WorldWideScience

Sample records for optical model analyses

  1. Application of an approximate vectorial diffraction model to analysing diffractive micro-optical elements

    Institute of Scientific and Technical Information of China (English)

    Niu Chun-Hui; Li Zhi-Yuan; Ye Jia-Sheng; Gu Ben-Yuan

    2005-01-01

    Scalar diffraction theory, although simple and efficient, is too rough for analysing diffractive micro-optical elements.Rigorous vectorial diffraction theory requires extensive numerical efforts, and is not a convenient design tool. In this paper we employ a simple approximate vectorial diffraction model which combines the principle of the scalar diffraction theory with an approximate local field model to analyse the diffraction of optical waves by some typical two-dimensional diffractive micro-optical elements. The TE and TM polarization modes are both considered. We have found that the approximate vectorial diffraction model can agree much better with the rigorous electromagnetic simulation results than the scalar diffraction theory for these micro-optical elements.

  2. The usefulness of optical analyses for detecting vulnerable plaques using rabbit models

    Science.gov (United States)

    Nakai, Kanji; Ishihara, Miya; Kawauchi, Satoko; Shiomi, Masashi; Kikuchi, Makoto; Kaji, Tatsumi

    2011-03-01

    Purpose: Carotid artery stenting (CAS) has become a widely used option for treatment of carotid stenosis. Although technical improvements have led to a decrease in complications related to CAS, distal embolism continues to be a problem. The purpose of this research was to investigate the usefulness of optical methods (Time-Resolved Laser- Induced Fluorescence Spectroscopy [TR-LIFS] and reflection spectroscopy [RS] as diagnostic tools for assessment of vulnerable atherosclerotic lesions, using rabbit models of vulnerable plaque. Materials & Methods: Male Japanese white rabbits were divided into a high cholesterol diet group and a normal diet group. In addition, we used a Watanabe heritable hyperlipidemic (WHHL) rabbit, because we confirmed the reliability of our animal model for this study. Experiment 1: TR-LIFS. Fluorescence was induced using the third harmonic wave of a Q switch Nd:YAG laser. The TR-LIFS was performed using a photonic multi-channel analyzer with ICCD (wavelength range, 200 - 860 nm). Experiment 2: RS. Refection spectra in the wavelength range of 900 to 1700 nm were acquired using a spectrometer. Results: In the TR-LIFS, the wavelength at the peak was longer by plaque formation. The TR-LIFS method revealed a difference in peak levels between a normal aorta and a lipid-rich aorta. The RS method showed increased absorption from 1450 to 1500 nm for lipid-rich plaques. We observed absorption around 1200 nm due to lipid only in the WHHL group. Conclusion: These methods using optical analysis might be useful for diagnosis of vulnerable plaques. Keywords: Carotid artery stenting, vulnerable plaque, Time-Resolved Laser-Induced Fluorescence

  3. Control of optics in random access analysers

    OpenAIRE

    Truchaud, A.

    1988-01-01

    The technology behind random access analysers involves flexible optical systems which can measure absorbances for one reaction at different scheduled times, and for several reactions performed simultaneously at different wavelengths. Optics control involves light sources (continuous and flash mode), indexing of monochromatic filters, injection-moulded plastic cuvettes, optical fibres, and polychromatic analysis.

  4. Aerosol optical depth assimilation for a size-resolved sectional model: impacts of observationally constrained, multi-wavelength and fine mode retrievals on regional scale analyses and forecasts

    Science.gov (United States)

    Saide, P. E.; Carmichael, G. R.; Liu, Z.; Schwartz, C. S.; Lin, H. C.; da Silva, A. M.; Hyer, E.

    2013-10-01

    An aerosol optical depth (AOD) three-dimensional variational data assimilation technique is developed for the Gridpoint Statistical Interpolation (GSI) system for which WRF-Chem forecasts are performed with a detailed sectional model, the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). Within GSI, forward AOD and adjoint sensitivities are performed using Mie computations from the WRF-Chem optical properties module, providing consistency with the forecast. GSI tools such as recursive filters and weak constraints are used to provide correlation within aerosol size bins and upper and lower bounds for the optimization. The system is used to perform assimilation experiments with fine vertical structure and no data thinning or re-gridding on a 12 km horizontal grid over the region of California, USA, where improvements on analyses and forecasts is demonstrated. A first set of simulations was performed, comparing the assimilation impacts of using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) dark target retrievals to those using observationally constrained ones, i.e., calibrated with AERONET (Aerosol RObotic NETwork) data. It was found that using the observationally constrained retrievals produced the best results when evaluated against ground based monitors, with the error in PM2.5 predictions reduced at over 90% of the stations and AOD errors reduced at 100% of the monitors, along with larger overall error reductions when grouping all sites. A second set of experiments reveals that the use of fine mode fraction AOD and ocean multi-wavelength retrievals can improve the representation of the aerosol size distribution, while assimilating only 550 nm AOD retrievals produces no or at times degraded impact. While assimilation of multi-wavelength AOD shows positive impacts on all analyses performed, future work is needed to generate observationally constrained multi-wavelength retrievals, which when assimilated will generate size

  5. An extensible analysable system model

    DEFF Research Database (Denmark)

    Probst, Christian W.; Hansen, Rene Rydhof

    2008-01-01

    , this does not hold for real physical systems. Approaches such as threat modelling try to target the formalisation of the real-world domain, but still are far from the rigid techniques available in security research. Many currently available approaches to assurance of critical infrastructure security...... allows for easy development of analyses for the abstracted systems. We briefly present one application of our approach, namely the analysis of systems for potential insider threats....

  6. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    Science.gov (United States)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  7. Graphical models for genetic analyses

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt; Sheehan, Nuala A.

    2003-01-01

    This paper introduces graphical models as a natural environment in which to formulate and solve problems in genetics and related areas. Particular emphasis is given to the relationships among various local computation algorithms which have been developed within the hitherto mostly separate areas...... of graphical models and genetics. The potential of graphical models is explored and illustrated through a number of example applications where the genetic element is substantial or dominating....

  8. Graphical models for genetic analyses

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt; Sheehan, Nuala A.

    2003-01-01

    This paper introduces graphical models as a natural environment in which to formulate and solve problems in genetics and related areas. Particular emphasis is given to the relationships among various local computation algorithms which have been developed within the hitherto mostly separate areas...

  9. Optical characterization of OLED emitter properties by radiation pattern analyses

    Energy Technology Data Exchange (ETDEWEB)

    Flaemmich, Michael

    2011-09-08

    Researches in both, academia and industry are investigating optical loss channels in OLED layered systems by means of optical simulation tools in order to derive promising concepts for a further enhancement of the overall device performance. Besides other factors, the prospects of success of such optimization strategies rely severely on the credibility of the optical input data. The present thesis provides a guideline to measure the active optical properties of OLED emitter materials in situ by radiation pattern analyses. Reliable and widely applicable methods are introduced to determine the internal electroluminescence spectrum, the profile of the emission zone, the dipole emitter orientation, and the internal luminescence quantum efficiency of emissive materials from the optical far field emission of OLEDs in electrical operation. The proposed characterization procedures are applied to sets of OLEDs containing both, fluorescent polymeric materials as well as phosphorescent small-molecular emitters, respectively. On the one hand, quite expected results are obtained. On the other hand, several novel and truly surprising results are found. Most importantly, this thesis contains the first report of a non-isotropic, mainly parallel emitter orientation in a phosphorescent small-molecular guest-host system (Ir(MDQ)2(acac) in a-NPD). Due to the latter result, emitter orientation based optimization of phosphorescent OLEDs seems to be within reach. Since parallel dipoles emit preferably into air, the utilization of smart emissive materials with advantageous molecular orientation is capable to boost the efficiency of phosphorescent OLEDs by 50%. Materials design, the influence of the matrix material and the substrate, as well as film deposition conditions are just a few parameters that need to be studied further in order to exploit the huge potential of the dipole emitter orientation in phosphorescent OLEDs.

  10. Optical, Energetic and Exergetic Analyses of Parabolic Trough Collectors

    Institute of Scientific and Technical Information of China (English)

    (O)ZT(U)RK Murat; (C)(I)(C)EK BEZ(I)R Nalan; (O)ZEK Nuri

    2007-01-01

    Parabolic trough collectors generate thermal energy from solar energy. Especially, they are very convenient for applications in high temperature solar power systems. To determine the design parameters, parabolic trough collectors must be analysed with optical analysis. In addition, thermodynamics (energy and exergy) analysis in the development of an energy efficient system must be achieved. Solar radiation passes through Earth's atmosphere until it reaches on Earth's surface and is focused from the parabolic trough collector to the tube receiver with a transparent insulated envelope. All of them constitute a complex mechanism. We investigate the geometry of parabolic trough reflector and characteristics of solar radiation to the reflecting surface through Earth's atmosphere, and calculate the collecting total energy in the receiver. The parabolic trough collector,of which design parameters are given, is analysed in regard to the energy and exergy analysis considering the meteorological specification in May, June, July and August in Isparta/Turkey, and the results are presented.

  11. Challenges and Opportunities in Analysing Students Modelling

    Science.gov (United States)

    Blanco-Anaya, Paloma; Justi, Rosária; Díaz de Bustamante, Joaquín

    2017-01-01

    Modelling-based teaching activities have been designed and analysed from distinct theoretical perspectives. In this paper, we use one of them--the model of modelling diagram (MMD)--as an analytical tool in a regular classroom context. This paper examines the challenges that arise when the MMD is used as an analytical tool to characterise the…

  12. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  13. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  14. Externalizing Behaviour for Analysing System Models

    DEFF Research Database (Denmark)

    Ivanova, Marieta Georgieva; Probst, Christian W.; Hansen, René Rydhof

    2013-01-01

    attackers. Therefore, many attacks are considerably easier to be performed for insiders than for outsiders. However, current models do not support explicit specification of different behaviours. Instead, behaviour is deeply embedded in the analyses supported by the models, meaning that it is a complex......, if not impossible task to change behaviours. Especially when considering social engineering or the human factor in general, the ability to use different kinds of behaviours is essential. In this work we present an approach to make the behaviour a separate component in system models, and explore how to integrate......System models have recently been introduced to model organisations and evaluate their vulnerability to threats and especially insider threats. Especially for the latter these models are very suitable, since insiders can be assumed to have more knowledge about the attacked organisation than outside...

  15. Modelling and Analysing Socio-Technical Systems

    DEFF Research Database (Denmark)

    Aslanyan, Zaruhi; Ivanova, Marieta Georgieva; Nielson, Flemming

    2015-01-01

    with social engineering. Due to this combination of attack steps on technical and social levels, risk assessment in socio-technical systems is complex. Therefore, established risk assessment methods often abstract away the internal structure of an organisation and ignore human factors when modelling...... and assessing attacks. In our work we model all relevant levels of socio-technical systems, and propose evaluation techniques for analysing the security properties of the model. Our approach simplifies the identification of possible attacks and provides qualified assessment and ranking of attacks based...... on the expected impact. We demonstrate our approach on a home-payment system. The system is specifically designed to help elderly or disabled people, who may have difficulties leaving their home, to pay for some services, e.g., care-taking or rent. The payment is performed using the remote control of a television...

  16. Externalizing Behaviour for Analysing System Models

    NARCIS (Netherlands)

    Ivanova, Marieta Georgieva; Probst, Christian W.; Hansen, René Rydhof; Kammüller, Florian

    Systems models have recently been introduced to model organisationsandevaluate their vulnerability to threats and especially insiderthreats. Especially for the latter these models are very suitable, since insiders can be assumed to have more knowledge about the attacked organisation than outside

  17. Optical-Microphysical Cirrus Model

    Science.gov (United States)

    Reichardt, J.; Reichardt, S.; Lin, R.-F.; Hess, M.; McGee, T. J.; Starr, D. O.

    2008-01-01

    A model is presented that permits the simulation of the optical properties of cirrus clouds as measured with depolarization Raman lidars. It comprises a one-dimensional cirrus model with explicit microphysics and an optical module that transforms the microphysical model output to cloud and particle optical properties. The optical model takes into account scattering by randomly oriented or horizontally aligned planar and columnar monocrystals and polycrystals. Key cloud properties such as the fraction of plate-like particles and the number of basic crystals per polycrystal are parameterized in terms of the ambient temperature, the nucleation temperature, or the mass of the particles. The optical-microphysical model is used to simulate the lidar measurement of a synoptically forced cirrostratus in a first case study. It turns out that a cirrus cloud consisting of only monocrystals in random orientation is too simple a model scenario to explain the observations. However, good agreement between simulation and observation is reached when the formation of polycrystals or the horizontal alignment of monocrystals is permitted. Moreover, the model results show that plate fraction and morphological complexity are best parameterized in terms of particle mass, or ambient temperature which indicates that the ambient conditions affect cirrus optical properties more than those during particle formation. Furthermore, the modeled profiles of particle shape and size are in excellent agreement with in situ and laboratory studies, i.e., (partly oriented) polycrystalline particles with mainly planar basic crystals in the cloud bottom layer, and monocrystals above, with the fraction of columns increasing and the shape and size of the particles changing from large thin plates and long columns to small, more isometric crystals from cloud center to top. The findings of this case study corroborate the microphysical interpretation of cirrus measurements with lidar as suggested previously.

  18. Performance modeling of optical refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.; Mord, A. [Ball Aerospace and Technologies Corp., Boulder, CO (United States). Cryogenic and Thermal Engineering

    2006-02-15

    Optical refrigeration using anti-Stokes fluorescence in solids has several advantages over more conventional techniques including low mass, low volume, low cost and no vibration. It also has the potential of allowing miniature cryocoolers on the scale of a few cubic centimeters. It has been the topic of analysis and experimental work by several organizations. In 2003, we demonstrated the first optical refrigerator. We have developed a comprehensive system-level performance model of optical refrigerators. Our current version models the refrigeration cycle based on the fluorescent material emission and absorption data at ambient and reduced temperature for the Ytterbium-ZBLAN glass (Yb:ZBLAN) cooling material. It also includes the heat transfer into the refrigerator cooling assembly due to radiation and conduction. In this paper, we report on modeling results which reveal the interplay between size, power input, and cooling load. This interplay results in practical size limitations using Yb:ZBLAN. (author)

  19. Optical Coherence Tomography: Advanced Modeling

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, Lars; Yura, Harold T.;

    2013-01-01

    Analytical and numerical models for describing and understanding the light propagation in samples imaged by optical coherence tomography (OCT) systems are presented. An analytical model for calculating the OCT signal based on the extended Huygens-Fresnel principle valid both for the single......- and multiple-scattering regimes is derived. An advanced Monte Carlo model for calculating the OCT signal is also derived, and the validity of this model is shown through a mathematical proof based on the extended Huygens-Fresnel principle. From the analytical model, an algorithm for enhancing OCT images...... is developed, the so-called true-reflection algorithm in which the OCT signal may be corrected for the attenuation caused by scattering. The algorithm is verified experimentally and by using the Monte Carlo model as a numerical tissue phantom. Applications of extraction of optical properties from tissue...

  20. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Curtis E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature; (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.

  1. Bayesian Uncertainty Analyses Via Deterministic Model

    Science.gov (United States)

    Krzysztofowicz, R.

    2001-05-01

    Rational decision-making requires that the total uncertainty about a variate of interest (a predictand) be quantified in terms of a probability distribution, conditional on all available information and knowledge. Suppose the state-of-knowledge is embodied in a deterministic model, which is imperfect and outputs only an estimate of the predictand. Fundamentals are presented of three Bayesian approaches to producing a probability distribution of the predictand via any deterministic model. The Bayesian Processor of Output (BPO) quantifies the total uncertainty in terms of a posterior distribution, conditional on model output. The Bayesian Processor of Ensemble (BPE) quantifies the total uncertainty in terms of a posterior distribution, conditional on an ensemble of model output. The Bayesian Forecasting System (BFS) decomposes the total uncertainty into input uncertainty and model uncertainty, which are characterized independently and then integrated into a predictive distribution.

  2. Analysing Social Epidemics by Delayed Stochastic Models

    Directory of Open Access Journals (Sweden)

    Francisco-José Santonja

    2012-01-01

    Full Text Available We investigate the dynamics of a delayed stochastic mathematical model to understand the evolution of the alcohol consumption in Spain. Sufficient condition for stability in probability of the equilibrium point of the dynamic model with aftereffect and stochastic perturbations is obtained via Kolmanovskii and Shaikhet general method of Lyapunov functionals construction. We conclude that alcohol consumption in Spain will be constant (with stability in time with around 36.47% of nonconsumers, 62.94% of nonrisk consumers, and 0.59% of risk consumers. This approach allows us to emphasize the possibilities of the dynamical models in order to study human behaviour.

  3. Modelling, analyses and design of switching converters

    Science.gov (United States)

    Cuk, S. M.; Middlebrook, R. D.

    1978-01-01

    A state-space averaging method for modelling switching dc-to-dc converters for both continuous and discontinuous conduction mode is developed. In each case the starting point is the unified state-space representation, and the end result is a complete linear circuit model, for each conduction mode, which correctly represents all essential features, namely, the input, output, and transfer properties (static dc as well as dynamic ac small-signal). While the method is generally applicable to any switching converter, it is extensively illustrated for the three common power stages (buck, boost, and buck-boost). The results for these converters are then easily tabulated owing to the fixed equivalent circuit topology of their canonical circuit model. The insights that emerge from the general state-space modelling approach lead to the design of new converter topologies through the study of generic properties of the cascade connection of basic buck and boost converters.

  4. Socio-optics: optical knowledge applied in modeling social phenomena

    Science.gov (United States)

    Chisleag, Radu; Chisleag Losada, Ioana-Roxana

    2011-05-01

    The term "Socio-optics" (as a natural part of Socio-physics), is rather not found in literature or at Congresses. In Optics books, there are not made references to optical models applied to explain social phenomena, in spite of Optics relying on the duality particle-wave which seems convenient to model relationships among society and its members. The authors, who have developed a few models applied to explain social phenomena based on knowledge in Optics, along with a few other models applying, in Social Sciences, knowledge from other branches of Physics, give their own examples of such optical models, f. e., of relationships among social groups and their sub-groups, by using kowledge from partially coherent optical phenomena or to explain by tunnel effect, the apparently impossible penetration of social barriers by individuals. They consider that the term "Socio-optics" may come to life. There is mentioned the authors' expertise in stimulating Socio-optics approach by systematically asking students taken courses in Optics to find applications of the newly got Wave and Photon Optics knowledge, to model social and even everyday life phenomena, eventually engaging in such activities other possibly interested colleagues.

  5. Analysing regenerative potential in zebrafish models of congenital muscular dystrophy.

    Science.gov (United States)

    Wood, A J; Currie, P D

    2014-11-01

    The congenital muscular dystrophies (CMDs) are a clinically and genetically heterogeneous group of muscle disorders. Clinically hypotonia is present from birth, with progressive muscle weakness and wasting through development. For the most part, CMDs can mechanistically be attributed to failure of basement membrane protein laminin-α2 sufficiently binding with correctly glycosylated α-dystroglycan. The majority of CMDs therefore arise as the result of either a deficiency of laminin-α2 (MDC1A) or hypoglycosylation of α-dystroglycan (dystroglycanopathy). Here we consider whether by filling a regenerative medicine niche, the zebrafish model can address the present challenge of delivering novel therapeutic solutions for CMD. In the first instance the readiness and appropriateness of the zebrafish as a model organism for pioneering regenerative medicine therapies in CMD is analysed, in particular for MDC1A and the dystroglycanopathies. Despite the recent rapid progress made in gene editing technology, these approaches have yet to yield any novel zebrafish models of CMD. Currently the most genetically relevant zebrafish models to the field of CMD, have all been created by N-ethyl-N-nitrosourea (ENU) mutagenesis. Once genetically relevant models have been established the zebrafish has several important facets for investigating the mechanistic cause of CMD, including rapid ex vivo development, optical transparency up to the larval stages of development and relative ease in creating transgenic reporter lines. Together, these tools are well suited for use in live-imaging studies such as in vivo modelling of muscle fibre detachment. Secondly, the zebrafish's contribution to progress in effective treatment of CMD was analysed. Two approaches were identified in which zebrafish could potentially contribute to effective therapies. The first hinges on the augmentation of functional redundancy within the system, such as upregulating alternative laminin chains in the candyfloss

  6. Modelling and Analyses of Embedded Systems Design

    DEFF Research Database (Denmark)

    Brekling, Aske Wiid

    We present the MoVES languages: a language with which embedded systems can be specified at a stage in the development process where an application is identified and should be mapped to an execution platform (potentially multi- core). We give a formal model for MoVES that captures and gives......-based verification is a promising approach for assisting developers of embedded systems. We provide examples of system verifications that, in size and complexity, point in the direction of industrially-interesting systems....

  7. Development of a gated optical multichannel analyser for laser-plasma spectroscopy

    OpenAIRE

    Corcoran, Richard

    1990-01-01

    An Optical Multichannel Analyser (OMA) has been developed for the detection of radiation from laser-produced plasmas (LPPs). The system is based on a gated image - intensified photodiode array (PDA) Software for the control of, and data acquisition from, the OMA system has been developed. A high resolution (10ns) delay generator was also designed and constructed to permit timeresolved. optical spectroscopy. The system has been tested and operated with a laser plasma source m...

  8. Mathematical Model of Fiber Optic Temperature Sensor Based on Optic Absorption and Experiment Testing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of analysis on the temperature monitoring methods for high voltage devices, a new type of fiber optic sensor structure with reference channel is given. And the operation principle of fiber optic sensor is analysed at large based on the absorption of semiconductor chip. The mathematical model of both devices and the whole system are also given. It is proved by the experiment that this mathematical model is reliable.

  9. VIPRE modeling of VVER-1000 reactor core for DNB analyses

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Y.; Nguyen, Q. [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Cizek, J. [Nuclear Research Institute, Prague, (Czech Republic)

    1995-09-01

    Based on the one-pass modeling approach, the hot channels and the VVER-1000 reactor core can be modeled in 30 channels for DNB analyses using the VIPRE-01/MOD02 (VIPRE) code (VIPRE is owned by Electric Power Research Institute, Palo Alto, California). The VIPRE one-pass model does not compromise any accuracy in the hot channel local fluid conditions. Extensive qualifications include sensitivity studies of radial noding and crossflow parameters and comparisons with the results from THINC and CALOPEA subchannel codes. The qualifications confirm that the VIPRE code with the Westinghouse modeling method provides good computational performance and accuracy for VVER-1000 DNB analyses.

  10. Modelling longevity bonds: Analysing the Swiss Re Kortis bond

    OpenAIRE

    2015-01-01

    A key contribution to the development of the traded market for longevity risk was the issuance of the Kortis bond, the world's first longevity trend bond, by Swiss Re in 2010. We analyse the design of the Kortis bond, develop suitable mortality models to analyse its payoff and discuss the key risk factors for the bond. We also investigate how the design of the Kortis bond can be adapted and extended to further develop the market for longevity risk.

  11. Optical models of the molecular atmosphere

    Science.gov (United States)

    Zuev, V. E.; Makushkin, Y. S.; Mitsel, A. A.; Ponomarev, Y. N.; Rudenko, V. P.; Firsov, K. M.

    1986-01-01

    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered.

  12. Analysing the temporal dynamics of model performance for hydrological models

    NARCIS (Netherlands)

    Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E.

    2009-01-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or m

  13. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Ihekwaba, Adoha

    2007-01-01

    A. Ihekwaba, R. Mardare. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems. Case study: NFkB system. In Proc. of International Conference of Computational Methods in Sciences and Engineering (ICCMSE), American Institute of Physics, AIP Proceedings, N 2...

  14. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Ihekwaba, Adoha

    2007-01-01

    A. Ihekwaba, R. Mardare. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems. Case study: NFkB system. In Proc. of International Conference of Computational Methods in Sciences and Engineering (ICCMSE), American Institute of Physics, AIP Proceedings, N 2...

  15. The method of characteristics applied to analyse 2DH models

    NARCIS (Netherlands)

    Sloff, C.J.

    1992-01-01

    To gain insight into the physical behaviour of 2D hydraulic models (mathematically formulated as a system of partial differential equations), the method of characteristics is used to analyse the propagation of physical meaningful disturbances. These disturbances propagate as wave fronts along bichar

  16. The Folding Deuteron Optical Model Potentials

    CERN Document Server

    Li, Xiaohua; Cai, Chonghai

    2008-01-01

    For 52 target nuclei with deuteron as projectile, we calculate the reaction cross sections and elastic scattering angular distributions, as well as the $\\chi^2$ values for 11 kinds of deuteron optical model potentials: our global deuteron optical potentials and 10 folding optical potentials calculated with 2 phenomenological global nucleon optical potentials given by Koning \\textit{et al}(KD) and by Varner\\textit{et al}(CH89), and 8 microscopic nucleon optical potentials with the generalized Skyrme force parameters(GS1-6) and modified Skyrme force parameters(SKa, SKb). We find that for constructing the folding deuteron optical potential, both SKa and SKb are the best Skyrme force parameters of the microscopic nucleon optical potential proposed by Q. Shen \\textit{et al}.

  17. Analysing the temporal dynamics of model performance for hydrological models

    Directory of Open Access Journals (Sweden)

    D. E. Reusser

    2008-11-01

    Full Text Available The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydrological model performance assessment with a high temporal resolution and illustrates its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physics-based model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns which can lead to the identification of model structural errors.

  18. Analysing the temporal dynamics of model performance for hydrological models

    Directory of Open Access Journals (Sweden)

    E. Zehe

    2009-07-01

    Full Text Available The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydrological model performance assessment with a high temporal resolution and illustrates its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physics-based model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns, which can lead to the identification of model structural errors.

  19. Optical Hall effect-model description: tutorial.

    Science.gov (United States)

    Schubert, Mathias; Kühne, Philipp; Darakchieva, Vanya; Hofmann, Tino

    2016-08-01

    The optical Hall effect is a physical phenomenon that describes the occurrence of magnetic-field-induced dielectric displacement at optical wavelengths, transverse and longitudinal to the incident electric field, and analogous to the static electrical Hall effect. The electrical Hall effect and certain cases of the optical Hall effect observations can be explained by extensions of the classic Drude model for the transport of electrons in metals. The optical Hall effect is most useful for characterization of electrical properties in semiconductors. Among many advantages, while the optical Hall effect dispenses with the need of electrical contacts, electrical material properties such as effective mass and mobility parameters, including their anisotropy as well as carrier type and density, can be determined from the optical Hall effect. Measurement of the optical Hall effect can be performed within the concept of generalized ellipsometry at an oblique angle of incidence. In this paper, we review and discuss physical model equations, which can be used to calculate the optical Hall effect in single- and multiple-layered structures of semiconductor materials. We define the optical Hall effect dielectric function tensor, demonstrate diagonalization approaches, and show requirements for the optical Hall effect tensor from energy conservation. We discuss both continuum and quantum approaches, and we provide a brief description of the generalized ellipsometry concept, the Mueller matrix calculus, and a 4×4 matrix algebra to calculate data accessible by experiment. In a follow-up paper, we will discuss strategies and approaches for experimental data acquisition and analysis.

  20. Social Network Analyses and Nutritional Behavior: An Integrated Modeling Approach

    Directory of Open Access Journals (Sweden)

    Alistair McNair Senior

    2016-01-01

    Full Text Available Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent advances in nutrition research, combining state-space models of nutritional geometry with agent-based models of systems biology, show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a tangible and practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit agent-based models that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition. Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interaction in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  1. Graphic-based musculoskeletal model for biomechanical analyses and animation.

    Science.gov (United States)

    Chao, Edmund Y S

    2003-04-01

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.

  2. Model of computation for Fourier optical processors

    Science.gov (United States)

    Naughton, Thomas J.

    2000-05-01

    We present a novel and simple theoretical model of computation that captures what we believe are the most important characteristics of an optical Fourier transform processor. We use this abstract model to reason about the computational properties of the physical systems it describes. We define a grammar for our model's instruction language, and use it to write algorithms for well-known filtering and correlation techniques. We also suggest suitable computational complexity measures that could be used to analyze any coherent optical information processing technique, described with the language, for efficiency. Our choice of instruction language allows us to argue that algorithms describable with this model should have optical implementations that do not require a digital electronic computer to act as a master unit. Through simulation of a well known model of computation from computer theory we investigate the general-purpose capabilities of analog optical processors.

  3. Wavelet-based spatial comparison technique for analysing and evaluating two-dimensional geophysical model fields

    Directory of Open Access Journals (Sweden)

    S. Saux Picart

    2011-11-01

    Full Text Available Complex numerical models of the Earth's environment, based around 3-D or 4-D time and space domains are routinely used for applications including climate predictions, weather forecasts, fishery management and environmental impact assessments. Quantitatively assessing the ability of these models to accurately reproduce geographical patterns at a range of spatial and temporal scales has always been a difficult problem to address. However, this is crucial if we are to rely on these models for decision making. Satellite data are potentially the only observational dataset able to cover the large spatial domains analysed by many types of geophysical models. Consequently optical wavelength satellite data is beginning to be used to evaluate model hindcast fields of terrestrial and marine environments. However, these satellite data invariably contain regions of occluded or missing data due to clouds, further complicating or impacting on any comparisons with the model. A methodology has recently been developed to evaluate precipitation forecasts using radar observations. It allows model skill to be evaluated at a range of spatial scales and rain intensities. Here we extend the original method to allow its generic application to a range of continuous and discontinuous geophysical data fields, and therefore allowing its use with optical satellite data. This is achieved through two major improvements to the original method: (i all thresholds are determined based on the statistical distribution of the input data, so no a priori knowledge about the model fields being analysed is required and (ii occluded data can be analysed without impacting on the metric results. The method can be used to assess a model's ability to simulate geographical patterns over a range of spatial scales. We illustrate how the method provides a compact and concise way of visualising the degree of agreement between spatial features in two datasets. The application of the new method, its

  4. Comparing modelling techniques for analysing urban pluvial flooding.

    Science.gov (United States)

    van Dijk, E; van der Meulen, J; Kluck, J; Straatman, J H M

    2014-01-01

    Short peak rainfall intensities cause sewer systems to overflow leading to flooding of streets and houses. Due to climate change and densification of urban areas, this is expected to occur more often in the future. Hence, next to their minor (i.e. sewer) system, municipalities have to analyse their major (i.e. surface) system in order to anticipate urban flooding during extreme rainfall. Urban flood modelling techniques are powerful tools in both public and internal communications and transparently support design processes. To provide more insight into the (im)possibilities of different urban flood modelling techniques, simulation results have been compared for an extreme rainfall event. The results show that, although modelling software is tending to evolve towards coupled one-dimensional (1D)-two-dimensional (2D) simulation models, surface flow models, using an accurate digital elevation model, prove to be an easy and fast alternative to identify vulnerable locations in hilly and flat areas. In areas at the transition between hilly and flat, however, coupled 1D-2D simulation models give better results since catchments of major and minor systems can differ strongly in these areas. During the decision making process, surface flow models can provide a first insight that can be complemented with complex simulation models for critical locations.

  5. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Du, Qiang [Pennsylvania State Univ., State College, PA (United States)

    2014-11-12

    The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next

  6. Modeling hard clinical end-point data in economic analyses.

    Science.gov (United States)

    Kansal, Anuraag R; Zheng, Ying; Palencia, Roberto; Ruffolo, Antonio; Hass, Bastian; Sorensen, Sonja V

    2013-11-01

    The availability of hard clinical end-point data, such as that on cardiovascular (CV) events among patients with type 2 diabetes mellitus, is increasing, and as a result there is growing interest in using hard end-point data of this type in economic analyses. This study investigated published approaches for modeling hard end-points from clinical trials and evaluated their applicability in health economic models with different disease features. A review of cost-effectiveness models of interventions in clinically significant therapeutic areas (CV diseases, cancer, and chronic lower respiratory diseases) was conducted in PubMed and Embase using a defined search strategy. Only studies integrating hard end-point data from randomized clinical trials were considered. For each study included, clinical input characteristics and modeling approach were summarized and evaluated. A total of 33 articles (23 CV, eight cancer, two respiratory) were accepted for detailed analysis. Decision trees, Markov models, discrete event simulations, and hybrids were used. Event rates were incorporated either as constant rates, time-dependent risks, or risk equations based on patient characteristics. Risks dependent on time and/or patient characteristics were used where major event rates were >1%/year in models with fewer health states (rates. The detailed modeling information and terminology varied, sometimes requiring interpretation. Key considerations for cost-effectiveness models incorporating hard end-point data include the frequency and characteristics of the relevant clinical events and how the trial data is reported. When event risk is low, simplification of both the model structure and event rate modeling is recommended. When event risk is common, such as in high risk populations, more detailed modeling approaches, including individual simulations or explicitly time-dependent event rates, are more appropriate to accurately reflect the trial data.

  7. Comparison between CARIBIC aerosol samples analysed by accelerator-based methods and optical particle counter measurements

    Directory of Open Access Journals (Sweden)

    B. G. Martinsson

    2014-04-01

    Full Text Available Inter-comparison of results from two kinds of aerosol systems in the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container passenger aircraft based observatory, operating during intercontinental flights at 9–12 km altitude, is presented. Aerosol from the lowermost stratosphere (LMS, the extra-tropical upper troposphere (UT and the tropical mid troposphere (MT were investigated. Aerosol particle volume concentration measured with an optical particle counter (OPC is compared with analytical results of the sum of masses of all major and several minor constituents from aerosol samples collected with an impactor. Analyses were undertaken with accelerator-based methods particle-induced X-ray emission (PIXE and particle elastic scattering analysis (PESA. Data from 48 flights during one year are used, leading to a total of 106 individual comparisons. The ratios of the particle volume from the OPC and the total mass from the analyses were in 84% within a relatively narrow interval. Data points outside this interval are connected with inlet-related effects in clouds, large variability in aerosol composition, particle size distribution effects and some cases of non-ideal sampling. Overall, the comparison of these two CARIBIC measurements based on vastly different methods show good agreement, implying that the chemical and size information can be combined in studies of the MT/UT/LMS aerosol.

  8. Modeling and optimization of LCD optical performance

    CERN Document Server

    Yakovlev, Dmitry A; Kwok, Hoi-Sing

    2015-01-01

    The aim of this book is to present the theoretical foundations of modeling the optical characteristics of liquid crystal displays, critically reviewing modern modeling methods and examining areas of applicability. The modern matrix formalisms of optics of anisotropic stratified media, most convenient for solving problems of numerical modeling and optimization of LCD, will be considered in detail. The benefits of combined use of the matrix methods will be shown, which generally provides the best compromise between physical adequacy and accuracy with computational efficiency and optimization fac

  9. [Approach to depressogenic genes from genetic analyses of animal models].

    Science.gov (United States)

    Yoshikawa, Takeo

    2004-01-01

    Human depression or mood disorder is defined as a complex disease, making positional cloning of susceptibility genes a formidable task. We have undertaken genetic analyses of three different animal models for depression, comparing our results with advanced database resources. We first performed quantitative trait loci (QTL) analysis on two mouse models of "despair", namely, the forced swim test (FST) and tail suspension test (TST), and detected multiple chromosomal loci that control immobility time in these tests. Since one QTL detected on mouse chromosome 11 harbors the GABA A receptor subunit genes, we tested these genes for association in human mood disorder patients. We obtained significant associations of the alpha 1 and alpha 6 subunit genes with the disease, particularly in females. This result was striking, because we had previously detected an epistatic interaction between mouse chromosomes 11 and X that regulates immobility time in these animals. Next, we performed genome-wide expression analyses using a rat model of depression, learned helplessness (LH). We found that in the frontal cortex of LH rats, a disease implicated region, the LIM kinase 1 gene (Limk 1) showed greatest alteration, in this case down-regulation. By combining data from the QTL analysis of FST/TST and DNA microarray analysis of mouse frontal cortex, we identified adenylyl cyclase-associated CAP protein 1 (Cap 1) as another candidate gene for depression susceptibility. Both Limk 1 and Cap 1 are key players in the modulation of actin G-F conversion. In summary, our current study using animal models suggests disturbances of GABAergic neurotransmission and actin turnover as potential pathophysiologies for mood disorder.

  10. Magnetic fabric analyses in analogue models of clays

    Science.gov (United States)

    García-Lasanta, Cristina; Román-Berdiel, Teresa; Izquierdo-Llavall, Esther; Casas-Sainz, Antonio

    2017-04-01

    Anisotropy of magnetic susceptibility (AMS) studies in sedimentary rocks subjected to deformation indicate that magnetic fabrics orientation can be conditioned by multiple factors: sedimentary conditions, magnetic mineralogy, successive tectonic events, etc. All of them difficult the interpretation of the AMS as a marker of the deformation conditions. Analogue modeling allows to isolate the variables that act in a geological process and to determine the factors and in which extent they influence in the process. This study shows the magnetic fabric analyses applied to several analogue models developed with common commercial red clays. This material resembles natural clay materials that, despite their greater degree of impurities and heterogeneity, have been proved to record a robust magnetic signal carried by a mixture of para- and ferromagnetic minerals. The magnetic behavior of the modeled clay has been characterized by temperature dependent magnetic susceptibility curves (from 40 to 700°C). The measurements were performed combining a KLY-3S Kappabridge susceptometer with a CS3 furnace (AGICO Inc., Czech Republic). The obtained results indicate the presence of an important content of hematite as ferromagnetic phase, as well as a remarkable paramagnetic fraction, probably constituted by phyllosilicates. This mineralogy is common in natural materials such as Permo-Triassic red facies, and magnetic fabric analyses in these natural examples have given consistent results in different tectonic contexts. In this study, sedimentary conditions and magnetic mineralogy are kept constant and the influence of the tectonic regime in the magnetic fabrics is analyzed. Our main objective is to reproduce several tectonic contexts (strike-slip and compression) in a sedimentary environment where material is not yet compacted, in order to determine how tectonic conditions influence the magnetic fabric registered in each case. By dispersing the clays in water and after allowing their

  11. Multi-state models: metapopulation and life history analyses

    Directory of Open Access Journals (Sweden)

    Arnason, A. N.

    2004-06-01

    Full Text Available Multi–state models are designed to describe populations that move among a fixed set of categorical states. The obvious application is to population interchange among geographic locations such as breeding sites or feeding areas (e.g., Hestbeck et al., 1991; Blums et al., 2003; Cam et al., 2004 but they are increasingly used to address important questions of evolutionary biology and life history strategies (Nichols & Kendall, 1995. In these applications, the states include life history stages such as breeding states. The multi–state models, by permitting estimation of stage–specific survival and transition rates, can help assess trade–offs between life history mechanisms (e.g. Yoccoz et al., 2000. These trade–offs are also important in meta–population analyses where, for example, the pre–and post–breeding rates of transfer among sub–populations can be analysed in terms of target colony distance, density, and other covariates (e.g., Lebreton et al. 2003; Breton et al., in review. Further examples of the use of multi–state models in analysing dispersal and life–history trade–offs can be found in the session on Migration and Dispersal. In this session, we concentrate on applications that did not involve dispersal. These applications fall in two main categories: those that address life history questions using stage categories, and a more technical use of multi–state models to address problems arising from the violation of mark–recapture assumptions leading to the potential for seriously biased predictions or misleading insights from the models. Our plenary paper, by William Kendall (Kendall, 2004, gives an overview of the use of Multi–state Mark–Recapture (MSMR models to address two such violations. The first is the occurrence of unobservable states that can arise, for example, from temporary emigration or by incomplete sampling coverage of a target population. Such states can also occur for life history reasons, such

  12. Dipole model test with one superconducting coil; results analysed

    CERN Document Server

    Durante, M; Ferracin, P; Fessia, P; Gauthier, R; Giloux, C; Guinchard, M; Kircher, F; Manil, P; Milanese, A; Millot, J-F; Muñoz Garcia, J-E; Oberli, L; Perez, J-C; Pietrowicz, S; Rifflet, J-M; de Rijk, G; Rondeaux, F; Todesco, E; Viret, P; Ziemianski, D

    2013-01-01

    This report is the deliverable report 7.3.1 “Dipole model test with one superconducting coil; results analysed “. The report has four parts: “Design report for the dipole magnet”, “Dipole magnet structure tested in LN2”, “Nb3Sn strand procured for one dipole magnet” and “One test double pancake copper coil made”. The 4 report parts show that, although the magnet construction will be only completed by end 2014, all elements are present for a successful completion. Due to the importance of the project for the future of the participants and given the significant investments done by the participants, there is a full commitment to finish the project.

  13. Dipole model test with one superconducting coil: results analysed

    CERN Document Server

    Bajas, H; Benda, V; Berriaud, C; Bajko, M; Bottura, L; Caspi, S; Charrondiere, M; Clément, S; Datskov, V; Devaux, M; Durante, M; Fazilleau, P; Ferracin, P; Fessia, P; Gauthier, R; Giloux, C; Guinchard, M; Kircher, F; Manil, P; Milanese, A; Millot, J-F; Muñoz Garcia, J-E; Oberli, L; Perez, J-C; Pietrowicz, S; Rifflet, J-M; de Rijk, G; Rondeaux, F; Todesco, E; Viret, P; Ziemianski, D

    2013-01-01

    This report is the deliverable report 7.3.1 “Dipole model test with one superconducting coil; results analysed “. The report has four parts: “Design report for the dipole magnet”, “Dipole magnet structure tested in LN2”, “Nb3Sn strand procured for one dipole magnet” and “One test double pancake copper coil made”. The 4 report parts show that, although the magnet construction will be only completed by end 2014, all elements are present for a successful completion. Due to the importance of the project for the future of the participants and given the significant investments done by the participants, there is a full commitment to finish the project.

  14. Incorporating flood event analyses and catchment structures into model development

    Science.gov (United States)

    Oppel, Henning; Schumann, Andreas

    2016-04-01

    The space-time variability in catchment response results from several hydrological processes which differ in their relevance in an event-specific way. An approach to characterise this variance consists in comparisons between flood events in a catchment and between flood responses of several sub-basins in such an event. In analytical frameworks the impact of space and time variability of rainfall on runoff generation due to rainfall excess can be characterised. Moreover the effect of hillslope and channel network routing on runoff timing can be specified. Hence, a modelling approach is needed to specify the runoff generation and formation. Knowing the space-time variability of rainfall and the (spatial averaged) response of a catchment it seems worthwhile to develop new models based on event and catchment analyses. The consideration of spatial order and the distribution of catchment characteristics in their spatial variability and interaction with the space-time variability of rainfall provides additional knowledge about hydrological processes at the basin scale. For this purpose a new procedure to characterise the spatial heterogeneity of catchments characteristics in their succession along the flow distance (differentiated between river network and hillslopes) was developed. It was applied to study of flood responses at a set of nested catchments in a river basin in eastern Germany. In this study the highest observed rainfall-runoff events were analysed, beginning at the catchment outlet and moving upstream. With regard to the spatial heterogeneities of catchment characteristics, sub-basins were separated by new algorithms to attribute runoff-generation, hillslope and river network processes. With this procedure the cumulative runoff response at the outlet can be decomposed and individual runoff features can be assigned to individual aspects of the catchment. Through comparative analysis between the sub-catchments and the assigned effects on runoff dynamics new

  15. Structural, thermal, optical and gravitational modelling for LISA

    Energy Technology Data Exchange (ETDEWEB)

    Merkowitz, Stephen M [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Conkey, Shelly [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States); Haile, William B [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States); KellyIII, William R [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States); Peabody, Hume [Swales Aerospace, 5050 Powder Mill Rd, Beltsville, MD 20705 (United States); Dumont, Philip J [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States)

    2004-03-07

    The laser interferometer space antenna (LISA) mission uses laser interferometry to detect and observe gravitational waves from astrophysical sources. Modelling of LISA ultimately needs to forecast and interrelate the behaviour of the science input, structure, optics, control systems and many other factors that affect the performance of the flight hardware. These models include high precision STOP (structural-thermal-optical) analyses. In addition, self-gravity analyses of the spacecraft, based on the structural-thermal modelling results, are required for each analysis cycle to understand the gravitational interaction between the spacecraft components. The complete analysis cycle is called STOP-G. Several aspects of this analysis require unprecedented precision due to LISA's challenging design requirements. We present here a modelling approach designed to minimize analysis errors, particularly those that enter when mapping results from one modelling step to the next. Central to the approach is the use of a single model topology for all phases of the STOP-G analysis cycle. The feasibility of this approach was verified using a simplified model of the LISA spacecraft.

  16. A theoretical model for analysing gender bias in medicine

    Directory of Open Access Journals (Sweden)

    Johansson Eva E

    2009-08-01

    Full Text Available Abstract During the last decades research has reported unmotivated differences in the treatment of women and men in various areas of clinical and academic medicine. There is an ongoing discussion on how to avoid such gender bias. We developed a three-step-theoretical model to understand how gender bias in medicine can occur and be understood. In this paper we present the model and discuss its usefulness in the efforts to avoid gender bias. In the model gender bias is analysed in relation to assumptions concerning difference/sameness and equity/inequity between women and men. Our model illustrates that gender bias in medicine can arise from assuming sameness and/or equity between women and men when there are genuine differences to consider in biology and disease, as well as in life conditions and experiences. However, gender bias can also arise from assuming differences when there are none, when and if dichotomous stereotypes about women and men are understood as valid. This conceptual thinking can be useful for discussing and avoiding gender bias in clinical work, medical education, career opportunities and documents such as research programs and health care policies. Too meet the various forms of gender bias, different facts and measures are needed. Knowledge about biological differences between women and men will not reduce bias caused by gendered stereotypes or by unawareness of health problems and discrimination associated with gender inequity. Such bias reflects unawareness of gendered attitudes and will not change by facts only. We suggest consciousness-rising activities and continuous reflections on gender attitudes among students, teachers, researchers and decision-makers.

  17. An Illumination Modeling System for Human Factors Analyses

    Science.gov (United States)

    Huynh, Thong; Maida, James C.; Bond, Robert L. (Technical Monitor)

    2002-01-01

    Seeing is critical to human performance. Lighting is critical for seeing. Therefore, lighting is critical to human performance. This is common sense, and here on earth, it is easily taken for granted. However, on orbit, because the sun will rise or set every 45 minutes on average, humans working in space must cope with extremely dynamic lighting conditions. Contrast conditions of harsh shadowing and glare is also severe. The prediction of lighting conditions for critical operations is essential. Crew training can factor lighting into the lesson plans when necessary. Mission planners can determine whether low-light video cameras are required or whether additional luminaires need to be flown. The optimization of the quantity and quality of light is needed because of the effects on crew safety, on electrical power and on equipment maintainability. To address all of these issues, an illumination modeling system has been developed by the Graphics Research and Analyses Facility (GRAF) and Lighting Environment Test Facility (LETF) in the Space Human Factors Laboratory at NASA Johnson Space Center. The system uses physically based ray tracing software (Radiance) developed at Lawrence Berkeley Laboratories, a human factors oriented geometric modeling system (PLAID) and an extensive database of humans and environments. Material reflectivity properties of major surfaces and critical surfaces are measured using a gonio-reflectometer. Luminaires (lights) are measured for beam spread distribution, color and intensity. Video camera performances are measured for color and light sensitivity. 3D geometric models of humans and the environment are combined with the material and light models to form a system capable of predicting lighting conditions and visibility conditions in space.

  18. Modeling of semiconductor devices for high-speed all-optical signal processing

    DEFF Research Database (Denmark)

    Bischoff, Svend; Højfeldt, Sune; Mørk, Jesper

    2001-01-01

    The all-optical signal processing performance of devices based on active semiconductor waveguides is investigated. A large signal model is used to analyse the physical mechanisms limiting the high-speed performance of both semiconductor optical amplifiers (SOAs) and electro-absorption modulators ...

  19. Comparison of two potato simulation models under climate change. I. Model calibration and sensitivity analyses

    NARCIS (Netherlands)

    Wolf, J.

    2002-01-01

    To analyse the effects of climate change on potato growth and production, both a simple growth model, POTATOS, and a comprehensive model, NPOTATO, were applied. Both models were calibrated and tested against results from experiments and variety trials in The Netherlands. The sensitivity of model

  20. Completely integrable models of nonlinear optics

    Indian Academy of Sciences (India)

    Andrey I Maimistov

    2001-11-01

    The models of the nonlinear optics in which solitons appeared are considered. These models are of paramount importance in studies of nonlinear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency and parametric interaction of three waves. At present there are a number of theories based on completely integrable systems of equations, which are, both, generations of the original known models and new ones. The modified Korteweg-de Vries equation, the nonlinear Schrödinger equation, the derivative nonlinear Schrödinger equation, Sine–Gordon equation, the reduced Maxwell–Bloch equation, Hirota equation, the principal chiral field equations, and the equations of massive Thirring model are some soliton equations, which are usually to be found in nonlinear optics theory.

  1. Optical models for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, T.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1995-08-01

    Light trapping is an important design feature for high-efficiency silicon solar cells. Because light trapping can considerably enhance optical absorption, a thinner substrate can be used which, in turn, can lower the bulk carrier recombination and concommitantly increase open-circuit voltage, and fill factor of the cell. The basic concepts of light trapping are similar to that of excitation of an optical waveguide, where a prism or a grating structure increases the phase velocity of the incoming optical wave such that waves propagated within the waveguide are totally reflected at the interfaces. Unfortunately, these concepts break down because the entire solar cell is covered with such a structure, making it necessary to develop new analytical approaches to deal with incomplete light trapping in solar cells. This paper describes two models that analyze light trapping in thick and thin solar cells.

  2. Advanced modelling of optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, L.; Yura, H.T.;

    2004-01-01

    Analytical and numerical models for describing and understanding the light propagation in samples imaged by optical coherence tomography (OCT) systems are presented. An analytical model for calculating the OCT signal based on the extended Huygens–Fresnel principle valid both for the single...... and multiple scattering regimes is reviewed. An advanced Monte Carlo model for calculating the OCT signal is also reviewed, and the validity of this model is shown through a mathematical proof based on the extended Huygens–Fresnel principle. Moreover, for the first time the model is verified experimentally....... From the analytical model, an algorithm for enhancing OCT images is developed; the so-called true-reflection algorithm in which the OCT signal may be corrected for the attenuation caused by scattering. For the first time, the algorithm is demonstrated by using the Monte Carlo model as a numerical...

  3. RxGen General Optical Model Prescription Generator

    Science.gov (United States)

    Sigrist, Norbert

    2012-01-01

    RxGen is a prescription generator for JPL's in-house optical modeling software package called MACOS (Modeling and Analysis for Controlled Optical Systems), which is an expert optical analysis software package focusing on modeling optics on dynamic structures, deformable optics, and controlled optics. The objectives of RxGen are to simplify and automate MACOS prescription generations, reducing errors associated with creating such optical prescriptions, and improving user efficiency without requiring MACOS proficiency. RxGen uses MATLAB (a high-level language and interactive environment developed by MathWorks) as the development and deployment platform, but RxGen can easily be ported to another optical modeling/analysis platform. Running RxGen within the modeling environment has the huge benefit that variations in optical models can be made an integral part of the modeling state. For instance, optical prescription parameters determined as external functional dependencies, optical variations by controlling the in-/exclusion of optical components like sub-systems, and/or controlling the state of all components. Combining the mentioned capabilities and flexibilities with RxGen's optical abstraction layer completely eliminates the hindering aspects for requiring proficiency in writing/editing MACOS prescriptions, allowing users to focus on the modeling aspects of optical systems, i.e., increasing productivity and efficiency. RxGen provides significant enhancements to MACOS and delivers a framework for fast prototyping as well as for developing very complex controlled optical systems.

  4. Measurement of medullation in wool and mohair using an Optical Fibre Diameter Analyser.

    Science.gov (United States)

    Lupton, C J; Pfeiffer, F A

    1998-05-01

    We conducted three experiments to evaluate the Optical Fibre Diameter Analyser (OFDA) for estimating medullation (med [M], kemp [K], and total [T] medullated fiber content) in mohair and wool produced by Angora goats and sheep, respectively. Medullation can be a beneficial characteristic in certain types of wool, but it is highly undesirable in mohair and apparel wools. Current techniques for evaluating medullation in animal fibers are laborious, slow, and expensive. The OFDA had been modified by the manufacturer to measure fiber opacity distribution, a characteristic known to be indicative of medullation in white fibers, and was capable of providing such measurements in a very short time. Measurements made on magnified fiber images produced with a projection microscope (PM) were used as a reference for M, K, and T in fiber samples. An initial experiment with 124 mohair samples (T = .10 to 9.10%) seemed to indicate that OFDA estimates of M, K, and T were only poorly correlated with corresponding PM values (r2 = .5409, .1401, and .5576, respectively). However, a second experiment using wool and mohair samples containing a wider range of medullation (T = .58 to 26.54%) revealed that OFDA estimates of M, K, and T for wool were highly correlated with PM measurements (r2 = .9853, .9307, and .9728, respectively). Evidence was also obtained indicating that the low r2 values associated with mohair relationships were likely due to a combination of factors: 1) high variation among the standard PM measurements and 2) the relatively low M, K, and T contents of the mohair samples compared with wool. In a third experiment, greater accuracy was obtained in the PM measurements by evaluating many more individual fibers per sample (10,000). In this case, OFDA estimates of M, K, and T for mohair were highly correlated with corresponding PM measurements (r2 = .8601, .9939, and .9696, respectively). However, the two sets of linear regression equations obtained for wool and mohair were

  5. An improved transfer-matrix model for optical superlenses.

    Science.gov (United States)

    Moore, Ciaran P; Blaikie, Richard J; Arnold, Matthew D

    2009-08-01

    The use of transfer-matrix analyses for characterizing planar optical superlensing systems is studied here, and the simple model of the planar superlens as an isolated imaging element is shown to be defective in certain situations. These defects arise due to neglected interactions between the superlens and the spatially varying shadow masks that are normally used as scattering objects for imaging, and which are held in near-field proximity to the superlenses. An extended model is proposed that improves the accuracy of the transfer-matrix analysis, without adding significant complexity, by approximating the reflections from the shadow mask by those from a uniform metal layer. Results obtained using both forms of the transfer matrix model are compared to finite element models and two example superlenses, one with a silver monolayer and the other with three silver sublayers, are characterized. The modified transfer matrix model gives much better agreement in both cases.

  6. Orientation Bias of Optically Selected Galaxy Clusters and Its Impact on Stacked Weak Lensing Analyses

    CERN Document Server

    Dietrich, Jörg P; Song, Jeeseon; McKay, Christopher P Davis Timothy A; Baruah, Leon; Becker, Matthew; Benoist, Christophe; Busha, Michael; da Costa, Luiz A N; Hao, Jiangang; Maia, Marcio A G; Miller, Christopher J; Ogando, Ricardo; Romer, A Kathy; Rozo, Eduardo; Rykoff, Eli; Wechsler, Risa

    2014-01-01

    Weak-lensing measurements of the averaged shear profiles of galaxy clusters binned by some proxy for cluster mass are commonly converted to cluster mass estimates under the assumption that these cluster stacks have spherical symmetry. In this paper we test whether this assumption holds for optically selected clusters binned by estimated optical richness. Using mock catalogues created from N-body simulations populated realistically with galaxies, we ran a suite of optical cluster finders and estimated their optical richness. We binned galaxy clusters by true cluster mass and estimated optical richness and measure the ellipticity of these stacks. We find that the processes of optical cluster selection and richness estimation are biased, leading to stacked structures that are elongated along the line-of-sight. We show that weak-lensing alone cannot measure the size of this orientation bias. Weak lensing masses of stacked optically selected clusters are overestimated by up to 3-6 per cent when clusters can be uni...

  7. Micromechanical Failure Analyses for Finite Element Polymer Modeling

    Energy Technology Data Exchange (ETDEWEB)

    CHAMBERS,ROBERT S.; REEDY JR.,EARL DAVID; LO,CHI S.; ADOLF,DOUGLAS B.; GUESS,TOMMY R.

    2000-11-01

    Polymer stresses around sharp corners and in constrained geometries of encapsulated components can generate cracks leading to system failures. Often, analysts use maximum stresses as a qualitative indicator for evaluating the strength of encapsulated component designs. Although this approach has been useful for making relative comparisons screening prospective design changes, it has not been tied quantitatively to failure. Accurate failure models are needed for analyses to predict whether encapsulated components meet life cycle requirements. With Sandia's recently developed nonlinear viscoelastic polymer models, it has been possible to examine more accurately the local stress-strain distributions in zones of likely failure initiation looking for physically based failure mechanisms and continuum metrics that correlate with the cohesive failure event. This study has identified significant differences between rubbery and glassy failure mechanisms that suggest reasonable alternatives for cohesive failure criteria and metrics. Rubbery failure seems best characterized by the mechanisms of finite extensibility and appears to correlate with maximum strain predictions. Glassy failure, however, seems driven by cavitation and correlates with the maximum hydrostatic tension. Using these metrics, two three-point bending geometries were tested and analyzed under variable loading rates, different temperatures and comparable mesh resolution (i.e., accuracy) to make quantitative failure predictions. The resulting predictions and observations agreed well suggesting the need for additional research. In a separate, additional study, the asymptotically singular stress state found at the tip of a rigid, square inclusion embedded within a thin, linear elastic disk was determined for uniform cooling. The singular stress field is characterized by a single stress intensity factor K{sub a} and the applicable K{sub a} calibration relationship has been determined for both fully bonded and

  8. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...

  9. A Thermo-Optic Propagation Modeling Capability.

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developed for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.

  10. Modeling of Self-Pumped Singly Resonant Optical Parametric Oscillator

    CERN Document Server

    Deng, Chengxian

    2016-01-01

    A model of the steady-state operating, self-pumped singly resonant optical parametric oscillator (SPSRO) has been developed. The characteristics of quasi three-level laser gain medium pumped longitudinally have been taken into account. The characteristics of standing wave cavity, reabsorption losses, focusing Gaussian beams of the pump laser, fundamental laser and signal wave have been considered in the analyses. Furthermore, The power characteristics of threshold and efficiency have been analyzed, employing a Yb3+-doped periodically poled lithium niobate co-doped with MgO (Yb3+:MgO:PPLN) as the medium of laser gain and second-order nonlinear crystal.

  11. Fluctuations and entropy in models of quantum optical resonance

    Science.gov (United States)

    Phoenix, S. J. D.; Knight, P. L.

    1988-09-01

    We use variances, entropy, and the Shannon entropy to analyse the fluctuations and quantum evolution of various simple models of quantum optical resonance. We discuss at length the properties of the single-mode radiation field coupled to a single two-level atom, and then extend our analysis to describe the micromaser in which a cavity mode is repeatedly pumped by a succession of atoms passing through the cavity. We also discuss the fluctuations in the single-mode laser theory of Scully and Lamb.

  12. Analyses on Four Models and Cases of Enterprise Informatization

    Institute of Scientific and Technical Information of China (English)

    Shi Chunsheng(石春生); Han Xinjuan; Yang Cuilan; Zhao Dongbai

    2003-01-01

    The basic conditions of the enterprise informatization in Heilongjiang province are analyzed and 4 models are designed to drive the industrial and commercial information enterprise. The 4 models are the Resource Integration Informatization Model, the Flow Management Informatization Model, the Intranet E-commerce Informatization Model and the Network Enterprise Informatization Model. The conditions for using and problems needing attentions of these 4 models are also analyzed.

  13. Optical Coherence Tomography: Modeling and Applications

    DEFF Research Database (Denmark)

    Thrane, Lars

    in previous theoretical models of OCT systems. It is demonstrated that the shower curtain effect is of utmost importance in the theoretical description of an OCT system. The analytical model, together with proper noise analysis of the OCT system, enables calculation of the SNR, where the optical properties...... geometry, i.e., reflection geometry, is developed. As in the new OCT model, multiple scattered photons has been taken into account together with multiple scattering effects. As an important result, a novel method of creating images based on measurements of the momentum width of the Wigner phase......An analytical model is presented that is able to describe the performance of OCT systems in both the single and multiple scattering regimes simultaneously. This model inherently includes the shower curtain effect, well-known for light propagation through the atmosphere. This effect has been omitted...

  14. Green Network Planning Model for Optical Backbones

    DEFF Research Database (Denmark)

    Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir; Jensen, Michael

    2010-01-01

    Communication networks are becoming more essential for our daily lives and critically important for industry and governments. The intense growth in the backbone traffic implies an increment of the power demands of the transmission systems. This power usage might have a significant negative effect...... on the environment in general. In network planning there are existing planning models focused on QoS provisioning, investment minimization or combinations of both and other parameters. But there is a lack of a model for designing green optical backbones. This paper presents novel ideas to be able to define...

  15. Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)

    2015-02-17

    We have treated the modeling, analysis, numerical analysis, and algorithmic development for nonlocal models of diffusion and mechanics. Variational formulations were developed and finite element methods were developed based on those formulations for both steady state and time dependent problems. Obstacle problems and optimization problems for the nonlocal models were also treated and connections made with fractional derivative models.

  16. Unmix 6.0 Model for environmental data analyses

    Science.gov (United States)

    Unmix Model is a mathematical receptor model developed by EPA scientists that provides scientific support for the development and review of the air and water quality standards, exposure research, and environmental forensics.

  17. Symbolic modeling of high energy beam optics

    CERN Document Server

    Autin, Bruno

    1999-01-01

    A classical problem of computational physics consists of finding the minimum of a chi /sup 2/ like function of many variables. Powerful optimization algorithms have been developed but do not guarantee convergence towards an absolute minimum. Analytical methods can improve the insight into a physical problem but calculations quickly exceed the power of a human brain. There comes the interest of optical design of high energy particle accelerators. The physics background is sketched and emphasis is put on the methodology. In practice, algebraic models may not be precise enough but they usually provide excellent initial conditions for a final numerical optimization. (4 refs).

  18. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  19. Analysing Models as a Knowledge Technology in Transport Planning

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik

    2011-01-01

    Models belong to a wider family of knowledge technologies, applied in the transport area. Models sometimes share with other such technologies the fate of not being used as intended, or not at all. The result may be ill-conceived plans as well as wasted resources. Frequently, the blame for such a ......Models belong to a wider family of knowledge technologies, applied in the transport area. Models sometimes share with other such technologies the fate of not being used as intended, or not at all. The result may be ill-conceived plans as well as wasted resources. Frequently, the blame...... critical analytic literature on knowledge utilization and policy influence. A simple scheme based in this literature is drawn up to provide a framework for discussing the interface between urban transport planning and model use. A successful example of model use in Stockholm, Sweden is used as a heuristic...

  20. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  1. Analyses of Tsunami Events using Simple Propagation Models

    Science.gov (United States)

    Chilvery, Ashwith Kumar; Tan, Arjun; Aggarwal, Mohan

    2012-03-01

    Tsunamis exhibit the characteristics of ``canal waves'' or ``gravity waves'' which belong to the class of ``long ocean waves on shallow water.'' The memorable tsunami events including the 2004 Indian Ocean tsunami and the 2011 Pacific Ocean tsunami off the coast of Japan are analyzed by constructing simple tsunami propagation models including the following: (1) One-dimensional propagation model; (2) Two-dimensional propagation model on flat surface; (3) Two-dimensional propagation model on spherical surface; and (4) A finite line-source model on two-dimensional surface. It is shown that Model 1 explains the basic features of the tsunami including the propagation speed, depth of the ocean, dispersion-less propagation and bending of tsunamis around obstacles. Models 2 and 3 explain the observed amplitude variations for long-distance tsunami propagation across the Pacific Ocean, including the effect of the equatorial ocean current on the arrival times. Model 3 further explains the enhancement effect on the amplitude due to the curvature of the Earth past the equatorial distance. Finally, Model 4 explains the devastating effect of superposition of tsunamis from two subduction event, which struck the Phuket region during the 2004 Indian Ocean tsunami.

  2. Theoretical model for a Stark anomalous dispersion optical filter

    Science.gov (United States)

    Yin, B.; Shay, T. M.

    1993-01-01

    A theoretical model for the first atomic Stark anomalous dispersion optical filter is reported. The results show the filter may serve as a widely tunable narrow bandwidth and high throughput optical filter for freespace laser communications and remote sensing.

  3. RECENT MATHEMATICAL STUDIES IN THE MODELING OF OPTICS AND ELECTROMAGNETICS

    Institute of Scientific and Technical Information of China (English)

    Gang Bao

    2004-01-01

    This work is concerned with mathematical modeling, analysis, and computation of optics and electromagnetics, motivated particularly by optical and microwave applications.The main technical focus is on Maxwell's equations in complex linear and nonlinear media.

  4. Analysing the Linux kernel feature model changes using FMDiff

    NARCIS (Netherlands)

    Dintzner, N.J.R.; Van Deursen, A.; Pinzger, M.

    2015-01-01

    Evolving a large scale, highly variable system is a challenging task. For such a system, evolution operations often require to update consistently both their implementation and its feature model. In this context, the evolution of the feature model closely follows the evolution of the system. The pur

  5. Hyperelastic Modelling and Finite Element Analysing of Rubber Bushing

    Directory of Open Access Journals (Sweden)

    Merve Yavuz ERKEK

    2015-03-01

    Full Text Available The objective of this paper is to obtain stiffness curves of rubber bushings which are used in automotive industry with hyperelastic finite element model. Hyperelastic material models were obtained with different material tests. Stress and strain values and static stiffness curves were determined. It is shown that, static stiffness curves are nonlinear. The level of stiffness affects the vehicle dynamics behaviour.

  6. Novel optical-based methods and analyses for elucidating cellular mechanics and dynamics

    Science.gov (United States)

    Koo, Peter K.

    employing pEMv2 analysis. We envision the presented methodologies will be applicable to a wide range of single protein tracking data where different interactions result in distinct diffusive behaviors. More generally, this study brings us an important step closer to the possibility of monitoring the endogenous biochemistry of diffusing proteins within live cells with single molecule resolution. In the second part of this thesis, the role of chromatin association to the nuclear envelope in nuclear mechanics is explored. Changes in the mechanical properties of the nucleus are increasingly found to be critical for development and disease. However, relatively little is known about the variables that cells modulate to define nuclear mechanics. The best understood player is lamin A, a protein linked to a diverse set of genetic diseases termed laminopathies. The properties of lamin A that are compromised in these diseases (and therefore underlie their pathology) remains poorly understood. One model focuses on a mechanical role for a polymeric network of lamins associated with the nuclear envelope (NE), which supports nuclear integrity. However, because heterochromatin is strongly associated with lamina, it remains unclear whether it is the lamin polymer, the associated chromatin, or both that allow the lamina to mechanically stabilize nuclei. Decoupling the impact of the lamin polymer itself from that of the associated chromatin has proven very challenging. Here, we take advantage of the model organism, S pombe, which does not express lamies, as an experimental framework in which to address the impact of chromatin and its association with the nuclear periphery on nuclear mechanics. Using a combination of new image analysis tools for in vivo imaging of nuclear dynamics and a novel optical tweezers assay capable of directly probing nuclear mechanics, we find that the association of chromatin with the NE through integral membrane proteins plays a critical role in supporting nuclear

  7. Modelling theoretical uncertainties in phenomenological analyses for particle physics

    CERN Document Server

    Charles, Jérôme; Niess, Valentin; Silva, Luiz Vale

    2016-01-01

    The determination of the fundamental parameters of the Standard Model (and its extensions) is often limited by the presence of statistical and theoretical uncertainties. We present several models for the latter uncertainties (random, nuisance, external) in the frequentist framework, and we derive the corresponding $p$-values. In the case of the nuisance approach where theoretical uncertainties are modeled as biases, we highlight the important, but arbitrary, issue of the range of variation chosen for the bias parameters. We introduce the concept of adaptive $p$-value, which is obtained by adjusting the range of variation for the bias according to the significance considered, and which allows us to tackle metrology and exclusion tests with a single and well-defined unified tool, which exhibits interesting frequentist properties. We discuss how the determination of fundamental parameters is impacted by the model chosen for theoretical uncertainties, illustrating several issues with examples from quark flavour p...

  8. Modeling theoretical uncertainties in phenomenological analyses for particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Charles, Jerome [CNRS, Aix-Marseille Univ, Universite de Toulon, CPT UMR 7332, Marseille Cedex 9 (France); Descotes-Genon, Sebastien [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Niess, Valentin [CNRS/IN2P3, UMR 6533, Laboratoire de Physique Corpusculaire, Aubiere Cedex (France); Silva, Luiz Vale [CNRS, Univ. Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR 8627), Orsay Cedex (France); Univ. Paris-Sud, CNRS/IN2P3, Universite Paris-Saclay, Groupe de Physique Theorique, Institut de Physique Nucleaire, Orsay Cedex (France); J. Stefan Institute, Jamova 39, P. O. Box 3000, Ljubljana (Slovenia)

    2017-04-15

    The determination of the fundamental parameters of the Standard Model (and its extensions) is often limited by the presence of statistical and theoretical uncertainties. We present several models for the latter uncertainties (random, nuisance, external) in the frequentist framework, and we derive the corresponding p values. In the case of the nuisance approach where theoretical uncertainties are modeled as biases, we highlight the important, but arbitrary, issue of the range of variation chosen for the bias parameters. We introduce the concept of adaptive p value, which is obtained by adjusting the range of variation for the bias according to the significance considered, and which allows us to tackle metrology and exclusion tests with a single and well-defined unified tool, which exhibits interesting frequentist properties. We discuss how the determination of fundamental parameters is impacted by the model chosen for theoretical uncertainties, illustrating several issues with examples from quark flavor physics. (orig.)

  9. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.

    2014-11-10

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  10. Assessment of a geological model by surface wave analyses

    Science.gov (United States)

    Martorana, R.; Capizzi, P.; Avellone, G.; D'Alessandro, A.; Siragusa, R.; Luzio, D.

    2017-02-01

    A set of horizontal to vertical spectral ratio (HVSR) and multichannel analysis of surface waves (MASW) measurements, carried out in the Altavilla Milicia (Sicily) area, is analyzed to test a geological model of the area. Statistical techniques have been used in different stages of the data analysis, to optimize the reliability of the information extracted from geophysical measurements. In particular, cluster analysis algorithms have been implemented to select the time windows of the microseismic signal to be used for calculating the spectral ratio H/V and to identify sets of spectral ratio peaks likely caused by the same underground structures. Using results of reflection seismic lines, typical values of P-wave and S-wave velocity were estimated for each geological formation present in the area. These were used to narrow down the research space of parameters for the HVSR interpretation. MASW profiles have been carried out close to each HVSR measuring point, provided the parameters of the shallower layers for the HVSR models. MASW inversion has been constrained by extrapolating thicknesses from a known stratigraphic sequence. Preliminary 1D seismic models were obtained by adding deeper layers to models that resulted from MASW inversion. These justify the peaks of the HVSR curves due to layers deeper than MASW investigation depth. Furthermore, much deeper layers were included in the HVSR model, as suggested by geological setting and stratigraphic sequence. This choice was made considering that these latter layers do not generate other HVSR peaks and do not significantly affect the misfit. The starting models have been used to limit the starting research space for a more accurate interpretation, made considering the noise as a superposition of Rayleigh and Love waves. Results allowed to recognize four main seismic layers and to associate them to the main stratigraphic successions. The lateral correlation of seismic velocity models, joined with tectonic evidences

  11. Compound dislocation models (CDMs) for volcano deformation analyses

    Science.gov (United States)

    Nikkhoo, Mehdi; Walter, Thomas R.; Lundgren, Paul R.; Prats-Iraola, Pau

    2017-02-01

    Volcanic crises are often preceded and accompanied by volcano deformation caused by magmatic and hydrothermal processes. Fast and efficient model identification and parameter estimation techniques for various sources of deformation are crucial for process understanding, volcano hazard assessment and early warning purposes. As a simple model that can be a basis for rapid inversion techniques, we present a compound dislocation model (CDM) that is composed of three mutually orthogonal rectangular dislocations (RDs). We present new RD solutions, which are free of artefact singularities and that also possess full rotational degrees of freedom. The CDM can represent both planar intrusions in the near field and volumetric sources of inflation and deflation in the far field. Therefore, this source model can be applied to shallow dikes and sills, as well as to deep planar and equidimensional sources of any geometry, including oblate, prolate and other triaxial ellipsoidal shapes. In either case the sources may possess any arbitrary orientation in space. After systematically evaluating the CDM, we apply it to the co-eruptive displacements of the 2015 Calbuco eruption observed by the Sentinel-1A satellite in both ascending and descending orbits. The results show that the deformation source is a deflating vertical lens-shaped source at an approximate depth of 8 km centred beneath Calbuco volcano. The parameters of the optimal source model clearly show that it is significantly different from an isotropic point source or a single dislocation model. The Calbuco example reflects the convenience of using the CDM for a rapid interpretation of deformation data.

  12. A Formal Model to Analyse the Firewall Configuration Errors

    Directory of Open Access Journals (Sweden)

    T. T. Myo

    2015-01-01

    Full Text Available The firewall is widely known as a brandmauer (security-edge gateway. To provide the demanded security, the firewall has to be appropriately adjusted, i.e. be configured. Unfortunately, when configuring, even the skilled administrators may make mistakes, which result in decreasing level of a network security and network infiltration undesirable packages.The network can be exposed to various threats and attacks. One of the mechanisms used to ensure network security is the firewall.The firewall is a network component, which, using a security policy, controls packages passing through the borders of a secured network. The security policy represents the set of rules.Package filters work in the mode without inspection of a state: they investigate packages as the independent objects. Rules take the following form: (condition, action. The firewall analyses the entering traffic, based on the IP address of the sender and recipient, the port number of the sender and recipient, and the used protocol. When the package meets rule conditions, the action specified in the rule is carried out. It can be: allow, deny.The aim of this article is to develop tools to analyse a firewall configuration with inspection of states. The input data are the file with the set of rules. It is required to submit the analysis of a security policy in an informative graphic form as well as to reveal discrepancy available in rules. The article presents a security policy visualization algorithm and a program, which shows how the firewall rules act on all possible packages. To represent a result in an intelligible form a concept of the equivalence region is introduced.Our task is the program to display results of rules action on the packages in a convenient graphic form as well as to reveal contradictions between the rules. One of problems is the large number of measurements. As it was noted above, the following parameters are specified in the rule: Source IP address, appointment IP

  13. Optical Performance Modeling of FUSE Telescope Mirror

    Science.gov (United States)

    Saha, Timo T.; Ohl, Raymond G.; Friedman, Scott D.; Moos, H. Warren

    2000-01-01

    We describe the Metrology Data Processor (METDAT), the Optical Surface Analysis Code (OSAC), and their application to the image evaluation of the Far Ultraviolet Spectroscopic Explorer (FUSE) mirrors. The FUSE instrument - designed and developed by the Johns Hopkins University and launched in June 1999 is an astrophysics satellite which provides high resolution spectra (lambda/Delta(lambda) = 20,000 - 25,000) in the wavelength region from 90.5 to 118.7 nm The FUSE instrument is comprised of four co-aligned, normal incidence, off-axis parabolic mirrors, four Rowland circle spectrograph channels with holographic gratings, and delay line microchannel plate detectors. The OSAC code provides a comprehensive analysis of optical system performance, including the effects of optical surface misalignments, low spatial frequency deformations described by discrete polynomial terms, mid- and high-spatial frequency deformations (surface roughness), and diffraction due to the finite size of the aperture. Both normal incidence (traditionally infrared, visible, and near ultraviolet mirror systems) and grazing incidence (x-ray mirror systems) systems can be analyzed. The code also properly accounts for reflectance losses on the mirror surfaces. Low frequency surface errors are described in OSAC by using Zernike polynomials for normal incidence mirrors and Legendre-Fourier polynomials for grazing incidence mirrors. The scatter analysis of the mirror is based on scalar scatter theory. The program accepts simple autocovariance (ACV) function models or power spectral density (PSD) models derived from mirror surface metrology data as input to the scatter calculation. The end product of the program is a user-defined pixel array containing the system Point Spread Function (PSF). The METDAT routine is used in conjunction with the OSAC program. This code reads in laboratory metrology data in a normalized format. The code then fits the data using Zernike polynomials for normal incidence

  14. Analysing the Organizational Culture of Universities: Two Models

    Science.gov (United States)

    Folch, Marina Tomas; Ion, Georgeta

    2009-01-01

    This article presents the findings of two research projects, examining organizational culture by means of two different models of analysis--one at university level and one at department level--which were carried out over the last four years at Catalonian public universities (Spain). Theoretical and methodological approaches for the two…

  15. Enhancing Technology-Mediated Communication: Tools, Analyses, and Predictive Models

    Science.gov (United States)

    2007-09-01

    the home (see, for example, Nagel, Hudson, & Abowd, 2004), in social Chapter 2: Background 17 settings (see Kern, Antifakos, Schiele ...on Computer Supported Cooperative Work (CSCW 2006), pp. 525-528 ACM Press. Kern, N., Antifakos, S., Schiele , B., & Schwaninger, A. (2004). A model

  16. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Cai-Ping Feng; John Mundy

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions,TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also discussed.

  17. Gene Discovery and Functional Analyses in the Model Plant Arabidopsis

    DEFF Research Database (Denmark)

    Feng, Cai-ping; Mundy, J.

    2006-01-01

    The present mini-review describes newer methods and strategies, including transposon and T-DNA insertions, TILLING, Deleteagene, and RNA interference, to functionally analyze genes of interest in the model plant Arabidopsis. The relative advantages and disadvantages of the systems are also...

  18. A new model for analysing thermal stress in granular composite

    Institute of Scientific and Technical Information of China (English)

    郑茂盛; 金志浩; 浩宏奇

    1995-01-01

    A double embedding model of inletting reinforcement grain and hollow matrix ball into the effective media of the particulate-reinforced composite is advanced. And with this model the distributions of thermal stress in different phases of the composite during cooling are studied. Various expressions for predicting elastic and elastoplastic thermal stresses are derived. It is found that the reinforcement suffers compressive hydrostatic stress and the hydrostatic stress in matrix zone is a tensile one when temperature decreases; when temperature further decreases, yield area in matrix forms; when the volume fraction of reinforcement is enlarged, compressive stress on grain and tensile hydrostatic stress in matrix zone decrease; the initial temperature difference of the interface of reinforcement and matrix yielding rises, while that for the matrix yielding overall decreases.

  19. Analysing an Analytical Solution Model for Simultaneous Mobility

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Chowdhury

    2013-12-01

    Full Text Available Current mobility models for simultaneous mobility h ave their convolution in designing simultaneous movement where mobile nodes (MNs travel randomly f rom the two adjacent cells at the same time and also have their complexity in the measurement of th e occurrences of simultaneous handover. Simultaneou s mobility problem incurs when two of the MNs start h andover approximately at the same time. As Simultaneous mobility is different for the other mo bility pattern, generally occurs less number of tim es in real time; we analyze that a simplified simultaneou s mobility model can be considered by taking only symmetric positions of MNs with random steps. In ad dition to that, we simulated the model using mSCTP and compare the simulation results in different sce narios with customized cell ranges. The analytical results shows that with the bigger the cell sizes, simultaneous handover with random steps occurrences become lees and for the sequential mobility (where initial positions of MNs is predetermined with ran dom steps, simultaneous handover is more frequent.

  20. A simulation model for analysing brain structure deformations

    Energy Technology Data Exchange (ETDEWEB)

    Bona, Sergio Di [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy); Lutzemberger, Ludovico [Department of Neuroscience, Institute of Neurosurgery, University of Pisa, Via Roma, 67-56100 Pisa (Italy); Salvetti, Ovidio [Institute for Information Science and Technologies, Italian National Research Council (ISTI-8211-CNR), Via G Moruzzi, 1-56124 Pisa (Italy)

    2003-12-21

    Recent developments of medical software applications from the simulation to the planning of surgical operations have revealed the need for modelling human tissues and organs, not only from a geometric point of view but also from a physical one, i.e. soft tissues, rigid body, viscoelasticity, etc. This has given rise to the term 'deformable objects', which refers to objects with a morphology, a physical and a mechanical behaviour of their own and that reflects their natural properties. In this paper, we propose a model, based upon physical laws, suitable for the realistic manipulation of geometric reconstructions of volumetric data taken from MR and CT scans. In particular, a physically based model of the brain is presented that is able to simulate the evolution of different nature pathological intra-cranial phenomena such as haemorrhages, neoplasm, haematoma, etc and to describe the consequences that are caused by their volume expansions and the influences they have on the anatomical and neuro-functional structures of the brain.

  1. Analyses of Cometary Silicate Crystals: DDA Spectral Modeling of Forsterite

    Science.gov (United States)

    Wooden, Diane

    2012-01-01

    Comets are the Solar System's deep freezers of gases, ices, and particulates that were present in the outer protoplanetary disk. Where comet nuclei accreted was so cold that CO ice (approximately 50K) and other supervolatile ices like ethane (C2H2) were preserved. However, comets also accreted high temperature minerals: silicate crystals that either condensed (greater than or equal to 1400 K) or that were annealed from amorphous (glassy) silicates (greater than 850-1000 K). By their rarity in the interstellar medium, cometary crystalline silicates are thought to be grains that formed in the inner disk and were then radially transported out to the cold and ice-rich regimes near Neptune. The questions that comets can potentially address are: How fast, how far, and over what duration were crystals that formed in the inner disk transported out to the comet-forming region(s)? In comets, the mass fractions of silicates that are crystalline, f_cryst, translate to benchmarks for protoplanetary disk radial transport models. The infamous comet Hale-Bopp has crystalline fractions of over 55%. The values for cometary crystalline mass fractions, however, are derived assuming that the mineralogy assessed for the submicron to micron-sized portion of the size distribution represents the compositional makeup of all larger grains in the coma. Models for fitting cometary SEDs make this assumption because models can only fit the observed features with submicron to micron-sized discrete crystals. On the other hand, larger (0.1-100 micrometer radii) porous grains composed of amorphous silicates and amorphous carbon can be easily computed with mixed medium theory wherein vacuum mixed into a spherical particle mimics a porous aggregate. If crystalline silicates are mixed in, the models completely fail to match the observations. Moreover, models for a size distribution of discrete crystalline forsterite grains commonly employs the CDE computational method for ellipsoidal platelets (c:a:b=8

  2. Theoretical analyses of resonant frequency shift in anomalous dispersion enhanced resonant optical gyroscopes

    Science.gov (United States)

    Lin, Jian; Liu, Jiaming; Zhang, Hao; Li, Wenxiu; Zhao, Lu; Jin, Junjie; Huang, Anping; Zhang, Xiaofu; Xiao, Zhisong

    2016-12-01

    Rigorous expressions of resonant frequency shift (RFS) in anomalous dispersion enhanced resonant optical gyroscopes (ADEROGs) are deduced without making approximation, which provides a precise theoretical guidance to achieve ultra-sensitive ADEROGs. A refractive index related modification factor is introduced when considering special theory of relativity (STR). We demonstrate that the RFS will not be ”infinitely large” by using critical anomalous dispersion (CAD) and negative modification does not exist, which make the mechanism of anomalous dispersion enhancement clear and coherent. Although step change of RFS will happen when the anomalous dispersion condition varies, the amplification of RFS is limited by attainable variation of refractive index in practice. Moreover, it is shown that the properties of anomalous dispersion will influence not only the amplification of RFS, but also the detection range of ADEROGs.

  3. Temporal variations analyses and predictive modeling of microbiological seawater quality.

    Science.gov (United States)

    Lušić, Darija Vukić; Kranjčević, Lado; Maćešić, Senka; Lušić, Dražen; Jozić, Slaven; Linšak, Željko; Bilajac, Lovorka; Grbčić, Luka; Bilajac, Neiro

    2017-08-01

    Bathing water quality is a major public health issue, especially for tourism-oriented regions. Currently used methods within EU allow at least a 2.2 day period for obtaining the analytical results, making outdated the information forwarded to the public. Obtained results and beach assessment are influenced by the temporal and spatial characteristics of sample collection, and numerous environmental parameters, as well as by differences of official water standards. This paper examines the temporal variation of microbiological parameters during the day, as well as the influence of the sampling hour, on decision processes in the management of the beach. Apart from the fecal indicators stipulated by the EU Bathing Water Directive (E. coli and enterococci), additional fecal (C. perfringens) and non-fecal (S. aureus and P. aeriginosa) parameters were analyzed. Moreover, the effects of applying different evaluation criteria (national, EU and U.S. EPA) to beach ranking were studied, and the most common reasons for exceeding water-quality standards were investigated. In order to upgrade routine monitoring, a predictive statistical model was developed. The highest concentrations of fecal indicators were recorded early in the morning (6 AM) due to the lack of solar radiation during the night period. When compared to enterococci, E. coli criteria appears to be more stringent for the detection of fecal pollution. In comparison to EU and U.S. EPA criteria, Croatian national evaluation criteria provide stricter public health standards. Solar radiation and precipitation were the predominant environmental parameters affecting beach water quality, and these parameters were included in the predictive model setup. Predictive models revealed great potential for the monitoring of recreational water bodies, and with further development can become a useful tool for the improvement of public health protection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Optical modeling of Fresnel zoneplate microscopes.

    Science.gov (United States)

    Naulleau, Patrick P; Mochi, Iacopo; Goldberg, Kenneth A

    2011-07-10

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  5. Analysing the Competency of Mathematical Modelling in Physics

    CERN Document Server

    Redish, Edward F

    2016-01-01

    A primary goal of physics is to create mathematical models that allow both predictions and explanations of physical phenomena. We weave maths extensively into our physics instruction beginning in high school, and the level and complexity of the maths we draw on grows as our students progress through a physics curriculum. Despite much research on the learning of both physics and math, the problem of how to successfully teach most of our students to use maths in physics effectively remains unsolved. A fundamental issue is that in physics, we don't just use maths, we think about the physical world with it. As a result, we make meaning with math-ematical symbology in a different way than mathematicians do. In this talk we analyze how developing the competency of mathematical modeling is more than just "learning to do math" but requires learning to blend physical meaning into mathematical representations and use that physical meaning in solving problems. Examples are drawn from across the curriculum.

  6. Fluctuating selection models and McDonald-Kreitman type analyses.

    Directory of Open Access Journals (Sweden)

    Toni I Gossmann

    Full Text Available It is likely that the strength of selection acting upon a mutation varies through time due to changes in the environment. However, most population genetic theory assumes that the strength of selection remains constant. Here we investigate the consequences of fluctuating selection pressures on the quantification of adaptive evolution using McDonald-Kreitman (MK style approaches. In agreement with previous work, we show that fluctuating selection can generate evidence of adaptive evolution even when the expected strength of selection on a mutation is zero. However, we also find that the mutations, which contribute to both polymorphism and divergence tend, on average, to be positively selected during their lifetime, under fluctuating selection models. This is because mutations that fluctuate, by chance, to positive selected values, tend to reach higher frequencies in the population than those that fluctuate towards negative values. Hence the evidence of positive adaptive evolution detected under a fluctuating selection model by MK type approaches is genuine since fixed mutations tend to be advantageous on average during their lifetime. Never-the-less we show that methods tend to underestimate the rate of adaptive evolution when selection fluctuates.

  7. A workflow model to analyse pediatric emergency overcrowding.

    Science.gov (United States)

    Zgaya, Hayfa; Ajmi, Ines; Gammoudi, Lotfi; Hammadi, Slim; Martinot, Alain; Beuscart, Régis; Renard, Jean-Marie

    2014-01-01

    The greatest source of delay in patient flow is the waiting time from the health care request, and especially the bed request to exit from the Pediatric Emergency Department (PED) for hospital admission. It represents 70% of the time that these patients occupied in the PED waiting rooms. Our objective in this study is to identify tension indicators and bottlenecks that contribute to overcrowding. Patient flow mapping through the PED was carried out in a continuous 2 years period from January 2011 to December 2012. Our method is to use the collected real data, basing on accurate visits made in the PED of the Regional University Hospital Center (CHRU) of Lille (France), in order to construct an accurate and complete representation of the PED processes. The result of this representation is a Workflow model of the patient journey in the PED representing most faithfully possible the reality of the PED of CHRU of Lille. This model allowed us to identify sources of delay in patient flow and aspects of the PED activity that could be improved. It must be enough retailed to produce an analysis allowing to identify the dysfunctions of the PED and also to propose and to estimate prevention indicators of tensions. Our survey is integrated into the French National Research Agency project, titled: "Hospital: optimization, simulation and avoidance of strain" (ANR HOST).

  8. Geographically Isolated Wetlands and Catchment Hydrology: A Modified Model Analyses

    Science.gov (United States)

    Evenson, G.; Golden, H. E.; Lane, C.; D'Amico, E.

    2014-12-01

    Geographically isolated wetlands (GIWs), typically defined as depressional wetlands surrounded by uplands, support an array of hydrological and ecological processes. However, key research questions concerning the hydrological connectivity of GIWs and their impacts on downgradient surface waters remain unanswered. This is particularly important for regulation and management of these systems. For example, in the past decade United States Supreme Court decisions suggest that GIWs can be afforded protection if significant connectivity exists between these waters and traditional navigable waters. Here we developed a simulation procedure to quantify the effects of various spatial distributions of GIWs across the landscape on the downgradient hydrograph using a refined version of the Soil and Water Assessment Tool (SWAT), a catchment-scale hydrological simulation model. We modified the SWAT FORTRAN source code and employed an alternative hydrologic response unit (HRU) definition to facilitate an improved representation of GIW hydrologic processes and connectivity relationships to other surface waters, and to quantify their downgradient hydrological effects. We applied the modified SWAT model to an ~ 202 km2 catchment in the Coastal Plain of North Carolina, USA, exhibiting a substantial population of mapped GIWs. Results from our series of GIW distribution scenarios suggest that: (1) Our representation of GIWs within SWAT conforms to field-based characterizations of regional GIWs in most respects; (2) GIWs exhibit substantial seasonally-dependent effects upon downgradient base flow; (3) GIWs mitigate peak flows, particularly following high rainfall events; and (4) The presence of GIWs on the landscape impacts the catchment water balance (e.g., by increasing groundwater outflows). Our outcomes support the hypothesis that GIWs have an important catchment-scale effect on downgradient streamflow.

  9. Experience at Los Alamos with use of the optical model for applied nuclear data calculations

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.G.

    1994-10-01

    While many nuclear models are important in calculations of nuclear data, the optical model usually provides the basic underpinning of analyses directed at data for applications. An overview is given here of experience in the Nuclear Theory and Applications Group at Los Alamos National Laboratory in the use of the optical model for calculations of nuclear cross section data for applied purposes. We consider the direct utilization of total, elastic, and reaction cross sections for neutrons, protons, deuterons, tritons, {sup 3}He and alpha particles in files of evaluated nuclear data covering the energy range of 0 to 200 MeV, as well as transmission coefficients for reaction theory calculations and neutron and proton wave functions direct-reaction and Feshbach-Kerman-Koonin analyses. Optical model codes such as SCAT and ECIS and the reaction theory codes COMNUC, GNASH FKK-GNASH, and DWUCK have primarily been used in our analyses. A summary of optical model parameterizations from past analyses at Los Alamos will be given, including detailed tabulations of the parameters for a selection of nuclei.

  10. Optics damage modeling and analysis at the National Ignition Facility

    Science.gov (United States)

    Liao, Z. M.; Raymond, B.; Gaylord, J.; Fallejo, R.; Bude, J.; Wegner, P.

    2014-10-01

    Comprehensive modeling of laser-induced damage in optics for the National Ignition Facility (NIF) has been performed on fused silica wedge focus lenses with a metric that compares the modeled damage performance to online inspections. The results indicate that damage models are successful in tracking the performance of the fused silica final optics when properly accounting for various optical finishes and mitigation processes. This validates the consistency of the damage models and allows us to further monitor and evaluate different system parameters that potentially can affect optics performance.

  11. Myelin deposition in the optic tectum of trout as monitored by enzymatic and morphometric analyses.

    Science.gov (United States)

    Jeserich, G; Breer, H

    1981-12-01

    The activity of arylsulfatase A and 2'3'-cyclic nucleotide 3'-phosphohydrolase was studied in the brain of trout in parallel to the structural differentiation of tissue from early larval stages into adulthood. Whereas in the optic tectum, phosphodiesterase activity could not be detected before the second month after hatching in brainstem, the enzyme had already reached 80% of adult level. In tectum it was from the fourth to the seventh month that this enzyme dramatically increased, thereby reaching about the adult level. The developmental profile of arylsulfatase A was profoundly different, since 1) considerable activity was found in tectum at early larval stages and 2) the activity showed a peak between two and six months and then dropped markedly. Morphometric analysis of the two myelinated layers of trout tectum support and extend the biochemical results leading to the conclusion that the phosphodiesterase activity reflects the prevailing degree of myelination, whereas the developmental profile of the sulfolipid-metabolizing enzyme indicates the rate of myelin accumulation.

  12. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography

    Science.gov (United States)

    Koprowski, Robert; Safranow, Krzysztof; Woźniak, Krzysztof

    2017-01-01

    Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching) bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant. PMID:28243604

  13. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Julia Seeliger

    2017-01-01

    Full Text Available Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant.

  14. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography.

    Science.gov (United States)

    Seeliger, Julia; Machoy, Monika; Koprowski, Robert; Safranow, Krzysztof; Gedrange, Tomasz; Woźniak, Krzysztof

    2017-01-01

    Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching) bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant.

  15. Uncertainty Quantification for Optical Model Parameters

    CERN Document Server

    Lovell, A E; Sarich, J; Wild, S M

    2016-01-01

    Although uncertainty quantification has been making its way into nuclear theory, these methods have yet to be explored in the context of reaction theory. For example, it is well known that different parameterizations of the optical potential can result in different cross sections, but these differences have not been systematically studied and quantified. The purpose of this work is to investigate the uncertainties in nuclear reactions that result from fitting a given model to elastic-scattering data, as well as to study how these uncertainties propagate to the inelastic and transfer channels. We use statistical methods to determine a best fit and create corresponding 95\\% confidence bands. A simple model of the process is fit to elastic-scattering data and used to predict either inelastic or transfer cross sections. In this initial work, we assume that our model is correct, and the only uncertainties come from the variation of the fit parameters. We study a number of reactions involving neutron and deuteron p...

  16. Classical Ising Models Realised on Optical Lattices

    Science.gov (United States)

    Cirio, Mauro; Brennen, G. K.; Twamley, J.; Iblisdir, S.; Boada, O.

    2012-02-01

    We describe a simple quantum algorithm acting on a register of qubits in d spatial dimensions which computes statistical properties of d+1 dimensional classical Ising models. The algorithm works by measuring scattering matrix elements for quantum processes and Wick rotating to provide estimates for real partition functions of classical systems. This method can be implemented in a straightforward way in ensembles of qubits, e.g. three dimensional optical lattices with only nearest neighbor Ising like interactions. By measuring noise in the estimate useful information regarding location of critical points and scaling laws can be extracted for classical Ising models, possibly with inhomogeneity. Unlike the case of quantum simulation of quantum hamiltonians, this algorithm does not require Trotter expansion of the evolution operator and thus has the advantage of being amenable to fault tolerant gate design in a straightforward manner. Through this setting it is possible to study the quantum computational complexity of the estimation of a classical partition function for a 2D Ising model with non uniform couplings and magnetic fields. We provide examples for the 2 dimensional case.

  17. A Novel Model of Resolving Contention in Optical Burst Switched Networks

    Institute of Scientific and Technical Information of China (English)

    Huang Anpeng(黄安鹏); Xie Linzhen; Li Jingcong; Li Zhengbin; Xu Anshi

    2004-01-01

    A Novel segmentation and feedback model (SFM) applied to resolve collision has been proposed. The SFM is featured with Burst Segmentation and Prioritized Feedback (BSPF) that are used to provide quality of service (QoS) and realize high throughput and faster switching in the optical burst switched networks. Simulation and performance analyses show that the SFM effectively avoid collision in optical burst switching (OBS). Long delay time of deflection routing and immature technology of wavelength converter and optical buffer are not employed in the SFM. The SFM not only realizes quick switching but also allows preemption for higher priority bursts.

  18. Using System Dynamic Model and Neural Network Model to Analyse Water Scarcity in Sudan

    Science.gov (United States)

    Li, Y.; Tang, C.; Xu, L.; Ye, S.

    2017-07-01

    Many parts of the world are facing the problem of Water Scarcity. Analysing Water Scarcity quantitatively is an important step to solve the problem. Water scarcity in a region is gauged by WSI (water scarcity index), which incorporate water supply and water demand. To get the WSI, Neural Network Model and SDM (System Dynamic Model) that depict how environmental and social factors affect water supply and demand are developed to depict how environmental and social factors affect water supply and demand. The uneven distribution of water resource and water demand across a region leads to an uneven distribution of WSI within this region. To predict WSI for the future, logistic model, Grey Prediction, and statistics are applied in predicting variables. Sudan suffers from severe water scarcity problem with WSI of 1 in 2014, water resource unevenly distributed. According to the result of modified model, after the intervention, Sudan’s water situation will become better.

  19. Finite element analyses of thin film active grazing incidence x-ray optics

    Science.gov (United States)

    Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.

  20. Optical modeling and physical performances evaluations for the JT-60SA ECRF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Platania, P., E-mail: platania@ifp.cnr.it; Figini, L.; Farina, D.; Micheletti, D.; Moro, A.; Sozzi, C. [Istituto di Fisica del Plasma “P. Caldirola”, Consiglio Nazionale delle Ricerche, Via R. Cozzi 53, 20125, Milano (Italy); Isayama, A.; Kobayashi, T.; Moriyama, S. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-12-10

    The purpose of this work is the optical modeling and physical performances evaluations of the JT-60SA ECRF launcher system. The beams have been simulated with the electromagnetic code GRASP® and used as input for ECCD calculations performed with the beam tracing code GRAY, capable of modeling propagation, absorption and current drive of an EC Gaussion beam with general astigmatism. Full details of the optical analysis has been taken into account to model the launched beams. Inductive and advanced reference scenarios has been analysed for physical evaluations in the full poloidal and toroidal steering ranges for two slightly different layouts of the launcher system.

  1. Pan-European modelling of riverine nutrient concentrations - spatial patterns, source detection, trend analyses, scenario modelling

    Science.gov (United States)

    Bartosova, Alena; Arheimer, Berit; Capell, Rene; Donnelly, Chantal; Strömqvist, Johan

    2016-04-01

    Nutrient transport models are important tools for large scale assessments of macro-nutrient fluxes (nitrogen, phosphorus) and thus can serve as support tool for environmental assessment and management. Results from model applications over large areas, i.e. from major river basin to continental scales can fill a gap where monitoring data is not available. Here, we present results from the pan-European rainfall-runoff and nutrient transfer model E-HYPE, which is based on open data sources. We investigate the ability of the E-HYPE model to replicate the spatial and temporal variations found in observed time-series of riverine N and P concentrations, and illustrate the model usefulness for nutrient source detection, trend analyses, and scenario modelling. The results show spatial patterns in N concentration in rivers across Europe which can be used to further our understanding of nutrient issues across the European continent. E-HYPE results show hot spots with highest concentrations of total nitrogen in Western Europe along the North Sea coast. Source apportionment was performed to rank sources of nutrient inflow from land to sea along the European coast. An integrated dynamic model as E-HYPE also allows us to investigate impacts of climate change and measure programs, which was illustrated in a couple of scenarios for the Baltic Sea. Comparing model results with observations shows large uncertainty in many of the data sets and the assumptions used in the model set-up, e.g. point source release estimates. However, evaluation of model performance at a number of measurement sites in Europe shows that mean N concentration levels are generally well simulated. P levels are less well predicted which is expected as the variability of P concentrations in both time and space is higher. Comparing model performance with model set-ups using local data for the Weaver River (UK) did not result in systematically better model performance which highlights the complexity of model

  2. Modeling GMPLS and Optical MPLS Networks

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann; Wessing, Henrik

    2003-01-01

    A consequence of migrating the existing Internet architecture to an all-optical one is that the network will consist of a mixture of equipment, ranging from electrical routers to all-optical packet switches. Hence, future networks will consist of multiple domains employing different technologies...

  3. Quantum Modelling of Electro-Optic Modulators

    CERN Document Server

    Capmany, Jose

    2011-01-01

    Many components that are employed in quantum information and communication systems are well known photonic devices encountered in standard optical fiber communication systems, such as optical beamsplitters, waveguide couplers and junctions, electro-optic modulators and optical fiber links. The use of these photonic devices is becoming increasingly important especially in the context of their possible integration either in a specifically designed system or in an already deployed end-to-end fiber link. Whereas the behavior of these devices is well known under the classical regime, in some cases their operation under quantum conditions is less well understood. This paper reviews the salient features of the quantum scattering theory describing both the operation of the electro-optic phase and amplitude modulators in discrete and continuous-mode formalisms. This subject is timely and of importance in light of the increasing utilization of these devices in a variety of systems, including quantum key distribution an...

  4. Novel applications of the dispersive optical model

    CERN Document Server

    Dickhoff, W H; Mahzoon, M H

    2016-01-01

    A review of recent developments of the dispersive optical model (DOM) is presented. Starting from the original work of Mahaux and Sartor, several necessary steps are developed and illustrated which increase the scope of the DOM allowing its interpretation as generating an experimentally constrained functional form of the nucleon self-energy. The method could therefore be renamed as the dispersive self-energy method. The aforementioned steps include the introduction of simultaneous fits of data for chains of isotopes or isotones allowing a data-driven extrapolation for the prediction of scattering cross sections and level properties in the direction of the respective drip lines. In addition, the energy domain for data was enlarged to include results up to 200 MeV where available. An important application of this work was implemented by employing these DOM potentials to the analysis of the (\\textit{d,p}) transfer reaction using the adiabatic distorted wave approximation (ADWA). We review the fully non-local DOM...

  5. Modelling Thermoelastic Distortion of Optics Using Elastodynamic Reciprocity

    CERN Document Server

    King, Eleanor; Veitch, Peter; Levin, Yuri

    2015-01-01

    Thermoelastic distortion resulting from optical absorption by transmissive and reflective optics can cause unacceptable changes in optical systems that employ high power beams. In advanced-generation laser-interferometric gravitational wave detectors for example, optical absorption is expected to result in wavefront distortions that would compromise the sensitivity of the detector; thus necessitating the use of adaptive thermal compensation. Unfortunately, these systems have long thermal time constants and so predictive feed-forward control systems could be required - but the finite-element analysis is computationally expensive. We describe here the use of the Betti-Maxwell elastodynamic reciprocity theorem to calculate the response of linear elastic bodies (optics) to heating that has arbitrary spatial distribution. We demonstrate using a simple example, that it can yield accurate results in computational times that are significantly less than those required for finite-element analyses.

  6. Optical Turbulence Characterization at LAMOST Site: Observations and Models

    CERN Document Server

    Liu, L -Y; Yao, Y -Q; Vernin, J; Chadid, M; Wang, H -S; Yin, J; Wang, Y -P

    2015-01-01

    Atmospheric optical turbulence seriously limits the performance of high angular resolution instruments. An 8-night campaign of measurements was carried out at the LAMOST site in 2011, to characterize the optical turbulence. Two instruments were set up during the campaign: a Differential Image Motion Monitor (DIMM) used to measure the total atmospheric seeing, and a Single Star Scidar (SSS) to measure the vertical profiles of the turbulence C_n^2(h) and the horizontal wind velocity V(h). The optical turbulence parameters are also calculated with the Weather Research and Forecasting (WRF) model coupled with the Trinquet-Vernin model, which describes optical effects of atmospheric turbulence by using the local meteorological parameters. This paper presents assessment of the optical parameters involved in high angular resolution astronomy. Its includes seeing, isoplanatic angle, coherence time, coherence etendue, vertical profiles of optical turbulence intensity _n^2(h)$ and horizontal wind speed V(h). The median...

  7. A novel model on dynamic resource allocation in optical networks

    Institute of Scientific and Technical Information of China (English)

    TANG Yong; RAO Min; LI Lei; CHEN Yu; JIANG Jianfeng; ZHANG Mingde; SUN Xiaohan

    2005-01-01

    A novel model on dynamic resource allocation in the WDM optical networks is proposed, basing on the integrated considerations of the impacts of transmission impairments and service classification on dynamic resource allocation in the optical layer.In this model, the priorities of optical connection requests are mapped into different thresholds of transmission impairments, and a uniform method which is adopted to evaluate the virtual wavelength path (VWP) candidates is defined. The Advanced Preferred Wavelength Sets Algorithm (A-PWS) and the heuristic Dynamic Min-Cost & Optical Virtual Wavelength Path Algorithm (DMC-OVWP) are presented addressing the routing and wavelength assignment (RWA) problem based on dynamic traffic and multi priorities in wavelength-routed optical networks. For a received optical connection request,DMC-OVWP is employed to calculate a list of the VWP candidates, and an appropriate VWP which matches the request's priority is picked up to establish the lightpath by analyzing the transmission qualities of the VWP candidates.

  8. On a Decomposition Model for Optical Flow

    Science.gov (United States)

    Abhau, Jochen; Belhachmi, Zakaria; Scherzer, Otmar

    In this paper we present a variational method for determining cartoon and texture components of the optical flow of a noisy image sequence. The method is realized by reformulating the optical flow problem first as a variational denoising problem for multi-channel data and then by applying decomposition methods. Thanks to the general formulation, several norms can be used for the decomposition. We study a decomposition for the optical flow into bounded variation and oscillating component in greater detail. Numerical examples demonstrate the capabilities of the proposed approach.

  9. Dynamic optical interferometry applied to analyse out of plane displacement fields for crack propagation in brittle materials

    Science.gov (United States)

    Hedan, S.; Pop, O.; Valle, V.; Cottron, M.

    2006-08-01

    We propose in this paper, to analyse, the evolution of out-of-plane displacement fields for a crack propagation in brittle materials. As the crack propagation is a complex process that involves the deformation mechanisms, the out-of-plane displacement measurement gives pertinent information about the 3D effects. For investigation, we use the interferometric method. The optical device includes a laser source, a Michelson interferometer and an ultra high-speed CCD camera. To take into account the crack velocity, we dispose of a maximum frame rate of 1Mfps. The experimental tests have been carried out for a SEN (Single Edge Notch) specimen of PMMA material. The crack propagation is initiated by adding a dynamic energy given by the impact of a cutter on the initial crack. The obtained interferograms are analysed with a new phase extraction method entitled MPC [6]. This analysis, which has been developed specially for dynamic studies, gives the out-of-plane displacement with an accuracy of about 10 nm.

  10. Model GC1312S Multifunction Integrated Optical Circuit Devices

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Model GC1312S multifunction integrated optical circuit device (MIOC) used in inertial-grade interferometric fiber optics gyroscopes (IFOGs) is fabricated by annealing and proton exchange process (APE). The unique feature of the device is the incorporation of the beat detection circuit besides all the features the conventional single Y-branch multifunction integrated optical circuit devices have. The device structure, operation principle and typical characteristics, etc., are briefly presented in this paper.

  11. Taxing CO2 and subsidising biomass: Analysed in a macroeconomic and sectoral model

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    2000-01-01

    This paper analyses the combination of taxes and subsidies as an instrument to enable a reduction in CO2 emission. The objective of the study is to compare recycling of a CO2 tax revenue as a subsidy for biomass use as opposed to traditional recycling such as reduced income or corporate taxation....... A model of Denmark's energy supply sector is used to analyse the e€ect of a CO2 tax combined with using the tax revenue for biomass subsidies. The energy supply model is linked to a macroeconomic model such that the macroeconomic consequences of tax policies can be analysed along with the consequences...

  12. Measuring optical properties of a blood vessel model using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  13. Longitudinal data analyses using linear mixed models in SPSS: concepts, procedures and illustrations.

    Science.gov (United States)

    Shek, Daniel T L; Ma, Cecilia M S

    2011-01-05

    Although different methods are available for the analyses of longitudinal data, analyses based on generalized linear models (GLM) are criticized as violating the assumption of independence of observations. Alternatively, linear mixed models (LMM) are commonly used to understand changes in human behavior over time. In this paper, the basic concepts surrounding LMM (or hierarchical linear models) are outlined. Although SPSS is a statistical analyses package commonly used by researchers, documentation on LMM procedures in SPSS is not thorough or user friendly. With reference to this limitation, the related procedures for performing analyses based on LMM in SPSS are described. To demonstrate the application of LMM analyses in SPSS, findings based on six waves of data collected in the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes) in Hong Kong are presented.

  14. Novel applications of the dispersive optical model

    Science.gov (United States)

    Dickhoff, W. H.; Charity, R. J.; Mahzoon, M. H.

    2017-03-01

    A review of recent developments of the dispersive optical model (DOM) is presented. Starting from the original work of Mahaux and Sartor, several necessary steps are developed and illustrated which increase the scope of the DOM allowing its interpretation as generating an experimentally constrained functional form of the nucleon self-energy. The method could therefore be renamed as the dispersive self-energy method. The aforementioned steps include the introduction of simultaneous fits of data for chains of isotopes or isotones allowing a data-driven extrapolation for the prediction of scattering cross sections and level properties in the direction of the respective drip lines. In addition, the energy domain for data was enlarged to include results up to 200 MeV where available. An important application of this work was implemented by employing these DOM potentials to the analysis of the (d, p) transfer reaction using the adiabatic distorted wave approximation. We review these calculations which suggest that physically meaningful results are easier to obtain by employing DOM ingredients as compared to the traditional approach which relies on a phenomenologically-adjusted bound-state wave function combined with a global (nondispersive) optical-model potential. Application to the exotic 132Sn nucleus also shows great promise for the extrapolation of DOM potentials towards the drip line with attendant relevance for the physics of FRIB. We note that the DOM method combines structure and reaction information on the same footing providing a unique approach to the analysis of exotic nuclei. We illustrate the importance of abandoning the custom of representing the non-local Hartree–Fock (HF) potential in the DOM by an energy-dependent local potential as it impedes the proper normalization of the solution of the Dyson equation. This important step allows for the interpretation of the DOM potential as representing the nucleon self-energy permitting the calculations of

  15. The Maxwell-Lorentz Model for optical Pulses

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Brio, Moysey

    2007-01-01

    Dynamics of optical pulses, especially of ultra short femtosecond pulses, are of great technological and theoretical interest. The dynamics of optical pulses is usually studied using the nonlinear Schrodinger (NLS) equation model. While such approach works surprisingly well for description of pulse...

  16. HCMT models of optical microring-resonator circuits

    NARCIS (Netherlands)

    Lohmeyer, Manfred

    2010-01-01

    Circuits of dielectric integrated optical microring resonators are addressed through a two-dimensional hybrid analytical/numerical coupled mode theory (HCMT) model. Analytical modes of all straight and curved cores form templates for the optical fields of the entire circuits. Our variational techniq

  17. Pathway models for analysing and managing the introduction of alien plant pests - an overview and categorization

    NARCIS (Netherlands)

    Douma, J.C.; Pautasso, M.; Venette, R.C.; Robinet, C.; Hemerik, L.; Mourits, M.C.M.; Schans, J.; Werf, van der W.

    2016-01-01

    Alien plant pests are introduced into new areas at unprecedented rates through global trade, transport, tourism and travel, threatening biodiversity and agriculture. Increasingly, the movement and introduction of pests is analysed with pathway models to provide risk managers with quantitative

  18. Activities at Los Alamos for the optical model segment of the RIPL CRP

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.G.

    1997-05-10

    This report discusses activity at Los Alamos on the nuclear optical model. In particular, the following topics are discussed: format of the optical model parameter library; contents of the library; validation of the optical model library; and conclusions and recommendations.

  19. BeamOptics : a Symbolic Platform for Modeling and the Solution of Beam Optics System

    Energy Technology Data Exchange (ETDEWEB)

    Yu-Chiu Chao

    2000-11-01

    BeamOptics [1] is a Mathematica-based computing platform devoted to the following objectives: (1) Structured representation and manipulation of particle beam optics systems with symbolic capabilities, (2) Analytical and numerical modeling of beam optics system behaviors, (3) Solution to specific beam optical or general accelerator system problems, in algebraic form in certain cases, through customized algorithms. Taking advantage of and conforming to the highly formal and self-contained structure of Mathematica, BeamOptics provides a unique platform for developing accelerator design and analysis programs. The feature of symbolic computation and the ability to manipulate the beam optics system at the programming language level enable the user to solve or optimize his system with considerably more efficiency, rigour and insight than can be easily achieved with passive modeling or numerical simulation methods. BeamOptics is developed with continuous evolution in mind. New features and algorithms from diverse sources can be incorporated without major modification, due to its formal and generic structure. In this report, a survey is given of the basic structure and methodology of BeamOptics, as well as a demonstration of some of its more specialized applications, and possible direction of evolution.

  20. Analytical models of optical response in one-dimensional semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Thomas Garm, E-mail: tgp@nano.aau.dk

    2015-09-04

    The quantum mechanical description of the optical properties of crystalline materials typically requires extensive numerical computation. Including excitonic and non-perturbative field effects adds to the complexity. In one dimension, however, the analysis simplifies and optical spectra can be computed exactly. In this paper, we apply the Wannier exciton formalism to derive analytical expressions for the optical response in four cases of increasing complexity. Thus, we start from free carriers and, in turn, switch on electrostatic fields and electron–hole attraction and, finally, analyze the combined influence of these effects. In addition, the optical response of impurity-localized excitons is discussed. - Highlights: • Optical response of one-dimensional semiconductors including excitons. • Analytical model of excitonic Franz–Keldysh effect. • Computation of optical response of impurity-localized excitons.

  1. Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB)

    Science.gov (United States)

    Mishra, Amit Kumar; Shibata, Takashi

    2012-09-01

    Agriculture crop residue burning is one of the important sources of trace gas emissions and aerosol loading over the Indo-Gangetic Basin (IGB). The present study deals with the spatial variability including the vertical structure of optical and microphysical properties of aerosols, during the crop residue burning season (October and November) of 2009 over the IGB. Increased number of fire counts observed by MODIS (MODerate resolution Imaging Spectroradiometer) that is associated with high aerosol optical depth (MODIS-AOD > 0.7) and enhanced tropospheric columnar NO2 concentrations observed by OMI (Ozone Monitoring Instrument), suggests agriculture crop residue burning as a main source of aerosol loading over the IGB during October and November. PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) observations show an increase in fine mode AOD (at 865 nm) from October (0.1-0.2) to November (0.2-0.3) over the IGB, which is well corroborated with MODIS observations. CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) data shows the elevated aerosol plume (4.0-4.5 km) over the north-west IGB (associated with burning activities) that could have been caused by positive buoyancy through pyro-convection. However, large concentrations of aerosol were found below 1.0 km altitude. The averaged vertical structure of crop residue burning aerosols shows an exponential decrease with altitude (mean scale height ˜1.44 ± 0.20 km). Aerosol optical and microphysical properties coupled with backward air trajectories analyses at Kanpur indicated regional transport of biomass burning aerosols in a downwind direction from north-west IGB to south-east IGB. Aerosol classification, using AERONET (AErosol RObotic NETwork)-derived absorption properties coupled with size parameter (2006-2010) showed clear seasonal dependency of aerosol types which revealed the presence of biomass burning aerosols only during the crop

  2. Mark formation model for optical rewritable recording

    NARCIS (Netherlands)

    Brusche, J.H.

    2007-01-01

    Optically rewritable discs contain one or more so-called recording stacks. These stacks consist of various grooved layers. At least one of these layers contains a so-called phase-change material. In the recording layer, amorphous regions are formed on a crystalline background by means of high power

  3. Mark formation modeling in optical rewritable recording

    NARCIS (Netherlands)

    Brusche, J.H.; Segal, A.; Vuik, C.; Urbach, H.P.

    2006-01-01

    In optical rewritable recording media, such as the Blu-ray Disc, amorphous marks are formed on a crystalline background of a phase-change layer, by means of short, high power laser pulses. In order to improve this data storage concept, it is of great importance to understand the mark formation

  4. Mark formation modeling in optical rewritable recording

    NARCIS (Netherlands)

    Brusche, J.H.; Segal, A.; Vuik, C.; Urbach, H.P.

    2006-01-01

    In optical rewritable recording media, such as the Blu-ray Disc, amorphous marks are formed on a crystalline background of a phase-change layer, by means of short, high power laser pulses. In order to improve this data storage concept, it is of great importance to understand the mark formation proce

  5. DISSYMMETRY MODEL OF MOLECULAR POLARIZABILITY AND OPTICAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    周志华; 汤杰

    1991-01-01

    Dissymmetry model of molecular polarizability divided into some layers within a sphere,some rules and sequence according to the magnitude of polarizability replaced by bond refraction for many groups have been suggested.The relationship between the dissymmetry of molecular polarizability arrounding the dissymmetric carbon atom and the direction of optical activity has been discussed .The accuracy is above 95 persent to use our model and rules to determine over 6000 compounds of optical activity.

  6. Soliton models in resonant and nonresonant optical fibers

    Indian Academy of Sciences (India)

    K Porsezian

    2001-11-01

    In this review, considering the important linear and nonlinear optical effects like group velocity dispersion, higher order dispersion, Kerr nonlinearity, self-steepening, stimulated Raman scattering, birefringence, self-induced transparency and various inhomogeneous effects in fibers, the completely integrable concept and bright, dark and self-induced transparency soliton models in nonlinear fiber optics are discussed. Considering the above important optical effects, the different completely integrable soliton models in the form of nonlinear Schrödinger (NLS), NLS-MaxwellBloch (MB) type equations reported in the literature are discussed. Finally, solitons in stimulated Raman scattering (SRS) system is briefly discussed.

  7. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1

    Directory of Open Access Journals (Sweden)

    Zachary Subin

    2012-02-01

    Full Text Available Lakes can influence regional climate, yet most general circulation models have, at best, simple and largely untested representations of lakes. We developed the Lake, Ice, Snow, and Sediment Simulator(LISSS for inclusion in the land-surface component (CLM4 of an earth system model (CESM1. The existing CLM4 lake modelperformed poorly at all sites tested; for temperate lakes, summer surface water temperature predictions were 10–25uC lower than observations. CLM4-LISSS modifies the existing model by including (1 a treatment of snow; (2 freezing, melting, and ice physics; (3 a sediment thermal submodel; (4 spatially variable prescribed lakedepth; (5 improved parameterizations of lake surface properties; (6 increased mixing under ice and in deep lakes; and (7 correction of previous errors. We evaluated the lake model predictions of water temperature and surface fluxes at three small temperate and boreal lakes where extensive observational data was available. We alsoevaluated the predicted water temperature and/or ice and snow thicknesses for ten other lakes where less comprehensive forcing observations were available. CLM4-LISSS performed very well compared to observations for shallow to medium-depth small lakes. For large, deep lakes, the under-prediction of mixing was improved by increasing the lake eddy diffusivity by a factor of 10, consistent with previouspublished analyses. Surface temperature and surface flux predictions were improved when the aerodynamic roughness lengths were calculated as a function of friction velocity, rather than using a constant value of 1 mm or greater. We evaluated the sensitivity of surface energy fluxes to modeled lake processes and parameters. Largechanges in monthly-averaged surface fluxes (up to 30 W m22 were found when excluding snow insulation or phase change physics and when varying the opacity, depth, albedo of melting lake ice, and mixing strength across ranges commonly found in real lakes. Typical

  8. A modified Lee-Carter model for analysing short-base-period data.

    Science.gov (United States)

    Zhao, Bojuan Barbara

    2012-03-01

    This paper introduces a new modified Lee-Carter model for analysing short-base-period mortality data, for which the original Lee-Carter model produces severely fluctuating predicted age-specific mortality. Approximating the unknown parameters in the modified model by linearized cubic splines and other additive functions, the model can be simplified into a logistic regression when fitted to binomial data. The expected death rate estimated from the modified model is smooth, not only over ages but also over years. The analysis of mortality data in China (2000-08) demonstrates the advantages of the new model over existing models.

  9. Rate equations model and optical external efficiency of optically pumped electrically driven terahertz quantum cascade lasers

    Science.gov (United States)

    Hamadou, A.; Thobel, J.-L.; Lamari, S.

    2016-10-01

    A four level rate equations model for a terahertz optically pumped electrically driven quantum cascade laser is here introduced and used to model the system both analytically and numerically. In the steady state, both in the presence and absence of the terahertz optical field, we solve the resulting nonlinear system of equations and obtain closed form expressions for the levels occupation, population inversion as well as the mid-infrared pump threshold intensity in terms of the device parameters. We also derive, for the first time for this system, an analytical formula for the optical external efficiency and analyze the simultaneous effects of the cavity length and pump intensity on it. At moderate to high pump intensities, we find that the optical external efficiency scales roughly as the reciprocal of the cavity length.

  10. Study of Optical Models Regarding the Human Eye

    Directory of Open Access Journals (Sweden)

    Maryam Abolmasoomi

    2011-03-01

    Full Text Available Introduction: Until now, many models have been presented for optical study of the human eye. In recent years, surgery on the anterior section of the eye (such as cataract and photo-refractive surgery has increased, so a study on the optics of the eye and evaluation of vision quality has become more important. Material and Methods: In this article, some of these models are considered. They include models with spherical and conic-section surfaces (for cornea and lens, simple models and new models with complex surfaces. Results: Evaluation of the optical models of the eye provides the possibility of enhancing the representation of human vision and also increasing the accuracy of surgery on the anterior section of the eye to enable higher quality vision.

  11. Theoretical model for a Faraday anomalous dispersion optical filter

    Science.gov (United States)

    Yin, B.; Shay, T. M.

    1991-01-01

    A model for the Faraday anomalous dispersion optical filter is presented. The model predicts a bandwidth of 0.6 GHz and a transmission peak of 0.98 for a filter operating on the Cs (D2) line. The model includes hyperfine effects and is valid for arbitrary magnetic fields.

  12. Modeling plasmonic scattering combined with thin-film optics.

    Science.gov (United States)

    Schmid, M; Klenk, R; Lux-Steiner, M Ch; Topic, M; Krc, J

    2011-01-14

    Plasmonic scattering from metal nanostructures presents a promising concept for improving the conversion efficiency of solar cells. The determination of optimal nanostructures and their position within the solar cell is crucial to boost the efficiency. Therefore we established a one-dimensional optical model combining plasmonic scattering and thin-film optics to simulate optical properties of thin-film solar cells including metal nanoparticles. Scattering models based on dipole oscillations and Mie theory are presented and their integration in thin-film semi-coherent optical descriptions is explained. A plasmonic layer is introduced in the thin-film structure to simulate scattering properties as well as parasitic absorption in the metal nanoparticles. A proof of modeling concept is given for the case of metal-island grown silver nanoparticles on glass and ZnO:Al/glass substrates. Using simulations a promising application of the nanoparticle integration is shown for the case of CuGaSe(2) solar cells.

  13. Optical Propagation Modeling for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W H; Auerbach, J M; Henesian, M A; Jancaitis, K S; Manes, K R; Mehta, N C; Orth, C D; Sacks, R A; Shaw, M J; Widmayer, C C

    2004-01-12

    Optical propagation modeling of the National Ignition Facility has been utilized extensively from conceptual design several years ago through to early operations today. In practice we routinely (for every shot) model beam propagation starting from the waveform generator through to the target. This includes the regenerative amplifier, the 4-pass rod amplifier, and the large slab amplifiers. Such models have been improved over time to include details such as distances between components, gain profiles in the laser slabs and rods, transient optical distortions due to the flashlamp heating of laser slabs, measured transmitted and reflected wavefronts for all large optics, the adaptive optic feedback loop, and the frequency converter. These calculations allow nearfield and farfield predictions in good agreement with measurements.

  14. Comparison of linear measurements and analyses taken from plaster models and three-dimensional images.

    Science.gov (United States)

    Porto, Betina Grehs; Porto, Thiago Soares; Silva, Monica Barros; Grehs, Renésio Armindo; Pinto, Ary dos Santos; Bhandi, Shilpa H; Tonetto, Mateus Rodrigues; Bandéca, Matheus Coelho; dos Santos-Pinto, Lourdes Aparecida Martins

    2014-11-01

    Digital models are an alternative for carrying out analyses and devising treatment plans in orthodontics. The objective of this study was to evaluate the accuracy and the reproducibility of measurements of tooth sizes, interdental distances and analyses of occlusion using plaster models and their digital images. Thirty pairs of plaster models were chosen at random, and the digital images of each plaster model were obtained using a laser scanner (3Shape R-700, 3Shape A/S). With the plaster models, the measurements were taken using a caliper (Mitutoyo Digimatic(®), Mitutoyo (UK) Ltd) and the MicroScribe (MS) 3DX (Immersion, San Jose, Calif). For the digital images, the measurement tools used were those from the O3d software (Widialabs, Brazil). The data obtained were compared statistically using the Dahlberg formula, analysis of variance and the Tukey test (p plaster models using the caliper and from the digital models using O3d software were identical.

  15. Three-dimensional lake water quality modeling: sensitivity and uncertainty analyses.

    Science.gov (United States)

    Missaghi, Shahram; Hondzo, Miki; Melching, Charles

    2013-11-01

    Two sensitivity and uncertainty analysis methods are applied to a three-dimensional coupled hydrodynamic-ecological model (ELCOM-CAEDYM) of a morphologically complex lake. The primary goals of the analyses are to increase confidence in the model predictions, identify influential model parameters, quantify the uncertainty of model prediction, and explore the spatial and temporal variabilities of model predictions. The influence of model parameters on four model-predicted variables (model output) and the contributions of each of the model-predicted variables to the total variations in model output are presented. The contributions of predicted water temperature, dissolved oxygen, total phosphorus, and algal biomass contributed 3, 13, 26, and 58% of total model output variance, respectively. The fraction of variance resulting from model parameter uncertainty was calculated by two methods and used for evaluation and ranking of the most influential model parameters. Nine out of the top 10 parameters identified by each method agreed, but their ranks were different. Spatial and temporal changes of model uncertainty were investigated and visualized. Model uncertainty appeared to be concentrated around specific water depths and dates that corresponded to significant storm events. The results suggest that spatial and temporal variations in the predicted water quality variables are sensitive to the hydrodynamics of physical perturbations such as those caused by stream inflows generated by storm events. The sensitivity and uncertainty analyses identified the mineralization of dissolved organic carbon, sediment phosphorus release rate, algal metabolic loss rate, internal phosphorus concentration, and phosphorus uptake rate as the most influential model parameters.

  16. Processes models, environmental analyses, and cognitive architectures: quo vadis quantum probability theory?

    Science.gov (United States)

    Marewski, Julian N; Hoffrage, Ulrich

    2013-06-01

    A lot of research in cognition and decision making suffers from a lack of formalism. The quantum probability program could help to improve this situation, but we wonder whether it would provide even more added value if its presumed focus on outcome models were complemented by process models that are, ideally, informed by ecological analyses and integrated into cognitive architectures.

  17. Computer Modeling for Optical Waveguide Sensors.

    Science.gov (United States)

    1987-12-15

    COSATI CODES 18 SUBJECT TERMS (Continue on reverse it necessary and cleritify by DIock numnerl FIEL GRUP SB-GOUP Optical waveguide sensors Computer...reflection. The resultant probe beam transmission may be plotted as a function of changes in the refractive index of the surrounding fluid medium. BASIC...all angles of incidence about the critical angle ecr. It should be noted that N in equation (3) is a function of e, since = sin - l sin 8 , see

  18. Optical Turbulence Characterization by WRF model above Ali, Tibet

    Science.gov (United States)

    Wang, Hongshuai; Yao, Yongqiang; Liu, Liyong; Qian, Xuan; Yin, Jia

    2015-04-01

    Atmospheric optical turbulence modeling and forecast for astronomy is a relatively recent discipline, but has played important roles in site survey, optimization of large telescope observing tables, and in the applications of adaptive optics technique. The numerical approach, by using of meteorological parameters and parameterization of optical turbulence, can provide all the optical turbulence parameters related, such as C2n profile, coherent length, wavefront coherent time, seeing, isoplanatic angle, and so on. This is particularly interesting for searching new sites without the long and expensive site testing campaigns with instruments. Earlier site survey results by the site survey team of National Astronomical Observatories of China imply that the south-west Tibet, Ali, is one of the world best IR and sub-mm site. For searching the best site in Ali area, numerical approach by Weather and Research Forecasting (WRF) model had been used to evaluate the climatology of the optical turbulence. The WRF model is configured over a domain 200km×200km with 1km horizontal resolution and 65 vertical levels from ground to the model top(10millibars) in 2010. The initial and boundary conditions for the model are provided by the 1° × 1° Global Final Analysis data from NCEP. The distribution and seasonal variation of optical turbulence parameters over this area are presented.

  19. An electrical model of VCSEL as optical transmitter for optical printed circuit board

    Science.gov (United States)

    Kim, Do-Kyoon; Yoon, Young-Seol; Choi, Jin-Ho; Kim, Kyung-Min; Choi, Young-Wan; Lee, Seok

    2005-03-01

    Optical interconnection is recent issue for high-speed data transmission. The limitation of high-speed electrical data transmission is caused by impedance mismatching, electric field coupling, microwave loss, and different length of the electrical signal lines. To overcome these limitations, the electrical signal in the current electrical system has to be changed by the optical signal. The most suitable optical source in the OPCB (Optical Printed Circuit Board) is VCSEL (Vertical Cavity Surface Emitting Lasers) that is low-priced and has the characteristic of vertical surface emitting. In this paper, we propose an electrical model of the VCSEL as E/O converting devices for the OPCB. The equivalent circuit of the VCSEL based on the rate equations includes carrier dynamics and material properties. The rate equation parameters are obtained by full analysis based on rate equation and experiment results. The electrical model of the VCSEL has the series resistance determined by I-V characteristic curve, and the parallel capacitance by the parasitic response of the VCSEL chip. The bandwidth of the optical interconnection is analyzed considering those parameters. We design and fabricate the optical transmitter for OPCB considering proposed electrical model of VCSEL.

  20. Analyses and simulations in income frame regulation model for the network sector from 2007; Analyser og simuleringer i inntektsrammereguleringsmodellen for nettbransjen fra 2007

    Energy Technology Data Exchange (ETDEWEB)

    Askeland, Thomas Haave; Fjellstad, Bjoern

    2007-07-01

    Analyses of the income frame regulation model for the network sector in Norway, introduced 1.st of January 2007. The model's treatment of the norm cost is evaluated, especially the effect analyses carried out by a so called Data Envelopment Analysis model. It is argued that there may exist an age lopsidedness in the data set, and that this should and can be corrected in the effect analyses. The adjustment is proposed corrected for by introducing an age parameter in the data set. Analyses of how the calibration effects in the regulation model affect the business' total income frame, as well as each network company's income frame have been made. It is argued that the calibration, the way it is presented, is not working according to its intention, and should be adjusted in order to provide the sector with the rate of reference in return (ml)

  1. Modeling of Nonlinear Signal Distortion in Fiber-Optical Networks

    CERN Document Server

    Johannisson, Pontus

    2013-01-01

    A low-complexity model for signal quality prediction in a nonlinear fiber-optical network is developed. The model, which builds on the Gaussian noise model, takes into account the signal degradation caused by a combination of chromatic dispersion, nonlinear signal distortion, and amplifier noise. The center frequencies, bandwidths, and transmit powers can be chosen independently for each channel, which makes the model suitable for analysis and optimization of resource allocation, routing, and scheduling in large-scale optical networks applying flexible-grid wavelength-division multiplexing.

  2. USE OF THE SIMPLE LINEAR REGRESSION MODEL IN MACRO-ECONOMICAL ANALYSES

    Directory of Open Access Journals (Sweden)

    Constantin ANGHELACHE

    2011-10-01

    Full Text Available The article presents the fundamental aspects of the linear regression, as a toolbox which can be used in macroeconomic analyses. The article describes the estimation of the parameters, the statistical tests used, the homoscesasticity and heteroskedasticity. The use of econometrics instrument in macroeconomics is an important factor that guarantees the quality of the models, analyses, results and possible interpretation that can be drawn at this level.

  3. Sensitivity analyses of spatial population viability analysis models for species at risk and habitat conservation planning.

    Science.gov (United States)

    Naujokaitis-Lewis, Ilona R; Curtis, Janelle M R; Arcese, Peter; Rosenfeld, Jordan

    2009-02-01

    Population viability analysis (PVA) is an effective framework for modeling species- and habitat-recovery efforts, but uncertainty in parameter estimates and model structure can lead to unreliable predictions. Integrating complex and often uncertain information into spatial PVA models requires that comprehensive sensitivity analyses be applied to explore the influence of spatial and nonspatial parameters on model predictions. We reviewed 87 analyses of spatial demographic PVA models of plants and animals to identify common approaches to sensitivity analysis in recent publications. In contrast to best practices recommended in the broader modeling community, sensitivity analyses of spatial PVAs were typically ad hoc, inconsistent, and difficult to compare. Most studies applied local approaches to sensitivity analyses, but few varied multiple parameters simultaneously. A lack of standards for sensitivity analysis and reporting in spatial PVAs has the potential to compromise the ability to learn collectively from PVA results, accurately interpret results in cases where model relationships include nonlinearities and interactions, prioritize monitoring and management actions, and ensure conservation-planning decisions are robust to uncertainties in spatial and nonspatial parameters. Our review underscores the need to develop tools for global sensitivity analysis and apply these to spatial PVA.

  4. Photonic encryption : modeling and functional analysis of all optical logic.

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jason D.; Schroeppel, Richard Crabtree; Robertson, Perry J.

    2004-10-01

    With the build-out of large transport networks utilizing optical technologies, more and more capacity is being made available. Innovations in Dense Wave Division Multiplexing (DWDM) and the elimination of optical-electrical-optical conversions have brought on advances in communication speeds as we move into 10 Gigabit Ethernet and above. Of course, there is a need to encrypt data on these optical links as the data traverses public and private network backbones. Unfortunately, as the communications infrastructure becomes increasingly optical, advances in encryption (done electronically) have failed to keep up. This project examines the use of optical logic for implementing encryption in the photonic domain to achieve the requisite encryption rates. This paper documents the innovations and advances of work first detailed in 'Photonic Encryption using All Optical Logic,' [1]. A discussion of underlying concepts can be found in SAND2003-4474. In order to realize photonic encryption designs, technology developed for electrical logic circuits must be translated to the photonic regime. This paper examines S-SEED devices and how discrete logic elements can be interconnected and cascaded to form an optical circuit. Because there is no known software that can model these devices at a circuit level, the functionality of S-SEED devices in an optical circuit was modeled in PSpice. PSpice allows modeling of the macro characteristics of the devices in context of a logic element as opposed to device level computational modeling. By representing light intensity as voltage, 'black box' models are generated that accurately represent the intensity response and logic levels in both technologies. By modeling the behavior at the systems level, one can incorporate systems design tools and a simulation environment to aid in the overall functional design. Each black box model takes certain parameters (reflectance, intensity, input response), and models the optical ripple

  5. Design evaluation and optimisation in crossover pharmacokinetic studies analysed by nonlinear mixed effects models

    OpenAIRE

    Nguyen, Thu Thuy; Bazzoli, Caroline; Mentré, France

    2012-01-01

    International audience; Bioequivalence or interaction trials are commonly studied in crossover design and can be analysed by nonlinear mixed effects models as an alternative to noncompartmental approach. We propose an extension of the population Fisher information matrix in nonlinear mixed effects models to design crossover pharmacokinetic trials, using a linearisation of the model around the random effect expectation, including within-subject variability and discrete covariates fixed or chan...

  6. Analysing outsourcing policies in an asset management context: a six-stage model

    OpenAIRE

    Schoenmaker, R.; Verlaan, J.G.

    2013-01-01

    Asset managers of civil infrastructure are increasingly outsourcing their maintenance. Whereas maintenance is a cyclic process, decisions to outsource decisions are often project-based, and confusing the discussion on the degree of outsourcing. This paper presents a six-stage model that facilitates the top-down discussion for analysing the degree of outsourcing maintenance. The model is based on the cyclic nature of maintenance. The six-stage model can: (1) give clear statements about the pre...

  7. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.

    2016-06-01

    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  8. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models

    Science.gov (United States)

    2016-06-07

    Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models Curtis D. Mobley Sequoia Scientific , Inc. 2700 Richards...N00014D01610002 http://www.onr.navy.mil/sci_tech/32/322/ocean_optics_biology.asp LONG-TERM GOAL The overall goal of this work , now completed, was to...wrong by orders of magnitude in Case 2 or optically shallow waters. The objective of this work was develop a radiative transfer model that can be

  9. Ray-tracing optical modeling of negative dysphotopsia

    Science.gov (United States)

    Hong, Xin; Liu, Yueai; Karakelle, Mutlu; Masket, Samuel; Fram, Nicole R.

    2011-12-01

    Negative dysphotopsia is a relatively common photic phenomenon that may occur after implantation of an intraocular lens. The etiology of negative dysphotopsia is not fully understood. In this investigation, optical modeling was developed using nonsequential-component Zemax ray-tracing technology to simulate photic phenomena experienced by the human eye. The simulation investigated the effects of pupil size, capsulorrhexis size, and bag diffusiveness. Results demonstrated the optical basis of negative dysphotopsia. We found that photic structures were mainly influenced by critical factors such as the capsulorrhexis size and the optical diffusiveness of the capsular bag. The simulations suggested the hypothesis that the anterior capsulorrhexis interacting with intraocular lens could induce negative dysphotopsia.

  10. Optical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Yajie Jiang

    2015-06-01

    Full Text Available The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3−xClx and CH3NH3PbI3 perovskite films are reported at 297 K as determined by detailed analysis of reflectance and transmittance data. The data in this study is related to the research article “Room temperature optical properties of organic–inorganic lead halide perovskites” in Solar Energy Materials & Solar Cells [1].

  11. Optical characterisation of nanostructures using a discretised forward model

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Sørensen, Mads Peter; Hansen, Poul-Erik

    2012-01-01

    Optical diffraction microscopy (ODM) is a non-destructive and relatively inexpensive means of characterisation of nanostructures. It is an essential tool in the design, production and quality control of functional nanomaterials. In ODM, the target is reconstructed from the measured optical power...... problem. Finally, the size of the measured nanostructure is typically comparable to the wavelength of the illuminating light, so the scattering needs to be described using the full Maxwellian electromagnetic model, rather than (numerically inexpensive) asymptotic formulations. We here describe...

  12. Eikonal solutions to optical model coupled-channel equations

    Science.gov (United States)

    Cucinotta, Francis A.; Khandelwal, Govind S.; Maung, Khin M.; Townsend, Lawrence W.; Wilson, John W.

    1988-01-01

    Methods of solution are presented for the Eikonal form of the nucleus-nucleus coupled-channel scattering amplitudes. Analytic solutions are obtained for the second-order optical potential for elastic scattering. A numerical comparison is made between the first and second order optical model solutions for elastic and inelastic scattering of H-1 and He-4 on C-12. The effects of bound-state excitations on total and reaction cross sections are also estimated.

  13. Geographical variation of sporadic Legionnaires' disease analysed in a grid model

    DEFF Research Database (Denmark)

    Rudbeck, M.; Jepsen, Martin Rudbeck; Sonne, I.B.;

    2010-01-01

    clusters. Four cells had excess incidence in all three time periods. The analysis in 25 different grid positions indicated a low risk of overlooking cells with excess incidence in a random grid. The coefficient of variation ranged from 0.08 to 0.11 independent of the threshold. By application of a random......The aim was to analyse variation in incidence of sporadic Legionnaires' disease in a geographical information system in three time periods (1990-2005) by the application of a grid model and to assess the model's validity by analysing variation according to grid position. Coordinates...

  14. Determination of S17 from 7Be(d,n)8B reaction CDCC analyses based on three-body model

    CERN Document Server

    Ogata, K; Iseri, Y; Kamimura, M; Ogata, Kazuyuki; Yahiro, Masanobu; Iseri, Yasunori; Kamimura, Masayasu

    2003-01-01

    The astrophysical factor $S_{17}$ for $^7$Be($p,\\gamma$)$^8$B reaction is reliably extracted from the transfer reaction $^7$Be($d,n$)$^8$B at $E=7.5$ MeV with the asymptotic normalization coefficient method. The transfer reaction is accurately analyzed with CDCC based on the three-body model. This analysis is free from uncertainties of the optical potentials having been crucial in the previous DWBA analyses.

  15. Particle-Hole Optical Model: Fantasy or Reality?

    CERN Document Server

    Urin, M H

    2010-01-01

    An attempt to formulate the optical model of particle-hole-type excitations (including giant resonances) is undertaken. The model is based on the Bethe--Goldstone equation for the particle-hole Green function. This equation involves a specific energy-dependent particle-hole interaction that is due to virtual excitation of many-quasiparticle configurations and responsible for the spreading effect. After energy averaging, this interaction involves an imaginary part. The analogy between the single-quasiparticle and particle-hole optical models is outlined.

  16. Remark on: the neutron spherical optical-model absorption.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A. B.; Nuclear Engineering Division

    2007-06-30

    The energy-dependent behavior of the absorption term of the spherical neutron optical potential for doubly magic {sup 208}Pb and the neighboring {sup 209}Bi is examined. These considerations suggest a phenomenological model that results in an intuitively attractive energy dependence of the imaginary potential that provides a good description of the observed neutron cross sections and that is qualitatively consistent with theoretical concepts. At the same time it provides an alternative to some of the arbitrary assumptions involved in many conventional optical-model interpretations reported in the literature and reduces the number of the parameters of the model.

  17. X-ray CT analyses, models and numerical simulations: a comparison with petrophysical analyses in an experimental CO2 study

    Science.gov (United States)

    Henkel, Steven; Pudlo, Dieter; Enzmann, Frieder; Reitenbach, Viktor; Albrecht, Daniel; Ganzer, Leonhard; Gaupp, Reinhard

    2016-06-01

    An essential part of the collaborative research project H2STORE (hydrogen to store), which is funded by the German government, was a comparison of various analytical methods for characterizing reservoir sandstones from different stratigraphic units. In this context Permian, Triassic and Tertiary reservoir sandstones were analysed. Rock core materials, provided by RWE Gasspeicher GmbH (Dortmund, Germany), GDF Suez E&P Deutschland GmbH (Lingen, Germany), E.ON Gas Storage GmbH (Essen, Germany) and RAG Rohöl-Aufsuchungs Aktiengesellschaft (Vienna, Austria), were processed by different laboratory techniques; thin sections were prepared, rock fragments were crushed and cubes of 1 cm edge length and plugs 3 to 5 cm in length with a diameter of about 2.5 cm were sawn from macroscopic homogeneous cores. With this prepared sample material, polarized light microscopy and scanning electron microscopy, coupled with image analyses, specific surface area measurements (after Brunauer, Emmet and Teller, 1938; BET), He-porosity and N2-permeability measurements and high-resolution microcomputer tomography (μ-CT), which were used for numerical simulations, were applied. All these methods were practised on most of the same sample material, before and on selected Permian sandstones also after static CO2 experiments under reservoir conditions. A major concern in comparing the results of these methods is an appraisal of the reliability of the given porosity, permeability and mineral-specific reactive (inner) surface area data. The CO2 experiments modified the petrophysical as well as the mineralogical/geochemical rock properties. These changes are detectable by all applied analytical methods. Nevertheless, a major outcome of the high-resolution μ-CT analyses and following numerical data simulations was that quite similar data sets and data interpretations were maintained by the different petrophysical standard methods. Moreover, the μ-CT analyses are not only time saving, but also non

  18. Event-Based Corpuscular Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    Michielsen, K.; Jin, F.; Raedt, H. De

    2011-01-01

    A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is presented. The event-based corpuscular model is shown to give a u

  19. Event-Based Corpuscular Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    Michielsen, K.; Jin, F.; Raedt, H. De

    A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is presented. The event-based corpuscular model is shown to give a

  20. Event-based Simulation Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.; Jaeger, G; Khrennikov, A; Schlosshauer, M; Weihs, G

    2011-01-01

    We present a corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one. The event-based corpuscular model gives a unified

  1. Optical linear algebra processors: noise and error-source modeling.

    Science.gov (United States)

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  2. Optical linear algebra processors - Noise and error-source modeling

    Science.gov (United States)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  3. Integrating Environmental Optics into Multidisciplinary, Predictive Models of Ocean Dynamics

    Science.gov (United States)

    2011-09-30

    development has been based on decades of published research, our depth-integrated, spectral model of photosynthesis and the absorption -based model of...color, chlorophyll fluorescence, or spectral absorption coefficients. We extend the approach to include additional biological properties such as...of laboratory experiments in which photosynthesis , fluorescence and optical properties of phytoplankton are measured under a range of conditions

  4. Extended Hubbard models for ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Juergensen, Ole

    2015-06-05

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  5. RooStatsCms: a tool for analyses modelling, combination and statistical studies

    Science.gov (United States)

    Piparo, D.; Schott, G.; Quast, G.

    2009-12-01

    The RooStatsCms (RSC) software framework allows analysis modelling and combination, statistical studies together with the access to sophisticated graphics routines for results visualisation. The goal of the project is to complement the existing analyses by means of their combination and accurate statistical studies.

  6. RooStatsCms: a tool for analyses modelling, combination and statistical studies

    CERN Document Server

    Piparo, D; Quast, Prof G

    2008-01-01

    The RooStatsCms (RSC) software framework allows analysis modelling and combination, statistical studies together with the access to sophisticated graphics routines for results visualisation. The goal of the project is to complement the existing analyses by means of their combination and accurate statistical studies.

  7. Combined Task and Physical Demands Analyses towards a Comprehensive Human Work Model

    Science.gov (United States)

    2014-09-01

    velocities, and accelerations over time for each postural sequence. Neck strain measures derived from biomechanical analyses of these postural...and whole missions. The result is a comprehensive model of tasks and associated physical demands from which one can estimate the accumulative neck ...Griffon Helicopter aircrew (Pilots and Flight Engineers) reported neck pain particularly when wearing Night Vision Goggles (NVGs) (Forde et al. , 2011

  8. Dutch AG-MEMOD model; A tool to analyse the agri-food sector

    NARCIS (Netherlands)

    Leeuwen, van M.G.A.; Tabeau, A.A.

    2005-01-01

    Agricultural policies in the European Union (EU) have a history of continuous reform. AG-MEMOD, acronym for Agricultural sector in the Member states and EU: econometric modelling for projections and analysis of EU policies on agriculture, forestry and the environment, provides a system for analysing

  9. Supply Chain Modeling for Fluorspar and Hydrofluoric Acid and Implications for Further Analyses

    Science.gov (United States)

    2015-04-01

    analysis. 15. SUBJECT TERMS supply chain , model, fluorspar, hydrofluoric acid, shortfall, substitution, Defense Logistics Agency, National Defense...unlimited. IDA Document D-5379 Log: H 15-000099 INSTITUTE FOR DEFENSE ANALYSES 4850 Mark Center Drive Alexandria, Virginia 22311-1882 Supply Chain ...E F E N S E A N A L Y S E S IDA Document D-5379 D. Sean Barnett Jerome Bracken Supply Chain Modeling for Fluorspar and Hydrofluoric Acid and

  10. Numerical model for thermal parameters in optical materials

    Science.gov (United States)

    Sato, Yoichi; Taira, Takunori

    2016-04-01

    Thermal parameters of optical materials, such as thermal conductivity, thermal expansion, temperature coefficient of refractive index play a decisive role for the thermal design inside laser cavities. Therefore, numerical value of them with temperature dependence is quite important in order to develop the high intense laser oscillator in which optical materials generate excessive heat across mode volumes both of lasing output and optical pumping. We already proposed a novel model of thermal conductivity in various optical materials. Thermal conductivity is a product of isovolumic specific heat and thermal diffusivity, and independent modeling of these two figures should be required from the viewpoint of a clarification of physical meaning. Our numerical model for thermal conductivity requires one material parameter for specific heat and two parameters for thermal diffusivity in the calculation of each optical material. In this work we report thermal conductivities of various optical materials as Y3Al5O12 (YAG), YVO4 (YVO), GdVO4 (GVO), stoichiometric and congruent LiTaO3, synthetic quartz, YAG ceramics and Y2O3 ceramics. The dependence on Nd3+-doping in laser gain media in YAG, YVO and GVO is also studied. This dependence can be described by only additional three parameters. Temperature dependence of thermal expansion and temperature coefficient of refractive index for YAG, YVO, and GVO: these are also included in this work for convenience. We think our numerical model is quite useful for not only thermal analysis in laser cavities or optical waveguides but also the evaluation of physical properties in various transparent materials.

  11. Modeling of semiconductor devices for high-speed all-optical signal processing

    DEFF Research Database (Denmark)

    Bischoff, Svend; Højfeldt, Sune; Mørk, Jesper

    2001-01-01

    The all-optical signal processing performance of devices based on active semiconductor waveguides is investigated. A large signal model is used to analyse the physical mechanisms limiting the high-speed performance of both semiconductor optical amplifiers (SOAs) and electro-absorption modulators...... (EAMs). Wavelength conversion and signal regeneration in EAMs is discussed at 10 and 40 Gbit/s. The finite carrier sweep-out time is shown to limit the EAM performance. Four-wave mixing (FWM) in SOAs is almost instantaneous. However, with increasing bit rates and advanced processing functionalities some...... limitations arise. These limitations are elucidated by studying bi-directional simultaneous clear and drop (de-multiplexing) for a 4x40 Gbit/s signal. The simultaneous clearing and de-multiplexing (drop) of an optical time division multiplexing signal channel for an 8x40 Gbit/s signal is investigated...

  12. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry

    Directory of Open Access Journals (Sweden)

    Just Agbodjan Prince

    2016-09-01

    Full Text Available This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.

  13. Assimilation of Bio-Optical Properties into Coupled Physical, Bio-Optical Coastal Model

    Science.gov (United States)

    2013-01-01

    analysis (updated) fields for the bio-optical model state variables are derived from: Proc. of SPIE Vol. 8724 87240E-3 Downloaded From: http...proceedings.spiedigitallibrary.org/ on 07/11/2013 Terms of Use: http://spiedl.org/terms ),XY(XX fofa HK −+= aX fX oY (1) where is vector of the

  14. A Model for Integrating Fixed-, Random-, and Mixed-Effects Meta-Analyses into Structural Equation Modeling

    Science.gov (United States)

    Cheung, Mike W.-L.

    2008-01-01

    Meta-analysis and structural equation modeling (SEM) are two important statistical methods in the behavioral, social, and medical sciences. They are generally treated as two unrelated topics in the literature. The present article proposes a model to integrate fixed-, random-, and mixed-effects meta-analyses into the SEM framework. By applying an…

  15. Classification of scalar and dyadic nonlocal optical response models.

    Science.gov (United States)

    Wubs, M

    2015-11-30

    Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both. In phenomenological scalar models the nonlocal response is described as a smearing out of the commonly assumed infinitely localized response, as characterized by a distribution with a finite width. Here we calculate explicitly whether and how tensorial models, such as the hydrodynamic Drude model and generalized nonlocal optical response theory, follow this phenomenological description. We find considerable differences, for example that nonlocal response functions, in contrast to simple distributions, assume negative and complex values. Moreover, nonlocal response regularizes some but not all diverging optical near fields. We identify the scalar model that comes closest to the hydrodynamic model. Interestingly, for the hydrodynamic Drude model we find that actually only one third (1/3) of the free-electron response is smeared out nonlocally. In that sense, nonlocal response is stronger for transverse and scalar nonlocal response models, where the smeared-out fractions are 2/3 and 3/3, respectively. The latter two models seem to predict novel plasmonic resonances also below the plasma frequency, in contrast to the hydrodynamic model that predicts standing pressure waves only above the plasma frequency.

  16. Polarization Drift Channel Model for Coherent Fibre-Optic Systems

    CERN Document Server

    Czegledi, Cristian B; Agrell, Erik; Johannisson, Pontus

    2015-01-01

    A theoretical framework is introduced to model the dynamical changes of the state of polarization during transmission in coherent fibre-optic systems. The model generalizes the one-dimensional phase noise random walk to higher dimensions, accounting for random polarization drifts. The model is described in the Jones, Stokes and real 4-dimensional formalisms, and the mapping between them is derived. Such a model will be increasingly important in simulating and optimizing future optical systems, which to a higher and higher degree rely on transmission and detection on both polarizations jointly using sophisticated digital signal processing. Such analysis cannot be carried out using the more rudimentary polarization drift models in use today, which only account for deterministic effects. The proposed polarization drift model is the first of its kind and will likely be useful in a wide-range of photonics applications where stochastic polarization fluctuation is an issue.

  17. Modeling light–tissue interaction in optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Jørgensen, Thomas Martini; Thrane, Lars

    2015-01-01

    Optical coherence tomography (OCT) performs high-resolution, cross-sectional tomographic imaging of the internal tissue microstructure by measuring backscattered or backreflected light. The scope of this chapter is to present analytical and numerical models that are able to describe light......-tissue interactions and its influence on the performance of OCT systems including multiple scattering effects in heterogeneous media. In general, these models, analytical as well as numerical, may serve as important tools for improving interpretation of OCT images and also serve as prerequisites for extraction...... of tissue optical scattering parameters....

  18. Artificial Neural Network Model for Optical Fiber Direction Coupler Design

    Institute of Scientific and Technical Information of China (English)

    李九生; 鲍振武

    2004-01-01

    A new approach to the design of the optical fiber direction coupler by using neural network is proposed. To train the artificial neural network,the coupling length is defined as the input sample, and the coupling ratio is defined as the output sample. Compared with the numerical value calculation of the theoretical formula, the error of the neural network model output is 1% less.Then, through the model, to design a broadband or a single wavelength optical fiber direction coupler becomes easy. The method is proved to be reliable, accurate and time-saving. So it is promising in the field of both investigation and application.

  19. A Fourier Optical Model for the Laser Doppler Velocimeter

    DEFF Research Database (Denmark)

    Lading, Lars

    1972-01-01

    The treatment is based on a fourier optical model. It is shown how the various configurations (i.e. ldquodifferential moderdquo and reference beam mode with both one and two incident beams) are incorporated in the model, and how it can be extended to three dimensions. The particles are represented...... filtering ability vanishes as the aperture size converges towards zero. The results based on fourier optics are compared with the rough estimates obtainable by using the "antenna formular" for heterodyning (ArΩr≈λ2)....

  20. Stellar abundance analyses in the light of 3D hydrodynamical model atmospheres

    CERN Document Server

    Asplund, M

    2003-01-01

    I describe recent progress in terms of 3D hydrodynamical model atmospheres and 3D line formation and their applications to stellar abundance analyses of late-type stars. Such 3D studies remove the free parameters inherent in classical 1D investigations (mixing length parameters, macro- and microturbulence) yet are highly successful in reproducing a large arsenal of observational constraints such as detailed line shapes and asymmetries. Their potential for abundance analyses is illustrated by discussing the derived oxygen abundances in the Sun and in metal-poor stars, where they seem to resolve long-standing problems as well as significantly alter the inferred conclusions.

  1. WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML).

    Science.gov (United States)

    Meyer, Karin

    2007-11-01

    WOMBAT is a software package for quantitative genetic analyses of continuous traits, fitting a linear, mixed model; estimates of covariance components and the resulting genetic parameters are obtained by restricted maximum likelihood. A wide range of models, comprising numerous traits, multiple fixed and random effects, selected genetic covariance structures, random regression models and reduced rank estimation are accommodated. WOMBAT employs up-to-date numerical and computational methods. Together with the use of efficient compilers, this generates fast executable programs, suitable for large scale analyses. Use of WOMBAT is illustrated for a bivariate analysis. The package consists of the executable program, available for LINUX and WINDOWS environments, manual and a set of worked example, and can be downloaded free of charge from (http://agbu. une.edu.au/~kmeyer/wombat.html).

  2. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    Science.gov (United States)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  3. Analysing and combining atmospheric general circulation model simulations forced by prescribed SST. Tropical response

    Energy Technology Data Exchange (ETDEWEB)

    Moron, V. [Universite' de Provence, UFR des sciences geographiques et de l' amenagement, Aix-en-Provence (France); Navarra, A. [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Ward, M. N. [University of Oklahoma, Cooperative Institute for Mesoscale Meteorological Studies, Norman OK (United States); Foland, C. K. [Hadley Center for Climate Prediction and Research, Meteorological Office, Bracknell (United Kingdom); Friederichs, P. [Meteorologisches Institute des Universitaet Bonn, Bonn (Germany); Maynard, K.; Polcher, J. [Paris Universite' Pierre et Marie Curie, Paris (France). Centre Nationale de la Recherche Scientifique, Laboratoire de Meteorologie Dynamique, Paris

    2001-08-01

    The ECHAM 3.2 (T21), ECHAM (T30) and LMD (version 6, grid-point resolution with 96 longitudes x 72 latitudes) atmospheric general circulation models were integrated through the period 1961 to 1993 forces with the same observed Sea Surface Temperatures (SSTs) as compiled at the Hadley Centre. Three runs were made for each model starting from different initial conditions. The large-scale tropical inter-annual variability is analysed to give a picture of a skill of each model and of some sort of combination of the three models. To analyse the similarity of model response averaged over the same key regions, several widely-used indices are calculated: Southern Oscillation Index (SOI), large-scale wind shear indices of the boreal summer monsoon in Asia and West Africa and rainfall indices for NE Brazil, Sahel and India. Even for the indices where internal noise is large, some years are consistent amongst all the runs, suggesting inter-annual variability of the strength of SST forcing. Averaging the ensemble mean of the three models (the super-ensemble mean) yields improved skill. When each run is weighted according to its skill, taking three runs from different models instead of three runs of the same model improves the mean skill. There is also some indication that one run of a given model could be better than another, suggesting that persistent anomalies could change its sensitivity to SST. The index approach lacks flexibility to assess whether a model's response to SST has been geographically displaced. It can focus on the first mode in the global tropics, found through singular value decomposition analysis, which is clearly related to El Nino/Southern Oscillation (ENSO) in all seasons. The Observed-Model and Model-Model analyses lead to almost the same patterns, suggesting that the dominant pattern of model response is also the most skilful mode. Seasonal modulation of both skill and spatial patterns (both model and observed) clearly exists with highest skill

  4. Analysing, Interpreting, and Testing the Invariance of the Actor-Partner Interdependence Model

    Directory of Open Access Journals (Sweden)

    Gareau, Alexandre

    2016-09-01

    Full Text Available Although in recent years researchers have begun to utilize dyadic data analyses such as the actor-partner interdependence model (APIM, certain limitations to the applicability of these models still exist. Given the complexity of APIMs, most researchers will often use observed scores to estimate the model's parameters, which can significantly limit and underestimate statistical results. The aim of this article is to highlight the importance of conducting a confirmatory factor analysis (CFA of equivalent constructs between dyad members (i.e. measurement equivalence/invariance; ME/I. Different steps for merging CFA and APIM procedures will be detailed in order to shed light on new and integrative methods.

  5. Optical-based spectral modeling of infrared focal plane arrays

    Science.gov (United States)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2016-07-01

    We adopt an optical approach in order to model and predict the spectral signature of an infrared focal plane array. The modeling is based on a multilayer description of the structure and considers a one-dimensional propagation. It provides a better understanding of the physical phenomena occurring within the pixels, which is useful to perform radiometric measurements, as well as to reliably predict the spectral sensitivity of the detector. An exhaustive model is presented, covering the total spectral range of the pixel response. A heuristic model is also described, depicting a complementary approach that separates the different optical phenomena inside the pixel structure. Promising results are presented, validating the models through comparison with experimental results. Finally, advantages and limitations of this approach are discussed.

  6. Distinguishing Mediational Models and Analyses in Clinical Psychology: Atemporal Associations Do Not Imply Causation.

    Science.gov (United States)

    Winer, E Samuel; Cervone, Daniel; Bryant, Jessica; McKinney, Cliff; Liu, Richard T; Nadorff, Michael R

    2016-09-01

    A popular way to attempt to discern causality in clinical psychology is through mediation analysis. However, mediation analysis is sometimes applied to research questions in clinical psychology when inferring causality is impossible. This practice may soon increase with new, readily available, and easy-to-use statistical advances. Thus, we here provide a heuristic to remind clinical psychological scientists of the assumptions of mediation analyses. We describe recent statistical advances and unpack assumptions of causality in mediation, underscoring the importance of time in understanding mediational hypotheses and analyses in clinical psychology. Example analyses demonstrate that statistical mediation can occur despite theoretical mediation being improbable. We propose a delineation of mediational effects derived from cross-sectional designs into the terms temporal and atemporal associations to emphasize time in conceptualizing process models in clinical psychology. The general implications for mediational hypotheses and the temporal frameworks from within which they may be drawn are discussed. © 2016 Wiley Periodicals, Inc.

  7. Electron Correlation Models for Optical Activity

    DEFF Research Database (Denmark)

    Höhn, E. G.; O. E. Weigang, Jr.

    1968-01-01

    A two-system no-overlap model for rotatory strength is developed for electric-dipole forbidden as well as allowed transitions. General equations which allow for full utilization of symmetry in the chromophore and in the environment are obtained. The electron correlation terms are developed in full...

  8. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg

    2015-01-01

    This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 1...

  9. Classification of scalar and dyadic nonlocal optical response models

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2015-01-01

    Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response...

  10. Fast Cherenkov model of optical photons generation and transportation

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    This note describes the technical details of Fast Cherenkov model of optical photons generation and transportation: in particular, the mechanism of Cherenkov photons transportation through the straight bar geometry. As an example of usage, the implemetation of the method inside Quartic detector simulation in GEANT4 will be presented and compared to the nominal results.

  11. Modelling exciton–phonon interactions in optically driven quantum dots

    DEFF Research Database (Denmark)

    Nazir, Ahsan; McCutcheon, Dara

    2016-01-01

    We provide a self-contained review of master equation approaches to modelling phonon effects in optically driven self-assembled quantum dots. Coupling of the (quasi) two-level excitonic system to phonons leads to dissipation and dephasing, the rates of which depend on the excitation conditions...

  12. Three dimensional rigorous model for optical scattering problems

    NARCIS (Netherlands)

    Wei, X.

    2006-01-01

    We present a three-dimensional model based on the finite element method for solving the time-harmonic Maxwell equation in optics. It applies to isotropic or anisotropic dielectrics and metals, and to many configurations such as an isolated scatterer in a multilayer, bi-gratings and crystals. We shal

  13. FluxExplorer: A general platform for modeling and analyses of metabolic networks based on stoichiometry

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Stoichiometry-based analyses of meta- bolic networks have aroused significant interest of systems biology researchers in recent years. It is necessary to develop a more convenient modeling platform on which users can reconstruct their network models using completely graphical operations, and explore them with powerful analyzing modules to get a better understanding of the properties of metabolic systems. Herein, an in silico platform, FluxExplorer, for metabolic modeling and analyses based on stoichiometry has been developed as a publicly available tool for systems biology research. This platform integrates various analytic approaches, in- cluding flux balance analysis, minimization of meta- bolic adjustment, extreme pathways analysis, shadow prices analysis, and singular value decom- position, providing a thorough characterization of the metabolic system. Using a graphic modeling process, metabolic networks can be reconstructed and modi- fied intuitively and conveniently. The inconsistencies of a model with respect to the FBA principles can be proved automatically. In addition, this platform sup- ports systems biology markup language (SBML). FluxExplorer has been applied to rebuild a metabolic network in mammalian mitochondria, producing meaningful results. Generally, it is a powerful and very convenient tool for metabolic network modeling and analysis.

  14. Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Sevougian, S. David; Freeze, Geoffrey A.; Gardner, William Payton; Hammond, Glenn Edward; Mariner, Paul

    2014-09-01

    directly, rather than through simplified abstractions. It also a llows for complex representations of the source term, e.g., the explicit representation of many individual waste packages (i.e., meter - scale detail of an entire waste emplacement drift). This report fulfills the Generic Disposal System Analysis Work Packa ge Level 3 Milestone - Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts (M 3 FT - 1 4 SN08080 3 2 ).

  15. Calibration of back-analysed model parameters for landslides using classification statistics

    Science.gov (United States)

    Cepeda, Jose; Henderson, Laura

    2016-04-01

    Back-analyses are useful for characterizing the geomorphological and mechanical processes and parameters involved in the initiation and propagation of landslides. These processes and parameters can in turn be used for improving forecasts of scenarios and hazard assessments in areas or sites which have similar settings to the back-analysed cases. The selection of the modeled landslide that produces the best agreement with the actual observations requires running a number of simulations by varying the type of model and the sets of input parameters. The comparison of the simulated and observed parameters is normally performed by visual comparison of geomorphological or dynamic variables (e.g., geometry of scarp and final deposit, maximum velocities and depths). Over the past six years, a method developed by NGI has been used by some researchers for a more objective selection of back-analysed input model parameters. That method includes an adaptation of the equations for calculation of classifiers, and a comparative evaluation of classifiers of the selected parameter sets in the Receiver Operating Characteristic (ROC) space. This contribution presents an updating of the methodology. The proposed procedure allows comparisons between two or more "clouds" of classifiers. Each cloud represents the performance of a model over a range of input parameters (e.g., samples of probability distributions). Considering the fact that each cloud does not necessarily produce a full ROC curve, two new normalised ROC-space parameters are introduced for characterizing the performance of each cloud. The first parameter is representative of the cloud position relative to the point of perfect classification. The second parameter characterizes the position of the cloud relative to the theoretically perfect ROC curve and the no-discrimination line. The methodology is illustrated with back-analyses of slope stability and landslide runout of selected case studies. This research activity has been

  16. Volvo Logistics Corporation Returnable Packaging System : a model for analysing cost savings when switching packaging system

    OpenAIRE

    2008-01-01

    This thesis is a study for analysing costs affected by packaging in a producing industry. The purpose is to develop a model that will calculate and present possible cost savings for the customer by using Volvo Logistics Corporations, VLC’s, returnable packaging instead of other packaging solutions. The thesis is based on qualitative data gained from both theoretical and empirical studies. The methodology for gaining information has been to study theoretical sources such as course literature a...

  17. Genetic and Clinical Analyses of DOA and LHON in 304 Chinese Patients with Suspected Childhood-Onset Hereditary Optic Neuropathy

    Science.gov (United States)

    Xiao, Xueshan; Li, Shiqiang

    2017-01-01

    Leber hereditary optic neuropathy (LHON) and dominant optic atrophy (DOA), the most common forms of hereditary optic neuropathy, are easily confused, and it is difficult to distinguish one from the other in the clinic, especially in young children. The present study was designed to survey the mutation spectrum of common pathogenic genes (OPA1, OPA3 and mtDNA genes) and to analyze the genotype-phenotype characteristics of Chinese patients with suspected childhood-onset hereditary optic neuropathy. Genomic DNA and clinical data were collected from 304 unrelated Chinese probands with suspected hereditary optic neuropathy with an age of onset below 14 years. Sanger sequencing was used to screen variants in the coding and adjacent regions of OPA1, OPA3 and the three primary LHON-related mutation sites in mitochondrial DNA (mtDNA) (m.3460G>A, m.11778G>A and m.14484T>C). All patients underwent a complete ophthalmic examination and were compared with age-matched controls. We identified 89/304 (29.3%) primary mtDNA mutations related to LHON in 304 probands, including 76 mutations at m.11778 (76/89, 85.4% of all mtDNA mutations), four at m.3460 (4/89, 4.5%) and nine at m.14484 (9/89, 10.1%). This result was similar to the mutation frequency among Chinese patients with LHON of any age. Screening of OPA1 revealed 23 pathogenic variants, including 11 novel and 12 known pathogenic mutations. This study expanded the OPA1 mutation spectrum, and our results showed that OPA1 mutation is another common cause of childhood-onset hereditary optic neuropathy in Chinese pediatric patients, especially those with disease onset during preschool age. PMID:28081242

  18. Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films

    Directory of Open Access Journals (Sweden)

    Qian Haoliang

    2015-11-01

    Full Text Available The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.

  19. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg

    2015-01-01

    This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 15......, 30 and 45 nm. The fabrication process of such plasmonic waveguides with width in the range of 1-100 μm and their quality inspection are described. The results of optical characterization of plasmonic waveguides using a high power laser with the peak power wavelength 1064 nm show significant deviation...

  20. Trapped ions in optical lattices for probing oscillator chain models

    CERN Document Server

    Pruttivarasin, Thaned; Talukdar, Ishan; Kreuter, Axel; Haeffner, Hartmut

    2011-01-01

    We show that a chain of trapped ions embedded in microtraps generated by an optical lattice can be used to study oscillator models related to dry friction and energy transport. Numerical calculations with realistic experimental parameters demonstrate that both static and dynamic properties of the ion chain change significantly as the optical lattice power is varied. Finally, we lay out an experimental scheme to use the spin degree of freedom to probe the phase space structure and quantum critical behavior of the ion chain.

  1. Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials

    Science.gov (United States)

    Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)

    1996-01-01

    There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.

  2. Computational model for supporting SHM systems design: Damage identification via numerical analyses

    Science.gov (United States)

    Sartorato, Murilo; de Medeiros, Ricardo; Vandepitte, Dirk; Tita, Volnei

    2017-02-01

    This work presents a computational model to simulate thin structures monitored by piezoelectric sensors in order to support the design of SHM systems, which use vibration based methods. Thus, a new shell finite element model was proposed and implemented via a User ELement subroutine (UEL) into the commercial package ABAQUS™. This model was based on a modified First Order Shear Theory (FOST) for piezoelectric composite laminates. After that, damaged cantilever beams with two piezoelectric sensors in different positions were investigated by using experimental analyses and the proposed computational model. A maximum difference in the magnitude of the FRFs between numerical and experimental analyses of 7.45% was found near the resonance regions. For damage identification, different levels of damage severity were evaluated by seven damage metrics, including one proposed by the present authors. Numerical and experimental damage metrics values were compared, showing a good correlation in terms of tendency. Finally, based on comparisons of numerical and experimental results, it is shown a discussion about the potentials and limitations of the proposed computational model to be used for supporting SHM systems design.

  3. Minimal model for optical transmission through holey metal films

    Energy Technology Data Exchange (ETDEWEB)

    MartIn-Moreno, L [Departamento de Fisica de la Materia Condensada-ICMA, Universidad de Zaragoza-CSIC, E-50009 Zaragoza (Spain); GarcIa-Vidal, F J [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, E-28049 Madrid (Spain)], E-mail: lmm@unizar.es

    2008-07-30

    This paper presents a tutorial on the computation of both extraordinary optical transmission and surface electromagnetic modes in holey metal films. Our model consists of a square array of square holes in a perfect conductor. It is shown that considering just the fundamental waveguide mode inside the holes captures the main features of the optical transmission, which allows us to obtain quasi-analytical results. Extraordinary optical transmission is unambiguously linked to the presence of surface electromagnetic modes in the corrugated structure. The particular case of surface electromagnetic modes in a perfect conductor is analyzed, paying attention to different strategies for increasing their confinement to the surface. The use of the energy loss of a charged particle passing close to the surface as a spectroscopic tool for these surface modes is also discussed.

  4. Coupled optical-thermal-fluid and structural analyses of novel light-trapping tubular panels for concentrating solar power receivers

    Science.gov (United States)

    Ortega, Jesus D.; Christian, Joshua M.; Yellowhair, Julius E.; Ho, Clifford K.

    2015-09-01

    Traditional tubular receivers used in concentrating solar power are formed using tubes connected to manifolds to form panels; which in turn are arranged in cylindrical or rectangular shapes. Previous and current tubular receivers, such as the ones used in Solar One, Solar Two, and most recently the Ivanpah solar plants, have used a black paint coating to increase the solar absorptance of the receiver. However, these coatings degrade over time and must be reapplied, increasing the receiver maintenance cost. This paper presents the thermal efficiency evaluation of novel receiver tubular panels that have a higher effective solar absorptance due to a light-trapping effect created by arranging the tubes in each panel into unique geometric configurations. Similarly, the impact of the incidence angle on the effective solar absorptance and thermal efficiency is evaluated. The overarching goal of this work is to achieve effective solar absorptances of ~90% and thermal efficiencies above 85% without using an absorptance coating. Several panel geometries were initially proposed and were down-selected based on structural analyses considering the thermal and pressure loading requirements of molten salt and supercritical carbon-dioxide receivers. The effective solar absorptance of the chosen tube geometries and panel configurations were evaluated using the ray-tracing modeling capabilities of SolTrace. The thermal efficiency was then evaluated by coupling computational fluid dynamics with the ray-tracing results using ANSYS Fluent. Compared to the base case analysis (flat tubular panel), the novel tubular panels have shown an increase in effective solar absorptance and thermal efficiency by several percentage points.

  5. Microstructural analyses, magnetic and magneto-optic effects in high oriented BaFe12O19 thin films

    NARCIS (Netherlands)

    Lisfi, A.; Lodder, J.C.

    2001-01-01

    Barium ferrite films applicable for data storage have been grown on sapphire substrate by pulsed laser deposition. BaFe12O19/Al2O3 films show a polycrystalline structure with high oriented perpendicular anisotropy. Large megneto-optic effects have been observed in the UV wavelength. The magnetic rel

  6. Model error analyses of photochemistry mechanisms using the BEATBOX/BOXMOX data assimilation toy model

    Science.gov (United States)

    Knote, C. J.; Eckl, M.; Barré, J.; Emmons, L. K.

    2016-12-01

    Simplified descriptions of photochemistry in the atmosphere ('photochemical mechanisms') necessary to reduce the computational burden of a model simulation contribute significantly to the overall uncertainty of an air quality model. Understanding how the photochemical mechanism contributes to observed model errors through examination of results of the complete model system is next to impossible due to cancellation and amplification effects amongst the tightly interconnected model components. Here we present BEATBOX, a novel method to evaluate photochemical mechanisms using the underlying chemistry box model BOXMOX. With BOXMOX we can rapidly initialize various mechanisms (e.g. MOZART, RACM, CBMZ, MCM) with homogenized observations (e.g. from field campaigns) and conduct idealized 'chemistry in a jar' simulations under controlled conditions. BEATBOX is a data assimilation toy model built upon BOXMOX which allows to simulate the effects of assimilating observations (e.g., CO, NO2, O3) into these simulations. In this presentation we show how we use the Master Chemical Mechanism (MCM, U Leeds) as benchmark for more simplified mechanisms like MOZART, use BEATBOX to homogenize the chemical environment and diagnose errors within the more simplified mechanisms. We present BEATBOX as a new, freely available tool that allows researchers to rapidly evaluate their chemistry mechanism against a range of others under varying chemical conditions.

  7. Modeling and performance analyses of evaporators in frozen-food supermarket display cabinets at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Getu, H.M.; Bansal, P.K. [Department of Mechanical Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand)

    2007-11-15

    This paper presents modeling and experimental analyses of evaporators in 'in situ' frozen-food display cabinets at low temperatures in the supermarket industry. Extensive experiments were conducted to measure store and display cabinet relative humidities and temperatures, and pressures, temperatures and mass flow rates of the refrigerant. The mathematical model adopts various empirical correlations of heat transfer coefficients and frost properties in a fin-tube heat exchanger in order to investigate the influence of indoor conditions on the performance of the display cabinets. The model is validated with the experimental data of 'in situ' cabinets. The model would be a good guide tool to the design engineers to evaluate the performance of supermarket display cabinet heat exchangers under various store conditions. (author)

  8. Using Weather Data and Climate Model Output in Economic Analyses of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Auffhammer, M.; Hsiang, S. M.; Schlenker, W.; Sobel, A.

    2013-06-28

    Economists are increasingly using weather data and climate model output in analyses of the economic impacts of climate change. This article introduces a set of weather data sets and climate models that are frequently used, discusses the most common mistakes economists make in using these products, and identifies ways to avoid these pitfalls. We first provide an introduction to weather data, including a summary of the types of datasets available, and then discuss five common pitfalls that empirical researchers should be aware of when using historical weather data as explanatory variables in econometric applications. We then provide a brief overview of climate models and discuss two common and significant errors often made by economists when climate model output is used to simulate the future impacts of climate change on an economic outcome of interest.

  9. Risk Factor Analyses for the Return of Spontaneous Circulation in the Asphyxiation Cardiac Arrest Porcine Model

    Directory of Open Access Journals (Sweden)

    Cai-Jun Wu

    2015-01-01

    Full Text Available Background: Animal models of asphyxiation cardiac arrest (ACA are frequently used in basic research to mirror the clinical course of cardiac arrest (CA. The rates of the return of spontaneous circulation (ROSC in ACA animal models are lower than those from studies that have utilized ventricular fibrillation (VF animal models. The purpose of this study was to characterize the factors associated with the ROSC in the ACA porcine model. Methods: Forty-eight healthy miniature pigs underwent endotracheal tube clamping to induce CA. Once induced, CA was maintained untreated for a period of 8 min. Two minutes following the initiation of cardiopulmonary resuscitation (CPR, defibrillation was attempted until ROSC was achieved or the animal died. To assess the factors associated with ROSC in this CA model, logistic regression analyses were performed to analyze gender, the time of preparation, the amplitude spectrum area (AMSA from the beginning of CPR and the pH at the beginning of CPR. A receiver-operating characteristic (ROC curve was used to evaluate the predictive value of AMSA for ROSC. Results: ROSC was only 52.1% successful in this ACA porcine model. The multivariate logistic regression analyses revealed that ROSC significantly depended on the time of preparation, AMSA at the beginning of CPR and pH at the beginning of CPR. The area under the ROC curve in for AMSA at the beginning of CPR was 0.878 successful in predicting ROSC (95% confidence intervals: 0.773∼0.983, and the optimum cut-off value was 15.62 (specificity 95.7% and sensitivity 80.0%. Conclusions: The time of preparation, AMSA and the pH at the beginning of CPR were associated with ROSC in this ACA porcine model. AMSA also predicted the likelihood of ROSC in this ACA animal model.

  10. Comprehensive analytical model to characterize randomness in optical waveguides.

    Science.gov (United States)

    Zhou, Junhe; Gallion, Philippe

    2016-04-01

    In this paper, the coupled mode theory (CMT) is used to derive the corresponding stochastic differential equations (SDEs) for the modal amplitude evolution inside optical waveguides with random refractive index variations. Based on the SDEs, the ordinary differential equations (ODEs) are derived to analyze the statistics of the modal amplitudes, such as the optical power and power variations as well as the power correlation coefficients between the different modal powers. These ODEs can be solved analytically and therefore, it greatly simplifies the analysis. It is demonstrated that the ODEs for the power evolution of the modes are in excellent agreement with the Marcuse' coupled power model. The higher order statistics, such as the power variations and power correlation coefficients, which are not exactly analyzed in the Marcuse' model, are discussed afterwards. Monte-Carlo simulations are performed to demonstrate the validity of the analytical model.

  11. Prediction Uncertainty Analyses for the Combined Physically-Based and Data-Driven Models

    Science.gov (United States)

    Demissie, Y. K.; Valocchi, A. J.; Minsker, B. S.; Bailey, B. A.

    2007-12-01

    The unavoidable simplification associated with physically-based mathematical models can result in biased parameter estimates and correlated model calibration errors, which in return affect the accuracy of model predictions and the corresponding uncertainty analyses. In this work, a physically-based groundwater model (MODFLOW) together with error-correcting artificial neural networks (ANN) are used in a complementary fashion to obtain an improved prediction (i.e. prediction with reduced bias and error correlation). The associated prediction uncertainty of the coupled MODFLOW-ANN model is then assessed using three alternative methods. The first method estimates the combined model confidence and prediction intervals using first-order least- squares regression approximation theory. The second method uses Monte Carlo and bootstrap techniques for MODFLOW and ANN, respectively, to construct the combined model confidence and prediction intervals. The third method relies on a Bayesian approach that uses analytical or Monte Carlo methods to derive the intervals. The performance of these approaches is compared with Generalized Likelihood Uncertainty Estimation (GLUE) and Calibration-Constrained Monte Carlo (CCMC) intervals of the MODFLOW predictions alone. The results are demonstrated for a hypothetical case study developed based on a phytoremediation site at the Argonne National Laboratory. This case study comprises structural, parameter, and measurement uncertainties. The preliminary results indicate that the proposed three approaches yield comparable confidence and prediction intervals, thus making the computationally efficient first-order least-squares regression approach attractive for estimating the coupled model uncertainty. These results will be compared with GLUE and CCMC results.

  12. The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull

    Science.gov (United States)

    Gröning, Flora; Jones, Marc E. H.; Curtis, Neil; Herrel, Anthony; O'Higgins, Paul; Evans, Susan E.; Fagan, Michael J.

    2013-01-01

    Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible. PMID:23614944

  13. Field weighting model for tracking-integrated optics

    Science.gov (United States)

    Wheelwright, Brian; Angel, Roger; Coughenour, Blake; Hammer, Kimberly; Geary, Andrew; Stalcup, Thomas

    2014-09-01

    The emergent field of tracking-integrated optics enables a potentially low cost concentrating photovoltaic (CPV) implementation, where single-axis module tracking is complemented by an additional degree of freedom within the module [1,2,3,4,5]. Gross module tracking can take on multiple configurations, the most common being rotation about a polar or horizontal North-South oriented axis. Polar-axis tracking achieves >95% sunlight collection compared to dual-axis tracking[6], leaving the tracking-integrated optics to compensate for +/-23.5° seasonal variations. The collection efficiency of N-S horizontal axis tracking is latitude-dependent, with ˜90% collection relative to dual-axis tracking at 32.2° latitude. Horizontal tracking at higher latitudes shifts an increasing burden to the tracking-integrated optics, which must operate between two incidence angle extremes: summer solstice sunrise/sunset to winter solstice noon. An important aspect of tracking-integrated lens design is choosing a suitable field weighting to appropriately account for annual DNI received at each angle of incidence. We present a field weighting model, generalized for polar or horizontal module tracking at any latitude, which shows excellent agreement with measured insolation data. This model is particularly helpful for the design of tracking-integrated optics for horizontally-tracked modules, where the correct field weighting is asymmetric and significantly biased away from the normal incidence.

  14. Some Advances in the Circuit Modeling of Extraordinary Optical Transmission

    Directory of Open Access Journals (Sweden)

    F. Medina

    2009-06-01

    Full Text Available The phenomenon of extraordinary optical transmission (EOT through electrically small holes perforated on opaque metal screens has been a hot topic in the optics community for more than one decade. This experimentally observed frequency-selective enhanced transmission of electromagnetic power through holes, for which classical Bethe's theory predicts very poor transmission, later attracted the attention of engineers working on microwave engineering or applied electromagnetics. Extraordinary transmission was first linked to the plasma-like behavior of metals at optical frequencies. However, the primary role played by the periodicity of the distribution of holes was soon made evident, in such a way that extraordinary transmission was disconnected from the particular behavior of metals at optical frequencies. Indeed, the same phenomenon has been observed in the microwave and millimeter wave regime, for instance. Nowadays, the most commonly accepted theory explains EOT in terms of the interaction of the impinging plane wave with the surface plasmon-polariton-Bloch waves (SPP-Bloch supported by the periodically perforated plate. The authors of this paper have recently proposed an alternative model whose details will be briefly summarized here. A parametric study of the predictions of the model and some new potential extensions will be reported to provide additional insight.

  15. Analysing adverse events by time-to-event models: the CLEOPATRA study.

    Science.gov (United States)

    Proctor, Tanja; Schumacher, Martin

    2016-07-01

    When analysing primary and secondary endpoints in a clinical trial with patients suffering from a chronic disease, statistical models for time-to-event data are commonly used and accepted. This is in contrast to the analysis of data on adverse events where often only a table with observed frequencies and corresponding test statistics is reported. An example is the recently published CLEOPATRA study where a three-drug regimen is compared with a two-drug regimen in patients with HER2-positive first-line metastatic breast cancer. Here, as described earlier, primary and secondary endpoints (progression-free and overall survival) are analysed using time-to-event models, whereas adverse events are summarized in a simple frequency table, although the duration of study treatment differs substantially. In this paper, we demonstrate the application of time-to-event models to first serious adverse events using the data of the CLEOPATRA study. This will cover the broad range between a simple incidence rate approach over survival and competing risks models (with death as a competing event) to multi-state models. We illustrate all approaches by means of graphical displays highlighting the temporal dynamics and compare the obtained results. For the CLEOPATRA study, the resulting hazard ratios are all in the same order of magnitude. But the use of time-to-event models provides valuable and additional information that would potentially be overlooked by only presenting incidence proportions. These models adequately address the temporal dynamics of serious adverse events as well as death of patients. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Models and analyses for inertial-confinement fusion-reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Bohachevsky, I.O.

    1981-05-01

    This report describes models and analyses devised at Los Alamos National Laboratory to determine the technical characteristics of different inertial confinement fusion (ICF) reactor elements required for component integration into a functional unit. We emphasize the generic properties of the different elements rather than specific designs. The topics discussed are general ICF reactor design considerations; reactor cavity phenomena, including the restoration of interpulse ambient conditions; first-wall temperature increases and material losses; reactor neutronics and hydrodynamic blanket response to neutron energy deposition; and analyses of loads and stresses in the reactor vessel walls, including remarks about the generation and propagation of very short wavelength stress waves. A discussion of analytic approaches useful in integrations and optimizations of ICF reactor systems concludes the report.

  17. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    Science.gov (United States)

    Bakry, A.; Abdulrhmann, S.; Ahmed, M.

    2016-06-01

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  18. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Bakry, A. [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia); Abdulrhmann, S. [Jazan University, 114, Department of Physics, Faculty of Sciences (Saudi Arabia); Ahmed, M., E-mail: mostafa.farghal@mu.edu.eg [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia)

    2016-06-15

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  19. Influence of optic disc size on the diagnostic performance of macular ganglion cell complex and peripapillary retinal nerve fiber layer analyses in glaucoma

    Directory of Open Access Journals (Sweden)

    Cordeiro DV

    2011-09-01

    Full Text Available Daniela Valença Cordeiro1, Verônica Castro Lima1,2, Dinorah P Castro1,3, Leonardo C Castro1,3, Maria Angélica Pacheco2, Jae Min Lee2, Marcelo I Dimantas2, Tiago Santos Prata1,21Department of Ophthalmology, Federal University of São Paulo, São Paulo, 2Hospital Medicina dos Olhos, São Paulo, 3Centro Brasileiro de Especialidades Oftalmológicas, Araraquara, BrazilAim: To evaluate the influence of optic disc size on the diagnostic accuracy of macular ganglion cell complex (GCC and conventional peripapillary retinal nerve fiber layer (pRNFL analyses provided by spectral domain optical coherence tomography (SD-OCT in glaucoma.Methods: Eighty-two glaucoma patients and 30 healthy subjects were included. All patients underwent GCC (7 × 7 mm macular grid, consisting of RNFL, ganglion cell and inner plexiform layers and pRNFL thickness measurement (3.45 mm circular scan by SD-OCT. One eye was randomly selected for analysis. Initially, receiver operating characteristic (ROC curves were generated for different GCC and pRNFL parameters. The effect of disc area on the diagnostic accuracy of these parameters was evaluated using a logistic ROC regression model. Subsequently, 1.5, 2.0, and 2.5 mm2 disc sizes were arbitrarily chosen (based on data distribution and the predicted areas under the ROC curves (AUCs and sensitivities were compared at fixed specificities for each.Results: Average mean deviation index for glaucomatous eyes was -5.3 ± 5.2 dB. Similar AUCs were found for the best pRNFL (average thickness = 0.872 and GCC parameters (average thickness = 0.824; P = 0.19.The coefficient representing disc area in the ROC regression model was not statistically significant for average pRNFL thickness (-0.176 or average GCC thickness (0.088; P ≥ 0.56. AUCs for fixed disc areas (1.5, 2.0, and 2.5 mm2 were 0.904, 0.891, and 0.875 for average pRNFL thickness and 0.834, 0.842, and 0.851 for average GCC thickness, respectively. The highest sensitivities – at

  20. Time-domain model of quantum-dot semiconductor optical amplifiers for wideband optical signals.

    Science.gov (United States)

    Puris, D; Schmidt-Langhorst, C; Lüdge, K; Majer, N; Schöll, E; Petermann, K

    2012-11-19

    We present a novel theoretical time-domain model for a quantum dot semiconductor optical amplifier, that allows to simulate subpicosecond pulse propagation including power-based and phase-based effects. Static results including amplified spontaneous emission spectra, continuous wave amplification, and four-wave mixing experiments in addition to dynamic pump-probe simulations are presented for different injection currents. The model uses digital filters to describe the frequency dependent gain and microscopically calculated carrier-carrier scattering rates for the interband carrier dynamics. It can be used to calculate the propagation of multiple signals with different wavelengths or one wideband signal with high bitrate.

  1. Multiple Fan-Beam Optical Tomography: Modelling Techniques

    Directory of Open Access Journals (Sweden)

    Pang Jon Fea

    2009-10-01

    Full Text Available This paper explains in detail the solution to the forward and inverse problem faced in this research. In the forward problem section, the projection geometry and the sensor modelling are discussed. The dimensions, distributions and arrangements of the optical fibre sensors are determined based on the real hardware constructed and these are explained in the projection geometry section. The general idea in sensor modelling is to simulate an artificial environment, but with similar system properties, to predict the actual sensor values for various flow models in the hardware system. The sensitivity maps produced from the solution of the forward problems are important in reconstructing the tomographic image.

  2. Fiber optic displacement measurement model based on finite reflective surface

    Science.gov (United States)

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui

    2016-10-01

    We present a fiber optic displacement measurement model based on finite reflective plate. The theoretical model was derived, and simulation analysis of light intensity distribution, reflective plate width, and the distance between fiber probe and reflective plate were conducted in details. The three dimensional received light intensity distribution and the characteristic curve of light intensity were studied as functions of displacement of finite reflective plate. Experiments were carried out to verify the established model. The physical fundamentals and the effect of operating parameters on measuring system performance were revealed in the end.

  3. Dynamics and spatial structure of ENSO from re-analyses versus CMIP5 models

    Science.gov (United States)

    Serykh, Ilya; Sonechkin, Dmitry

    2016-04-01

    Basing on a mathematical idea about the so-called strange nonchaotic attractor (SNA) in the quasi-periodically forced dynamical systems, the currently available re-analyses data are considered. It is found that the El Niño - Southern Oscillation (ENSO) is driven not only by the seasonal heating, but also by three more external periodicities (incommensurate to the annual period) associated with the ~18.6-year lunar-solar nutation of the Earth rotation axis, ~11-year sunspot activity cycle and the ~14-month Chandler wobble in the Earth's pole motion. Because of the incommensurability of their periods all four forces affect the system in inappropriate time moments. As a result, the ENSO time series look to be very complex (strange in mathematical terms) but nonchaotic. The power spectra of ENSO indices reveal numerous peaks located at the periods that are multiples of the above periodicities as well as at their sub- and super-harmonic. In spite of the above ENSO complexity, a mutual order seems to be inherent to the ENSO time series and their spectra. This order reveals itself in the existence of a scaling of the power spectrum peaks and respective rhythms in the ENSO dynamics that look like the power spectrum and dynamics of the SNA. It means there are no limits to forecast ENSO, in principle. In practice, it opens a possibility to forecast ENSO for several years ahead. Global spatial structures of anomalies during El Niño and power spectra of ENSO indices from re-analyses are compared with the respective output quantities in the CMIP5 climate models (the Historical experiment). It is found that the models reproduce global spatial structures of the near surface temperature and sea level pressure anomalies during El Niño very similar to these fields in the re-analyses considered. But the power spectra of the ENSO indices from the CMIP5 models show no peaks at the same periods as the re-analyses power spectra. We suppose that it is possible to improve modeled

  4. Design evaluation and optimisation in crossover pharmacokinetic studies analysed by nonlinear mixed effects models.

    Science.gov (United States)

    Nguyen, Thu Thuy; Bazzoli, Caroline; Mentré, France

    2012-05-20

    Bioequivalence or interaction trials are commonly studied in crossover design and can be analysed by nonlinear mixed effects models as an alternative to noncompartmental approach. We propose an extension of the population Fisher information matrix in nonlinear mixed effects models to design crossover pharmacokinetic trials, using a linearisation of the model around the random effect expectation, including within-subject variability and discrete covariates fixed or changing between periods. We use the expected standard errors of treatment effect to compute the power for the Wald test of comparison or equivalence and the number of subjects needed for a given power. We perform various simulations mimicking crossover two-period trials to show the relevance of these developments. We then apply these developments to design a crossover pharmacokinetic study of amoxicillin in piglets and implement them in the new version 3.2 of the r function PFIM.

  5. An age-dependent model to analyse the evolutionary stability of bacterial quorum sensing.

    Science.gov (United States)

    Mund, A; Kuttler, C; Pérez-Velázquez, J; Hense, B A

    2016-09-21

    Bacterial communication is enabled through the collective release and sensing of signalling molecules in a process called quorum sensing. Cooperative processes can easily be destabilized by the appearance of cheaters, who contribute little or nothing at all to the production of common goods. This especially applies for planktonic cultures. In this study, we analyse the dynamics of bacterial quorum sensing and its evolutionary stability under two levels of cooperation, namely signal and enzyme production. The model accounts for mutation rates and switches between planktonic and biofilm state of growth. We present a mathematical approach to model these dynamics using age-dependent colony models. We explore the conditions under which cooperation is stable and find that spatial structuring can lead to long-term scenarios such as coexistence or bistability, depending on the non-linear combination of different parameters like death rates and production costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Assessing Cognitive Processes with Diffusion Model Analyses: A Tutorial based on fast-dm-30

    Directory of Open Access Journals (Sweden)

    Andreas eVoss

    2015-03-01

    Full Text Available Diffusion models can be used to infer cognitive processes involved in fast binary decision tasks. The model assumes that information is accumulated continuously until one of two thresholds is hit. In the analysis, response time distributions from numerous trials of the decision task are used to estimate a set of parameters mapping distinct cognitive processes. In recent years, diffusion model analyses have become more and more popular in different fields of psychology. This increased popularity is based on the recent development of several software solutions for the parameter estimation. Although these programs make the application of the model relatively easy, there is a shortage of knowledge about different steps of a state-of-the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modelling, and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software (Voss & Voss, 2007 for diffusion model data analysis. The most important improvement of the fast-dm version is the possibility to choose between different optimization criteria (i.e., Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov, which differ in applicability for different data sets.

  7. Models of population-based analyses for data collected from large extended families.

    Science.gov (United States)

    Wang, Wenyu; Lee, Elisa T; Howard, Barbara V; Fabsitz, Richard R; Devereux, Richard B; MacCluer, Jean W; Laston, Sandra; Comuzzie, Anthony G; Shara, Nawar M; Welty, Thomas K

    2010-12-01

    Large studies of extended families usually collect valuable phenotypic data that may have scientific value for purposes other than testing genetic hypotheses if the families were not selected in a biased manner. These purposes include assessing population-based associations of diseases with risk factors/covariates and estimating population characteristics such as disease prevalence and incidence. Relatedness among participants however, violates the traditional assumption of independent observations in these classic analyses. The commonly used adjustment method for relatedness in population-based analyses is to use marginal models, in which clusters (families) are assumed to be independent (unrelated) with a simple and identical covariance (family) structure such as those called independent, exchangeable and unstructured covariance structures. However, using these simple covariance structures may not be optimally appropriate for outcomes collected from large extended families, and may under- or over-estimate the variances of estimators and thus lead to uncertainty in inferences. Moreover, the assumption that families are unrelated with an identical family structure in a marginal model may not be satisfied for family studies with large extended families. The aim of this paper is to propose models incorporating marginal models approaches with a covariance structure for assessing population-based associations of diseases with their risk factors/covariates and estimating population characteristics for epidemiological studies while adjusting for the complicated relatedness among outcomes (continuous/categorical, normally/non-normally distributed) collected from large extended families. We also discuss theoretical issues of the proposed models and show that the proposed models and covariance structure are appropriate for and capable of achieving the aim.

  8. A modeling approach to compare ΣPCB concentrations between congener-specific analyses

    Science.gov (United States)

    Gibson, Polly P.; Mills, Marc A.; Kraus, Johanna M.; Walters, David M.

    2017-01-01

    Changes in analytical methods over time pose problems for assessing long-term trends in environmental contamination by polychlorinated biphenyls (PCBs). Congener-specific analyses vary widely in the number and identity of the 209 distinct PCB chemical configurations (congeners) that are quantified, leading to inconsistencies among summed PCB concentrations (ΣPCB) reported by different studies. Here we present a modeling approach using linear regression to compare ΣPCB concentrations derived from different congener-specific analyses measuring different co-eluting groups. The approach can be used to develop a specific conversion model between any two sets of congener-specific analytical data from similar samples (similar matrix and geographic origin). We demonstrate the method by developing a conversion model for an example data set that includes data from two different analytical methods, a low resolution method quantifying 119 congeners and a high resolution method quantifying all 209 congeners. We used the model to show that the 119-congener set captured most (93%) of the total PCB concentration (i.e., Σ209PCB) in sediment and biological samples. ΣPCB concentrations estimated using the model closely matched measured values (mean relative percent difference = 9.6). General applications of the modeling approach include (a) generating comparable ΣPCB concentrations for samples that were analyzed for different congener sets; and (b) estimating the proportional contribution of different congener sets to ΣPCB. This approach may be especially valuable for enabling comparison of long-term remediation monitoring results even as analytical methods change over time. 

  9. Multi-scale analysis of optic chiasmal compression by finite element modelling.

    Science.gov (United States)

    Wang, Xiaofei; Neely, Andrew J; McIlwaine, Gawn G; Lueck, Christian J

    2014-07-18

    The precise mechanism of bitemporal hemianopia (a type of partial visual field defect) is still not clear. Previous work has investigated this problem by studying the biomechanics of chiasmal compression caused by a pituitary tumour growing up from below the optic chiasm. A multi-scale analysis was performed using finite element models to examine both the macro-scale behaviour of the chiasm and the micro-scale interactions of the nerve fibres within it using representative volume elements. Possible effects of large deflection and non-linear material properties were incorporated. Strain distributions in the optic chiasm and optic nerve fibres were obtained from these models. The results of the chiasmal model agreed well with the limited experimental results available, indicating that the finite element modelling can be a useful tool for analysing chiasmal compression. Simulation results showed that the strain distribution in nasal (crossed) nerve fibres was much more nonuniform and locally higher than in temporal (uncrossed) nerve fibres. This strain difference between nasal and temporal nerve fibres may account for the phenomenon of bitemporal hemianopia.

  10. Sampling and sensitivity analyses tools (SaSAT for computational modelling

    Directory of Open Access Journals (Sweden)

    Wilson David P

    2008-02-01

    Full Text Available Abstract SaSAT (Sampling and Sensitivity Analysis Tools is a user-friendly software package for applying uncertainty and sensitivity analyses to mathematical and computational models of arbitrary complexity and context. The toolbox is built in Matlab®, a numerical mathematical software package, and utilises algorithms contained in the Matlab® Statistics Toolbox. However, Matlab® is not required to use SaSAT as the software package is provided as an executable file with all the necessary supplementary files. The SaSAT package is also designed to work seamlessly with Microsoft Excel but no functionality is forfeited if that software is not available. A comprehensive suite of tools is provided to enable the following tasks to be easily performed: efficient and equitable sampling of parameter space by various methodologies; calculation of correlation coefficients; regression analysis; factor prioritisation; and graphical output of results, including response surfaces, tornado plots, and scatterplots. Use of SaSAT is exemplified by application to a simple epidemic model. To our knowledge, a number of the methods available in SaSAT for performing sensitivity analyses have not previously been used in epidemiological modelling and their usefulness in this context is demonstrated.

  11. Sampling and sensitivity analyses tools (SaSAT) for computational modelling.

    Science.gov (United States)

    Hoare, Alexander; Regan, David G; Wilson, David P

    2008-02-27

    SaSAT (Sampling and Sensitivity Analysis Tools) is a user-friendly software package for applying uncertainty and sensitivity analyses to mathematical and computational models of arbitrary complexity and context. The toolbox is built in Matlab, a numerical mathematical software package, and utilises algorithms contained in the Matlab Statistics Toolbox. However, Matlab is not required to use SaSAT as the software package is provided as an executable file with all the necessary supplementary files. The SaSAT package is also designed to work seamlessly with Microsoft Excel but no functionality is forfeited if that software is not available. A comprehensive suite of tools is provided to enable the following tasks to be easily performed: efficient and equitable sampling of parameter space by various methodologies; calculation of correlation coefficients; regression analysis; factor prioritisation; and graphical output of results, including response surfaces, tornado plots, and scatterplots. Use of SaSAT is exemplified by application to a simple epidemic model. To our knowledge, a number of the methods available in SaSAT for performing sensitivity analyses have not previously been used in epidemiological modelling and their usefulness in this context is demonstrated.

  12. Optical model for light distribution during transscleral cyclophotocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Nemati, B.; Dunn, A.; Welch, A.J.; Rylander, H.G. III [Medical Optics Laboratory, Biomedical Engineering Program, ENS 610, University of Texas, Austin, Texas 78712 (United States)

    1998-02-01

    Transscleral cyclophotocoagulation (TSCPC) is currently performed clinically as an effective treatment for end-stage glaucoma. We develop a theoretical model for the analysis of optical attenuation phenomena during TSCPC as a basis for selection of an optimal wavelength. A multilayered Monte Carlo model was developed to calculate the fluence and the rate of heat generation in each tissue layer for the wavelengths of Nd:YAG, diode, ruby, krypton yellow, and argon lasers. Of the five wavelengths under study, our theoretical results suggest that the diode laser wavelength offers the best penetration through the conjunctiva, sclera, and ciliary muscle and highest absorption within the ciliary pigment epithelium. {copyright} 1998 Optical Society of America.

  13. Analysing animal social network dynamics: the potential of stochastic actor-oriented models.

    Science.gov (United States)

    Fisher, David N; Ilany, Amiyaal; Silk, Matthew J; Tregenza, Tom

    2017-03-01

    Animals are embedded in dynamically changing networks of relationships with conspecifics. These dynamic networks are fundamental aspects of their environment, creating selection on behaviours and other traits. However, most social network-based approaches in ecology are constrained to considering networks as static, despite several calls for such analyses to become more dynamic. There are a number of statistical analyses developed in the social sciences that are increasingly being applied to animal networks, of which stochastic actor-oriented models (SAOMs) are a principal example. SAOMs are a class of individual-based models designed to model transitions in networks between discrete time points, as influenced by network structure and covariates. It is not clear, however, how useful such techniques are to ecologists, and whether they are suited to animal social networks. We review the recent applications of SAOMs to animal networks, outlining findings and assessing the strengths and weaknesses of SAOMs when applied to animal rather than human networks. We go on to highlight the types of ecological and evolutionary processes that SAOMs can be used to study. SAOMs can include effects and covariates for individuals, dyads and populations, which can be constant or variable. This allows for the examination of a wide range of questions of interest to ecologists. However, high-resolution data are required, meaning SAOMs will not be useable in all study systems. It remains unclear how robust SAOMs are to missing data and uncertainty around social relationships. Ultimately, we encourage the careful application of SAOMs in appropriate systems, with dynamic network analyses likely to prove highly informative. Researchers can then extend the basic method to tackle a range of existing questions in ecology and explore novel lines of questioning. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  14. Power analyses for negative binomial models with application to multiple sclerosis clinical trials.

    Science.gov (United States)

    Rettiganti, Mallik; Nagaraja, H N

    2012-01-01

    We use negative binomial (NB) models for the magnetic resonance imaging (MRI)-based brain lesion count data from parallel group (PG) and baseline versus treatment (BVT) trials for relapsing remitting multiple sclerosis (RRMS) patients, and describe the associated likelihood ratio (LR), score, and Wald tests. We perform power analyses and sample size estimation using the simulated percentiles of the exact distribution of the test statistics for the PG and BVT trials. When compared to the corresponding nonparametric test, the LR test results in 30-45% reduction in sample sizes for the PG trials and 25-60% reduction for the BVT trials.

  15. Analysing and modelling battery drain of 3G terminals due to port scan attacks

    OpenAIRE

    Pascual Trigos, Mar

    2010-01-01

    In this thesis there is detected a threat in 3G mobile phone, specifically in the eventual draining terminal's battery due to undesired data traffic. The objectives of the thesis are to analyse the battery drain of 3G mobile phones because of uplink and downlink traffic and to model the battery drain. First of all, there is described how we can make a mobile phone to increase its consumption, and therefore to shorten its battery life time. Concretely, we focus in data traffic. This traffic ca...

  16. Optical Thin Film Modeling: Using FTG's FilmStar Software

    Science.gov (United States)

    Freese, Scott

    2009-01-01

    Every material has basic optical properties that define its interaction with light: The index of refraction (n) and extinction coefficient (k) vary for the material as a function of the wavelength of the incident light. Also significant are the phase velocity and polarization of the incident light These inherent properties allow for the accurate modeling of light s behavior upon contact with a surface: Reflectance, Transmittance, Absorptance.

  17. Quantum-dot Semiconductor Optical Amplifiers in State Space Model

    Institute of Scientific and Technical Information of China (English)

    Hussein Taleb; Kambiz Abedi; Saeed Golmohammadi

    2013-01-01

    A state space model (SSM) is derived for quantum-dot semiconductor optical amplifiers (QD-SOAs).Rate equations of QD-SOA are formulated in the form of state update equations,where average occupation probabilities along QD-SOA cavity are considered as state variables of the system.Simulations show that SSM calculates QD-SOA's static and dynamic characteristics with high accuracy.

  18. Probabilistic Modeling of Intracranial Pressure Effects on Optic Nerve Biomechanics

    Science.gov (United States)

    Ethier, C. R.; Feola, Andrew J.; Raykin, Julia; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.

    2016-01-01

    Altered intracranial pressure (ICP) is involved/implicated in several ocular conditions: papilledema, glaucoma and Visual Impairment and Intracranial Pressure (VIIP) syndrome. The biomechanical effects of altered ICP on optic nerve head (ONH) tissues in these conditions are uncertain but likely important. We have quantified ICP-induced deformations of ONH tissues, using finite element (FE) and probabilistic modeling (Latin Hypercube Simulations (LHS)) to consider a range of tissue properties and relevant pressures.

  19. Analysing the Effects of Flood-Resilience Technologies in Urban Areas Using a Synthetic Model Approach

    Directory of Open Access Journals (Sweden)

    Reinhard Schinke

    2016-11-01

    Full Text Available Flood protection systems with their spatial effects play an important role in managing and reducing flood risks. The planning and decision process as well as the technical implementation are well organized and often exercised. However, building-related flood-resilience technologies (FReT are often neglected due to the absence of suitable approaches to analyse and to integrate such measures in large-scale flood damage mitigation concepts. Against this backdrop, a synthetic model-approach was extended by few complementary methodical steps in order to calculate flood damage to buildings considering the effects of building-related FReT and to analyse the area-related reduction of flood risks by geo-information systems (GIS with high spatial resolution. It includes a civil engineering based investigation of characteristic properties with its building construction including a selection and combination of appropriate FReT as a basis for derivation of synthetic depth-damage functions. Depending on the real exposition and the implementation level of FReT, the functions can be used and allocated in spatial damage and risk analyses. The application of the extended approach is shown at a case study in Valencia (Spain. In this way, the overall research findings improve the integration of FReT in flood risk management. They provide also some useful information for advising of individuals at risk supporting the selection and implementation of FReT.

  20. Modeling of high homologous temperature deformation behavior for stress and life-time analyses

    Energy Technology Data Exchange (ETDEWEB)

    Krempl, E. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1997-12-31

    Stress and lifetime analyses need realistic and accurate constitutive models for the inelastic deformation behavior of engineering alloys at low and high temperatures. Conventional creep and plasticity models have fundamental difficulties in reproducing high homologous temperature behavior. To improve the modeling capabilities {open_quotes}unified{close_quotes} state variable theories were conceived. They consider all inelastic deformation rate-dependent and do not have separate repositories for creep and plasticity. The viscoplasticity theory based on overstress (VBO), one of the unified theories, is introduced and its properties are delineated. At high homologous temperature where secondary and tertiary creep are observed modeling is primarily accomplished by a static recovery term and a softening isotropic stress. At low temperatures creep is merely a manifestation of rate dependence. The primary creep modeled at low homologous temperature is due to the rate dependence of the flow law. The model is unaltered in the transition from low to high temperature except that the softening of the isotropic stress and the influence of the static recovery term increase with an increase of the temperature.

  1. Incorporating uncertainty of management costs in sensitivity analyses of matrix population models.

    Science.gov (United States)

    Salomon, Yacov; McCarthy, Michael A; Taylor, Peter; Wintle, Brendan A

    2013-02-01

    The importance of accounting for economic costs when making environmental-management decisions subject to resource constraints has been increasingly recognized in recent years. In contrast, uncertainty associated with such costs has often been ignored. We developed a method, on the basis of economic theory, that accounts for the uncertainty in population-management decisions. We considered the case where, rather than taking fixed values, model parameters are random variables that represent the situation when parameters are not precisely known. Hence, the outcome is not precisely known either. Instead of maximizing the expected outcome, we maximized the probability of obtaining an outcome above a threshold of acceptability. We derived explicit analytical expressions for the optimal allocation and its associated probability, as a function of the threshold of acceptability, where the model parameters were distributed according to normal and uniform distributions. To illustrate our approach we revisited a previous study that incorporated cost-efficiency analyses in management decisions that were based on perturbation analyses of matrix population models. Incorporating derivations from this study into our framework, we extended the model to address potential uncertainties. We then applied these results to 2 case studies: management of a Koala (Phascolarctos cinereus) population and conservation of an olive ridley sea turtle (Lepidochelys olivacea) population. For low aspirations, that is, when the threshold of acceptability is relatively low, the optimal strategy was obtained by diversifying the allocation of funds. Conversely, for high aspirations, the budget was directed toward management actions with the highest potential effect on the population. The exact optimal allocation was sensitive to the choice of uncertainty model. Our results highlight the importance of accounting for uncertainty when making decisions and suggest that more effort should be placed on

  2. Modeling magneto-optical trapping of CaF molecules

    Science.gov (United States)

    Tarbutt, M. R.; Steimle, T. C.

    2015-11-01

    Magneto-optical trapping forces for molecules are far weaker than for alkali-metal atoms because the photon scattering rate is reduced when there are multiple ground states, and because of optical pumping into dark states. The force is further reduced when the upper state has a much smaller Zeeman splitting than the lower state. We use a rate model to estimate the strength of the trapping and damping forces in a magneto-optical trap (MOT) of CaF molecules, using either the A 2Π1 /2-X 2Σ+ transition or the B 2Σ+-X 2Σ+ transition. We identify a mechanism of magneto-optical trapping that arises when, in each beam of the MOT, two laser components with opposite polarizations and different detunings address the same transition. This mechanism produces a strong trapping force even when the upper state has little or no Zeeman splitting. It is the main mechanism responsible for the trapping force when the A 2Π1 /2-X 2Σ+ transition is used.

  3. Modeling magneto-optical trapping of CaF molecules

    CERN Document Server

    Tarbutt, M R

    2015-01-01

    Magneto-optical trapping forces for molecules are far weaker than for alkali atoms because the photon scattering rate is reduced when there are multiple ground states, and because of optical pumping into dark states. The force is further reduced when the upper state has a much smaller Zeeman splitting than the lower state. We use a rate model to estimate the strength of the trapping and damping forces in a magneto-optical trap (MOT) of CaF molecules, using either the A$^{2}\\Pi_{1/2}$ - X$^{2}\\Sigma^{+}$ transition or the B$^{2}\\Sigma^{+}$ - X$^{2}\\Sigma^{+}$ transition. We identify a new mechanism of magneto-optical trapping that arises when, in each beam of the MOT, two laser components with opposite polarizations and different detunings address the same transition. This mechanism produces a strong trapping force even when the upper state has little or no Zeeman splitting. It is the main mechanism responsible for the trapping force when the A$^{2}\\Pi_{1/2}$ - X$^{2}\\Sigma^{+}$ transition is used.

  4. Modeling of optical losses in perovskite solar cells

    Science.gov (United States)

    Taghavi, M. Javad; Houshmand, Mohammad; Zandi, M. Hossein; Gorji, Nima E.

    2016-09-01

    The optical losses within the structure of hybrid perovskite solar cells are investigated using only the optical properties of each layer e.g. refractive index and extinction coefficient. This model allows calculating the transmission/reflection rates at the interfaces and absorption loss within any layer. Then, the short circuit current density and loss percentage are calculated versus the perovskite and TiO2 thicknesses from 50 nm to 150 nm. To make our calculations closer to reality, we extracted the optical properties of each device component from the literature reports on glass/TCO/TiO2/perovskite/metal. The simulations were fitted with the experimental results of some relevant references. Our simulations show that ITO transmits the light better than SnO2 as the TCO front electrode, and the light reflection at both sides of the perovskite layer, e.g. at TiO2/perovskite and perovskite/Spiro-OMeTAD, is lower than 25%. The light interference and multiple reflections have been accounted in our calculations and finally we showed that a thicker TiO2 and perovskite cause more optical loss in current density due to stronger absorption.

  5. Optical spectroscopic analyses of CVD plasmas used in the deposition of transparent and conductive ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Espinos, J.P.; Yubero, F.; Barranco, A.; Gonzalez-Elipe, A.R. [Instituto de Ciencias de Materiales de Sevilla, CSIC-Universidad de Sevilla (Spain); Cotrino, J. [Universidad de Sevilla, Facultad de Fisica, Dept. de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain)

    2001-07-01

    Transparent conducting ZnO:A1 thin films have been prepared by remote plasma enhanced chemical vapor deposition. Emission line profiles were recorded as a function of different plasma gas composition (oxygen and hydrogen mixtures) and different rates of precursors (Zn(C{sub 2}H{sub 5}){sub 2} and A1(CH{sub 3}){sub 3}) in the downstream zone of the plasma reactor. Optical emission spectroscopy were used to characterize the oxygen/hydrogen plasma as a function of hydrogen flow rate. The variation of plasma hydrogen content has an important influence in the resistivity of the films. (authors)

  6. Numerical Simulations of Optical Turbulence Using an Advanced Atmospheric Prediction Model: Implications for Adaptive Optics Design

    Science.gov (United States)

    Alliss, R.

    2014-09-01

    Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification

  7. A biophysically-based finite state machine model for analysing gastric experimental entrainment and pacing recordings

    Science.gov (United States)

    Sathar, Shameer; Trew, Mark L.; Du, Peng; O’ Grady, Greg; Cheng, Leo K.

    2014-01-01

    Gastrointestinal motility is coordinated by slow waves (SWs) generated by the interstitial cells of Cajal (ICC). Experimental studies have shown that SWs spontaneously activate at different intrinsic frequencies in isolated tissue, whereas in intact tissues they are entrained to a single frequency. Gastric pacing has been used in an attempt to improve motility in disorders such as gastroparesis by modulating entrainment, but the optimal methods of pacing are currently unknown. Computational models can aid in the interpretation of complex in-vivo recordings and help to determine optical pacing strategies. However, previous computational models of SW entrainment are limited to the intrinsic pacing frequency as the primary determinant of the conduction velocity, and are not able to accurately represent the effects of external stimuli and electrical anisotropies. In this paper, we present a novel computationally efficient method for modelling SW propagation through the ICC network while accounting for conductivity parameters and fiber orientations. The method successfully reproduced experimental recordings of entrainment following gastric transection and the effects of gastric pacing on SW activity. It provides a reliable new tool for investigating gastric electrophysiology in normal and diseased states, and to guide and focus future experimental studies. PMID:24276722

  8. Modeling method and preliminary model of Asteroid Toutatis from Chang'E-2 optical images

    Science.gov (United States)

    Li, Xiang-Yu; Qiao, Dong

    2014-06-01

    Shape modeling is fundamental to the analysis of dynamic environment and motion around asteroid. Chang'E-2 successfully made a flyby of Asteroid 4179 Toutatis and obtained plenty of high-resolution images during the mission. In this paper, the modeling method and preliminary model of Asteroid Toutatis are discussed. First, the optical images obtained by Chang'E-2 are analyzed. Terrain and silhouette features in images are described. Then, the modeling method based on previous radar model and preliminary information from optical images is proposed. A preliminary polyhedron model of Asteroid Toutatis is established. Finally, the spherical harmonic coefficients of Asteroid Toutatis based on the polyhedron model are obtained. Some parameters of model are analyzed and compared. Although the model proposed in this paper is only a preliminary model, this work offers a valuable reference for future high-resolution models.

  9. Model of optical response of marine aerosols to Forbush decreases

    Directory of Open Access Journals (Sweden)

    T. Bondo

    2010-03-01

    Full Text Available In order to elucidate the effect of galactic cosmic rays on cloud formation, we investigate the optical response of marine aerosols to Forbush decreases – abrupt decreases in galactic cosmic rays – by means of modeling. We vary the nucleation rate of new aerosols, in a sectional coagulation and condensation model, according to changes in ionization by the Forbush decrease. From the resulting size distribution we then calculate the aerosol optical thickness and Angstrom exponent, for the wavelength pairs 350, 450 nm and 550, 900 nm. In the cases where the output parameters from the model seem to compare best with atmospheric observations we observe, for the shorter wavelength pair, a change in Angstrom exponent, following the Forbush Decrease, of −6 to +3%. In some cases we also observe a delay in the change of Angstrom exponent, compared to the maximum of the Forbush decrease, which is caused by different sensitivities of the probing wavelengths to changes in aerosol number concentration and size. For the long wavelengths these changes are generally smaller. The types and magnitude of change is investigated for a suite of nucleation rates, condensable gas production rates, and aerosol loss rates. Furthermore we compare the model output with observations of 5 of the largest Forbush decreases after year 2000. For the 350, 450 nm pair we use AERONET data and find a comparable change in signal while the Angstrom Exponent is lower in the model than in the data, due to AERONET being mainly sampled over land. For 550, 900 nm we compare with both AERONET and MODIS and find little to no response in both model and observations. In summary our study shows that the optical properties of aerosols show a distinct response to Forbush Decreases, assuming that the nucleation of fresh aerosols is driven by ions. Shorter wavelengths seem more favorable for observing these effects and great care should be taken when analyzing observations, in order to avoid

  10. Reading Ability Development from Kindergarten to Junior Secondary: Latent Transition Analyses with Growth Mixture Modeling

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2016-10-01

    Full Text Available The present study examined the reading ability development of children in the large scale Early Childhood Longitudinal Study (Kindergarten Class of 1998-99 data; Tourangeau, Nord, Lê, Pollack, & Atkins-Burnett, 2006 under the dynamic systems. To depict children's growth pattern, we extended the measurement part of latent transition analysis to the growth mixture model and found that the new model fitted the data well. Results also revealed that most of the children stayed in the same ability group with few cross-level changes in their classes. After adding the environmental factors as predictors, analyses showed that children receiving higher teachers' ratings, with higher socioeconomic status, and of above average poverty status, would have higher probability to transit into the higher ability group.

  11. Structural identifiability analyses of candidate models for in vitro Pitavastatin hepatic uptake.

    Science.gov (United States)

    Grandjean, Thomas R B; Chappell, Michael J; Yates, James W T; Evans, Neil D

    2014-05-01

    In this paper a review of the application of four different techniques (a version of the similarity transformation approach for autonomous uncontrolled systems, a non-differential input/output observable normal form approach, the characteristic set differential algebra and a recent algebraic input/output relationship approach) to determine the structural identifiability of certain in vitro nonlinear pharmacokinetic models is provided. The Organic Anion Transporting Polypeptide (OATP) substrate, Pitavastatin, is used as a probe on freshly isolated animal and human hepatocytes. Candidate pharmacokinetic non-linear compartmental models have been derived to characterise the uptake process of Pitavastatin. As a prerequisite to parameter estimation, structural identifiability analyses are performed to establish that all unknown parameters can be identified from the experimental observations available.

  12. A conceptual model for analysing informal learning in online social networks for health professionals.

    Science.gov (United States)

    Li, Xin; Gray, Kathleen; Chang, Shanton; Elliott, Kristine; Barnett, Stephen

    2014-01-01

    Online social networking (OSN) provides a new way for health professionals to communicate, collaborate and share ideas with each other for informal learning on a massive scale. It has important implications for ongoing efforts to support Continuing Professional Development (CPD) in the health professions. However, the challenge of analysing the data generated in OSNs makes it difficult to understand whether and how they are useful for CPD. This paper presents a conceptual model for using mixed methods to study data from OSNs to examine the efficacy of OSN in supporting informal learning of health professionals. It is expected that using this model with the dataset generated in OSNs for informal learning will produce new and important insights into how well this innovation in CPD is serving professionals and the healthcare system.

  13. Daniel K. Inouye Solar Telescope: computational fluid dynamic analyses and evaluation of the air knife model

    Science.gov (United States)

    McQuillen, Isaac; Phelps, LeEllen; Warner, Mark; Hubbard, Robert

    2016-08-01

    Implementation of an air curtain at the thermal boundary between conditioned and ambient spaces allows for observation over wavelength ranges not practical when using optical glass as a window. The air knife model of the Daniel K. Inouye Solar Telescope (DKIST) project, a 4-meter solar observatory that will be built on Haleakalā, Hawai'i, deploys such an air curtain while also supplying ventilation through the ceiling of the coudé laboratory. The findings of computational fluid dynamics (CFD) analysis and subsequent changes to the air knife model are presented. Major design constraints include adherence to the Interface Control Document (ICD), separation of ambient and conditioned air, unidirectional outflow into the coudé laboratory, integration of a deployable glass window, and maintenance and accessibility requirements. Optimized design of the air knife successfully holds full 12 Pa backpressure under temperature gradients of up to 20°C while maintaining unidirectional outflow. This is a significant improvement upon the .25 Pa pressure differential that the initial configuration, tested by Linden and Phelps, indicated the curtain could hold. CFD post- processing, developed by Vogiatzis, is validated against interferometry results of initial air knife seeing evaluation, performed by Hubbard and Schoening. This is done by developing a CFD simulation of the initial experiment and using Vogiatzis' method to calculate error introduced along the optical path. Seeing error, for both temperature differentials tested in the initial experiment, match well with seeing results obtained from the CFD analysis and thus validate the post-processing model. Application of this model to the realizable air knife assembly yields seeing errors that are well within the error budget under which the air knife interface falls, even with a temperature differential of 20°C between laboratory and ambient spaces. With ambient temperature set to 0°C and conditioned temperature set to 20

  14. Optical modeling of graphene contacted CdTe solar cells

    Science.gov (United States)

    Aldosari, Marouf; Sohrabpoor, Hamed; Gorji, Nima E.

    2016-04-01

    For the first time, an optical model is applied on CdS/CdTe thin film solar cells with graphene front or back contact. Graphene is highly conductive and is as thin as a single atom which reduces the light reflection and absorption, and thus enhances the light transmission to CdTe layer for a wide range of wavelengths including IR. Graphene as front electrode of CdTe devices led to loss in short circuit current density of 10% ΔJsc ≤ 15% compared to the conventional electrodes of TCO and ITO at CdS thickness of dCdS = 100 nm. In addition, all the multilayer graphene electrodes with 2, 4, and 7 graphene layers led to Jsc ≤ 20 mA/cm2. Therefore, we conclude that a single monolayer graphene with hexagonal carbon network reduces optical losses and enhances the carrier collection measured as Jsc. In another structure design, we applied the optical model to graphene back contacted CdS/CdTe device. This scheme allows double side irradiation of the cell which is expected to enhance the Jsc. We obtained 1 ∼ 6 , 23, and 38 mA/cm2 for back, front and bifacial illumination of graphene contacted CdTe cell with CdS = 100 nm. The bifacial irradiated cell, to be efficient, requires an ultrathin CdTe film with dCdTe ≤ 1 μm. In this case, the junction electric field extends to the back region and collects out the generated carriers efficiently. This was modelled by absorptivity rather than transmission rate and optical losses. Since the literature suggest that ZnO can increase the graphene conductivity and enhance the Jsc, we performed our simulations for a graphene/ZnO electrode (ZnO = 100 nm) instead of a single graphene layer.

  15. Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analyses

    Science.gov (United States)

    Zhao, T.; Utili, S.; Crosta, G. B.

    2016-06-01

    This paper investigates the generation of hydrodynamic water waves due to rockslides plunging into a water reservoir. Quasi-3D DEM analyses in plane strain by a coupled DEM-CFD code are adopted to simulate the rockslide from its onset to the impact with the still water and the subsequent generation of the wave. The employed numerical tools and upscaling of hydraulic properties allow predicting a physical response in broad agreement with the observations notwithstanding the assumptions and characteristics of the adopted methods. The results obtained by the DEM-CFD coupled approach are compared to those published in the literature and those presented by Crosta et al. (Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock mechanics, 2014) in a companion paper obtained through an ALE-FEM method. Analyses performed along two cross sections are representative of the limit conditions of the eastern and western slope sectors. The max rockslide average velocity and the water wave velocity reach ca. 22 and 20 m/s, respectively. The maximum computed run up amounts to ca. 120 and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 and 190 m, respectively). Therefore, the overall study lays out a possible DEM-CFD framework for the modelling of the generation of the hydrodynamic wave due to the impact of a rapid moving rockslide or rock-debris avalanche.

  16. Economic modeling of electricity production from hot dry rock geothermal reservoirs: methodology and analyses. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, R.G.; Morris, G.E.

    1979-09-01

    An analytical methodology is developed for assessing alternative modes of generating electricity from hot dry rock (HDR) geothermal energy sources. The methodology is used in sensitivity analyses to explore relative system economics. The methodology used a computerized, intertemporal optimization model to determine the profit-maximizing design and management of a unified HDR electric power plant with a given set of geologic, engineering, and financial conditions. By iterating this model on price, a levelized busbar cost of electricity is established. By varying the conditions of development, the sensitivity of both optimal management and busbar cost to these conditions are explored. A plausible set of reference case parameters is established at the outset of the sensitivity analyses. This reference case links a multiple-fracture reservoir system to an organic, binary-fluid conversion cycle. A levelized busbar cost of 43.2 mills/kWh ($1978) was determined for the reference case, which had an assumed geothermal gradient of 40/sup 0/C/km, a design well-flow rate of 75 kg/s, an effective heat transfer area per pair of wells of 1.7 x 10/sup 6/ m/sup 2/, and plant design temperature of 160/sup 0/C. Variations in the presumed geothermal gradient, size of the reservoir, drilling costs, real rates of return, and other system parameters yield minimum busbar costs between -40% and +76% of the reference case busbar cost.

  17. Establishing a Numerical Modeling Framework for Hydrologic Engineering Analyses of Extreme Storm Events

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaodong; Hossain, Faisal; Leung, L. Ruby

    2017-08-01

    In this study a numerical modeling framework for simulating extreme storm events was established using the Weather Research and Forecasting (WRF) model. Such a framework is necessary for the derivation of engineering parameters such as probable maximum precipitation that are the cornerstone of large water management infrastructure design. Here this framework was built based on a heavy storm that occurred in Nashville (USA) in 2010, and verified using two other extreme storms. To achieve the optimal setup, several combinations of model resolutions, initial/boundary conditions (IC/BC), cloud microphysics and cumulus parameterization schemes were evaluated using multiple metrics of precipitation characteristics. The evaluation suggests that WRF is most sensitive to IC/BC option. Simulation generally benefits from finer resolutions up to 5 km. At the 15km level, NCEP2 IC/BC produces better results, while NAM IC/BC performs best at the 5km level. Recommended model configuration from this study is: NAM or NCEP2 IC/BC (depending on data availability), 15km or 15km-5km nested grids, Morrison microphysics and Kain-Fritsch cumulus schemes. Validation of the optimal framework suggests that these options are good starting choices for modeling extreme events similar to the test cases. This optimal framework is proposed in response to emerging engineering demands of extreme storm events forecasting and analyses for design, operations and risk assessment of large water infrastructures.

  18. Estimating required information size by quantifying diversity in random-effects model meta-analyses

    DEFF Research Database (Denmark)

    Wetterslev, Jørn; Thorlund, Kristian; Brok, Jesper;

    2009-01-01

    an intervention effect suggested by trials with low-risk of bias. METHODS: Information size calculations need to consider the total model variance in a meta-analysis to control type I and type II errors. Here, we derive an adjusting factor for the required information size under any random-effects model meta......-analysis. RESULTS: We devise a measure of diversity (D2) in a meta-analysis, which is the relative variance reduction when the meta-analysis model is changed from a random-effects into a fixed-effect model. D2 is the percentage that the between-trial variability constitutes of the sum of the between...... and interpreted using several simulations and clinical examples. In addition we show mathematically that diversity is equal to or greater than inconsistency, that is D2 >or= I2, for all meta-analyses. CONCLUSION: We conclude that D2 seems a better alternative than I2 to consider model variation in any random...

  19. Development of steady-state model for MSPT and detailed analyses of receiver

    Science.gov (United States)

    Yuasa, Minoru; Sonoda, Masanori; Hino, Koichi

    2016-05-01

    Molten salt parabolic trough system (MSPT) uses molten salt as heat transfer fluid (HTF) instead of synthetic oil. The demonstration plant of MSPT was constructed by Chiyoda Corporation and Archimede Solar Energy in Italy in 2013. Chiyoda Corporation developed a steady-state model for predicting the theoretical behavior of the demonstration plant. The model was designed to calculate the concentrated solar power and heat loss using ray tracing of incident solar light and finite element modeling of thermal energy transferred into the medium. This report describes the verification of the model using test data on the demonstration plant, detailed analyses on the relation between flow rate and temperature difference on the metal tube of receiver and the effect of defocus angle on concentrated power rate, for solar collector assembly (SCA) development. The model is accurate to an extent of 2.0% as systematic error and 4.2% as random error. The relationships between flow rate and temperature difference on metal tube and the effect of defocus angle on concentrated power rate are shown.

  20. Adiabatic Floquet model for the optical response in femtosecond filaments

    CERN Document Server

    Hofmann, Michael

    2016-01-01

    The standard model of femtosecond filamentation is based on phenomenological assumptions which suggest that the ionization-induced carriers can be treated as free according to the Drude model, while the nonlinear response of the bound carriers follows the all-optical Kerr effect. Here, we demonstrate that the additional plasma generated at a multiphoton resonance dominates the saturation of the nonlinear refractive index. Since resonances are not captured by the standard model, we propose a modification of the latter in which ionization enhancements can be accounted for by an ionization rate obtained from non-Hermitian Floquet theory. In the adiabatic regime of long pulse envelopes, this augmented standard model is in excellent agreement with direct quantum mechanical simulations. Since our proposal maintains the structure of the standard model, it can be easily incorporated into existing codes of filament simulation.

  1. Event-based Corpuscular Model for Quantum Optics Experiments

    CERN Document Server

    Michielsen, K; De Raedt, H

    2010-01-01

    A corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one is presented. The event-based corpuscular model is shown to give a unified description of multiple-beam fringes of a plane parallel plate, single-photon Mach-Zehnder interferometer, Wheeler's delayed choice, photon tunneling, quantum erasers, two-beam interference, double-slit, and Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss experiments.

  2. Computational Model Of Fiber Optic, Arc Fusion Splicing; Experimental Comparison

    Science.gov (United States)

    Ruffin, Paul; Frost, Walter; Long, Wayne

    1989-02-01

    Acknowledgement: The assistance and support of the MICOM Army Missile Command is gratefully appreciated. An analytical tool to investigate the arc fusion splicing of optical fibers is developed. The physical model incorporates heat transfer and thermal, visco elastic strain. The heat transfer equations governing radiation, conduction and convection during arc heating are formulated. The radiation heat flux impinging on the fiber optics is modeled based on reported experimental analysis of a generic type arc discharge. The fusion process considers deformation of the fiber due to thermal, viscous and elastic strain. A Maxwell stress-strain relationship is assumed. The model assumes an initial gap at the beginning of the arc which is closed by a press-stroke during the heating cycle. All physical properties of the fused silica glass fibers are considered as functions of temperature based on available experimental data. A computer algorithm has been developed to solve the system of governing equations and parametric studies carried out. An experiment using a FSM-20 arc fusion splicer manufactured by Fujikura Ltd. was carried out to provide experimental verification of the analytical model. In the experiment a continuous fiber was positioned in the arc and cyclic heating and cooling was carried out. One end of the fiber was clamped and the other was free to move. The fiber was heated for 6 seconds and cooled for 3 minutes for several cycles. At the end of each cooling process, photographs of the deformation of the fiber were taken. The results showed that the fiber necked down on the free end and buldged up on the fixed end. With repeated heating and cooling cycles, the optical fiber eventually necked down to the point that it melted in two. The analytical model was run for the conditions of the experiment. Comparisons of the predicted deformation of the optical fiber with those measured is given. The analytical model displays all of the physical phenomenon of fiber

  3. A STRONGLY COUPLED REACTOR CORE ISOLATION COOLING SYSTEM MODEL FOR EXTENDED STATION BLACK-OUT ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory

    2015-03-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety

  4. Evaluation of hydrological models for scenario analyses: signal-to-noise-ratio between scenario effects and model uncertainty

    Directory of Open Access Journals (Sweden)

    H. Bormann

    2005-01-01

    Full Text Available Many model applications suffer from the fact that although it is well known that model application implies different sources of uncertainty there is no objective criterion to decide whether a model is suitable for a particular application or not. This paper introduces a comparative index between the uncertainty of a model and the change effects of scenario calculations which enables the modeller to objectively decide about suitability of a model to be applied in scenario analysis studies. The index is called "signal-to-noise-ratio", and it is applied for an exemplary scenario study which was performed within the GLOWA-IMPETUS project in Benin. The conceptual UHP model was applied on the upper Ouémé basin. Although model calibration and validation were successful, uncertainties on model parameters and input data could be identified. Applying the "signal-to-noise-ratio" on regional scale subcatchments of the upper Ouémé comparing water availability indicators for uncertainty studies and scenario analyses the UHP model turned out to be suitable to predict long-term water balances under the present poor data availability and changing environmental conditions in subhumid West Africa.

  5. Local and global nucleon optical models from 1 keV to 200 MeV

    CERN Document Server

    Köning, A J

    2003-01-01

    We present new phenomenological optical model potentials (OMPs) for neutrons and protons with incident energies from 1 keV up to 200 MeV, for (near-)spherical nuclides in the mass range 24<=A<=209. They are based on a smooth, unique functional form for the energy dependence of the potential depths, and on physically constrained geometry parameters. For the first time, this enables one to predict basic scattering observables over a broad mass range and over an energy range that covers several orders of magnitude in MeV. Thereby, the necessity of using different OMPs in different energy regions has been removed. Using extensive grid searches and a new computational steering technique, we have obtained optical model parameters for many isotopes separately. We recommend that the resulting, so-called local, optical models be used in theoretical analyses of nuclear data. From these parameterizations, we have also constructed asymmetry-dependent neutron and proton global OMPs that are superior to all other exi...

  6. Brimonidine suppresses loss of retinal neurons and visual function in a murine model of optic neuritis.

    Science.gov (United States)

    Guo, Xiaoli; Namekata, Kazuhiko; Kimura, Atsuko; Noro, Takahiko; Azuchi, Yuriko; Semba, Kentaro; Harada, Chikako; Yoshida, Hiroshi; Mitamura, Yoshinori; Harada, Takayuki

    2015-04-10

    Optic neuritis is inflammation of the optic nerve and is strongly associated with multiple sclerosis (MS), an inflammatory demyelinating syndrome of the central nervous system. It leads to retinal ganglion cell (RGC) death and can cause severe vision loss. Brimonidine (BMD) is a selective α2-adrenergic receptor agonist that is used clinically for the treatment of glaucoma. BMD lowers intraocular pressure, but recent evidence suggests that its therapeutic efficacy may also mediate through mechanisms independent of modulation of intraocular pressure. In this study, we examined the effects of topical administration of BMD on retinal degeneration during optic neuritis in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. EAE was induced with MOG35-55 in C57BL/6J mice and BMD eyedrops were applied daily. In the EAE retina, the number of RGCs was significantly decreased and this effect was suppressed with BMD treatment. Consistent with histological analyses, the visual impairment observed in EAE mice was inhibited with BMD treatment, indicating the functional significance of the neuroprotective effect of BMD. Furthermore, BMD increased the expression level of basic fibroblast growth factor in the EAE retina, particularly in Müller glial cells and RGCs. Our findings suggest that topical administration of BMD may be available for RGC protection during optic neuritis, as well as for glaucoma.

  7. Non-rotational aspherical models of the human optical system

    Science.gov (United States)

    Giovanzana, S.; Kasprzak, H. T.; Pałucki, B.; Ţălu, Ş.

    2013-12-01

    The aim of this work was to define three-dimensional (3D) non-rotational aspherical parametric models for the human cornea and lens using computational geometry and CAD representations. The hyperbolic cosine based function is used for the cornea and a parametric model is used for lens modeling. Data analysis and visualization of 3D non-rotational models were made using the Rhinoceros CAD software and MATLAB software was used for numeric computation. We combined, implemented, and evaluated these models with a 3D ray-tracing in order to fully analyze the human eye model. It was found that 3D non-rotational aspherical models for the human eye could be more accurately modeled and rendered for analysis with finite element method. The objective of this study is to present and analyze mathematical models of the cornea and lens and to highlight the potential of optical applications of the eye models containing astigmatic surfaces, which are more close to the real eye than spherosymmetric eye models.

  8. Multiple Scattering Model for Optical Coherence Tomography with Rytov Approximation

    KAUST Repository

    Li, Muxingzi

    2017-04-24

    Optical Coherence Tomography (OCT) is a coherence-gated, micrometer-resolution imaging technique that focuses a broadband near-infrared laser beam to penetrate into optical scattering media, e.g. biological tissues. The OCT resolution is split into two parts, with the axial resolution defined by half the coherence length, and the depth-dependent lateral resolution determined by the beam geometry, which is well described by a Gaussian beam model. The depth dependence of lateral resolution directly results in the defocusing effect outside the confocal region and restricts current OCT probes to small numerical aperture (NA) at the expense of lateral resolution near the focus. Another limitation on OCT development is the presence of a mixture of speckles due to multiple scatterers within the coherence length, and other random noise. Motivated by the above two challenges, a multiple scattering model based on Rytov approximation and Gaussian beam optics is proposed for the OCT setup. Some previous papers have adopted the first Born approximation with the assumption of small perturbation of the incident field in inhomogeneous media. The Rytov method of the same order with smooth phase perturbation assumption benefits from a wider spatial range of validity. A deconvolution method for solving the inverse problem associated with the first Rytov approximation is developed, significantly reducing the defocusing effect through depth and therefore extending the feasible range of NA.

  9. Optical modeling of volcanic ash particles using ellipsoids

    Science.gov (United States)

    Merikallio, Sini; Muñoz, Olga; Sundström, Anu-Maija; Virtanen, Timo H.; Horttanainen, Matti; de Leeuw, Gerrit; Nousiainen, Timo

    2015-05-01

    The single-scattering properties of volcanic ash particles are modeled here by using ellipsoidal shapes. Ellipsoids are expected to improve the accuracy of the retrieval of aerosol properties using remote sensing techniques, which are currently often based on oversimplified assumptions of spherical ash particles. Measurements of the single-scattering optical properties of ash particles from several volcanoes across the globe, including previously unpublished measurements from the Eyjafjallajökull and Puyehue volcanoes, are used to assess the performance of the ellipsoidal particle models. These comparisons between the measurements and the ellipsoidal particle model include consideration of the whole scattering matrix, as well as sensitivity studies on the point of view of the Advanced Along Track Scanning Radiometer (AATSR) instrument. AATSR, which flew on the ENVISAT satellite, offers two viewing directions but no information on polarization, so usually only the phase function is relevant for interpreting its measurements. As expected, ensembles of ellipsoids are able to reproduce the observed scattering matrix more faithfully than spheres. Performance of ellipsoid ensembles depends on the distribution of particle shapes, which we tried to optimize. No single specific shape distribution could be found that would perform superiorly in all situations, but all of the best-fit ellipsoidal distributions, as well as the additionally tested equiprobable distribution, improved greatly over the performance of spheres. We conclude that an equiprobable shape distribution of ellipsoidal model particles is a relatively good, yet enticingly simple, approach for modeling volcanic ash single-scattering optical properties.

  10. Adaptive optics sky coverage modeling for extremely large telescopes.

    Science.gov (United States)

    Clare, Richard M; Ellerbroek, Brent L; Herriot, Glen; Véran, Jean-Pierre

    2006-12-10

    A Monte Carlo sky coverage model for laser guide star adaptive optics systems was proposed by Clare and Ellerbroek [J. Opt. Soc. Am. A 23, 418 (2006)]. We refine the model to include (i) natural guide star (NGS) statistics using published star count models, (ii) noise on the NGS measurements, (iii) the effect of telescope wind shake, (iv) a model for how the Strehl and hence NGS wavefront sensor measurement noise varies across the field, (v) the focus error due to imperfectly tracking the range to the sodium layer, (vi) the mechanical bandwidths of the tip-tilt (TT) stage and deformable mirror actuators, and (vii) temporal filtering of the NGS measurements to balance errors due to noise and servo lag. From this model, we are able to generate a TT error budget for the Thirty Meter Telescope facility narrow-field infrared adaptive optics system (NFIRAOS) and perform several design trade studies. With the current NFIRAOS design, the median TT error at the galactic pole with median seeing is calculated to be 65 nm or 1.8 mas rms.

  11. Wavefront Sensing for WFIRST with a Linear Optical Model

    Science.gov (United States)

    Jurling, Alden S.; Content, David A.

    2012-01-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  12. Model of optical response of marine aerosols to Forbush decreases

    Directory of Open Access Journals (Sweden)

    T. Bondo

    2009-10-01

    Full Text Available In order to elucidate the effect of galactic cosmic rays on cloud formation, we investigate the optical response of marine aerosols to Forbush decreases – abrupt decreases in galactic cosmic rays – by means of modeling. We vary the nucleation rate of new aerosols, in a sectional coagulation and condensation model, according to changes in ionization by the Forbush decrease. From the resulting size distribution we then calculate the aerosol optical thickness and Angstrom exponent, for the wavelength pairs 350, 450 nm and 550, 900 nm. For the shorter wavelength pair we observe a change in Angstrom exponent, following the Forbush Decrease, of −6 to +3% in the cases with atmospherically realistic output parameters. For some parameters we also observe a delay in the change of Angstrom exponent, compared to the maximum of the Forbush decrease, which is caused by different sensitivities of the probing wavelengths to changes in aerosol number concentration and size. For the long wavelengths these changes are generally smaller. The types and magnitude of change is investigated for a suite of nucleation rates, condensable gas production rates, and aerosol loss rates. Furthermore we compare the model output with observations of 5 of the largest Forbush decreases after year 2000. For the 350, 450 nm pair we use AERONET data and find a comparable change in signal while the Angstrom Exponent is lower in the model than in the data, due to AERONET being mainly sampled over land. For 550, 900 nm we compare with both AERONET and MODIS and find little to no response in both model and observations. In summary our study shows that the optical properties of aerosols show a distinct response to Forbush Decreases, assuming that the nucleation of fresh aerosols is driven by ions. Shorter wavelengths seem more favorable for observing these effects and great care should be taken when analyzing observations, in order to avoid the signal being drowned out by noise.

  13. Wavefront sensing for WFIRST with a linear optical model

    Science.gov (United States)

    Jurling, Alden S.; Content, David A.

    2012-09-01

    In this paper we develop methods to use a linear optical model to capture the field dependence of wavefront aberrations in a nonlinear optimization-based phase retrieval algorithm for image-based wavefront sensing. The linear optical model is generated from a ray trace model of the system and allows the system state to be described in terms of mechanical alignment parameters rather than wavefront coefficients. This approach allows joint optimization over images taken at different field points and does not require separate convergence of phase retrieval at individual field points. Because the algorithm exploits field diversity, multiple defocused images per field point are not required for robustness. Furthermore, because it is possible to simultaneously fit images of many stars over the field, it is not necessary to use a fixed defocus to achieve adequate signal-to-noise ratio despite having images with high dynamic range. This allows high performance wavefront sensing using in-focus science data. We applied this technique in a simulation model based on the Wide Field Infrared Survey Telescope (WFIRST) Intermediate Design Reference Mission (IDRM) imager using a linear optical model with 25 field points. We demonstrate sub-thousandth-wave wavefront sensing accuracy in the presence of noise and moderate undersampling for both monochromatic and polychromatic images using 25 high-SNR target stars. Using these high-quality wavefront sensing results, we are able to generate upsampled point-spread functions (PSFs) and use them to determine PSF ellipticity to high accuracy in order to reduce the systematic impact of aberrations on the accuracy of galactic ellipticity determination for weak-lensing science.

  14. A model intercomparison analysing the link between column ozone and geopotential height anomalies in January

    Directory of Open Access Journals (Sweden)

    P. Braesicke

    2008-05-01

    Full Text Available A statistical framework to evaluate the performance of chemistry-climate models with respect to the interaction between meteorology and column ozone during northern hemisphere mid-winter, in particularly January, is used. Different statistical diagnostics from four chemistry-climate models (E39C, ME4C, UMUCAM, ULAQ are compared with the ERA-40 re-analysis. First, we analyse vertical coherence in geopotential height anomalies as described by linear correlations between two different pressure levels (30 and 200 hPa of the atmosphere. In addition, linear correlations between column ozone and geopotential height anomalies at 200 hPa are discussed to motivate a simple picture of the meteorological impacts on column ozone on interannual timescales. Secondly, we discuss characteristic spatial structures in geopotential height and column ozone anomalies as given by their first two empirical orthogonal functions. Finally, we describe the covariance patterns between reconstructed anomalies of geopotential height and column ozone. In general we find good agreement between the models with higher horizontal resolution (E39C, ME4C, UMUCAM and ERA-40. The Pacific-North American (PNA pattern emerges as a useful qualitative benchmark for the model performance. Models with higher horizontal resolution and high upper boundary (ME4C and UMUCAM show good agreement with the PNA tripole derived from ERA-40 data, including the column ozone modulation over the Pacfic sector. The model with lowest horizontal resolution does not show a classic PNA pattern (ULAQ, and the model with the lowest upper boundary (E39C does not capture the PNA related column ozone variations over the Pacific sector. Those discrepancies have to be taken into account when providing confidence intervals for climate change integrations.

  15. KCl:Eu2+ as a solar UV-C radiation dosimeter.Optically stimulated luminescence and thermoluminescence analyses

    Institute of Scientific and Technical Information of China (English)

    I.Aguirre de Cáarcer; H.L.D'Antoni; M.Barboza-Flores; V.Correcher; F.Jaque

    2009-01-01

    The KCl:Eu2+ system response to UV-C was investigated by analyzing the optically stimulated luminescence (OSL) and thertoo-luminescence (TL) signal produced by ultraviolet light exposure at room temperature.It was found that after UV-C irradiation,OSL was produced on a wide band of visible wavelengths with decay time that varied by several orders of magnitude depending on the Eu2+ aggregation state.In spite of the low intensity of solar UV-C reaching the Earth's surface in Madrid (40° N,700 m a.s.l.),it was possible to measure the UV-C radiation dose at 6:48 solar time by using the TL response of the KCl:Eu2+ system and differentiate it from the ambient beta radiation dose.

  16. Numerical modelling of multimode fibre-optic communication lines

    Energy Technology Data Exchange (ETDEWEB)

    Sidelnikov, O S; Fedoruk, M P [Novosibirsk State University, Novosibirsk (Russian Federation); Sygletos, S; Ferreira, F [Aston University, England, Birmingham, B4 7ET (United Kingdom)

    2016-01-31

    The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)

  17. PASMet: a web-based platform for prediction, modelling and analyses of metabolic systems.

    Science.gov (United States)

    Sriyudthsak, Kansuporn; Mejia, Ramon Francisco; Arita, Masanori; Hirai, Masami Yokota

    2016-07-01

    PASMet (Prediction, Analysis and Simulation of Metabolic networks) is a web-based platform for proposing and verifying mathematical models to understand the dynamics of metabolism. The advantages of PASMet include user-friendliness and accessibility, which enable biologists and biochemists to easily perform mathematical modelling. PASMet offers a series of user-functions to handle the time-series data of metabolite concentrations. The functions are organised into four steps: (i) Prediction of a probable metabolic pathway and its regulation; (ii) Construction of mathematical models; (iii) Simulation of metabolic behaviours; and (iv) Analysis of metabolic system characteristics. Each function contains various statistical and mathematical methods that can be used independently. Users who may not have enough knowledge of computing or programming can easily and quickly analyse their local data without software downloads, updates or installations. Users only need to upload their files in comma-separated values (CSV) format or enter their model equations directly into the website. Once the time-series data or mathematical equations are uploaded, PASMet automatically performs computation on server-side. Then, users can interactively view their results and directly download them to their local computers. PASMet is freely available with no login requirement at http://pasmet.riken.jp/ from major web browsers on Windows, Mac and Linux operating systems.

  18. Correlation of Klebsiella pneumoniae comparative genetic analyses with virulence profiles in a murine respiratory disease model.

    Directory of Open Access Journals (Sweden)

    Ramy A Fodah

    Full Text Available Klebsiella pneumoniae is a bacterial pathogen of worldwide importance and a significant contributor to multiple disease presentations associated with both nosocomial and community acquired disease. ATCC 43816 is a well-studied K. pneumoniae strain which is capable of causing an acute respiratory disease in surrogate animal models. In this study, we performed sequencing of the ATCC 43816 genome to support future efforts characterizing genetic elements required for disease. Furthermore, we performed comparative genetic analyses to the previously sequenced genomes from NTUH-K2044 and MGH 78578 to gain an understanding of the conservation of known virulence determinants amongst the three strains. We found that ATCC 43816 and NTUH-K2044 both possess the known virulence determinant for yersiniabactin, as well as a Type 4 secretion system (T4SS, CRISPR system, and an acetonin catabolism locus, all absent from MGH 78578. While both NTUH-K2044 and MGH 78578 are clinical isolates, little is known about the disease potential of these strains in cell culture and animal models. Thus, we also performed functional analyses in the murine macrophage cell lines RAW264.7 and J774A.1 and found that MGH 78578 (K52 serotype was internalized at higher levels than ATCC 43816 (K2 and NTUH-K2044 (K1, consistent with previous characterization of the antiphagocytic properties of K1 and K2 serotype capsules. We also examined the three K. pneumoniae strains in a novel BALB/c respiratory disease model and found that ATCC 43816 and NTUH-K2044 are highly virulent (LD50<100 CFU while MGH 78578 is relatively avirulent.

  19. Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems.

    Science.gov (United States)

    Vredenberg, Wim

    2011-02-01

    In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with multi-turnover pulses (MTFs) of variable intensity and duration. These analyses have led to definition and formulation of rate equations that describe the sequence of primary linear electron transfer (LET) steps in photosystem II (PSII) and of cyclic electron transport (CET) in PSI. The model considers heterogeneity in PSII reaction centers (RCs) associated with the S-states of the OEC and incorporates in a dark-adapted state the presence of a 15-35% fraction of Q(B)-nonreducing RCs that probably is identical with the S₀ fraction. The fluorescence induction algorithm (FIA) in the 10 μs-1s excitation time range considers a photochemical O-J-D, a photo-electrochemical J-I and an I-P phase reflecting the response of the variable fluorescence to the electric trans-thylakoid potential generated by the proton pump fuelled by CET in PSI. The photochemical phase incorporates the kinetics associated with the double reduction of the acceptor pair of pheophytin (Phe) and plastoquinone Q(A) [PheQ(A)] in Q(B) nonreducing RCs and the associated doubling of the variable fluorescence, in agreement with the three-state trapping model (TSTM) of PS II. The decline in fluorescence emission during the so called SMT in the 1-100s excitation time range, known as the Kautsky curve, is shown to be associated with a substantial decrease of CET-powered proton efflux from the stroma into the chloroplast lumen through the ATPsynthase of the photosynthetic machinery.

  20. D Recording for 2d Delivering - the Employment of 3d Models for Studies and Analyses -

    Science.gov (United States)

    Rizzi, A.; Baratti, G.; Jiménez, B.; Girardi, S.; Remondino, F.

    2011-09-01

    In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d'Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino). APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy) with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying and 3D material to

  1. Optical properties of CdTe: Experiment and modeling

    Science.gov (United States)

    Adachi, Sadao; Kimura, Toshifumi; Suzuki, Norihiro

    1993-09-01

    The real epsilon(sub 1) and imaginary epsilon(sub 2) portions of the dielectric function of CdTe were measured by spectroscopic ellipsometry (SE) in the 1.1-5.6 eV photon-energy range at room temperature. The data obtained were analyzed using different theoretical models, namely the harmonic-oscillator approximation, the standard critical point, and the model dielectric function. These models include the E(sub 0), E(sub 0) + Delta(sub 0), E(sub 1), E(sub 1) + Delta(sub 1), and E(sub 2) gaps as the main dispersion mechanisms. The consequences were reported and of particular interest was the difference in the analyzed results between these theoretical models. Dielectric-related optical constants of CdTe, such as the complex refractive index, the absorption coefficient, and normal-incidence reflectivity, were also investigated.

  2. Synthetic Modeling of Astronomical Closed Loop Adaptive Optics

    CERN Document Server

    Jolissaint, Laurent

    2010-01-01

    We present an analytical model of a single natural guide star astronomical adaptive optics system, in closed loop mode. The model is used to simulate the long exposure system point spread function, using the spatial frequency (or Fourier) approach, and complement an initial open loop model. Applications range from system design, science case analysis and AO data reduction. All the classical phase errors have been included: deformable mirror fitting error, wavefront sensor spatial aliasing, wavefront sensor noise, and the correlated anisoplanatic and servo-lag error. The model includes the deformable mirror spatial transfer function, and the actuator array geometry can be different from the wavefront sensor lenslet array geometry. We also include the dispersion between the sensing and the correction wavelengths. Illustrative examples are given at the end of the paper.

  3. Normalisation genes for expression analyses in the brown alga model Ectocarpus siliculosus

    Directory of Open Access Journals (Sweden)

    Rousvoal Sylvie

    2008-08-01

    Full Text Available Abstract Background Brown algae are plant multi-cellular organisms occupying most of the world coasts and are essential actors in the constitution of ecological niches at the shoreline. Ectocarpus siliculosus is an emerging model for brown algal research. Its genome has been sequenced, and several tools are being developed to perform analyses at different levels of cell organization, including transcriptomic expression analyses. Several topics, including physiological responses to osmotic stress and to exposure to contaminants and solvents are being studied in order to better understand the adaptive capacity of brown algae to pollution and environmental changes. A series of genes that can be used to normalise expression analyses is required for these studies. Results We monitored the expression of 13 genes under 21 different culture conditions. These included genes encoding proteins and factors involved in protein translation (ribosomal protein 26S, EF1alpha, IF2A, IF4E and protein degradation (ubiquitin, ubiquitin conjugating enzyme or folding (cyclophilin, and proteins involved in both the structure of the cytoskeleton (tubulin alpha, actin, actin-related proteins and its trafficking function (dynein, as well as a protein implicated in carbon metabolism (glucose 6-phosphate dehydrogenase. The stability of their expression level was assessed using the Ct range, and by applying both the geNorm and the Normfinder principles of calculation. Conclusion Comparisons of the data obtained with the three methods of calculation indicated that EF1alpha (EF1a was the best reference gene for normalisation. The normalisation factor should be calculated with at least two genes, alpha tubulin, ubiquitin-conjugating enzyme or actin-related proteins being good partners of EF1a. Our results exclude actin as a good normalisation gene, and, in this, are in agreement with previous studies in other organisms.

  4. DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION

    Energy Technology Data Exchange (ETDEWEB)

    VONGARGEN BH

    2009-11-03

    The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon

  5. Validation of Optical Turbulence Simulations from a Numerical Weather Prediction Model in Support of Adaptive Optics Design

    Science.gov (United States)

    Alliss, R.; Felton, B.

    Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from large astronomical telescopes and possibly reducing data quality of air to air laser communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using the Maui High Performance Computing Centers Jaws cluster. The WRF model is configured to run at 1km horizontal resolution over a domain covering the islands of Maui and the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. We are interested in the variations in Cn2 and the Fried Coherence Length (ro) between the summits of Haleakala and Mauna Loa. Over six months of simulations have been performed over this area. Simulations indicate that

  6. Assessing the hydrodynamic boundary conditions for risk analyses in coastal areas: a stochastic storm surge model

    Directory of Open Access Journals (Sweden)

    T. Wahl

    2011-11-01

    Full Text Available This paper describes a methodology to stochastically simulate a large number of storm surge scenarios (here: 10 million. The applied model is very cheap in computation time and will contribute to improve the overall results from integrated risk analyses in coastal areas. Initially, the observed storm surge events from the tide gauges of Cuxhaven (located in the Elbe estuary and Hörnum (located in the southeast of Sylt Island are parameterised by taking into account 25 parameters (19 sea level parameters and 6 time parameters. Throughout the paper, the total water levels are considered. The astronomical tides are semidiurnal in the investigation area with a tidal range >2 m. The second step of the stochastic simulation consists in fitting parametric distribution functions to the data sets resulting from the parameterisation. The distribution functions are then used to run Monte-Carlo-Simulations. Based on the simulation results, a large number of storm surge scenarios are reconstructed. Parameter interdependencies are considered and different filter functions are applied to avoid inconsistencies. Storm surge scenarios, which are of interest for risk analyses, can easily be extracted from the results.

  7. Models for regionalizing economic data and their applications within the scope of forensic disaster analyses

    Science.gov (United States)

    Schmidt, Hanns-Maximilian; Wiens, rer. pol. Marcus, , Dr.; Schultmann, rer. pol. Frank, Prof. _., Dr.

    2015-04-01

    The impact of natural hazards on the economic system can be observed in many different regions all over the world. Once the local economic structure is hit by an event direct costs instantly occur. However, the disturbance on a local level (e.g. parts of city or industries along a river bank) might also cause monetary damages in other, indirectly affected sectors. If the impact of an event is strong, these damages are likely to cascade and spread even on an international scale (e.g. the eruption of Eyjafjallajökull and its impact on the automotive sector in Europe). In order to determine these special impacts, one has to gain insights into the directly hit economic structure before being able to calculate these side effects. Especially, regarding the development of a model used for near real-time forensic disaster analyses any simulation needs to be based on data that is rapidly available or easily to be computed. Therefore, we investigated commonly used or recently discussed methodologies for regionalizing economic data. Surprisingly, even for German federal states there is no official input-output data available that can be used, although it might provide detailed figures concerning economic interrelations between different industry sectors. In the case of highly developed countries, such as Germany, we focus on models for regionalizing nationwide input-output table which is usually available at the national statistical offices. However, when it comes to developing countries (e.g. South-East Asia) the data quality and availability is usually much poorer. In this case, other sources need to be found for the proper assessment of regional economic performance. We developed an indicator-based model that can fill this gap because of its flexibility regarding the level of aggregation and the composability of different input parameters. Our poster presentation brings up a literature review and a summary on potential models that seem to be useful for this specific task

  8. Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses

    Science.gov (United States)

    2011-12-30

    REPORT Modifications in the AA5083 Johnson-Cook Material Model for Use in Friction Stir Welding Computational Analyses 14. ABSTRACT 16. SECURITY...TERMS AA5083, friction stir welding , Johnson-Cook material model M. Grujicic, B. Pandurangan, C.-F. Yen, B. A. Cheeseman Clemson University Office of...Use in Friction Stir Welding Computational Analyses Report Title ABSTRACT Johnson-Cook strength material model is frequently used in finite-element

  9. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  10. A model for analysing factors which may influence quality management procedures in higher education

    Directory of Open Access Journals (Sweden)

    Cătălin MAICAN

    2015-12-01

    Full Text Available In all universities, the Office for Quality Assurance defines the procedure for assessing the performance of the teaching staff, with a view to establishing students’ perception as regards the teachers’ activity from the point of view of the quality of the teaching process, of the relationship with the students and of the assistance provided for learning. The present paper aims at creating a combined model for evaluation, based on Data Mining statistical methods: starting from the findings revealed by the evaluations teachers performed to students, using the cluster analysis and the discriminant analysis, we identified the subjects which produced significant differences between students’ grades, subjects which were subsequently subjected to an evaluation by students. The results of these analyses allowed the formulation of certain measures for enhancing the quality of the evaluation process.

  11. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics.

    Science.gov (United States)

    Springelkamp, Henriët; Iglesias, Adriana I; Mishra, Aniket; Höhn, René; Wojciechowski, Robert; Khawaja, Anthony P; Nag, Abhishek; Wang, Ya Xing; Wang, Jie Jin; Cuellar-Partida, Gabriel; Gibson, Jane; Bailey, Jessica N Cooke; Vithana, Eranga N; Gharahkhani, Puya; Boutin, Thibaud; Ramdas, Wishal D; Zeller, Tanja; Luben, Robert N; Yonova-Doing, Ekaterina; Viswanathan, Ananth C; Yazar, Seyhan; Cree, Angela J; Haines, Jonathan L; Koh, Jia Yu; Souzeau, Emmanuelle; Wilson, James F; Amin, Najaf; Müller, Christian; Venturini, Cristina; Kearns, Lisa S; Kang, Jae Hee; Tham, Yih Chung; Zhou, Tiger; van Leeuwen, Elisabeth M; Nickels, Stefan; Sanfilippo, Paul; Liao, Jiemin; van der Linde, Herma; Zhao, Wanting; van Koolwijk, Leonieke M E; Zheng, Li; Rivadeneira, Fernando; Baskaran, Mani; van der Lee, Sven J; Perera, Shamira; de Jong, Paulus T V M; Oostra, Ben A; Uitterlinden, André G; Fan, Qiao; Hofman, Albert; Tai, E-Shyong; Vingerling, Johannes R; Sim, Xueling; Wolfs, Roger C W; Teo, Yik Ying; Lemij, Hans G; Khor, Chiea Chuen; Willemsen, Rob; Lackner, Karl J; Aung, Tin; Jansonius, Nomdo M; Montgomery, Grant; Wild, Philipp S; Young, Terri L; Burdon, Kathryn P; Hysi, Pirro G; Pasquale, Louis R; Wong, Tien Yin; Klaver, Caroline C W; Hewitt, Alex W; Jonas, Jost B; Mitchell, Paul; Lotery, Andrew J; Foster, Paul J; Vitart, Veronique; Pfeiffer, Norbert; Craig, Jamie E; Mackey, David A; Hammond, Christopher J; Wiggs, Janey L; Cheng, Ching-Yu; van Duijn, Cornelia M; MacGregor, Stuart

    2017-01-15

    Primary open-angle glaucoma (POAG), the most common optic neuropathy, is a heritable disease. Siblings of POAG cases have a ten-fold increased risk of developing the disease. Intraocular pressure (IOP) and optic nerve head characteristics are used clinically to predict POAG risk. We conducted a genome-wide association meta-analysis of IOP and optic disc parameters and validated our findings in multiple sets of POAG cases and controls. Using imputation to the 1000 genomes (1000G) reference set, we identified 9 new genomic regions associated with vertical cup-disc ratio (VCDR) and 1 new region associated with IOP. Additionally, we found 5 novel loci for optic nerve cup area and 6 for disc area. Previously it was assumed that genetic variation influenced POAG either through IOP or via changes to the optic nerve head; here we present evidence that some genomic regions affect both IOP and the disc parameters. We characterized the effect of the novel loci through pathway analysis and found that pathways involved are not entirely distinct as assumed so far. Further, we identified a novel association between CDKN1A and POAG. Using a zebrafish model we show that six6b (associated with POAG and optic nerve head variation) alters the expression of cdkn1a. In summary, we have identified several novel genes influencing the major clinical risk predictors of POAG and showed that genetic variation in CDKN1A is important in POAG risk. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Evaluation of Temperature and Humidity Profiles of Unified Model and ECMWF Analyses Using GRUAN Radiosonde Observations

    Directory of Open Access Journals (Sweden)

    Young-Chan Noh

    2016-07-01

    Full Text Available Temperature and water vapor profiles from the Korea Meteorological Administration (KMA and the United Kingdom Met Office (UKMO Unified Model (UM data assimilation systems and from reanalysis fields from the European Centre for Medium-Range Weather Forecasts (ECMWF were assessed using collocated radiosonde observations from the Global Climate Observing System (GCOS Reference Upper-Air Network (GRUAN for January–December 2012. The motivation was to examine the overall performance of data assimilation outputs. The difference statistics of the collocated model outputs versus the radiosonde observations indicated a good agreement for the temperature, amongst datasets, while less agreement was found for the relative humidity. A comparison of the UM outputs from the UKMO and KMA revealed that they are similar to each other. The introduction of the new version of UM into the KMA in May 2012 resulted in an improved analysis performance, particularly for the moisture field. On the other hand, ECMWF reanalysis data showed slightly reduced performance for relative humidity compared with the UM, with a significant humid bias in the upper troposphere. ECMWF reanalysis temperature fields showed nearly the same performance as the two UM analyses. The root mean square differences (RMSDs of the relative humidity for the three models were larger for more humid conditions, suggesting that humidity forecasts are less reliable under these conditions.

  13. Analyses of Research Topics in the Field of Informetrics Based on the Method of Topic Modeling

    Directory of Open Access Journals (Sweden)

    Sung-Chien Lin

    2014-07-01

    Full Text Available In this study, we used the approach of topic modeling to uncover the possible structure of research topics in the field of Informetrics, to explore the distribution of the topics over years, and to compare the core journals. In order to infer the structure of the topics in the field, the data of the papers published in the Journal of Informetricsand Scientometrics during 2007 to 2013 are retrieved from the database of the Web of Science as input of the approach of topic modeling. The results of this study show that when the number of topics was set to 10, the topic model has the smallest perplexity. Although data scopes and analysis methodsare different to previous studies, the generating topics of this study are consistent with those results produced by analyses of experts. Empirical case studies and measurements of bibliometric indicators were concerned important in every year during the whole analytic period, and the field was increasing stability. Both the two core journals broadly paid more attention to all of the topics in the field of Informetrics. The Journal of Informetricsput particular emphasis on construction and applications ofbibliometric indicators and Scientometrics focused on the evaluation and the factors of productivity of countries, institutions, domains, and journals.

  14. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.

    Science.gov (United States)

    van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A

    2016-01-01

    The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development.

  15. Comparative modeling analyses of Cs-137 fate in the rivers impacted by Chernobyl and Fukushima accidents

    Energy Technology Data Exchange (ETDEWEB)

    Zheleznyak, M.; Kivva, S. [Institute of Environmental Radioactivity, Fukushima University (Japan)

    2014-07-01

    The consequences of two largest nuclear accidents of the last decades - at Chernobyl Nuclear Power Plant (ChNPP) (1986) and at Fukushima Daiichi NPP (FDNPP) (2011) clearly demonstrated that radioactive contamination of water bodies in vicinity of NPP and on the waterways from it, e.g., river- reservoir water after Chernobyl accident and rivers and coastal marine waters after Fukushima accident, in the both cases have been one of the main sources of the public concerns on the accident consequences. The higher weight of water contamination in public perception of the accidents consequences in comparison with the real fraction of doses via aquatic pathways in comparison with other dose components is a specificity of public perception of environmental contamination. This psychological phenomenon that was confirmed after these accidents provides supplementary arguments that the reliable simulation and prediction of the radionuclide dynamics in water and sediments is important part of the post-accidental radioecological research. The purpose of the research is to use the experience of the modeling activities f conducted for the past more than 25 years within the Chernobyl affected Pripyat River and Dnieper River watershed as also data of the new monitoring studies in Japan of Abukuma River (largest in the region - the watershed area is 5400 km{sup 2}), Kuchibuto River, Uta River, Niita River, Natsui River, Same River, as also of the studies on the specific of the 'water-sediment' {sup 137}Cs exchanges in this area to refine the 1-D model RIVTOX and 2-D model COASTOX for the increasing of the predictive power of the modeling technologies. The results of the modeling studies are applied for more accurate prediction of water/sediment radionuclide contamination of rivers and reservoirs in the Fukushima Prefecture and for the comparative analyses of the efficiency of the of the post -accidental measures to diminish the contamination of the water bodies. Document

  16. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangsheng [ORNL; Post, Wilfred M [ORNL; Mayes, Melanie [ORNL

    2013-01-01

    We developed a Microbial-ENzyme-mediated Decomposition (MEND) model, based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated exoenzymes. The ranges and/or distributions of parameters were determined by both analytical steady-state and dynamic analyses with SOC data from the literature. We used an improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most important parameters for the full model: maintenance of microbial biomass, turnover and synthesis of enzymes, and carbon use efficiency (CUE). The model predicted an increase of 2 C (baseline temperature =12 C) caused the pools of POC-Cellulose, MOC, and total SOC to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50% confidence intervals. Regardless of dynamic or constant CUE, the pool sizes of POC, MOC, and total SOC varied from 8% to 8% under +2 C. The scenario analysis using a single parameter set indicates that higher temperature with dynamic CUE might result in greater net increases in both POC-Cellulose and MOC pools. Different dynamics of various SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and the interactions between microbes, enzymes, and SOC. With the feasible parameter values estimated in this study, models incorporating fundamental principles of microbial-enzyme dynamics can lead to simulation results qualitatively different from traditional models with fast/slow/passive pools.

  17. Genomic analyses with biofilter 2.0: knowledge driven filtering, annotation, and model development.

    Science.gov (United States)

    Pendergrass, Sarah A; Frase, Alex; Wallace, John; Wolfe, Daniel; Katiyar, Neerja; Moore, Carrie; Ritchie, Marylyn D

    2013-12-30

    The ever-growing wealth of biological information available through multiple comprehensive database repositories can be leveraged for advanced analysis of data. We have now extensively revised and updated the multi-purpose software tool Biofilter that allows researchers to annotate and/or filter data as well as generate gene-gene interaction models based on existing biological knowledge. Biofilter now has the Library of Knowledge Integration (LOKI), for accessing and integrating existing comprehensive database information, including more flexibility for how ambiguity of gene identifiers are handled. We have also updated the way importance scores for interaction models are generated. In addition, Biofilter 2.0 now works with a range of types and formats of data, including single nucleotide polymorphism (SNP) identifiers, rare variant identifiers, base pair positions, gene symbols, genetic regions, and copy number variant (CNV) location information. Biofilter provides a convenient single interface for accessing multiple publicly available human genetic data sources that have been compiled in the supporting database of LOKI. Information within LOKI includes genomic locations of SNPs and genes, as well as known relationships among genes and proteins such as interaction pairs, pathways and ontological categories.Via Biofilter 2.0 researchers can:• Annotate genomic location or region based data, such as results from association studies, or CNV analyses, with relevant biological knowledge for deeper interpretation• Filter genomic location or region based data on biological criteria, such as filtering a series SNPs to retain only SNPs present in specific genes within specific pathways of interest• Generate Predictive Models for gene-gene, SNP-SNP, or CNV-CNV interactions based on biological information, with priority for models to be tested based on biological relevance, thus narrowing the search space and reducing multiple hypothesis-testing. Biofilter is a software

  18. Integrated modeling of the GMT laser tomography adaptive optics system

    Science.gov (United States)

    Piatrou, Piotr

    2014-08-01

    Laser Tomography Adaptive Optics (LTAO) is one of adaptive optics systems planned for the Giant Magellan Telescope (GMT). End-to-end simulation tools that are able to cope with the complexity and computational burden of the AO systems to be installed on the extremely large telescopes such as GMT prove to be an integral part of the GMT LTAO system development endeavors. SL95, the Fortran 95 Simulation Library, is one of the software tools successfully used for the LTAO system end-to-end simulations. The goal of SL95 project is to provide a complete set of generic, richly parameterized mathematical models for key elements of the segmented telescope wavefront control systems including both active and adaptive optics as well as the models for atmospheric turbulence, extended light sources like Laser Guide Stars (LGS), light propagation engines and closed-loop controllers. The library is implemented as a hierarchical collection of classes capable of mutual interaction, which allows one to assemble complex wavefront control system configurations with multiple interacting control channels. In this paper we demonstrate the SL95 capabilities by building an integrated end-to-end model of the GMT LTAO system with 7 control channels: LGS tomography with Adaptive Secondary and on-instrument deformable mirrors, tip-tilt and vibration control, LGS stabilization, LGS focus control, truth sensor-based dynamic noncommon path aberration rejection, pupil position control, SLODAR-like embedded turbulence profiler. The rich parameterization of the SL95 classes allows to build detailed error budgets propagating through the system multiple errors and perturbations such as turbulence-, telescope-, telescope misalignment-, segment phasing error-, non-common path-induced aberrations, sensor noises, deformable mirror-to-sensor mis-registration, vibration, temporal errors, etc. We will present a short description of the SL95 architecture, as well as the sample GMT LTAO system simulation

  19. Advanced optical position sensors for magnetically suspended wind tunnel models

    Science.gov (United States)

    Lafleur, S.

    1985-01-01

    A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.

  20. Fungal-Induced Deterioration of Mural Paintings: In Situ and Mock-Model Microscopy Analyses.

    Science.gov (United States)

    Unković, Nikola; Grbić, Milica Ljaljević; Stupar, Miloš; Savković, Željko; Jelikić, Aleksa; Stanojević, Dragan; Vukojević, Jelena

    2016-04-01

    Fungal deterioration of frescoes was studied in situ on a selected Serbian church, and on a laboratory model, utilizing standard and newly implemented microscopy techniques. Scanning electron microscopy (SEM) with energy-dispersive X-ray confirmed the limestone components of the plaster. Pigments used were identified as carbon black, green earth, iron oxide, ocher, and an ocher/cinnabar mixture. In situ microscopy, applied via a portable microscope ShuttlePix P-400R, proved very useful for detection of invisible micro-impairments and hidden, symptomless, microbial growth. SEM and optical microscopy established that observed deterioration symptoms, predominantly discoloration and pulverization of painted layers, were due to bacterial filaments and fungal hyphal penetration, and formation of a wide range of fungal structures (i.e., melanized hyphae, chlamydospores, microcolonial clusters, Cladosporium-like conidia, and Chaetomium perithecia and ascospores). The all year-round monitoring of spontaneous and induced fungal colonization of a "mock painting" in controlled laboratory conditions confirmed the decisive role of humidity level (70.18±6.91% RH) in efficient colonization of painted surfaces, as well as demonstrated increased bioreceptivity of painted surfaces to fungal colonization when plant-based adhesives (ilinocopie, murdent), compared with organic adhesives of animal origin (bone glue, egg white), are used for pigment sizing.

  1. Mathematical model of an optically pumped molecular laser

    CSIR Research Space (South Africa)

    Botha, LR

    2009-07-01

    Full Text Available pumped molecular laser Dr L R Botha, Dr C Bollig, D Esser, C Jacobs, D Preussler SAIP 2009 Durban Page 2 © CSIR 2008 www.csir.co.za Structure of talk • Introduction • Overview of HBr laser • Numerical Model • Comparison... µm laser ring oscillator & pre-amplifier 1.9 µm Optically Pumped Molecular laser @ 4 µm 95:5 HBr Absorption cell Fast detector 2.064 µm ± 1 nm Feedback control box Feedback loop 1 P ie zo m o u nt Fast detector Feedback loop 2 Gas...

  2. Purely optical navigation with model-based state prediction

    Science.gov (United States)

    Sendobry, Alexander; Graber, Thorsten; Klingauf, Uwe

    2010-10-01

    State-of-the-art Inertial Navigation Systems (INS) based on Micro-Electro-Mechanical Systems (MEMS) have a lack of precision especially in GPS denied environments like urban canyons or in pure indoor missions. The proposed Optical Navigation System (ONS) provides bias free ego-motion estimates using triple redundant sensor information. In combination with a model based state prediction our system is able to estimate velocity, position and attitude of an arbitrary aircraft. Simulating a high performance flow-field estimator the algorithm can compete with conventional low-cost INS. By using measured velocities instead of accelerations the system states drift behavior is not as distinctive as for an INS.

  3. Numerical modelling of multimode fibre-optic communication lines

    Science.gov (United States)

    Sidelnikov, O. S.; Sygletos, S.; Ferreira, F.; Fedoruk, M. P.

    2016-01-01

    The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one.

  4. Analyse - technologies; Analyse - technologies

    Energy Technology Data Exchange (ETDEWEB)

    Roudil, D.; Chevalier, M.; Cormont, Ph.; Viala, F.; Kopp, Ch.; Peillet, O.; Chatroux, D.; Lausenaz, Y.; Villard, J.F.; Bruel, L.; Berhouet, F.; Chartier, F.; Aubert, M.; Blanchet, P.; Steiner, F.; Puech, M.H.; Bienvenu, Ph.; Noire, M.H.; Bouzon, C.; Schrive, L

    1999-07-01

    In this chapter of the DCC 1999 scientific report, the following theoretical studies are detailed: emulsions characterization by ultrasonics, high resolution wavelength meter, optimization methodology for diffractive and hybrid optic system, reliability for fast switches in power electronics, study of cesium isolation in irradiated fuels, chemical optodes based on evanescent wave absorption, radionuclides (Zirconium 93 and molybdenum 93) determination in irradiated fuels processing effluents, study of viscous liquid ultrafiltration using supercritical CO{sub 2} fluid. (A.L.B.)

  5. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Bings, Nicolas H. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: bings@chemie.uni-hamburg.de; Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2008-02-15

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS{sup TM} spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm{sup -2} and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower {mu}g g{sup -1} range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 {mu}g g{sup -1}.

  6. Enhancement in the structure quality of ZnO nanorods by diluted Co dopants: Analyses via optical second harmonic generation

    Science.gov (United States)

    Liu, Chung-Wei; Chang, Shoou-Jinn; Brahma, Sanjaya; Hsiao, Chih-Hung; Chang, Feng Ming; Wang, Peng Han; Lo, Kuang-Yao

    2015-02-01

    We report a systematic study about the effect of cobalt concentration in the growth solution over the crystallization, growth, and optical properties of hydrothermally synthesized Zn1-xCoxO [0 ≤ x ≤ 0.40, x is the weight (wt.) % of Co in the growth solution] nanorods. Dilute Co concentration of 1 wt. % in the growth solution enhances the bulk crystal quality of ZnO nanorods, and high wt. % leads to distortion in the ZnO lattice that depresses the crystallization, growth as well as the surface structure quality of ZnO. Although, Co concentration in the growth solution varies from 1 to 40 wt. %, the real doping concentration is limited to 0.28 at. % that is due to the low growth temperature of 80 °C. The enhancement in the crystal quality of ZnO nanorods at dilute Co concentration in the solution is due to the strain relaxation that is significantly higher for ZnO nanorods prepared without, and with high wt. % of Co in the growth solution. Second harmonic generation is used to investigate the net dipole distribution from these coatings, which provides detailed information about bulk and surface structure quality of ZnO nanorods at the same time. High quality ZnO nanorods are fabricated by a low-temperature (80 °C) hydrothermal synthesis method, and no post synthesis treatment is needed for further crystallization. Therefore, this method is advantageous for the growth of high quality ZnO coatings on plastic substrates that may lead toward its application in flexible electronics.

  7. Modeling of laser-induced damage and optic usage at the National Ignition Facility

    Science.gov (United States)

    Liao, Zhi M.; Nostrand, Mike; Carr, Wren; Bude, Jeff; Suratwala, Tayyab I.

    2016-07-01

    Modeling of laser-induced optics damage has been introduced to benchmark existing optic usage at the National Ignition Facility (NIF) which includes the number of optics exchanged for damage repair. NIF has pioneered an optics recycle strategy to allow it to run the laser at capacity since fully commissioned in 2009 while keeping the cost of optics usage manageable. We will show how the damage model is being used to evaluate strategies to streamline our optics loop efficiency, as we strive to increase the laser shot rate without increasing operating costs.

  8. Measurement of infrared refractive indices of organic and organophosphorous compounds for optical modeling

    Science.gov (United States)

    Tonkyn, Russell G.; Danby, Tyler O.; Birnbaum, Jerome L.; Taubman, Matthew S.; Bernacki, Bruce E.; Johnson, Timothy J.; Myers, Tanya L.

    2017-05-01

    The complex optical refractive index contains the optical constants, n(ῦ)and k(ῦ), which correspond to the dispersion and absorption of light within a medium, respectively. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. We have developed improved protocols based on the use of multiple path lengths to determine the optical constants for dozens of liquids, including organic and organophosphorous compounds. Detailed description of the protocols to determine the infrared indices will be presented, along with preliminary results using the constants with their applications to optical modeling.

  9. Measurement of infrared refractive indices of organic and organophosphorous compounds for optical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tonkyn, Russell G.; Danby, Tyler O.; Birnbaum, Jerome C.; Taubman, Matthew S.; Bernacki, Bruce E.; Johnson, Timothy J.; Myers, Tanya L.

    2017-05-03

    The complex optical refractive index contains the optical constants, n($\\tilde{u}$)and k($\\tilde{u}$), which correspond to the dispersion and absorption of light within a medium, respectively. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. We have developed improved protocols based on the use of multiple path lengths to determine the optical constants for dozens of liquids, including organic and organophosphorous compounds. Detailed description of the protocols to determine the infrared indices will be presented, along with preliminary results using the constants with their applications to optical modeling.

  10. Controls on Yardang Morphology: Insights from Field Measurements, Lidar Topographic Analyses, and Numerical Modeling

    Science.gov (United States)

    Pelletier, J. D.; Kapp, P. A.

    2014-12-01

    Yardangs are streamlined bedforms sculpted by the wind and wind-blown sand. They can form as relatively resistant exposed rocks erode more slowly than surrounding exposed rocks, thus causing the more resistant rocks to stand higher in the landscape and deflect the wind and wind-blown sand into adjacent troughs in a positive feedback. How this feedback gives rise to streamlined forms that locally have a consistent size is not well understood theoretically. In this study we combine field measurements in the yardangs of Ocotillo Wells SVRA with analyses of airborne and terrestrial lidar datasets and numerical modeling to quantify and understand the controls on yardang morphology. The classic model for yardang morphology is that they evolve to an ideal 4:1 length-to-width aspect ratio that minimizes aerodynamic drag. We show using computational fluid dynamics (CFD) modeling that this model is incorrect: the 4:1 aspect ratio is the value corresponding to minimum drag for free bodies, i.e. obstacles around which air flows on all sides. Yardangs, in contrast, are embedded in Earth's surface. For such rough streamlined half-bodies, the aspect ratio corresponding to minimum drag is larger than 20:1. As an alternative to the minimum-drag model, we propose that the aspect ratio of yardangs not significantly influenced by structural controls is controlled by the angle of dispersion of the aerodynamic jet created as deflected wind and wind-blown sand exits the troughs between incipient yardang noses. Aerodynamic jets have a universal dispersion angle of 11.8 degrees, thus predicting a yardang aspect ratio of ~5:1. We developed a landscape evolution model that combines the physics of boundary layer flow with aeolian saltation and bedrock erosion to form yardangs with a range of sizes and aspect ratios similar to those observed in nature. Yardangs with aspect ratios both larger and smaller than 5:1 occur in the model since the strike and dip of the resistant rock unit also exerts

  11. Combining Satellite Ocean Color Imagery and Circulation Modeling to Forecast Bio-Optical Properties: Comparison of Models and Advection Schemes

    Science.gov (United States)

    2008-10-01

    Remote sensing of ocean color provides synoptic surface ocean bio -optical properties but is limited to real-time or climatological applications. Many...this, we couple satellite imagery with numerical circulation models to provide short-term (24-48 hr) forecasts of bio -optical properties. These are...physical processes control the bio -optical distribution patterns. We compare optical forecast results from three Navy models and two advection

  12. Optimization of digestion parameters for analysing the total sulphur of mine tailings by inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Alam, Raquibul; Shang, Julie Q; Cheng, Xiangrong

    2012-05-01

    The oxidation of sulphidic mine tailings and consequent acid generation poses challenges for the environment. Accurate and precise analysis of sulphur content is necessary for impact assessment and management of mine tailings. Here, the authors aim at developing a rapid and easy digestion procedure, which may analyse and measure the total amount of sulphur in mine tailings by using inductively coupled plasma. For evaluating effects of several variables, the researchers used a univariate (analysis of variance (ANOVA)) strategy and considered factors such as composition of the acid mixture, heating time, and refluxing device to optimize the performance. To do the experiment, the researchers have used two certified reference materials (KZK-1 and RTS-2) and samples of tailings from Musselwhite mine. ANOVA result shows that heating time is the most influencing factor on acid digestion of the reference materials whereas in case of a digestion of tailings sample, hydrochloric acid proved to be the most significant parameter. Satisfactory results between the measured and referenced values are found for all experiments. It is found that the aqua regia (1 ml HNO(3) + 3 ml HCl) digestion of 0.1 g of samples after only 40 min of heating at 95°C produced fast, safe, and accurate analytical results with a recovery of 97% for the selected reference materials.

  13. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    Science.gov (United States)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary

  14. A Hidden Markov model web application for analysing bacterial genomotyping DNA microarray experiments.

    Science.gov (United States)

    Newton, Richard; Hinds, Jason; Wernisch, Lorenz

    2006-01-01

    Whole genome DNA microarray genomotyping experiments compare the gene content of different species or strains of bacteria. A statistical approach to analysing the results of these experiments was developed, based on a Hidden Markov model (HMM), which takes adjacency of genes along the genome into account when calling genes present or absent. The model was implemented in the statistical language R and applied to three datasets. The method is numerically stable with good convergence properties. Error rates are reduced compared with approaches that ignore spatial information. Moreover, the HMM circumvents a problem encountered in a conventional analysis: determining the cut-off value to use to classify a gene as absent. An Apache Struts web interface for the R script was created for the benefit of users unfamiliar with R. The application may be found at http://hmmgd.cryst.bbk.ac.uk/hmmgd. The source code illustrating how to run R scripts from an Apache Struts-based web application is available from the corresponding author on request. The application is also available for local installation if required.

  15. Optical properties of soot particles: measurement - model comparison

    Science.gov (United States)

    Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.

    2013-12-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) VED > ~160 nm. The discrepancy is most

  16. Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model

    Directory of Open Access Journals (Sweden)

    J.-F. Müller

    2008-03-01

    Full Text Available The global emissions of isoprene are calculated at 0.5° resolution for each year between 1995 and 2006, based on the MEGAN (Model of Emissions of Gases and Aerosols from Nature version 2 model (Guenther et al., 2006 and a detailed multi-layer canopy environment model for the calculation of leaf temperature and visible radiation fluxes. The calculation is driven by meteorological fields – air temperature, cloud cover, downward solar irradiance, windspeed, volumetric soil moisture in 4 soil layers – provided by analyses of the European Centre for Medium-Range Weather Forecasts (ECMWF. The estimated annual global isoprene emission ranges between 374 Tg (in 1996 and 449 Tg (in 1998 and 2005, for an average of ca. 410 Tg/year over the whole period, i.e. about 30% less than the standard MEGAN estimate (Guenther et al., 2006. This difference is due, to a large extent, to the impact of the soil moisture stress factor, which is found here to decrease the global emissions by more than 20%. In qualitative agreement with past studies, high annual emissions are found to be generally associated with El Niño events. The emission inventory is evaluated against flux measurement campaigns at Harvard forest (Massachussets and Tapajós in Amazonia, showing that the model can capture quite well the short-term variability of emissions, but that it fails to reproduce the observed seasonal variation at the tropical rainforest site, with largely overestimated wet season fluxes. The comparison of the HCHO vertical columns calculated by a chemistry and transport model (CTM with HCHO distributions retrieved from space provides useful insights on tropical isoprene emissions. For example, the relatively low emissions calculated over Western Amazonia (compared to the corresponding estimates in the inventory of Guenther et al., 1995 are validated by the excellent agreement found between the CTM and HCHO data over this region. The parameterized impact of the soil moisture

  17. Stream Tracer Integrity: Comparative Analyses of Rhodamine-WT and Sodium Chloride through Transient Storage Modeling

    Science.gov (United States)

    Smull, E. M.; Wlostowski, A. N.; Gooseff, M. N.; Bowden, W. B.; Wollheim, W. M.

    2013-12-01

    Solute transport in natural channels describes the transport of water and dissolved matter through a river reach of interest. Conservative tracers allow us to label a parcel of stream water, such that we can track its movement downstream through space and time. A transient storage model (TSM) can be fit to the breakthrough curve (BTC) following a stream tracer experiment, as a way to quantify advection, dispersion, and transient storage processes. Arctic streams and rivers, in particular, are continuously underlain by permafrost, which provides for a simplified surface water-groundwater exchange. Sodium chloride (NaCl) and Rhodamine-WT (RWT) are widely used tracers, and differences between the two in conservative behavior and detection limits have been noted in small-scale field and laboratory studies. This study seeks to further this understanding by applying the OTIS model to NaCl and RWT BTC data from a field study on the Kuparuk River, Alaska, at varying flow rates. There are two main questions to be answered: 1) Do differences in NaCl and RWT manifest in OTIS parameter values? 2) Are the OTIS model results reliable for NaCl, RWT, or both? Fieldwork was performed in the summer of 2012 on the Kuparuk River, and modeling was performed using a modified OTIS framework, which provided for parameter optimization and further global sensitivity analyses. The results of this study will contribute to the greater body of literature surrounding Arctic stream hydrology, and it will assist in methodology for future tracer field studies. Additionally, the modeling work will provide an analysis for OTIS parameter identifiability, and assess stream tracer integrity (i.e. how well the BTC data represents the system) and its relation to TSM performance (i.e. how well the TSM can find a unique fit to the BTC data). The quantitative tools used can be applied to other solute transport studies, to better understand potential deviations in model outcome due to stream tracer choice and

  18. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  19. Multiscale modeling and computation of optically manipulated nano devices

    Science.gov (United States)

    Bao, Gang; Liu, Di; Luo, Songting

    2016-07-01

    We present a multiscale modeling and computational scheme for optical-mechanical responses of nanostructures. The multi-physical nature of the problem is a result of the interaction between the electromagnetic (EM) field, the molecular motion, and the electronic excitation. To balance accuracy and complexity, we adopt the semi-classical approach that the EM field is described classically by the Maxwell equations, and the charged particles follow the Schrödinger equations quantum mechanically. To overcome the numerical challenge of solving the high dimensional multi-component many-body Schrödinger equations, we further simplify the model with the Ehrenfest molecular dynamics to determine the motion of the nuclei, and use the Time-Dependent Current Density Functional Theory (TD-CDFT) to calculate the excitation of the electrons. This leads to a system of coupled equations that computes the electromagnetic field, the nuclear positions, and the electronic current and charge densities simultaneously. In the regime of linear responses, the resonant frequencies initiating the out-of-equilibrium optical-mechanical responses can be formulated as an eigenvalue problem. A self-consistent multiscale method is designed to deal with the well separated space scales. The isomerization of azobenzene is presented as a numerical example.

  20. Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model

    Directory of Open Access Journals (Sweden)

    Varsha H. Rallapalli

    2016-10-01

    Full Text Available Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM has demonstrated that the signal-to-noise ratio (SNRENV from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N is assumed to: (a reduce S + N envelope power by filling in dips within clean speech (S and (b introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.

  1. Implications for GCM Modeling of MARCI/TES ACB Optical Depth Differences

    Science.gov (United States)

    Klassen, David R.; Kahre, Melinda A.; Wolff, Michael J.; Haberle, Robert; Hollingsworth, Jeffery L.

    2016-10-01

    The Aphelion Cloud Belt (ACB) is a well-studied phenomenon of Mars. HST violet images and microwave observations [e.g. 1–3] helped characterize its seasonal morphology and measure typical optical depths. Follow up, long-term studies by orbiting instruments [e.g. 4–6] characterized the growth and decline of the ACB as well as a baseline set of zonally averaged optical depths as a function of latitude and season. All this work provided ground-truth for the assessment and modification of Mars GCMs and current models provide good agreement with observations [e.g. 7–8].We will present recent analyses of MARCI and TES ACB optical depths that show a wavelength dependance on the timing of the peak zonal-average optical depth that implies a possible evolution in average effective radius of ACB cloud particles as the ACB ages. As we will show, this difference in timing of the optical depth peak between short and long wavelength bands is not seen in the Ames MGCM. In order to begin understanding these differences, we will present retrieved ACB cloud particle sizes from the Ames MGCM to compare to the optical depth observations and calculations and discuss possible model adjustments that may lead to better fits. Aligning model and observation results should lead to a better understanding of what is physically driving the particle size evolution.[1] James, P. B., et al. 1996, JGR, 101, 18883[2] Clancy, R. T., et al. 1996, Icarus, 122, 36[3] Wolff, M. J., et al. 1999, in The Fifth International Conference on Mars, July 19-24, 1999, Pasadena, California, 6173[4] Pearl, J. C., et al. 2001, JGR, 106, 12325[5] Smith, M. D., et al. 2003, JGR-Planets, 108, 1[6] Smith, M. D. 2004, Icarus, 167, 148[7] Montmessin, F., et al. 2004, JGR-Planets, 109, E10004[8] Haberle, R. M., et al. 2010, in BAAS, 42, 1031

  2. Simulations of Keratoconus Patient Vision with Optical Eye Modeling

    Science.gov (United States)

    Tan, Bo; Chen, Ying-Ling; Lewis, J. W. L.; Shi, Lei; Wang, Ming

    2007-11-01

    Keratoconus (KC) is an eye condition that involves progressive corneal thinning. Pushed by the intraocular pressure, the weakened cornea bulges outward and creates an irregular surface shape. The result is degraded vision that is difficult to correct with regular eye glasses or contact lens. In this study we use the optical lens design software, ZeMax, and patient data including cornea topography and refraction prescription to construct KC eye models. The variation of KC ``cone height'' on the cornea is used to simulate KC progression. The consequent patients' night vision and Snellen letter chart vision at 20 feet are simulated using these anatomically accurate 3-dimensional models. 100 million rays are traced for each image simulation. Animated results illustrate the change of KC visual acuity with the progression of disease. This simulation technique provides a comprehensive tool for medical training and patient consultation/education.

  3. Protein folding: the optically induced electronic excitations model

    Energy Technology Data Exchange (ETDEWEB)

    Jeknic-Dugic, J [Department of Physics, Faculty of Science, Nis (Serbia)], E-mail: jjeknic@pmf.ni.ac.yu

    2009-07-15

    The large-molecules conformational transitions problem (the 'protein folding problem') is an open issue of vivid current science research work of fundamental importance for a number of modern science disciplines as well as for nanotechnology. Here, we elaborate the recently proposed quantum-decoherence-based approach to the issue. First, we emphasize a need for detecting the elementary quantum mechanical processes (whose combinations may give a proper description of the realistic experimental situations) and then we design such a model. As distinct from the standard approach that deals with the conformation system, we investigate the optically induced transitions in the molecule electrons system that, in effect, may give rise to a conformation change in the molecule. Our conclusion is that such a model may describe the comparatively slow conformational transitions.

  4. Structural model constructing for optical handwritten character recognition

    Science.gov (United States)

    Khaustov, P. A.; Spitsyn, V. G.; Maksimova, E. I.

    2017-02-01

    The article is devoted to the development of the algorithms for optical handwritten character recognition based on the structural models constructing. The main advantage of these algorithms is the low requirement regarding the number of reference images. The one-pass approach to a thinning of the binary character representation has been proposed. This approach is based on the joint use of Zhang-Suen and Wu-Tsai algorithms. The effectiveness of the proposed approach is confirmed by the results of the experiments. The article includes the detailed description of the structural model constructing algorithm’s steps. The proposed algorithm has been implemented in character processing application and has been approved on MNIST handwriting characters database. Algorithms that could be used in case of limited reference images number were used for the comparison.

  5. Proposal for the Quantum Simulation of the CP(2) Model on Optical Lattices

    CERN Document Server

    Laflamme, Catherine; Dalmonte, Marcello; Gerber, Urs; Mejía-Díaz, Héctor; Bietenholz, Wolfgang; Wiese, Uwe-Jens; Zoller, Peter

    2015-01-01

    The 2d CP(N-1) models share a number of features with QCD, like asymptotic freedom, a dynamically generated mass gap and topological sectors. They have been formulated and analysed successfully in the framework of the so-called D-theory, which provides a smooth access to the continuum limit. In that framework, we propose an experimental set-up for the quantum simulation of the CP(2) model. It is based on ultra-cold Alkaline-Earth Atoms (AEAs) located on the sites of an optical lattice, where the nuclear spins represent the relevant degrees of freedom. We present numerical results for the correlation length and for the real time decay of a false vacuum, to be compared with such a future experiment. The latter could also enable the exploration of theta-vacua and of the phase diagram at finite chemical potentials, since it does not suffer from any sign problem.

  6. Dual permeability FEM models for distributed fiber optic sensors development

    Science.gov (United States)

    Aguilar-López, Juan Pablo; Bogaard, Thom

    2017-04-01

    Fiber optic cables are commonly known for being robust and reliable mediums for transferring information at the speed of light in glass. Billions of kilometers of cable have been installed around the world for internet connection and real time information sharing. Yet, fiber optic cable is not only a mean for information transfer but also a way to sense and measure physical properties of the medium in which is installed. For dike monitoring, it has been used in the past for detecting inner core and foundation temperature changes which allow to estimate water infiltration during high water events. The DOMINO research project, aims to develop a fiber optic based dike monitoring system which allows to directly sense and measure any pore pressure change inside the dike structure. For this purpose, questions like which location, how many sensors, which measuring frequency and which accuracy are required for the sensor development. All these questions may be initially answered with a finite element model which allows to estimate the effects of pore pressure change in different locations along the cross section while having a time dependent estimation of a stability factor. The sensor aims to monitor two main failure mechanisms at the same time; The piping erosion failure mechanism and the macro-stability failure mechanism. Both mechanisms are going to be modeled and assessed in detail with a finite element based dual permeability Darcy-Richards numerical solution. In that manner, it is possible to assess different sensing configurations with different loading scenarios (e.g. High water levels, rainfall events and initial soil moisture and permeability conditions). The results obtained for the different configurations are later evaluated based on an entropy based performance evaluation. The added value of this kind of modelling approach for the sensor development is that it allows to simultaneously model the piping erosion and macro-stability failure mechanisms in a time

  7. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Choi, S.G.; Choi, W.K.; Yang, B.Y. [School of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Lee, E.S., E-mail: leees@dreamwiz.com [Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2014-09-30

    Highlights: • Invar alloy was electrochemically polished and then subjected to PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. • Optical microscopic/SEM and non-contact 3D measurement study of Invar surface analyses. • Analysis result shows that applied voltage and electrode shape are factors that affect the surface conditions. - Abstract: In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis.

  8. Adaptive optics for reduced threshold energy in femtosecond laser induced optical breakdown in water based eye model

    Science.gov (United States)

    Hansen, Anja; Krueger, Alexander; Ripken, Tammo

    2013-03-01

    In ophthalmic microsurgery tissue dissection is achieved using femtosecond laser pulses to create an optical breakdown. For vitreo-retinal applications the irradiance distribution in the focal volume is distorted by the anterior components of the eye causing a raised threshold energy for breakdown. In this work, an adaptive optics system enables spatial beam shaping for compensation of aberrations and investigation of wave front influence on optical breakdown. An eye model was designed to allow for aberration correction as well as detection of optical breakdown. The eye model consists of an achromatic lens for modeling the eye's refractive power, a water chamber for modeling the tissue properties, and a PTFE sample for modeling the retina's scattering properties. Aberration correction was performed using a deformable mirror in combination with a Hartmann-Shack-sensor. The influence of an adaptive optics aberration correction on the pulse energy required for photodisruption was investigated using transmission measurements for determination of the breakdown threshold and video imaging of the focal region for study of the gas bubble dynamics. The threshold energy is considerably reduced when correcting for the aberrations of the system and the model eye. Also, a raise in irradiance at constant pulse energy was shown for the aberration corrected case. The reduced pulse energy lowers the potential risk of collateral damage which is especially important for retinal safety. This offers new possibilities for vitreo-retinal surgery using femtosecond laser pulses.

  9. ModelE2-TOMAS development and evaluation using aerosol optical depths, mass and number concentrations

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2014-09-01

    Full Text Available The TwO-Moment Aerosol Sectional microphysics model (TOMAS has been integrated into the state-of-the-art general circulation model, GISS ModelE2. TOMAS has the flexibility to select a size resolution as well as the lower size cutoff. A computationally efficient version of TOMAS is used here, which has 15 size bins covering 3 nm to 10 μm aerosol dry diameter. For each bin, it simulates the total aerosol number concentration and mass concentrations of sulphate, pure elementary carbon (hydrophobic, mixed elemental carbon (hydrophilic, hydrophobic organic matter, hydrophilic organic matter, sea salt, mineral dust, ammonium, and aerosol-associated water. This paper provides a detailed description of the ModelE2-TOMAS model and evaluates the model against various observations including aerosol precursor gas concentrations, aerosol mass and number concentrations, and aerosol optical depths. Additionally, global budgets in ModelE2-TOMAS are compared with those of other global aerosol models, and the TOMAS model is compared to the default aerosol model in ModelE2, which is a bulk aerosol model. Overall, the ModelE2-TOMAS predictions are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of sulphur species and other aerosol components as well as aerosol optical depth. However, ModelE2-TOMAS (as well as the bulk aerosol model cannot capture the observed vertical distribution of sulphur dioxide over the Pacific Ocean possibly due to overly strong convective transport. The TOMAS model successfully captures observed aerosol number concentrations and cloud condensation nuclei concentrations. Anthropogenic aerosol burdens in the bulk aerosol model running in the same host model as TOMAS (ModelE2 differ by a few percent to a factor of 2 regionally, mainly due to differences in aerosol processes including deposition, cloud processing, and emission parameterizations. Larger differences are found

  10. Modeling silica aerogel optical performance by determining its radiative properties

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-02-01

    Full Text Available Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM. Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation. To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE. The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel’s microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  11. Modelling the optical properties of aerosols in a chemical transport model

    Science.gov (United States)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  12. Experimentation and modeling of organic photocontamination on lithographic optics

    Science.gov (United States)

    Kunz, Roderick R.; Liberman, Vladimir; Downs, Deanna K.

    2000-07-01

    Photodeposition of organic films on transparent substrates irradiated in the presence of trace levels of hydrocarbons has been experimentally investigated and a model is presented that describes the film growth behavior. The efficacy of a given organic precursor at forming a deposit is proportional to the product of its surface coverage and by its photon absorption cross section. These measurement are important in predicting the transmission characteristics of lithographic optics operating at 157-, 193-, and 248-nm wavelength. For example, a lens element irradiated continuously for one year in the presence of 1 part per billion of t-butyl benzene would exhibit a transmission of approximately 87 percent at 193 nm. The effects of oxygen- containing ambients are also documented, and methods for elimination and/or prevention of organic contamination are suggested.

  13. Coupled-channel optical model potential for rare earth nuclei

    CERN Document Server

    Herman, M; Palumbo, A; Dietrich, F S; Brown, D; Hoblit, S

    2013-01-01

    Inspired by the recent work by Dietrich et al., substantiating validity of the adiabatic assumption in coupled-channel calculations, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on statically deformed nuclei. The generalization consists in adding the coupling of the ground state rotational band, deforming the potential by introducing appropriate quadrupole and hexadecupole deformation and correcting the OMP radius to preserve volume integral of the spherical OMP. We choose isotopes of three rare-earth elements (W, Ho, Gd), which are known to be nearly perfect rotors, to perform a consistent test of our conjecture on integrated cross sections as well as on angular distributions for elastic and inelastic neutron scattering. When doing this we employ the well-established Koning-Delaroche global spherical potential and experimentally determined deformations without any adjustments. We observe a dramatically improved a...

  14. Model of a thin film optical fiber fluorosensor

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1991-03-01

    The efficiency of core-light injection from sources in the cladding of an optical fiber is modeled analytically by means of the exact field solution of a step-profile fiber. The analysis is based on the techniques by Marcuse (1988) in which the sources are treated as infinitesimal electric currents with random phase and orientation that excite radiation fields and bound modes. Expressions are developed based on an infinite cladding approximation which yield the power efficiency for a fiber coated with fluorescent sources in the core/cladding interface. Marcuse's results are confirmed for the case of a weakly guiding cylindrical fiber with fluorescent sources uniformly distributed in the cladding, and the power efficiency is shown to be practically constant for variable wavelengths and core radii. The most efficient fibers have the thin film located at the core/cladding boundary, and fibers with larger differences in the indices of refraction are shown to be the most efficient.

  15. Microscopic model for all optical switching in ferromagnets

    Science.gov (United States)

    Cornelissen, T. D.; Córdoba, R.; Koopmans, B.

    2016-04-01

    The microscopic mechanism behind the all optical switching (AOS) in ferromagnets has triggered intense scientific debate. Here, the microscopic three-temperature model is utilized to describe AOS in a perpendicularly magnetized ferromagnetic Co/Pt system. We demonstrate that AOS in such a ferromagnet can be explained with the Inverse Faraday Effect (IFE). The influence of the strength and lifetime of the IFE induced field pulse on the switching process are investigated. We found that because of strong spin-orbit coupling, the minimal lifetime of the IFE needed to obtain switching is of the order of 0.1 ps, which is shorter than previously assumed. Moreover, spatial images of the domain pattern after AOS in Co/Pt, as well as their dependence on applying an opposite magnetic field, are qualitatively reproduced.

  16. Ionization Modeling Astrophysical Gaseous Structures. I. The Optically Thin Regime

    CERN Document Server

    Churchill, Christopher W; Medina, Amber; Vliet, Jacob R Vander

    2014-01-01

    We present a code for modelling the ionization conditions of optically thin astrophysical gas structures. Given the gas hydrogen density, equilibrium temperature, elemental abundances, and the ionizing spectrum, the code solves the equilibrium ionization fractions and number densities for all ions from hydrogen to zinc. The included processes are photoionization, Auger ionization, direct collisional ionization, excitation auto-ionization, charge exchange ionization, two-body radiative recombination, dielectronic recombination, and charge exchange recombination. The ionizing spectrum can be generalized to include the ultraviolet background (UVB) and/or Starburst99 stellar populations of various masses, ages, metallicities, and distances. The ultimate goal with the code is to provide fast computation of the ionization conditions of gas in N-body + hydrodynamics cosmological simulations, in particular adaptive mesh refinement codes, in order to facilitate absorption line analysis of the simulated gas for compari...

  17. Some optical and dynamical phenomena in the Rindler model

    CERN Document Server

    Birsin, E

    2014-01-01

    In Rindler's model of a uniformly accelerated reference frame we analyze the apparent shape of rods and marked light rays for the case that the observers as well as the rods and the sources of light are at rest with respect to the Rindler observers. Contrary to the expectation suggested by the strong principle of equivalence, there is no apparent "bending down" of a light ray with direction transversal to the direction of acceleration, but a straight rod oriented orthogonal to the direction of acceleration appears bended "upwards". These optical phenomena are in accordance with the dynamical experience of observers guided by a straight track or a track curved in the same way as the marked light ray, respectively: While the former observer feels a centrifugal force directed "downwards", the centrifugal force for the latter vanishes. The properties of gyroscope transport along such tracks are correspondingly.

  18. MILES extended : Stellar population synthesis models from the optical to the infrared

    NARCIS (Netherlands)

    Rock, B.; Vazdekis, A.; Ricciardelli, E.; Peletier, R. F.; Knapen, J. H.; Falcon-Barroso, J.

    2016-01-01

    We present the first single-burst stellar population models, which covers the optical and the infrared wavelength range between 3500 and 50 000 angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical wi

  19. Usefulness of non-linear input-output models for economic impact analyses in tourism and recreation

    NARCIS (Netherlands)

    Klijs, J.; Peerlings, J.H.M.; Heijman, W.J.M.

    2015-01-01

    In tourism and recreation management it is still common practice to apply traditional input–output (IO) economic impact models, despite their well-known limitations. In this study the authors analyse the usefulness of applying a non-linear input–output (NLIO) model, in which price-induced input subs

  20. Molecular analyses of neurogenic defects in a human pluripotent stem cell model of fragile X syndrome.

    Science.gov (United States)

    Boland, Michael J; Nazor, Kristopher L; Tran, Ha T; Szücs, Attila; Lynch, Candace L; Paredes, Ryder; Tassone, Flora; Sanna, Pietro Paolo; Hagerman, Randi J; Loring, Jeanne F

    2017-01-29

    New research suggests that common pathways are altered in many neurodevelopmental disorders including autism spectrum disorder; however, little is known about early molecular events that contribute to the pathology of these diseases. The study of monogenic, neurodevelopmental disorders with a high incidence of autistic behaviours, such as fragile X syndrome, has the potential to identify genes and pathways that are dysregulated in autism spectrum disorder as well as fragile X syndrome. In vitro generation of human disease-relevant cell types provides the ability to investigate aspects of disease that are impossible to study in patients or animal models. Differentiation of human pluripotent stem cells recapitulates development of the neocortex, an area affected in both fragile X syndrome and autism spectrum disorder. We have generated induced human pluripotent stem cells from several individuals clinically diagnosed with fragile X syndrome and autism spectrum disorder. When differentiated to dorsal forebrain cell fates, our fragile X syndrome human pluripotent stem cell lines exhibited reproducible aberrant neurogenic phenotypes. Using global gene expression and DNA methylation profiling, we have analysed the early stages of neurogenesis in fragile X syndrome human pluripotent stem cells. We discovered aberrant DNA methylation patterns at specific genomic regions in fragile X syndrome cells, and identified dysregulated gene- and network-level correlates of fragile X syndrome that are associated with developmental signalling, cell migration, and neuronal maturation. Integration of our gene expression and epigenetic analysis identified altered epigenetic-mediated transcriptional regulation of a distinct set of genes in fragile X syndrome. These fragile X syndrome-aberrant networks are significantly enriched for genes associated with autism spectrum disorder, giving support to the idea that underlying similarities exist among these neurodevelopmental diseases.

  1. Modeling the reverberation of optical polarization in AGN

    CERN Document Server

    Lobos, P Andrea Rojas; Marin, Frederic

    2016-01-01

    According to the standard paradigm, the strong and compact luminosity of active galactic nuclei (AGN) is due to multi-temperature black body emission originating from an accretion disk formed around a supermassive black hole. This central engine is thought to be surrounded by a dusty region along the equatorial plane and by ionized winds along the poles. The innermost regions cannot yet be resolved neither in the optical nor in the infrared and it is fair to say that we still lack a satisfactory understanding of the physical processes, geometry and composition of the central (sub-parsec) components of AGN. Like spectral or polarimetric observations, the reverberation data needs to be modeled in order to infer constraints on the AGN geometry (such as the inner radius or the half-opening angle of the dusty torus). In this research note, we present preliminary modeling results using a time-dependent Monte Carlo method to solve the radiative transfer in a simplified AGN set up. We investigate different model conf...

  2. A simple beam model to analyse the durability of adhesively bonded tile floorings in presence of shrinkage

    Directory of Open Access Journals (Sweden)

    S. de Miranda

    2014-07-01

    Full Text Available A simple beam model for the evaluation of tile debonding due to substrate shrinkage is presented. The tile-adhesive-substrate package is modeled as an Euler-Bernoulli beam laying on a two-layer elastic foundation. An effective discrete model for inter-tile grouting is introduced with the aim of modelling workmanship defects due to partial filled groutings. The model is validated using the results of a 2D FE model. Different defect configurations and adhesive typologies are analysed, focusing the attention on the prediction of normal stresses in the adhesive layer under the assumption of Mode I failure of the adhesive.

  3. A Model of Magneto-mechano-optical Transfer in Fibre-optic Magnetic Sensors with Magnetostrictive Films

    Institute of Scientific and Technical Information of China (English)

    LIU Ji-yan; SI Yong-min

    2004-01-01

    Fibre-optic magnetic sensors with magnetostrictive films are used as all-fibre Mach-Zehnder interferometer to detect the optical phase shift, which is caused by the magnetostriction-induced strains transferred from the msgnetostrictive film to the fibre. A theoretical model based on the plane strain approximation and uniform axial strain is developed to determine the magneto-mechano-optical transfer relations in this kind of sensors. The expression for the model is presented as well as relation of the phase shift in the fibre to the magnetic and elastic properties of the magnetostrictive film coated on the fibre. And from the model, the thickness of the film has significant influence on the phase shift.

  4. Modelling the Electro-Optic Properties of Liquid Crystals.

    Science.gov (United States)

    MacGregor, Alastair R.

    Available from UMI in association with The British Library. Requires signed TDF. Liquid crystals (LCs) have been recognised as a phase of matter intermediate between solid and liquid for about 100 years. During this time a large variety of mesophases have been discovered but it is only recently that their physics have begun to be understood. However if LCs are to continue to compete successfully in the displays market an improved understanding of their electro-optic properties must be gained. This thesis describes work carried out on two different types of LC: nematic and ferroelectric chiral smectic C (SmC^{*} ). In the former the molecules are orientationally ordered and randomly positioned while in the latter they are orientationally ordered and arranged in layers. The local mean molecular orientation is called the director and defines the uniaxial optic axis in both types of LC. In a nematic guest-host (NGH) LC an anisotropically absorbing dye is dissolved in the LC and the dye molecules align so that their maximum absorption axis is parallel to the director. When an electric field is applied to a cell containing NGHLC the molecules tend to rotate, because of their dielectric anisotropy, and alter the cell's transmittance. Previous attempts to model the change in optical transmittance with voltage have assumed that the LC and dye molecules are perfectly aligned with the director. In this work the disorder of the molecules about the director is taken into account and the overall agreement between theory and experiment is improved considerably. A method of calculating how the SmC^ {*} director configuration and layer orientation vary with voltage is presented. This method is tested by calculating the transmittance of a 7 mu m thick SmC^{* } LC cell for different azimuthal orientations of the cell between crossed polarisers. It is shown that the theoretical and measured orientations which give minimum transmittance are in good agreement. It is also shown that the

  5. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-09-11

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  6. Wavelength Division Multiplexing Passive Optical Network modeling Using Optical System Simulator

    Directory of Open Access Journals (Sweden)

    Nahla Abdulrahman Hussain

    2015-09-01

    Full Text Available Due to the continuing demand for larger bandwidth, the optical transport becoming general in the access network. Using optical fiber technologies, the communications infrastructure becomes powerful, providing very high speeds to transfer a high capacity of data. Existing telecommunications infrastructures is currently widely used Passive Optical Network that apply Wavelength Division Multiplexing (WDM and is awaited to play an important role in the future Internet supporting a large diversity of services and next generation networks. This paper presents a design of WDM-PON network, the simulation and analysis of transmission parameters in the Optisystem 7.0 environment for bidirectional traffic. The simulation shows the behavior of optical fiber links when the signal passes through all the components such as optical fiber, splitters, multiplexers then find a good quality of signal in all receivers. The system performance is presented through various parameters such as BER analyzer and the Eye Diagram.

  7. Design-oriented analytic model of phase and frequency modulated optical links

    Science.gov (United States)

    Monsurrò, Pietro; Saitto, Antonio; Tommasino, Pasquale; Trifiletti, Alessandro; Vannucci, Antonello; Cimmino, Rosario F.

    2016-07-01

    An analytic design-oriented model of phase and frequency modulated microwave optical links has been developed. The models are suitable for design of broadband high dynamic range optical links for antenna remoting and optical beamforming, where noise and linearity of the subsystems are a concern Digital filter design techniques have been applied to the design of optical filters working as frequency discriminator, that are the bottleneck in terms of linearity for these systems. The models of frequency modulated, phase modulated, and coherent I/Q link have been used to compare performance of the different architectures in terms of linearity and SFDR.

  8. Insights into the evolution of tectonically-active glaciated mountain ranges from digital elevation model analyses

    Science.gov (United States)

    Brocklehurst, S. H.; Whipple, K. X.

    2003-12-01

    Glaciers have played an important role in the development of most active mountain ranges around the world during the Quaternary, but the interaction between glacial erosion (as modulated by climate change) and tectonic processes is poorly understood. The so-called glacial buzzsaw hypothesis (Brozovic et al., 1997) proposes that glaciers can incise as rapidly as the most rapid rock uplift rates, such that glaciated landscapes experiencing different rock uplift rates but the same snowline elevation will look essentially the same, with mean elevations close to the snowline. Digital elevation model-based analyses of the glaciated landscapes of the Nanga Parbat region, Pakistan, and the Southern Alps, New Zealand, lend some support to this hypothesis, but also reveal considerably more variety to the landscapes of glaciated, tectonically-active mountain ranges. Larger glaciers in the Nanga Parbat region maintain a low downvalley gradient and valley floor elevations close to the snowline, even in the face of extremely rapid rock uplift. However, smaller glaciers steepen in response to rapid uplift, similar to the response of rivers. A strong correlation between the height of hillslopes rising from the cirque floors and rock uplift rates implies that erosion processes on hillslopes cannot initially keep up with more rapid glacial incision rates. It is these staggering hillslopes that permit mountain peaks to rise above 8000m. The glacial buzzsaw hypothesis does not describe the evolution of the Southern Alps as well, because here mean elevations rise in areas of more rapid rock uplift. The buzzsaw hypothesis may work well in the Nanga Parbat region because the zone of rapid rock uplift is structurally confined to a narrow region. Alternatively, the Southern Alps may not have been rising sufficiently rapidly or sufficiently long for the glacial buzzsaw to be imposed outside the most rapidly uplifting region, around Mount Cook. The challenge now is to understand in detail

  9. Modeling the reverberation of optical polarization in AGN

    Science.gov (United States)

    Rojas Lobos, P. A.; Goosmann, R.; Marin, F.

    2016-12-01

    According to the standard paradigm, the strong and compact luminosity of active galactic nuclei (AGN) is due to multi-temperature black body emission originating from an accretion disk formed around a supermassive black hole. This central engine is thought to be surrounded by a dusty region along the equatorial plane and by ionized winds along the poles. The innermost regions cannot yet be resolved neither in the optical nor in the infrared and it is fair to say that we still lack a satisfactory understanding of the physical processes, geometry and composition of the central (sub-parsec) components of AGN. Like spectral or polarimetric observations, the reverberation data needs to be modeled in order to infer constraints on the AGN geometry (such as the inner radius or the half-opening angle of the dusty torus). In this research note, we present preliminary modeling results using a time-dependent Monte Carlo method to solve the radiative transfer in a simplified AGN set up. We investigate different model configurations using both polarization and time lags and find a high dependency on the geometry to the time-lag response. For all models there is a clear distinction between edge-on or face-on viewing angles for fluxes and time lags, the later showing a higher wavelength-dependence than the former. Time lags, polarization and fluxes point toward a clear dichotomy between the different inclinations of AGN, a method that could help us to determine the true orientation of the nucleus in Seyfert galaxies.

  10. Three-body recombination of two-component cold atomic gases into deep dimers in an optical model

    DEFF Research Database (Denmark)

    Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.

    2015-01-01

    We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds...... to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length...

  11. Optical character recognition of handwritten Arabic using hidden Markov models

    Energy Technology Data Exchange (ETDEWEB)

    Aulama, Mohannad M. [University of Jordan; Natsheh, Asem M. [University of Jordan; Abandah, Gheith A. [University of Jordan; Olama, Mohammed M [ORNL

    2011-01-01

    The problem of optical character recognition (OCR) of handwritten Arabic has not received a satisfactory solution yet. In this paper, an Arabic OCR algorithm is developed based on Hidden Markov Models (HMMs) combined with the Viterbi algorithm, which results in an improved and more robust recognition of characters at the sub-word level. Integrating the HMMs represents another step of the overall OCR trends being currently researched in the literature. The proposed approach exploits the structure of characters in the Arabic language in addition to their extracted features to achieve improved recognition rates. Useful statistical information of the Arabic language is initially extracted and then used to estimate the probabilistic parameters of the mathematical HMM. A new custom implementation of the HMM is developed in this study, where the transition matrix is built based on the collected large corpus, and the emission matrix is built based on the results obtained via the extracted character features. The recognition process is triggered using the Viterbi algorithm which employs the most probable sequence of sub-words. The model was implemented to recognize the sub-word unit of Arabic text raising the recognition rate from being linked to the worst recognition rate for any character to the overall structure of the Arabic language. Numerical results show that there is a potentially large recognition improvement by using the proposed algorithms.

  12. Optical character recognition of handwritten Arabic using hidden Markov models

    Science.gov (United States)

    Aulama, Mohannad M.; Natsheh, Asem M.; Abandah, Gheith A.; Olama, Mohammed M.

    2011-04-01

    The problem of optical character recognition (OCR) of handwritten Arabic has not received a satisfactory solution yet. In this paper, an Arabic OCR algorithm is developed based on Hidden Markov Models (HMMs) combined with the Viterbi algorithm, which results in an improved and more robust recognition of characters at the sub-word level. Integrating the HMMs represents another step of the overall OCR trends being currently researched in the literature. The proposed approach exploits the structure of characters in the Arabic language in addition to their extracted features to achieve improved recognition rates. Useful statistical information of the Arabic language is initially extracted and then used to estimate the probabilistic parameters of the mathematical HMM. A new custom implementation of the HMM is developed in this study, where the transition matrix is built based on the collected large corpus, and the emission matrix is built based on the results obtained via the extracted character features. The recognition process is triggered using the Viterbi algorithm which employs the most probable sequence of sub-words. The model was implemented to recognize the sub-word unit of Arabic text raising the recognition rate from being linked to the worst recognition rate for any character to the overall structure of the Arabic language. Numerical results show that there is a potentially large recognition improvement by using the proposed algorithms.

  13. Soil carbon response to land-use change: evaluation of a global vegetation model using observational meta-analyses

    Science.gov (United States)

    Nyawira, Sylvia S.; Nabel, Julia E. M. S.; Don, Axel; Brovkin, Victor; Pongratz, Julia

    2016-10-01

    Global model estimates of soil carbon changes from past land-use changes remain uncertain. We develop an approach for evaluating dynamic global vegetation models (DGVMs) against existing observational meta-analyses of soil carbon changes following land-use change. Using the DGVM JSBACH, we perform idealized simulations where the entire globe is covered by one vegetation type, which then undergoes a land-use change to another vegetation type. We select the grid cells that represent the climatic conditions of the meta-analyses and compare the mean simulated soil carbon changes to the meta-analyses. Our simulated results show model agreement with the observational data on the direction of changes in soil carbon for some land-use changes, although the model simulated a generally smaller magnitude of changes. The conversion of crop to forest resulted in soil carbon gain of 10 % compared to a gain of 42 % in the data, whereas the forest-to-crop change resulted in a simulated loss of -15 % compared to -40 %. The model and the observational data disagreed for the conversion of crop to grasslands. The model estimated a small soil carbon loss (-4 %), while observational data indicate a 38 % gain in soil carbon for the same land-use change. These model deviations from the observations are substantially reduced by explicitly accounting for crop harvesting and ignoring burning in grasslands in the model. We conclude that our idealized simulation approach provides an appropriate framework for evaluating DGVMs against meta-analyses and that this evaluation helps to identify the causes of deviation of simulated soil carbon changes from the meta-analyses.

  14. Accurate mask model implementation in optical proximity correction model for 14-nm nodes and beyond

    Science.gov (United States)

    Zine El Abidine, Nacer; Sundermann, Frank; Yesilada, Emek; Farys, Vincent; Huguennet, Frederic; Armeanu, Ana-Maria; Bork, Ingo; Chomat, Michael; Buck, Peter; Schanen, Isabelle

    2016-04-01

    In a previous work, we demonstrated that the current optical proximity correction model assuming the mask pattern to be analogous to the designed data is no longer valid. An extreme case of line-end shortening shows a gap up to 10 nm difference (at mask level). For that reason, an accurate mask model has been calibrated for a 14-nm logic gate level. A model with a total RMS of 1.38 nm at mask level was obtained. Two-dimensional structures, such as line-end shortening and corner rounding, were well predicted using scanning electron microscopy pictures overlaid with simulated contours. The first part of this paper is dedicated to the implementation of our improved model in current flow. The improved model consists of a mask model capturing mask process and writing effects, and a standard optical and resist model addressing the litho exposure and development effects at wafer level. The second part will focus on results from the comparison of the two models, the new and the regular.

  15. Electrical Equivalent Model for an Optical VCO in a PLL Synchronization Scheme for Ultrashort Optical Pulse Sources

    Science.gov (United States)

    Bogoni, Antonella; Potì, Luca; Ponzini, Filippo; Ghelfi, Paolo

    2006-01-01

    The electrical modeling of complex electrooptical devices is a useful task for the correct design of its schemes and for the estimation of its performance. In this paper, we consider an electrooptical phase-locked loop (PLL) used to synchronize an RF system clock to the repetition rate of an optical pulsed source, realized by an active fiber mode-locking (ML) technique in the regenerative configuration. The synchronization scheme is suggested by a description of the pulsed source, for the first time, as an optical voltage-control oscillator (VCO). In particular, we present a simple new all-electrical model for the proposed optical VCO, and we verify its accuracy by the implementation of the whole PLL scheme at 2.5 and 10 GHz.

  16. A very simple dynamic soil acidification model for scenario analyses and target load calculations

    NARCIS (Netherlands)

    Posch, M.; Reinds, G.J.

    2009-01-01

    A very simple dynamic soil acidification model, VSD, is described, which has been developed as the simplest extension of steady-state models for critical load calculations and with an eye on regional applications. The model requires only a minimum set of inputs (compared to more detailed models) and

  17. A Conceptual Model for Analysing Management Development in the UK Hospitality Industry

    Science.gov (United States)

    Watson, Sandra

    2007-01-01

    This paper presents a conceptual, contingent model of management development. It explains the nature of the UK hospitality industry and its potential influence on MD practices, prior to exploring dimensions and relationships in the model. The embryonic model is presented as a model that can enhance our understanding of the complexities of the…

  18. Secondary Evaluations of MTA 36-Month Outcomes: Propensity Score and Growth Mixture Model Analyses

    Science.gov (United States)

    Swanson, James M.; Hinshaw, Stephen P.; Arnold, L. Eugene; Gibbons, Robert D.; Marcus, Sue; Hur, Kwan; Jensen, Peter S.; Vitiello, Benedetto; Abikoff, Howard B.: Greenhill, Laurence L.; Hechtman, Lily; Pelham, William E.; Wells, Karen C.; Conners, C. Keith; March, John S.; Elliott, Glen R.; Epstein, Jeffery N.; Hoagwood, Kimberly; Hoza, Betsy; Molina, Brooke S. G.; Newcorn, Jeffrey H.; Severe, Joanne B.; Wigal, Timothy

    2007-01-01

    Objective: To evaluate two hypotheses: that self-selection bias contributed to lack of medication advantage at the 36-month assessment of the Multimodal Treatment Study of Children With ADHD (MTA) and that overall improvement over time obscured treatment effects in subgroups with different outcome trajectories. Method: Propensity score analyses,…

  19. Secondary Evaluations of MTA 36-Month Outcomes: Propensity Score and Growth Mixture Model Analyses

    Science.gov (United States)

    Swanson, James M.; Hinshaw, Stephen P.; Arnold, L. Eugene; Gibbons, Robert D.; Marcus, Sue; Hur, Kwan; Jensen, Peter S.; Vitiello, Benedetto; Abikoff, Howard B.: Greenhill, Laurence L.; Hechtman, Lily; Pelham, William E.; Wells, Karen C.; Conners, C. Keith; March, John S.; Elliott, Glen R.; Epstein, Jeffery N.; Hoagwood, Kimberly; Hoza, Betsy; Molina, Brooke S. G.; Newcorn, Jeffrey H.; Severe, Joanne B.; Wigal, Timothy

    2007-01-01

    Objective: To evaluate two hypotheses: that self-selection bias contributed to lack of medication advantage at the 36-month assessment of the Multimodal Treatment Study of Children With ADHD (MTA) and that overall improvement over time obscured treatment effects in subgroups with different outcome trajectories. Method: Propensity score analyses,…

  20. Optical Network Models and Their Application to Software-Defined Network Management

    Directory of Open Access Journals (Sweden)

    Thomas Szyrkowiec

    2017-01-01

    Full Text Available Software-defined networking is finding its way into optical networks. Here, it promises a simplification and unification of network management for optical networks allowing automation of operational tasks despite the highly diverse and vendor-specific commercial systems and the complexity and analog nature of optical transmission. Common abstractions and interfaces are a fundamental component for software-defined optical networking. Currently, a number of models for optical networks are available. They all claim to provide open and vendor agnostic management of optical equipment. In this work, we survey and compare the most important models and propose an intent interface for creating virtual topologies which is integrated in the existing model ecosystem.

  1. Three-body recombination of two-component cold atomic gases into deep dimers in an optical model

    DEFF Research Database (Denmark)

    Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.

    2015-01-01

    . The Efimov scaling between recombination peaks is calculated and shown to depend on both scattering lengths. Recombination is predicted to be largest for heavy-heavy-light systems. Universal properties of the optical parameters are indicated. We compare to available experiments and find in general very......We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds...... to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length...

  2. Animal model of human disease with optic neuritis: neuropapillitis in a rat model infected with Angiostrongylus cantonensis.

    Science.gov (United States)

    Feng, Ying; Zeng, Xin; Li, Wei-hua; Wang, Wen-cong; Ou-Yang, Li-si; Sun, Xi; Lv, Zhiyue; Wu, Zhong-Dao

    2014-11-01

    Human Angiostrongylus cantonensis (A. cantonensis) is a food-borne parasitic disease and can cause optic neuritis. Increasing clinical angiostrongyliasis cases with optic neuritis have been reported, but the pathogenesis has not been fully understood until now. Here, we applied rats with A. cantonensis infection as an animal model to study the pathogenesis of optic neuritis caused by the infection. We observed that the optic disk of experimental rats appeared hyperemic, the retina vein became thick, and the visual evoked potential (VEP) latency was prolonged. There were obvious inflammatory cell infiltration in the retina and optic nerve adventitia followed with obvious optic nerve fiber demyelination and retina ganglion swelling. We also evaluated the effect of dexamethasone combined with albendazole on optic neuritis of rats infected with A. cantonensis. The results showed it had no obvious effect to prevent progressive visual deterioration for optic neuritis caused by A. cantonensis. The studies provided evidence that the pathogenesis of optic neuritis in infected rats was correlated to optic nerve demyelination and ganglion cell damage caused by optic nerve inflammation, and the common therapy to this disease was not so effective. Based on the above results, it may be necessary to combine neuroprotective agents with common therapy to treat and protect optic nerve and ganglion cells from their secondary injury.

  3. Modeling of coherent ultrafast magneto-optical experiments: Light-induced molecular mean-field model

    Energy Technology Data Exchange (ETDEWEB)

    Hinschberger, Y. [Instituto de Física dos Materiais da Universidade do Porto, Departamento de Física et Astronomia, Rua do campo Alegre, 687, 4169-007 Porto (Portugal); Hervieux, P.-A. [Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 BP 43 - F-67034 Strasbourg Cedex 2 (France)

    2015-12-28

    We present calculations which aim to describe coherent ultrafast magneto-optical effects observed in time-resolved pump-probe experiments. Our approach is based on a nonlinear semi-classical Drude-Voigt model and is used to interpret experiments performed on nickel ferromagnetic thin film. Within this framework, a phenomenological light-induced coherent molecular mean-field depending on the polarizations of the pump and probe pulses is proposed whose microscopic origin is related to a spin-orbit coupling involving the electron spins of the material sample and the electric field of the laser pulses. Theoretical predictions are compared to available experimental data. The model successfully reproduces the observed experimental trends and gives meaningful insight into the understanding of magneto-optical rotation behavior in the ultrafast regime. Theoretical predictions for further experimental studies are also proposed.

  4. FEM modeling and histological analyses on thermal damage induced in facial skin resurfacing procedure with different CO2 laser pulse duration

    Science.gov (United States)

    Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano

    2011-07-01

    Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.

  5. The Dynamics of Semiconductor Optical Amplifiers – Modeling and Applications

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Mads Lønstrup; Berg, Tommy Winther

    2003-01-01

    The importance of semiconductor optical amplifiers is discussed. A semiconductor optical amplifier (SOA) is a semiconductor laser with anti-reflection coated facets that amplifies an injected light signal by means of stimulated emission. SOAs have a number of unique properties that open up...

  6. General Theoretical Model for Resonantly Enhanced Optical Modulators

    Institute of Scientific and Technical Information of China (English)

    Yuvaraja; S.; Visagathilagar; Arnan; Mitchell; Michael; W.; Austin

    2003-01-01

    1 IntroductionLiNbO3 optical modulators have become essential transmission devices for current and future wideband fibre-optic communications for both military and telecommunications applications. For many telecommunications applications, only a narrow bandwidth is required and thus resonantly enhancedMach-Zehndermodulators(RE-MZMs)have been developed to improve modulation efficiency at the expense of bandwidth.

  7. Analytic Models for Radiation Induced Loss in Optical Fibers II. A Physical Model,

    Science.gov (United States)

    1984-06-01

    and identify by Mock number) PIEL GRUP UB.GR. Optical fibers Analytical models Radiation effects 19. ABSTRACT (ConinueII. anl mwr,f fneciua,, and...conditions specified in the derivation of the equations existed during the irradiations. This is because the functional form of the equations is not...tion is not necessarily incorrect. If one assumes a relatively simple form of re- covery as a function of time, such as an exponential recovery, it can

  8. Using an operating cost model to analyse the selection of aircraft type on short-haul routes

    CSIR Research Space (South Africa)

    Ssamula, B

    2006-08-01

    Full Text Available and the effect of passenger volume analysed. The model was applied to a specific route within Africa, and thereafter varying passenger numbers, to choose the least costly aircraft. The results showed that smaller capacity aircraft, even though limited by maximum...

  9. Pathway models for analysing and managing the introduction of alien plant pests—an overview and categorization

    Science.gov (United States)

    J.C. Douma; M. Pautasso; R.C. Venette; C. Robinet; L. Hemerik; M.C.M. Mourits; J. Schans; W. van der Werf

    2016-01-01

    Alien plant pests are introduced into new areas at unprecedented rates through global trade, transport, tourism and travel, threatening biodiversity and agriculture. Increasingly, the movement and introduction of pests is analysed with pathway models to provide risk managers with quantitative estimates of introduction risks and effectiveness of management options....

  10. Multimodal nonlinear optical imaging of cartilage development in mouse model

    Science.gov (United States)

    He, Sicong; Xue, Wenqian; Sun, Qiqi; Li, Xuesong; Huang, Jiandong; Qu, Jianan Y.

    2017-02-01

    Kinesin-1 is a kind of motor protein responsible for intracellular transportation and has been studied in a variety of tissues. However, its roles in cartilage development are not clear. In this study, a kinesin-1 heavy chain (Kif5b) knockout mouse model is used to study the functions of kinesin-1 in the cartilage development. We developed a multimodal nonlinear optical (NLO) microscope system integrating stimulated Raman scattering (SRS), second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) to investigate the morphological and biomedical characteristics of fresh tibial cartilage from normal and mutant mice at different developmental stages. The combined forward and backward SHG imaging resolved the fine structure of collagen fibrils in the extracellular matrix of cartilage. Meanwhile, the chondrocyte morphology in different zones of cartilage was visualized by label-free SRS and TPEF images. The results show that the fibrillar collagen in the superficial zone of cartilage in postnatal day 10 and 15 (P10 and P15) knockout mice was significantly less than that of control mice. Moreover, we observed distorted morphology and disorganization of columnar arrangement of chondrocytes in the growth plate cartilage of mutant mice. This study reveals the significant roles of kinesin-1 in collagen formation and chondrocyte morphogenesis.

  11. Modelling of bio-optical parameters of open ocean waters

    Directory of Open Access Journals (Sweden)

    Vadim N. Pelevin

    2001-12-01

    Full Text Available An original method for estimating the concentration of chlorophyll pigments, absorption of yellow substance and absorption of suspended matter without pigments and yellow substance in detritus using spectral diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance data has been applied to sea waters of different types in the open ocean (case 1. Using the effective numerical single parameter classification with the water type optical index m as a parameter over the whole range of the open ocean waters, the calculations have been carried out and the light absorption spectra of sea waters tabulated. These spectra are used to optimize the absorption models and thus to estimate the concentrations of the main admixtures in sea water. The value of m can be determined from direct measurements of the downward irradiance attenuation coefficient at 500 nm or calculated from remote sensing data using the regressions given in the article. The sea water composition can then be readily estimated from the tables given for any open ocean area if that one parameter m characterizing the basin is known.

  12. Developing computational model-based diagnostics to analyse clinical chemistry data

    NARCIS (Netherlands)

    Schalkwijk, D.B. van; Bochove, K. van; Ommen, B. van; Freidig, A.P.; Someren, E.P. van; Greef, J. van der; Graaf, A.A. de

    2010-01-01

    This article provides methodological and technical considerations to researchers starting to develop computational model-based diagnostics using clinical chemistry data.These models are of increasing importance, since novel metabolomics and proteomics measuring technologies are able to produce large

  13. Bio-economic farm modelling to analyse agricultural land productivity in Rwanda

    NARCIS (Netherlands)

    Bidogeza, J.C.

    2011-01-01

    Keywords: Rwanda; farm household typology; sustainable technology adoption; multivariate analysis;
    land degradation; food security; bioeconomic model; crop simulation models; organic fertiliser; inorganic fertiliser; policy incentives In Rwanda, land degradation contributes to the low and

  14. First-harmonic sensitivity functions for a linearised diffusion model of ultrasound-modulated optical tomography

    Science.gov (United States)

    Powell, Samuel; Arridge, Simon R.; Leung, Terence S.

    2015-03-01

    Ultrasound-modulated optical tomography is an emerging biomedical imaging modality which uses the spatially localised acoustically-driven modulation of coherent light as a probe of the structure and optical properties of biological tissues. In this work we model the first-harmonic flux generated by the coupled physics using a simple linearised diffusion-style forward model. We derive analytical expressions for the sensitivity of this measurement type with respect to the optical absorption and scattering coefficients. These correlation measurement density functions can be employed as part of an image-reconstruction procedure capable of reconstructing quantitative images of the optical properties of a medium under investigation.

  15. A traffic model of optical networks based on time-space complexity and traffic grooming

    Institute of Scientific and Technical Information of China (English)

    Zhao Yongli; Zhang Jie; Han Dahai; Wang Lei; Chen Xiuzhong; Gu Wanyi

    2009-01-01

    This paper researched the traffic of optical networks in time-space complexity, proposed a novel traffic model for complex optical networks based on traffic grooming, designed a traffic generator GTS (generator based on time and space) with "centralized + distributed" idea, and then made a simulation in C language. Experiments results show that GTS can produce the virtual network topology which can change dynamically with the characteristic of scaling-free network. GTS can also groom the different traffic and trigger them under real-time or scheduling mechanisms, generating different optical connections. This traffic model is convenient for the simulation of optical networks considering the traffic complexity.

  16. Comparative study analysing women's childbirth satisfaction and obstetric outcomes across two different models of maternity care

    OpenAIRE

    Conesa Ferrer, Ma Belén; Canteras Jordana, Manuel; Ballesteros Meseguer, Carmen; Carrillo García, César; Martínez Roche, M Emilia

    2016-01-01

    Objectives To describe the differences in obstetrical results and women's childbirth satisfaction across 2 different models of maternity care (biomedical model and humanised birth). Setting 2 university hospitals in south-eastern Spain from April to October 2013. Design A correlational descriptive study. Participants A convenience sample of 406 women participated in the study, 204 of the biomedical model and 202 of the humanised model. Results The differences in obstetrical results were (biom...

  17. Quantifying and Analysing Neighbourhood Characteristics Supporting Urban Land-Use Modelling

    DEFF Research Database (Denmark)

    Hansen, Henning Sten

    2009-01-01

    Land-use modelling and spatial scenarios have gained increased attention as a means to meet the challenge of reducing uncertainty in the spatial planning and decision-making. Several organisations have developed software for land-use modelling. Many of the recent modelling efforts incorporate cel...

  18. Driver Model of a Powered Wheelchair Operation as a Tool of Theoretical Analyses

    Science.gov (United States)

    Ito, Takuma; Inoue, Takenobu; Shino, Motoki; Kamata, Minoru

    This paper describes the construction of a driver model of a powered wheelchair operation for the understanding of the characteristics of the driver. The main targets of existing researches about driver models are the operation of the automobiles and motorcycles, not a low-speed vehicle such as powered wheelchairs. Therefore, we started by verifying the possibility of modeling the turning operation at a corner of a corridor. At first, we conducted an experiment on a daily powered wheelchair user by using his vehicle. High reproducibility of driving and the driving characteristics for the construction of a driver model were both confirmed from the result of the experiment. Next, experiments with driving simulators were conducted for the collection of quantitative driving data. The parameters of the proposed driver model were identified from experimental results. From the simulations with the proposed driver model and identified parameters, the characteristics of the proposed driver model were analyzed.

  19. Fixed- and random-effects meta-analytic structural equation modeling: examples and analyses in R.

    Science.gov (United States)

    Cheung, Mike W-L

    2014-03-01

    Meta-analytic structural equation modeling (MASEM) combines the ideas of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Cheung and Chan (Psychological Methods 10:40-64, 2005b, Structural Equation Modeling 16:28-53, 2009) proposed a two-stage structural equation modeling (TSSEM) approach to conducting MASEM that was based on a fixed-effects model by assuming that all studies have the same population correlation or covariance matrices. The main objective of this article is to extend the TSSEM approach to a random-effects model by the inclusion of study-specific random effects. Another objective is to demonstrate the procedures with two examples using the metaSEM package implemented in the R statistical environment. Issues related to and future directions for MASEM are discussed.

  20. A model of the mammalian optic nerve fibre based on experimental data.

    Science.gov (United States)

    Oozeer, M; Veraart, C; Legat, V; Delbeke, J

    2006-08-01

    Several experimental data about membrane dynamics and pharmacological sensitivities of optic nerve axons have been published. The present work summarizes these data and computer simulations have been used to develop a model of the mammalian optic nerve fibre. The ionic currents description were derived from existing membrane models and particularly from a model of the somatic retinal ganglion cell (RGC) impulse generation. However, original equations had to be modified to match experimental data, which suggests that in RGCs, axonal and somatic ion channel expression are different. The new model is consistent with recent experimental results about optic nerve axonal excitability.

  1. Optical Evaluation of the Rear Contacts of Crystalline Silicon Solar Cells by Coupled Electromagnetic and Statistical Ray-Optics Modeling

    KAUST Repository

    Dabirian, Ali

    2017-02-15

    High-efficiency crystalline silicon (c-Si) solar cells increasingly feature sophisticated electron and hole contacts aimed at minimizing electronic losses. At the rear of photovoltaic devices, such contacts—usually consisting of stacks of functional layers—offer opportunities to enhance the infrared response of the solar cells. Here, we propose an accurate and simple modeling procedure to evaluate the infrared performance of rear contacts in c-Si solar cells. Our method combines full-wave electromagnetic modeling of the rear contact with a statistical ray optics model to obtain the fraction of optical energy dissipated from the rear contact relative to that absorbed by the Si wafer. Using this technique, we study the impact of the refractive index, extinction coefficient, and thickness of the rear-passivating layer and establish basic design rules. In addition, we evaluate novel optical structures, including stratified thin films, nanoparticle composites, and conductive nanowires embedded in a low-index dielectric matrix, for integration into advanced rear contacts in c-Si photovoltaic devices. From an optical perspective, nanowire structures preserving low contact resistance appear to be the most effective approach to mitigating dissipation losses from the rear contact.

  2. Visual Evoked Potential Recording in a Rat Model of Experimental Optic Nerve Demyelination.

    Science.gov (United States)

    You, Yuyi; Gupta, Vivek K; Chitranshi, Nitin; Reedman, Brittany; Klistorner, Alexander; Graham, Stuart L

    2015-07-29

    The visual evoked potential (VEP) recording is widely used in clinical practice to assess the severity of optic neuritis in its acute phase, and to monitor the disease course in the follow-up period. Changes in the VEP parameters closely correlate with pathological damage in the optic nerve. This protocol provides a detailed description about the rodent model of optic nerve microinjection, in which a partial demyelination lesion is produced in the optic nerve. VEP recording techniques are also discussed. Using skull implanted electrodes, we are able to acquire reproducible intra-session and between-session VEP traces. VEPs can be recorded on individual animals over a period of time to assess the functional changes in the optic nerve longitudinally. The optic nerve demyelination model, in conjunction with the VEP recording protocol, provides a tool to investigate the disease processes associated with demyelination and remyelination, and can potentially be employed to evaluate the effects of new remyelinating drugs or neuroprotective therapies.

  3. Cryogenic optical performance of a lightweighted mirror assembly for future space astronomical telescopes: correlating optical test results and thermal optical model

    Science.gov (United States)

    Eng, Ron; Arnold, William R.; Baker, Markus A.; Bevan, Ryan M.; Burdick, Gregory; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Hanson, Craig; Hogue, William D.; Kegley, Jeffrey R.; Kirk, Charlie; Maffett, Steven P.; Matthews, Gary W.; Siler, Richard D.; Smith, W. Scott; Stahl, H. Philip; Tucker, John M.; Wright, Ernest R.

    2013-09-01

    A 43cm diameter stacked core mirror demonstrator was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two CNC pocket milled face sheets. The 93% lightweighted Corning ULE® mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  4. Cryogenic Optical Performance of a Lightweighted Mirror Assembly for Future Space Astronomical Telescopes: Correlating Optical Test Results and Thermal Optical Model

    Science.gov (United States)

    Eng, Ron; Arnold, William R.; Baker, Marcus A.; Bevan, Ryan M.; Burdick, Gregory; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Hanson, Craig; Hogue, William D.; Kegley, Jeffrey R.; Kirk, Charlie; Maffett, Steven P.; Matthews, Gary W.; Siler, Richard D.; Smith, W. Scott; Stahl, H. Philip; Tucker, John M.; Wright, Ernest R.

    2013-01-01

    A 43cm diameter stacked core mirror demonstrator was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two CNC pocket milled face sheets. The 93% lightweighted Corning ULE® mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  5. Cryogenic Optical Performance of a Light-weight Mirror Assembly for Future Space Astronomical Telescopes: Optical Test Results and Thermal Optical Model

    Science.gov (United States)

    Eng, Ron; Arnold, William; Baker, Markus A.; Bevan, Ryan M.; Carpenter, James R.; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Kegley, Jeffrey R.; Hogue, William D.; Siler, Richard D.; Smith, W. Scott; Stahl. H. Philip; Tucker, John M.; Wright, Ernest R.; Kirk, Charles S.; Hanson, Craig; Burdick, Gregory; Maffett, Steven

    2013-01-01

    A 40 cm diameter mirror assembly was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5 m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two face sheets. The 93% lightweighted Corning ULE mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  6. Modeling and model-aware signal processing methods for enhancement of optical systems

    Science.gov (United States)

    Aksoylar, Aydan

    Theoretical and numerical modeling of optical systems are increasingly being utilized in a wide range of areas in physics and engineering for characterizing and improving existing systems or developing new methods. This dissertation focuses on determining and improving the performance of imaging and non-imaging optical systems through modeling and developing model-aware enhancement methods. We evaluate the performance, demonstrate enhancements in terms of resolution and light collection efficiency, and improve the capabilities of the systems through changes to the system design and through post-processing techniques. We consider application areas in integrated circuit (IC) imaging for fault analysis and malicious circuitry detection, and free-form lens design for creating prescribed illumination patterns. The first part of this dissertation focuses on sub-surface imaging of ICs for fault analysis using a solid immersion lens (SIL) microscope. We first derive the Green's function of the microscope and use it to determine its resolution limits for bulk silicon and silicon-on-insulator (SOI) chips. We then propose an optimization framework for designing super-resolving apodization masks that utilizes the developed model and demonstrate the trade-offs in designing such masks. Finally, we derive the full electromagnetic model of the SIL microscope that models the image of an arbitrary sub-surface structure. With the rapidly shrinking dimensions of ICs, we are increasingly limited in resolving the features and identifying potential modifications despite the resolution improvements provided by the state-of-the-art microscopy techniques and enhancement methods described here. In the second part of this dissertation, we shift our focus away from improving the resolution and consider an optical framework that does not require high resolution imaging for detecting malicious circuitry. We develop a classification-based high-throughput gate identification method that utilizes

  7. Analytical model of optical field distribution of thin disk laser with thermal-optical aberration gain medium

    Science.gov (United States)

    Zhu, Guangzhi; Qiu, Yuli; Wang, Zexiong; Zhu, Xiao; Zhu, Changhong

    2016-08-01

    An analytical model is developed to analyze the optical field distribution of thin disk laser with a thermal-optical aberration gain medium. The fundamental mode field distribution is calculated by using the eigenvector method of the resonator transit matrix for different pumping parameters. The analytical results show that the uniformity of the pumping spot is an important factor that impacts the beam quality of thin disk laser. The uniform pumping spot is beneficial to decrease thermal aberration and Optical Path Difference (OPD) of thin disk crystal, and to improve the beam quality. However, the beam quality still decreases slightly with the increasing of pumping intensity under the uniform pumping condition. The main reason for degradation of beam quality is the aspherical part of OPD which leads to diffraction losses of the resonator and wavefront deformation.

  8. Focal-plane wavefront sensing for active optics in the VST based on an analytical optical aberration model

    Science.gov (United States)

    Holzlöhner, R.; Taubenberger, S.; Rakich, A. P.; Noethe, L.; Schipani, P.; Kuijken, K.

    2016-08-01

    We study a novel focal plane wavefront sensing and active optics control scheme at the VST on Cerro Paranal, an f/5.5 survey telescope with a 1x1 degree field of view and a 2.6m primary mirror. This scheme analyzes the elongation pattern of stellar PSFs across the full science image (256 Mpixels) and compares their second moments with an analytical model based on 5th-order geometrical optics. We consider 11 scalar degrees of freedom in mirror misalignments and deformations (M2 piston, tip/tilt and lateral displacement, detector tip/tilt, plus M1 figure astigmatism and trefoil). Using a numerical optimization method, we extract up to 4000 stars and complete the fitting process in under one minute. We demonstrate successful closed-loop active optics control based on maximum likelihood filtering.

  9. WOMBAT——A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    WOMBAT is a software package for quantitative genetic analyses of continuous traits, fitting a linear, mixed model;estimates of covariance components and the resulting genetic parameters are obtained by restricted maximum likelihood. A wide range of models, comprising numerous traits, multiple fixed and random effects, selected genetic covariance structures, random regression models and reduced rank estimation are accommodated. WOMBAT employs up-to-date numerical and computational methods. Together with the use of efficient compilers, this generates fast executable programs, suitable for large scale analyses.Use of WOMBAT is illustrated for a bivariate analysis. The package consists of the executable program, available for LINUX and WINDOWS environments, manual and a set of worked example, and can be downloaded free of charge from http://agbu.une.edu.au/~kmeyer/wombat.html

  10. Kinetic models for analysing myocardial [{sup 11}C]palmitate data

    Energy Technology Data Exchange (ETDEWEB)

    Jong, Hugo W.A.M. de [University Medical Centre Utrecht, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); VU University Medical Centre, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Rijzewijk, Luuk J.; Diamant, Michaela [VU University Medical Centre, Diabetes Centre, Amsterdam (Netherlands); Lubberink, Mark; Lammertsma, Adriaan A. [VU University Medical Centre, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Meer, Rutger W. van der; Lamb, Hildo J. [Leiden University Medical Centre, Department of Radiology, Leiden (Netherlands); Smit, Jan W.A. [Leiden University Medical Centre, Department of Endocrinology, Leiden (Netherlands)

    2009-06-15

    [{sup 11}C]Palmitate PET can be used to study myocardial fatty acid metabolism in vivo. Several models have been applied to describe and quantify its kinetics, but to date no systematic analysis has been performed to define the most suitable model. In this study a total of 21 plasma input models comprising one to three compartments and up to six free rate constants were compared using statistical analysis of clinical data and simulations. To this end, 14 healthy volunteers were scanned using [{sup 11}C]palmitate, whilst myocardial blood flow was measured using H{sub 2} {sup 15}O. Models including an oxidative pathway, representing production of {sup 11}CO{sub 2}, provided significantly better fits to the data than other models. Model robustness was increased by fixing efflux of {sup 11}CO{sub 2} to the oxidation rate. Simulations showed that a three-tissue compartment model describing oxidation and esterification was feasible when no more than three free rate constants were included. Although further studies in patients are required to substantiate this choice, based on the accuracy of data description, the number of free parameters and generality, the three-tissue model with three free rate constants was the model of choice for describing [{sup 11}C]palmitate kinetics in terms of oxidation and fatty acid accumulation in the cell. (orig.)

  11. A novel substance flow analysis model for analysing multi-year phosphorus flow at the regional scale.

    Science.gov (United States)

    Chowdhury, Rubel Biswas; Moore, Graham A; Weatherley, Anthony J; Arora, Meenakshi

    2016-12-01

    Achieving sustainable management of phosphorus (P) is crucial for both global food security and global environmental protection. In order to formulate informed policy measures to overcome existing barriers of achieving sustainable P management, there is need for a sound understanding of the nature and magnitude of P flow through various systems at different geographical and temporal scales. So far, there is a limited understanding on the nature and magnitude of P flow over multiple years at the regional scale. In this study, we have developed a novel substance flow analysis (SFA) model in the MATLAB/Simulink® software platform that can be effectively utilized to analyse the nature and magnitude of multi-year P flow at the regional scale. The model is inclusive of all P flows and storage relating to all key systems, subsystems, processes or components, and the associated interactions of P flow required to represent a typical P flow system at the regional scale. In an annual time step, this model can analyse P flow and storage over as many as years required at a time, and therefore, can indicate the trends and changes in P flow and storage over many years, which is not offered by the existing regional scale SFA models of P. The model is flexible enough to allow any modification or the inclusion of any degree of complexity, and therefore, can be utilized for analysing P flow in any region around the world. The application of the model in the case of Gippsland region, Australia has revealed that the model generates essential information about the nature and magnitude of P flow at the regional scale which can be utilized for making improved management decisions towards attaining P sustainability. A systematic reliability check on the findings of model application also indicates that the model produces reliable results.

  12. Comparative study analysing women's childbirth satisfaction and obstetric outcomes across two different models of maternity care.

    Science.gov (United States)

    Conesa Ferrer, Ma Belén; Canteras Jordana, Manuel; Ballesteros Meseguer, Carmen; Carrillo García, César; Martínez Roche, M Emilia

    2016-08-26

    To describe the differences in obstetrical results and women's childbirth satisfaction across 2 different models of maternity care (biomedical model and humanised birth). 2 university hospitals in south-eastern Spain from April to October 2013. A correlational descriptive study. A convenience sample of 406 women participated in the study, 204 of the biomedical model and 202 of the humanised model. The differences in obstetrical results were (biomedical model/humanised model): onset of labour (spontaneous 66/137, augmentation 70/1, p=0.0005), pain relief (epidural 172/132, no pain relief 9/40, p=0.0005), mode of delivery (normal vaginal 140/165, instrumental 48/23, p=0.004), length of labour (0-4 hours 69/93, >4 hours 133/108, p=0.011), condition of perineum (intact perineum or tear 94/178, episiotomy 100/24, p=0.0005). The total questionnaire score (100) gave a mean (M) of 78.33 and SD of 8.46 in the biomedical model of care and an M of 82.01 and SD of 7.97 in the humanised model of care (p=0.0005). In the analysis of the results per items, statistical differences were found in 8 of the 9 subscales. The highest scores were reached in the humanised model of maternity care. The humanised model of maternity care offers better obstetrical outcomes and women's satisfaction scores during the labour, birth and immediate postnatal period than does the biomedical model. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Comparative study analysing women's childbirth satisfaction and obstetric outcomes across two different models of maternity care

    Science.gov (United States)

    Conesa Ferrer, Ma Belén; Canteras Jordana, Manuel; Ballesteros Meseguer, Carmen; Carrillo García, César; Martínez Roche, M Emilia

    2016-01-01

    Objectives To describe the differences in obstetrical results and women's childbirth satisfaction across 2 different models of maternity care (biomedical model and humanised birth). Setting 2 university hospitals in south-eastern Spain from April to October 2013. Design A correlational descriptive study. Participants A convenience sample of 406 women participated in the study, 204 of the biomedical model and 202 of the humanised model. Results The differences in obstetrical results were (biomedical model/humanised model): onset of labour (spontaneous 66/137, augmentation 70/1, p=0.0005), pain relief (epidural 172/132, no pain relief 9/40, p=0.0005), mode of delivery (normal vaginal 140/165, instrumental 48/23, p=0.004), length of labour (0–4 hours 69/93, >4 hours 133/108, p=0.011), condition of perineum (intact perineum or tear 94/178, episiotomy 100/24, p=0.0005). The total questionnaire score (100) gave a mean (M) of 78.33 and SD of 8.46 in the biomedical model of care and an M of 82.01 and SD of 7.97 in the humanised model of care (p=0.0005). In the analysis of the results per items, statistical differences were found in 8 of the 9 subscales. The highest scores were reached in the humanised model of maternity care. Conclusions The humanised model of maternity care offers better obstetrical outcomes and women's satisfaction scores during the labour, birth and immediate postnatal period than does the biomedical model. PMID:27566632

  14. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    Science.gov (United States)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.

  15. Helium-3 Microscopic Optical Model Potential Based on Skyrme Interaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The helium-3 microscopic optical potential is obtained by Green function method through nuclear matter approximation and local density approximation based on the effective Skyrme interaction. The reaction cross

  16. Comparative Analyses of MIRT Models and Software (BMIRT and flexMIRT)

    Science.gov (United States)

    Yavuz, Guler; Hambleton, Ronald K.

    2017-01-01

    Application of MIRT modeling procedures is dependent on the quality of parameter estimates provided by the estimation software and techniques used. This study investigated model parameter recovery of two popular MIRT packages, BMIRT and flexMIRT, under some common measurement conditions. These packages were specifically selected to investigate the…

  17. The Cannon 2: A data-driven model of stellar spectra for detailed chemical abundance analyses

    CERN Document Server

    Casey, Andrew R; Ness, Melissa; Rix, Hans-Walter; Ho, Anna Q Y; Gilmore, Gerry

    2016-01-01

    We have shown that data-driven models are effective for inferring physical attributes of stars (labels; Teff, logg, [M/H]) from spectra, even when the signal-to-noise ratio is low. Here we explore whether this is possible when the dimensionality of the label space is large (Teff, logg, and 15 abundances: C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) and the model is non-linear in its response to abundance and parameter changes. We adopt ideas from compressed sensing to limit overall model complexity while retaining model freedom. The model is trained with a set of 12,681 red-giant stars with high signal-to-noise spectroscopic observations and stellar parameters and abundances taken from the APOGEE Survey. We find that we can successfully train and use a model with 17 stellar labels. Validation shows that the model does a good job of inferring all 17 labels (typical abundance precision is 0.04 dex), even when we degrade the signal-to-noise by discarding ~50% of the observing time. The model dependencie...

  18. Analysing empowerment-oriented email consultation for parents : Development of the Guiding the Empowerment Process model

    NARCIS (Netherlands)

    Nieuwboer, C.C.; Fukkink, R.G.; Hermanns, J.M.A.

    2017-01-01

    Online consultation is increasingly offered by parenting practitioners, but it is not clear if it is feasible to provide empowerment-oriented support in a single session email consultation. Based on the empowerment theory, we developed the Guiding the Empowerment Process model (GEP model) to evaluat

  19. Transport of nutrients from land to sea: Global modeling approaches and uncertainty analyses

    NARCIS (Netherlands)

    Beusen, A.H.W.

    2014-01-01

    This thesis presents four examples of global models developed as part of the Integrated Model to Assess the Global Environment (IMAGE). They describe different components of global biogeochemical cycles of the nutrients nitrogen (N), phosphorus (P) and silicon (Si), with a focus on approaches to

  20. Modelling and analysing track cycling Omnium performances using statistical and machine learning techniques.

    Science.gov (United States)

    Ofoghi, Bahadorreza; Zeleznikow, John; Dwyer, Dan; Macmahon, Clare

    2013-01-01

    This article describes the utilisation of an unsupervised machine learning technique and statistical approaches (e.g., the Kolmogorov-Smirnov test) that assist cycling experts in the crucial decision-making processes for athlete selection, training, and strategic planning in the track cycling Omnium. The Omnium is a multi-event competition that will be included in the summer Olympic Games for the first time in 2012. Presently, selectors and cycling coaches make decisions based on experience and intuition. They rarely have access to objective data. We analysed both the old five-event (first raced internationally in 2007) and new six-event (first raced internationally in 2011) Omniums and found that the addition of the elimination race component to the Omnium has, contrary to expectations, not favoured track endurance riders. We analysed the Omnium data and also determined the inter-relationships between different individual events as well as between those events and the final standings of riders. In further analysis, we found that there is no maximum ranking (poorest performance) in each individual event that riders can afford whilst still winning a medal. We also found the required times for riders to finish the timed components that are necessary for medal winning. The results of this study consider the scoring system of the Omnium and inform decision-making toward successful participation in future major Omnium competitions.

  1. Mathematical modeling of materially nonlinear problems in structural analyses, Part II: Application in contemporary software

    Directory of Open Access Journals (Sweden)

    Bonić Zoran

    2010-01-01

    Full Text Available The paper presents application of nonlinear material models in the software package Ansys. The development of the model theory is presented in the paper of the mathematical modeling of material nonlinear problems in structural analysis (part I - theoretical foundations, and here is described incremental-iterative procedure for solving problems of nonlinear material used by this package and an example of modeling of spread footing by using Bilinear-kinematics and Drucker-Prager mode was given. A comparative analysis of the results obtained by these modeling and experimental research of the author was made. Occurrence of the load level that corresponds to plastic deformation was noted, development of deformations with increasing load, as well as the distribution of dilatation in the footing was observed. Comparison of calculated and measured values of reinforcement dilatation shows their very good agreement.

  2. Crowd-structure interaction in footbridges: Modelling, application to a real case-study and sensitivity analyses

    Science.gov (United States)

    Bruno, Luca; Venuti, Fiammetta

    2009-06-01

    A mathematical and computational model used to simulate crowd-structure interaction in lively footbridges is presented in this work. The model is based on the mathematical and numerical decomposition of the coupled multiphysical nonlinear system into two interacting subsystems. The model was conceived to simulate the synchronous lateral excitation phenomenon caused by pedestrians walking on footbridges. The model was first applied to simulate a crowd event on an actual footbridge, the T-bridge in Japan. Three sensitivity analyses were then performed on the same benchmark to evaluate the properties of the model. The simulation results show good agreement with the experimental data found in literature and the model could be considered a useful tool for designers and engineers in the different phases of footbridge design.

  3. Ground truth methods for optical cross-section modeling of biological aerosols

    Science.gov (United States)

    Kalter, J.; Thrush, E.; Santarpia, J.; Chaudhry, Z.; Gilberry, J.; Brown, D. M.; Brown, A.; Carter, C. C.

    2011-05-01

    Light detection and ranging (LIDAR) systems have demonstrated some capability to meet the needs of a fastresponse standoff biological detection method for simulants in open air conditions. These systems are designed to exploit various cloud signatures, such as differential elastic backscatter, fluorescence, and depolarization in order to detect biological warfare agents (BWAs). However, because the release of BWAs in open air is forbidden, methods must be developed to predict candidate system performance against real agents. In support of such efforts, the Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a modeling approach to predict the optical properties of agent materials from relatively simple, Biosafety Level 3-compatible bench top measurements. JHU/APL has fielded new ground truth instruments (in addition to standard particle sizers, such as the Aerodynamic particle sizer (APS) or GRIMM aerosol monitor (GRIMM)) to more thoroughly characterize the simulant aerosols released in recent field tests at Dugway Proving Ground (DPG). These instruments include the Scanning Mobility Particle Sizer (SMPS), the Ultraviolet Aerodynamic Particle Sizer (UVAPS), and the Aspect Aerosol Size and Shape Analyser (Aspect). The SMPS was employed as a means of measuring smallparticle concentrations for more accurate Mie scattering simulations; the UVAPS, which measures size-resolved fluorescence intensity, was employed as a path toward fluorescence cross section modeling; and the Aspect, which measures particle shape, was employed as a path towards depolarization modeling.

  4. Stochastic Spatio-Temporal Models for Analysing NDVI Distribution of GIMMS NDVI3g Images

    Directory of Open Access Journals (Sweden)

    Ana F. Militino

    2017-01-01

    Full Text Available The normalized difference vegetation index (NDVI is an important indicator for evaluating vegetation change, monitoring land surface fluxes or predicting crop models. Due to the great availability of images provided by different satellites in recent years, much attention has been devoted to testing trend changes with a time series of NDVI individual pixels. However, the spatial dependence inherent in these data is usually lost unless global scales are analyzed. In this paper, we propose incorporating both the spatial and the temporal dependence among pixels using a stochastic spatio-temporal model for estimating the NDVI distribution thoroughly. The stochastic model is a state-space model that uses meteorological data of the Climatic Research Unit (CRU TS3.10 as auxiliary information. The model will be estimated with the Expectation-Maximization (EM algorithm. The result is a set of smoothed images providing an overall analysis of the NDVI distribution across space and time, where fluctuations generated by atmospheric disturbances, fire events, land-use/cover changes or engineering problems from image capture are treated as random fluctuations. The illustration is carried out with the third generation of NDVI images, termed NDVI3g, of the Global Inventory Modeling and Mapping Studies (GIMMS in continental Spain. This data are taken in bymonthly periods from January 2011 to December 2013, but the model can be applied to many other variables, countries or regions with different resolutions.

  5. Neural Network-Based Model for Landslide Susceptibility and Soil Longitudinal Profile Analyses

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Barari, Amin; Choobbasti, A. J.

    2011-01-01

    The purpose of this study was to create an empirical model for assessing the landslide risk potential at Savadkouh Azad University, which is located in the rural surroundings of Savadkouh, about 5 km from the city of Pol-Sefid in northern Iran. The soil longitudinal profile of the city of Babol......, located 25 km from the Caspian Sea, also was predicted with an artificial neural network (ANN). A multilayer perceptron neural network model was applied to the landslide area and was used to analyze specific elements in the study area that contributed to previous landsliding events. The ANN models were...... studies in landslide susceptibility zonation....

  6. Model-Based Fault Diagnosis: Performing Root Cause and Impact Analyses in Real Time

    Science.gov (United States)

    Figueroa, Jorge F.; Walker, Mark G.; Kapadia, Ravi; Morris, Jonathan

    2012-01-01

    Generic, object-oriented fault models, built according to causal-directed graph theory, have been integrated into an overall software architecture dedicated to monitoring and predicting the health of mission- critical systems. Processing over the generic fault models is triggered by event detection logic that is defined according to the specific functional requirements of the system and its components. Once triggered, the fault models provide an automated way for performing both upstream root cause analysis (RCA), and for predicting downstream effects or impact analysis. The methodology has been applied to integrated system health management (ISHM) implementations at NASA SSC's Rocket Engine Test Stands (RETS).

  7. Statistical Modelling of Synaptic Vesicles Distribution and Analysing their Physical Characteristics

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh

    transmission electron microscopy is used to acquire images from two experimental groups of rats: 1) rats subjected to a behavioral model of stress and 2) rats subjected to sham stress as the control group. The synaptic vesicle distribution and interactions are modeled by employing a point process approach......This Ph.D. thesis deals with mathematical and statistical modeling of synaptic vesicle distribution, shape, orientation and interactions. The first major part of this thesis treats the problem of determining the effect of stress on synaptic vesicle distribution and interactions. Serial section....... The model is able to correctly separate the two experimental groups. Two different approaches to estimate the thickness of each section of specimen being imaged are introduced. The first approach uses Darboux frame and Cartan matrix to measure the isophote curvature and the second approach is based...

  8. Genomic analyses with biofilter 2.0: knowledge driven filtering, annotation, and model development

    National Research Council Canada - National Science Library

    Pendergrass, Sarah A; Frase, Alex; Wallace, John; Wolfe, Daniel; Katiyar, Neerja; Moore, Carrie; Ritchie, Marylyn D

    2013-01-01

    .... We have now extensively revised and updated the multi-purpose software tool Biofilter that allows researchers to annotate and/or filter data as well as generate gene-gene interaction models based...

  9. Wave modelling for the North Indian Ocean using MSMR analysed winds

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Sudheesh, K.; Rupali, S.P.; Babu, M.T.; Jayakumar, S.; Saran, A.K.; Basu, S.K.; Kumar, R.; Sarkar, A.

    NCMRWF (National Centre for Medium Range Weather Forecast) winds assimilated with MSMR (Multi-channel Scanning Microwave Radiometer) winds are used as input to MIKE21 Offshore Spectral Wave model (OSW) which takes into account wind induced wave...

  10. The strut-and-tie models in reinforced concrete structures analysed by a numerical technique

    Directory of Open Access Journals (Sweden)

    V. S. Almeida

    Full Text Available The strut-and-tie models are appropriate to design and to detail certain types of structural elements in reinforced concrete and in regions of stress concentrations, called "D" regions. This is a good model representation of the structural behavior and mechanism. The numerical techniques presented herein are used to identify stress regions which represent the strut-and-tie elements and to quantify their respective efforts. Elastic linear plane problems are analyzed using strut-and-tie models by coupling the classical evolutionary structural optimization, ESO, and a new variant called SESO - Smoothing ESO, for finite element formulation. The SESO method is based on the procedure of gradual reduction of stiffness contribution of the inefficient elements at lower stress until it no longer has any influence. Optimal topologies of strut-and-tie models are presented in several instances with good settings comparing with other pioneer works allowing the design of reinforcement for structural elements.

  11. Het Job-demands resources model: Een motivationele analyse vanuit de Zelf-Determinatie Theorie

    OpenAIRE

    2013-01-01

    This article details the doctoral dissertation of Anja Van Broeck (2010) detailing employee motivation from two different recent perspectives: the job demands-resources model (JD-R model) en the self-determination theory (SDT). This article primarily highlights how the studies of this dissertation add to the JDR by relying on SDT. First, a distinction is made between two types of job demands: job hindrances and job challenges Second, motivation is shown to represent the underlying mechanism ...

  12. Optimization of extraction procedures for ecotoxicity analyses: Use of TNT contaminated soil as a model

    Energy Technology Data Exchange (ETDEWEB)

    Sunahara, G.I.; Renoux, A.Y.; Dodard, S.; Paquet, L.; Hawari, J. [BRI, Montreal, Quebec (Canada); Ampleman, G.; Lavigne, J.; Thiboutot, S. [DREV, Courcelette, Quebec (Canada)

    1995-12-31

    The environmental impact of energetic substances (TNT, RDX, GAP, NC) in soil is being examined using ecotoxicity bioassays. An extraction method was characterized to optimize bioassay assessment of TNT toxicity in different soil types. Using the Microtox{trademark} (Photobacterium phosphoreum) assay and non-extracted samples, TNT was most acutely toxic (IC{sub 50} = 1--9 PPM) followed by RDX and GAP; NC did not show obvious toxicity (probably due to solubility limitations). TNT (in 0.25% DMSO) yielded an IC{sub 50} 0.98 + 0.10 (SD) ppm. The 96h-EC{sub 50} (Selenastrum capricornutum growth inhibition) of TNT (1. 1 ppm) was higher than GAP and RDX; NC was not apparently toxic (probably due to solubility limitations). Soil samples (sand or a silt-sand mix) were spiked with either 2,000 or 20,000 mg TNT/kg soil, and were adjusted to 20% moisture. Samples were later mixed with acetonitrile, sonicated, and then treated with CaCl{sub 2} before filtration, HPLC and ecotoxicity analyses. Results indicated that: the recovery of TNT from soil (97.51% {+-} 2.78) was independent of the type of soil or moisture content; CaCl{sub 2} interfered with TNT toxicity and acetonitrile extracts could not be used directly for algal testing. When TNT extracts were diluted to fixed concentrations, similar TNT-induced ecotoxicities were generally observed and suggested that, apart from the expected effects of TNT concentrations in the soil, the soil texture and the moisture effects were minimal. The extraction procedure permits HPLC analyses as well as ecotoxicity testing and minimizes secondary soil matrix effects. Studies will be conducted to study the toxic effects of other energetic substances present in soil using this approach.

  13. Analysing stratified medicine business models and value systems: innovation-regulation interactions.

    Science.gov (United States)

    Mittra, James; Tait, Joyce

    2012-09-15

    Stratified medicine offers both opportunities and challenges to the conventional business models that drive pharmaceutical R&D. Given the increasingly unsustainable blockbuster model of drug development, due in part to maturing product pipelines, alongside increasing demands from regulators, healthcare providers and patients for higher standards of safety, efficacy and cost-effectiveness of new therapies, stratified medicine promises a range of benefits to pharmaceutical and diagnostic firms as well as healthcare providers and patients. However, the transition from 'blockbusters' to what might now be termed 'niche-busters' will require the adoption of new, innovative business models, the identification of different and perhaps novel types of value along the R&D pathway, and a smarter approach to regulation to facilitate innovation in this area. In this paper we apply the Innogen Centre's interdisciplinary ALSIS methodology, which we have developed for the analysis of life science innovation systems in contexts where the value creation process is lengthy, expensive and highly uncertain, to this emerging field of stratified medicine. In doing so, we consider the complex collaboration, timing, coordination and regulatory interactions that shape business models, value chains and value systems relevant to stratified medicine. More specifically, we explore in some depth two convergence models for co-development of a therapy and diagnostic before market authorisation, highlighting the regulatory requirements and policy initiatives within the broader value system environment that have a key role in determining the probable success and sustainability of these models.

  14. Analysing the Costs of Integrated Care: A Case on Model Selection for Chronic Care Purposes

    Directory of Open Access Journals (Sweden)

    Marc Carreras

    2016-08-01

    Full Text Available Background: The objective of this study is to investigate whether the algorithm proposed by Manning and Mullahy, a consolidated health economics procedure, can also be used to estimate individual costs for different groups of healthcare services in the context of integrated care. Methods: A cross-sectional study focused on the population of the Baix Empordà (Catalonia-Spain for the year 2012 (N = 92,498 individuals. A set of individual cost models as a function of sex, age and morbidity burden were adjusted and individual healthcare costs were calculated using a retrospective full-costing system. The individual morbidity burden was inferred using the Clinical Risk Groups (CRG patient classification system. Results: Depending on the characteristics of the data, and according to the algorithm criteria, the choice of model was a linear model on the log of costs or a generalized linear model with a log link. We checked for goodness of fit, accuracy, linear structure and heteroscedasticity for the models obtained. Conclusion: The proposed algorithm identified a set of suitable cost models for the distinct groups of services integrated care entails. The individual morbidity burden was found to be indispensable when allocating appropriate resources to targeted individuals.

  15. An LP-model to analyse economic and ecological sustainability on Dutch dairy farms: model presentation and application for experimental farm "de Marke"

    NARCIS (Netherlands)

    Calker, van K.J.; Berentsen, P.B.M.; Boer, de I.J.M.; Giesen, G.W.J.; Huirne, R.B.M.

    2004-01-01

    Farm level modelling can be used to determine how farm management adjustments and environmental policy affect different sustainability indicators. In this paper indicators were included in a dairy farm LP (linear programming)-model to analyse the effects of environmental policy and management

  16. Monte Carlo modeling of Standard Model multi-boson production processes for $\\sqrt{s} = 13$ TeV ATLAS analyses

    CERN Document Server

    Li, Shu; The ATLAS collaboration

    2017-01-01

    Proceeding for the poster presentation at LHCP2017, Shanghai, China on the topic of "Monte Carlo modeling of Standard Model multi-boson production processes for $\\sqrt{s} = 13$ TeV ATLAS analyses" (ATL-PHYS-SLIDE-2017-265 https://cds.cern.ch/record/2265389) Deadline: 01/09/2017

  17. A General Epipolar-Line Model between Optical and SAR Images and Used in Image Matching

    Directory of Open Access Journals (Sweden)

    Shuai Xing

    2014-02-01

    Full Text Available The search space and strategy are important for optical and SAR image matching. In this paper a general epipolar-line model has been proposed between linear array push-broom optical and SAR images. Then a dynamic approximate epipolar-line constraint model (DAELCM has been constructed and used to construct a new image matching algorithm with Harris operator and CRA. Experimental results have shown that the general epipolar-line model is valid and successfully used in optical and SAR image matching, and effectively limits the search space and decreased computation.

  18. Problems of large neurodynamics system modeling: optical synergetics and neural networks

    Science.gov (United States)

    Vorontsov, Mikhail A.

    1991-04-01

    The possibilities of modeling developed neuronetwork dynamics are investigated by nonlinear coherent optical systems with a 2-D feedback. A comparative analysis of neuron-like systems of various physical nature has been made. The results of experimental investigations of nonlinear optical system dynamics with nonlocal connections are discussed.

  19. Modelling of optically stimulated luminescence of zircon : assessment of the suitability for dating

    NARCIS (Netherlands)

    Turkin, A.A.; Vainshtein, D.I.; Hartog, H.W. den

    2006-01-01

    The mineral zircon, ZrSiO4, is a candidate material for optical dating because it exhibits luminescence after exposure to natural radioactivity. The kinetic model of zircon thermally stimulated luminescence proposed before has been modified and used to investigate optically Stimulated luminescence (

  20. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model

    Directory of Open Access Journals (Sweden)

    S. Dutkiewicz

    2015-07-01

    This new model that captures bio-optical feedbacks will be important for improving our understanding of the role of light and optical constituents on ocean biogeochemistry, especially in a changing environment. Further, resolving surface upwelling irradiance will make it easier to connect to satellite-derived products in the future.

  1. Modelling of the Optical Detector System in a Compact Disc Player

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle;

    2003-01-01

    The cross-couplings between focus and radial tracking servos in compact disc players are important, but the optical cross couplings are not well described in the literature. In this paper an optical model of a compact disc player based on the three beam single foucault detector principle is found......, which includes the cross couplings between focus and radial loops....

  2. Modeling the video distribution link in the Next Generation Optical Access Networks

    DEFF Research Database (Denmark)

    Amaya, F.; Cárdenas, A.; Tafur Monroy, Idelfonso

    2011-01-01

    In this work we present a model for the design and optimization of the video distribution link in the next generation optical access network. We analyze the video distribution performance in a SCM-WDM link, including the noise, the distortion and the fiber optic nonlinearities. Additionally, we...

  3. AMME: an Automatic Mental Model Evaluation to analyse user behaviour traced in a finite, discrete state space.

    Science.gov (United States)

    Rauterberg, M

    1993-11-01

    To support the human factors engineer in designing a good user interface, a method has been developed to analyse the empirical data of the interactive user behaviour traced in a finite discrete state space. The sequences of actions produced by the user contain valuable information about the mental model of this user, the individual problem solution strategies for a given task and the hierarchical structure of the task-subtasks relationships. The presented method, AMME, can analyse the action sequences and automatically generate (1) a net description of the task dependent model of the user, (2) a complete state transition matrix, and (3) various quantitative measures of the user's task solving process. The behavioural complexity of task-solving processes carried out by novices has been found to be significantly larger than the complexity of task-solving processes carried out by experts.

  4. Model-driven meta-analyses for informing health care: a diabetes meta-analysis as an exemplar.

    Science.gov (United States)

    Brown, Sharon A; Becker, Betsy Jane; García, Alexandra A; Brown, Adama; Ramírez, Gilbert

    2015-04-01

    A relatively novel type of meta-analysis, a model-driven meta-analysis, involves the quantitative synthesis of descriptive, correlational data and is useful for identifying key predictors of health outcomes and informing clinical guidelines. Few such meta-analyses have been conducted and thus, large bodies of research remain unsynthesized and uninterpreted for application in health care. We describe the unique challenges of conducting a model-driven meta-analysis, focusing primarily on issues related to locating a sample of published and unpublished primary studies, extracting and verifying descriptive and correlational data, and conducting analyses. A current meta-analysis of the research on predictors of key health outcomes in diabetes is used to illustrate our main points.

  5. Multicollinearity in prognostic factor analyses using the EORTC QLQ-C30: identification and impact on model selection.

    Science.gov (United States)

    Van Steen, Kristel; Curran, Desmond; Kramer, Jocelyn; Molenberghs, Geert; Van Vreckem, Ann; Bottomley, Andrew; Sylvester, Richard

    2002-12-30

    Clinical and quality of life (QL) variables from an EORTC clinical trial of first line chemotherapy in advanced breast cancer were used in a prognostic factor analysis of survival and response to chemotherapy. For response, different final multivariate models were obtained from forward and backward selection methods, suggesting a disconcerting instability. Quality of life was measured using the EORTC QLQ-C30 questionnaire completed by patients. Subscales on the questionnaire are known to be highly correlated, and therefore it was hypothesized that multicollinearity contributed to model instability. A correlation matrix indicated that global QL was highly correlated with 7 out of 11 variables. In a first attempt to explore multicollinearity, we used global QL as dependent variable in a regression model with other QL subscales as predictors. Afterwards, standard diagnostic tests for multicollinearity were performed. An exploratory principal components analysis and factor analysis of the QL subscales identified at most three important components and indicated that inclusion of global QL made minimal difference to the loadings on each component, suggesting that it is redundant in the model. In a second approach, we advocate a bootstrap technique to assess the stability of the models. Based on these analyses and since global QL exacerbates problems of multicollinearity, we therefore recommend that global QL be excluded from prognostic factor analyses using the QLQ-C30. The prognostic factor analysis was rerun without global QL in the model, and selected the same significant prognostic factors as before.

  6. Analysing improvements to on-street public transport systems: a mesoscopic model approach

    DEFF Research Database (Denmark)

    Ingvardson, Jesper Bláfoss; Kornerup Jensen, Jonas; Nielsen, Otto Anker

    2017-01-01

    Light rail transit and bus rapid transit have shown to be efficient and cost-effective in improving public transport systems in cities around the world. As these systems comprise various elements, which can be tailored to any given setting, e.g. pre-board fare-collection, holding strategies...... and other advanced public transport systems (APTS), the attractiveness of such systems depends heavily on their implementation. In the early planning stage it is advantageous to deploy simple and transparent models to evaluate possible ways of implementation. For this purpose, the present study develops...... a mesoscopic model which makes it possible to evaluate public transport operations in details, including dwell times, intelligent traffic signal timings and holding strategies while modelling impacts from other traffic using statistical distributional data thereby ensuring simplicity in use and fast...

  7. Latent Variable Modelling and Item Response Theory Analyses in Marketing Research

    Directory of Open Access Journals (Sweden)

    Brzezińska Justyna

    2016-12-01

    Full Text Available Item Response Theory (IRT is a modern statistical method using latent variables designed to model the interaction between a subject’s ability and the item level stimuli (difficulty, guessing. Item responses are treated as the outcome (dependent variables, and the examinee’s ability and the items’ characteristics are the latent predictor (independent variables. IRT models the relationship between a respondent’s trait (ability, attitude and the pattern of item responses. Thus, the estimation of individual latent traits can differ even for two individuals with the same total scores. IRT scores can yield additional benefits and this will be discussed in detail. In this paper theory and application with R software with the use of packages designed for modelling IRT will be presented.

  8. Modeling human papillomavirus and cervical cancer in the United States for analyses of screening and vaccination

    Directory of Open Access Journals (Sweden)

    Ortendahl Jesse

    2007-10-01

    Full Text Available Abstract Background To provide quantitative insight into current U.S. policy choices for cervical cancer prevention, we developed a model of human papillomavirus (HPV and cervical cancer, explicitly incorporating uncertainty about the natural history of disease. Methods We developed a stochastic microsimulation of cervical cancer that distinguishes different HPV types by their incidence, clearance, persistence, and progression. Input parameter sets were sampled randomly from uniform distributions, and simulations undertaken with each set. Through systematic reviews and formal data synthesis, we established multiple epidemiologic targets for model calibration, including age-specific prevalence of HPV by type, age-specific prevalence of cervical intraepithelial neoplasia (CIN, HPV type distribution within CIN and cancer, and age-specific cancer incidence. For each set of sampled input parameters, likelihood-based goodness-of-fit (GOF scores were computed based on comparisons between model-predicted outcomes and calibration targets. Using 50 randomly resampled, good-fitting parameter sets, we assessed the external consistency and face validity of the model, comparing predicted screening outcomes to independent data. To illustrate the advantage of this approach in reflecting parameter uncertainty, we used the 50 sets to project the distribution of health outcomes in U.S. women under different cervical cancer prevention strategies. Results Approximately 200 good-fitting parameter sets were identified from 1,000,000 simulated sets. Modeled screening outcomes were externally consistent with results from multiple independent data sources. Based on 50 good-fitting parameter sets, the expected reductions in lifetime risk of cancer with annual or biennial screening were 76% (range across 50 sets: 69–82% and 69% (60–77%, respectively. The reduction from vaccination alone was 75%, although it ranged from 60% to 88%, reflecting considerable parameter

  9. Analysing the distribution of synaptic vesicles using a spatial point process model

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh; Waagepetersen, Rasmus; Nava, Nicoletta

    2014-01-01

    Stress can affect the brain functionality in many ways. As the synaptic vesicles have a major role in nervous signal transportation in synapses, their distribution in relationship to the active zone is very important in studying the neuron responses. We study the effect of stress on brain functio...... in the two groups. The spatial distributions are modelled using spatial point process models with an inhomogeneous conditional intensity and repulsive pairwise interactions. Our results verify the hypothesis that the two groups have different spatial distributions....

  10. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1)

    Science.gov (United States)

    Fyllas, N. M.; Gloor, E.; Mercado, L. M.; Sitch, S.; Quesada, C. A.; Domingues, T. F.; Galbraith, D. R.; Torre-Lezama, A.; Vilanova, E.; Ramírez-Angulo, H.; Higuchi, N.; Neill, D. A.; Silveira, M.; Ferreira, L.; Aymard C., G. A.; Malhi, Y.; Phillips, O. L.; Lloyd, J.

    2014-07-01

    Repeated long-term censuses have revealed large-scale spatial patterns in Amazon basin forest structure and dynamism, with some forests in the west of the basin having up to a twice as high rate of aboveground biomass production and tree recruitment as forests in the east. Possible causes for this variation could be the climatic and edaphic gradients across the basin and/or the spatial distribution of tree species composition. To help understand causes of this variation a new individual-based model of tropical forest growth, designed to take full advantage of the forest census data available from the Amazonian Forest Inventory Network (RAINFOR), has been developed. The model allows for within-stand variations in tree size distribution and key functional traits and between-stand differences in climate and soil physical and chemical properties. It runs at the stand level with four functional traits - leaf dry mass per area (Ma), leaf nitrogen (NL) and phosphorus (PL) content and wood density (DW) varying from tree to tree - in a way that replicates the observed continua found within each stand. We first applied the model to validate canopy-level water fluxes at three eddy covariance flux measurement sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree multi-annual growth rates generally agreed well with observations for small trees, but with deviations identified for larger trees. At the stand level, simulations at 40 plots were used to explore the influence of climate and soil nutrient availability on the gross (ΠG) and net (ΠN) primary production rates as well as the carbon use efficiency (CU). Simulated ΠG, ΠN and CU were not associated with temperature. On the other hand, all three measures of stand level productivity were positively related to both mean annual precipitation and soil nutrient status

  11. Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells.

    Science.gov (United States)

    Lin, Alex W H; Lewinski, Nastassja A; West, Jennifer L; Halas, Naomi J; Drezek, Rebekah A

    2005-01-01

    Many optical diagnostic approaches rely on changes in scattering and absorption properties to generate optical contrast between normal and diseased tissue. Recently, there has been increasing interest in using exogenous agents to enhance this intrinsic contrast with particular emphasis on the development for targeting specific molecular features of disease. Gold nanoshells are a class of core-shell nanoparticles with an extremely tunable peak optical resonance ranging from the near-UV to the mid-IR wavelengths. Using current chemistries, nanoshells of a wide variety of core and shell sizes can easily be fabricated to scatter and/or absorb light with optical cross sections often several times larger than the geometric cross section. Using gold nanoshells of different size and optical parameters, we employ Monte Carlo models to predict the effect of varying concentrations of nanoshells on tissue reflectance. The models demonstrate the importance of absorption from the nanoshells on remitted signals even when the optical extinction is dominated by scattering. Furthermore, because of the strong optical response of nanoshells, a considerable change in reflectance is observed with only a very small concentration of nanoshells. Characterizing the optical behavior of gold nanoshells in tissue will aid in developing nanoshells as contrast agents for optical diagnostics.

  12. Quantum simulation of correlated-hopping models with fermions in optical lattices

    NARCIS (Netherlands)

    Liberto, M. Di; Creffield, C. E.; Japaridze, G. I.; Smith, C. Morais

    2014-01-01

    By using a modulated magnetic field in a Feshbach resonance for ultracold fermionic atoms in optical lattices, we show that it is possible to engineer a class of models usually referred to as correlated-hopping models. These models differ from the Hubbard model in exhibiting additional density-depen

  13. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    CERN Document Server

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  14. Full wave model of image formation in optical coherence tomography applicable to general samples.

    Science.gov (United States)

    Munro, Peter R T; Curatolo, Andrea; Sampson, David D

    2015-02-09

    We demonstrate a highly realistic model of optical coherence tomography, based on an existing model of coherent optical microscopes, which employs a full wave description of light. A defining feature of the model is the decoupling of the key functions of an optical coherence tomography system: sample illumination, light-sample interaction and the collection of light scattered by the sample. We show how such a model can be implemented using the finite-difference time-domain method to model light propagation in general samples. The model employs vectorial focussing theory to represent the optical system and, thus, incorporates general illumination beam types and detection optics. To demonstrate its versatility, we model image formation of a stratified medium, a numerical point-spread function phantom and a numerical phantom, based upon a physical three-dimensional structured phantom employed in our laboratory. We show that simulated images compare well with experimental images of a three-dimensional structured phantom. Such a model provides a powerful means to advance all aspects of optical coherence tomography imaging.

  15. Experimental verification of optical models of graphene with multimode slab waveguides.

    Science.gov (United States)

    Chang, Zeshan; Chiang, Kin Seng

    2016-05-01

    We compare three optical models of graphene, namely, the interface model, the isotropic model, and the anisotropic model, and verify them experimentally with two multimode slab waveguide samples operating at the wavelengths of 632.8 and 1536 nm. By comparing the calculated graphene-induced losses and the measurement data, we confirm that the interface model and the anisotropic model give correct results for both the transverse electric (TE) and transverse magnetic modes, while the isotropic model gives correct results only for the TE modes. With the experimental data, we also quantitatively verify the widely used expression for the surface conductivity of graphene in the optical regime. Our findings clarify the issue of modeling graphene in the analysis of graphene-incorporated waveguides and offer deeper insight into the optical properties of graphene for waveguide applications.

  16. Integrated modeling/analyses of thermal-shock effects in SNS targets

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P.; Haines, J. [Oak Ridge National Lab., TN (United States)

    1996-06-01

    In a spallation neutron source (SNS), extremely rapid energy pulses are introduced in target materials such as mercury, lead, tungsten, uranium, etc. Shock phenomena in such systems may possibly lead to structural material damage beyond the design basis. As expected, the progression of shock waves and interaction with surrounding materials for liquid targets can be quite different from that in solid targets. The purpose of this paper is to describe ORNL`s modeling framework for `integrated` assessment of thermal-shock issues in liquid and solid target designs. This modeling framework is being developed based upon expertise developed from past reactor safety studies, especially those related to the Advanced Neutron Source (ANS) Project. Unlike previous separate-effects modeling approaches employed (for evaluating target behavior when subjected to thermal shocks), the present approach treats the overall problem in a coupled manner using state-of-the-art equations of state for materials of interest (viz., mercury, tungsten and uranium). That is, the modeling framework simultaneously accounts for localized (and distributed) compression pressure pulse generation due to transient heat deposition, the transport of this shock wave outwards, interaction with surrounding boundaries, feedback to mercury from structures, multi-dimensional reflection patterns & stress induced (possible) breakup or fracture.

  17. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  18. Using Latent Trait Measurement Models to Analyse Attitudinal Data: A Synthesis of Viewpoints.

    Science.gov (United States)

    Andrich, David

    A Rasch model for ordered response categories is derived and it is shown that it retains the key features of both the Thurstone and Likert approaches to studying attitude. Key features of the latter approaches are reviewed. Characteristics in common with the Thurstone approach are: statements are scaled with respect to their affective values;…

  19. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    Science.gov (United States)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  20. Cyclodextrin--piroxicam inclusion complexes: analyses by mass spectrometry and molecular modelling

    Science.gov (United States)

    Gallagher, Richard T.; Ball, Christopher P.; Gatehouse, Deborah R.; Gates, Paul J.; Lobell, Mario; Derrick, Peter J.

    1997-11-01

    Mass spectrometry has been used to investigate the natures of non-covalent complexes formed between the anti-inflammatory drug piroxicam and [alpha]-, [beta]- and [gamma]-cyclodextrins. Energies of these complexes have been calculated by means of molecular modelling. There is a correlation between peak intensities in the mass spectra and the calculated energies.

  1. Survival data analyses in ecotoxicology: critical effect concentrations, methods and models. What should we use?

    Science.gov (United States)

    Forfait-Dubuc, Carole; Charles, Sandrine; Billoir, Elise; Delignette-Muller, Marie Laure

    2012-05-01

    In ecotoxicology, critical effect concentrations are the most common indicators to quantitatively assess risks for species exposed to contaminants. Three types of critical effect concentrations are classically used: lowest/ no observed effect concentration (LOEC/NOEC), LC( x) (x% lethal concentration) and NEC (no effect concentration). In this article, for each of these three types of critical effect concentration, we compared methods or models used for their estimation and proposed one as the most appropriate. We then compared these critical effect concentrations to each other. For that, we used nine survival data sets corresponding to D. magna exposition to nine different contaminants, for which the time-course of the response was monitored. Our results showed that: (i) LOEC/NOEC values at day 21 were method-dependent, and that the Cochran-Armitage test with a step-down procedure appeared to be the most protective for the environment; (ii) all tested concentration-response models we compared gave close values of LC50 at day 21, nevertheless the Weibull model had the lowest global mean deviance; (iii) a simple threshold NEC-model both concentration and time dependent more completely described whole data (i.e. all timepoints) and enabled a precise estimation of the NEC. We then compared the three critical effect concentrations and argued that the use of the NEC might be a good option for environmental risk assessment.

  2. Transformation of Baumgarten's aesthetics into a tool for analysing works and for modelling

    DEFF Research Database (Denmark)

    Thomsen, Bente Dahl

    2006-01-01

      Abstract: Is this the best form, or does it need further work? The aesthetic object does not possess the perfect qualities; but how do I proceed with the form? These are questions that all modellers ask themselves at some point, and with which they can grapple for days - even weeks - before the...

  3. Modelling and analysing 3D buildings with a primal/dual data structure

    NARCIS (Netherlands)

    Boguslawski, P.; Gold, C.; Ledoux, H.

    2011-01-01

    While CityGML permits us to represent 3D city models, its use for applications where spatial analysis and/or real-time modifications are required is limited since at this moment the possibility to store topological relationships between the elements is rather limited and often not exploited. We pres

  4. Modelling and analysing 3D buildings with a primal/dual data structure

    NARCIS (Netherlands)

    Boguslawski, P.; Gold, C.; Ledoux, H.

    2011-01-01

    While CityGML permits us to represent 3D city models, its use for applications where spatial analysis and/or real-time modifications are required is limited since at this moment the possibility to store topological relationships between the elements is rather limited and often not exploited. We

  5. A multi-scale modelling approach for analysing landscape service dynamics

    NARCIS (Netherlands)

    Willemen, L.; Veldkamp, A.; Verburg, P.H.; Hein, L.G.; Leemans, R.

    2012-01-01

    Shifting societal needs drive and shape landscapes and the provision of their services. This paper presents a modelling approach to visualize the regional spatial and temporal dynamics in landscape service supply as a function of changing landscapes and societal demand. This changing demand can resu

  6. GSEVM v.2: MCMC software to analyse genetically structured environmental variance models

    DEFF Research Database (Denmark)

    Ibáñez-Escriche, N; Garcia, M; Sorensen, D

    2010-01-01

    This note provides a description of software that allows to fit Bayesian genetically structured variance models using Markov chain Monte Carlo (MCMC). The gsevm v.2 program was written in Fortran 90. The DOS and Unix executable programs, the user's guide, and some example files are freely availab...

  7. Analysing outsourcing policies in an asset management context: a six-stage model

    NARCIS (Netherlands)

    Schoenmaker, R.; Verlaan, J.G.

    2013-01-01

    Asset managers of civil infrastructure are increasingly outsourcing their maintenance. Whereas maintenance is a cyclic process, decisions to outsource decisions are often project-based, and confusing the discussion on the degree of outsourcing. This paper presents a six-stage model that facilitates

  8. Analysing outsourcing policies in an asset management context: a six-stage model

    NARCIS (Netherlands)

    Schoenmaker, R.; Verlaan, J.G.

    2013-01-01

    Asset managers of civil infrastructure are increasingly outsourcing their maintenance. Whereas maintenance is a cyclic process, decisions to outsource decisions are often project-based, and confusing the discussion on the degree of outsourcing. This paper presents a six-stage model that facilitates

  9. Analysing green supply chain management practices in Brazil's electrical/electronics industry using interpretive structural modelling

    DEFF Research Database (Denmark)

    Govindan, Kannan; Kannan, Devika; Mathiyazhagan, K.

    2013-01-01

    that exists between GSCM practices with regard to their adoption within Brazilian electrical/electronic industry with the help of interpretive structural modelling (ISM). From the results, we infer that cooperation with customers for eco-design practice is driving other practices, and this practice acts...

  10. Surface modeling for optical fabrication with linear ion source

    CERN Document Server

    Wu, Lixiang; Shao, Jianda

    2016-01-01

    We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. It is the first time that we have a surface descriptor for building a relationship between the fabrication process of optical surfaces and the surface characterization based on PSD analysis, which akin to Zernike polynomials used for mapping the relationship between surface errors and Seidel aberrations. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of surface errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that, in theory, optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approac...

  11. Analysing the Severity and Frequency of Traffic Crashes in Riyadh City Using Statistical Models

    Directory of Open Access Journals (Sweden)

    Saleh Altwaijri

    2012-12-01

    Full Text Available Traffic crashes in Riyadh city cause losses in the form of deaths, injuries and property damages, in addition to the pain and social tragedy affecting families of the victims. In 2005, there were a total of 47,341 injury traffic crashes occurred in Riyadh city (19% of the total KSA crashes and 9% of those crashes were severe. Road safety in Riyadh city may have been adversely affected by: high car ownership, migration of people to Riyadh city, high daily trips reached about 6 million, high rate of income, low-cost of petrol, drivers from different nationalities, young drivers and tremendous growth in population which creates a high level of mobility and transport activities in the city. The primary objective of this paper is therefore to explore factors affecting the severity and frequency of road crashes in Riyadh city using appropriate statistical models aiming to establish effective safety policies ready to be implemented to reduce the severity and frequency of road crashes in Riyadh city. Crash data for Riyadh city were collected from the Higher Commission for the Development of Riyadh (HCDR for a period of five years from 1425H to 1429H (roughly corresponding to 2004-2008. Crash data were classified into three categories: fatal, serious-injury and slight-injury. Two nominal response models have been developed: a standard multinomial logit model (MNL and a mixed logit model to injury-related crash data. Due to a severe underreporting problem on the slight injury crashes binary and mixed binary logistic regression models were also estimated for two categories of severity: fatal and serious crashes. For frequency, two count models such as Negative Binomial (NB models were employed and the unit of analysis was 168 HAIs (wards in Riyadh city. Ward-level crash data are disaggregated by severity of the crash (such as fatal and serious injury crashes. The results from both multinomial and binary response models are found to be fairly consistent but

  12. Using species abundance distribution models and diversity indices for biogeographical analyses

    Science.gov (United States)

    Fattorini, Simone; Rigal, François; Cardoso, Pedro; Borges, Paulo A. V.

    2016-01-01

    We examine whether Species Abundance Distribution models (SADs) and diversity indices can describe how species colonization status influences species community assembly on oceanic islands. Our hypothesis is that, because of the lack of source-sink dynamics at the archipelago scale, Single Island Endemics (SIEs), i.e. endemic species restricted to only one island, should be represented by few rare species and consequently have abundance patterns that differ from those of more widespread species. To test our hypothesis, we used arthropod data from the Azorean archipelago (North Atlantic). We divided the species into three colonization categories: SIEs, archipelagic endemics (AZEs, present in at least two islands) and native non-endemics (NATs). For each category, we modelled rank-abundance plots using both the geometric series and the Gambin model, a measure of distributional amplitude. We also calculated Shannon entropy and Buzas and Gibson's evenness. We show that the slopes of the regression lines modelling SADs were significantly higher for SIEs, which indicates a relative predominance of a few highly abundant species and a lack of rare species, which also depresses diversity indices. This may be a consequence of two factors: (i) some forest specialist SIEs may be at advantage over other, less adapted species; (ii) the entire populations of SIEs are by definition concentrated on a single island, without possibility for inter-island source-sink dynamics; hence all populations must have a minimum number of individuals to survive natural, often unpredictable, fluctuations. These findings are supported by higher values of the α parameter of the Gambin mode for SIEs. In contrast, AZEs and NATs had lower regression slopes, lower α but higher diversity indices, resulting from their widespread distribution over several islands. We conclude that these differences in the SAD models and diversity indices demonstrate that the study of these metrics is useful for

  13. Evaluation of a dentoalveolar model for testing mouthguards: stress and strain analyses.

    Science.gov (United States)

    Verissimo, Crisnicaw; Costa, Paulo Victor Moura; Santos-Filho, Paulo César Freitas; Fernandes-Neto, Alfredo Júlio; Tantbirojn, Daranee; Versluis, Antheunis; Soares, Carlos José

    2016-02-01

    Custom-fitted mouthguards are devices used to decrease the likelihood of dental trauma. The aim of this study was to develop an experimental bovine dentoalveolar model with periodontal ligament to evaluate mouthguard shock absorption, and impact strain and stress behavior. A pendulum impact device was developed to perform the impact tests with two different impact materials (steel ball and baseball). Five bovine jaws were selected with standard age and dimensions. Six-mm mouthguards were made for the impact tests. The jaws were fixed in a pendulum device and impacts were performed from 90, 60, and 45° angles, with and without mouthguard. Strain gauges were attached at the palatal surface of the impacted tooth. The strain and shock absorption of the mouthguards was calculated and data were analyzed with 3-way anova and Tukey's test (α = 0.05). Two-dimensional finite element models were created based on the cross-section of the bovine dentoalveolar model used in the experiment. A nonlinear dynamic impact analysis was performed to evaluate the strain and stress distributions. Without mouthguards, the increase in impact angulation significantly increased strains and stresses. Mouthguards reduced strain and stress values. Impact velocity, impact object (steel ball or baseball), and mouthguard presence affected the impact stresses and strains in a bovine dentoalveolar model. Experimental strain measurements and finite element models predicted similar behavior; therefore, both methodologies are suitable for evaluating the biomechanical performance of mouthguards. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Novel basophil- or eosinophil-depleted mouse models for functional analyses of allergic inflammation.

    Science.gov (United States)

    Matsuoka, Kunie; Shitara, Hiroshi; Taya, Choji; Kohno, Kenji; Kikkawa, Yoshiaki; Yonekawa, Hiromichi

    2013-01-01

    Basophils and eosinophils play important roles in various host defense mechanisms but also act as harmful effectors in allergic disorders. We generated novel basophil- and eosinophil-depletion mouse models by introducing the human diphtheria toxin (DT) receptor gene under the control of the mouse CD203c and the eosinophil peroxidase promoter, respectively, to study the critical roles of these cells in the immunological response. These mice exhibited selective depletion of the target cells upon DT administration. In the basophil-depletion model, DT administration attenuated a drop in body temperature in IgG-mediated systemic anaphylaxis in a dose-dependent manner and almost completely abolished the development of ear swelling in IgE-mediated chronic allergic inflammation (IgE-CAI), a typical skin swelling reaction with massive eosinophil infiltration. In contrast, in the eosinophil-depletion model, DT administration ameliorated the ear swelling in IgE-CAI whether DT was administered before, simultaneously, or after, antigen challenge, with significantly lower numbers of eosinophils infiltrating into the swelling site. These results confirm that basophils and eosinophils act as the initiator and the effector, respectively, in IgE-CAI. In addition, antibody array analysis suggested that eotaxin-2 is a principal chemokine that attracts proinflammatory cells, leading to chronic allergic inflammation. Thus, the two mouse models established in this study are potentially useful and powerful tools for studying the in vivo roles of basophils and eosinophils. The combination of basophil- and eosinophil-depletion mouse models provides a new approach to understanding the complicated mechanism of allergic inflammation in conditions such as atopic dermatitis and asthma.

  15. Novel basophil- or eosinophil-depleted mouse models for functional analyses of allergic inflammation.

    Directory of Open Access Journals (Sweden)

    Kunie Matsuoka

    Full Text Available Basophils and eosinophils play important roles in various host defense mechanisms but also act as harmful effectors in allergic disorders. We generated novel basophil- and eosinophil-depletion mouse models by introducing the human diphtheria toxin (DT receptor gene under the control of the mouse CD203c and the eosinophil peroxidase promoter, respectively, to study the critical roles of these cells in the immunological response. These mice exhibited selective depletion of the target cells upon DT administration. In the basophil-depletion model, DT administration attenuated a drop in body temperature in IgG-mediated systemic anaphylaxis in a dose-dependent manner and almost completely abolished the development of ear swelling in IgE-mediated chronic allergic inflammation (IgE-CAI, a typical skin swelling reaction with massive eosinophil infiltration. In contrast, in the eosinophil-depletion model, DT administration ameliorated the ear swelling in IgE-CAI whether DT was administered before, simultaneously, or after, antigen challenge, with significantly lower numbers of eosinophils infiltrating into the swelling site. These results confirm that basophils and eosinophils act as the initiator and the effector, respectively, in IgE-CAI. In addition, antibody array analysis suggested that eotaxin-2 is a principal chemokine that attracts proinflammatory cells, leading to chronic allergic inflammation. Thus, the two mouse models established in this study are potentially useful and powerful tools for studying the in vivo roles of basophils and eosinophils. The combination of basophil- and eosinophil-depletion mouse models provides a new approach to understanding the complicated mechanism of allergic inflammation in conditions such as atopic dermatitis and asthma.

  16. Static simulation and analyses of mower's ROPS behavior in a finite element model.

    Science.gov (United States)

    Wang, X; Ayers, P; Womac, A R

    2009-10-01

    The goal of this research was to numerically predict the maximum lateral force acting on a mower rollover protective structure (ROPS) and the energy absorbed by the ROPS during a lateral continuous roll. A finite element (FE) model of the ROPS was developed using elastic and plastic theories including nonlinear relationships between stresses and strains in the plastic deformation range. Model validation was performed using field measurements of ROPS behavior in a lateral continuous roll on a purpose-designed test slope. Field tests determined the maximum deformation of the ROPS of a 900 kg John Deere F925 mower with a 183 cm (72 in.) mowing deck during an actual lateral roll on a pad and on soil. In the FE model, lateral force was gradually added to the ROPS until the field-measured maximum deformation was achieved. The results from the FE analysis indicated that the top corners of the ROPS enter slightly into the plastic deformation region. Maximum lateral forces acting on the ROPS during the simulated impact with the pad and soil were 19650 N and 22850 N, respectively. The FE model predicted that the energy absorbed by the ROPS (643 J) in the lateral roll test on the pad was less than the static test requirements (1575 J) of Organization for Economic Development (OECD) Code 6. In addition, the energy absorbed by the ROPS (1813 J) in the test on the soil met the static test requirements (1575 J). Both the FE model and the field test results indicated that the deformed ROPS of the F925 mower with deck did not intrude into the occupant clearance zone during the lateral continuous or non-continuous roll.

  17. The value of adding optics to ecosystem models: a case study

    Directory of Open Access Journals (Sweden)

    M. Fujii

    2007-10-01

    Full Text Available Many ecosystem models have been developed to study the ocean's biogeochemical properties, but most of these models use simple formulations to describe light penetration and spectral quality. Here, an optical model is coupled with a previously published ecosystem model that explicitly represents two phytoplankton (picoplankton and diatoms and two zooplankton functional groups, as well as multiple nutrients and detritus. Surface ocean color fields and subsurface light fields are calculated by coupling the ecosystem model with an optical model that relates biogeochemical standing stocks with inherent optical properties (absorption, scattering; this provides input to a commercially available radiative transfer model (Ecolight. We apply this bio-optical model to the equatorial Pacific upwelling region, and find the model to be capable of reproducing many measured optical properties and key biogeochemical processes in this region. Our model results suggest that non-algal particles largely contribute to the total scattering or attenuation (>50% at 660 nm but have a much smaller contribution to particulate absorption (<20% at 440 nm, while picoplankton dominate the total phytoplankton absorption (>95% at 440 nm. These results are consistent with the field observations. In order to achieve such good agreement between data and model results, however, key model parameters, for which no field data are available, have to be constrained. Sensitivity analysis of the model results to optical parameters reveals a significant role played by colored dissolved organic matter through its influence on the quantity and quality of the ambient light. Coupling explicit optics to an ecosystem model provides advantages in generating: (1 a more accurate subsurface light-field, which is important for light sensitive biogeochemical processes such as photosynthesis and photo-oxidation, (2 additional constraints on model parameters that help to reduce uncertainties in

  18. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics.

    NARCIS (Netherlands)

    Springelkamp, H. (Henriët); Iglesias, A.I. (Adriana); Mishra, A. (Aniket); Höhn, R. (René); Wojciechowski, R. (Robert); Khawaja, A.P. (Anthony); Nag, A. (Abhishek); Wang, Y.X. (Ya Xing); Wang, J.J. (Jie Jin); Cuellar-Partida, G. (Gabriel); Gibson, J. (Jane); Cooke Bailey, J.N. (Jessica); Vithana, E.N. (Eranga); Gharahkhani, P. (Puya); Boutin, T. (Thibaud); Ramdas, W.D. (Wishal); Zeller, T. (Tanja); Luben, R.N. (Robert); Yonova-Doing, E. (Ekaterina); Viswanathan, A.C. (Ananth); Yazar, S. (Seyhan); Cree, A.J. (Angela); Haines, J.L. (Jonathan); Koh, J.Y. (Jia Yu); Souzeau, E. (Emmanuelle); Wilson, J.F. (James); Amin, N. (Najaf); Müller, C. (Christian); Venturini, C. (Cristina); Kearns, L.S. (Lisa); Hee Kang, J. (Jae); Consortium, N. (Neighborhood); Tham, Y.C. (Yih Chung); Zhou, T. (Tiger); van Leeuwen, E.M. (Elisabeth); Nickels, S. (Stefan); Sanfilippo, P. (Paul); Liao, J. (Jiemin); Linde, H.V. (Herma van der); Zhao, W. (Wanting); van Koolwijk, L.M. (Leonieke); Zheng, L. (Li); Rivadeneira, F. (Fernando); Baskaran, M. (Mani); van der Lee, S.J. (Sven); Perera, S. (Shamira); de Jong, P.T. (Paulus); Oostra, B.A. (Ben); Uitterlinden, A.G. (André); Fan, Q. (Qiao); Hofman, A. (Albert); Shyong Tai, E. (E-); Vingerling, J.R. (Johannes); Sim, X. (Xueling); Wolfs, R.C. (Roger); Teo, Y.Y. (Yik Ying); Lemij, H.G. (Hans); Khor, C.C. (Chiea Chuen); Willemsen, R. (Rob); Lackner, K.J. (Karl); Aung, T. (Tin); Jansonius, N.M. (Nomdo); Montgomery, G. (Grant); Wild, P.S. (Philipp); Young, T.L. (Terri); Burdon, K.P. (Kathryn); Hysi, P.G. (Pirro); Pasquale, L.R. (Louis); Wong, T.Y. (Tien Yin); Klaver, C.C. (Caroline); Hewitt, A.W. (Alex); Jonas, J.B. (Jost); Mitchell, P. (Paul); Lotery, A.J. (Andrew); Foster, P.J. (Paul); Vitart, V. (Veronique); Pfeiffer, N. (Norbert); Craig, J.E. (Jamie); Mackey, D.A. (David); Hammond, C.J. (Christopher); Wiggs, J.L. (Janey); Cheng, C.Y. (Ching-Yu); van Duijn, C.M. (Cornelia); MacGregor, S. (Stuart)

    2017-01-01

    textabstractPrimary open-angle glaucoma (POAG), the most common optic neuropathy, is a heritable disease. Siblings of POAG cases have a ten-fold increase risk of developing the disease. Intraocular pressure (IOP) and optic nerve head characteristics are used clinically to predict POAG risk. We

  19. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics

    NARCIS (Netherlands)

    Springelkamp, Henriët; Iglesias, Adriana I; Mishra, Aniket; Höhn, René; Wojciechowski, Robert; Khawaja, Anthony P; Nag, Abhishek; Wang, Ya Xing; Wang, Jie Jin; Cuellar-Partida, Gabriel; Gibson, Jane; Cooke Bailey, Jessica N; Vithana, Eranga N; Gharahkhani, Puya; Boutin, Thibaud; Ramdas, Wishal D; Zeller, Tanja; Luben, Robert N; Yonova-Doing, Ekaterina; Viswanathan, Ananth C; Yazar, Seyhan; Cree, Angela J; Haines, Jonathan L; Koh, Jia Yu; Souzeau, Emmanuelle; Wilson, James F; Amin, Najaf; Müller, Christian; Venturini, Cristina; Kearns, Lisa S; Hee Kang, Jae; Consortium, Neighborhood; Tham, Yih Chung; Zhou, Tiger; van Leeuwen, Elisabeth M; Nickels, Stefan; Sanfilippo, Paul; Liao, Jiemin; Linde, Herma van der; Zhao, Wanting; van Koolwijk, Leonieke M E; Zheng, Li; Rivadeneira, Fernando; Baskaran, Mani; van der Lee, Sven J; Perera, Shamira; de Jong, Paulus T V M; Oostra, Ben A; Uitterlinden, André G; Fan, Qiao; Hofman, Albert; Shyong Tai, E-; Vingerling, Johannes R; Sim, Xueling; Wolfs, Roger C W; Teo, Yik Ying; Lemij, Hans G; Khor, Chiea Chuen; Willemsen, Rob; Lackner, Karl J; Aung, Tin; Jansonius, Nomdo M; Montgomery, Grant; Wild, Philipp S; Young, Terri L; Burdon, Kathryn P; Hysi, Pirro G; Pasquale, Louis R; Wong, Tien Yin; Klaver, Caroline C W; Hewitt, Alex W; Jonas, Jost B; Mitchell, Paul; Lotery, Andrew J; Foster, Paul J; Vitart, Veronique; Pfeiffer, Norbert; Craig, Jamie E; Mackey, David A; Hammond, Christopher J; Wiggs, Janey L; Cheng, Ching-Yu; van Duijn, Cornelia M; MacGregor, Stuart

    2017-01-01

    Primary open-angle glaucoma (POAG), the most common optic neuropathy, is a heritable disease. Siblings of POAG cases have a ten-fold increase risk of developing the disease. Intraocular pressure (IOP) and optic nerve head characteristics are used clinically to predict POAG risk. We conducted a

  20. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics

    NARCIS (Netherlands)

    Springelkamp, H.; Iglesias, A.I.; Mishra, A; Hohn, R.; Wojciechowski, R.; Khawaja, A.P.; Nag, A.; Wang, Y.X.; Wang, J.J.; Cuellar-Partida, G.; Gibson, J.; Bailey, J.N.; Vithana, E.N.; Gharahkhani, P.; Boutin, T.; Ramdas, W.D.; Zeller, T.; Luben, R.N.; Yonova-Doing, E.; Viswanathan, A.C.; Yazar, S.; Cree, A.J.; Haines, J.L.; Koh, J.Y.; Souzeau, E.; Wilson, J.F.; Amin, N.; Muller, C.; Venturini, C.; Kearns, L.S.; Kang, J.H.; Tham, Y.C.; Zhou, T.; Leeuwen, E.M. van; Nickels, S.; Sanfilippo, P.; Liao, J.; Linde, H. van der; Zhao, W.; Koolwijk, L.M. van; Zheng, L.; Rivadeneira, F.; Baskaran, M.; Lee, S.J. van der; Perera, S.; Jong, P.T.; Oostra, B.A.; Uitterlinden, A.G.; Fan, Q.; Hofman, A.; Tai, E.S.; Vingerling, J.R.; Sim, X.; Wolfs, R.C.; Teo, Y.Y.; Lemij, H.G.; Khor, C.C.; Willemsen, R.; Lackner, K.J.; Aung, T.; Jansonius, N.M.; Montgomery, G.; Wild, P.S.; Young, T.L.; Burdon, K.P.; Hysi, P.G.; Pasquale, L.R.; Wong, T.Y.; Klaver, C.C.W.; Hewitt, A.W.; Jonas, J.B.; Mitchell, P.; Lotery, A.J.; Foster, P.J.; Vitart, V.; Pfeiffer, N.; Craig, J.E.; Mackey, D.A.; Hammond, C.J.; Wiggs, J.L.; Cheng, C.Y.; Duijn, C.M. van; MacGregor, S.

    2017-01-01

    Primary open-angle glaucoma (POAG), the most common optic neuropathy, is a heritable disease. Siblings of POAG cases have a ten-fold increased risk of developing the disease. Intraocular pressure (IOP) and optic nerve head characteristics are used clinically to predict POAG risk. We conducted a

  1. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics

    NARCIS (Netherlands)

    Springelkamp, Henriët; Iglesias, Adriana I; Mishra, Aniket; Höhn, René; Wojciechowski, Robert; Khawaja, Anthony P; Nag, Abhishek; Wang, Ya Xing; Wang, Jie Jin; Cuellar-Partida, Gabriel; Gibson, Jane; Cooke Bailey, Jessica N; Vithana, Eranga N; Gharahkhani, Puya; Boutin, Thibaud; Ramdas, Wishal D; Zeller, Tanja; Luben, Robert N; Yonova-Doing, Ekaterina; Viswanathan, Ananth C; Yazar, Seyhan; Cree, Angela J; Haines, Jonathan L; Koh, Jia Yu; Souzeau, Emmanuelle; Wilson, James F; Amin, Najaf; Müller, Christian; Venturini, Cristina; Kearns, Lisa S; Hee Kang, Jae; Consortium, Neighborhood; Tham, Yih Chung; Zhou, Tiger; van Leeuwen, Elisabeth M; Nickels, Stefan; Sanfilippo, Paul; Liao, Jiemin; Linde, Herma van der; Zhao, Wanting; van Koolwijk, Leonieke M E; Zheng, Li; Rivadeneira, Fernando; Baskaran, Mani; van der Lee, Sven J; Perera, Shamira; de Jong, Paulus T V M; Oostra, Ben A; Uitterlinden, André G; Fan, Qiao; Hofman, Albert; Shyong Tai, E-; Vingerling, Johannes R; Sim, Xueling; Wolfs, Roger C W; Teo, Yik Ying; Lemij, Hans G; Khor, Chiea Chuen; Willemsen, Rob; Lackner, Karl J; Aung, Tin; Jansonius, Nomdo M; Montgomery, Grant; Wild, Philipp S; Young, Terri L; Burdon, Kathryn P; Hysi, Pirro G; Pasquale, Louis R; Wong, Tien Yin; Klaver, Caroline C W; Hewitt, Alex W; Jonas, Jost B; Mitchell, Paul; Lotery, Andrew J; Foster, Paul J; Vitart, Veronique; Pfeiffer, Norbert; Craig, Jamie E; Mackey, David A; Hammond, Christopher J; Wiggs, Janey L; Cheng, Ching-Yu; van Duijn, Cornelia M; MacGregor, Stuart

    2017-01-01

    Primary open-angle glaucoma (POAG), the most common optic neuropathy, is a heritable disease. Siblings of POAG cases have a ten-fold increase risk of developing the disease. Intraocular pressure (IOP) and optic nerve head characteristics are used clinically to predict POAG risk. We conducted a genom

  2. New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics.

    NARCIS (Netherlands)

    Springelkamp, H. (Henriët); Iglesias, A.I. (Adriana); Mishra, A. (Aniket); Höhn, R. (René); Wojciechowski, R. (Robert); Khawaja, A.P. (Anthony); Nag, A. (Abhishek); Wang, Y.X. (Ya Xing); Wang, J.J. (Jie Jin); Cuellar-Partida, G. (Gabriel); Gibson, J. (Jane); Cooke Bailey, J.N. (Jessica); Vithana, E.N. (Eranga); Gharahkhani, P. (Puya); Boutin, T. (Thibaud); Ramdas, W.D. (Wishal); Zeller, T. (Tanja); Luben, R.N. (Robert); Yonova-Doing, E. (Ekaterina); Viswanathan, A.C. (Ananth); Yazar, S. (Seyhan); Cree, A.J. (Angela); Haines, J.L. (Jonathan); Koh, J.Y. (Jia Yu); Souzeau, E. (Emmanuelle); Wilson, J.F. (James); Amin, N. (Najaf); Müller, C. (Christian); Venturini, C. (Cristina); Kearns, L.S. (Lisa); Hee Kang, J. (Jae); Consortium, N. (Neighborhood); Tham, Y.C. (Yih Chung); Zhou, T. (Tiger); van Leeuwen, E.M. (Elisabeth); Nickels, S. (Stefan); Sanfilippo, P. (Paul); Liao, J. (Jiemin); Linde, H.V. (Herma van der); Zhao, W. (Wanting); van Koolwijk, L.M. (Leonieke); Zheng, L. (Li); Rivadeneira, F. (Fernando); Baskaran, M. (Mani); van der Lee, S.J. (Sven); Perera, S. (Shamira); de Jong, P.T. (Paulus); Oostra, B.A. (Ben); Uitterlinden, A.G. (André); Fan, Q. (Qiao); Hofman, A. (Albert); Shyong Tai, E. (E-); Vingerling, J.R. (Johannes); Sim, X. (Xueling); Wolfs, R.C. (Roger); Teo, Y.Y. (Yik Ying); Lemij, H.G. (Hans); Khor, C.C. (Chiea Chuen); Willemsen, R. (Rob); Lackner, K.J. (Karl); Aung, T. (Tin); Jansonius, N.M. (Nomdo); Montgomery, G. (Grant); Wild, P.S. (Philipp); Young, T.L. (Terri); Burdon, K.P. (Kathryn); Hysi, P.G. (Pirro); Pasquale, L.R. (Louis); Wong, T.Y. (Tien Yin); Klaver, C.C. (Caroline); Hewitt, A.W. (Alex); Jonas, J.B. (Jost); Mitchell, P. (Paul); Lotery, A.J. (Andrew); Foster, P.J. (Paul); Vitart, V. (Veronique); Pfeiffer, N. (Norbert); Craig, J.E. (Jamie); Mackey, D.A. (David); Hammond, C.J. (Christopher); Wiggs, J.L. (Janey); Cheng, C.Y. (Ching-Yu); van Duijn, C.M. (Cornelia); MacGregor, S. (Stuart)

    2017-01-01

    textabstractPrimary open-angle glaucoma (POAG), the most common optic neuropathy, is a heritable disease. Siblings of POAG cases have a ten-fold increase risk of developing the disease. Intraocular pressure (IOP) and optic nerve head characteristics are used clinically to predict POAG risk. We condu

  3. Optical fiber communication systems with Matlab and Simulink models

    CERN Document Server

    Binh, Le Nguyen

    2014-01-01

    ""This book adds an aspect of programming and simulation not so well developed in other books. It is complete in this sense and enables directly linking the physics of optical components and systems to realistic results.""-Martin Rochette, Associate Professor, McGill University, Quebec, Canada""…this will be an excellent textbook since it has all new development and information on optical communication systems…I think this book can easily replace many other textbooks in this field.""-Massoud Moussavi, California State Polytechnic University-Pomona""The book is well written. It describes the fu

  4. MONTE CARLO ANALYSES OF THE YALINA THERMAL FACILITY WITH SERPENT STEREOLITHOGRAPHY GEOMETRY MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.

    2015-01-01

    This paper analyzes the YALINA Thermal subcritical assembly of Belarus using two different Monte Carlo transport programs, SERPENT and MCNP. The MCNP model is based on combinatorial geometry and universes hierarchy, while the SERPENT model is based on Stereolithography geometry. The latter consists of unstructured triangulated surfaces defined by the normal and vertices. This geometry format is used by 3D printers and it has been created by: the CUBIT software, MATLAB scripts, and C coding. All the Monte Carlo simulations have been performed using the ENDF/B-VII.0 nuclear data library. Both MCNP and SERPENT share the same geometry specifications, which describe the facility details without using any material homogenization. Three different configurations have been studied with different number of fuel rods. The three fuel configurations use 216, 245, or 280 fuel rods, respectively. The numerical simulations show that the agreement between SERPENT and MCNP results is within few tens of pcms.

  5. Statistical Modelling of Synaptic Vesicles Distribution and Analysing their Physical Characteristics

    DEFF Research Database (Denmark)

    Khanmohammadi, Mahdieh

    This Ph.D. thesis deals with mathematical and statistical modeling of synaptic vesicle distribution, shape, orientation and interactions. The first major part of this thesis treats the problem of determining the effect of stress on synaptic vesicle distribution and interactions. Serial section...... on differences of statistical measures in section and the same measures in between sections. Three-dimensional (3D) datasets are reconstructed by using image registration techniques and estimated thicknesses. We distinguish the effect of stress by estimating the synaptic vesicle densities and modeling......, which leads to more accurate results. Finally, we present a thorough statistical investigation of the shape, orientation and interactions of the synaptic vesicles during active time of the synapse. Focused ion beam-scanning electron microscopy images of a male mammalian brain are used for this study...

  6. Research on the Optical Properties of Transformers Partial Discharge Based on Different Discharge Models

    Directory of Open Access Journals (Sweden)

    Wei Bengang

    2016-01-01

    Full Text Available In this paper, the different types of discharge in transformer were simulated based on the real transformer fault model. The optical partial discharge detection system was established based on optical sensors which were capturing partial discharge accompanied by optical effects. In this research, surface discharge and suspended discharge defect model was pressurized to generate partial discharge signal. The results showed that: Partial discharge optical signals could effectively respond the production and development process of transformer partial discharge. It was able to assess discharge level also. When the discharge phenomenon stabilized, the phase of surface discharge mainly between 60°~150°and 240°~330°, the phase of suspended discharge mainly between 260°~320°. According to the phase characteristic of discharge pattern, the creeping discharge and suspended discharge phenomenon of transformer can be distinguished. It laid the foundation for the application of transformer optical partial discharge detection technology.

  7. A note on the Fourier series model for analysing line transect data.

    Science.gov (United States)

    Buckland, S T

    1982-06-01

    The Fourier series model offers a powerful procedure for the estimation of animal population density from line transect data. The estimate is reliable over a wide range of detection functions. In contrast, analytic confidence intervals yield, at best, 90% confidence for nominal 95% intervals. Three solutions, one using Monte Carlo techniques, another making direct use of replicate lines and the third based on the jackknife method, are discussed and compared.

  8. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1

    Directory of Open Access Journals (Sweden)

    N. M. Fyllas

    2014-02-01

    Full Text Available Repeated long-term censuses have revealed large-scale spatial patterns in Amazon Basin forest structure and dynamism, with some forests in the west of the Basin having up to a twice as high rate of aboveground biomass production and tree recruitment as forests in the east. Possible causes for this variation could be the climatic and edaphic gradients across the Basin and/or the spatial distribution of tree species composition. To help understand causes of this variation a new individual-based model of tropical forest growth designed to take full advantage of the forest census data available from the Amazonian Forest Inventory Network (RAINFOR has been developed. The model incorporates variations in tree size distribution, functional traits and soil physical properties and runs at the stand level with four functional traits, leaf dry mass per area (Ma, leaf nitrogen (NL and phosphorus (PL content and wood density (DW used to represent a continuum of plant strategies found in tropical forests. We first applied the model to validate canopy-level water fluxes at three Amazon eddy flux sites. For all three sites the canopy-level water fluxes were adequately simulated. We then applied the model at seven plots, where intensive measurements of carbon allocation are available. Tree-by-tree multi-annual growth rates generally agreed well with observations for small trees, but with deviations identified for large trees. At the stand-level, simulations at 40 plots were used to explore the influence of climate and soil fertility on the gross (ΠG and net (ΠN primary production rates as well as the carbon use efficiency (CU. Simulated ΠG, ΠN and CU were not associated with temperature. However all three measures of stand level productivity were positively related to annual precipitation and soil fertility.

  9. Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: experience with a juvenile pelvis.

    Science.gov (United States)

    Watson, Peter J; Fagan, Michael J; Dobson, Catherine A

    2015-01-01

    Biomechanical analysis of juvenile pelvic growth can be used in the evaluation of medical devices and investigation of hip joint disorders. This requires access to scan data of healthy juveniles, which are not always freely available. This article analyses the application of a geometric morphometric technique, which facilitates the reconstruction of the articulated juvenile pelvis from cadaveric remains, in biomechanical modelling. The sensitivity of variation in reconstructed morphologies upon predicted stress/strain distributions is of particular interest. A series of finite element analyses of a 9-year-old hemi-pelvis were performed to examine differences in predicted strain distributions between a reconstructed model and the originally fully articulated specimen. Only minor differences in the minimum principal strain distributions were observed between two varying hemi-pelvic morphologies and that of the original articulation. A Wilcoxon rank-sum test determined there was no statistical significance between the nodal strains recorded at 60 locations throughout the hemi-pelvic structures. This example suggests that finite element models created by this geometric morphometric reconstruction technique can be used with confidence, and as observed with this hemi-pelvis model, even a visual morphological difference does not significantly affect the predicted results. The validated use of this geometric morphometric reconstruction technique in biomechanical modelling reduces the dependency on clinical scan data.

  10. Systematic Selection of Key Logistic Regression Variables for Risk Prediction Analyses: A Five-Factor Maximum Model.

    Science.gov (United States)

    Hewett, Timothy E; Webster, Kate E; Hurd, Wendy J

    2017-08-16

    The evolution of clinical practice and medical technology has yielded an increasing number of clinical measures and tests to assess a patient's progression and return to sport readiness after injury. The plethora of available tests may be burdensome to clinicians in the absence of evidence that demonstrates the utility of a given measurement. Thus, there is a critical need to identify a discrete number of metrics to capture during clinical assessment to effectively and concisely guide patient care. The data sources included Pubmed and PMC Pubmed Central articles on the topic. Therefore, we present a systematic approach to injury risk analyses and how this concept may be used in algorithms for risk analyses for primary anterior cruciate ligament (ACL) injury in healthy athletes and patients after ACL reconstruction. In this article, we present the five-factor maximum model, which states that in any predictive model, a maximum of 5 variables will contribute in a meaningful manner to any risk factor analysis. We demonstrate how this model already exists for prevention of primary ACL injury, how this model may guide development of the second ACL injury risk analysis, and how the five-factor maximum model may be applied across the injury spectrum for development of the injury risk analysis.

  11. Hydrogeologic analyses in support of the conceptual model for the LANL Area G LLRW performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Vold, E.L.; Birdsell, K.; Rogers, D.; Springer, E.; Krier, D.; Turin, H.J.

    1996-04-01

    The Los Alamos National Laboratory low level radioactive waste disposal facility at Area G is currently completing a draft of the site Performance Assessment. Results from previous field studies have estimated a range in recharge rate up to 1 cm/yr. Recent estimates of unsaturated hydraulic conductivity for each stratigraphic layer under a unit gradient assumption show a wide range in recharge rate of 10{sup {minus}4} to 1 cm/yr depending upon location. Numerical computations show that a single net infiltration rate at the mesa surface does not match the moisture profile in each stratigraphic layer simultaneously, suggesting local source or sink terms possibly due to surface connected porous regions. The best fit to field data at deeper stratigraphic layers occurs for a net infiltration of about 0.1 cm/yr. A recent detailed analysis evaluated liquid phase vertical moisture flux, based on moisture profiles in several boreholes and van Genuchten fits to the hydraulic properties for each of the stratigraphic units. Results show a near surface infiltration region averages 8m deep, below which is a dry, low moisture content, and low flux region, where liquid phase recharge averages to zero. Analysis shows this low flux region is dominated by vapor movement. Field data from tritium diffusion studies, from pressure fluctuation attenuation studies, and from comparisons of in-situ and core sample permeabilities indicate that the vapor diffusion is enhanced above that expected in the matrix and is presumably due to enhanced flow through the fractures. Below this dry region within the mesa is a moisture spike which analyses show corresponds to a moisture source. The likely physical explanation is seasonal transient infiltration through surface-connected fractures. This anomalous region is being investigated in current field studies, because it is critical in understanding the moisture flux which continues to deeper regions through the unsaturated zone.

  12. A new compact solid-state neutral particle analyser at ASDEX Upgrade: Setup and physics modeling

    Science.gov (United States)

    Schneider, P. A.; Blank, H.; Geiger, B.; Mank, K.; Martinov, S.; Ryter, F.; Weiland, M.; Weller, A.

    2015-07-01

    At ASDEX Upgrade (AUG), a new compact solid-state detector has been installed to measure the energy spectrum of fast neutrals based on the principle described by Shinohara et al. [Rev. Sci. Instrum. 75, 3640 (2004)]. The diagnostic relies on the usual charge exchange of supra-thermal fast-ions with neutrals in the plasma. Therefore, the measured energy spectra directly correspond to those of confined fast-ions with a pitch angle defined by the line of sight of the detector. Experiments in AUG showed the good signal to noise characteristics of the detector. It is energy calibrated and can measure energies of 40-200 keV with count rates of up to 140 kcps. The detector has an active view on one of the heating beams. The heating beam increases the neutral density locally; thereby, information about the central fast-ion velocity distribution is obtained. The measured fluxes are modeled with a newly developed module for the 3D Monte Carlo code F90FIDASIM [Geiger et al., Plasma Phys. Controlled Fusion 53, 65010 (2011)]. The modeling allows to distinguish between the active (beam) and passive contributions to the signal. Thereby, the birth profile of the measured fast neutrals can be reconstructed. This model reproduces the measured energy spectra with good accuracy when the passive contribution is taken into account.

  13. A new compact solid-state neutral particle analyser at ASDEX Upgrade: Setup and physics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, P. A.; Blank, H.; Geiger, B.; Mank, K.; Martinov, S.; Ryter, F.; Weiland, M.; Weller, A. [Max-Planck-Institut für Plasmaphysik, Garching (Germany)

    2015-07-15

    At ASDEX Upgrade (AUG), a new compact solid-state detector has been installed to measure the energy spectrum of fast neutrals based on the principle described by Shinohara et al. [Rev. Sci. Instrum. 75, 3640 (2004)]. The diagnostic relies on the usual charge exchange of supra-thermal fast-ions with neutrals in the plasma. Therefore, the measured energy spectra directly correspond to those of confined fast-ions with a pitch angle defined by the line of sight of the detector. Experiments in AUG showed the good signal to noise characteristics of the detector. It is energy calibrated and can measure energies of 40-200 keV with count rates of up to 140 kcps. The detector has an active view on one of the heating beams. The heating beam increases the neutral density locally; thereby, information about the central fast-ion velocity distribution is obtained. The measured fluxes are modeled with a newly developed module for the 3D Monte Carlo code F90FIDASIM [Geiger et al., Plasma Phys. Controlled Fusion 53, 65010 (2011)]. The modeling allows to distinguish between the active (beam) and passive contributions to the signal. Thereby, the birth profile of the measured fast neutrals can be reconstructed. This model reproduces the measured energy spectra with good accuracy when the passive contribution is taken into account.

  14. High-temperature series analyses of the classical Heisenberg and XY model

    CERN Document Server

    Adler, J; Janke, W

    1993-01-01

    Although there is now a good measure of agreement between Monte Carlo and high-temperature series expansion estimates for Ising ($n=1$) models, published results for the critical temperature from series expansions up to 12{\\em th} order for the three-dimensional classical Heisenberg ($n=3$) and XY ($n=2$) model do not agree very well with recent high-precision Monte Carlo estimates. In order to clarify this discrepancy we have analyzed extended high-temperature series expansions of the susceptibility, the second correlation moment, and the second field derivative of the susceptibility, which have been derived a few years ago by L\\"uscher and Weisz for general $O(n)$ vector spin models on $D$-dimensional hypercubic lattices up to 14{\\em th} order in $K \\equiv J/k_B T$. By analyzing these series expansions in three dimensions with two different methods that allow for confluent correction terms, we obtain good agreement with the standard field theory exponent estimates and with the critical temperature estimates...

  15. Metabolic model for the filamentous ‘Candidatus Microthrix parvicella' based on genomic and metagenomic analyses

    Science.gov (United States)

    Jon McIlroy, Simon; Kristiansen, Rikke; Albertsen, Mads; Michael Karst, Søren; Rossetti, Simona; Lund Nielsen, Jeppe; Tandoi, Valter; James Seviour, Robert; Nielsen, Per Halkjær

    2013-01-01

    ‘Candidatus Microthrix parvicella' is a lipid-accumulating, filamentous bacterium so far found only in activated sludge wastewater treatment plants, where it is a common causative agent of sludge separation problems. Despite attracting considerable interest, its detailed physiology is still unclear. In this study, the genome of the RN1 strain was sequenced and annotated, which facilitated the construction of a theoretical metabolic model based on available in situ and axenic experimental data. This model proposes that under anaerobic conditions, this organism accumulates preferentially long-chain fatty acids as triacylglycerols. Utilisation of trehalose and/or polyphosphate stores or partial oxidation of long-chain fatty acids may supply the energy required for anaerobic lipid uptake and storage. Comparing the genome sequence of this isolate with metagenomes from two full-scale wastewater treatment plants with enhanced biological phosphorus removal reveals high similarity, with few metabolic differences between the axenic and the dominant community ‘Ca. M. parvicella' strains. Hence, the metabolic model presented in this paper could be considered generally applicable to strains in full-scale treatment systems. The genomic information obtained here will provide the basis for future research into in situ gene expression and regulation. Such information will give substantial insight into the ecophysiology of this unusual and biotechnologically important filamentous bacterium. PMID:23446830

  16. Consequence modeling for nuclear weapons probabilistic cost/benefit analyses of safety retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, T.F.; Peters, L.; Serduke, F.J.D.; Hall, C.; Stephens, D.R.

    1998-01-01

    The consequence models used in former studies of costs and benefits of enhanced safety retrofits are considered for (1) fuel fires; (2) non-nuclear detonations; and, (3) unintended nuclear detonations. Estimates of consequences were made using a representative accident location, i.e., an assumed mixed suburban-rural site. We have explicitly quantified land- use impacts and human-health effects (e.g. , prompt fatalities, prompt injuries, latent cancer fatalities, low- levels of radiation exposure, and clean-up areas). Uncertainty in the wind direction is quantified and used in a Monte Carlo calculation to estimate a range of results for a fuel fire with uncertain respirable amounts of released Pu. We define a nuclear source term and discuss damage levels of concern. Ranges of damages are estimated by quantifying health impacts and property damages. We discuss our dispersal and prompt effects models in some detail. The models used to loft the Pu and fission products and their particle sizes are emphasized.

  17. A new compact solid-state neutral particle analyser at ASDEX Upgrade: Setup and physics modeling.

    Science.gov (United States)

    Schneider, P A; Blank, H; Geiger, B; Mank, K; Martinov, S; Ryter, F; Weiland, M; Weller, A

    2015-07-01

    At ASDEX Upgrade (AUG), a new compact solid-state detector has been installed to measure the energy spectrum of fast neutrals based on the principle described by Shinohara et al. [Rev. Sci. Instrum. 75, 3640 (2004)]. The diagnostic relies on the usual charge exchange of supra-thermal fast-ions with neutrals in the plasma. Therefore, the measured energy spectra directly correspond to those of confined fast-ions with a pitch angle defined by the line of sight of the detector. Experiments in AUG showed the good signal to noise characteristics of the detector. It is energy calibrated and can measure energies of 40-200 keV with count rates of up to 140 kcps. The detector has an active view on one of the heating beams. The heating beam increases the neutral density locally; thereby, information about the central fast-ion velocity distribution is obtained. The measured fluxes are modeled with a newly developed module for the 3D Monte Carlo code F90FIDASIM [Geiger et al., Plasma Phys. Controlled Fusion 53, 65010 (2011)]. The modeling allows to distinguish between the active (beam) and passive contributions to the signal. Thereby, the birth profile of the measured fast neutrals can be reconstructed. This model reproduces the measured energy spectra with good accuracy when the passive contribution is taken into account.

  18. Analysing the origin of long-range interactions in proteins using lattice models

    Directory of Open Access Journals (Sweden)

    Unger Ron

    2009-01-01

    Full Text Available Abstract Background Long-range communication is very common in proteins but the physical basis of this phenomenon remains unclear. In order to gain insight into this problem, we decided to explore whether long-range interactions exist in lattice models of proteins. Lattice models of proteins have proven to capture some of the basic properties of real proteins and, thus, can be used for elucidating general principles of protein stability and folding. Results Using a computational version of double-mutant cycle analysis, we show that long-range interactions emerge in lattice models even though they are not an input feature of them. The coupling energy of both short- and long-range pairwise interactions is found to become more positive (destabilizing in a linear fashion with increasing 'contact-frequency', an entropic term that corresponds to the fraction of states in the conformational ensemble of the sequence in which the pair of residues is in contact. A mathematical derivation of the linear dependence of the coupling energy on 'contact-frequency' is provided. Conclusion Our work shows how 'contact-frequency' should be taken into account in attempts to stabilize proteins by introducing (or stabilizing contacts in the native state and/or through 'negative design' of non-native contacts.

  19. Analyses of the redistribution of work following cardiac resynchronisation therapy in a patient specific model.

    Directory of Open Access Journals (Sweden)

    Steven Alexander Niederer

    Full Text Available Regulation of regional work is essential for efficient cardiac function. In patients with heart failure and electrical dysfunction such as left branch bundle block regional work is often depressed in the septum. Following cardiac resynchronisation therapy (CRT this heterogeneous distribution of work can be rebalanced by altering the pattern of electrical activation. To investigate the changes in regional work in these patients and the mechanisms underpinning the improved function following CRT we have developed a personalised computational model. Simulations of electromechanical cardiac function in the model estimate the regional stress, strain and work pre- and post-CRT. These simulations predict that the increase in observed work performed by the septum following CRT is not due to an increase in the volume of myocardial tissue recruited during contraction but rather that the volume of recruited myocardium remains the same and the average peak work rate per unit volume increases. These increases in the peak average rate of work is is attributed to slower and more effective contraction in the septum, as opposed to a change in active tension. Model results predict that this improved septal work rate following CRT is a result of resistance to septal contraction provided by the LV free wall. This resistance results in septal shortening over a longer period which, in turn, allows the septum to contract while generating higher levels of active tension to produce a higher work rate.

  20. Marginal estimation for multi-stage models: waiting time distributions and competing risks analyses.

    Science.gov (United States)

    Satten, Glen A; Datta, Somnath

    2002-01-15

    We provide non-parametric estimates of the marginal cumulative distribution of stage occupation times (waiting times) and non-parametric estimates of marginal cumulative incidence function (proportion of persons who leave stage j for stage j' within time t of entering stage j) using right-censored data from a multi-stage model. We allow for stage and path dependent censoring where the censoring hazard for an individual may depend on his or her natural covariate history such as the collection of stages visited before the current stage and their occupation times. Additional external time dependent covariates that may induce dependent censoring can also be incorporated into our estimates, if available. Our approach requires modelling the censoring hazard so that an estimate of the integrated censoring hazard can be used in constructing the estimates of the waiting times distributions. For this purpose, we propose the use of an additive hazard model which results in very flexible (robust) estimates. Examples based on data from burn patients and simulated data with tracking are also provided to demonstrate the performance of our estimators.