical viewing system

    Science.gov (United States)

    Tallman, Clifford S.

    1987-01-01

    An improved optical system which provides the operator a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  4. Optics for SIERRA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and demonstrate a software architecture, initially based on GPU’s but expandable to multiple CPU platforms, to provide optical raytraces with more than...

  5. Fiberless Optical Gyroscope Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a radical new approach for to the design and fabrication of a fiber-less Interferometric Optical Gyroscope (IOG) that enables the production of a very...

  6. Fiberless Optical Gyroscope Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a radical new approach for to the design and fabrication of a fiber-less Interferometric Optical Gyroscope (IOG) that enables the production of a...

  7. Fiber Optics: No Illusion.

    Science.gov (United States)

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  8. Optical quantum computing.

    Science.gov (United States)

    O'Brien, Jeremy L

    2007-12-07

    In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically reduced this worrying resource overhead, making an all-optical architecture a serious contender for the ultimate goal of a large-scale quantum computer. Key challenges will be the realization of high-efficiency sources of indistinguishable single photons, low-loss, scalable optical circuits, high-efficiency single-photon detectors, and low-loss interfacing of these components.

  9. Optical fiber communications

    CERN Document Server

    Keiser, Gerd

    2008-01-01

    The fourth edition of this popular text and reference book presents the fundamental principles for understanding and applying optical fiber technology to sophisticated modern telecommunication systems. Optical-fiber-based telecommunication networks have become a major information-transmission-system, with high capacity links encircling the globe in both terrestrial and undersea installations. Numerous passive and active optical devices within these links perform complex transmission and networking functions in the optical domain, such as signal amplification, restoration, routing, and switching. Along with the need to understand the functions of these devices comes the necessity to measure both component and network performance, and to model and stimulate the complex behavior of reliable high-capacity networks.

  10. [Leber's hereditary optic neuropathy].

    Science.gov (United States)

    Leo-Kottler, B; Wissinger, B

    2011-12-01

    Leber's hereditary optic neuropathy (LHON) is a rare disease primarily affecting the retinal ganglion cells. In most cases patients with LHON develop permanent visual loss with a large central scotoma in the visual field of both eyes. The optic disc becomes partially or completely pale. At the onset of the disease many patients are considered to suffer from an optic neuritis and are treated under the diagnostic and therapeutic regimen of optic neuritis. LHON is mostly only considered when high dose cortisone therapy fails to be effective or the second eye is affected. Thereafter, molecular genetic analysis will prove LHON in these cases. Detailed anamnesis including pedigree analysis in combination with observance of the peripapillary microangiopathic alterations at the fundus will help to speed up the diagnosis of LHON, but even after exact clinical and molecular genetic diagnosis of LHON some aspects of the disease still remain a mystery today.

  11. Optical fiber synaptic sensor

    Science.gov (United States)

    Pisarchik, A. N.; Jaimes-Reátegui, R.; Sevilla-Escoboza, R.; García-Lopez, J. H.; Kazantsev, V. B.

    2011-06-01

    Understanding neuron connections is a great challenge, which is needed to solve many important problems in neurobiology and neuroengineering for recreation of brain functions and efficient biorobotics. In particular, a design of an optical synapse capable to communicate with neuron spike sequences would be crucial to improve the functionality of neuromimmetic networks. In this work we propose an optical synaptic sensor based on an erbium-doped fiber laser driven by a FitzHung-Nagumo electronic neuron, to connect with another electronic neuron. Two possible optical synaptic configurations are analyzed for optoelectronic coupling between neurons: laser cavity loss modulation and pump laser modulation. The control parameters of the proposed optical synapse provide additional degrees of flexibility to the neuron connection traditionally controlled only by coupling strengths in artificial networks.

  12. Improved Optical Keyboard

    Science.gov (United States)

    Jamieson, R. S.

    1985-01-01

    Optical keyboard surfaces used in typewriters, computer terminals, and telephone inexpensively fabricated using stack of printed-circuit cards set in laminate. Internal laminations carry all illuminating and sensing light conductors to keys.

  13. Atypical Optic Neuritis.

    Science.gov (United States)

    Gaier, Eric D; Boudreault, Katherine; Rizzo, Joseph F; Falardeau, Julie; Cestari, Dean M

    2015-12-01

    Classic demyelinative optic neuritis is associated with multiple sclerosis and typically carries a good prognosis for visual recovery. This disorder is well characterized with respect to its presentation and clinical features by baseline data obtained through the optic neuritis treatment trial and numerous other studies. Atypical optic neuritis entails clinical manifestations that deviate from this classic pattern of features. Clinical signs and symptoms that deviate from the typical presentation should prompt consideration of less common etiologies. Atypical features to consider include lack of pain, simultaneous or near-simultaneous onset, lack of response to or relapse upon tapering from corticosteroids, or optic nerve head or peripapillary hemorrhages. The most important alternative etiologies to consider and the steps towards their respective diagnostic evaluations are suggested for these atypical features.

  14. Introduction to Optical Tweezers.

    Science.gov (United States)

    Koch, Matthias D; Shaevitz, Joshua W

    2017-01-01

    Thirty years after their invention by Arthur Ashkin and colleagues at Bell Labs in 1986 [1], optical tweezers (or traps) have become a versatile tool to address numerous biological problems. Put simply, an optical trap is a highly focused laser beam that is capable of holding and applying forces to micron-sized dielectric objects. However, their development over the last few decades has converted these tools from boutique instruments into highly versatile instruments of molecular biophysics. This introductory chapter intends to give a brief overview of the field, highlight some important scientific achievements, and demonstrate why optical traps have become a powerful tool in the biological sciences. We introduce a typical optical setup, describe the basic theoretical concepts of how trapping forces arise, and present the quantitative position and force measurement techniques that are most widely used today.

  15. Optical wear monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kidane, Getnet S; Desilva, Upul P.; He, Chengli; Ulerich, Nancy H.

    2016-07-26

    A gas turbine includes first and second parts having outer surfaces located adjacent to each other to create an interface where wear occurs. A wear probe is provided for monitoring wear of the outer surface of the first part, and includes an optical guide having first and second ends, wherein the first end is configured to be located flush with the outer surface of the first part. A fiber bundle includes first and second ends, the first end being located proximate to the second end of the optical guide. The fiber bundle includes a transmit fiber bundle comprising a first plurality of optical fibers coupled to a light source, and a receive fiber bundle coupled to a light detector and configured to detect reflected light. A processor is configured to determine a length of the optical guide based on the detected reflected light.

  16. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  17. Optic nerve oxygen tension

    DEFF Research Database (Denmark)

    la Cour, M; Kiilgaard, Jens Folke; Eysteinsson, T

    2000-01-01

    To investigate the influence of acute changes in intraocular pressure on the oxygen tension in the vicinity of the optic nerve head under control conditions and after intravenous administration of 500 mg of the carbonic anhydrase inhibitor dorzolamide....

  18. Roadmap on optical security

    Science.gov (United States)

    Javidi, Bahram; Carnicer, Artur; Yamaguchi, Masahiro; Nomura, Takanori; Pérez-Cabré, Elisabet; Millán, María S.; Nishchal, Naveen K.; Torroba, Roberto; Fredy Barrera, John; He, Wenqi; Peng, Xiang; Stern, Adrian; Rivenson, Yair; Alfalou, A.; Brosseau, C.; Guo, Changliang; Sheridan, John T.; Situ, Guohai; Naruse, Makoto; Matsumoto, Tsutomu; Juvells, Ignasi; Tajahuerce, Enrique; Lancis, Jesús; Chen, Wen; Chen, Xudong; Pinkse, Pepijn W. H.; Mosk, Allard P.; Markman, Adam

    2016-08-01

    Information security and authentication are important challenges facing society. Recent attacks by hackers on the databases of large commercial and financial companies have demonstrated that more research and development of advanced approaches are necessary to deny unauthorized access to critical data. Free space optical technology has been investigated by many researchers in information security, encryption, and authentication. The main motivation for using optics and photonics for information security is that optical waveforms possess many complex degrees of freedom such as amplitude, phase, polarization, large bandwidth, nonlinear transformations, quantum properties of photons, and multiplexing that can be combined in many ways to make information encryption more secure and more difficult to attack. This roadmap article presents an overview of the potential, recent advances, and challenges of optical security and encryption using free space optics. The roadmap on optical security is comprised of six categories that together include 16 short sections written by authors who have made relevant contributions in this field. The first category of this roadmap describes novel encryption approaches, including secure optical sensing which summarizes double random phase encryption applications and flaws [Yamaguchi], the digital holographic encryption in free space optical technique which describes encryption using multidimensional digital holography [Nomura], simultaneous encryption of multiple signals [Pérez-Cabré], asymmetric methods based on information truncation [Nishchal], and dynamic encryption of video sequences [Torroba]. Asymmetric and one-way cryptosystems are analyzed by Peng. The second category is on compression for encryption. In their respective contributions, Alfalou and Stern propose similar goals involving compressed data and compressive sensing encryption. The very important area of cryptanalysis is the topic of the third category with two sections

  19. Computational toolbox for optical tweezers in geometrical optics

    CERN Document Server

    Callegari, Agnese; Gököz, A Burak; Volpe, Giovanni

    2014-01-01

    Optical tweezers have found widespread application in many fields, from physics to biology. Here, we explain in detail how optical forces and torques can be described within the geometrical optics approximation and we show that this approximation provides reliable results in agreement with experiments for particles whose characteristic dimensions are larger than the wavelength of the trapping light. Furthermore, we provide an object-oriented software package implemented in MatLab for the calculation of optical forces and torques in the geometrical optics regime: \\texttt{OTGO - Optical Tweezers in Geometrical Optics}. We provide all source codes for \\texttt{OTGO} as well as the documentation and code examples -- e.g., standard optical tweezers, optical tweezers with elongated particle, windmill effect, Kramers transitions between two optical traps -- necessary to enable users to effectively employ it in their research and teaching.

  20. Brief Introduction to Chinese Optics and Applied Optics Abstracts

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Chinese Optics and Applied Optics Abstracts , sponsored by the Documentation andInformation Center of the Chinese Academy of Sciences, the Optical Information Networkof the Chinese Academy of Sciences and the Changchun Institute of Optics, Fine Mechanicsand Physics of the Chinese Academy of Sciences, is one of the series of science andtechnology indexing periodicals published by the Chinese Academy of Sciences.The Chinese Optics and Applied Optics Abstracts started a quarterly publication in 1985,with the name of Chinese Science and Technology Document Catalogues: Optics andApplied Optics. It changed into a bimonthly publication with the name of Chinese Opticsand Applied Optics Abstracts in 1987. In combination with the Chinese Optics

  1. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  2. Fiber optic detector

    Energy Technology Data Exchange (ETDEWEB)

    Partin, J.K.; Ward, T.E.; Grey, A.E.

    1990-12-31

    This invention is comprised of a portable fiber optic detector that senses the presence of specific target chemicals by exchanging the target chemical for a fluorescently-tagged antigen that is bound to an antibody which is in turn attached to an optical fiber. Replacing the fluorescently-tagged antigen reduces the fluorescence so that a photon sensing detector records the reduced light level and activates an appropriate alarm or indicator.

  3. Hybrid Optical Inference Machines

    Science.gov (United States)

    1991-09-27

    imaging. A PC controlled data acquistion system with digital to analog-output was setup with serial- 66 - I controlled linear translation and rotation...rules in Eq. (4) of specific conclusions which are logica ,, .ferred form-the knowledge base. from the facts and rules in response to the queries. In...error rates, digital S 0ucries Conclusions optical signals (binary intensity levels) are assumed for all input and output signals in the optical

  4. Nonlinear optical thin films

    Science.gov (United States)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  5. Cognitive Dynamic Optical Networks

    DEFF Research Database (Denmark)

    de Miguel, Ignacio; Duran, Ramon J.; Lorenzo, Ruben M.

    2013-01-01

    Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project.......Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project....

  6. Velocity selective optical pumping

    OpenAIRE

    Aminoff, C. G.; Pinard, M.

    1982-01-01

    We consider optical pumping with a quasi monochromatic tunable light beam, in the low intensity limit where a rate equation regime is obtained The velocity selective optical pumping (V.S.O.P.) introduces a correlation between atomic velocity and internal variables in the ground (or metastable) state. The aim of this article is to evaluate these atomic observables (orientation, alignment, population) as a function of velocity, using a phenomenological description of the relaxation effect of co...

  7. Optically fixed photorefractive correlator

    Institute of Scientific and Technical Information of China (English)

    刘友文; 刘立人; 周常河; 徐良瑛

    2002-01-01

    An optically fixed photorefractive correlator is presented, where two-centre non-volatile holographic recording isemployed to write and fix the matched filter in doubly doped LiNbO3 crystals. This correlator shows good correlationcharacteristics and insensitivity to the writing beam during readout. It can be used in cases requiring stability and notrequiring modification for a long period, and it is refreshed optically when new information needs to be registered.

  8. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  9. Toroidal optical activity

    CERN Document Server

    Raybould, T A; Papasimakis, N; Kuprov, I; Youngs, I; Chen, W T; Tsai, D P; Zheludev, N I

    2015-01-01

    Optical activity is ubiquitous across natural and artificial media and is conventionally understood in terms of scattering from electric and magnetic moments. Here we demonstrate experimentally and confirm numerically a type of optical activity that cannot be attributed to electric and magnetic multipoles. We show that our observations can only be accounted for by the inclusion of the toroidal dipole moment, the first term of the recently established peculiar family of toroidal multipoles.

  10. Regeneration of Optic Nerve

    Directory of Open Access Journals (Sweden)

    Kwok-Fai So

    2011-05-01

    Full Text Available The optic nerve is part of the central nervous system (CNS and has a structure similar to other CNS tracts. The axons that form the optic nerve originate in the ganglion cell layer of the retina and extend through the optic tract. As a tissue, the optic nerve has the same organization as the white matter of the brain in regard to its glia. There are three types of glial cells: Oligodendrocytes, astrocytes, and microglia. Little structural and functional regeneration of the CNS takes place spontaneously following injury in adult mammals. In contrast, the ability of the mammalian peripheral nervous system (PNS to regenerate axons after injury is well documented. A number of factors are involved in the lack of CNS regeneration, including: (i the response of neuronal cell bodies against the damage; (ii myelin-mediated inhibition by oligodendrocytes; (iii glial scarring, by astrocytes; (iv macrophage infiltration; and (v insufficient trophic factor support. The fundamental difference in the regenerative capacity between CNS and PNS neuronal cell bodies has been the subject of intensive research. In the CNS the target normally conveys a retrograde trophic signal to the cell body. CNS neurons die because of trophic deprivation. Damage to the optic nerve disconnects the neuronal cell body from its target-derived trophic peptides, leading to the death of retinal ganglion cells. Furthermore, the axontomized neurons become less responsive to the peptide trophic signals they do receive. On the other hand, adult PNS neurons are intrinsically responsive to neurotrophic factors and do not lose trophic responsiveness after axotomy. In this talk different strategies to promote optic-nerve regeneration in adult mammals are reviewed. Much work is still needed to resolve many issues. This is a very important area of neuroregeneration and neuroprotection, as currently there is no cure after traumatic optic nerve injury or retinal disease such as glaucoma, which

  11. Optical Diagnostics in Medicine

    Science.gov (United States)

    Iftimia, Nicusor

    2003-03-01

    Light has a unique potential for non-invasive tissue diagnosis. The relatively short wavelength of light allows imaging of tissue at the resolution of histopathology. While strong multiple scattering of light in tissue makes attainment of this resolution difficult for thick tissues, most pathology emanates from epithelial surfaces. Therefore, high-resolution diagnosis of many important diseases may be achieved by transmitting light to the surface of interest. The recent fiber-optic implementation of technologies that reject multiple scattering, such as confocal microscopy and optical low coherence interferometry, have brought us one step closer to realizing non-invasive imaging of architectural and cellular features of tissue. Optical coherence tomography (OCT) can produce high-resolution cross-sectional images of biological structures. Clinical OCT studies conducted in the gastrointestinal tract and cardiovascular system have shown that OCT is capable of providing images of the architectural (> 20 µm) microanatomy of a variety of epithelial tissues, including the layered structure of squamous epithelium and arterial vessels. Fine Needle Aspiration- Low Coherence Interferometry (FNA-LCI) is another optical diagnostics technique, which is a suitable solution to increase the effectiveness of the FNA procedures. LCI is capable of measuring depth resolved (axial, z) tissue structure, birefringence, flow (Doppler shift), and spectra at a resolution of several microns. Since LCI systems are fiber-optic based, LCI probes may easily fit within the bore of a fine gauge needle, allowing diagnostic information to be obtained directly from the FNA biopsy site. Fiber optic spectrally encoded confocal microscopy (SECM) is a new confocal microscopy method, which eliminates the need for rapid beam scanning within the optical probe. This advance enables confocal microscopy to be performed through small diameter probes and will allow assessment of internal human tissues in vivo at

  12. Electrical and Optical Characterization System for IR Photodetectors

    Science.gov (United States)

    2015-10-12

    useful information for the understanding of the device physics . This system can be used for both transient open circuit voltage measurements and... properties of the CdTe materials, which is used for the AFOSR multi-color detector project. No Measurement type Cooling system Laser type Time...mirror flip mirror 90 degree rotator mirror 6 W CCD (Synapse) InGaAs (Symphony II) Monochromator (iHR 550) Figure 6. Visible-to-NIR PL system

  13. Pappus in optical space.

    Science.gov (United States)

    Koenderink, Jan J; van Doorn, Andrea J; Kappers, Astrid M L; Todd, James T

    2002-04-01

    Optical space differs from physical space. The structure of optical space has generally been assumed to be metrical. In contradistinction, we do not assume any metric, but only incidence relations (i.e., we assume that optical points and lines exist and that two points define a unique line, and two lines a unique point). (The incidence relations have generally been assumed implicitly by earlier authors.) The condition that makes such an incidence structure into a projective space is the Pappus condition. The Pappus condition describes a projective relation between three collinear triples of points, whose validity can--in principle--be verified empirically. The Pappus condition is a necessary condition for optical space to be a homogeneous space (Lobatchevski hyperbolic or Riemann elliptic space) as assumed by, for example, the well-known Luneburg theory. We test the Pappus condition in a full-cue situation (open field, broad daylight, distances of up to 20 m, visual fields of up to 160 degrees diameter). We found that although optical space is definitely not veridical, even under full-cue conditions, violations of the Pappus condition are the exception. Apparently optical space is not totally different from a homogeneous space, although it is in no way close to Euclidean.

  14. Physics of optical tweezers.

    Science.gov (United States)

    Nieminen, Timo A; Knöner, Gregor; Heckenberg, Norman R; Rubinsztein-Dunlop, Halina

    2007-01-01

    We outline the basic principles of optical tweezers as well as the fundamental theory underlying optical tweezers. The optical forces responsible for trapping result from the transfer of momentum from the trapping beam to the particle and are explained in terms of the momenta of incoming and reflected or refracted rays. We also consider the angular momentum flux of the beam in order to understand and explain optical torques. In order to provide a qualitative picture of the trapping, we treat the particle as a weak positive lens and the forces on the lens are shown. However, this representation does not provide quantitative results for the force. We, therefore, present results of applying exact electromagnetic theory to optical trapping. First, we consider a tightly focused laser beam. We give results for trapping of spherical particles and examine the limits of trappability in terms of type and size of the particles. We also study the effect of a particle on the beam. This exact solution reproduces the same qualitative effect as when treating the particle as a lens where changes in the convergence or divergence and in the direction of the trapping beam result in restoring forces acting on the particle. Finally, we review the fundamental theory of optical tweezers.

  15. Optical computer motherboards

    Science.gov (United States)

    Jannson, Tomasz P.; Xu, Guoda; Bartha, John M.; Gruntman, Michael A.

    1997-09-01

    In this paper, we investigate the application of precision plastic optics into a communication/computer sub-system, such as a hybrid computer motherboard. We believe that using optical waveguides for next-generation computer motherboards can provide a high performance alternative for present multi-layer printed circuit motherboards. In response to this demand, we suggest our novel concept of a hybrid motherboard based on an internal-fiber-coupling (IFC) wavelength-division-multiplexing (WDM) optical backplane. The IFC/WDM backplane provides dedicated Tx/Rx connections, and applies low-cost, high-performance components, including CD LDs, GRIN plastic fibers, molding housing, and nonimaging optics connectors. Preliminary motherboard parameters are: speed 100 MHz/100 m, or 1 GHz/10 m; fiber loss approximately 0.01 dB/m; almost zero fan-out/fan-in optical power loss, and eight standard wavelength channels. The proposed hybrid computer motherboard, based on innovative optical backplane technology, should solve low-speed, low-parallelism bottlenecks in present electric computer motherboards.

  16. Magneto-optical multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bader, S.D.

    1992-02-01

    Magneto-optical multilayers are of interest to the optical data storage community as a possible second-generation medium of the future. The important Co/Pt-superlattice system is introduced in this respect, and an extensive reference listing is provided to previous research. Magneto-optical modeling studies of Co/Pt are presented, and it is concluded that the interfacial Pt is magnetized and is magneto-optically active at the short wavelengths of interest ({approximately}4 eV) for applications. Magneto-optics in the ultrathin limit are discussed, and an additivity law is presented and verified experimentally utilizing data for epitaxial Fe/Ag(111) superlattices. Finally, the surface magnetic anisotropy that provides the vertical easy axes of magnetization in candidate superlattice systems is discussed and illustrated experimentally using ultrathin epitaxial films of Fe grown on a variety of substrates. It is concluded that magneto-optic multilayers will provide many stimulating basic and applied challenges in the years ahead.

  17. Improved optically driven microrotors

    Science.gov (United States)

    Asavei, Theodor; Loke, Vincent L. Y.; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina

    2008-08-01

    Two-photon polymerization of optically curing resins is a powerful method to fabricate micron sized objects which can be used as tools to measure properties at small scales. These microdevices can be driven by means of externally applied focused laser beams (optical tweezers) through angular momentum exchange, giving rise to a net torque. The advantage of the optical drive is that no contact is required, therefore making the microdevices suited to non-invasive biological applications. The fabrication method is versatile and allows building objects of any 3D shape. We discuss the design and modelling of various optically driven rotors. In particular, we consider fabrication of microspheres with an internal shape birefringence in order to obtain rotation in an optical trap. The reason for fabricating this type of object is that they are well-suited for studies of mechanical properties of single biomolecules such as the torsional stiffness of DNA or torque generated by molecular motors. The microspheres fabricated are able to transduce torques of 2000 pNnm with optical powers of 500 mW and could be rotated with frequencies up to 40 Hz in circularly polarized light.

  18. Fiber Optic Microphone

    Science.gov (United States)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  19. Incoherent broadband optical pulse generation using an optical gate

    Institute of Scientific and Technical Information of China (English)

    Biao Chen; Qiong Jiang

    2008-01-01

    In two-dimensional (2D) time-spreading/wavelength-hopping optical code division multiple access (OCDMA) systems, employing less coherent broadband optical pulse sources allows lower electrical operating rate and better system performance. An optical gate based scheme for generating weakly coherent(approximately incoherent) broadband optical pulses was proposed and experimentally demonstrated. Inthis scheme, the terahertz optical asymmetric demultiplexer, together with a coherent narrowband controlpulse source, turns an incoherent broadband continuous-wave (CW) light source into the required pulse source.

  20. Optical design and testing: introduction.

    Science.gov (United States)

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  1. Roadmap on optical sensors

    Science.gov (United States)

    Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  2. Advances on the Brazilian toroidal grating monochromator (TGM) beamline

    Energy Technology Data Exchange (ETDEWEB)

    Cavasso Filho, R.L. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil); Homem, M.G.P. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil); Landers, R. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, Box 6165, Campinas, SP 13083-970 (Brazil); Naves de Brito, A. [Laboratorio Nacional de Luz Sincrotron, Box 6192, Campinas, SP 13084-971 (Brazil)]. E-mail: arnaldo@lnls.br

    2005-06-15

    We report on an important advance for the vacuum ultraviolet and soft X-ray TGM beamline at Laboratorio Nacional de Luz Sincrotron (LNLS). This beamline provides photons in the energy range 12-330 eV using three gratings. It is well known that TGMs deliver relatively high flux at these energies but harmonic contamination can be a serious problem. Of special interest for the users is the range between 12 and 21 eV covered by one of the gratings for studies of outer and inner valence ionization processes in gases as well as solids. Here, we report a solution to the harmonic contamination problems based on a noble gas phase filter combined with thin metal foil barriers.

  3. Color Restoration of Monochrome Image Formatted by Y800

    National Research Council Canada - National Science Library

    Jun Luo; Rui Su; Ying Chen

    2013-01-01

    ...) directly, we design a Bayer mode color filter array start with specific pixels to satisfy the imaging condition and then we use bilinear interpolation algorithm to restore the color of original...

  4. Applying a Trochoidal Electron Monochromator in Dissociative Electron Attachment Scattering

    Science.gov (United States)

    Arreola, Esmeralda

    2016-03-01

    Since the pioneering work of Boudiaffa et al., it has been understood that electrons, even with energies near or below the ionization threshold, are capable of initiating strand-breaks in human DNA. This discovery raised important questions for cancer treatments, since sub-ionizing electrons are known to be the most copiously produced secondary product of radiation therapy. But even to date these factors are largely excluded from dosimetry calculations. This lack of inclusion is, at least in part, certainly due to the dearth of fundamental data describing low-energy electron interactions with nucleotide molecules that form the basis of DNA. Understanding of how such slow electrons are able to damage DNA remains incomplete, but the strongly peaked nature of Boudiaffa et al.'s data gives strong hints at resonantly driven collision processes. DNA damage is therefore most likely driven by ``dissociative electron attachment'' (DEA). DEA is a rather complicated process to model due to the coupling of electronic and nuclear degrees of freedom in the molecule. At the California State University Fullerton, we are currently commissioning a new spectrometer to study dissociation channels, reaction rates and orientation effects in DEA collisions between slow electrons and nucleotide molecules. At the meeting we will present design parameters and commissioning data for this new apparatus.

  5. Consumer response to monochrome Guideline Daily Amount nutrition labels

    DEFF Research Database (Denmark)

    Boztuğ, Yasemin; Juhl, Hans Jørn; Ossama Elshiewy, Ossama x

    2015-01-01

    Front-of-pack (FOP) nutrition labelling has received extensive political attention in recent years. Most studies assessing the influence of nutrition labelling focus on consumer attention to labels, while few concentrate on its effects on actual purchase behaviour. In this study, we present results...... in terms of market share but does not affect product choice behaviour. Instead, price and habit exhibit a greater impact on purchase behaviour and product choice than the GDA label introduction....

  6. New optical microbarometer

    Science.gov (United States)

    Olivier, Nathalie; Olivier, Serge; Hue, Anthony; Le Mallet, Serge

    2017-04-01

    Usually, transducers implemented in infrasound sensor (microbarometer) are mainly composed of two associated elements. The first one converts the external pressure variation into a physical linear displacement. The second one converts this motion into an electrical signal. According to this configuration, MB3, MB2000 and MB2005 microbarometers are using an aneroid capsule for the first one, and an electromagnetic transducer (Magnet-coil or LVDT) for the second one. CEA DAM (designer of MB series) and PROLANN / SEISMO WAVE (manufacturer and seller of MB3) have associated their expertise to design a new optical microbarometer: We aim at thinking that changing the electromagnetic transducer by an interferometer is an interesting solution in order to increase the dynamic and the resolution of the sensor. Currently, we are exploring this way in order to propose a future optical microbarometer which will enlarge the panel of infrasound sensors. First, we will present the new transducer principles, taking into account the aneroid capsule and the interferometer using integrated optics technology. More specifically, we will explain the operation of this optical technology, and discuss on its advantages and drawbacks. Secondly, we will present the optical microbarometer in which the interferometer is positioned inside the aneroid capsule under vacuum. The adjustment of the interferometer position is a challenge we solved. The optical measurement is naturally protected from environmental disturbances. Four prototypes were manufactured in order to compare their performances, and also an optical digitizer specifically designed to record the four channels interferometer. Finally, we will present the results we obtained with this sensor (sensitivity, self-noise, effect of environmental disturbance, etc) compared to those of a MB3 microbarometer, and discuss about the advantages of this new sensor.

  7. Optical communication components

    Science.gov (United States)

    Eldada, Louay

    2004-03-01

    We review and contrast key technologies developed to address the optical components market for communication applications. We first review the component requirements from a network perspective. We then look at different material systems, compare their properties, and describe the functions achieved to date in each of them. The material systems reviewed include silica fiber, silica on silicon, silicon on insulator, silicon oxynitride, sol-gels, polymers, thin-film dielectrics, lithium niobate, indium phosphide, gallium arsenide, magneto-optic materials, and birefringent crystals. We then describe the most commonly used classes of optical device technology and present their pros and cons as well as the functions achieved to date in each of them. The technologies reviewed include passive, actuation, and active technologies. The passive technologies described include fused fibers, dispersion-compensating fiber, beam steering, Bragg gratings, diffraction gratings, holographic elements, thin-film filters, photonic crystals, microrings, and birefringent elements. The actuation technologies include thermo-optics, electro-optics, acousto-optics, magneto-optics, electroabsorption, liquid crystals, total internal reflection technologies, and mechanical actuation. The active technologies include heterostructures, quantum wells, rare-earth doping, dye doping, Raman amplification, and semiconductor amplification. We also investigate the use of different material systems and device technologies to achieve building-block functions, including lasers, amplifiers, detectors, modulators, polarization controllers, couplers, filters, switches, attenuators, isolators, circulators, wavelength converters, chromatic dispersion compensators, and polarization mode dispersion compensators. Some of the technologies presented are well established in the industry and in some cases have reached the commodity stage, others have recently become ready for commercial introduction, while some others

  8. Adaptive optics optical coherence tomography in glaucoma.

    Science.gov (United States)

    Dong, Zachary M; Wollstein, Gadi; Wang, Bo; Schuman, Joel S

    2017-03-01

    Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm(3). It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optical closure of parameterized bio-optical relationships

    Science.gov (United States)

    He, Shuangyan; Fischer, Jürgen; Schaale, Michael; He, Ming-xia

    2014-03-01

    An optical closure study on bio-optical relationships was carried out using radiative transfer model matrix operator method developed by Freie Universität Berlin. As a case study, the optical closure of bio-optical relationships empirically parameterized with in situ data for the East China Sea was examined. Remote-sensing reflectance ( R rs) was computed from the inherent optical properties predicted by these biooptical relationships and compared with published in situ data. It was found that the simulated R rs was overestimated for turbid water. To achieve optical closure, bio-optical relationships for absorption and scattering coefficients for suspended particulate matter were adjusted. Furthermore, the results show that the Fournier and Forand phase functions obtained from the adjusted relationships perform better than the Petzold phase function. Therefore, before bio-optical relationships are used for a local sea area, the optical closure should be examined.

  10. Optical Performance Monitoring and Signal Optimization in Optical Networks

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2006-01-01

    -optical-electrical regeneration points decreases. This thesis evaluates the impact of signal degrading effects that are becoming of increasing concern in all-optical high-speed networks due to all-optical switching and higher bit-rates. Especially group-velocity-dispersion (GVD) and a number of nonlinear effects will require......The thesis studies performance monitoring for the next generation optical networks. The focus is on all-optical networks with bit-rates of 10 Gb/s or above. Next generation all-optical networks offer large challenges as the optical transmitted distance increases and the occurrence of electrical...... enhanced attention to avoid signal degradations. The requirements for optical performance monitoring features are discussed, and the thesis evaluates the advantages and necessity of increasing the level of performance monitoring parameters in the physical layer. In particular, methods for optical...

  11. Fibre-optic nonlinear optical microscopy and endoscopy.

    Science.gov (United States)

    Fu, L; Gu, M

    2007-06-01

    Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.

  12. Optics Supply Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Gaylord, J

    2009-04-30

    The purpose of this study is to specify the design for an initial optics supply planning system for NIF, and to present quality assurance and test plans for the construction of the system as specified. The National Ignition Facility (NIF) is a large laser facility that is just starting operations. Thousands of specialized optics are required to operate the laser, and must be exchanged over time based on the laser shot plan and predictions of damage. Careful planning and tracking of optic exchanges is necessary because of the tight inventory of spare optics, and the long lead times for optics procurements and production changes. Automated inventory forecasting and production planning tools are required to replace existing manual processes. The optics groups members who are expected to use the supply planning system are the stakeholders for this project, and are divided into three groups. Each of these groups participated in a requirements specification that was used to develop this design. (1) Optics Management--These are the top level stakeholdersk, and the final decision makers. This group is the interface to shot operations, is ultimately responsible for optics supply, and decides which exchanges will be made. (2) Work Center Managers--This group manages the on site optics processing work centers. They schedule the daily work center operations, and are responsible for developing long term processing, equipment, and staffing plans. (3) Component Engineers--This group manages the vendor contracts for the manufacture of new optics and the off site rework of existing optics. They are responsible for sourcing vendors, negotiating contracts, and managing vendor processes. The scope of this analysis is to describe the structure and design details of a system that will meet all requirements that were described by stakeholders and documented in the analysis model for this project. The design specifies the architecture, components, interfaces, and data stores of the system

  13. Quantum optical rotatory dispersion

    Science.gov (United States)

    Tischler, Nora; Krenn, Mario; Fickler, Robert; Vidal, Xavier; Zeilinger, Anton; Molina-Terriza, Gabriel

    2016-01-01

    The phenomenon of molecular optical activity manifests itself as the rotation of the plane of linear polarization when light passes through chiral media. Measurements of optical activity and its wavelength dependence, that is, optical rotatory dispersion, can reveal information about intricate properties of molecules, such as the three-dimensional arrangement of atoms comprising a molecule. Given a limited probe power, quantum metrology offers the possibility of outperforming classical measurements. This has particular appeal when samples may be damaged by high power, which is a potential concern for chiroptical studies. We present the first experiment in which multiwavelength polarization-entangled photon pairs are used to measure the optical activity and optical rotatory dispersion exhibited by a solution of chiral molecules. Our work paves the way for quantum-enhanced measurements of chirality, with potential applications in chemistry, biology, materials science, and the pharmaceutical industry. The scheme that we use for probing wavelength dependence not only allows one to surpass the information extracted per photon in a classical measurement but also can be used for more general differential measurements. PMID:27713928

  14. Roadmap on optical metamaterials

    Science.gov (United States)

    Urbas, Augustine M.; Jacob, Zubin; Dal Negro, Luca; Engheta, Nader; Boardman, A. D.; Egan, P.; Khanikaev, Alexander B.; Menon, Vinod; Ferrera, Marcello; Kinsey, Nathaniel; DeVault, Clayton; Kim, Jongbum; Shalaev, Vladimir; Boltasseva, Alexandra; Valentine, Jason; Pfeiffer, Carl; Grbic, Anthony; Narimanov, Evgenii; Zhu, Linxiao; Fan, Shanhui; Alù, Andrea; Poutrina, Ekaterina; Litchinitser, Natalia M.; Noginov, Mikhail A.; MacDonald, Kevin F.; Plum, Eric; Liu, Xiaoying; Nealey, Paul F.; Kagan, Cherie R.; Murray, Christopher B.; Pawlak, Dorota A.; Smolyaninov, Igor I.; Smolyaninova, Vera N.; Chanda, Debashis

    2016-09-01

    Optical metamaterials have redefined how we understand light in notable ways: from strong response to optical magnetic fields, negative refraction, fast and slow light propagation in zero index and trapping structures, to flat, thin and perfect lenses. Many rules of thumb regarding optics, such as μ = 1, now have an exception, and basic formulas, such as the Fresnel equations, have been expanded. The field of metamaterials has developed strongly over the past two decades. Leveraging structured materials systems to generate tailored response to a stimulus, it has grown to encompass research in optics, electromagnetics, acoustics and, increasingly, novel hybrid material responses. This roadmap is an effort to present emerging fronts in areas of optical metamaterials that could contribute and apply to other research communities. By anchoring each contribution in current work and prospectively discussing future potential and directions, the authors are translating the work of the field in selected areas to a wider community and offering an incentive for outside researchers to engage our community where solid links do not already exist.

  15. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  16. Roadmap of optical communications

    Science.gov (United States)

    Agrell, Erik; Karlsson, Magnus; Chraplyvy, A. R.; Richardson, David J.; Krummrich, Peter M.; Winzer, Peter; Roberts, Kim; Fischer, Johannes Karl; Savory, Seb J.; Eggleton, Benjamin J.; Secondini, Marco; Kschischang, Frank R.; Lord, Andrew; Prat, Josep; Tomkos, Ioannis; Bowers, John E.; Srinivasan, Sudha; Brandt-Pearce, Maïté; Gisin, Nicolas

    2016-06-01

    Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.

  17. Wearable Optical Sensors

    KAUST Repository

    Ballard, Zachary S.

    2017-07-12

    The market for wearable sensors is predicted to grow to $5.5 billion by 2025, impacting global health in unprecedented ways. Optics and photonics will play a key role in the future of these wearable technologies, enabling highly sensitive measurements of otherwise invisible information and parameters about our health and surrounding environment. Through the implementation of optical wearable technologies, such as heart rate, blood pressure, and glucose monitors, among others, individuals are becoming more empowered to generate a wealth of rich, multifaceted physiological and environmental data, making personalized medicine a reality. Furthermore, these technologies can also be implemented in hospitals, clinics, point-of-care offices, assisted living facilities or even in patients’ homes for real-time, remote patient monitoring, creating more expeditious as well as resource-efficient systems. Several key optical technologies make such sensors possible, including e.g., optical fiber textiles, colorimetric, plasmonic, and fluorometric sensors, as well as Organic Light Emitting Diode (OLED) and Organic Photo-Diode (OPD) technologies. These emerging technologies and platforms show great promise as basic sensing elements in future wearable devices and will be reviewed in this chapter along-side currently existing fully integrated wearable optical sensors.

  18. Meta-Optics

    Science.gov (United States)

    Engheta, Nader

    2014-03-01

    As the fields of metamaterial and plasmonic nanophotonics reach certain levels of development, new directions and novel vistas appear in the horizon. Modularization, parameterization and functionalization of metamaterials may be exploited to provide new functionalities and applications stemming from such interesting platforms of ``meta-optics.'' Indeed, the metamaterial ``forms'' may lead to novel ``functions.'' These may include metamaterial ``bits'' and ``bytes'' as building blocks for digitizing metamaterials, ``optical metatronics'' - metamaterial-inspired optical nanocircuitry - formed by judicious arrangement of nanostructures capable of optical processing at the nanoscale, ``meta-systems'' formed by metamaterials and metasurfaces providing wave-based signal handling and processing, graphene metatronics as one-atom-thick mid IR circuits, and nonreciprocal metastructures for unusual control over flow of photons, to name a few. We are exploring various features and characteristics of these concepts, topics, and directions in the paradigms of meta-optics and are investigating new classes of potential applications such paradigms may provide. We will present an overview of our most recent results from a sample of these topics and will discuss future directions and potentials.

  19. Illusion induced overlapped optics.

    Science.gov (United States)

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.

  20. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.