WorldWideScience

Sample records for optical methods spectral

  1. Generalized spectral method for near-field optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, B.-Y.; Zhang, L. M.; Basov, D. N.; Fogler, M. M. [Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Castro Neto, A. H. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States); Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore 117542 (Singapore)

    2016-02-07

    Electromagnetic interaction between a sub-wavelength particle (the “probe”) and a material surface (the “sample”) is studied theoretically. The interaction is shown to be governed by a series of resonances corresponding to surface polariton modes localized near the probe. The resonance parameters depend on the dielectric function and geometry of the probe as well as on the surface reflectivity of the material. Calculation of such resonances is carried out for several types of axisymmetric probes: spherical, spheroidal, and pear-shaped. For spheroids, an efficient numerical method is developed, capable of handling cases of large or strongly momentum-dependent surface reflectivity. Application of the method to highly resonant materials, such as aluminum oxide (by itself or covered with graphene), reveals a rich structure of multi-peak spectra and nonmonotonic approach curves, i.e., the probe-sample distance dependence. These features also strongly depend on the probe shape and optical constants of the model. For less resonant materials such as silicon oxide, the dependence is weak, so that the spheroidal model is reliable. The calculations are done within the quasistatic approximation with radiative damping included perturbatively.

  2. Evaluation of methods to determine the spectral variations of aerosol optical thickness

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Rodrigues, A.; Desa, E.; Chauhan, P.

    The methods used to derive spectral variations of aerosol optical thickness, AOT are evaluated. For our analysis we have used the AOT measured using a hand held sunphotometer at the coastal station on the west coast of India, Dona-Paula, Goa...

  3. Research on the strong optical feedback effects based on spectral analysis method

    Science.gov (United States)

    Zeng, Zhaoli; Qu, XueMin; Li, Weina; Zhang, Min; Wang, Hao; Li, Tuo

    2018-01-01

    The strong optical feedback has the advantage of generating high resolution fringes. However, these feedback fringes usually seem like the noise signal when the feedback level is high. This defect severely limits its practical application. In this paper, the generation mechanism of noise fringes with strong optical feedback is studied by using spectral analysis method. The spectral analysis results show that, in most cases, the noise-like fringes are observed owing to the strong multiple high-order feedback. However, at certain feedback cavity condition, there may be only one high-order feedback beam goes back to the laser cavity, the noise-like fringes can change to the cosine-like fringes. And the resolution of this fringe is dozens times than that of the weak optical feedback. This research provides a method to obtain high resolution cosine-like fringes rather than noise signal in the strong optical feedback, which makes it possible to be used in nanoscale displacement measurements.

  4. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    Science.gov (United States)

    Atkinson, Dean B.; Pekour, Mikhail; Chand, Duli; Radney, James G.; Kolesar, Katheryn R.; Zhang, Qi; Setyan, Ari; O'Neill, Norman T.; Cappa, Christopher D.

    2018-04-01

    Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM1 and PM10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.

  5. Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010

    Directory of Open Access Journals (Sweden)

    D. B. Atkinson

    2018-04-01

    Full Text Available Multi-wavelength in situ aerosol extinction, absorption and scattering measurements made at two ground sites during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES are analyzed using a spectral deconvolution method that allows extraction of particle-size-related information, including the fraction of extinction produced by the fine-mode particles and the effective radius of the fine mode. The spectral deconvolution method is typically applied to analysis of remote sensing measurements. Here, its application to in situ measurements allows for comparison with more direct measurement methods and validation of the retrieval approach. Overall, the retrieved fine-mode fraction and effective radius compare well with other in situ measurements, including size distribution measurements and scattering and absorption measurements made separately for PM1 and PM10, although there were some periods during which the different methods yielded different results. One key contributor to differences between the results obtained is the alternative, spectrally based definitions of fine and coarse modes from the optical methods, relative to instruments that use a physically defined cut point. These results indicate that for campaigns where size, composition and multi-wavelength optical property measurements are made, comparison of the results can result in closure or can identify unusual circumstances. The comparison here also demonstrates that in situ multi-wavelength optical property measurements can be used to determine information about particle size distributions in situations where direct size distribution measurements are not available.

  6. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    International Nuclear Information System (INIS)

    Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Nicholson, D. J.; Cryan, J. P.; Baker, K.; Kane, D. J.

    2014-01-01

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses

  7. Apparatus and method using a holographic optical element for converting a spectral distribution to image points

    Science.gov (United States)

    McGill, Matthew J. (Inventor); Scott, Vibart S. (Inventor); Marzouk, Marzouk (Inventor)

    2001-01-01

    A holographic optical element transforms a spectral distribution of light to image points. The element comprises areas, each of which acts as a separate lens to image the light incident in its area to an image point. Each area contains the recorded hologram of a point source object. The image points can be made to lie in a line in the same focal plane so as to align with a linear array detector. A version of the element has been developed that has concentric equal areas to match the circular fringe pattern of a Fabry-Perot interferometer. The element has high transmission efficiency, and when coupled with high quantum efficiency solid state detectors, provides an efficient photon-collecting detection system. The element may be used as part of the detection system in a direct detection Doppler lidar system or multiple field of view lidar system.

  8. method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands

    NARCIS (Netherlands)

    Boer, JF De; Tearney, G. J.; Bouma, BE

    2008-01-01

    Apparatus and method for increasing the sensitivity in the detection of optical coherence tomography and loW coher ence interferometry (“LCI”) signals by detecting a parallel set of spectral bands, each band being a unique combination of optical frequencies. The LCI broad bandwidth source is split

  9. Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images

    Science.gov (United States)

    Antony, Bhavna; Abràmoff, Michael D.; Tang, Li; Ramdas, Wishal D.; Vingerling, Johannes R.; Jansonius, Nomdo M.; Lee, Kyungmoo; Kwon, Young H.; Sonka, Milan; Garvin, Mona K.

    2011-01-01

    The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct the distinct axial artifacts in SD-OCT images. The method was quantitatively validated using nine pairs of OCT scans obtained with orthogonal fast-scanning axes, where a segmented surface was compared after both datasets had been corrected. The mean unsigned difference computed between the locations of this artifact-corrected surface after the single-spline and dual-spline correction was 23.36 ± 4.04 μm and 5.94 ± 1.09 μm, respectively, and showed a significant difference (p < 0.001 from two-tailed paired t-test). The method was also validated using depth maps constructed from stereo fundus photographs of the optic nerve head, which were compared to the flattened top surface from the OCT datasets. Significant differences (p < 0.001) were noted between the artifact-corrected datasets and the original datasets, where the mean unsigned differences computed over 30 optic-nerve-head-centered scans (in normalized units) were 0.134 ± 0.035 and 0.302 ± 0.134, respectively. PMID:21833377

  10. Estimating the Spectral Width of a Narrowband Optical Signal

    DEFF Research Database (Denmark)

    Lading, Lars; Skov Jensen, A.

    1980-01-01

    Methods for estimating the spectral width of a narrowband optical signal are investigated. Spectral analysis and Fourier spectroscopy are compared. Optimum and close-to-optimum estimators are developed under the constraint of having only one photodetector.......Methods for estimating the spectral width of a narrowband optical signal are investigated. Spectral analysis and Fourier spectroscopy are compared. Optimum and close-to-optimum estimators are developed under the constraint of having only one photodetector....

  11. Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images

    NARCIS (Netherlands)

    B. Antony (Bhavna); M.D. Abràmoff (Michael); L. Tang (Li); W.D. Ramdas (Wishal); J.R. Vingerling (Hans); N.M. Jansonius (Nomdo); K. Lee (Kyungmoo); Y.H. Kwon (Young); M. Sonka (Milan); M.K. Garvin (Mona)

    2011-01-01

    textabstractThe 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate

  12. Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images

    NARCIS (Netherlands)

    Antony, Bhavna; Abramoff, Michael D.; Tang, Li; Ramdas, Wishal D.; Vingerling, Johannes R.; Jansonius, Nomdo M.; Lee, Kyungmoo; Kwon, Young H.; Sonka, Milan; Garvin, Mona K.

    2011-01-01

    The 3-D spectral-domain optical coherence tomography (SD-OCT) images of the retina often do not reflect the true shape of the retina and are distorted differently along the x and y axes. In this paper, we propose a novel technique that uses thin-plate splines in two stages to estimate and correct

  13. High Spectral Density Optical Communication Technologies

    CERN Document Server

    Nakazawa, Masataka; Miyazaki, Tetsuya

    2010-01-01

    The latest hot topics of high-spectral density optical communication systems using digital coherent optical fibre communication technologies are covered by this book. History and meaning of a "renaissance" of the technology, requirements to the Peta-bit/s class "new generation network" are also covered in the first part of this book. The main topics treated are electronic and optical devices, digital signal processing including forward error correction, modulation formats as well as transmission and application systems. The book serves as a reference to researchers and engineers.

  14. Chebyshev and Fourier spectral methods

    CERN Document Server

    Boyd, John P

    2001-01-01

    Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.

  15. Optical spectral weight anomalies and strong correlation

    International Nuclear Information System (INIS)

    Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.

    2007-01-01

    The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value

  16. Spectrally efficient polymer optical fiber transmission

    Science.gov (United States)

    Randel, Sebastian; Bunge, Christian-Alexander

    2011-01-01

    The step-index polymer optical fiber (SI-POF) is an attractive transmission medium for high speed communication links in automotive infotainment networks, in industrial automation, and in home networks. Growing demands for quality of service, e.g., for IPTV distribution in homes and for Ethernet based industrial control networks will necessitate Gigabit speeds in the near future. We present an overview on recent advances in the design of spectrally efficient and robust Gigabit-over-SI-POF transmission systems.

  17. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method

    International Nuclear Information System (INIS)

    Baran, A.J.; Hesse, Evelyn; Sourdeval, Odran

    2017-01-01

    Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed. - Highlights: • A method of physical optics is shown to apply to size parameters as low as 18 in the mm and sub-mm-wave spectral regions. • Including ray tracing with diffraction on facets and diffraction at the cross-section of

  18. Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography

    International Nuclear Information System (INIS)

    Brendel, Bernhard; Ziegler, Ronny; Nielsen, Tim

    2008-01-01

    Reconstruction in diffuse optical tomography (DOT) necessitates solving the diffusion equation, which is nonlinear with respect to the parameters that have to be reconstructed. Currently applied solving methods are based on the linearization of the equation. For spectral three-dimensional reconstruction, the emerging equation system is too large for direct inversion, but the application of iterative methods is feasible. Computational effort and speed of convergence of these iterative methods are crucial since they determine the computation time of the reconstruction. In this paper, the iterative methods algebraic reconstruction technique (ART) and conjugated gradients (CGs) as well as a new modified ART method are investigated for spectral DOT reconstruction. The aim of the modified ART scheme is to speed up the convergence by considering the specific conditions of spectral reconstruction. As a result, it converges much faster to favorable results than conventional ART and CG methods

  19. Novel method of assessing delamination of the anterior lens capsule using spectral-domain optical coherence tomography

    OpenAIRE

    Tan, Deborah KL; Aung, Tin; Perera, Shamira A

    2012-01-01

    Deborah KL Tan,1 Tin Aung,1–3 Shamira A Perera1,21Singapore National Eye Centre, Singapore; 2Singapore Eye Research Institute, Singapore; 3National University of Singapore, Yong Loo Lin School of Medicine, SingaporeBackground: Delamination of the anterior lens capsule producing a double-ring sign during continuous curvilinear capsulorhexis is commonly associated with true exfoliation syndrome.Methods: Previous studies have concentrated on light- and transmission-electron microscopic...

  20. Spectral approach to optical resonator theory

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1981-01-01

    A new computational method for unloaded optical resonators is developed based on the discrete Fourier analysis of informaton generated by repated iterations of the optical field corresponding to transits between reflectors. The method is a straightforward extension of the propagating beam method developed earlier for optical fibers for extracting modal properties from numerical solutions to the paraxial scalar wave equation. The method requires computation of a field correlation function, whose Fourier transform reveals the eigenmodes as resonant peaks. Analysis of the location and breadth of these peaks determines the resonator eigenvalues When the eigenvalues are known, additional discrete Fourier transforms of the field are used to generate the mode eigenfunctions. This new method makes possible the unambiguous identification and accurate characterization of the entire spectrum of transverse resonator modes

  1. Spectral methods. Fundamentals in single domains

    International Nuclear Information System (INIS)

    Canuto, C.

    2006-01-01

    Since the publication of ''Spectral Methods in Fluid Dynamics'' 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded. (orig.)

  2. Posterior Lattice Degeneration Characterized by Spectral Domain Optical Tomography

    OpenAIRE

    Manjunath, Varsha; Taha, Mohammed; Fujimoto, James G.; Duker, Jay S.

    2011-01-01

    PURPOSE: To utilize high-resolution spectral domain optical coherence tomography (SD-OCT) in the characterization of retinal and vitreal morphological changes overlying posterior lattice degeneration. METHODS: A cross-sectional, retrospective analysis was performed on 13 eyes of 13 nonconsecutive subjects with posterior lattice degeneration seen at the New England Eye Center, Tufts Medical Center between October 2009 and January 2010. SD-OCT images taken through the region of latti...

  3. COHERENT DETECTION FOR SPECTRAL AMPLITUDE-CODED OPTICAL LABEL SWITCHING SYSTEMS

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Tafur Monroy, Idelfonso

    2010-01-01

    Coherent detection for spectrally encoded optical labels is proposed and experimentally demonstrated for three label tones spectrally spaced at 1 GHz. The proposed method utilizes a frequency swept local oscillator in a coherent receiver supported by digital signal processing for improved...... flexibility and upgradeability while reducing label detection subsystem complexity as compared with the conventional optical autocorrelation based approaches....

  4. Spectral resolution control of acousto-optical cells operating with collimated and divergent beams

    Science.gov (United States)

    Voloshinov, Vitaly B.; Mishin, Dimitry D.

    1994-01-01

    The paper is devoted to theoretical and experimental investigations of acousto-optical interactions in crystals which may be used for spectral filtration of light in tunable acousto- optical filters. Attention is paid to spectral resolution control during operation with divergent or collimated noncoherent optical beams. In all examined cases spectral bands of anisotropic Bragg diffraction were regulated by means of novel electronical methods. Resolution control was achieved in paratellurite cells with non-collinear and quasi-collinear regimes of the diffraction. Filtration spectral bandwidths for visible light were electronically changed by a factor of 10 divided by 20 by drive electrical signals switching and drive electrical power regulations.

  5. Spectrally and Energy Efficient OFDM (SEE-OFDM) for Intensity Modulated Optical Wireless Systems

    OpenAIRE

    Lam, Emily; Wilson, Sarah Kate; Elgala, Hany; Little, Thomas D. C.

    2015-01-01

    Spectrally and energy efficient orthogonal frequency division multiplexing (SEE-OFDM) is an optical OFDM technique based on combining multiple asymmetrically clipped optical OFDM (ACO-OFDM) signals into one OFDM signal. By summing different components together, SEE-OFDM can achieve the same spectral efficiency as DC-biased optical OFDM (DCO-OFDM) without an energy-inefficient DC-bias. This paper introduces multiple methods for decoding a SEE-OFDM symbol and shows that an iterative decoder wit...

  6. A Spectral Conjugate Gradient Method for Unconstrained Optimization

    International Nuclear Information System (INIS)

    Birgin, E. G.; Martinez, J. M.

    2001-01-01

    A family of scaled conjugate gradient algorithms for large-scale unconstrained minimization is defined. The Perry, the Polak-Ribiere and the Fletcher-Reeves formulae are compared using a spectral scaling derived from Raydan's spectral gradient optimization method. The best combination of formula, scaling and initial choice of step-length is compared against well known algorithms using a classical set of problems. An additional comparison involving an ill-conditioned estimation problem in Optics is presented

  7. Spectral space-time coding for optical communications through a multimode fiber

    NARCIS (Netherlands)

    Alonso, A.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    We propose a method for coding the mode structure of a multimode optical fiber by spectral coding mixed with space-time modulation. With this system we can improve the data carrying capacity of a multimode fiber for optical communications and optical interconnects, and encode and decode the

  8. Spectral Methods in Numerical Plasma Simulation

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded...

  9. Spectral domain optical coherence tomography characteristics in diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Laxmi Gella

    2014-01-01

    Full Text Available Purpose: To report the appearance of diabetic retinopathy lesions using spectral domain optical coherence tomography (SD-OCT. Materials and Methods: A total of 287 eyes of 199 subjects were included. All the subjects underwent complete ophthalmic examination including SD-OCT. Results: The appearance of various lesions of diabetic retinopathy and the retinal layers involved were reported. In subjects with macular edema the prevalence of incomplete PVD was 55.6%. Conclusion: SD-OCT brings new insights into the morphological changes of the retina in diabetic retinopathy.

  10. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki; Jabbour, Ghassan

    2013-01-01

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu

  11. Signal processing in an acousto-optical spectral colorimeter

    Science.gov (United States)

    Emeljanov, Sergey P.; Kludzin, Victor V.; Kochin, Leonid B.; Medvedev, Sergey V.; Polosin, Lev L.; Sokolov, Vladimir K.

    2002-02-01

    The algorithms of spectrometer signals processing in the acousto-optical spectral colorimeter, proposed earlier are discussed. This processing is directional on distortion elimination of an optical system spectral characteristics and photoelectric transformations, and also for calculation of tristimulus coefficients X,Y,Z in an international colorimetric system of a CIE - 31 and transformation them in coordinates of recommended CIE uniform contrast systems LUV and LAB.

  12. Precision spectral manipulation: A demonstration using a coherent optical memory

    Energy Technology Data Exchange (ETDEWEB)

    Sparkes, B. M.; Cairns, C.; Hosseini, M.; Higginbottom, D.; Campbell, G. T.; Lam, P. K.; Buchler, B. C. [Centre for Quantum Computation and Communication Technology, The Australian National University, Canberra (Australia)

    2014-12-04

    The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. Here we present experiments that use a multi-element solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  13. Advanced spectral processing of broadband light using acousto-optic devices with arbitrary transmission functions.

    Science.gov (United States)

    Molchanov, Vladimir Ya; Yushkov, Konstantin B

    2014-06-30

    In the paper, we developed a dispersive method for transmission function synthesis of collinear and quasi-collinear acousto-optic tunable filters. General theoretical consideration was performed, and modelling was made for broadband and narrowband signals. Experimental results on spectral shaping of femtosecond laser emission were obtained. Binary spectral encoding of broadband emission was demonstrated.

  14. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method

    Science.gov (United States)

    Baran, A. J.; Hesse, Evelyn; Sourdeval, Odran

    2017-03-01

    Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed.

  15. Spectral/hp element methods for CFD

    CERN Document Server

    Karniadakis, George Em

    1999-01-01

    Traditionally spectral methods in fluid dynamics were used in direct and large eddy simulations of turbulent flow in simply connected computational domains. The methods are now being applied to more complex geometries, and the spectral/hp element method, which incorporates both multi-domain spectral methods and high-order finite element methods, has been particularly successful. This book provides a comprehensive introduction to these methods. Written by leaders in the field, the book begins with a full explanation of fundamental concepts and implementation issues. It then illustrates how these methods can be applied to advection-diffusion and to incompressible and compressible Navier-Stokes equations. Drawing on both published and unpublished material, the book is an important resource for experienced researchers and for those new to the field.

  16. Spectral optical properties of selected photosynthetic microalgae producing biofuels

    International Nuclear Information System (INIS)

    Lee, Euntaek; Heng, Ri-Liang; Pilon, Laurent

    2013-01-01

    This paper presents the spectral complex index of refraction of biofuel producing photosynthetic microalgae between 400 and 750 nm. They were retrieved from their experimentally measured average absorption and scattering cross-sections. The microalgae were treated as homogeneous polydisperse spheres with equivalent diameter such that their surface area was identical to that of their actual spheroidal shape. An inverse method was developed combining Lorentz–Mie theory as the forward method and genetic algorithm. The unicellular green algae Chlamydomonas reinhardtii strain CC125 and its truncated chlorophyll antenna transformants tla1, tlaX, and tla1-CW + as well as Botryococcus braunii, Chlorella sp., and Chlorococcum littorale were investigated. These species were selected for their ability to produce either hydrogen gas or lipids for liquid fuel production. Their retrieved real and imaginary parts of the complex index of refraction were continuous functions of wavelength with absorption peaks corresponding to those of in vivo Chlorophylls a and b. The T-matrix method was also found to accurately predict the experimental measurements by treating the microalgae as axisymmetric spheroids with the experimentally measured major and minor diameter distributions and the retrieved spectral complex index of refraction. Finally, pigment mass fractions were also estimated from the retrieved absorption index. The method and/or the reported optical properties can be used in various applications from ocean remote sensing, carbon cycle study, as well as photobiological carbon dioxide mitigation and biofuel production. -- Highlights: ► Retrieval of optical properties from average absorption and scattering cross-sections. ► Inverse method based on Lorentz–Mie theory and genetic algorithm. ► Refraction and absorption indices of selected microalgae between 400 and 750 nm. ► Determination of pigment concentrations from absorption index. ► Good agreement between T

  17. Spectral domain optical coherence tomography morphology in optic disc pit associated maculopathy

    Directory of Open Access Journals (Sweden)

    Janusz Michalewski

    2014-01-01

    Full Text Available Purpose: Our purpose was to study the clinical manifestation and course of optic pit maculopathy using Spectral Domain Optical Coherence Tomography (SD- OCT images. Materials and Methods: We used SD-OCT to examine 20 eyes of 19 patients with a macular detachment in combination with an optic. Results: We observed five different fovea appearances in regard to fluid localization. In five eyes, we recorded changes in the fluid distribution with SD-OCT. In 17/20 eyes, we noted a communication between the perineural and subretinal and/or intraretinal space at the margin of the optic disc. Conclusion: 3-dimensional SD-OCT (3D-SDOCT scans revealed a three-fold connection, between subretinal and intraretinal space, perineural space, and the vitreous cavity. Therefore, we suppose that intraretinal or subretinal fluid in optic pit maculopathy may have both a vitreous and cerebrospinal origin. A membrane, covering the optic nerve was noted in 14 cases. Even if it seems intact in some B-scans, it is not complete in others several micrometers apart. Additionally, we observed fluid accumulation below the margin of the optic disc and hyperreflective porous tissue in the optic disc excavation. Those findings do not influence the course of maculopathy.

  18. Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki; Alsaggaf, Ahmed; Jabbour, Ghassan E.

    2013-01-01

    Spectral-Domain Optical Coherence Tomography (SD-OCT) is an optical method capable of 3D imaging of object's internal structure with micron-scale resolution. Modern SD-OCT tools offer the speed capable of online monitoring of printed devices

  19. Spectral shift reactor control method

    International Nuclear Information System (INIS)

    Impink, A.J. Jr.

    1981-01-01

    A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core wherein is established a reator coolant temperature set point at which it is desired to operate said reactor and first reactor coolant temperature band limits are provided within which said set point is located and it is desired to operate said reactor charactrized in that said reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in said core as said reactor coolant temperature approaches said first band limits thereby to maintain said reactor coolant temperature near said set point and within said first band limits

  20. Method for improving the spectral flatness of the supercontinuum at 1.55 μm in tapered microstructured optical fibers

    International Nuclear Information System (INIS)

    Vukovic, N.; Broderick, N. G. R.

    2010-01-01

    We propose a method for enhancing the flatness of a supercontinuum centered at 1.55 μm by the use of specially designed tapered microstructured optical fibers (MOFs). Based on the procedure presented one can determine the linear taper profile parameters and the optimum launching conditions needed to achieve the broadest supercontinuum spectra (SC) and the best spectra flatness. We quantify the maximally broad and flat SC using the calculated standard deviation of the spectra at the required wavelength range and show that it is possible to obtain significantly better results than those obtained by using an untapered fiber.

  1. Method for improving the spectral flatness of the supercontinuum at 1.55 {mu}m in tapered microstructured optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, N; Broderick, N G. R. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2010-10-15

    We propose a method for enhancing the flatness of a supercontinuum centered at 1.55 {mu}m by the use of specially designed tapered microstructured optical fibers (MOFs). Based on the procedure presented one can determine the linear taper profile parameters and the optimum launching conditions needed to achieve the broadest supercontinuum spectra (SC) and the best spectra flatness. We quantify the maximally broad and flat SC using the calculated standard deviation of the spectra at the required wavelength range and show that it is possible to obtain significantly better results than those obtained by using an untapered fiber.

  2. Spectral shift reactor control method

    International Nuclear Information System (INIS)

    Impink, A.J.

    1982-01-01

    A method of operating a nuclear reactor having a core and coolant displacer elements arranged in the core where there is established a reactor coolant temperature set point at which it is desired to operate the reactor and first reactor coolant temperature band limits within which the set point is characterized. The reactor coolant displacer elements are moved relative to the reactor core for adjusting the volume of reactor coolant in the core as the reactor coolant temperature approaches the first band limits to maintain the reactor coolant temperature near the set point and within the first band limits. The reactivity charges associated with movement of respective coolant displacer element clusters is calculated and compared with a calculated derived reactivity charge in order to select the cluster to be moved. (author)

  3. Quantifying Optical Microangiography Images Obtained from a Spectral Domain Optical Coherence Tomography System

    Directory of Open Access Journals (Sweden)

    Roberto Reif

    2012-01-01

    Full Text Available The blood vessel morphology is known to correlate with several diseases, such as cancer, and is important for describing several tissue physiological processes, like angiogenesis. Therefore, a quantitative method for characterizing the angiography obtained from medical images would have several clinical applications. Optical microangiography (OMAG is a method for obtaining three-dimensional images of blood vessels within a volume of tissue. In this study we propose to quantify OMAG images obtained with a spectral domain optical coherence tomography system. A technique for determining three measureable parameters (the fractal dimension, the vessel length fraction, and the vessel area density is proposed and validated. Finally, the repeatability for acquiring OMAG images is determined, and a new method for analyzing small areas from these images is proposed.

  4. Spectral methods in numerical plasma simulation

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Hansen, F.R.; Huld, T.; Knorr, G.; Lynov, J.P.

    1989-01-01

    An introduction is given to the use of spectral methods in numerical plasma simulation. As examples of the use of spectral methods, solutions to the two-dimensional Euler equations in both a simple, doubly periodic region, and on an annulus will be shown. In the first case, the solution is expanded in a two-dimensional Fourier series, while a Chebyshev-Fourier expansion is employed in the second case. A new, efficient algorithm for the solution of Poisson's equation on an annulus is introduced. Problems connected to aliasing and to short wavelength noise generated by gradient steepening are discussed. (orig.)

  5. Allocation of spectral and spatial modes in multidimensional metro-access optical networks

    Science.gov (United States)

    Gao, Wenbo; Cvijetic, Milorad

    2018-04-01

    Introduction of spatial division multiplexing (SDM) has added a new dimension in an effort to increase optical fiber channel capacity. At the same time, it can also be explored as an advanced optical networking tool. In this paper, we have investigated the resource allocation to end-users in multidimensional networking structure with plurality of spectral and spatial modes actively deployed in different networking segments. This presents a more comprehensive method as compared to the common practice where the segments of optical network are analyzed independently since the interaction between network hierarchies is included into consideration. We explored the possible transparency from the metro/core network to the optical access network, analyzed the potential bottlenecks from the network architecture perspective, and identified an optimized network structure. In our considerations, the viability of optical grooming through the entire hierarchical all-optical network is investigated by evaluating the effective utilization and spectral efficiency of the network architecture.

  6. Introduction of Spectrally and Spatially Flexible Optical Networks

    DEFF Research Database (Denmark)

    Xia, Tiejun J.; Fevrier, Herve; Wang, Ting

    2015-01-01

    Given the introduction of coherent 100G systems has provided enough fiber capacity to meet data traffic growth in the near term, enhancing network efficiency will be service providers' high priority. Adding flexibility at the optical layer is a key step to increasing network efficiency, and both...... spectral and spatial functionality will be considered in next generation optical networks along with advanced network management to effectively harness the new capabilities....

  7. Clinical manifestations of optic pit maculopathy as demonstrated by spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Tzu JH

    2013-01-01

    Full Text Available Jonathan H Tzu, Harry W Flynn Jr, Audina M Berrocal, William E Smiddy, Timothy G Murray, Yale L FisherDepartment of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USAPurpose: The purpose of this retrospective study was to evaluate the characteristic features, including spectral-domain optical coherence tomography (SD-OCT, clinical course, and outcome of treatment if given for patients with optic disc pit maculopathy.Methods: We investigated a consecutive series of patients with a diagnosis of optic pit maculopathy treated between 2001 and 2012 at the Bascom Palmer Eye Institute. Patients were divided into two main groups, ie, patients who were observed without surgery and patients who received surgical intervention. The main outcome measures were presenting and final visual acuity, and changes in SD-OCT imaging were recorded. Other data including age, gender, eye, age of onset, length of follow-up, location of optic pit, and location of fluid by OCT were also recorded.Results: On OCT, 67% (12/18 of the eyes showed schisis-like cavities, 22% (4/18 had only subretinal fluid, and 17% (3/18 had only a schisis-like cavity without subretinal fluid. In the patients managed by observation, visual acuity was ≥20/200 in 6/8 eyes initially and 6/8 eyes at last follow-up. Ten of 18 patients received either focal laser, surgery or both. Six of 10 eyes undergoing surgery had initial visual acuity ≥ 20/200, and 8 of 10 eyes undergoing surgery had a visual acuity of ≥20/200 at last follow-up.Conclusion: In this study, many eyes were observed and remained stable during follow-up. In eyes with reduced vision, surgical intervention produced variable outcomes, and persistent intraretinal/subretinal fluid was a common occurrence.Keywords: optic pit maculopathy, spectral-domain optical coherence tomography

  8. Logarithmic compression methods for spectral data

    Science.gov (United States)

    Dunham, Mark E.

    2003-01-01

    A method is provided for logarithmic compression, transmission, and expansion of spectral data. A log Gabor transformation is made of incoming time series data to output spectral phase and logarithmic magnitude values. The output phase and logarithmic magnitude values are compressed by selecting only magnitude values above a selected threshold and corresponding phase values to transmit compressed phase and logarithmic magnitude values. A reverse log Gabor transformation is then performed on the transmitted phase and logarithmic magnitude values to output transmitted time series data to a user.

  9. Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution

    DEFF Research Database (Denmark)

    Hvam, Jørn Marcher

    1997-01-01

    Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....

  10. Optically transparent multiple access networks employing incoherent spectral codes

    NARCIS (Netherlands)

    Huiszoon, B.

    2008-01-01

    This Ph.D. thesis is divided into 7 chapters to provide the reader an overview of the main results achieved in di®erent sub-topics of the study towards optically transparent multiple access networks employing incoherent spectral codes taking into account wireless transmission aspects. The work

  11. Optical network scaling: roles of spectral and spatial aggregation.

    Science.gov (United States)

    Arık, Sercan Ö; Ho, Keang-Po; Kahn, Joseph M

    2014-12-01

    As the bit rates of routed data streams exceed the throughput of single wavelength-division multiplexing channels, spectral and spatial traffic aggregation become essential for optical network scaling. These aggregation techniques reduce network routing complexity by increasing spectral efficiency to decrease the number of fibers, and by increasing switching granularity to decrease the number of switching components. Spectral aggregation yields a modest decrease in the number of fibers but a substantial decrease in the number of switching components. Spatial aggregation yields a substantial decrease in both the number of fibers and the number of switching components. To quantify routing complexity reduction, we analyze the number of multi-cast and wavelength-selective switches required in a colorless, directionless and contentionless reconfigurable optical add-drop multiplexer architecture. Traffic aggregation has two potential drawbacks: reduced routing power and increased switching component size.

  12. Precision Spectral Manipulation: A Demonstration Using a Coherent Optical Memory

    Directory of Open Access Journals (Sweden)

    B. M. Sparkes

    2012-06-01

    Full Text Available The ability to coherently spectrally manipulate quantum information has the potential to improve qubit rates across quantum channels and find applications in optical quantum computing. In this paper, we present experiments that use a multielement solenoid combined with the three-level gradient echo memory scheme to perform precision spectral manipulation of optical pulses. These operations include separate bandwidth and frequency manipulation with precision down to tens of kHz, spectral filtering of up to three separate frequency components, as well as time-delayed interference between pulses with both the same, and different, frequencies. If applied in a quantum information network, these operations would enable frequency-based multiplexing of qubits.

  13. Signal enhancement by spectral equalization of high frequency broadband signals transmitted through optical fibers

    International Nuclear Information System (INIS)

    Lyons, P.B.; Ogle, J.W.; Holzman, M.A.

    1980-01-01

    A new technique is discussed for enhancing the bandwidth and intensity of high frequency (> 1 GHz) analog, spectrally broad (40 nm) signals transmitted through one kilometer of optical fiber. The existing method for bandwidth enhancement of such a signal uses a very narrow (approx. 1 nm) filter between the fiber and detector to limit bandwidth degradation due to material dispersion. Using this method, most of the available optical intensity is rejected and lost. This new technique replaces the narrow-band filter with a spectral equalizer device which uses a reflection grating to disperse the input signal spectrum and direct it onto a linear array of fibers

  14. Measurement of the infrared optical constants for spectral modeling: n and k values for (NH4)2SO4 via single-angle reflectance and ellipsometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Blake, Thomas A.; Brauer, Carolyn S.; Kelly-Gorham, Molly Rose K.; Burton, Sarah D.; Bliss, Mary; Myers, Tanya L.; Johnson, Timothy J.; Tiwald, Thomas E.

    2017-05-05

    The optical constants n and k can be used to model infrared spectra, including refraction, absorption, reflectance, and emissivity, but obtaining reliable values for solid materials (pure or otherwise) presents a challenge: In the past, the best results for n and k have been obtained from bulk, homogeneous materials, free of defects. That is, materials where the Fresnel equations are operant since there is no light scattering. Since it is often not possible to obtain a pure macroscopic (crystalline) material, it may be possible to press the material into a (uniform, void-free) disk. We have recently been able to do this with ammonium sulfate powder and then measured the n & k values via two independent methods: 1) Ellipsometry - which measures the changes in amplitude and phase of light reflected from the material of interest as a function of wavelength and angle of incidence, and 2) Single angle specular reflectance with an FT spectrometer using a specular reflectance device within an FT instrument which measures the change in amplitude of light reflected from the material of interest as a function of wavelength and angle of incidence over a wide wavelength range. The quality of the derived n & k values was tested by generating the reflectance spectra of the pellet and comparing to the calculated to measured reflectance spectra of the pure material which has been previously published. The comparison to literature values showed good accuracy and good agreement, indicating promise to measure other materials by such methods.

  15. Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent

    OpenAIRE

    Yang, Changhuei; McGuckin, Laura E. L.; Simon, John D.; Choma, Michael A.; Applegate, Brian E.; Izatt, Joseph A.

    2004-01-01

    We report a new molecular contrast optical coherence tomography (MCOCT) implementation that profiles the contrast agent distribution in a sample by measuring the agent's spectral differential absorption. The method, spectra triangulation MCOCT, can effectively suppress contributions from spectrally dependent scatterings from the sample without a priori knowledge of the scattering properties. We demonstrate molecular imaging with this new MCOCT modality by mapping the distribution of indocyani...

  16. Spectral Behavior of Weakly Compressible Aero-Optical Distortions

    Science.gov (United States)

    Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric

    2016-11-01

    In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.

  17. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems.

    Science.gov (United States)

    Lowery, Arthur James

    2016-02-22

    Asymmetrically clipped optical orthogonal frequency-division multiplexing (ACO-OFDM) is a technique that sacrifices spectral efficiency in order to transmit an orthogonally frequency-division multiplexed signal over a unipolar channel, such as a directly modulated direct-detection fiber or free-space channel. Several methods have been proposed to regain this spectral efficiency, including: asymmetrically clipped DC-biased optical OFDM (ADO-OFDM), enhanced U-OFDM (EU-OFDM), spectral and energy efficient OFDM (SEE-OFDM), Hybrid-ACO-OFDM and Layered-ACO-OFDM. This paper presents simulations up to high-order constellation sizes to show that Layered-ACO-OFDM offers the highest receiver sensitivity for a given optical power at spectral efficiencies above 3 bit/s/Hz. For comparison purposes, white Gaussian noise is added at the receiver, component nonlinearities are not considered, and the fiber is considered to be linear and dispersion-less. The simulations show that LACO-OFDM has a 7-dB sensitivity advantage over DC-biased OFDM (DCO-OFDM) for 1024-QAM at 87.5% of DCO-OFDM's spectral efficiency, at the same bit rate and optical power. This is approximately equivalent to a 4.4-dB advantage at the same spectral efficiency of 87.7% if 896-QAM were to be used for DCO-OFDM.

  18. Stochastic Spectral and Conjugate Descent Methods

    KAUST Repository

    Kovalev, Dmitry

    2018-02-11

    The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.

  19. Stochastic Spectral and Conjugate Descent Methods

    KAUST Repository

    Kovalev, Dmitry; Gorbunov, Eduard; Gasanov, Elnur; Richtarik, Peter

    2018-01-01

    The state-of-the-art methods for solving optimization problems in big dimensions are variants of randomized coordinate descent (RCD). In this paper we introduce a fundamentally new type of acceleration strategy for RCD based on the augmentation of the set of coordinate directions by a few spectral or conjugate directions. As we increase the number of extra directions to be sampled from, the rate of the method improves, and interpolates between the linear rate of RCD and a linear rate independent of the condition number. We develop and analyze also inexact variants of these methods where the spectral and conjugate directions are allowed to be approximate only. We motivate the above development by proving several negative results which highlight the limitations of RCD with importance sampling.

  20. A Framework for Quantifying the Impacts of Sub-Pixel Reflectance Variance and Covariance on Cloud Optical Thickness and Effective Radius Retrievals Based on the Bi-Spectral Method.

    Science.gov (United States)

    Zhang, Z; Werner, F.; Cho, H. -M.; Wind, Galina; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry

    2017-01-01

    The so-called bi-spectral method retrieves cloud optical thickness (t) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near infrared (VIS/NIR) band and the other in a shortwave-infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved t and re. In this study, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the t and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the t and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval.

  1. Photoreceptor layer map using spectral-domain optical coherence tomography.

    Science.gov (United States)

    Lee, Ji Eun; Lim, Dae Won; Bae, Han Yong; Park, Hyun Jin

    2009-12-01

    To develop a novel method for analysis of the photoreceptor layer map (PLM) generated using spectral-domain optical coherence tomography (OCT). OCT scans were obtained from 20 eyes, 10 with macular holes (MH) and 10 with central serous chorioretinopathy (CSC) using the Macular Cube (512 x 128) protocol of the Cirrus HD-OCT (Carl Zeiss). The scanned data were processed using embedded tools of the advanced visualization. A partial thickness OCT fundus image of the photoreceptor layer was generated by setting the region of interest to a 50-microm thick layer that was parallel and adjacent to the retinal pigment epithelium. The resulting image depicted the photoreceptor layer as a map of the reflectivity in OCT. The PLM was compared with fundus photography, auto-fluorescence, tomography, and retinal thickness map. The signal from the photoreceptor layer of every OCT scan in each case was demonstrated as a single image of PLM in a fundus photograph fashion. In PLM images, detachment of the sensory retina is depicted as a hypo-reflective area, which represents the base of MH and serous detachment in CSC. Relative hypo-reflectivity, which was also noted at closed MH and at recently reattached retina in CSC, was associated with reduced signal from the junction between the inner and outer segments of photoreceptors in OCT images. Using PLM, changes in the area of detachment and reflectivity of the photoreceptor layer could be efficiently monitored. The photoreceptor layer can be analyzed as a map using spectral-domain OCT. In the treatment of both MH and CSC, PLM may provide new pathological information about the photoreceptor layer to expand our understanding of these diseases.

  2. Relationship Between Optic Nerve Appearance and Retinal Nerve Fiber Layer Thickness as Explored with Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Aleman, Tomas S.; Huang, Jiayan; Garrity, Sean T.; Carter, Stuart B.; Aleman, Wendy D.; Ying, Gui-shuang; Tamhankar, Madhura A.

    2014-01-01

    Purpose To study the relationship between the appearance of the optic nerve and the retinal nerve fiber layer (RNFL) thickness determined by spectral domain optical coherence tomography (OCT). Methods Records from patients with spectral domain-OCT imaging in a neuro-ophthalmology practice were reviewed. Eyes with glaucoma/glaucoma suspicion, macular/optic nerve edema, pseudophakia, and with refractive errors > 6D were excluded. Optic nerve appearance by slit lamp biomicroscopy was related to the RNFL thickness by spectral domain-OCT and to visual field results. Results Ninety-one patients (176 eyes; mean age: 49 ± 15 years) were included. Eighty-three eyes (47%) showed optic nerve pallor; 89 eyes (50.6%) showed RNFL thinning (sectoral or average peripapillary). Average peripapillary RNFL thickness in eyes with pallor (mean ± SD = 76 ± 17 μm) was thinner compared to eyes without pallor (91 ± 14 μm, P < 0.001). Optic nerve pallor predicted RNFL thinning with a sensitivity of 69% and a specificity of 75%. Optic nerve appearance predicted RNFL thinning (with a sensitivity and specificity of 81%) when RNFL had thinned by ∼ 40%. Most patients with pallor had RNFL thinning with (66%) or without (25%) visual field loss; the remainder had normal RNFL and fields (5%) or with visual field abnormalities (4%). Conclusions Optic nerve pallor as a predictor of RNFL thinning showed fair sensitivity and specificity, although it is optimally sensitive/specific only when substantial RNFL loss has occurred. Translational Relevance Finding an acceptable relationship between the optic nerve appearance by ophthalmoscopy and spectral domain-OCT RNFL measures will help the clinician's interpretation of the information provided by this technology, which is gaining momentum in neuro-ophthalmic research. PMID:25374773

  3. Evolutionary Computing Methods for Spectral Retrieval

    Science.gov (United States)

    Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna

    2009-01-01

    A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.

  4. Spectral-domain optical coherence tomography of roth spots.

    Science.gov (United States)

    Giovinazzo, Jerome; Mrejen, Sarah; Freund, K Bailey

    2013-01-01

    To describe the retinal findings of subacute bacterial endocarditis, their evolution after treatment, and analysis with spectral-domain optical coherence tomography. Retrospective chart review. A 21-year-old man presented with the sudden onset of a central scotoma in his left eye because of a sub-internal limiting membrane hemorrhage overlying the left fovea. When examined 2 weeks later, Roth spots were noted in his right eye. The patient was immediately referred to his internist and diagnosed with subacute bacterial endocarditis with cultures positive for Streptococcus viridans. He subsequently underwent aortic valve replacement surgery after 4 weeks of intravenous antibiotic therapy. When examined 4 weeks after valve replacement surgery, there was regression of the Roth spots. The present case demonstrates the importance of a funduscopic examination in the early diagnosis and management of subacute bacterial endocarditis. The analysis of Roth spots with spectral-domain optical coherence tomography suggested that they were septic emboli.

  5. All-optical OFDM demultiplexing by spectral magnification and optical band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2013-01-01

    We propose spectral magnification of optical-OFDM super-channels using time-lenses, enabling reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spe...

  6. Flow patterns on spectral-domain optical coherence tomography reveal flow directions at retinal vessel bifurcations

    DEFF Research Database (Denmark)

    Willerslev, Anne; Li, Xiao Q; Munch, Inger C

    2014-01-01

    PURPOSE: To study intravascular characteristics of flowing blood in retinal vessels using spectral-domain optical coherence tomography (SD-OCT). METHODS: Examination of selected arterial bifurcations and venous sites of confluence in 25 healthy 11-year-old children recruited as an ad hoc subsample...

  7. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-11-14

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu.m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.

  8. Spectral and kinetic analysis of radiation induced optical attenuation in silica: towards intrinsic fibre optic dosimetry?

    International Nuclear Information System (INIS)

    Borgermans, P.

    2002-01-01

    The document is an abstract of a PhD thesis. The PhD work concerns the detailed investigation of the behaviour of optical fibres in radiation fields such as is the case for various nuclear and space application,s. The core of the work concerns the spectral and kinetic analysis of the radiation induced optical attenuation. Models describing underlying physical phenomena, both for the spectral and the time dimensions, have been developed. The potential of silica optical fibre waveguides for intrinsic dosimetry has been assessed by employing specific properties of radiation induced defects in the silica waveguide material

  9. Posterior lattice degeneration characterized by spectral domain optical coherence tomography.

    Science.gov (United States)

    Manjunath, Varsha; Taha, Mohammed; Fujimoto, James G; Duker, Jay S

    2011-03-01

    The purpose of this study was to use high-resolution spectral domain optical coherence tomography in the characterization of retinal and vitreal morphological changes overlying posterior lattice degeneration. A cross-sectional retrospective analysis was performed on 13 eyes of 13 nonconsecutive subjects with posterior lattice degeneration seen at the New England Eye Center, Tufts Medical Center between October 2009 and January 2010. Spectral domain optical coherence tomography images taken through the region of lattice degeneration were qualitatively analyzed. Four characteristic changes of the retina and vitreous were seen in the 13 eyes with lattice degeneration: 1) anterior/posterior U-shaped vitreous traction; 2) retinal breaks; 3) focal retinal thinning; and 4) vitreous membrane formation. The morphologic appearance of vitreous traction and retinal breaks were found to be consistent with previous histologic reports. It is possible to image posterior lattice degeneration in many eyes using spectral domain optical coherence tomography and to visualize the spectrum of retinal and vitreous changes throughout the area of lattice degeneration.

  10. Spectral Analysis Methods of Social Networks

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2017-01-01

    Full Text Available Online social networks (such as Facebook, Twitter, VKontakte, etc. being an important channel for disseminating information are often used to arrange an impact on the social consciousness for various purposes - from advertising products or services to the full-scale information war thereby making them to be a very relevant object of research. The paper reviewed the analysis methods of social networks (primarily, online, based on the spectral theory of graphs. Such methods use the spectrum of the social graph, i.e. a set of eigenvalues of its adjacency matrix, and also the eigenvectors of the adjacency matrix.Described measures of centrality (in particular, centrality based on the eigenvector and PageRank, which reflect a degree of impact one or another user of the social network has. A very popular PageRank measure uses, as a measure of centrality, the graph vertices, the final probabilities of the Markov chain, whose matrix of transition probabilities is calculated on the basis of the adjacency matrix of the social graph. The vector of final probabilities is an eigenvector of the matrix of transition probabilities.Presented a method of dividing the graph vertices into two groups. It is based on maximizing the network modularity by computing the eigenvector of the modularity matrix.Considered a method for detecting bots based on the non-randomness measure of a graph to be computed using the spectral coordinates of vertices - sets of eigenvector components of the adjacency matrix of a social graph.In general, there are a number of algorithms to analyse social networks based on the spectral theory of graphs. These algorithms show very good results, but their disadvantage is the relatively high (albeit polynomial computational complexity for large graphs.At the same time it is obvious that the practical application capacity of the spectral graph theory methods is still underestimated, and it may be used as a basis to develop new methods.The work

  11. Thin film optical coatings for the ultraviolet spectral region

    Science.gov (United States)

    Torchio, P.; Albrand, G.; Alvisi, M.; Amra, C.; Rauf, H.; Cousin, B.; Otrio, G.

    2017-11-01

    The applications and innovations related to the ultraviolet field are today in strong growth. To satisfy these developments which go from biomedical to the large equipment like the Storage Ring Free Electron Laser, it is crucial to control with an extreme precision the optical performances, in using the substrates and the thin film materials impossible to circumvent in this spectral range. In particular, the reduction of the losses by electromagnetic diffusion, Joule effect absorption, or the behavior under UV luminous flows of power, resistance to surrounding particulate flows... become top priority which concerns a broad European and international community. Our laboratory has the theoretical, experimental and technological tools to design and fabricate numerous multilayer coatings with desirable optical properties in the visible and infrared spectral ranges. We have extended our expertise to the ultraviolet. We present here some results on high reflectivity multidielectric mirrors towards 250 nm in wavelength, produced by Ion Plating Deposition. The latter technique allows us to obtain surface treatments with low absorption and high resistance. We give in this study the UV transparent materials and the manufacturing technology which have been the best suited to meet requirements. Single UV layers were deposited and characterized. HfO2/SiO2 mirrors with a reflectance higher than 99% at 300 nm were obtained. Optical and non-optical characterizations such as UV spectrophotometric measurements, X-Ray Diffraction spectra, Scanning Electron Microscope and Atomic Force Microscope images were performed

  12. Approaches to contactless optical thermometer in the NIR spectral range based on Nd{sup 3+} doped crystalline nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaldvee, K.; Nefedova, A.V. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Fedorenko, S.G. [Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090 (Russian Federation); Vanetsev, A.S. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); Orlovskaya, E.O. [Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); Puust, L.; Pärs, M.; Sildos, I. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Ryabova, A.V. [Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); National Research Nuclear University Moscow Engineering Physics Institute, Kashirskoe Highway, 31, Moscow 115409 (Russian Federation); Orlovskii, Yu.V., E-mail: orlovski@Lst.gpi.ru [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation)

    2017-03-15

    The fluorescence kinetics and spectral intensity ratio (FIR) methods for contactless optical temperature measurement in the NIR spectral range with Nd{sup 3+} doped YAG micro- and YPO{sub 4} nanocrystals are considered and the problems are revealed. The requirements for good temperature RE doped crystalline nanoparticles sensor are formulated.

  13. A Framework Based on 2-D Taylor Expansion for Quantifying the Impacts of Sub-Pixel Reflectance Variance and Covariance on Cloud Optical Thickness and Effective Radius Retrievals Based on the Bi-Spectral Method

    Science.gov (United States)

    Zhang, Z.; Werner, F.; Cho, H. -M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry

    2016-01-01

    The bi-spectral method retrieves cloud optical thickness and cloud droplet effective radius simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VISNIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved and re. In the literature, the retrievals of and re are often assumed to be independent and considered separately when investigating the impact of sub-pixel cloud reflectance variations on the bi-spectral method. As a result, the impact on is contributed only by the sub-pixel variation of VISNIR band reflectance and the impact on re only by the sub-pixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VISNIR and SWIR cloud reflectances and their covariance on the and re retrievals. This framework takes into account the fact that the retrievals are determined by both VISNIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VISNIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our framework can be used

  14. Introduction to finite and spectral element methods using Matlab

    CERN Document Server

    Pozrikidis, Constantine

    2014-01-01

    The Finite Element Method in One Dimension. Further Applications in One Dimension. High-Order and Spectral Elements in One Dimension. The Finite Element Method in Two Dimensions. Quadratic and Spectral Elements in Two Dimensions. Applications in Mechanics. Viscous Flow. Finite and Spectral Element Methods in Three Dimensions. Appendices. References. Index.

  15. Methods of total spectral radiant flux realization at VNIIOFI

    Science.gov (United States)

    Ivashin, Evgeniy; Lalek, Jan; Rybczyński, Andrzej; Ogarev, Sergey; Khlevnoy, Boris; Dobroserdov, Dmitry; Sapritsky, Victor

    2018-02-01

    VNIIOFI carries out works on realization of independent methods for realization of the total spectral radiant flux (TSRF) of incoherent optical radiation sources - reference high-temperature blackbodies (BB), halogen lamps, and LED with quasi-Lambert spatial distribution of radiance. The paper describes three schemes for measuring facilities using photometers, spectroradiometers and computer-controlled high class goniometer. The paper describes different approaches for TSRF realization at the VNIIOFI National radiometric standard on the basis of high-temperature BB and LED sources, and gonio-spectroradiometer. Further, they are planned to be compared, and the use of fixed-point cells (in particular, based on the high-temperature δ(MoC)-C metal-carbon eutectic with a phase transition temperature of 2583 °C corresponding to the metrological optical “source-A”) as an option instead of the BB is considered in order to enhance calibration accuracy.

  16. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    Science.gov (United States)

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  17. Spectral and spectral-frequency methods of investigating atmosphereless bodies of the Solar system

    International Nuclear Information System (INIS)

    Busarev, Vladimir V; Prokof'eva-Mikhailovskaya, Valentina V; Bochkov, Valerii V

    2007-01-01

    A method of reflectance spectrophotometry of atmosphereless bodies of the Solar system, its specificity, and the means of eliminating basic spectral noise are considered. As a development, joining the method of reflectance spectrophotometry with the frequency analysis of observational data series is proposed. The combined spectral-frequency method allows identification of formations with distinctive spectral features, and estimations of their sizes and distribution on the surface of atmospherelss celestial bodies. As applied to investigations of asteroids 21 Lutetia and 4 Vesta, the spectral frequency method has given us the possibility of obtaining fundamentally new information about minor planets. (instruments and methods of investigation)

  18. Optically trapped atomic resonant devices for narrow linewidth spectral imaging

    Science.gov (United States)

    Qian, Lipeng

    This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the

  19. Agreement of angle closure assessments between gonioscopy, anterior segment optical coherence tomography and spectral domain optical coherence tomography

    OpenAIRE

    Tay, Elton Lik Tong; Yong, Vernon Khet Yau; Lim, Boon Ang; Sia, Stelson; Wong, Elizabeth Poh Ying; Yip, Leonard Wei Leon

    2015-01-01

    AIM: To determine angle closure agreements between gonioscopy and anterior segment optical coherence tomography (AS-OCT), as well as gonioscopy and spectral domain OCT (SD-OCT). A secondary objective was to quantify inter-observer agreements of AS-OCT and SD-OCT assessments. METHODS: Seventeen consecutive subjects (33 eyes) were recruited from the study hospital’s Glaucoma clinic. Gonioscopy was performed by a glaucomatologist masked to OCT results. OCT images were read independently by 2 ...

  20. Spectral Optical Readout of Rectangular-Miniature Hollow Glass Tubing for Refractive Index Sensing.

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina; Merlo, Sabina

    2018-02-16

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances.

  1. Spectral Optical Readout of Rectangular–Miniature Hollow Glass Tubing for Refractive Index Sensing

    Science.gov (United States)

    Rigamonti, Giulia; Bello, Valentina

    2018-01-01

    For answering the growing demand of innovative micro-fluidic devices able to measure the refractive index of samples in extremely low volumes, this paper presents an overview of the performances of a micro-opto-fluidic sensing platform that employs rectangular, miniature hollow glass tubings. The operating principle is described by showing the analytical model of the tubing, obtained as superposition of different optical cavities, and the optical readout method based on spectral reflectivity detection. We have analyzed, in particular, the theoretical and experimental optical features of rectangular tubings with asymmetrical geometry, thus with channel depth larger than the thickness of the glass walls, though all of them in the range of a few tens of micrometers. The origins of the complex line-shape of the spectral response in reflection, due to the different cavities formed by the tubing flat walls and channel, have been investigated using a Fourier transform analysis. The implemented instrumental configuration, based on standard telecom fiberoptic components and a semiconductor broadband optical source emitting in the near infrared wavelength region centered at 1.55 µm, has allowed acquisition of reflectivity spectra for experimental verification of the expected theoretical behavior. We have achieved detection of refractive index variations related to the change of concentration of glucose-water solutions flowing through the tubing by monitoring the spectral shift of the optical resonances. PMID:29462907

  2. Numerical Methods for Stochastic Computations A Spectral Method Approach

    CERN Document Server

    Xiu, Dongbin

    2010-01-01

    The first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC meth

  3. Power Spectral Density Specification and Analysis of Large Optical Surfaces

    Science.gov (United States)

    Sidick, Erkin

    2009-01-01

    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  4. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering.

    Science.gov (United States)

    Palushani, E; Mulvad, H C Hansen; Kong, D; Guan, P; Galili, M; Oxenløwe, L K

    2014-01-13

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spectral magnification.

  5. Bidirectional soliton spectral tunneling effects in the regime of optical event horizon

    DEFF Research Database (Denmark)

    Gu, Jie; Guo, Hairun; Wang, Shaofei

    2015-01-01

    We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects.......We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....

  6. OPTICAL POLARIZATION AND SPECTRAL VARIABILITY IN THE M87 JET

    Energy Technology Data Exchange (ETDEWEB)

    Perlman, Eric S.; Cara, Mihai; Bourque, Matthew; Simons, Raymond C. [Department of Physics and Space Sciences, 150 W. University Blvd., Florida Institute of Technology, Melbourne, FL 32901 (United States); Adams, Steven C. [Department of Physics and Astronomy, University of Georgia, Athens, GA 30605 (United States); Harris, D. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Madrid, Juan P. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Clausen-Brown, Eric [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Cheung, C. C. [National Academy of Sciences, Washington, DC 20001 (United States); Stawarz, Lukasz [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Georganopoulos, Markos [Department of Physics, University of Maryland-Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States); Sparks, William B.; Biretta, John A., E-mail: eperlman@fit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2011-12-20

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability has also been seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from {approx}20% at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard ({alpha}{sub UV-O} {approx} 0.5, F{sub {nu}}{proportional_to}{nu}{sup -{alpha}}), and displays 'hard lags' during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2{sigma} upper limits of 0.5{delta} pc and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet position angle (P.A.) makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum ({alpha}{sub UV-O} {approx} 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  7. OPTICAL POLARIZATION AND SPECTRAL VARIABILITY IN THE M87 JET

    International Nuclear Information System (INIS)

    Perlman, Eric S.; Cara, Mihai; Bourque, Matthew; Simons, Raymond C.; Adams, Steven C.; Harris, D. E.; Madrid, Juan P.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz; Georganopoulos, Markos; Sparks, William B.; Biretta, John A.

    2011-01-01

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability has also been seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from ∼20% at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard (α UV-O ∼ 0.5, F ν ∝ν –α ), and displays 'hard lags' during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2σ upper limits of 0.5δ pc and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet position angle (P.A.) makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum (α UV-O ∼ 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  8. Autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytoma.

    Science.gov (United States)

    Guerra, Ricardo Luz Leitão; Marback, Eduardo Ferrari; Silva, Igor Sandes Pessoa da; Maia Junior, Otacílio de Oliveira; Marback, Roberto Lorens

    2014-01-01

    The authors report fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (OCT) findings of two consecutive patients who presented with optic disk melanocytoma (ODM). A retrospective study was performed by reviewing medical records and ophthalmic imaging examinations. Optical coherence tomography findings were sloped and brightly reflective anterior tumor surface, adjacent retinal desorganization and abrupt posterior optical shadowing. Vitreous seeds were found in one patient. Fundus autofluorescence revealed outstanding hypoautofluorescence at the tumor area and isoautofluorescence at the remaining retina. Optical coherence tomography findings of the reported cases are consistent with those reported in the reviewed literature. Fundus autofluorescence has been used in the assessment of choroidal melanocytic tumors, but not yet in melanocytomas. We assume that this is the first report of these findings and believe that when its pattern has become clearly defined, fundus autofluorescence will be a useful tool to avoid misdiagnosis in suspicious cases and for follow-up.

  9. Autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytoma

    Directory of Open Access Journals (Sweden)

    Ricardo Luz Leitão Guerra

    2014-12-01

    Full Text Available The authors report fundus autofluorescence (FAF and spectral-domain optical coherence tomography (OCT findings of two consecutive patients who presented with optic disk melanocytoma (ODM. A retrospective study was performed by reviewing medical records and ophthalmic imaging examinations. Optical coherence tomography findings were sloped and brightly reflective anterior tumor surface, adjacent retinal desorganization and abrupt posterior optical shadowing. Vitreous seeds were found in one patient. Fundus autofluorescence revealed outstanding hypoautofluorescence at the tumor area and isoautofluorescence at the remaining retina. Optical coherence tomography findings of the reported cases are consistent with those reported in the reviewed literature. Fundus autofluorescence has been used in the assessment of choroidal melanocytic tumors, but not yet in melanocytomas. We assume that this is the first report of these findings and believe that when its pattern has become clearly defined, fundus autofluorescence will be a useful tool to avoid misdiagnosis in suspicious cases and for follow-up.

  10. Chebyshev super spectral viscosity method for water hammer analysis

    Directory of Open Access Journals (Sweden)

    Hongyu Chen

    2013-09-01

    Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.

  11. All-optical cryptography of M-QAM formats by using two-dimensional spectrally sliced keys.

    Science.gov (United States)

    Abbade, Marcelo L F; Cvijetic, Milorad; Messani, Carlos A; Alves, Cleiton J; Tenenbaum, Stefan

    2015-05-10

    There has been an increased interest in enhancing the security of optical communications systems and networks. All-optical cryptography methods have been considered as an alternative to electronic data encryption. In this paper we propose and verify the use of a novel all-optical scheme based on cryptographic keys applied on the spectral signal for encryption of the M-QAM modulated data with bit rates of up to 200 gigabits per second.

  12. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2016-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  13. Using spectral-domain optical coherence tomography to detect optic neuropathy in patients with craniosynostosis.

    Science.gov (United States)

    Dagi, Linda R; Tiedemann, Laura M; Heidary, Gena; Robson, Caroline D; Hall, Amber M; Zurakowski, David

    2014-12-01

    Detecting and monitoring optic neuropathy in patients with craniosynostosis is a clinical challenge due to limited cooperation, and subjective measures of visual function. The purpose of this study was to appraise the correlation of peripapillary retinal nerve fiber layer (RNFL) thickness measured by spectral-domain ocular coherence tomography (SD-OCT) with indication of optic neuropathy based on fundus examination. The medical records of all patients with craniosynostosis presenting for ophthalmic evaluation during 2013 were retrospectively reviewed. The following data were abstracted from the record: diagnosis, historical evidence of elevated intracranial pressure, current ophthalmic evaluation and visual field results, and current peripapillary RNFL thickness. A total of 54 patients were included (mean age, 10.6 years [range, 2.4-33.8 years]). Thirteen (24%) had evidence of optic neuropathy based on current fundus examination. Of these, 10 (77%) demonstrated either peripapillary RNFL elevation and papilledema or depression with optic atrophy. Sensitivity for detecting optic atrophy was 88%; for papilledema, 60%; and for either form of optic neuropathy, 77%. Specificity was 94%, 90%, and 83%, respectively. Kappa agreement was substantial for optic atrophy (κ = 0.73) and moderate for papilledema (κ = 0.39) and for either form of optic neuropathy (κ = 0.54). Logistic regression indicated that peripapillary RNFL thickness was predictive of optic neuropathy (P optic neuropathy than visual field testing (likelihood ratio = 10.02; P = 0.002). Sensitivity and specificity of logMAR visual acuity in detecting optic neuropathy were 15% and 95%, respectively. Peripapillary RNFL thickness measured by SD-OCT provides adjunctive evidence for identifying optic neuropathy in patients with craniosynostosis and appears more sensitive at detecting optic atrophy than papilledema. Copyright © 2014 American Association for Pediatric Ophthalmology and Strabismus. Published by

  14. Technologies for Elastic Optical Networking Systems in Spatial, Temporal and Spectral Domains

    Science.gov (United States)

    Qin, Chuan

    As the demand for more data capacity keeps increasing, the need for the more efficient use of the data channel becomes more imperative. The fixed wavelength grid which has been in use for more than ten years in conventional wavelength division multiplexing (WDM) is a bottleneck that prevents the capacity from upgrading towards 400 Gb/s and above. A new elastic optical networking scheme where both transceivers and interconnects become flexible break the boundary of wavelength grids and allow a more efficient use of the limited optical bands for communication. This dissertation focuses on a few enabling technologies for elastic optical networking systems. Optical arbitrary waveform generation (OAWG) uses Fourier synthesis and generates user-defined broad-band scalable optical waveforms with high-fidelity through line-by-line full field control of a coherent optical frequency comb. OAWG finds its niche in elastic optical networking since it provides no grids, and scales to user-defined bandwidth. When elastic optical networking builds various connections to use an arbitrary number of subcarriers depending on the users' bandwidth needs, the flexibility also creates non-contiguous spectral fragmentation, much like a computer hard disk generating fragments. Spectral defragmentation aims to re-optimize and re-assign the optical spectrum to achieve more efficient use of the spectrum. One of the technologies is "hop tuning" defragmentation method with a fast auto-tracking local oscillator (LO). In the demonstrated defragmentation experiment, I used a field-programmable gate array (FPGA) to monitor the wavelength change in the signal laser and tune the front and rear current that controls the wavelength of the local oscillator laser. However, the control of the front and rear current needs a complete and accurate calibration of the LO laser and may not apply to a larger number of coherent communication links. A single-tone optical frequency shifter can shift the LO laser

  15. Spectral element method for wave propagation on irregular domains

    Indian Academy of Sciences (India)

    Yan Hui Geng

    2018-03-14

    Mar 14, 2018 ... Abstract. A spectral element approximation of acoustic propagation problems combined with a new mapping method on irregular domains is proposed. Following this method, the Gauss–Lobatto–Chebyshev nodes in the standard space are applied to the spectral element method (SEM). The nodes in the ...

  16. Orthogonal feature selection method. [For preprocessing of man spectral data

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, B R [Univ. of Washington, Seattle; Bender, C F

    1976-01-01

    A new method of preprocessing spectral data for extraction of molecular structural information is desired. This SELECT method generates orthogonal features that are important for classification purposes and that also retain their identity to the original measurements. A brief introduction to chemical pattern recognition is presented. A brief description of the method and an application to mass spectral data analysis follow. (BLM)

  17. Spectral element method for wave propagation on irregular domains

    Indian Academy of Sciences (India)

    A spectral element approximation of acoustic propagation problems combined with a new mapping method on irregular domains is proposed. Following this method, the Gauss–Lobatto–Chebyshev nodes in the standard space are applied to the spectral element method (SEM). The nodes in the physical space are ...

  18. Multi-spectral optical scanners for commercial earth observation missions

    Science.gov (United States)

    Schröter, Karin; Engel, Wolfgang; Berndt, Klaus

    2017-11-01

    In recent years, a number of commercial Earth observation missions have been initiated with the aim to gather data in the visible and near-infrared wavelength range. Some of these missions aim at medium resolution (5 to 10 m) multi-spectral imaging with the special background of daily revisiting. Typical applications aim at monitoring of farming area for growth control and harvest prediction, irrigation control, or disaster monitoring such as hail damage in farming, or flood survey. In order to arrive at profitable business plans for such missions, it is mandatory to establish the space segment, i.e. the spacecraft with their opto -electronic payloads, at minimum cost while guaranteeing maximum reliability for mission success. As multiple spacecraft are required for daily revisiting, the solutions are typically based on micro-satellites. This paper presents designs for multi-spectral opto-electric scanners for this type of missions. These designs are drive n by minimum mass and power budgets of microsatellites, and the need for minimum cost. As a consequence, it is mandatory to arrive at thermally robust, compact telescope designs. The paper gives a comparison between refractive, catadioptric, and TMA optics. For mirror designs, aluminium and Zerodur mirror technologies are briefly discussed. State-of-the art focal plane designs are presented. The paper also addresses the choice of detector technologies such as CCDs and CMOS Active Pixel Sensors. The electronics of the multi-spectral scanners represent the main design driver regarding power consumption, reliability, and (most often) cost. It can be subdivided into the detector drive electronics, analog and digital data processing chains, the data mass memory unit, formatting and down - linking units, payload control electronics, and local power supply. The paper gives overviews and trade-offs between data compression strategies and electronics solutions, mass memory unit designs, and data formatting approaches

  19. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    Science.gov (United States)

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  20. A simple optical spectral calibration technique for pulsed THz sources

    NARCIS (Netherlands)

    Wijnen, F.J.P.; G. Berden,; Jongma, R.T.

    2010-01-01

    We have quantified the sensitivity of a simple method to measurethe frequency spectrum of pulsed terahertz (THz) radiation. The THzpulses are upconverted to the optical regime by sideband generation in a zinctelluride (ZnTe) crystal using a continuous wave (cw) narrow-bandwidthnear-infrared laser. A

  1. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    Science.gov (United States)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  2. All-optical OFDM demultiplexing by spectral magnification and band-pass filtering

    DEFF Research Database (Denmark)

    Palushani, Evarist; Mulvad, Hans Christian Hansen; Kong, Deming

    2014-01-01

    We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference...

  3. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  4. Study of the spectral bandwidth of a double-pass acousto-optic system [Invited].

    Science.gov (United States)

    Champagne, Justine; Kastelik, Jean-Claude; Dupont, Samuel; Gazalet, Joseph

    2018-04-01

    Acousto-optic tunable filters are known as efficient instruments for spectral and spatial filtering of light. In this paper, we analyze the bandwidth dependence of a double-pass filter. The interaction geometry chosen allows the simultaneous diffraction of the ordinary and the extraordinary optical modes by a single ultrasonic frequency. We present the main parameters of a custom device (design, optical range, driving frequency) and experimental results concerning the angular deviation of the beams including the effect of optical birefringence. The spectral resolution and the side lobes' significance are discussed. Spectral bandwidth of such a system is analyzed.

  5. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  6. Two-harmonic complex spectral-domain optical coherence tomography using achromatic sinusoidal phase modulation

    Science.gov (United States)

    Lu, Sheng-Hua; Huang, Siang-Ru; Chou, Che-Chung

    2018-03-01

    We resolve the complex conjugate ambiguity in spectral-domain optical coherence tomography (SD-OCT) by using achromatic two-harmonic method. Unlike previous researches, the optical phase of the fiber interferometer is modulated by an achromatic phase shifter based on an optical delay line. The achromatic phase modulation leads to a wavelength-independent scaling coefficient for the two harmonics. Dividing the mean absolute value of the first harmonic by that of the second harmonic in a B-scan interferogram directly gives the scaling coefficient. It greatly simplifies the determination of the magnitude ratio between the two harmonics without the need of third harmonic and cumbersome iterative calculations. The inverse fast Fourier transform of the complex-valued interferogram constructed with the scaling coefficient, first and second harmonics yields a full-range OCT image. Experimental results confirm the effectiveness of the proposed achromatic two-harmonic technique for suppressing the mirror artifacts in SD-OCT images.

  7. Application of the spectral-correlation method for diagnostics of cellulose paper

    Science.gov (United States)

    Kiesewetter, D.; Malyugin, V.; Reznik, A.; Yudin, A.; Zhuravleva, N.

    2017-11-01

    The spectral-correlation method was described for diagnostics of optically inhomogeneous biological objects and materials of natural origin. The interrelation between parameters of the studied objects and parameters of the cross correlation function of speckle patterns produced by scattering of coherent light at different wavelengths is shown for thickness, optical density and internal structure of the material. A detailed study was performed for cellulose electric insulating paper with different parameters.

  8. Measurements and estimation of the columnar optical depth of tropospheric aerosols in the UV spectral region

    Directory of Open Access Journals (Sweden)

    V. E. Cachorro

    2002-04-01

    Full Text Available We report values of the columnar tropospheric aerosol optical depth at UV wavelengths based on experimental measurements of the direct spectral irradiances carried out by a commercial spectroradiometer (Li1800 of Licor company covering the range from 300–1100 nm at two stations with different climate characteristics in Spain. The first station is located in a rural site in north central Spain with continental climate. The data extend from March to the end of October of 1995. The other station is a coastal site in the Gulf of Cádiz (southwest Spain of maritime climate type. This study is mainly focused on the capability of estimating aerosol optical depth values in the UV region based on the extracted information in the visible and near infrared ranges. A first method has been used based on the Ångström turbidity parameters. However, since this method requires detailed spectral information, a second method has also been used, based on the correlation between wavelengths. A correlation has been established between the experimental aerosol optical depth values at 350 nm and 500 nm wavelengths. Although the type of aerosol seems to be the key factor that determines the quality of these estimations, the evaluation of the associated error is necessary to know the behaviour of these estimations in each area of study.Key words. Atmospheric composition and structure (aerosols and particles; transmission and scattering of radiation; troposphere – composition and chemistry

  9. Measurements and estimation of the columnar optical depth of tropospheric aerosols in the UV spectral region

    Directory of Open Access Journals (Sweden)

    V. E. Cachorro

    Full Text Available We report values of the columnar tropospheric aerosol optical depth at UV wavelengths based on experimental measurements of the direct spectral irradiances carried out by a commercial spectroradiometer (Li1800 of Licor company covering the range from 300–1100 nm at two stations with different climate characteristics in Spain. The first station is located in a rural site in north central Spain with continental climate. The data extend from March to the end of October of 1995. The other station is a coastal site in the Gulf of Cádiz (southwest Spain of maritime climate type. This study is mainly focused on the capability of estimating aerosol optical depth values in the UV region based on the extracted information in the visible and near infrared ranges. A first method has been used based on the Ångström turbidity parameters. However, since this method requires detailed spectral information, a second method has also been used, based on the correlation between wavelengths. A correlation has been established between the experimental aerosol optical depth values at 350 nm and 500 nm wavelengths. Although the type of aerosol seems to be the key factor that determines the quality of these estimations, the evaluation of the associated error is necessary to know the behaviour of these estimations in each area of study.

    Key words. Atmospheric composition and structure (aerosols and particles; transmission and scattering of radiation; troposphere – composition and chemistry

  10. COFFEE - Coherent Optical System Field Trial for Spectral Efficiency Enhancement

    DEFF Research Database (Denmark)

    Imran, Muhammad; Fresi, Francesco; Rommel, Simon

    2016-01-01

    The scope, aims, and contributions of the COFFEE project for spectral efficiency enhancement and market exposure are presented.......The scope, aims, and contributions of the COFFEE project for spectral efficiency enhancement and market exposure are presented....

  11. Developement of the method for realization of spectral irradiance scale featuring system of spectral comparisons

    International Nuclear Information System (INIS)

    Skerovic, V; Zarubica, V; Aleksic, M; Zekovic, L; Belca, I

    2010-01-01

    Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.

  12. Developement of the method for realization of spectral irradiance scale featuring system of spectral comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Skerovic, V; Zarubica, V; Aleksic, M [Directorate of measures and precious metals, Optical radiation Metrology department, Mike Alasa 14, 11000 Belgrade (Serbia); Zekovic, L; Belca, I, E-mail: vladanskerovic@dmdm.r [Faculty of Physics, Department for Applied physics and metrology, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2010-10-15

    Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.

  13. Frequency interleaving towards spectrally efficient directly detected optical OFDM for next-generation optical access networks.

    Science.gov (United States)

    Mehedy, Lenin; Bakaul, Masuduzzaman; Nirmalathas, Ampalavanapillai

    2010-10-25

    In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

  14. Spectral Domain Optical Coherence Tomography Findings in Posterior Microphthalmia

    Directory of Open Access Journals (Sweden)

    Emine Tınkır Kayıtmazbatır

    2014-05-01

    Full Text Available The retinal spectral domain optical coherence tomography (SD-OCT findings of two posterior microphthalmia cases are presented in this case report. For this purpose, the findings of two siblings aged five and seven years who presented to our clinic with the complain of far-sightedness and high hypermetropia were evaluated. Both cases diagnosed to have posterior microphthalmia demonstrated normal biomicroscopic anterior segment examination and gonioscopy findings and the axial lengths were measured to be shorter than 17mm. The SD-OCT analysis of papillomacular folds detected in fundus examination revealed contribution of only neurosensorial retina. Beneath the retinal fold, we observed bilateral cysts in the intraretinal area in one of the cases and a triangle-shaped hyporeflective space with an apex corresponding to that of the retinal fold in the subretinal area in both cases. SD-OCT is an adjunctive imaging tool for diagnosis and follow-up of degenerative changes in posterior microphthalmia. These changes may be also important for visual prognosis. (Turk J Ophthalmol 2014; 44: 240-2

  15. Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Anand Vinekar

    2015-01-01

    Full Text Available Spectral domain coherence tomography (SD OCT has become an important tool in the management of pediatric retinal diseases. It is a noncontact imaging device that provides detailed assessment of the microanatomy and pathology of the infant retina with a short acquisition time allowing office examination without the requirement of anesthesia. Our understanding of the development and maturation of the infant fovea has been enhanced by SD OCT allowing an in vivo assessment that correlates with histopathology. This has helped us understand the critical correlation of foveal development with visual potential in the first year of life and beyond. In this review, we summarize the recent literature on the clinical applications of SD OCT in studying the pathoanatomy of the infant macula, its ability to detect subclinical features, and its correlation with disease and vision. Retinopathy of prematurity and macular edema have been discussed in detail. The review also summarizes the current status of SD OCT in other infant retinal conditions, imaging the optic nerve, the choroid, and the retinal nerve fibre in infants and children, and suggests future areas of research.

  16. Stability estimates for hp spectral element methods for general ...

    Indian Academy of Sciences (India)

    We establish basic stability estimates for a non-conforming ℎ- spectral element method which allows for simultaneous mesh refinement and variable polynomial degree. The spectral element functions are non-conforming if the boundary conditions are Dirichlet. For problems with mixed boundary conditions they are ...

  17. Prediction of meat spectral patterns based on optical properties and concentrations of the major constituents.

    Science.gov (United States)

    ElMasry, Gamal; Nakauchi, Shigeki

    2016-03-01

    A simulation method for approximating spectral signatures of minced meat samples was developed depending on concentrations and optical properties of the major chemical constituents. Minced beef samples of different compositions scanned on a near-infrared spectroscopy and on a hyperspectral imaging system were examined. Chemical composition determined heuristically and optical properties collected from authenticated references were simulated to approximate samples' spectral signatures. In short-wave infrared range, the resulting spectrum equals the sum of the absorption of three individual absorbers, that is, water, protein, and fat. By assuming homogeneous distributions of the main chromophores in the mince samples, the obtained absorption spectra are found to be a linear combination of the absorption spectra of the major chromophores present in the sample. Results revealed that developed models were good enough to derive spectral signatures of minced meat samples with a reasonable level of robustness of a high agreement index value more than 0.90 and ratio of performance to deviation more than 1.4.

  18. The spectral volume method as applied to transport problems

    International Nuclear Information System (INIS)

    McClarren, Ryan G.

    2011-01-01

    We present a new spatial discretization for transport problems: the spectral volume method. This method, rst developed by Wang for computational fluid dynamics, divides each computational cell into several sub-cells and enforces particle balance on each of these sub-cells. Also, these sub-cells are used to build a polynomial reconstruction in the cell. The idea of dividing cells into many cells is a generalization of the simple corner balance and other similar schemes. The spectral volume method preserves particle conservation and preserves the asymptotic diffusion limit. We present results from the method on two transport problems in slab geometry using discrete ordinates and second through sixth order spectral volume schemes. The numerical results demonstrate the accuracy and preservation of the diffusion limit of the spectral volume method. Future work will explore possible bene ts of the scheme for high-performance computing and for resolving diffusive boundary layers. (author)

  19. Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings.

    Science.gov (United States)

    Pastor, Daniel; Ortega, Beatriz; Capmany, José; Sales, Salvador; Martinez, Alfonso; Muñoz, Pascual

    2003-10-01

    We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.

  20. Practical implementation of spectral-intensity dispersion-canceled optical coherence tomography with artifact suppression

    Science.gov (United States)

    Shirai, Tomohiro; Friberg, Ari T.

    2018-04-01

    Dispersion-canceled optical coherence tomography (OCT) based on spectral intensity interferometry was devised as a classical counterpart of quantum OCT to enhance the basic performance of conventional OCT. In this paper, we demonstrate experimentally that an alternative method of realizing this kind of OCT by means of two optical fiber couplers and a single spectrometer is a more practical and reliable option than the existing methods proposed previously. Furthermore, we develop a recipe for reducing multiple artifacts simultaneously on the basis of simple averaging and verify experimentally that it works successfully in the sense that all the artifacts are mitigated effectively and only the true signals carrying structural information about the sample survive.

  1. Online monitoring of printed electronics by Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-03-28

    Spectral-Domain Optical Coherence Tomography (SD-OCT) is an optical method capable of 3D imaging of object\\'s internal structure with micron-scale resolution. Modern SD-OCT tools offer the speed capable of online monitoring of printed devices. This paper demonstrates the use of SD-OCT in a simulated roll-to-roll (R2R) process through monitoring some structural properties of moving screen printed interdigitated electrodes. It is shown that structural properties can be resolved for speeds up to ca. 1m/min, which is the first step towards application of this method in real manufacturing processes, including roll-to-roll (R2R) printing.

  2. Spectral-domain optical coherence tomography of macula in myopia.

    Science.gov (United States)

    Choovuthayakorn, Janejit; Laowong, Taksaorn; Watanachai, Nawat; Patikulsila, Direk; Chaikitmongkol, Voraporn

    2016-06-01

    The aim of this study is to determine the associations between regional macular thickness and gender, age, axial length, and degree of myopia in young and middle-aged healthy myopic eyes. One hundred and seventy-one subjects with -0.5 diopters of myopia or worse underwent prospective macular thickness measurement by Spectralis spectral-domain optical coherence tomography. Subjects' mean age was 32.40 ± 8.25 years (range 18 to 49 years), with 45 % being male. The mean degree of myopia was -4.57 ± 3.52 diopters, with a mean axial length of 25.09 ± 1.67 mm. Multivariate regression analysis demonstrated significantly thicker central (mean 9.13 µm thicker) and inner subfields (mean 8.55 µm thicker) in males (P values were <0.001 and 0.002, respectively). In addition, in both genders, for each millimeter of increased axial length, the central subfield thickness increased by 2.11 µm, the inner subfield decreased by 2.25 µm, and the outer subfield decreased by 3.62 µm (P values were 0.010, <0.001, and <0.001, respectively). Factors including gender and axial length affect baseline regional macular thickness in young and middle-age myopic subjects. The central subfield and inner subfield were affected by both gender and axial length, while the outer subfield was affected only by axial length. The macular thickness of myopic subjects with macular disease should be interpreted in light of these factors.

  3. Performance of spectral fitting methods for vegetation fluorescence quantification

    NARCIS (Netherlands)

    Meroni, M.; Busetto, D.; Colombo, R.; Guanter, L.; Moreno, J.; Verhoef, W.

    2010-01-01

    The Fraunhofer Line Discriminator (FLD) principle has long been considered as the reference method to quantify solar-induced chlorophyll fluorescence (F) from passive remote sensing measurements. Recently, alternative retrieval algorithms based on the spectral fitting of hyperspectral radiance

  4. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    International Nuclear Information System (INIS)

    Chen, Q G; Xu, Y; Zhu, H H; Chen, H; Lin, B

    2015-01-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565–750 nm. The spectral parameter, defined as the ratio of wavebands at 565–750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as <0.66, 0.66–1.06, 1.06–1.62, and >1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems. (paper)

  5. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  6. Spectral Methods for Immunization of Large Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmad

    2017-11-01

    Full Text Available Given a network of nodes, minimizing the spread of a contagion using a limited budget is a well-studied problem with applications in network security, viral marketing, social networks, and public health. In real graphs, virus may infect a node which in turn infects its neighbour nodes and this may trigger an epidemic in the whole graph. The goal thus is to select the best k nodes (budget constraint that are immunized (vaccinated, screened, filtered so as the remaining graph is less prone to the epidemic. It is known that the problem is, in all practical models, computationally intractable even for moderate sized graphs. In this paper we employ ideas from spectral graph theory to define relevance and importance of nodes. Using novel graph theoretic techniques, we then design an efficient approximation algorithm to immunize the graph. Theoretical guarantees on the running time of our algorithm show that it is more efficient than any other known solution in the literature. We test the performance of our algorithm on several real world graphs. Experiments show that our algorithm scales well for large graphs and outperforms state of the art algorithms both in quality (containment of epidemic and efficiency (runtime and space complexity.

  7. A divisive spectral method for network community detection

    International Nuclear Information System (INIS)

    Cheng, Jianjun; Li, Longjie; Yao, Yukai; Chen, Xiaoyun; Leng, Mingwei; Lu, Weiguo

    2016-01-01

    Community detection is a fundamental problem in the domain of complex network analysis. It has received great attention, and many community detection methods have been proposed in the last decade. In this paper, we propose a divisive spectral method for identifying community structures from networks which utilizes a sparsification operation to pre-process the networks first, and then uses a repeated bisection spectral algorithm to partition the networks into communities. The sparsification operation makes the community boundaries clearer and sharper, so that the repeated spectral bisection algorithm extract high-quality community structures accurately from the sparsified networks. Experiments show that the combination of network sparsification and a spectral bisection algorithm is highly successful, the proposed method is more effective in detecting community structures from networks than the others. (paper: interdisciplinary statistical mechanics)

  8. Integrated optics refractometry: sensitivity in relation to spectral shifts

    NARCIS (Netherlands)

    Hoekstra, Hugo; Hammer, M.

    2013-01-01

    A new variant of the Vernier-effect based sensor reported in ref. 1 is introduced. Both sensor types may show a huge index induced spectral shift. It will be shown in a poster presentation that with such sensors, as well as with surface plasmon based sensors, the constraints on the spectral

  9. The analysis of toxic connections content in water by spectral methods

    Science.gov (United States)

    Plotnikova, I. V.; Chaikovskaya, O. N.; Sokolova, I. V.; Artyushin, V. R.

    2017-08-01

    The current state of ecology means the strict observance of measures for the utilization of household and industrial wastes that is connected with very essential expenses of means and time. Thanks to spectroscopic devices usage the spectral methods allow to carry out the express quantitative and qualitative analysis in a workplace and field conditions. In a work the application of spectral methods by studying the degradation of toxic organic compounds after preliminary radiation of various sources is shown. Experimental data of optical density of water at various influences are given.

  10. Spectral domain optical coherence tomography findings in tamoxifen retinopathy--a case report.

    Science.gov (United States)

    Nair, Sandhya Narayanan; Anantharaman, Giridhar; Gopalakrishnan, Mahesh; Vyas, Jyothiprakash

    2013-01-01

    To report spectral domain optical coherence tomography findings in a case of typical tamoxifen retinopathy. In this observational case report, a patient with tamoxifen retinopathy was imaged with spectral domain optical coherence tomography and fundus auto fluorescence. Spectral domain optical coherence tomography showed numerous hyperreflective spots within the retina, mainly in the inner retinal layers in both the eyes. The external limiting membrane, the Inner Segment-Outer Segment junction, and the photoreceptors were not discernable at the fovea in the right eye. In the left eye, there was foveal atrophy with total loss of photoreceptors. The autofluorescent images showed macular hypofluorescence with foveal hyperfluorescence. Spectral domain optical coherence tomography demonstrated abnormalities in the outer retinal layers in tamoxifen retinopathy. There were also characteristic alterations in the autofluorescence pattern at the macula in tamoxifen retinopathy.

  11. Multi-spectral optical absorption in substrate-free nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray, E-mail: lapierr@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L7 (Canada); Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet [Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada); Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 (Canada)

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  12. Infrared autofluorescence, short-wave autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytomas

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-05-01

    Full Text Available AIM: To investigate the findings of infrared fundus autofluorescence (IR-AF and spectral-domain optical coherence tomography (SD-OCT in eyes with optic disc melanocytoma (ODM. METHODS: IR-AF findings and those of other ophthalmologic imaging examinations, including short-wave autofluorescence (SW-AF, fluorescein angiography (FA, fundus color photography, and SD-OCT of 8 eyes of 8 consecutive cases with ODM were assessed. RESULTS: The ODMs in all cases (100% presented similar IR-AF, SW-AF, and FA findings. On IR-AF images, ODMs showed outstanding hyper-AF with well-defined outline. On SW-AF images, the area of ODMs presented as hypo-AF. FA images revealed the leaking retinal telangiectasia on the surface of the ODMs. On SD-OCT images in 8 cases (100%, the ODMs were sloped with highly reflective surface, which were disorganized retina and optic nerve layers. In 7 cases (87.5%, peripapillary choroids were involved. The melanocytomas of 8 cases (100% presented as optically empty spaces. Vitreous seeds were found in one case (12.5%. CONCLUSION: IR-AF imaging may provide a new modality to evaluate the pathologic features of ODMs, and together with SW-AF imaging, offers a new tool to study biological characteristics associated with ODMs. SD-OCT is a valuable tool in delimitating the tumor extension and providing morphological information about the adjacent retinal tissue.

  13. Chebyshev super spectral viscosity method for a fluidized bed model

    International Nuclear Information System (INIS)

    Sarra, Scott A.

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations

  14. Spectral method and its high performance implementation

    KAUST Repository

    Wu, Zedong

    2014-01-01

    We have presented a new method that can be dispersion free and unconditionally stable. Thus the computational cost and memory requirement will be reduced a lot. Based on this feature, we have implemented this algorithm on GPU based CUDA for the anisotropic Reverse time migration. There is almost no communication between CPU and GPU. For the prestack wavefield extrapolation, it can combine all the shots together to migration. However, it requires to solve a bigger dimensional problem and more meory which can\\'t fit into one GPU cards. In this situation, we implement it based on domain decomposition method and MPI for distributed memory system.

  15. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  16. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis; Mouhot, Clé ment

    2011-01-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  17. Spectral/ hp element methods: Recent developments, applications, and perspectives

    Science.gov (United States)

    Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.

    2018-02-01

    The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.

  18. Spectral methods for quantum Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Szehr, Oleg

    2014-05-08

    The aim of this project is to contribute to our understanding of quantum time evolutions, whereby we focus on quantum Markov chains. The latter constitute a natural generalization of the ubiquitous concept of a classical Markov chain to describe evolutions of quantum mechanical systems. We contribute to the theory of such processes by introducing novel methods that allow us to relate the eigenvalue spectrum of the transition map to convergence as well as stability properties of the Markov chain.

  19. Spectral methods for quantum Markov chains

    International Nuclear Information System (INIS)

    Szehr, Oleg

    2014-01-01

    The aim of this project is to contribute to our understanding of quantum time evolutions, whereby we focus on quantum Markov chains. The latter constitute a natural generalization of the ubiquitous concept of a classical Markov chain to describe evolutions of quantum mechanical systems. We contribute to the theory of such processes by introducing novel methods that allow us to relate the eigenvalue spectrum of the transition map to convergence as well as stability properties of the Markov chain.

  20. Time lens based optical fourier transformation for advanced processing of spectrally-efficient OFDM and N-WDM signals

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals.......We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals....

  1. Extending the Effective Ranging Depth of Spectral Domain Optical Coherence Tomography by Spatial Frequency Domain Multiplexing

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2016-11-01

    Full Text Available We present a spatial frequency domain multiplexing method for extending the imaging depth range of a spectral domain optical coherence tomography (SDOCT system without any expensive device. This method uses two galvo scanners with different pivot-offset distances in two independent reference arms for spatial frequency modulation and multiplexing. The spatial frequency contents corresponding to different depth regions of the sample can be shifted to different frequency bands. The spatial frequency domain multiplexing SDOCT system provides an approximately 1.9-fold increase in the effective ranging depth compared with that of a conventional full-range SDOCT system. The reconstructed images of phantom and biological tissue demonstrate the expected increase in ranging depth. The parameters choice criterion for this method is discussed.

  2. Fiber Bragg grating for spectral phase optical code-division multiple-access encoding and decoding

    Science.gov (United States)

    Fang, Xiaohui; Wang, Dong-Ning; Li, Shichen

    2003-08-01

    A new method for realizing spectral phase optical code-division multiple-access (OCDMA) coding based on step chirped fiber Bragg gratings (SCFBGs) is proposed and the corresponding encoder/decoder is presented. With this method, a mapping code is introduced for the m-sequence address code and the phase shift can be inserted into the subgratings of the SCFBG according to the mapping code. The transfer matrix method together with Fourier transform is used to investigate the characteristics of the encoder/decoder. The factors that influence the correlation property of the encoder/decoder, including index modulation and bandwidth of the subgrating, are identified. The system structure is simple and good correlation output can be obtained. The performance of the OCDMA system based on SCFBGs has been analyzed.

  3. HOMES - Holographic Optical Method for Exoplanet Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope that employs a double dispersion architecture, using a holographic optical element...

  4. Spectral methods in quantum field theory

    International Nuclear Information System (INIS)

    Graham, Noah; Quandt, Markus; Weigel, Herbert

    2009-01-01

    This concise text introduces techniques from quantum mechanics, especially scattering theory, to compute the effects of an external background on a quantum field in general, and on the properties of the quantum vacuum in particular. This approach can be succesfully used in an increasingly large number of situations, ranging from the study of solitons in field theory and cosmology to the determination of Casimir forces in nano-technology. The method introduced and applied in this book is shown to give an unambiguous connection to perturbation theory, implementing standard renormalization conditions even for non-perturbative backgrounds. It both gives new theoretical insights, for example illuminating longstanding questions regarding Casimir stresses, and also provides an efficient analytic and numerical tool well suited to practical calculations. Last but not least, it elucidates in a concrete context many of the subtleties of quantum field theory, such as divergences, regularization and renormalization, by connecting them to more familiar results in quantum mechanics. While addressed primarily at young researchers entering the field and nonspecialist researchers with backgrounds in theoretical and mathematical physics, introductory chapters on the theoretical aspects of the method make the book self-contained and thus suitable for advanced graduate students. (orig.)

  5. Quasi-optical analysis of a far-infrared spatio-spectral space interferometer concept

    Science.gov (United States)

    Bracken, C.; O'Sullivan, C.; Murphy, J. A.; Donohoe, A.; Savini, G.; Lightfoot, J.; Juanola-Parramon, R.; Fisica Consortium

    2016-07-01

    FISICA (Far-Infrared Space Interferometer Critical Assessment) was a three year study of a far-infrared spatio-spectral double-Fourier interferometer concept. One of the aims of the FISICA study was to set-out a baseline optical design for such a system, and to use a model of the system to simulate realistic telescope beams for use with an end-to-end instrument simulator. This paper describes a two-telescope (and hub) baseline optical design that fulfils the requirements of the FISICA science case, while minimising the optical mass of the system. A number of different modelling techniques were required for the analysis: fast approximate simulation tools such as ray tracing and Gaussian beam methods were employed for initial analysis, with GRASP physical optics used for higher accuracy in the final analysis. Results are shown for the predicted far-field patterns of the telescope primary mirrors under illumination by smooth walled rectangular feed horns. Far-field patterns for both on-axis and off-axis detectors are presented and discussed.

  6. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    Science.gov (United States)

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  7. Clinical manifestations of optic pit maculopathy as demonstrated by spectral domain optical coherence tomography.

    Science.gov (United States)

    Tzu, Jonathan H; Flynn, Harry W; Berrocal, Audina M; Smiddy, William E; Murray, Timothy G; Fisher, Yale L

    2013-01-01

    The purpose of this retrospective study was to evaluate the characteristic features, including spectral-domain optical coherence tomography (SD-OCT), clinical course, and outcome of treatment if given for patients with optic disc pit maculopathy. We investigated a consecutive series of patients with a diagnosis of optic pit maculopathy treated between 2001 and 2012 at the Bascom Palmer Eye Institute. Patients were divided into two main groups, ie, patients who were observed without surgery and patients who received surgical intervention. The main outcome measures were presenting and final visual acuity, and changes in SD-OCT imaging were recorded. Other data including age, gender, eye, age of onset, length of follow-up, location of optic pit, and location of fluid by OCT were also recorded. On OCT, 67% (12/18) of the eyes showed schisis-like cavities, 22% (4/18) had only subretinal fluid, and 17% (3/18) had only a schisis-like cavity without subretinal fluid. In the patients managed by observation, visual acuity was ≥20/200 in 6/8 eyes initially and 6/8 eyes at last follow-up. Ten of 18 patients received either focal laser, surgery or both. Six of 10 eyes undergoing surgery had initial visual acuity ≥ 20/200, and 8 of 10 eyes undergoing surgery had a visual acuity of ≥20/200 at last follow-up. In this study, many eyes were observed and remained stable during follow-up. In eyes with reduced vision, surgical intervention produced variable outcomes, and persistent intraretinal/subretinal fluid was a common occurrence.

  8. Impact of initial pulse shape on the nonlinear spectral compression in optical fibre

    Science.gov (United States)

    Boscolo, Sonia; Chaussard, Frederic; Andresen, Esben; Rigneault, Hervé; Finot, Christophe

    2018-02-01

    We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear propagation spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.

  9. Synthesis, XRD, TEM, EPR, and Optical Absorption Spectral Studies of CuZnO2 Nanocompound

    Directory of Open Access Journals (Sweden)

    T. Ravindra Reddy

    2014-01-01

    Full Text Available Synthesis of nano CuZnO2 compound is carried out by thermal decomposition method. The crystalline phase of the material is characterized by XRD. The calculated unit cell constants are a=3.1 Å and c=3.4786 Å and are of tetragonal structure. The unit cell constants are different from wurtzite (hexagonal which indicate that a nanocompound is formed. Further TEM images reveal that the metal ion is in tetragonal structure with oxygen ligands. The prepared CuZnO2 is then characterized for crystallite size analysis by employing transmission electron microscopy (TEM. The size is found to be 100 nm. Uniform bright rings are noticed in the TEM picture suggesting that the nanocrystals have preferential instead of random orientations. The selected-area electron diffraction (SAED pattern clearly indicates the formation of CuO-ZnO nanocompound. The nature of bonding is studied by electron paramagnetic resonance (EPR. The covalency character is about 0.74 and thus the compound is electrically less conductive. Optical absorption spectral studies suggest that Cu(II is placed in tetragonal elongation crystal field. The spin-orbit coupling constant, λ, is calculated using the EPR and optical absorption spectral results suggest some covalent bond between metal and ligand. Near infrared (NIR spectra are due to hydroxyl and water fundamentals.

  10. The optical constants and spectral specular reflectivity of highly oriented pyrolytic graphite (HOPG)

    International Nuclear Information System (INIS)

    Havstad, M.A.; Schildbach, M.A.; McLean, W. II.

    1993-08-01

    Measurements of the specular reflectivity and the optical constants of highly ordered pyrolytic graphite (HOPG) have been made using two independent optical systems. The first measures reflectance (at 1.06 μm and 293 K) by comparing the intensity of a laser beam before and after reflecting off the sample. The second determines the complex index of raft-action (from 0.55 to 8.45 μm, with sample temperatures of 293, 480, 900 and 1300 K) by ellipsometry. Agreement between the two methods is good. Moderate reflectivities are observed over the full spectral range of measurement: the spectral directional-hemispherical reflectivity at normal incidence varies from 0.41 at 0.55 μm to 0.74 at 8.45 μm. The components of the complex index of refraction increase smoothly with wavelength. The index of refraction increases from 3.10 at 0.55 μm to 7.84 at 8.45 μm. The extinction coefficient varies from 2.01 to 6.66 over the same range

  11. Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.

    Science.gov (United States)

    Islim, Mohamed Sufyan; Haas, Harald

    2016-05-30

    The energy efficiency of pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) decreases as the modulation order of M-PAM modulation increases. Enhanced PAM-DMT (ePAM-DMT) was proposed as a solution to the reduced energy efficiency of PAM-DMT. This was achieved by allowing multiple streams of PAM-DMT to be superimposed and successively demodulated at the receiver side. In order to maintain a distortion-free unipolar ePAM-DMT system, the multiple time-domain PAM-DMT streams are required to be aligned. However, aligning the antisymmetry in ePAM-DMT is complex and results in efficiency losses. In this paper, a novel simplified method to apply the superposition modulation on M-PAM modulated discrete multitone (DMT) is introduced. Contrary to ePAM-DMT, the signal generation of the proposed system, termed augmented spectral efficiency discrete multitone (ASE-DMT), occurs in the frequency domain. This results in an improved spectral and energy efficiency. The analytical bit error rate (BER) performance bound of the proposed system is derived and compared with Monte-Carlo simulations. The system performance is shown to offer significant electrical and optical energy savings compared with ePAM-DMT and DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM).

  12. Spectral radiative property control method based on filling solution

    International Nuclear Information System (INIS)

    Jiao, Y.; Liu, L.H.; Hsu, P.-F.

    2014-01-01

    Controlling thermal radiation by tailoring spectral properties of microstructure is a promising method, can be applied in many industrial systems and have been widely researched recently. Among various property tailoring schemes, geometry design of microstructures is a commonly used method. However, the existing radiation property tailoring is limited by adjustability of processed microstructures. In other words, the spectral radiative properties of microscale structures are not possible to change after the gratings are fabricated. In this paper, we propose a method that adjusts the grating spectral properties by means of injecting filling solution, which could modify the thermal radiation in a fabricated microstructure. Therefore, this method overcomes the limitation mentioned above. Both mercury and water are adopted as the filling solution in this study. Aluminum and silver are selected as the grating materials to investigate the generality and limitation of this control method. The rigorous coupled-wave analysis is used to investigate the spectral radiative properties of these filling solution grating structures. A magnetic polaritons mechanism identification method is proposed based on LC circuit model principle. It is found that this control method could be used by different grating materials. Different filling solutions would enable the high absorption peak to move to longer or shorter wavelength band. The results show that the filling solution grating structures are promising for active control of spectral radiative properties. -- Highlights: • A filling solution grating structure is designed to adjust spectral radiative properties. • The mechanism of radiative property control is studied for engineering utilization. • Different grating materials are studied to find multi-functions for grating

  13. Convergence analysis of spectral element method for electromechanical devices

    NARCIS (Netherlands)

    Curti, M.; Jansen, J.W.; Lomonova, E.A.

    2017-01-01

    This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with the

  14. Convergence analysis of spectral element method for magnetic devices

    NARCIS (Netherlands)

    Curti, M.; Jansen, J.W.; Lomonova, E.A.

    2018-01-01

    This paper concerns the comparison of the performance of the Spectral Element Method (SEM) and the Finite Element Method (FEM) for modeling a magnetostatic problem. The convergence of the vector magnetic potential, the magnetic flux density, and the total stored energy in the system is compared with

  15. A conjugate gradient method for the spectral partitioning of graphs

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.

    1997-01-01

    The partitioning of graphs is a frequently occurring problem in science and engineering. The spectral graph partitioning method is a promising heuristic method for this class of problems. Its main disadvantage is the large computing time required to solve a special eigenproblem. Here a simple and

  16. INTRASURGICAL MICROSCOPE-INTEGRATED SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY-ASSISTED MEMBRANE PEELING.

    Science.gov (United States)

    Falkner-Radler, Christiane I; Glittenberg, Carl; Gabriel, Max; Binder, Susanne

    2015-10-01

    To evaluate microscope-integrated intrasurgical spectral domain optical coherence tomography during macular surgery in a prospective monocenter study. Before pars plana vitrectomy and before, during, and after membrane peeling, 512 × 128 macular cube scans were performed using a Carl Zeiss Meditec Cirrus high-definition OCT system adapted to the optical pathway of a Zeiss OPMI VISU 200 surgical microscope and compared with retinal staining. The study included 51 patients with epiretinal membranes, with 8 of those having additional lamellar macular holes, 11 patients with vitreomacular traction, and 8 patients with full-thickness macular holes. Intraoperative spectral domain optical coherence tomography allowed performing membrane peeling without using retinal dyes in 40% of cases (28 of 70 patients). No residual membranes were found in 94.3% of patients (66 of 70 patients) in intrasurgical spectral domain optical coherence tomography and subsequent (re)staining. In patients with vitreomacular traction, intrasurgical spectral domain optical coherence tomography scans facilitated decisions on the need for an intraocular tamponade after membrane peeling. Intraoperative spectral domain optical coherence tomography was comparable with retinal dyes in confirming success after membrane peeling. However, the visualization of flat membranes was better after staining.

  17. Group velocity measurement using spectral interference in near-field scanning optical microscopy

    International Nuclear Information System (INIS)

    Mills, John D.; Chaipiboonwong, Tipsuda; Brocklesby, William S.; Charlton, Martin D. B.; Netti, Caterina; Zoorob, Majd E.; Baumberg, Jeremy J.

    2006-01-01

    Near-field scanning optical microscopy provides a tool for studying the behavior of optical fields inside waveguides. In this experiment the authors measure directly the variation of group velocity between different modes of a planar slab waveguide as the modes propagate along the guide. The measurement is made using the spectral interference between pulses propagating inside the waveguide with different group velocities, collected using a near-field scanning optical microscope at different points down the guide and spectrally resolved. The results are compared to models of group velocities in simple guides

  18. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    Science.gov (United States)

    Fazal, Muhammad Irfan

    The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters

  19. High order spectral difference lattice Boltzmann method for incompressible hydrodynamics

    Science.gov (United States)

    Li, Weidong

    2017-09-01

    This work presents a lattice Boltzmann equation (LBE) based high order spectral difference method for incompressible flows. In the present method, the spectral difference (SD) method is adopted to discretize the convection and collision term of the LBE to obtain high order (≥3) accuracy. Because the SD scheme represents the solution as cell local polynomials and the solution polynomials have good tensor-product property, the present spectral difference lattice Boltzmann method (SD-LBM) can be implemented on arbitrary unstructured quadrilateral meshes for effective and efficient treatment of complex geometries. Thanks to only first oder PDEs involved in the LBE, no special techniques, such as hybridizable discontinuous Galerkin method (HDG), local discontinuous Galerkin method (LDG) and so on, are needed to discrete diffusion term, and thus, it simplifies the algorithm and implementation of the high order spectral difference method for simulating viscous flows. The proposed SD-LBM is validated with four incompressible flow benchmarks in two-dimensions: (a) the Poiseuille flow driven by a constant body force; (b) the lid-driven cavity flow without singularity at the two top corners-Burggraf flow; and (c) the unsteady Taylor-Green vortex flow; (d) the Blasius boundary-layer flow past a flat plate. Computational results are compared with analytical solutions of these cases and convergence studies of these cases are also given. The designed accuracy of the proposed SD-LBM is clearly verified.

  20. High bit rate optical transmission using midspan spectral inversion ...

    African Journals Online (AJOL)

    compensation of the nonlinear and linear effects by a midspan optical phase conjugation (OPC) is studied. First, we show the impacts of chromatic dispersion ... optical amplifier technology instead of developing new amplifier technology. .... feedback (DFB) laser and by the cascade of external LiNbO3 MZMs modulator and.

  1. Spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akça, B.I.

    2012-01-01

    Optical coherence tomography (OCT) is a non-invasive optical technique for high-resolution cross-sectional imaging of specimens, with many applications in clinical medicine and industry (e.g. materials testing, quality assurance, and process control). Current state-of-the-art OCT systems operate in

  2. Dispersion free full range spectral intensity optical coherence tomography

    DEFF Research Database (Denmark)

    Jensen, Mikkel; Israelsen, Niels Møller; Maria, Michael

    2017-01-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique with many applications and widespread use in ophthalmology [1]. The axial resolution in OCT is inversely proportional to the bandwidth of the optical source used, but the improved axial resolution comes at the price of more...

  3. Quantitative functional optical imaging of the human skin using multi-spectral imaging

    International Nuclear Information System (INIS)

    Kainerstorfer, J. M.

    2010-01-01

    Light tissue interactions can be described by the physical principles of absorption and scattering. Based on those parameters, different tissue types and analytes can be distinguished. Extracting blood volume and oxygenation is of particular interest in clinical routines for tumor diagnostics and treatment follow up, since they are parameters of angiogenic processes. The quantification of those analytes in tissue can be done by physical modeling of light tissue interaction. The physical model used here is the random walk theory. However, for quantification and clinical usefulness, one has to account for multiple challenges. First, one must consider the effect of topology of the sample on measured physical parameters. Second, diffusion of light inside the tissue is dependent on the structure of the sample imaged. Thus, the structural conformation has to be taken into account. Third, clinical translation of imaging modalities is often hindered due to the complicated post-processing of data, not providing results in real-time. In this thesis, two imaging modalities are being utilized, where the first one, diffuse multi-spectral imaging, is based on absorption contrast and spectral characteristics and the second one, Optical Coherence Tomography (OCT), is based on scattering changes within the tissue. Multi-spectral imaging can provide spatial distributions of blood volume and blood oxygenation and OCT yields 3D structural images with micrometer resolution. In order to address the challenges mentioned above, a curvature correction algorithm for taking the topology into account was developed. Without taking curvature of the object into account, reconstruction of optical properties is not accurate. The method developed removes this artifact and recovers the underlying data, without the necessity of measuring the object's shape. The next step was to recover blood volume and oxygenation values in real time. Principal Component Analysis (PCA) on multi spectral images is

  4. The Optical Microvariability and Spectral Changes of the BL ...

    Indian Academy of Sciences (India)

    strong bluer-when-brighter chromatism was found while different spectral behaviours were found on intranight time scales. Key words. BL lacertae objects: individual (S5 0716+714)—galaxies: active—galaxies: photometry. 1. Introduction. Since the development of CCD in the 80s, microvariability of blazars has been.

  5. The spectral cell method in nonlinear earthquake modeling

    Science.gov (United States)

    Giraldo, Daniel; Restrepo, Doriam

    2017-12-01

    This study examines the applicability of the spectral cell method (SCM) to compute the nonlinear earthquake response of complex basins. SCM combines fictitious-domain concepts with the spectral-version of the finite element method to solve the wave equations in heterogeneous geophysical domains. Nonlinear behavior is considered by implementing the Mohr-Coulomb and Drucker-Prager yielding criteria. We illustrate the performance of SCM with numerical examples of nonlinear basins exhibiting physically and computationally challenging conditions. The numerical experiments are benchmarked with results from overkill solutions, and using MIDAS GTS NX, a finite element software for geotechnical applications. Our findings show good agreement between the two sets of results. Traditional spectral elements implementations allow points per wavelength as low as PPW = 4.5 for high-order polynomials. Our findings show that in the presence of nonlinearity, high-order polynomials (p ≥ 3) require mesh resolutions above of PPW ≥ 10 to ensure displacement errors below 10%.

  6. Method of lightening radiation darkened optical elements

    International Nuclear Information System (INIS)

    Reich, F.R.; Schwankoff, A.R.

    1980-01-01

    A method of lightening a radiation-darkened optical element in which visible optical energy or electromagnetic radiation having a wavelength in the range of from about 2000 to about 20,000 angstroms is directed into the radiation-darkened optical element; the method may be used to lighten radiation-darkened optical element in-situ during the use of the optical element to transmit data by electronically separating the optical energy from the optical output by frequency filtering, data cooling, or interlacing the optic energy between data intervals

  7. Information content in spectral dependencies of optical unit volume parameters under action of He-Ne laser on blood

    Science.gov (United States)

    Khairullina, Alphiya Y.; Oleinik, Tatiana V.

    1995-01-01

    Our previous works concerned with the development of methods for studying blood and action of low-intensity laser radiation on blood and erythrocyte suspensions had shown the light- scattering methods gave a large body of information on a medium studied due to the methodological relationship between irradiation processes and techniques for investigations. Detail analysis of spectral diffuse reflectivities and transmissivities of optically thick blood layers, spectral absorptivities calculated on this basis over 600 - 900 nm, by using different approximations, for a pathological state owing to hypoxia testifies to the optical significance of not only hemoglobin derivatives but also products of hemoglobin decomposition. Laser action on blood is specific and related to an initial state of blood absorption due to different composition of chromoproteids. This work gives the interpretation of spectral observations. Analysis of spectral dependencies of the exinction coefficient e, mean cosine m of phase function, and parameter Q equals (epsilon) (1-(mu) )H/(lambda) (H - hematocrit) testifies to decreasing the relative index of refraction of erythrocytes and to morphological changes during laser action under pathology owing to hypoxia. The possibility to obtain physical and chemical information on the state of blood under laser action in vivo is shown to be based on the method proposed by us for calculating multilayered structures modeling human organs and on the technical implementation of this method.

  8. INFORMATIVITY OF SPECTRAL OPTICAL COHERENT TOMOGRAPHY IN AGGRESSIVE POSTERIOR RETINOPATHY OF PREMATURITY

    Directory of Open Access Journals (Sweden)

    A. V. Tereshchenko

    2017-01-01

    Full Text Available The purpose: to evaluate the informativity of optical coherence tomography in patients with aggressive posterior retinopathy of prematurity. Patients and methods. spectral optical coherence tomography using portable device iVue-100 with a removable camera (Optovue, USA was held in 32 children (64 eyes with aggressive posterior retinopathy of prematurity with a gestational period 26–31 week. Results. Children with aggressive posterior retinopathy of prematurity at the stage of early clinical manifestations, in addition to the indication that the immaturity of the retina, according to the spectral optical coherence tomography revealed only a few areas of epiretinal proliferation, which are not visualized with a digital retinoscopy and binocular indirect ophthalmoscopy. When the process is more pronounced in children with retinopathy of prematurity aggressive rear stage manifestation already determined multiple zones epiretinal proliferation as a "mushroom" and "flake" conglomerates with rear zone hyaloid membrane had an uneven seal. Coarser structural disorders of the retina and the vitreoretinal interface have been identified in patients with advancedstage aggressive posterior retinopathy of prematurity. We determined the shaft extraretinal proliferation as a "comb", as well as portions of epiretinal proliferation on the border of vascularized and avascular retina, which tended to merge, and the formation of massive hyperreflection complexes, lifted back hyaloid membrane, which was not only uneven sealed, but in some places is stratified. Conclusion. Despite the complexity of the procedure and the complexity of its implementation, the data obtained are particularly valuable and informative because they allow to complement the clinical picture and objectify it. It helps to choose the optimal tactics and improvement of a differentiated approach to the treatment of aggressive posterior retinopathy of prematurity.

  9. Spectral methods for time dependent partial differential equations

    Science.gov (United States)

    Gottlieb, D.; Turkel, E.

    1983-01-01

    The theory of spectral methods for time dependent partial differential equations is reviewed. When the domain is periodic Fourier methods are presented while for nonperiodic problems both Chebyshev and Legendre methods are discussed. The theory is presented for both hyperbolic and parabolic systems using both Galerkin and collocation procedures. While most of the review considers problems with constant coefficients the extension to nonlinear problems is also discussed. Some results for problems with shocks are presented.

  10. Multi-spectral and fluorescence diffuse optical tomography of breast cancer

    Science.gov (United States)

    Corlu, Alper

    Multi-spectral and fluorescence diffuse optical tomography (DOT) techniques are explored and applied to image human breast cancer in vivo. Image reconstruction algorithms that utilize first and second order gradient information are described in detail. Breast DOT requires large computational memory and long run times. To this end, parallel computation techniques were developed appropriate to each reconstruction algorithm. A parallel plate DOT instrument developed for breast cancer imaging is described. The system relies heavily on continuous-wave (CW) transmission measurements and utilizes frequency domain (FD) measurements on the reemission side. However, traditional DOT image reconstruction methods based on CW measurements fail to separate tissue absorption and scattering uniquely. In this manuscript, multi-spectral DOT is shown to be capable of minimizing cross-talk and retrieving spectral parameters almost uniquely when the measurement wavelengths are optimized. A theoretical framework to select optimum wavelengths is provided, and tested with computer simulations. Results from phantom spectroscopy experiments and in vivo patient measurements support the notion that multi-spectral methods are superior to traditional DOT image reconstruction schemes. The same breast DOT instrument is improved and utilized to obtain the first in vivo images of human breast cancer based on fluorescence DOT (FDOT). To this end the fluorophore Indocyanine Green (ICG) is injected intravenously and fluorescence excitation and detection are accomplished in the soft-compression, parallel-plane, transmission geometry using laser sources at 786 nm and spectrally filtered CCD detection. Careful phantom and in vivo measurements are carried on to assure that the signals are due to ICG fluorescence, rather than tissue autofluorescence and excitation light leakage. An in vivo measurement protocol is designed to maximize the ICG contrast by acquiring full fluorescence tomographic scan during

  11. Spectral anomaly methods for aerial detection using KUT nuisance rejection

    International Nuclear Information System (INIS)

    Detwiler, R.S.; Pfund, D.M.; Myjak, M.J.; Kulisek, J.A.; Seifert, C.E.

    2015-01-01

    This work discusses the application and optimization of a spectral anomaly method for the real-time detection of gamma radiation sources from an aerial helicopter platform. Aerial detection presents several key challenges over ground-based detection. For one, larger and more rapid background fluctuations are typical due to higher speeds, larger field of view, and geographically induced background changes. As well, the possible large altitude or stand-off distance variations cause significant steps in background count rate as well as spectral changes due to increased gamma-ray scatter with detection at higher altitudes. The work here details the adaptation and optimization of the PNNL-developed algorithm Nuisance-Rejecting Spectral Comparison Ratios for Anomaly Detection (NSCRAD), a spectral anomaly method previously developed for ground-based applications, for an aerial platform. The algorithm has been optimized for two multi-detector systems; a NaI(Tl)-detector-based system and a CsI detector array. The optimization here details the adaptation of the spectral windows for a particular set of target sources to aerial detection and the tailoring for the specific detectors. As well, the methodology and results for background rejection methods optimized for the aerial gamma-ray detection using Potassium, Uranium and Thorium (KUT) nuisance rejection are shown. Results indicate that use of a realistic KUT nuisance rejection may eliminate metric rises due to background magnitude and spectral steps encountered in aerial detection due to altitude changes and geographically induced steps such as at land–water interfaces

  12. A modified sliding spectral method and its application to COSMIC ...

    Indian Academy of Sciences (India)

    A modified sliding spectral method and its application to COSMIC radio occultation data 1751. The window length with 300 samples is supposed to provide a reasonable resolution. In a spherically symmetric atmosphere, the refractive index n as a function of tangent radius r0 can be computed from the bending angle α as.

  13. Deconvolution of EPR spectral lines with an approximate method

    International Nuclear Information System (INIS)

    Jimenez D, H.; Cabral P, A.

    1990-10-01

    A recently reported approximation expression to deconvolution Lorentzian-Gaussian spectral lines. with small Gaussian contribution, is applied to study an EPR line shape. The potassium-ammonium solution line reported in the literature by other authors was used and the results are compared with those obtained by employing a precise method. (Author)

  14. Nonconforming h-p spectral element methods for elliptic problems

    Indian Academy of Sciences (India)

    In [6,7,13,14] h-p spectral element methods for solving elliptic boundary value problems on polygonal ... Let M denote the number of corner layers and W denote the number of degrees of .... β is given by Theorem 2.2 of [3] which can be stated.

  15. Spectral calculations in magnetohydrodynamics using the Jacobi-Davidson method

    NARCIS (Netherlands)

    Belien, A. J. C.; van der Holst, B.; Nool, M.; van der Ploeg, A.; Goedbloed, J. P.

    2001-01-01

    For the solution of the generalized complex non-Hermitian eigenvalue problems Ax = lambda Bx occurring in the spectral study of linearized resistive magnetohydrodynamics (MHD) a new parallel solver based on the recently developed Jacobi-Davidson [SIAM J. Matrix Anal. Appl. 17 (1996) 401] method has

  16. [An improved low spectral distortion PCA fusion method].

    Science.gov (United States)

    Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong

    2013-10-01

    Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.

  17. Ultrafast two-photon absorption optical thresholding of spectrally coded pulses

    Science.gov (United States)

    Zheng, Z.; Shen, S.; Sardesai, H.; Chang, C.-C.; Marsh, J. H.; Karkhanehchi, M. M.; Weiner, A. M.

    1999-08-01

    We report studies on two-photon absorption (TPA) GaAs p-i-n waveguide photodetectors as optical thresholders for proposed ultrashort pulse optical code-division multiple-access (CDMA) systems. For either chirped optical pulses or spectrally phase coded pseudonoise bursts, the TPA photocurrent response reveals a strong pulseshape dependence and shows good agreement with theoretical predictions and results from conventional SHG measurements. The performance limits of the TPA optical thresholders set by the encoded bandwidth in the spectral encoding-decoding process are also discussed based on numerical simulations. Our results show the feasibility of applying such devices as nonlinear intensity discriminators in ultrahigh-speed optical network applications.

  18. Convergence of spectral methods for nonlinear conservation laws. Final report

    International Nuclear Information System (INIS)

    Tadmor, E.

    1987-08-01

    The convergence of the Fourier method for scalar nonlinear conservation laws which exhibit spontaneous shock discontinuities is discussed. Numerical tests indicate that the convergence may (and in fact in some cases must) fail, with or without post-processing of the numerical solution. Instead, a new kind of spectrally accurate vanishing viscosity is introduced to augment the Fourier approximation of such nonlinear conservation laws. Using compensated compactness arguments, it is shown that this spectral viscosity prevents oscillations, and convergence to the unique entropy solution follows

  19. Extraction of optical parameters of thin films from spectral measurements for design and optical performance of multilayer structures

    International Nuclear Information System (INIS)

    Muellerova, J.; Jurecka, S.; Kucerova, A.

    2003-01-01

    Optical parameters of a-Si:H and indium tin oxide (ITO) thin films deposited on glass substrates are determined from spectral measurements of reflectance and/or transmittance. It is shown how important the exact knowledge of optical parameters as well as thicknesses of the layers for the design and the optical performance of multilayer structures is. The model of the p-i-n based a:Si-H solar cell with ITO as transparent conductive oxide layer is used for illustrating. The modeling of the solar cell integral reflectance in the spectral region of (650-830) nm is used as a criterion to reverse engineering of a multilayer structure with suppressed reflectance losses. The reflectance of a solar cell is modelled and the simulation of the varying optical parameters of individual layers including their thicknesses is discussed. Besides this,the advantage of using an antireflective layer under ITO is discussed (Authors)

  20. Optical spectral signatures of liquids by means of fiber optic technology for product and quality parameter identification

    Science.gov (United States)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Diaz-Herrera, N.; Garcia-Allende, P. B.; Ottevaere, H.; Thienpont, H.; Attilio, C.; Cimato, A.; Francalanci, S.; Paccagnini, A.; Pavone, F. S.

    2009-01-01

    Absorption spectroscopy in the wide 200-1700 nm spectral range is carried out by means of optical fiber instrumentation to achieve a digital mapping of liquids for the prediction of important quality parameters. Extra virgin olive oils from Italy and lubricant oils from turbines with different degrees of degradation were considered as "case studies". The spectral data were processed by means of multivariate analysis so as to obtain a correlation to quality parameters. In practice, the wide range absorption spectra were considered as an optical signature of the liquids from which to extract product quality information. The optical signatures of extra virgin olive oils were used to predict the content of the most important fatty acids. The optical signatures of lubricant oils were used to predict the concentration of the most important parameters for indicating the oil's degree of degradation, such as TAN, JOAP anti-wear index, and water content.

  1. Optical decoherence and persistent spectral hole burning in Er3+:LiNbO3

    International Nuclear Information System (INIS)

    Thiel, C.W.; Macfarlane, R.M.; Boettger, T.; Sun, Y.; Cone, R.L.; Babbitt, W.R.

    2010-01-01

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er 3+ :LiNbO 3 . Effects of spectral diffusion due to interactions between Er 3+ ions and between the Er 3+ ion and 7 Li and 93 Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  2. A Fiber-Optic System Generating Pulses of High Spectral Density

    Science.gov (United States)

    Abramov, A. S.; Zolotovskii, I. O.; Korobko, D. A.; Fotiadi, A. A.

    2018-03-01

    A cascade fiber-optic system that generates pulses of high spectral density by using the effect of nonlinear spectral compression is proposed. It is demonstrated that the shape of the pulse envelope substantially influences the degree of compression of its spectrum. In so doing, maximum compression is achieved for parabolic pulses. The cascade system includes an optical fiber exhibiting normal dispersion that decreases along the fiber length, thereby ensuring that the pulse envelope evolves toward a parabolic shape, along with diffraction gratings and a fiber spectral compressor. Based on computer simulation, we determined parameters of cascade elements leading to maximum spectral density of radiation originating from a subpicosecond laser pulse of medium energy.

  3. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, S. R.; Wilson, P. P. H. [Engineering Physics Department, University of Wisconsin - Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Evans, T. M. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830 (United States)

    2013-07-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  4. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    International Nuclear Information System (INIS)

    Slattery, S. R.; Wilson, P. P. H.; Evans, T. M.

    2013-01-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  5. Utilizing the ratio and the summation of two spectral lines for estimation of optical depth: Focus on thick plasmas

    Science.gov (United States)

    Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2016-11-01

    In this paper, a study is performed on the spectral lines of plasma radiations created from focusing of the Nd:YAG laser on Al standard alloys at atmospheric air pressure. A new theoretical method is presented to investigate the evolution of the optical depth of the plasma based on the radiative transfer equation, in LTE condition. This work relies on the Boltzmann distribution, lines broadening equations, and as well as the self-absorption relation. Then, an experimental set-up is devised to extract some of plasma parameters such as temperature from modified line ratio analysis, electron density from Stark broadening mechanism, line intensities of two spectral lines in the same order of ionization from similar species, and the plasma length from the shadowgraphy section. In this method, the summation and the ratio of two spectral lines are considered for evaluation of the temporal variations of the plasma parameters in a LIBS homogeneous plasma. The main advantage of this method is that it comprises the both of thin and thick laser induced plasmas without straight calculation of self-absorption coefficient. Moreover, the presented model can also be utilized for evaluation the transition of plasma from the thin condition to the thick one. The results illustrated that by measuring the line intensities of two spectral lines at different evolution times, the plasma cooling and the growth of the optical depth can be followed.

  6. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    Science.gov (United States)

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  7. Auto- and cross-power spectral analysis of dual trap optical tweezer experiments using Bayesian inference.

    Science.gov (United States)

    von Hansen, Yann; Mehlich, Alexander; Pelz, Benjamin; Rief, Matthias; Netz, Roland R

    2012-09-01

    The thermal fluctuations of micron-sized beads in dual trap optical tweezer experiments contain complete dynamic information about the viscoelastic properties of the embedding medium and-if present-macromolecular constructs connecting the two beads. To quantitatively interpret the spectral properties of the measured signals, a detailed understanding of the instrumental characteristics is required. To this end, we present a theoretical description of the signal processing in a typical dual trap optical tweezer experiment accounting for polarization crosstalk and instrumental noise and discuss the effect of finite statistics. To infer the unknown parameters from experimental data, a maximum likelihood method based on the statistical properties of the stochastic signals is derived. In a first step, the method can be used for calibration purposes: We propose a scheme involving three consecutive measurements (both traps empty, first one occupied and second empty, and vice versa), by which all instrumental and physical parameters of the setup are determined. We test our approach for a simple model system, namely a pair of unconnected, but hydrodynamically interacting spheres. The comparison to theoretical predictions based on instantaneous as well as retarded hydrodynamics emphasizes the importance of hydrodynamic retardation effects due to vorticity diffusion in the fluid. For more complex experimental scenarios, where macromolecular constructs are tethered between the two beads, the same maximum likelihood method in conjunction with dynamic deconvolution theory will in a second step allow one to determine the viscoelastic properties of the tethered element connecting the two beads.

  8. High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform

    Science.gov (United States)

    Chan, Kenny K. H.; Tang, Shuo

    2010-01-01

    The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye. PMID:21258551

  9. Spectral-domain optical coherence tomography findings of the macula in 500 consecutive patients with uveitis.

    Science.gov (United States)

    Grajewski, R S; Boelke, A C; Adler, W; Meyer, S; Caramoy, A; Kirchhof, B; Cursiefen, C; Heindl, L M

    2016-11-01

    PurposeTo analyze the macular structure in a large series of consecutive patients with different types of uveitis using spectral-domain optical coherence tomography (SD-OCT).Patients and methodsFive hundred eyes of 500 consecutive patients with anterior, intermediate, posterior, and panuveitis underwent standardized macular examination using SD-OCT. Central retinal thickness (CRT), macular volume (MV), and presence of cystoid macular edema (CME), diffuse macular edema (DME), serous retinal detachment (SRD), epiretinal membrane with (ERM+) and without (ERM-) retinal surface wrinkling were determined.ResultsThe anatomic location of inflammation affected significantly CRT and MV (Pmacula is recommended for all uveitis patients. CRT, MV, and the incidence of CME were highest in intermediate and panuveitis.

  10. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    Science.gov (United States)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement

  11. Novel spectral fiber optic sensor based on surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Homola, Jiří; Čtyroký, Jiří; Brynda, Eduard

    B74, 1/3 (2001), s. 106-111 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/M057; GA ČR GA102/99/0549; GA ČR GA102/00/1536 Institutional research plan: CEZ:AV0Z2067918 Keywords : fibre optic sensors * surface plasmons Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  12. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina

    Science.gov (United States)

    Zhang, Yan; Rha, Jungtae; Jonnal, Ravi S.; Miller, Donald T.

    2005-06-01

    Although optical coherence tomography (OCT) can axially resolve and detect reflections from individual cells, there are no reports of imaging cells in the living human retina using OCT. To supplement the axial resolution and sensitivity of OCT with the necessary lateral resolution and speed, we developed a novel spectral domain OCT (SD-OCT) camera based on a free-space parallel illumination architecture and equipped with adaptive optics (AO). Conventional flood illumination, also with AO, was integrated into the camera and provided confirmation of the focus position in the retina with an accuracy of ±10.3 μm. Short bursts of narrow B-scans (100x560 μm) of the living retina were subsequently acquired at 500 Hz during dynamic compensation (up to 14 Hz) that successfully corrected the most significant ocular aberrations across a dilated 6 mm pupil. Camera sensitivity (up to 94 dB) was sufficient for observing reflections from essentially all neural layers of the retina. Signal-to-noise of the detected reflection from the photoreceptor layer was highly sensitive to the level of cular aberrations and defocus with changes of 11.4 and 13.1 dB (single pass) observed when the ocular aberrations (astigmatism, 3rd order and higher) were corrected and when the focus was shifted by 200 μm (0.54 diopters) in the retina, respectively. The 3D resolution of the B-scans (3.0x3.0x5.7 μm) is the highest reported to date in the living human eye and was sufficient to observe the interface between the inner and outer segments of individual photoreceptor cells, resolved in both lateral and axial dimensions. However, high contrast speckle, which is intrinsic to OCT, was present throughout the AO parallel SD-OCT B-scans and obstructed correlating retinal reflections to cell-sized retinal structures.

  13. Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect.

    Science.gov (United States)

    Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina

    2017-10-11

    Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.

  14. Optical detection of explosives: spectral signatures for the explosive bouquet

    Science.gov (United States)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  15. INTEGRATED FUSION METHOD FOR MULTIPLE TEMPORAL-SPATIAL-SPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    H. Shen

    2012-08-01

    Full Text Available Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the proposed method is validated using simulated images.

  16. Optical decoherence times and spectral diffusion in an Er-doped optical fiber measured by two-pulse echoes, stimulated photon echoes, and spectral hole burning

    International Nuclear Information System (INIS)

    Macfarlane, R.M.; Sun, Y.; Sellin, P.B.; Cone, R.L.

    2007-01-01

    Two-pulse and stimulated photon echoes and spectral hole burning were measured on the transition from the lowest component of the 4 I 15/2 manifold to the lowest component of 4 I 13/2 of Er 3+ in a silicate optical fiber at 1.6 K. The two-pulse echo decays gave decoherence times as long as 230 ns for magnetic fields above 2 T. A large field dependent contribution to the homogeneous line width of >2 MHz was found and interpreted in terms of coupling to magnetic tunneling modes (TLS) in the glass. The stimulated echoes measured at 2 T showed spectral diffusion of 0.8 MHz/decade of time between 0.4 and 500 μs. Spectral diffusion in this high field region is attributed to coupling to elastic TLS modes which have a distribution of flip rates in glasses. Time-resolved spectral hole burning at very low field showed stronger spectral diffusion of 5.7 MHz/decade of time, attributed to coupling to magnetic spin-elastic TLS modes

  17. Design of integrated optics all-optical label swappers for spectral amplitude code label swapping optical packet networks on active/passive InP technology

    NARCIS (Netherlands)

    Habib, C.; Munoz, P.; Leijtens, X.J.M.; Chen, Lawrence; Smit, M.K.; Capmany, J.

    2009-01-01

    In this paper the designs of optical label swapper devices, for spectral amplitude coded labels, monolithically integrated on InP active/passive technology are pre sented. The devices are based on cross-gain modulation in a semiconductor optical amplifier. Multi-wavelength operation is enabled by

  18. OTDM-WDM Conversion Based on Time-Domain Optical Fourier Transformation with Spectral Compression

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Galili, Michael

    2011-01-01

    We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown.......We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown....

  19. Fiber optic sensor and method for making

    Science.gov (United States)

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  20. Removal of Optically Thick Clouds from Multi-Spectral Satellite Images Using Multi-Frequency SAR Data

    Directory of Open Access Journals (Sweden)

    Robert Eckardt

    2013-06-01

    Full Text Available This study presents a method for the reconstruction of pixels contaminated by optical thick clouds in multi-spectral Landsat images using multi-frequency SAR data. A number of reconstruction techniques have already been proposed in the scientific literature. However, all of the existing techniques have certain limitations. In order to overcome these limitations, we expose the Closest Spectral Fit (CSF method proposed by Meng et al. to a new, synergistic approach using optical and SAR data. Therefore, the term Closest Feature Vector (CFV is introduced. The technique facilitates an elegant way to avoid radiometric distortions in the course of image reconstruction. Furthermore the cloud cover removal is independent from underlying land cover types and assumptions on seasonality, etc. The methodology is applied to mono-temporal, multi-frequency SAR data from TerraSAR-X (X-Band, ERS (C-Band and ALOS Palsar (L-Band. This represents a way of thinking about Radar data not as foreign, but as additional data source in multi-spectral remote sensing. For the assessment of the image restoration performance, an experimental framework is established and a statistical evaluation protocol is designed. The results show the potential of a synergistic usage of multi-spectral and SAR data to overcome the loss of data due to cloud cover.

  1. Hyper-spectral modulation fluorescent imaging using double acousto-optical tunable filter based on TeO2-crystals

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Perchik, Alexey V; Chernomyrdin, Nikita V; Yurchenko, Stanislav O; Kudrin, Konstantin G; Reshetov, Igor V

    2015-01-01

    We have proposed a method for hyper-spectral fluorescent imaging based on acousto-optical filtering. The object of interest was pumped using ultraviolet radiation of mercury lamp equipped with monochromatic excitation filter with the window of transparency centered at 365 nm. Double TeO 2 -based acousto-optical filter, tunable in range from 430 to 780 nm and having 2 nm bandwidth of spectral transparency, was used in order to detect quasimonochromatic images of object fluorescence. Modulating of ultraviolet pump intensity was used in order to reduce an impact of non-fluorescent background on the sample fluorescent imaging. The technique for signal-to-noise ratio improvement, based on fluorescence intensity estimation via digital processing of modulated video sequence of fluorescent object, was introduced. We have implemented the proposed technique for the test sample studying and we have discussed its possible applications

  2. Multistage Spectral Relaxation Method for Solving the Hyperchaotic Complex Systems

    Directory of Open Access Journals (Sweden)

    Hassan Saberi Nik

    2014-01-01

    Full Text Available We present a pseudospectral method application for solving the hyperchaotic complex systems. The proposed method, called the multistage spectral relaxation method (MSRM is based on a technique of extending Gauss-Seidel type relaxation ideas to systems of nonlinear differential equations and using the Chebyshev pseudospectral methods to solve the resulting system on a sequence of multiple intervals. In this new application, the MSRM is used to solve famous hyperchaotic complex systems such as hyperchaotic complex Lorenz system and the complex permanent magnet synchronous motor. We compare this approach to the Runge-Kutta based ode45 solver to show that the MSRM gives accurate results.

  3. Multiplex CARS imaging with spectral notch shaped laser pulses delivered by optical fibers.

    Science.gov (United States)

    Oh, Seung Ryeol; Park, Joo Hyun; Kim, Kyung-Soo; Lee, Jae Yong; Kim, Soohyun

    2017-12-11

    We present an experimental demonstration of single-pulse coherent anti-Stokes Raman spectroscopy (CARS) using a spectrally shaped broadband laser that is delivered by an optical fiber to a sample at its distal end. The optical fiber consists of a fiber Bragg grating component to serve as a narrowband notch filter and a combined large-mode-area fiber to transmit such shaped ultrashort laser pulses without spectral distortion in a long distance. Experimentally, our implementation showed a capability to measure CARS spectra of various samples with molecular vibrations in the fingerprint region. Furthermore, CARS imaging of poly(methyl methacrylate) bead samples was carried out successfully under epi-CARS geometry in which backward-scattered CARS signals were collected into a multimode optical fiber. A compatibility of single-pulse CARS scheme with fiber optics, verified in this study, implies a potential for future realization of compact all-fiber CARS spectroscopic imaging systems.

  4. Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps

    Czech Academy of Sciences Publication Activity Database

    Mašek, Jan; Geleyn, J.- F.; Brožková, Radmila; Giot, O.; Achom, H. O.; Kuma, P.

    2016-01-01

    Roč. 142, č. 659 (2016), s. 304-326 ISSN 0035-9009 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : shortwave radiative transfer * delta-two stream system * broadband approach * Malkmus band model * optical saturation * idealized optical paths * spectral overlap Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.444, year: 2016

  5. High order spectral volume and spectral difference methods on unstructured grids

    Science.gov (United States)

    Kannan, Ravishekar

    The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed

  6. 3D registration method for assessing the gastrointestinal motility using spectral reflectance estimation

    Science.gov (United States)

    Nobe, Kazuki; Yoshimoto, Kayo; Yamada, Kenji; Takahashi, Hideya

    2018-02-01

    Functional gastrointestinal disorders (FGID) are the most common gastrointestinal disorders. The term "functional" is generally applied to disorders where there are no structural abnormalities. One of the major factors for FGID is abnormal gastrointestinal motility. We have proposed a system for assessing the function of gastric motility using a 3D endoscope. In this previous study, we established a method for estimating characteristics of contraction wave extracted from a 3D shape include contraction wave obtained from stereo endoscope. Because it is difficult to fix the tip position of the endoscope during the examination, estimation of the 3D position between the endoscope and the gastric wall is necessary for the accurate assessment. Then, we have proposed a motion compensation method using 3D scene flow. However, since mucosa has few feature points, it is difficult to obtain 3D scene flow from RGB images. So, we focused on spectral imaging that can enhance visualization of mucosal structure. Spectral image can be obtained without switching optical filters by using technique to estimate spectral reflectance by image processing. In this paper, we propose registration method of measured 3D shape in time series using estimated spectral image. The spectral image is estimated from the RGB image for each frame. 3D scene flow of feature points, that is, enhanced mucosal structure calculated by spectral images in a time series. The position change between the endoscope and gastric wall is estimated by 3D scene flow. We experimented to confirm the validity of the proposed method using papers with a grid of colors close to the background color.

  7. Time Lens based Optical Fourier Transformation for All-Optical Signal Processing of Spectrally-Efficient Data

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2017-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced all-optical signal processing. A novel time lens based complete optical Fourier transformation (OFT) technique is introduced. This complete OFT is based on two quadratic phase-modulation stages using...... four-wave mixing (FWM), separated by a dispersive medium, which enables time-to-frequency and frequency-to-time conversions simultaneously, thus performing an exchange between the temporal and spectral profiles of the input signal. Using the proposed complete OFT, several advanced all-optical signal......, such as orthogonal frequency division multiplexing (OFDM), Nyquist wavelength-division multiplexing (Nyquist-WDM) and Nyquist optical time division multiplexing (Nyquist-OTDM) signals....

  8. International Conference on Spectral and High-Order Methods

    CERN Document Server

    Dumont, Ney; Hesthaven, Jan

    2017-01-01

    This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.

  9. Spectral analysis of optical emission of microplasma in sea water

    Science.gov (United States)

    Gamaleev, Vladislav; Morita, Hayato; Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu

    2016-09-01

    This work presents an analysis of optical emission spectra from microplasma in three types of liquid, namely artificial sea water composed of 10 typical agents (10ASW), reference solutions each containing a single agent (NaCl, MgCl2 + H2O, Na2SO4, CaCl2, KCl, NaHCO3, KBr, NaHCO3, H3BO3, SrCl2 + H2O, NaF) and naturally sampled deep sea water (DSW). Microplasma was operated using a needle(Pd)-to-plate(Pt) electrode system sunk into each liquid in a quartz cuvette. The radius of the tip of the needle was 50 μm and the gap between the electrodes was set at 20 μm. An inpulse generator circuit, consisting of a MOSFET switch, a capacitor, an inductor and the resistance of the liquid between the electrodes, was used as a pulse current source for operation of discharges. In the spectra, the emission peaks for the main components of sea water and contaminants from the electrodes were detected. Spectra for reference solutions were examined to enable the identification of unassigned peaks in the spectra for sea water. Analysis of the Stark broadening of H α peak was carried out to estimate the electron density of the plasma under various conditions. The characteristics of microplasma discharge in sea water and the analysis of the optical emission spectra will be presented. This work was supported by JSPS KAKENHI Grant Number 26600129.

  10. Optical spectral properties of active galactic nuclei and quasars

    International Nuclear Information System (INIS)

    Yee, H.K.C.

    1981-01-01

    Four separate investigations dealing with the properties of optical continuum and emission-lines of active galactic nuclei (AGN) and quasars are presented. Multichannel scans of 3CR radio galaxies are decomposed by using a two-component model-an elliptical galaxy and a power-law nonthermal component. It is found that there is a strong correlation between the luminosity of the power-law component and the strength of the Balmer emission-lines. In most cases, by extrapolating to the Lyman continuum, the power-law models derived provide enough ionizing radiation to account for the Balmer line strengths. Extending the study of radio galaxies to include Seyfert galaxies and quasars, it is found that there is a strong continuity between broad-line AGN's and quasars in terms of similarities in the correlations between line luminosities and nonthermal continuum luminosity. Next, a study of the variability of absolute optical energy distribution and emission-lines of the N-galaxies 3C382 and 3C390.3 is made. Lastly, a preliminary study of surface photometry of Markarian Seyfert galaxies are presented. It is found that the properties of the underlying galaxies such as scale-length and surface brightness of the disk, color, and total brightness, do not depart systematically from those of luminous normal spiral galaxies

  11. Mathematical optics classical, quantum, and computational methods

    CERN Document Server

    Lakshminarayanan, Vasudevan

    2012-01-01

    Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical wave

  12. Full-range k-domain linearization in spectral-domain optical coherence tomography.

    Science.gov (United States)

    Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A

    2011-03-10

    A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.

  13. Extracting structural features of rat sciatic nerve using polarization-sensitive spectral domain optical coherence tomography

    NARCIS (Netherlands)

    Islam, M.S.; Oliveira, M.C.; Wang, Y.; Henry, F.P.; Randolph, M.A.; Park, B. H.; de Boer, J.F.

    2012-01-01

    We present spectral domain polarization-sensitive optical coherence tomography (SD PS-OCT) imaging of peripheral nerves. Structural and polarization-sensitive OCT imaging of uninjured rat sciatic nerves was evaluated both qualitatively and quantitatively. OCT and its functional extension, PS-OCT,

  14. Spectral-optical characteristics of anthocyanin-containing natural dye staff

    International Nuclear Information System (INIS)

    Astanov, S.; Sharipov, M.Z.; Dalmuradova, N.N.

    2007-01-01

    Spectral-optical characteristics of anthocyanin-containing natural dye staff received from fruit ficus carica are determined. The chromatographic separating of dyeing pigment obtained is performed. The data obtained can be used as passport characteristics of the new food dye staff. (authors)

  15. Spectral shaping for non-Gaussian source spectra in optical coherence tomography

    NARCIS (Netherlands)

    Tripathi, R; Nassif, N. A.; Nelson, JS; Park, B.H.; de Boer, JF

    2002-01-01

    We present a digital spectral shaping technique to reduce the sidelobes (ringing) of the axial point-spread function in optical coherence tomography for non-Gaussian-shaped source spectra. The spectra of two superluminescent diodes were combined to generate a spectrum with significant modulation.

  16. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    International Nuclear Information System (INIS)

    Shapovalova, A. I.; Burenkov, A. N.; Popović, L. Č.; Kovačević, J.; Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L.; Ilić, D.; Kovačević, A.; Kollatschny, W.; Bochkarev, N. G.; León-Tavares, J.; Mercado, A.; Benítez, E.; Dultzin, D.; De la Fuente, E.

    2012-01-01

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted Hα, Hβ, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the Hβ and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F max /F min ) of Ark 564 is between 1.5 for Hα and 1.8 for the Fe II lines. The correlation between the Fe II and Hβ flux variations is of higher significance than that of Hα and Hβ (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  17. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    NARCIS (Netherlands)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Louis, Eric; Bijkerk, Frederik

    2017-01-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV

  18. Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP

    NARCIS (Netherlands)

    Muñoz, P.; García-Olcina, R.; Habib, C.; Chen, L.R.; Leijtens, X.J.M.; Vries, de T.; Robbins, D.J.; Capmany, J.

    2011-01-01

    In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm2 and is able to perform label swapping operations required in

  19. InP monolithically integrated label swapper device for spectral amplitude coded optical packet networks

    NARCIS (Netherlands)

    Muñoz, P.; García-Olcina, R.; Doménech, J.D.; Rius, M.; Sancho, J.C.; Capmany, J.; Chen, L.R.; Habib, C.; Leijtens, X.J.M.; Vries, de T.; Heck, M.J.R.; Augustin, L.M.; Nötzel, R.; Robbins, D.J.

    2010-01-01

    In this paper a label swapping device, for spectral amplitude coded optical packet networks, fully integrated using InP technology is presented. Compared to previous demonstrations using discrete component assembly, the device footprint is reduced by a factor of 105 and the operation speed is

  20. Management of Patients with Graves’ Disease and Orbital Involvement: Role of Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Alice Bruscolini

    2018-01-01

    Full Text Available Purpose. To investigate the role of choroidal thickness evaluation with spectral domain optical coherence tomography (SDOCT and enhanced depth imaging (EDI technique in the management of patients with Graves’ disease and orbitopathy (GO. Methods. Thirty-six eyes of 18 patients with GO and 36 eyes of 18 age-matched control subjects were included in this retrospective observational study. All the subjects underwent a complete ophthalmological evaluation, including clinical activity score (CAS and exophthalmometry. The SDOCT images of the choroid were obtained by EDI modality. Results. Choroidal thickness was significantly increased in GO than in control eyes (p<0.01. A significant correlation was found between choroidal thickness and CAS, proptosis, and the duration of disease (p<0.05. Conclusion. This study shows that choroidal thickness, evaluated with EDI-OCT, is significantly increased in patients with GO and correlates with the activity of the disease, proptosis, and duration of the disease. The choroidal thickening may reflect the ocular hemodynamic changes, and enhanced depth imaging optical coherence tomography may be a useful tool for the evaluation of orbital congestion and management of patients with Graves’ disease and orbital involvement.

  1. Spectrally selective molecular doped solids: spectroscopy, photophysics and their application to ultrafast optical pulse processing

    International Nuclear Information System (INIS)

    Galaup, Jean-Pierre

    2005-01-01

    The persistent spectral hole-burning (PSHB) phenomenon observed in molecular doped polymers cooled down to liquid helium temperatures allows the engraving of spectral structures in the inhomogeneous absorption profile of the material. This phenomenon known since 1974 has became a fruitful field for the study of the intimacy of complex molecular systems in the solid state, revealing high-resolution spectroscopy, photophysics, photochemistry and dynamics of molecular doped amorphous media, organic as well as inorganic. A PSHB molecular doped solid can be programmed in spectral domain and therefore, it can be converted in an optical processor capable to achieve user-defined optical functions. Some aspects of this field are illustrated in the present paper. An application is presented where a naphthalocyanine doped polymer film is used in a demonstrative experiment to prove that temporal aberration free re-compression of ultra-short light pulses is feasible. Perspectives for the coherent control of light fields or photochemical processes are also evoked

  2. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS

    Directory of Open Access Journals (Sweden)

    W. von Hoyningen-Huene

    2011-02-01

    Full Text Available For the determination of aerosol optical thickness (AOT Bremen AErosol Retrieval (BAER has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance for wavelength less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on the Environmental Satellite – ENVISAT – of the European Space Agency – ESA and SeaWiFS (Sea viewing Wide Field Sensor on OrbView-2 spacecraft observations is the availability of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6 channels (0.412–0.670 μm and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. The normalized differential vegetation index (NDVI, taken from the satellite observations, is the model input. Further surface bi-directional reflectance distribution function (BRDF is considered by the Raman-Pinty-Verstraete (RPV model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by model package "optical properties of aerosol components" (OPAC or from experimental campaigns. Validations of the obtained AOT retrieval results with data of Aerosol Robotic Network (AERONET over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for 11 year trends in AOT. Western European regions have negative trends with decreasing AOT with time

  3. Spectral staining of tumor tissue by fiber optic FTIR spectroscopy

    Science.gov (United States)

    Salzer, Reiner; Steiner, Gerald; Kano, Angelique; Richter, Tom; Bergmann, Ralf; Rodig, Heike; Johannsen, Bernd; Kobelke, Jens

    2003-07-01

    Infrared (IR) optical fiber have aroused great interest in recent years because of their potential in in-vivo spectroscopy. This potential includes the ability to be flexible, small and to guide IR light in a very large range of wavelengths. Two types - silver halide and chalcogenide - infrared transmitting fibers are investigated in the detection of a malignant tumor. As a test sample for all types of fibers we used a thin section of an entire rat brain with glioblastoma. The fibers were connected with a common infrared microscope. Maps across the whole tissue section with more than 200 spectra were recorded by moving the sample with an XY stage. Data evaluation was performed using fuzzy c-means cluster analysis (FCM). The silver halide fibers provided excellent results. The tumor was clearly discernible from healthy tissue. Chalcogenide fibers are not suitable to distinguish tumor from normal tissue because the fiber has a very low transmittance in the important fingerprint region.

  4. Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm

    International Nuclear Information System (INIS)

    Obarski, Gregory E.; Splett, Jolene D.

    2001-01-01

    We have developed a transfer standard for the spectral density of relative intensity noise (RIN) of optical fiber sources near 1550 nm. Amplified spontaneous emission (ASE) from an erbium-doped fiber amplifier (EDFA), when it is optically filtered over a narrow band (<5 nm), yields a stable RIN spectrum that is practically constant to several tens of gigahertz. The RIN is calculated from the power spectral density as measured with a calibrated optical spectrum analyzer. For a typical device it is -110 dB/Hz, with uncertainty ≤0.12 dB/Hz. The invariance of the RIN under attenuation yields a considerable dynamic range with respect to rf noise levels. Results are compared with those from a second method that uses a distributed-feedback laser (DFB) that has a Poisson-limited RIN. Application of each method to the same RIN measurement system yields frequency-dependent calibration functions that, when they are averaged, differ by ≤0.2 dB. [copyright] 2001 Optical Society of America

  5. Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm

    Energy Technology Data Exchange (ETDEWEB)

    Obarski, Gregory E.; Splett, Jolene D.

    2001-06-01

    We have developed a transfer standard for the spectral density of relative intensity noise (RIN) of optical fiber sources near 1550 nm. Amplified spontaneous emission (ASE) from an erbium-doped fiber amplifier (EDFA), when it is optically filtered over a narrow band ({lt}5 nm), yields a stable RIN spectrum that is practically constant to several tens of gigahertz. The RIN is calculated from the power spectral density as measured with a calibrated optical spectrum analyzer. For a typical device it is {minus}110 dB/Hz, with uncertainty {le}0.12 dB/Hz. The invariance of the RIN under attenuation yields a considerable dynamic range with respect to rf noise levels. Results are compared with those from a second method that uses a distributed-feedback laser (DFB) that has a Poisson-limited RIN. Application of each method to the same RIN measurement system yields frequency-dependent calibration functions that, when they are averaged, differ by {le}0.2 dB. {copyright} 2001 Optical Society of America

  6. Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application.

    Science.gov (United States)

    Wang, Xu; Wada, Naoya

    2007-06-11

    We propose a novel reconfigurable time domain spectral phase encoding (SPE) scheme for coherent optical code-division-multiple-access application. In the proposed scheme, the ultra-short optical pulse is stretched by dispersive device and the SPE is done in time domain using high speed phase modulator. The time domain SPE scheme is robust to wavelength drift of the light source and is very flexible and compatible with the fiber optical system. Proof-of-principle experiments of encoding with 16-chip, 20 GHz/chip binary-phase-shift-keying codes and 1.25 Gbps data transmission have been successfully demonstrated together with an arrayed-wave-guide decoder.

  7. Donor disc attachment assessment with intraoperative spectral optical coherence tomography during descemet stripping automated endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Edward Wylegala

    2013-01-01

    Full Text Available Optical coherence tomography has already been proven to be useful for pre- and post-surgical anterior eye segment assessment, especially in lamellar keratoplasty procedures. There is no evidence for intraoperative usefulness of optical coherence tomography (OCT. We present a case report of the intraoperative donor disc attachment assessment with spectral-domain optical coherence tomography in case of Descemet stripping automated endothelial keratoplasty (DSAEK surgery combined with corneal incisions. The effectiveness of the performed corneal stab incisions was visualized directly by OCT scan analysis. OCT assisted DSAEK allows the assessment of the accuracy of the Descemet stripping and donor disc attachment.

  8. Thin film and multilayer optics for XUV spectral domain (1 nm to 60 nm)

    International Nuclear Information System (INIS)

    Delmotte, Franck

    2010-02-01

    The XUV spectral domain (1-60 nm wavelength range) has experienced rapid growth in recent years. On one side, the sources (synchrotron radiation, harmonic generation, x-ray laser, free-electron laser...) require ever more efficient optics, on the other hand, applications (diagnostics of hot plasma, solar physics, x-ray microscopy, EUV lithography, x-ray analysis...) provide new constraints on the design of multilayer stacks. The multilayer mirrors are the only way to achieve efficient optics operating at non-grazing incidence angles in this spectral range. Our work within the team XUV Optics at Laboratoire Charles Fabry de l'Institut d'Optique focuses on the study of materials in thin layers correlated to the study of optical properties of multilayers. The objective is to achieve new multilayer components previously unavailable in the XUV domain, through a better understanding of physical phenomena in these nano-layer stacks. We show through several examples of how we have managed both to improve the performance of multilayer mirrors in a broad spectral range, and secondly, to develop new optical functions: beam splitters, broadband mirrors, dual-band mirrors or phase compensation mirrors. (author)

  9. Growth, spectral, linear and nonlinear optical characteristics of an efficient semiorganic acentric crystal: L-valinium L-valine chloride

    Energy Technology Data Exchange (ETDEWEB)

    Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)

    2017-04-15

    An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.

  10. Spectral analysis of mammographic images using a multitaper method

    International Nuclear Information System (INIS)

    Wu Gang; Mainprize, James G.; Yaffe, Martin J.

    2012-01-01

    Purpose: Power spectral analysis in radiographic images is conventionally performed using a windowed overlapping averaging periodogram. This study describes an alternative approach using a multitaper technique and compares its performance with that of the standard method. This tool will be valuable in power spectrum estimation of images, whose content deviates significantly from uniform white noise. The performance of the multitaper approach will be evaluated in terms of spectral stability, variance reduction, bias, and frequency precision. The ultimate goal is the development of a useful tool for image quality assurance. Methods: A multitaper approach uses successive data windows of increasing order. This mitigates spectral leakage allowing one to calculate a reduced-variance power spectrum. The multitaper approach will be compared with the conventional power spectrum method in several typical situations, including the noise power spectra (NPS) measurements of simulated projection images of a uniform phantom, NPS measurement of real detector images of a uniform phantom for two clinical digital mammography systems, and the estimation of the anatomic noise in mammographic images (simulated images and clinical mammograms). Results: Examination of spectrum variance versus frequency resolution and bias indicates that the multitaper approach is superior to the conventional single taper methods in the prevention of spectrum leakage and variance reduction. More than four times finer frequency precision can be achieved with equivalent or less variance and bias. Conclusions: Without any shortening of the image data length, the bias is smaller and the frequency resolution is higher with the multitaper method, and the need to compromise in the choice of regions of interest size to balance between the reduction of variance and the loss of frequency resolution is largely eliminated.

  11. Solution of the Schroedinger equation by a spectral method

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.; Steiger, A.

    1982-01-01

    A new computational method for determining the eigenvalues and eigenfunctions of the Schroedinger equation is described. Conventional methods for solving this problem rely on diagonalization of a Hamiltonian matrix or iterative numerical solutions of a time independent wave equation. The new method, in contrast, is based on the spectral properties of solutions to the time-dependent Schroedinger equation. The method requires the computation of a correlation function from a numerical solution psi(r, t). Fourier analysis of this correlation function reveals a set of resonant peaks that correspond to the stationary states of the system. Analysis of the location of these peaks reveals the eigenvalues with high accuracy. Additional Fourier transforms of psi(r, t) with respect to time generate the eigenfunctions. The effectiveness of the method is demonstrated for a one-dimensional asymmetric double well potential and for the two-dimensional Henon--Heiles potential

  12. High temperature spectral emissivity measurement using integral blackbody method

    Science.gov (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  13. Experimental study of the use of multiband acousto-optic filters for spectral encoding / decoding the optical signals

    International Nuclear Information System (INIS)

    Proklov, V V; Byshevski-Konopko, O A; Filatov, A L; Lugovskoi, A V; Pisarevsky, Yu V

    2016-01-01

    A prototype of the acousto-optic (AO) decoder of optical signals is created on the base of the multiband AO filter. The joint work of the decoder with the developed previously AO coder has been verified experimentally. The main qualitative and quantitate characteristics of the spectral coding and decoding by Walsh sequences of the industrial LED radiation in the near infrared range are investigated. It is shown, that in the proposed data transmission system realization Signal-to-Interference Ratio (SIR) is not less than 13 dB. (paper)

  14. Spectral/hp element methods: Recent developments, applications, and perspectives

    DEFF Research Database (Denmark)

    Xu, Hui; Cantwell, Chris; Monteserin, Carlos

    2018-01-01

    regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral...... is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain...

  15. Terahertz spectral unmixing based method for identifying gastric cancer

    Science.gov (United States)

    Cao, Yuqi; Huang, Pingjie; Li, Xian; Ge, Weiting; Hou, Dibo; Zhang, Guangxin

    2018-02-01

    At present, many researchers are exploring biological tissue inspection using terahertz time-domain spectroscopy (THz-TDS) techniques. In this study, based on a modified hard modeling factor analysis method, terahertz spectral unmixing was applied to investigate the relationships between the absorption spectra in THz-TDS and certain biomarkers of gastric cancer in order to systematically identify gastric cancer. A probability distribution and box plot were used to extract the distinctive peaks that indicate carcinogenesis, and the corresponding weight distributions were used to discriminate the tissue types. The results of this work indicate that terahertz techniques have the potential to detect different levels of cancer, including benign tumors and polyps.

  16. Enhanced spectral domain optical coherence tomography for pathological and functional studies

    Science.gov (United States)

    Yuan, Zhijia

    Optical coherence tomography (OCT) is a novel technique that enables noninvasive or minimally invasive, cross-sectional imaging of biological tissue at sub-10mum spatial resolution and up to 2-3mm imaging depth. Numerous technological advances have emerged in recent years that have shown great potential to develop OCT into a powerful imaging and diagnostic tools. In particular, the implementation of Fourier-domain OCT (FDOCT) is a major step forward that leads to greatly improved imaging rate and image fidelity of OCT. This dissertation summarizes the work that focuses on enhancing the performances and functionalities of spectral radar based FDOCT (SDOCT) for pathological and functional applications. More specifically, chapters 1-4 emphasize on the development of SDOCT and its utility in pathological studies, including cancer diagnosis. The principle of SDOCT is first briefly outlined, followed by the design of our bench-top SDOCT systems with emphasis on spectral linear interpolation, calibration and system dispersion compensation. For ultrahigh-resolution SDOCT, time-lapse image registration and frame averaging is introduced to effectively reduce speckle noise and uncover subcellular details, showing great promise for enhancing the diagnosis of carcinoma in situ. To overcome the image depth limitation of OCT, a dual-modal imaging method combing SDOCT with high-frequency ultrasound is proposed and examined in animal cancer models to enhance the sensitivity and staging capabilities for bladder cancer diagnosis. Chapters 5-7 summarize the work on developing Doppler SDOCT for functional studies. Digital-frequency-ramping OCT (DFR-OCT) is developed in the study, which has demonstrated the ability to significantly improve the signal-to-noise ratio and thus sensitivity for retrieving subsurface blood flow imaging. New DFR algorithms and imaging processing methods are discussed to further enhance cortical CBF imaging. Applications of DFR-OCT for brain functional studies

  17. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    Science.gov (United States)

    Buican, Tudor N.; Martin, John C.

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  18. Spectral studies of ocean water with space-borne sensor SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS

    Directory of Open Access Journals (Sweden)

    M. Vountas

    2007-09-01

    Full Text Available Methods enabling the retrieval of oceanic parameter from the space borne instrumentation Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS are presented. SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral resolution (0.2 to 1.5 nm. The DOAS method was used for the first time to fit modelled Vibrational Raman Scattering (VRS in liquid water and in situ measured phytoplankton absorption reference spectra to optical depths measured by SCIAMACHY. Spectral structures of VRS and phytoplankton absorption were clearly found in these optical depths. Both fitting approaches lead to consistent results. DOAS fits correlate with estimates of chlorophyll concentrations: low fit factors for VRS retrievals correspond to large chlorophyll concentrations and vice versa; large fit factors for phytoplankton absorption correspond with high chlorophyll concentrations and vice versa. From these results a simple retrieval technique taking advantage of both measurements is shown. First maps of global chlorophyll concentrations were compared to the corresponding MODIS measurements with very promising results. In addition, results from this study will be used to improve atmospheric trace gas DOAS-retrievals from visible wavelengths by including these oceanographic signatures.

  19. Spectral Element Method for the Simulation of Unsteady Compressible Flows

    Science.gov (United States)

    Diosady, Laslo Tibor; Murman, Scott M.

    2013-01-01

    This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.

  20. Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements

    Science.gov (United States)

    Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey

    2017-12-01

    Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.

  1. Spectral phase shift and residual angular dispersion of an accousto-optic programme dispersive filter

    International Nuclear Information System (INIS)

    Boerzsoenyi, A.; Meroe, M.

    2010-01-01

    Complete text of publication follows. There is an increasing demand for active and precise dispersion control of ultrashort laser pulses. In chirped pulse amplification (CPA) laser systems, the dispersion of the optical elements of the laser has to be compensated at least to the fourth order to obtain high temporal contrast compressed pulses. Nowadays the most convenient device for active and programmable control of spectral phase and amplitude of broadband laser pulses is the acousto-optic programmable dispersive filter (AOPDF), claimed to be able to adjust the spectral phase up to the fourth order. Although it has been widely used, surprisingly enough there has been only a single, low resolution measurement reported on the accuracy of the induced spectral phase shift of the device. In our paper we report on the first systematic experiment aiming at the precise characterization of an AOPDF device. In the experiment the spectral phase shift of the AOPDF device was measured by spectrally and spatially resolved interferometry, which is especially powerful tool to determine small dispersion values with high accuracy. Besides the spectral phase dispersion, we measured both the propagation direction angular dispersion (PDAD) and the phase front angular dispersion (PhFAD). Although the two quantities are equal for plane waves, there may be noticeable difference for Gaussian pulses. PDAD was determined simply by focusing the beam on the slit of an imaging spectrograph, while PhFAD was measured by the use of an inverted Mach-Zehnder interferometer and an imaging spectrograph. In the measurements, the spectral phase shift and both types of angular dispersion have been recorded upon the systematic change of all the accessible functions of the acousto-optic programmable dispersive filter. The measured values of group delay dispersion (GDD) and third order dispersion (TOD) have been found to agree with the preset values within the error of the measurement (1 fs 2 and 10 fs 3

  2. Spectral evolution of soft x-ray emission from optically thin, high electron temperature platinum plasmas

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hara

    2017-08-01

    Full Text Available The soft x-ray spectra of heavy element plasmas are frequently dominated by unresolved transition array (UTA emission. We describe the spectral evolution of an intense UTA under optically thin conditions in platinum plasmas. The UTA was observed to have a peak wavelength around 4.6 nm at line-of-sight averaged electron temperatures less than 1.4 keV at electron densities of (2.5–7.5 × 1013 cm−3. The UTA spectral structure was due to emission from 4d–4f transitions in highly charged ions with average charge states of q = 20–40. A numerical simulation successfully reproduced the observed spectral behavior.

  3. Spectral domain optical coherence tomography cross-sectional image of optic nerve head during intraocular pressure elevation

    Directory of Open Access Journals (Sweden)

    Ji Young Lee

    2014-12-01

    Full Text Available AIM: To analyze changes of the optic nerve head (ONH and peripapillary region during intraocular pressure (IOP elevation in patients using spectral domain optical coherence tomography (SD-OCT.METHODS: Both an optic disc 200×200 cube scan and a high-definition 5-line raster scan were obtained from open angle glaucoma patients presented with monocular elevation of IOP (≥30 mm Hg using SD-OCT. Additional baseline characteristics included age, gender, diagnosis, best-corrected visual acuity, refractive error, findings of slit lamp biomicroscopy, findings of dilated stereoscopic examination of the ONH and fundus, IOP, pachymetry findings, and the results of visual field.RESULTS: The 24 patients were selected and divided into two groups:group 1 patients had no history of IOP elevation or glaucoma (n=14, and group 2 patients did have history of IOP elevation or glaucoma (n=10. In each patient, the study eye with elevated IOP was classified into group H (high, and the fellow eye was classified into group L (low. The mean deviation (MD differed significantly between groups H and L when all eyes were considered (P=0.047 and in group 2 (P=0.042, not in group 1 (P=0.893. Retinal nerve fiber layer (RNFL average thickness (P=0.050, rim area (P=0.015, vertical cup/disc ratio (P=0.011, cup volume (P=0.028, inferior quadrant RNFL thickness (P=0.017, and clock-hour (1, 5, and 6 RNFL thicknesses (P=0.050, 0.012, and 0.018, respectively, cup depth (P=0.008, central prelaminar layer thickness (P=0.023, mid-inferior prelaminar layer thickness (P=0.023, and nasal retinal slope (P=0.034 were significantly different between the eyes with groups H and L.CONCLUSION:RNFL average thickness, rim area, vertical cup/disc ratio, cup volume, inferior quadrant RNFL thickness, and clock-hour (1, 5, and 6 RNFL thicknesses significantly changed during acute IOP elevation.

  4. Transient spectral domain optical coherence tomography findings in classic MEWDS: a case report.

    Science.gov (United States)

    Lavigne, Luciana Castro; Isaac, David Leonardo Cruvinel; Duarte Júnior, José Osório; Avila, Marcos Pereira de

    2014-01-01

    The purpose of this study was to describe a patient with multiple evanescent white dot syndrome (MEWDS) who presented with classic retinal findings and transient changes in outer retinal anatomy. A 20-year-old man presented with mild blurred vision in the left eye, reporting flu-like symptoms 1 week before the visual symptoms started. Fundus examination of the left eye revealed foveal granularity and multiple scattered spots deep to the retina in the posterior pole. Fluorescein angiography and indocyanine green angiography showed typical MEWDS findings. Spectral Domain Optical Coherence Tomography has shown transient changes in outer retinal anatomy with disappearance of inner segment-outer segment junction and mild attenuation of external limiting membrane. Six months later, Spectral Domain Optical Coherence Tomography has shown complete resolution with recovery of normal outer retinal aspect.

  5. Broadband superluminescent diodes and semiconductor optical amplifiers for the spectral range 750 - 800 nm

    International Nuclear Information System (INIS)

    Il'chenko, S N; Kostin, Yu O; Kukushkin, I A; Ladugin, M A; Lapin, P I; Lobintsov, A A; Marmalyuk, Aleksandr A; Yakubovich, S D

    2011-01-01

    We have studied superluminescent diodes (SLDs) and semiconductor optical amplifiers (SOAs) based on an (Al x Ga 1-x )As/GaAs single quantum well structure with an Al content x ∼ 0.1 in a 10-nm-thick active layer. Depending on the length of the active channel, the single-mode fibre coupled cw output power of the SLDs is 1 to 30 mW at a spectral width of about 50 nm. The width of the optical gain band in the active channel exceeds 40 nm. Preliminary operating life tests have demonstrated that the devices are sufficiently reliable. (lasers)

  6. On the possibility of developing incoherent fibre-optic data transmission systems based on signal spectral coding with matched acousto-optical filters

    International Nuclear Information System (INIS)

    Proklov, Valerii V; Byshevski-Konopko, O A; Grigorievski, V I

    2013-01-01

    The scheme is suggested for developing the optical communication line based on the principle of code division of multiple access with matched acousto-optical filters and a 16-bit long Walsh sequence. Results of modelling show that such a line can operate if adjacent spectral lines are separated by at least double the Rayleigh criterion. (optical information transmission)

  7. Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3

    International Nuclear Information System (INIS)

    Thiel, C.W.; Sun, Y.; Boettger, T.; Babbitt, W.R.; Cone, R.L.

    2010-01-01

    We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the 3 H 4 and 3 F 4 excited states of Tm 3+ , persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the 169 Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 μs at zero field to 23 μs in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm 3+ and the 7 Li and 93 Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for 7 Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.

  8. Spectral domain optical coherence tomography imaging of subretinal bands associated with chronic retinal detachments

    OpenAIRE

    Kothari, Nikisha; Kuriyan, Ajay E; Flynn, Harry W

    2016-01-01

    Nikisha Kothari, Ajay E Kuriyan, Harry W Flynn JrDepartment of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, Miami, FL, USAAbstract: We report three patients with subretinal bands associated with retinal detachment in chronic retinal detachments who underwent successful retinal reattachment. Subretinal bands before and after surgery can be identified on clinical examination and spectral domain optical coherence tomography. Removal of subr...

  9. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalova, A. I.; Burenkov, A. N. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Popovic, L. C.; Kovacevic, J. [Astronomical Observatory, Volgina 7, 11160 Belgrade 74 (Serbia); Chavushyan, V. H.; Valdes, J. R.; Torrealba, J.; Carrasco, L. [Instituto Nacional de Astrofisica, Optica y Electronica, Apartado Postal 51-216, 72000 Puebla (Mexico); Ilic, D.; Kovacevic, A. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Kollatschny, W. [Institut fuer Astrophysik, Georg-August-Universitaet, Goettingen (Germany); Bochkarev, N. G. [Sternberg Astronomical Institute, Moscow (Russian Federation); Leon-Tavares, J. [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FIN-02540 Kylmaelae (Finland); Mercado, A. [Universidad Politecnica de Baja California, Av. de la Industria 291, 21010 Mexicali, B.C. (Mexico); Benitez, E.; Dultzin, D. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-264, Mexico, D.F. 04510 (Mexico); De la Fuente, E., E-mail: ashap@sao.ru [Instituto de Astronomia y Meteorologia, Dpto. de Fisica CUCEI, Universidad de Guadalajara, Av. Vallarta 2602, 44130 Guadalajara, Jalisco (Mexico)

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with a sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.

  10. Macular thickness and macular volume measurements using spectral domain optical coherence tomography in normal Nepalese eyes

    Directory of Open Access Journals (Sweden)

    Pokharel A

    2016-03-01

    Full Text Available Amrit Pokharel,1 Gauri Shankar Shrestha,2 Jyoti Baba Shrestha2 1Department of Ophthalmology, Kathmandu Medical College Teaching Hospital, 2B P Koirala Lions Centre for Ophthalmic Studies, Institute of Medicine, Kathmandu, Nepal Purpose: To record the normative values for macular thickness and macular volume in normal Nepalese eyes. Methods: In all, 126 eyes of 63 emmetropic subjects (mean age: 21.17±6.76 years; range: 10–37 years were assessed for macular thickness and macular volume, using spectral domain-optical coherence tomography over 6×6 mm2 in the posterior pole. A fast macular thickness protocol was employed. Statistics such as the mean, median, standard deviation, percentiles, and range were used, while a P-value was set at 0.05 to test significance. Results: Average macular thickness and total macular volume were larger in males compared to females. With each year of increasing age, these variables decreased by 0.556 µm and 0.0156 mm3 for average macular thickness and total macular volume, respectively. The macular thickness was greatest in the inner superior section and lowest at the center of the fovea. The volume was greatest in the outer nasal section and thinnest in the fovea. The central subfield thickness (r=-0.243, P=0.055 and foveal volume (r=0.216, P=0.09 did not correlate with age. Conclusion: Males and females differ significantly with regard to macular thickness and macular volume measurements. Reports by other studies that the increase in axial length reduced thickness and volume, were negated by this study which found a positive correlation among axial length, thickness, and volume. Keywords: macular thickness, macular volume, optical coherence tomography, Nepal

  11. The spectral method and ergodic theorems for general Markov chains

    International Nuclear Information System (INIS)

    Nagaev, S V

    2015-01-01

    We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris-Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya-Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space

  12. Spectral Karyotyping. An new method for chromosome analysis

    International Nuclear Information System (INIS)

    Zhou Liying; Qian Jianxin; Guo Xiaokui; Dai Hong; Liu Yulong; Zhou Jianying

    2006-01-01

    Spectral Karyotyping (SKY) can reveal fine changes in Chromosome structure which could not be detected by G, R, Q banding before, has become an accurate, sensitive and reliable method for karyotyping, promoted the development of cell genetics to molecular level and has been used in medicine and radiological injury research. It also has the ability of analyzing 24 chromosomes on its once test run and, find implicated structure of chromosome changes, such as metathesis, depletion, amplification, rearrangement, dikinetochore, equiarm and maker-body, detect the abnormal change of stable Chromosome and calculate the bio-dose curve; The abnormal Chromosome detected by SKY can be adopted as early diagnosis, effective indexes of minor remaining changes for use of monitor of treatment and in the duration of follow up. This technique provides us a more advanced and effective method for relative gene cloning and the study of pathological mechanism of cancer. (authors)

  13. Spectral analysis methods for vehicle interior vibro-acoustics identification

    Science.gov (United States)

    Hosseini Fouladi, Mohammad; Nor, Mohd. Jailani Mohd.; Ariffin, Ahmad Kamal

    2009-02-01

    Noise has various effects on comfort, performance and health of human. Sound are analysed by human brain based on the frequencies and amplitudes. In a dynamic system, transmission of sound and vibrations depend on frequency and direction of the input motion and characteristics of the output. It is imperative that automotive manufacturers invest a lot of effort and money to improve and enhance the vibro-acoustics performance of their products. The enhancement effort may be very difficult and time-consuming if one relies only on 'trial and error' method without prior knowledge about the sources itself. Complex noise inside a vehicle cabin originated from various sources and travel through many pathways. First stage of sound quality refinement is to find the source. It is vital for automotive engineers to identify the dominant noise sources such as engine noise, exhaust noise and noise due to vibration transmission inside of vehicle. The purpose of this paper is to find the vibro-acoustical sources of noise in a passenger vehicle compartment. The implementation of spectral analysis method is much faster than the 'trial and error' methods in which, parts should be separated to measure the transfer functions. Also by using spectral analysis method, signals can be recorded in real operational conditions which conduce to more consistent results. A multi-channel analyser is utilised to measure and record the vibro-acoustical signals. Computational algorithms are also employed to identify contribution of various sources towards the measured interior signal. These achievements can be utilised to detect, control and optimise interior noise performance of road transport vehicles.

  14. Intraretinal hyperreflective foci on spectral-domain optical coherence tomographic images of patients with retinitis pigmentosa

    Science.gov (United States)

    Kuroda, Masako; Hirami, Yasuhiko; Hata, Masayuki; Mandai, Michiko; Takahashi, Masayo; Kurimoto, Yasuo

    2014-01-01

    Background The purpose of this study was to observe the characteristic findings of spectral-domain optical coherence tomography (SD-OCT) images in the retinas of patients with retinitis pigmentosa and to evaluate their distribution patterns in the early and advanced stages of the disease. Methods A total of 184 patients (368 eyes) with retinitis pigmentosa were observed using SD-OCT. We studied the presence or absence of continuous inner/outer segment (IS/OS) lines, presence of thinning of the retinal pigment epithelium-Bruch’s membrane complex, and distribution patterns of hyperreflective foci in the inner and outer nuclear layers (INL and ONL). Results The IS/OS junction had partially disappeared in 275 eyes, which were at the early stage of retinitis pigmentosa (group X), whereas the junction had totally disappeared in 93, which were at the advanced stage of retinitis pigmentosa (group Y). Hyperreflective foci in the INL were observed in a significantly larger proportion of the eyes in group X than in group Y (90% versus 61%, Pretinitis pigmentosa and hyperreflective foci in the ONL were more frequently observed in the advanced stage. Hyperreflective foci may be indicative of changes in the retinal structure at each stage of retinitis pigmentosa. PMID:24591813

  15. Agreement of Two Different Spectral Domain Optical Coherence Tomography Instruments for Retinal Nerve Fiber Layer Measurements

    Directory of Open Access Journals (Sweden)

    Hooshang Faghihi

    2014-01-01

    Full Text Available Purpose: To determine the agreement between Spectralis and Cirrus spectral domain optical coherence tomography (SD-OCT measurements of peripapillary retinal nerve fiber layer (RNFL thickness. Methods: Suspected or confirmed cases of glaucoma who met the inclusion criteria underwent peripapillary RNFL thickness measurement using both the Spectralis and Cirrus on the same day within a few minutes. Results: Measurements were performed on 103 eyes of 103 patients with mean age of 50.4±17.7 years. Mean RNFL thickness was 89.22±15.87 versus 84.54±13.68 μm using Spectralis and Cirrus, respectively. The difference between measurements and the average of paired measurements with the two devices showed a significant linear relationship. Bland-Altman plots demonstrated that Spectralis thickness values were systematically larger than that of Cirrus. Conclusion: Spectralis OCT generates higher peripapillary RNFL thickness readings as compared to Cirrus OCT; this should be kept in mind when values obtained with different instruments are compared during follow-up.

  16. Correlation between Spectral Optical Coherence Tomography and Fundus Autofluorescence at the margins of Geographic Atrophy

    Science.gov (United States)

    Brar, Manpreet; Kozak, Igor; Cheng, Lingyun; Bartsch, Dirk-Uwe G.; Yuson, Ritchie; Nigam, Nitin; Oster, Stephen F.; Mojana, Francesca; Freeman, William R.

    2009-01-01

    Purpose We studied the appearance of margins of Geographic atrophy in high- resolution optical coherence tomography (OCT) images and correlate those changes with fundus autofluorescence imaging. Design Retrospective observational case study. Methods Patients with geographic atrophy secondary to dry age related macular degeneration (ARMD) were assessed by means of Spectral Domain OCT (Spectralis HRA/OCT; Heidelberg Engineering, Heidelberg, Germany or OTI, Inc, Toronto, Canada) as well as Autofluoresence Imaging (HRA or Spectralis Heidelberg Engineering, Heidelberg, Germany): The outer retinal layer alterations were analyzed in the junctional zone between normal retina and atrophic retina, and correlated with corresponding fundus autofluorescence. Results 23 eyes of 16 patients aged between 62 years to 96 years were examined. There was a significant association between OCT findings and the fundus autofluorescence findings(r=0.67, pautofluorescence; Smooth margins on OCT correspond significantly to normal fundus autofluorescence. (Kappa-0.7348, pautofluorescence; secondary to increased lipofuscin may together serve as determinants of progression of geographic atrophy. PMID:19541290

  17. Automated Fovea Detection in Spectral Domain Optical Coherence Tomography Scans of Exudative Macular Disease

    Directory of Open Access Journals (Sweden)

    Jing Wu

    2016-01-01

    Full Text Available In macular spectral domain optical coherence tomography (SD-OCT volumes, detection of the foveal center is required for accurate and reproducible follow-up studies, structure function correlation, and measurement grid positioning. However, disease can cause severe obscuring or deformation of the fovea, thus presenting a major challenge in automated detection. We propose a fully automated fovea detection algorithm to extract the fovea position in SD-OCT volumes of eyes with exudative maculopathy. The fovea is classified into 3 main appearances to both specify the detection algorithm used and reduce computational complexity. Based on foveal type classification, the fovea position is computed based on retinal nerve fiber layer thickness. Mean absolute distance between system and clinical expert annotated fovea positions from a dataset comprised of 240 SD-OCT volumes was 162.3 µm in cystoid macular edema and 262 µm in nAMD. The presented method has cross-vendor functionality, while demonstrating accurate and reliable performance close to typical expert interobserver agreement. The automatically detected fovea positions may be used as landmarks for intra- and cross-patient registration and to create a joint reference frame for extraction of spatiotemporal features in “big data.” Furthermore, reliable analyses of retinal thickness, as well as retinal structure function correlation, may be facilitated.

  18. EVALUATION OF DIABETIC MACULAR OEDEMA WITH SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY AND FUNDUS FLUORESCEIN ANGIOGRAPHY

    Directory of Open Access Journals (Sweden)

    Mallika Venkitasubramanian

    2017-02-01

    Full Text Available BACKGROUND Macular oedema is an important cause of visual morbidity in Diabetic Retinopathy. It can be assessed by both Fundus Fluorescein Angiography (FFA and Optical Coherence Tomography (OCT. The aims of this study were to evaluate the agreement between morphological features on spectral domain Optical Coherence Tomography and Fluorescein Angiographic leakage patterns in Diabetic Macular Oedema, and to study the correlation between the best corrected visual acuity and central foveal thickness measured by Optical Coherence Tomography. MATERIALS AND METHODS This was an observational study. All patients with Diabetic Macular Oedema underwent complete ophthalmic examination and subjected to FFA and OCT. Presence or absence of macular oedema by FFA and OCT was noted and agreement between two modalities of imaging was assessed. Sensitivity of these modalities were also found out using appropriate statistical methods. Best Corrected Visual Acuity (BCVA measured were converted to LogMAR scale and Central foveal thickness measured by OCT. Linear regression analysis was done with central foveal thickness and LogMAR visual acuity. RESULTS A total of 69 eyes of 39 patients were studied. OCT revealed Diabetic Macular Oedema in 97.5% of eyes. Fundus Fluorescein Angiography performed in these patients identified leakage in 95.6% of eyes. Sensitivity and specificity of FFA and OCT were calculated keeping one as the gold standard for sensitivity and specificity of the other. FFA and OCT had almost equal sensitivity (95.46 for OCT and 96.92 for FFA for detection of DME. Specificity of OCT was found to be slightly higher (33.33% compared to FFA (25%. Our results suggest that there is minimal agreement between these two imaging modalities in evaluating DME. Statistically, Kappa value was 0.248. Linear regression analysis showed that central foveal thickness had a significant correlation with visual acuity, with Pearson correlation coefficient r=0.442, p=0

  19. A Method to Analyze the Potential of Optical Remote Sensing for Benthic Habitat Mapping

    Directory of Open Access Journals (Sweden)

    Rodrigo A. Garcia

    2015-10-01

    Full Text Available Quantifying the number and type of benthic classes that are able to be spectrally identified in shallow water remote sensing is important in understanding its potential for habitat mapping. Factors that impact the effectiveness of shallow water habitat mapping include water column turbidity, depth, sensor and environmental noise, spectral resolution of the sensor and spectral variability of the benthic classes. In this paper, we present a simple hierarchical clustering method coupled with a shallow water forward model to generate water-column specific spectral libraries. This technique requires no prior decision on the number of classes to output: the resultant classes are optically separable above the spectral noise introduced by the sensor, image based radiometric corrections, the benthos’ natural spectral variability and the attenuating properties of a variable water column at depth. The modeling reveals the effect reducing the spectral resolution has on the number and type of classes that are optically distinct. We illustrate the potential of this clustering algorithm in an analysis of the conditions, including clustering accuracy, sensor spectral resolution and water column optical properties and depth that enabled the spectral distinction of the seagrass Amphibolis antartica from benthic algae.

  20. Spectral element method for vector radiative transfer equation

    International Nuclear Information System (INIS)

    Zhao, J.M.; Liu, L.H.; Hsu, P.-F.; Tan, J.Y.

    2010-01-01

    A spectral element method (SEM) is developed to solve polarized radiative transfer in multidimensional participating medium. The angular discretization is based on the discrete-ordinates approach, and the spatial discretization is conducted by spectral element approach. Chebyshev polynomial is used to build basis function on each element. Four various test problems are taken as examples to verify the performance of the SEM. The effectiveness of the SEM is demonstrated. The h and the p convergence characteristics of the SEM are studied. The convergence rate of p-refinement follows the exponential decay trend and is superior to that of h-refinement. The accuracy and efficiency of the higher order approximation in the SEM is well demonstrated for the solution of the VRTE. The predicted angular distribution of brightness temperature and Stokes vector by the SEM agree very well with the benchmark solutions in references. Numerical results show that the SEM is accurate, flexible and effective to solve multidimensional polarized radiative transfer problems.

  1. METHOD AND MODULE FOR OPTICAL SUBCARRIER LABELLING

    DEFF Research Database (Denmark)

    2004-01-01

    The present invention relates to optical labelling in WDM networks, in that it provides a method and a module to be used in subcarrier label generation and switching in network edge nodes and core switch nodes. The methods and modules are typically employed in Optical Subcarrier Multiplexing (OSCM......) transmitters. The payload and the label are encoded independently on optical carrier and subcarrier signals respectively, using electro-optical modulators. The invention applies single or double sideband carrier-suppressed modulation to generate subcarrier signals for encoding of the label. Thereby the payload...... encoded carrier signal and the label encoded subcarrier signal can be coupled directly without prior filtering....

  2. Complex method for angular-spectral analysis of volume phase diffraction gratings recorded in photopolymers

    Czech Academy of Sciences Publication Activity Database

    Vojtíšek, Petr; Květoň, M.; Richter, I.

    2016-01-01

    Roč. 11, February (2016), č. článku 16009. ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1206 Institutional support: RVO:61389021 Keywords : Photopolymers * diffraction gratings * angular-spectral maps * spectral selectivity * angular selectivity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.975, year: 2016

  3. Spectral methods and their implementation to solution of aerodynamic and fluid mechanic problems

    Science.gov (United States)

    Streett, C. L.

    1987-01-01

    Fundamental concepts underlying spectral collocation methods, especially pertaining to their use in the solution of partial differential equations, are outlined. Theoretical accuracy results are reviewed and compared with results from test problems. A number of practical aspects of the construction and use of spectral methods are detailed, along with several solution schemes which have found utility in applications of spectral methods to practical problems. Results from a few of the successful applications of spectral methods to problems of aerodynamic and fluid mechanic interest are then outlined, followed by a discussion of the problem areas in spectral methods and the current research under way to overcome these difficulties.

  4. Transport survey calculations using the spectral collocation method

    International Nuclear Information System (INIS)

    Painter, S.L.; Lyon, J.F.

    1989-01-01

    A novel transport survey code has been developed and is being used to study the sensitivity of stellarator reactor performance to various transport assumptions. Instead of following one of the usual approaches, the steady-state transport equation are solved in integral form using the spectral collocation method. This approach effectively combine the computational efficiency of global models with the general nature of 1-D solutions. A compact torsatron reactor test case was used to study the convergence properties and flexibility of the new method. The heat transport model combined Shaing's model for ripple-induced neoclassical transport, the Chang-Hinton model for axisymmetric neoclassical transport, and neoalcator scaling for anomalous electron heat flux. Alpha particle heating, radiation losses, classical electron-ion heat flow, and external heating were included. For the test problem, the method exhibited some remarkable convergence properties. As the number of basis functions was increased, the maximum, pointwise error in the integrated power balance decayed exponentially until the numerical noise level as reached. Better than 10% accuracy in the globally-averaged quantities was achieved with only 5 basis functions; better than 1% accuracy was achieved with 10 basis functions. The numerical method was also found to be very general. Extreme temperature gradients at the plasma edge which sometimes arise from the neoclassical models and are difficult to resolve with finite-difference methods were easily resolved. 8 refs., 6 figs

  5. Frequency doubling technique perimetry and spectral domain optical coherence tomography in patients with early glaucoma.

    Science.gov (United States)

    Horn, F K; Mardin, C Y; Bendschneider, D; Jünemann, A G; Adler, W; Tornow, R P

    2011-01-01

    To assess the combined diagnostic power of frequency-doubling technique (FDT)-perimetry and retinal nerve fibre layer (RNFL) thickness measurements with spectral domain optical coherence tomography (SDOCT). The study included 330 experienced participants in five age-related groups: 77 'preperimetric' open-angle glaucoma (OAG) patients, 52 'early' OAG, 50 'moderate' OAG, 54 ocular hypertensive patients, and 97 healthy subjects. For glaucoma assessment in all subjects conventional perimetry, evaluation of fundus photographs, FDT-perimetry and RNFL thickness measurement with SDOCT was done. Glaucomatous visual field defects were classified using the Glaucoma Staging System. FDT evaluation used a published method with casewise calculation of an 'FDT-score', including all missed localized probability levels. SDOCT evaluation used mean RNFL thickness and a new individual SDOCT-score considering normal confidence limits in 32 sectors of a peripapillary circular scan. To examine the joined value of both methods a combined score was introduced. Significance of the difference between Receiver-operating-characteristic (ROC) curves was calculated for a specificity of 96%. Sensitivity in the preperimetric glaucoma group was 44% for SDOCT-score, 25% for FDT-score, and 44% for combined score, in the early glaucoma group 83, 81, and 89%, respectively, and in the moderate glaucoma group 94, 94, and 98%, respectively, all at a specificity of 96%. ROC performance of the newly developed combined score is significantly above single ROC curves of FDT-score in preperimetric and early OAG and above RNFL thickness in moderate OAG. Combination of function and morphology by using the FDT-score and the SDOCT-score performs equal or even better than each single method alone.

  6. Genetic Algorithms: A New Method for Neutron Beam Spectral Characterization

    International Nuclear Information System (INIS)

    David W. Freeman

    2000-01-01

    A revolutionary new concept for solving the neutron spectrum unfolding problem using genetic algorithms (GAs) has recently been introduced. GAs are part of a new field of evolutionary solution techniques that mimic living systems with computer-simulated chromosome solutions that mate, mutate, and evolve to create improved solutions. The original motivation for the research was to improve spectral characterization of neutron beams associated with boron neutron capture therapy (BNCT). The GA unfolding technique has been successfully applied to problems with moderate energy resolution (up to 47 energy groups). Initial research indicates that the GA unfolding technique may well be superior to popular unfolding methods in common use. Research now under way at Kansas State University is focused on optimizing the unfolding algorithm and expanding its energy resolution to unfold detailed beam spectra based on multiple foil measurements. Indications are that the final code will significantly outperform current, state-of-the-art codes in use by the scientific community

  7. Three-dimensional mapping of peripapillary retinal layers using a spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Hashmani N

    2017-12-01

    Full Text Available Nauman Hashmani, Sharif Hashmani Department of Ophthalmology, Hashmanis Hospital, Karachi, Pakistan Purpose: To map and view the effects of age, gender, and axial length on seven individual retinal layers around the optic nerve head (ONH.Methods: We scanned 242 healthy patients using the Spectralis spectral domain optical coherence tomography in an outpatient setting. The layers were observed on the Early Treatment Diabetic Retinopathy Study sectors using the standard Spectralis Family Acquisition Module 6.0.11.0. The center was the ONH, the inner circle (IC was 1–3 mm away, and the outer circle (OC was 3–6 mm away. The seven layers were retinal nerve fiber layer (RNFL, ganglion cell layer (GCL, inner plexiform layer (IPL, inner nuclear layer (INL, outer plexiform layer (OPL, outer nuclear layer (ONL, and retinal pigment epithelium (RPE. Additionally, we calculated the mean thickness of two combined layers: inner retinal layer (IRL and photoreceptor layer (PL. Finally, we measured the mean of the total retinal thickness (TRT.Results: The TRT was highest at the inferior end in the IC and at the nasal end in the OC. The RPE (p<0.001 and PL (p<0.001 were thicker in males; however, the IRL (p=0.015 was thicker in females. We found that the RNFL (p<0.001, r=0.139, GCL (p<0.001, r=0.116, IPL (p=0.016, r=0.059, INL (p<0.001, r=0.104, OPL (p=0.009, r=0.064, ONL (p<0.001, r=0.157, RPE (p=0.001, r=0.079, IRL (p<0.001, r=0.190, PL (p=0.030, r=0.053, and TRT (p<0.001, r=0.191 correlated negatively with age. The axial length significantly and negatively correlated at the GCL (p=0.003, r=0.093, IPL (p=0.020, r=0.072, INL (p=0.018, r=0.073, ONL (p<0.001, r=0.110, IRL (p=0.003, r=0.092, and TRT (p=0.003, r=0.094. We found poor reproducibility in the IC; however, this was excellent in the OC.Conclusion: We found significant differences in layers according to age, gender, and axial length. Additionally, reproducibility can be improved by altering the

  8. Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo

    Science.gov (United States)

    Lin, Ching-Wei; Bachilo, Sergei M.; Vu, Michael; Beckingham, Kathleen M.; Bruce Weisman, R.

    2016-05-01

    Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and imaging of cancer tumours, when linked to selective targeting agents such as antibodies. However, such applications face the challenge of sensitively detecting and localizing the source of SWIR emission from inside tissues. A new method, called spectral triangulation, is presented for three dimensional (3D) localization using sparse optical measurements made at the specimen surface. Structurally unsorted SWCNT samples emitting over a range of wavelengths are excited inside tissue phantoms by an LED matrix. The resulting SWIR emission is sampled at points on the surface by a scanning fibre optic probe leading to an InGaAs spectrometer or a spectrally filtered InGaAs avalanche photodiode detector. Because of water absorption, attenuation of the SWCNT fluorescence in tissues is strongly wavelength-dependent. We therefore gauge the SWCNT-probe distance by analysing differential changes in the measured SWCNT emission spectra. SWCNT fluorescence can be clearly detected through at least 20 mm of tissue phantom, and the 3D locations of embedded SWCNT test samples are found with sub-millimeter accuracy at depths up to 10 mm. Our method can also distinguish and locate two embedded SWCNT sources at distinct positions.Nanomaterials with luminescence in the short-wave infrared (SWIR) region are of special interest for biological research and medical diagnostics because of favorable tissue transparency and low autofluorescence backgrounds in that region. Single-walled carbon nanotubes (SWCNTs) show well-known sharp SWIR spectral signatures and therefore have potential for noninvasive detection and

  9. Agreement of angle closure assessments between gonioscopy, anterior segment optical coherence tomography and spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Elton Lik Tong Tay

    2015-04-01

    Full Text Available AIM: To determine angle closure agreements between gonioscopy and anterior segment optical coherence tomography (AS-OCT, as well as gonioscopy and spectral domain OCT (SD-OCT. A secondary objective was to quantify inter-observer agreements of AS-OCT and SD-OCT assessments. METHODS: Seventeen consecutive subjects (33 eyes were recruited from the study hospital’s Glaucoma clinic. Gonioscopy was performed by a glaucomatologist masked to OCT results. OCT images were read independently by 2 other glaucomatologists masked to gonioscopy findings as well as each other’s analyses of OCT images. RESULTS: Totally 84.8% and 45.5% of scleral spurs were visualized in AS-OCT and SD-OCT images respectively (P<0.01. The agreement for angle closure between AS-OCT and gonioscopy was fair at k=0.31 (95% confidence interval, CI: 0.03-0.59 and k=0.35 (95% CI: 0.07-0.63 for reader 1 and 2 respectively. The agreement for angle closure between SD-OCT and gonioscopy was fair at k=0.21 (95% CI: 0.07-0.49 and slight at k=0.17 (95% CI: 0.08-0.42 for reader 1 and 2 respectively. The inter-reader agreement for angle closure in AS-OCT images was moderate at 0.51 (95% CI: 0.13-0.88. The inter-reader agreement for angle closure in SD-OCT images was slight at 0.18 (95% CI: 0.08-0.45. CONCLUSION: Significant proportion of scleral spurs were not visualised with SD-OCT imaging resulting in weaker inter-reader agreements. Identifying other angle landmarks in SD-OCT images will allow more consistent angle closure assessments. Gonioscopy and OCT imaging do not always agree in angle closure assessments but have their own advantages, and should be used together and not exclusively.

  10. Standard Test Method for Normal Spectral Emittance at Elevated Temperatures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1972-01-01

    1.1 This test method describes a highly accurate technique for measuring the normal spectral emittance of electrically conducting materials or materials with electrically conducting substrates, in the temperature range from 600 to 1400 K, and at wavelengths from 1 to 35 μm. 1.2 The test method requires expensive equipment and rather elaborate precautions, but produces data that are accurate to within a few percent. It is suitable for research laboratories where the highest precision and accuracy are desired, but is not recommended for routine production or acceptance testing. However, because of its high accuracy this test method can be used as a referee method to be applied to production and acceptance testing in cases of dispute. 1.3 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this stan...

  11. The use of spectral methods in bidomain studies.

    Science.gov (United States)

    Trayanova, N; Pilkington, T

    1992-01-01

    A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.

  12. Variational Multi-Scale method with spectral approximation of the sub-scales.

    KAUST Repository

    Dia, Ben Mansour

    2015-01-07

    A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a nite number of modes.

  13. Potential of remote sensing of cirrus optical thickness by airborne spectral radiance measurements at different sideward viewing angles

    OpenAIRE

    Wolf, Kevin; Ehrlich, André; Hüneke, Tilman; Pfeilsticker, Klaus; Werner, Frank; Wirth, Martin; Wendisch, Manfred

    2017-01-01

    Spectral radiance measurements collected in nadir and sideward viewing directions by two airborne passive solar remote sensing instruments, the Spectral Modular Airborne Radiation measurement sysTem (SMART) and the Differential Optical Absorption Spectrometer (mini-DOAS), are used to compare the remote sensing results of cirrus optical thickness τ. The comparison is based on a sensitivity study using radiative transfer simulations (RTS) and on data obtained during three airb...

  14. Spectral-Product Methods for Electronic Structure Calculations (Preprint)

    National Research Council Canada - National Science Library

    Langhoff, P. W; Mills, J. E; Boatz, J. A

    2006-01-01

    .... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...

  15. Spectral-Product Methods for Electronic Structure Calculations (Postprint)

    National Research Council Canada - National Science Library

    Langhoff, P. W; Hinde, R. J; Mills, J. D; Boatz, J. A

    2007-01-01

    .... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...

  16. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    Science.gov (United States)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  17. Spectral characterization in deep UV of an improved imaging KDP acousto-optic tunable filter

    International Nuclear Information System (INIS)

    Gupta, Neelam; Voloshinov, Vitaly

    2014-01-01

    Recently, we developed a number of high quality noncollinear acousto-optic tunable filter (AOTF) cells in different birefringent materials with UV imaging capability. Cells based on a single crystal of KDP (potassium dihydrophosphate) had the best transmission efficiency and the optical throughput needed to acquire high quality spectral images at wavelengths above 220 nm. One of the main limitations of these imaging filters was their small angular aperture in air, limited to about 1.0°. In this paper, we describe an improved imaging KDP AOTF operating from the deep UV to the visible region of the spectrum. The linear and angular apertures of the new filter are 10 × 10 mm 2 and 1.8°, respectively. The spectral tuning range is 205–430 nm with a 60 cm −1 spectral resolution. We describe the filter and present experimental results on imaging using both a broadband source and a number of light emitting diodes (LEDs) in the UV, and include the measured spectra of these LEDs obtained with a collinear SiO 2 filter-based spectrometer operating above 255 nm. (paper)

  18. Spectral shaping of an all-fiber torsional acousto-optic tunable filter.

    Science.gov (United States)

    Ko, Jeakwon; Lee, Kwang Jo; Kim, Byoung Yoon

    2014-12-20

    Spectral shaping of an all-fiber torsional acousto-optic (AO) tunable filter is studied. The technique is based on the axial modulation of AO coupling strength along a highly birefringent optical fiber, which is achieved by tailoring the outer diameter of the fiber along its propagation axis. Two kinds of filter spectral shaping schemes-Gaussian apodization and matched filtering with triple resonance peaks-are proposed and numerically investigated under realistic experimental conditions: at the 50-cm-long AO interaction length of the fiber and at half of the original fiber diameter as the minimum thickness of the tailored fiber section. The results show that the highest peak of sidelobe spectra in filter transmission is suppressed from 11.64% to 0.54% via Gaussian modulation of the AO coupling coefficient (κ). Matched filtering with triple resonance peaks operating with a single radio frequency signal is also achieved by cosine modulation of κ, of which the modulation period determines the spectral distance between two satellite peaks located in both wings of the main resonance peak. The splitting of two satellite peaks in the filter spectra reaches 48.2 nm while the modulation period varies from 7.7 to 50 cm. The overall peak power of two satellite resonances is calculated to be 22% of the main resonance power. The results confirm the validity and practicality of our approach, and we predict robust and stable operation of the designed all-fiber torsional AO filters.

  19. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia.

    Science.gov (United States)

    Greenberg, Jonathan P; Sherman, Jerome; Zweifel, Sandrine A; Chen, Royce W S; Duncker, Tobias; Kohl, Susanne; Baumann, Britta; Wissinger, Bernd; Yannuzzi, Lawrence A; Tsang, Stephen H

    2014-04-01

    IMPORTANCE Evidence is mounting that achromatopsia is a progressive retinal degeneration, and treatments for this condition are on the horizon. OBJECTIVES To categorize achromatopsia into clinically identifiable stages using spectral-domain optical coherence tomography and to describe fundus autofluorescence imaging in this condition. DESIGN, SETTING, AND PARTICIPANTS A prospective observational study was performed between 2010 and 2012 at the Edward S. Harkness Eye Institute, New York-Presbyterian Hospital. Participants included 17 patients (aged 10-62 years) with full-field electroretinography-confirmed achromatopsia. MAIN OUTCOMES AND MEASURES Spectral-domain optical coherence tomography features and staging system, fundus autofluorescence and near-infrared reflectance features and their correlation to optical coherence tomography, and genetic mutations served as the outcomes and measures. RESULTS Achromatopsia was categorized into 5 stages on spectral-domain optical coherence tomography: stage 1 (2 patients [12%]), intact outer retina; stage 2 (2 patients [12%]), inner segment ellipsoid line disruption; stage 3 (5 patients [29%]), presence of an optically empty space; stage 4 (5 patients [29%]), optically empty space with partial retinal pigment epithelium disruption; and stage 5 (3 patients [18%]), complete retinal pigment epithelium disruption and/or loss of the outer nuclear layer. Stage 1 patients showed isolated hyperreflectivity of the external limiting membrane in the fovea, and the external limiting membrane was hyperreflective above each optically empty space. On near infrared reflectance imaging, the fovea was normal, hyporeflective, or showed both hyporeflective and hyperreflective features. All patients demonstrated autofluorescence abnormalities in the fovea and/or parafovea: 9 participants (53%) had reduced or absent autofluorescence surrounded by increased autofluorescence, 4 individuals (24%) showed only reduced or absent autofluorescence, 3

  20. Method for estimating effects of unknown correlations in spectral irradiance data on uncertainties of spectrally integrated colorimetric quantities

    Science.gov (United States)

    Kärhä, Petri; Vaskuri, Anna; Mäntynen, Henrik; Mikkonen, Nikke; Ikonen, Erkki

    2017-08-01

    Spectral irradiance data are often used to calculate colorimetric properties, such as color coordinates and color temperatures of light sources by integration. The spectral data may contain unknown correlations that should be accounted for in the uncertainty estimation. We propose a new method for estimating uncertainties in such cases. The method goes through all possible scenarios of deviations using Monte Carlo analysis. Varying spectral error functions are produced by combining spectral base functions, and the distorted spectra are used to calculate the colorimetric quantities. Standard deviations of the colorimetric quantities at different scenarios give uncertainties assuming no correlations, uncertainties assuming full correlation, and uncertainties for an unfavorable case of unknown correlations, which turn out to be a significant source of uncertainty. With 1% standard uncertainty in spectral irradiance, the expanded uncertainty of the correlated color temperature of a source corresponding to the CIE Standard Illuminant A may reach as high as 37.2 K in unfavorable conditions, when calculations assuming full correlation give zero uncertainty, and calculations assuming no correlations yield the expanded uncertainties of 5.6 K and 12.1 K, with wavelength steps of 1 nm and 5 nm used in spectral integrations, respectively. We also show that there is an absolute limit of 60.2 K in the error of the correlated color temperature for Standard Illuminant A when assuming 1% standard uncertainty in the spectral irradiance. A comparison of our uncorrelated uncertainties with those obtained using analytical methods by other research groups shows good agreement. We re-estimated the uncertainties for the colorimetric properties of our 1 kW photometric standard lamps using the new method. The revised uncertainty of color temperature is a factor of 2.5 higher than the uncertainty assuming no correlations.

  1. Use of new spectral analysis methods in gamma spectra deconvolution

    International Nuclear Information System (INIS)

    Pinault, J.L.

    1991-01-01

    A general deconvolution method applicable to X and gamma ray spectrometry is proposed. Using new spectral analysis methods, it is applied to an actual case: the accurate on-line analysis of three elements (Ca, Si, Fe) in a cement plant using neutron capture gamma rays. Neutrons are provided by a low activity (5 μg) 252 Cf source; the detector is a BGO 3 in.x8 in. scintillator. The principle of the methods rests on the Fourier transform of the spectrum. The search for peaks and determination of peak areas are worked out in the Fourier representation, which enables separation of background and peaks and very efficiently discriminates peaks, or elements represented by several peaks. First the spectrum is transformed so that in the new representation the full width at half maximum (FWHM) is independent of energy. Thus, the spectrum is arranged symmetrically and transformed into the Fourier representation. The latter is multiplied by a function in order to transform original Gaussian into Lorentzian peaks. An autoregressive filter is calculated, leading to a characteristic polynomial whose complex roots represent both the location and the width of each peak, provided that the absolute value is lower than unit. The amplitude of each component (the area of each peak or the sum of areas of peaks characterizing an element) is fitted by the weighted least squares method, taking into account that errors in spectra are independent and follow a Poisson law. Very accurate results are obtained, which would be hard to achieve by other methods. The DECO FORTRAN code has been developed for compatible PC microcomputers. Some features of the code are given. (orig.)

  2. A novel optical gating method for laser gated imaging

    Science.gov (United States)

    Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer

    2013-06-01

    For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.

  3. Potential of optical spectral transmission measurements for joint inflammation measurements in rheumatoid arthritis patients

    Science.gov (United States)

    Meier, A. J. Louise; Rensen, Wouter H. J.; de Bokx, Pieter K.; de Nijs, Ron N. J.

    2012-08-01

    Frequent monitoring of rheumatoid arthritis (RA) patients enables timely treatment adjustments and improved outcomes. Currently this is not feasible due to a shortage of rheumatologists. An optical spectral transmission device is presented for objective assessment of joint inflammation in RA patients, while improving diagnostic accuracy and clinical workflow. A cross-sectional, nonrandomized observational study was performed with this device. In the study, 77 proximal interphalangeal (PIP) joints in 67 patients have been analyzed. Inflammation of these PIP joints was also assessed by a rheumatologist with a score varying from 1 (not inflamed) to 5 (severely inflamed). Out of 77 measurements, 27 were performed in moderate to strongly inflamed PIP joints. Comparison between the clinical assessment and an optical measurement showed a correlation coefficient r=0.63, p<0.001, 95% CI [0.47, 0.75], and a ROC curve (AUC=0.88) that shows a relative good specificity and sensitivity. Optical spectral transmission measurements in a single joint correlate with clinical assessment of joint inflammation, and therefore might be useful in monitoring joint inflammation in RA patients.

  4. Retinal nerve fiber and optic disc morphology using spectral-domain optical coherence tomography in scleroderma patients.

    Science.gov (United States)

    Sahin-Atik, Sevinc; Koc, Feray; Akin-Sari, Sirin; Ozmen, Mustafa

    2017-05-11

    To evaluate the optic nerve head parameters and peripapillary retinal nerve fiber layer using spectral-domain optical coherence tomography (SD-OCT) in a systemic sclerosis (SSc) cohort and age-matched controls to determine whether SSc patients have an increased risk of normal-tension glaucoma (NTG). We examined 30 patients (3 male, 27 female) with SSc and 28 age- and sex-matched controls. Retinal nerve fiber and optic disc morphology were evaluated using Cirrus SD-OCT. Optic disc morphology measurements including disc area, rim area, average and vertical cup/disc (C/D) ratio, and cup volume were not significantly different between the study groups. The average and 4-quadrant retinal nerve fiber layer (RNFL) measurements of the C/D >0.3 subgroups were not significantly different in the patients and controls. These values were also similar for the C/D >0.5 subgroups except that the average inferior quadrant RNFL thickness of the right eyes in the patient subgroup was significantly thinner than in the control subgroup (p<0.05). Our SSc cohort had relatively shorter disease duration but increased prevalence of early glaucomatous damage signs. Our findings indicate that SSc is a risk factor for developing normal-tension glaucoma. Further studies combined with visual field evaluation are necessary to identify the long-term glaucomatous effects of SSc.

  5. Concentric circular ring and nanodisk optical antenna enhanced multispectral quantum dot infrared photodetector with spectral localization

    International Nuclear Information System (INIS)

    Zhang, Yingjie; Kemsri, Thitikorn; Li, Lin; Lu, Xuejun; Gu, Guiru

    2017-01-01

    In this paper, we report a concentric circular ring and nanodisk plasmonic optical antenna (POA) enhanced multispectral quantum dot infrared photodetector (QDIP). The circular ring and the nanodisk POA structures are designed to have plasmonic resonant wavelengths in the longwave infrared (LWIR) and the midwave infrared (MWIR) spectral regimes, respectively. The electric field ( E -field) distributions are simulated and show spectral localization due to the distinct plasmonic resonant wavelengths of the POA structures. The circular ring is found to enhance the E -fields in the nanodisk regions due to the mutual coupling. A concentric circular ring and nanodisk POA enhanced multispectral QDIP was fabricated and tested. Multispectral enhancement was observed. The enhancement is compared to that of a QDIP with only the circular ring POA structure. The experiment data agree with the simulation. The concentric circular ring and nanodisk POA provides a compact planar structure for multispectral QDIP enhancement. (paper)

  6. Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method

    Science.gov (United States)

    Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.

    2005-01-01

    The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.

  7. Development of a low-cost, 11 µm spectral domain optical coherence tomography surface profilometry prototype

    Science.gov (United States)

    Suliali, Nyasha J.; Baricholo, Peter; Neethling, Pieter H.; Rohwer, Erich G.

    2017-06-01

    A spectral-domain Optical Coherence Tomography (OCT) surface profilometry prototype has been developed for the purpose of surface metrology of optical elements. The prototype consists of a light source, spectral interferometer, sample fixture and software currently running on Microsoft® Windows platforms. In this system, a broadband light emitting diode beam is focused into a Michelson interferometer with a plane mirror as its sample fixture. At the interferometer output, spectral interferograms of broadband sources were measured using a Czerny-Turner mount monochromator with a 2048-element complementary metal oxide semiconductor linear array as the detector. The software performs importation and interpolation of interferometer spectra to pre-condition the data for image computation. One dimensional axial OCT images were computed by Fourier transformation of the measured spectra. A first reflection surface profilometry (FRSP) algorithm was then formulated to perform imaging of step-function-surfaced samples. The algorithm re-constructs two dimensional colour-scaled slice images by concatenation of 21 and 13 axial scans to form a 10 mm and 3.0 mm slice respectively. Measured spectral interferograms, computed interference fringe signals and depth reflectivity profiles were comparable to simulations and correlated to displacements of a single reflector linearly translated about the arm null-mismatch point. Surface profile images of a double-step-function-surfaced sample, embedded with inclination and crack detail were plotted with an axial resolution of 11 μm. The surface shape, defects and misalignment relative to the incident beam were detected to the order of a micron, confirming high resolution of the developed system as compared to electro-mechanical surface profilometry techniques.

  8. Measurements of spectral responses for developing fiber-optic pH sensor

    Science.gov (United States)

    Yoo, Wook Jae; Heo, Ji Yeon; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jin Soo; Park, Jang-Yeon; Park, Byung Gi; Cho, Seunghyun; Lee, Bongsoo

    2011-01-01

    In this study, we have fabricated a fiber-optic pH sensor, which is composed of a light source, a pH-sensing probe, plastic optical fibers and a spectrometer, for determining the degree of infection by Helicobacter pylori in the stomach. As pH indicators, phenol red and m-cresol purple are used, and pH liquid solutions are prepared by mixing phenol red or m-cresol purple solutions and various kinds of pH buffer solutions. The light emitted by a light source is guided by plastic optical fibers to the pH liquid solution, and the optical characteristic of a reflected light is changed according to the color variations of the pH indicator in the pH-sensing probe. Therefore, we have measured the intensities and wavelength shifts of the reflected lights, which change according to the color variations of indicators at different pH values, by using a spectrometer for spectral analysis. Also, the relationships between the pH values of liquid solutions and the optical properties of the modulated lights are obtained on the basis of the changes of the colors of indicators.

  9. MODIS Aqua Optical Throughput Degradation Impact on Relative Spectral Response and Calibration on Ocean Color Products

    Science.gov (United States)

    Lee, Shihyan; Meister, Gerhard

    2017-01-01

    Since Moderate Resolution Imaging Spectroradiometer Aqua's launch in 2002, the radiometric system gains of the reflective solar bands have been degrading, indicating changes in the systems optical throughput. To estimate the optical throughput degradation, the electronic gain changes were estimated and removed from the measured system gain. The derived optical throughput degradation shows a rate that is much faster in the shorter wavelengths than the longer wavelengths. The wavelength-dependent optical throughput degradation modulated the relative spectral response (RSR) of the bands. In addition, the optical degradation is also scan angle-dependent due to large changes in response versus the scan angle over time. We estimated the modulated RSR as a function of time and scan angles and its impacts on sensor radiometric calibration for the ocean science. Our results show that the calibration bias could be up to 1.8 % for band 8 (412 nm) due to its larger out-of-band response. For the other ocean bands, the calibration biases are much smaller with magnitudes at least one order smaller.

  10. Effect of ocular magnification on macular measurements made using spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Mohana Kuppuswamy Parthasarathy

    2015-01-01

    Full Text Available Aim: The aim of the present study was to study the effect of ocular magnification on macular measurements made using spectral domain optical coherence tomography (OCT. Materials and Methods: One hundred and fifty-one subjects were included from the normative study of foveal morphology carried out at our hospital. Subjects underwent comprehensive eye examination and macular scanning using Cirrus high-definition OCT and axial length (AXL measurement. Macular cube 512 × 128 scan protocol was used for scanning the macula. Automated measurements of the fovea namely foveal diameter, foveal slope (lateral measurements and foveal depth (axial measurement were taken. A correction factor for ocular magnification was done using the formula t = p × q × s, where "t0" is the corrected measurement, "p" is the magnification of OCT, "q0" is the ocular magnification, and "s" is the measurement on OCT without correction. The difference between corrected and uncorrected measurements was evaluated for statistical significance. Results: Mean AXL was 22.95 ± 0.78 mm. Refractive error ranged from −3D to +4D. Mean difference between measured and corrected foveal diameter, slope and depth was 166.05 ± 95.37 ΅m (P < 0.001, 0.81° ± 0.53° (P < 0.001 and 0.05 ± 0.49 ΅m (P = 0.178 respectively. AXL lesser than the OCT calibrated value of 24.46 mm showed an increased foveal diameter (r = 0.961, P < 0.001 and a reduced foveal slope (r = −0.863, P < 0.001 than the corrected value. Conclusion: Lateral measurements made on OCT varied with AXL s other than the OCT calibrated value of 24.46 mm. Therefore, to estimate the actual dimensions of a retinal lesion using OCT, especially lateral dimensions, we recommend correction for the ocular magnification factor.

  11. Retinal ganglion cell complex changes using spectral domain optical coherence tomography in diabetic patients without retinopathy

    Directory of Open Access Journals (Sweden)

    Ahmed I. Hegazy

    2017-03-01

    Full Text Available AIM: To assess the ganglion cell complex (GCC thickness in diabetic eyes without retinopathy. METHODS: Two groups included 45 diabetic eyes without retinopathy and 21 non diabetic eyes. All subjects underwent full medical and ophthalmological history, full ophthalmological examination, measuring GCC thickness and central foveal thickness (CFT using the RTVue® spectral domain-optical coherence tomography (SD-OCT, and HbA1C level. RESULTS: GCC focal loss volume (FLV% was significantly more in diabetic eyes (22.2% below normal than normal eyes (P=0.024. No statistically significant difference was found between the diabetic group and the control group regarding GCC global loss volume (GLV% (P=0.160. CFT was positively correlated to the average, superior and inferior GCC (P=0.001, 0.000 and 0.001 respectively and negatively correlated to GLV% and FLV% (P=0.002 and 0.031 respectively in diabetic eyes. C/D ratio in diabetic eyes was negatively correlated to average, superior and inferior GCC (P=0.015, 0.007 and 0.017 respectively. The FLV% was negatively correlated to the refraction and level of HbA1c (P=0.019 and 0.013 respectively and positively correlated to the best corrected visual acuity (BCVA in logMAR in diabetic group (P=0.004. CONCLUSION: Significant GCC thinning in diabetes predates retinal vasculopathy, which is mainly focal rather than diffuse. It has no preference to either the superior or inferior halves of the macula. Increase of myopic error is significantly accompanied with increased focal GCC loss. GCC loss is accompanied with increased C/D ratio in diabetic eyes.

  12. Reflectivity and thickness analysis of epiretinal membranes using spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Ajay E. Kuriyan

    2016-01-01

    Full Text Available AIM: To compare thickness and reflectivity spectral domain optical coherence tomography (SD-OCT findings in patients with idiopathic epiretinal membranes (ERMs, before and after ERM peeling surgery, with normal controls. METHODS: A retrospective study analyzed SD-OCTs of eyes with ERMs undergoing ERM peeling surgery by one surgeon from 2008 to 2010 and normal control eyes. SD-OCTs were analyzed using a customized algorithm to measure reflectivity and thickness. The relationship between the SD-OCT findings and best corrected visual acuity (BCVA outcomes was also studied. RESULTS: Thirty-four ERM eyes and 12 normal eyes were identified. Preoperative eyes had high reflectivity and thickness of the group of layers from the internal limiting membrane (ILM to the retinal pigment epithelium (RPE and the group of layers from the ILM to the external limiting membrane (ELM. The values of reflectivity of these two groups of layers decreased postoperatively, but were still higher than normal eyes. In contrast, preoperative eyes had lower reflectivity of two 10×15 pixel regions of interest (ROIs incorporating: 1 ELM + outer nuclear layer (ONL and 2 photoreceptor layer (PRL + RPE, compared to controls. The values of reflectivity of these ROIs increased postoperatively, but were still lower than normal controls. A larger improvement in BCVA postoperatively was correlated with a greater degree of abnormal preoperative reflectivity and thickness findings. CONCLUSION: Quantitative differences in reflectivity and thickness between preoperative, postoperative, and normal SD-OCTs allow assessment of changes in the retina secondary to ERM. Our study identified hyperreflective inner retina changes and hyporeflective outer retina changes in patients with ERMs. SD-OCT quantitative measures of reflectivity and/or thickness of specific groups of retinal layers and/or ROIs correlate with improvement in BCVA.

  13. Spectral domain optical coherence tomography imaging of spectacular ecdysis in the royal python (Python regius).

    Science.gov (United States)

    Tusler, Charlotte A; Maggs, David J; Kass, Philip H; Paul-Murphy, Joanne R; Schwab, Ivan R; Murphy, Christopher J

    2015-01-01

    To describe using spectral domain optical coherence tomography (SD-OCT), digital slit-lamp biomicroscopy, and external photography, changes in the ophidian cuticle, spectacle, and cornea during ecdysis. Four normal royal pythons (Python regius). Snakes were assessed once daily throughout a complete shed cycle using nasal, axial, and temporal SD-OCT images, digital slit-lamp biomicroscopy, and external photography. Spectral domain optical coherence tomography (SD-OCT) images reliably showed the spectacular cuticle and stroma, subcuticular space (SCS), cornea, anterior chamber, iris, and Schlemm's canal. When visible, the subspectacular space (SSS) was more distended peripherally than axially. Ocular surface changes throughout ecdysis were relatively conserved among snakes at all three regions imaged. From baseline (7 days following completion of a full cycle), the spectacle gradually thickened before separating into superficial cuticular and deep, hyper-reflective stromal components, thereby creating the SCS. During spectacular separation, the stroma regained original reflectivity, and multiple hyper-reflective foci (likely fragments from the cuticular-stromal interface) were noted within the SCS. The cornea was relatively unchanged in character or thickness throughout all stages of ecdysis. Slit-lamp images did not permit observation of these changes. Spectral domain optical coherence tomography (SD-OCT) provided excellent high-resolution images of the snake anterior segment, and especially the cuticle, spectacle, and cornea of manually restrained normal snakes at all stages of ecdysis and warrants investigation in snakes with anterior segment disease. The peripheral spectacle may be the preferred entry point for diagnostic or therapeutic injections into the SSS and for initiating spectacular surgery. © 2014 American College of Veterinary Ophthalmologists.

  14. Ability of spectral domain optical coherence tomography peripapillary retinal nerve fiber layer thickness measurements to identify early glaucoma

    Directory of Open Access Journals (Sweden)

    Tarannum Mansoori

    2011-01-01

    Full Text Available Purpose : To evaluate the ability of spectral domain optical coherence tomography (OCT peripapillary retinal nerve fiber layer thickness (RNFLT parameters to distinguish normal eyes from those with early glaucoma in Asian Indian eyes. Design : Observational cross-sectional study. Materials and Methods : One hundred and seventy eight eyes (83 glaucoma patients and 95 age matched healthy subjects of subjects more than 40 years of age were included in the study. All subjects underwent RNFLT measurement with spectral OCT/ scanning laser ophthalmoscope (SLO after dilatation. Sensitivity, specificity and area under the receiving operating characteristic curve (AROC were calculated for various OCT peripapillary RNFL parameters. Results: The mean RNFLT in healthy subjects and patients with early glaucoma were 105.7 ± 5.1 μm and 90.7 ± 7.5 μm, respectively. The largest AROC was found for 12 o′clock- hour (0.98, average (0.96 and superior quadrant RNFLT (0.9. When target specificity was set at ≥ 90% and ≥ 80%, the parameters with highest sensitivity were 12 o′clock -hour (91.6%, average RNFLT (85.3% and 12 o′ clock- hour (96.8 %, average RNFLT (94.7% respectively. Conclusion : Our study showed good ability of spectral OCT/ SLO to differentiate normal eyes from patients with early glaucoma and hence it may serve as an useful adjunct for early diagnosis of glaucoma.

  15. An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-ling; ZHANG Yue; SONG Hong-yun; YAO Yuan; PAN Hong-gang

    2018-01-01

    An optical modulation format generation scheme based on spectral filtering and frequency-to-time mapping is experimentally demonstrated.Many modulation formats with continuously adjustable duty radio and bit rate can be formed by changing the dispersion of dispersion element and the bandwidth of shaped spectrum in this scheme.In the experiment,non-return-to-zero (NRZ) signal with bit rate of 29.41 Gbit/s and 1/2 duty ratio return-to-zero (RZ) signal with bit rate of 13.51 Gbit/s are obtained.The maximum bit rate of modulation format signal is also analyzed.

  16. Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP.

    Science.gov (United States)

    Muñoz, P; García-Olcina, R; Habib, C; Chen, L R; Leijtens, X J M; de Vries, T; Robbins, D; Capmany, J

    2011-07-04

    In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster.

  17. Measuring method for optical fibre sensors

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Fluitman, J.H.J.

    1984-01-01

    A new measuring method for the signal amplitude in intensity modulating fibre optic sensors is described. A reference signal is generated in the time domain. The method is insensitive for the sensitivity fluctuations of the light transmitter and the light receiver. The method is experimentally

  18. The use of the spectral method within the fast adaptive composite grid method

    Energy Technology Data Exchange (ETDEWEB)

    McKay, S.M.

    1994-12-31

    The use of efficient algorithms for the solution of partial differential equations has been sought for many years. The fast adaptive composite grid (FAC) method combines an efficient algorithm with high accuracy to obtain low cost solutions to partial differential equations. The FAC method achieves fast solution by combining solutions on different grids with varying discretizations and using multigrid like techniques to find fast solution. Recently, the continuous FAC (CFAC) method has been developed which utilizes an analytic solution within a subdomain to iterate to a solution of the problem. This has been shown to achieve excellent results when the analytic solution can be found. The CFAC method will be extended to allow solvers which construct a function for the solution, e.g., spectral and finite element methods. In this discussion, the spectral methods will be used to provide a fast, accurate solution to the partial differential equation. As spectral methods are more accurate than finite difference methods, the ensuing accuracy from this hybrid method outside of the subdomain will be investigated.

  19. Rapid simulation of spatial epidemics: a spectral method.

    Science.gov (United States)

    Brand, Samuel P C; Tildesley, Michael J; Keeling, Matthew J

    2015-04-07

    Spatial structure and hence the spatial position of host populations plays a vital role in the spread of infection. In the majority of situations, it is only possible to predict the spatial spread of infection using simulation models, which can be computationally demanding especially for large population sizes. Here we develop an approximation method that vastly reduces this computational burden. We assume that the transmission rates between individuals or sub-populations are determined by a spatial transmission kernel. This kernel is assumed to be isotropic, such that the transmission rate is simply a function of the distance between susceptible and infectious individuals; as such this provides the ideal mechanism for modelling localised transmission in a spatial environment. We show that the spatial force of infection acting on all susceptibles can be represented as a spatial convolution between the transmission kernel and a spatially extended 'image' of the infection state. This representation allows the rapid calculation of stochastic rates of infection using fast-Fourier transform (FFT) routines, which greatly improves the computational efficiency of spatial simulations. We demonstrate the efficiency and accuracy of this fast spectral rate recalculation (FSR) method with two examples: an idealised scenario simulating an SIR-type epidemic outbreak amongst N habitats distributed across a two-dimensional plane; the spread of infection between US cattle farms, illustrating that the FSR method makes continental-scale outbreak forecasting feasible with desktop processing power. The latter model demonstrates which areas of the US are at consistently high risk for cattle-infections, although predictions of epidemic size are highly dependent on assumptions about the tail of the transmission kernel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Efficiency of High Order Spectral Element Methods on Petascale Architectures

    KAUST Repository

    Hutchinson, Maxwell; Heinecke, Alexander; Pabst, Hans; Henry, Greg; Parsani, Matteo; Keyes, David E.

    2016-01-01

    High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.

  1. Efficiency of High Order Spectral Element Methods on Petascale Architectures

    KAUST Repository

    Hutchinson, Maxwell

    2016-06-14

    High order methods for the solution of PDEs expose a tradeoff between computational cost and accuracy on a per degree of freedom basis. In many cases, the cost increases due to higher arithmetic intensity while affecting data movement minimally. As architectures tend towards wider vector instructions and expect higher arithmetic intensities, the best order for a particular simulation may change. This study highlights preferred orders by identifying the high order efficiency frontier of the spectral element method implemented in Nek5000 and NekBox: the set of orders and meshes that minimize computational cost at fixed accuracy. First, we extract Nek’s order-dependent computational kernels and demonstrate exceptional hardware utilization by hardware-aware implementations. Then, we perform productionscale calculations of the nonlinear single mode Rayleigh-Taylor instability on BlueGene/Q and Cray XC40-based supercomputers to highlight the influence of the architecture. Accuracy is defined with respect to physical observables, and computational costs are measured by the corehour charge of the entire application. The total number of grid points needed to achieve a given accuracy is reduced by increasing the polynomial order. On the XC40 and BlueGene/Q, polynomial orders as high as 31 and 15 come at no marginal cost per timestep, respectively. Taken together, these observations lead to a strong preference for high order discretizations that use fewer degrees of freedom. From a performance point of view, we demonstrate up to 60% full application bandwidth utilization at scale and achieve ≈1PFlop/s of compute performance in Nek’s most flop-intense methods.

  2. Spectral dependence of third-order nonlinear optical properties in InN

    International Nuclear Information System (INIS)

    Ahn, H.; Lee, M.-T.; Chang, Y.-M.

    2014-01-01

    We report on the nonlinear optical properties of InN measured in a wide near-infrared spectral range with the femtosecond Z-scan technique. The above-bandgap nonlinear absorption in InN is found to originate from the saturation of absorption by the band-state-filling and its cross-section increases drastically near the bandgap energy. With below-bandgap excitation, the nonlinear absorption undergoes a transition from saturation absorption (SA) to reverse-SA (RSA), attributed to the competition between SA of band-tail states and two-photon-related RSA. The measured large nonlinear refractive index of the order of 10 −10 cm 2 /W indicates InN as a potential material for all-optical switching and related applications

  3. XOP: A graphical user interface for spectral calculations and x-ray optics utilities

    International Nuclear Information System (INIS)

    Dejus, R.J.; Sanchez del Rio, M.

    1996-01-01

    A graphical user interface, using the Interactive Data Language (IDL) widget toolkit, for calculation of spectral properties of synchrotron radiation sources and for interaction of x-rays with optical elements has been developed. The interface runs presently on three different computer architectures under the Unix operating system endash the Sun-OS, the HP-UX, and the DEC-Unix operating systems. The point-and-click interface is used as a driver program for a variety of codes from different authors written in different computer languages. The execution of codes for calculating synchrotron radiation from undulators, wigglers, and bending magnets is summarized. The computation of optical properties of materials and the x-ray diffraction profiles from crystals in different geometries are also discussed. The interface largely simplifies the use of these codes and may be used without prior knowledge of how to run a particular program. copyright 1996 American Institute of Physics

  4. Heavy carriers, non-drude optical conductivity and transfer of spectral weight in MnSi

    International Nuclear Information System (INIS)

    Mena, F.P.; Damascelli, A.; Marel, D. van der; Fath, M.; Menovsky, A.A.; Mydosh, J.A.

    2004-01-01

    The optical properties of the weak magnetic metal MnSi were determined using reflectance at 80 deg. (2-800 meV) and ellipsometry (0.8-4.5 eV). At low frequencies in the magnetic phase we observe a departure of the optical conductivity from Drude behavior: m*(ω)/m is strongly frequency dependent and 1/τ(ω) is approximately linear in frequency. In fact, we show that σ(ω)/σ(0)=(1+iω/Γ) -0.5 . Moreover, in the magnetic phase, the plasma frequency shifts to the red indicating that spectral weight is transferred to high frequencies. This is opposite to the effect recently seen in other magnetic compounds

  5. Comparison of automated analysis of Cirrus HD OCT spectral-domain optical coherence tomography with stereo photographs of the optic disc.

    Science.gov (United States)

    Sharma, Ashish; Oakley, Jonathan D; Schiffman, Joyce C; Budenz, Donald L; Anderson, Douglas R

    2011-07-01

    To evaluate a new automated analysis of optic disc images obtained by spectral-domain optical coherence tomography (SD OCT). Areas of the optic disc, cup, and neural rim in SD OCT images were compared with these areas from stereoscopic photographs to represent the current traditional optic nerve evaluation. The repeatability of measurements by each method was determined and compared. Evaluation of diagnostic technology. One hundred nineteen healthy eyes, 23 eyes with glaucoma, and 7 glaucoma suspect eyes. Optic disc and cup margins were traced from stereoscopic photographs by 3 individuals independently. Optic disc margins and rim widths were determined automatically in SD OCT. A subset of photographs was examined and traced a second time, and duplicate SD OCT images also were analyzed. Agreement among photograph readers, between duplicate readings, and between SD OCT and photographs were quantified by the intraclass correlation coefficient (ICC), by the root mean square, and by the standard deviation of the differences. Optic disc areas tended to be slightly larger when judged in photographs than by SD OCT, whereas cup areas were similar. Cup and optic disc areas showed good correlation (0.8) between the average photographic reading and SD OCT, but only fair correlation of rim areas (0.4). The SD OCT was highly reproducible (ICC, 0.96-0.99). Each reader also was consistent with himself on duplicate readings of 21 photographs (ICC, 0.80-0.88 for rim area and 0.95-0.98 for all other measurements), but reproducibility was not as good as SD OCT. Measurements derived from SD OCT did not differ from photographic readings more than the readings of photographs by different readers differed from each other. Designation of the cup and optic disc boundaries by an automated analysis of SD OCT was within the range of variable designations by different readers from color stereoscopic photographs, but use of different landmarks typically made the designation of the optic disc

  6. Visual Method for Spectral Energy Distribution Calculation of ...

    Indian Academy of Sciences (India)

    Abstract. In this work, we propose to use 'The Geometer's Sketchpad' to the fitting of a spectral energy distribution of blazar based on three effective spectral indices, αRO, αOX, and αRX and the flux density in the radio band. It can make us to see the fitting in detail with both the peak frequency and peak luminosity given ...

  7. A method of incident angle estimation for high resolution spectral recovery in filter-array-based spectrometers

    Science.gov (United States)

    Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No

    2017-02-01

    In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.

  8. Towards spectral geometric methods for Euclidean quantum gravity

    Science.gov (United States)

    Panine, Mikhail; Kempf, Achim

    2016-04-01

    The unification of general relativity with quantum theory will also require a coming together of the two quite different mathematical languages of general relativity and quantum theory, i.e., of differential geometry and functional analysis, respectively. Of particular interest in this regard is the field of spectral geometry, which studies to which extent the shape of a Riemannian manifold is describable in terms of the spectra of differential operators defined on the manifold. Spectral geometry is hard because it is highly nonlinear, but linearized spectral geometry, i.e., the task to determine small shape changes from small spectral changes, is much more tractable and may be iterated to approximate the full problem. Here, we generalize this approach, allowing, in particular, nonequal finite numbers of shape and spectral degrees of freedom. This allows us to study how well the shape degrees of freedom are encoded in the eigenvalues. We apply this strategy numerically to a class of planar domains and find that the reconstruction of small shape changes from small spectral changes is possible if enough eigenvalues are used. While isospectral nonisometric shapes are known to exist, we find evidence that generically shaped isospectral nonisometric shapes, if existing, are exceedingly rare.

  9. A novel power and offset allocation method for spatial multiplexing MIMO Systems in optical wireless channels

    KAUST Repository

    Park, Kihong

    2011-12-01

    We consider optical wireless communication which can be utilized for illumination and communication by relying on lighting devices. Due to the limited bandwidth of optical sources, it is challenging to achieve high data rate in optical wireless systems. In order to obtain a multiplexing gain and high spectral efficiency, we design an optical multi-input multi-output (MIMO) system utilizing a singular value decomposition-based spatial multiplexing and adaptive modulation. We note that the conventional allocation method in radio frequency MIMO channels cannot be applied directly to the optical intensity channels. In this paper, we generalize the result of power allocation method in [1] for arbitrary number of transmit and receive antennas in optical wireless MIMO systems. Based on three constraints, namely, the nonnegativity, the aggregate optical power, and the bit error rate requirement, we propose a novel method to allocate the optical power, the offset value, and the modulation size for maximum sum rate. From some selected simulation results, we show that our proposed allocation method gives a better spectral efficiency than the method that allocates the optical power equally for each data stream. © 2011 IEEE.

  10. Optical methods for microstructure determination of doped samples

    Science.gov (United States)

    Ciosek, Jerzy F.

    2008-12-01

    The optical methods to determine refractive index profile of layered materials are commonly used with spectroscopic ellipsometry or transmittance/reflectance spectrometry. Measurements of spectral reflection and transmission usually permit to characterize optical materials and determine their refractive index. However, it is possible to characterize of samples with dopants, impurities as well as defects using optical methods. Microstructures of a hydrogenated crystalline Si wafer and a layer of SiO2 - ZrO2 composition are investigated. The first sample is a Si(001):H Czochralski grown single crystalline wafer with 50 nm thick surface Si02 layer. Hydrogen dose implantation (D continue to be an important issue in microelectronic device and sensor fabrication. Hydrogen-implanted silicon (Si: H) has become a topic of remarkable interest, mostly because of the potential of implantation-induced platelets and micro-cavities for the creation of gettering -active areas and for Si layer splitting. Oxygen precipitation and atmospheric impurity are analysed. The second sample is the layer of co-evaporated SiO2 and ZrO2 materials using simultaneously two electron beam guns in reactive evaporation methods. The composition structure was investigated by X-Ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry methods. A non-uniformity and composition of layer are analysed using average density method.

  11. Systems and methods for selective detection and imaging in coherent Raman microscopy by spectral excitation shaping

    Science.gov (United States)

    Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei

    2016-03-15

    A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.

  12. Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access

    Science.gov (United States)

    Ahmed, Hassan Yousif; Nisar, K. S.

    2013-08-01

    Code with ideal in-phase cross correlation (CC) and practical code length to support high number of users are required in spectral amplitude coding-optical code division multiple access (SAC-OCDMA) systems. SAC systems are getting more attractive in the field of OCDMA because of its ability to eliminate the influence of multiple access interference (MAI) and also suppress the effect of phase induced intensity noise (PIIN). In this paper, we have proposed new Diagonal Eigenvalue Unity (DEU) code families with ideal in-phase CC based on Jordan block matrix with simple algebraic ways. Four sets of DEU code families based on the code weight W and number of users N for the combination (even, even), (even, odd), (odd, odd) and (odd, even) are constructed. This combination gives DEU code more flexibility in selection of code weight and number of users. These features made this code a compelling candidate for future optical communication systems. Numerical results show that the proposed DEU system outperforms reported codes. In addition, simulation results taken from a commercial optical systems simulator, Virtual Photonic Instrument (VPI™) shown that, using point to multipoint transmission in passive optical network (PON), DEU has better performance and could support long span with high data rate.

  13. XOP: a multiplatform graphical user interface for synchrotron radiation spectral and optics calculations

    Science.gov (United States)

    Sanchez del Rio, Manuel; Dejus, Roger J.

    1997-11-01

    XOP (X-ray OPtics utilities) is a graphical user interface (GUI) created to execute several computer programs that calculate the basic information needed by a synchrotron beamline scientist (designer or experimentalist). Typical examples of such calculations are: insertion device (undulator or wiggler) spectral and angular distributions, mirror and multilayer reflectivities, and crystal diffraction profiles. All programs are provided to the user under a unified GUI, which greatly simplifies their execution. The XOP optics applications (especially mirror calculations) take their basic input (optical constants, compound and mixture tables) from a flexible file-oriented database, which allows the user to select data from a large number of choices and also to customize their own data sets. XOP includes many mathematical and visualization capabilities. It also permits the combination of reflectivities from several mirrors and filters, and their effect, onto a source spectrum. This feature is very useful when calculating thermal load on a series of optical elements. The XOP interface is written in the IDL (Interactive Data Language). An embedded version of XOP, which freely runs under most Unix platforms (HP, Sun, Dec, Linux, etc) and under Windows95 and NT, is available upon request.

  14. XOP: A multiplatform graphical user interface for synchrotron radiation spectral and optics calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [European Synchrotron Radiation Facility, Grenoble (France); Dejus, R.J. [Argonne National Lab., IL (United States). Advanced Photon Source

    1997-09-01

    XOP (X-ray OPtics utilities) is a graphical user interface (GUI) created to execute several computer programs that calculate the basic information needed by a synchrotron beamline scientist (designer or experimentalist). Typical examples of such calculations are: insertion device (undulator or wiggler) spectral and angular distributions, mirror and multilayer reflectivities, and crystal diffraction profiles. All programs are provided to the user under a unified GUI, which greatly simplifies their execution. The XOP optics applications (especially mirror calculations) take their basic input (optical constants, compound and mixture tables) from a flexible file-oriented database, which allows the users to select data from a large number of choices and also to customize their own data sets. XOP includes many mathematical and visualization capabilities. It also permits the combination of reflectivities from several mirrors and filters, and their effect, onto a source spectrum. This feature is very useful when calculating thermal load on a series of optical elements. The XOP interface is written in the IDL (Interactive Data Language). An embedded version of XOP, which freely runs under most Unix platforms (HP, Sun, Dec, Linux, etc) and under Windows95 and NT, is available upon request.

  15. Spectral solar irradiance and some optical properties for various polluted atmospheres

    International Nuclear Information System (INIS)

    Jacovides, Constantinos P.; Asimakopoulos, Demosthenis N.; Steven, Michael D.

    2000-01-01

    Using ground-based spectroradiometric measurements taken over the Athens atmosphere during May 1995, the influence of gaseous pollutants and aerosol on the spectral radiant energy distribution was investigated. It was found that spectral measurements exhibited variations based on various polluted urban atmospheric conditions as determined via gaseous pollutants record analysis. The relative attenuations cause by gaseous pollutants and aerosol can exceed 27%, 17% and 16% in the global ultraviolet, visible and near-infrared portions of the solar spectrum respectively, as compared to 'background' values. In contrast, an enhancement of the near-infrared diffuse component by 66%, was observed, while in visible and ultraviolet bands the relative increases reached 54% and 21% respectively. Experimental total Rayleigh-corrected and spectral aerosol optical depths were retrieved, representing differences in polluted air over the Athens atmosphere. The diffuse component accounts for more than 80% of the total radiation field under high polluted atmosphere. The observed differences of solar radiation between the Athens center and at a nearby suburban site are a manifestation of contrasting air properties provided mainly by automotive traffic. (Author)

  16. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement

    Science.gov (United States)

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  17. [Research on symmetrical optical waveguide based surface plasmon resonance sensing with spectral interrogation].

    Science.gov (United States)

    Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong

    2015-02-01

    Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.

  18. Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Saxena S

    2014-12-01

    Full Text Available Sandeep Saxena,1 Khushboo Srivastav,1 Chui M Cheung,2 Joanne YW Ng,3 Timothy YY Lai3 1Retina Service, Department of Ophthalmology, King George’s Medical University Lucknow, India; 2Singapore National Eye Centre, Singapore; 3Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong Abstract: Spectral domain optical coherence tomography cross-sectional imaging of the macula has conventionally been resolved into four bands. However, some doubts were raised regarding authentication of the existence of these bands. Recently, a number of studies have suggested that the second band appeared to originate from the inner segment ellipsoids of the foveal cone photoreceptors, and therefore the previously called inner segment-outer segment junction is now referred to as inner segment ellipsoidband. Photoreceptor dysfunction may be a significant predictor of visual acuity in a spectrum of surgical and medical retinal diseases. This review aims to provide an overview and summarizes the role of the photoreceptor inner segment ellipsoid band in the management and prognostication of various vitreoretinal diseases. Keywords: spectral domain optical coherence tomography, inner segment-outer segment junction, external limiting membrane, macular hole, diabetic macular edema, age relate macular degeneration

  19. A New Statistical Approach to the Optical Spectral Variability in Blazars

    Directory of Open Access Journals (Sweden)

    Jose A. Acosta-Pulido

    2016-12-01

    Full Text Available We present a spectral variability study of a sample of about 25 bright blazars, based on optical spectroscopy. Observations cover the period from the end of 2008 to mid 2015, with an approximately monthly cadence. Emission lines have been identified and measured in the spectra, which permits us to classify the sources into BL Lac-type or FSRQs, according to the commonly used EW limit. We have obtained synthetic photometry and produced colour-magnitude diagrams which show different trends associated with the object classes: generally, BL Lacs tend to become bluer when brighter and FSRQs become redder when brighter, although several objects exhibit both trends, depending on brightness. We have also applied a pattern recognition algorithm to obtain the minimum number of physical components which can explain the variability of the optical spectrum. We have used NMF (Non-Negative Matrix Factorization instead of PCA (Principal Component Analysis to avoid un-realistic negative components. For most targets we found that 2 or 3 meta-components are enough to explain the observed spectral variability.

  20. Geometric optimisation of an accurate cosine correcting optic fibre coupler for solar spectral measurement.

    Science.gov (United States)

    Cahuantzi, Roberto; Buckley, Alastair

    2017-09-01

    Making accurate and reliable measurements of solar irradiance is important for understanding performance in the photovoltaic energy sector. In this paper, we present design details and performance of a number of fibre optic couplers for use in irradiance measurement systems employing remote light sensors applicable for either spectrally resolved or broadband measurement. The angular and spectral characteristics of different coupler designs are characterised and compared with existing state-of-the-art commercial technology. The new coupler designs are fabricated from polytetrafluorethylene (PTFE) rods and operate through forward scattering of incident sunlight on the front surfaces of the structure into an optic fibre located in a cavity to the rear of the structure. The PTFE couplers exhibit up to 4.8% variation in scattered transmission intensity between 425 nm and 700 nm and show minimal specular reflection, making the designs accurate and reliable over the visible region. Through careful geometric optimization near perfect cosine dependence on the angular response of the coupler can be achieved. The PTFE designs represent a significant improvement over the state of the art with less than 0.01% error compared with ideal cosine response for angles of incidence up to 50°.

  1. Automated retinal fovea type distinction in spectral-domain optical coherence tomography of retinal vein occlusion

    Science.gov (United States)

    Wu, Jing; Waldstein, Sebastian M.; Gerendas, Bianca S.; Langs, Georg; Simader, Christian; Schmidt-Erfurth, Ursula

    2015-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high- resolution, three-dimensional (3D) cross-sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD), glaucoma and retinal vein occlusion (RVO). Disease diagnosis, assessment, and treatment will require a patient to undergo multiple OCT scans, possibly using multiple scanners, to accurately and precisely gauge disease activity, progression and treatment success. However, cross-vendor imaging and patient movement may result in poor scan spatial correlation potentially leading to incorrect diagnosis or treatment analysis. The retinal fovea is the location of the highest visual acuity and is present in all patients, thus it is critical to vision and highly suitable for use as a primary landmark for cross-vendor/cross-patient registration for precise comparison of disease states. However, the location of the fovea in diseased eyes is extremely challenging to locate due to varying appearance and the presence of retinal layer destroying pathology. Thus categorising and detecting the fovea type is an important prior stage to automatically computing the fovea position. Presented here is an automated cross-vendor method for fovea distinction in 3D SD-OCT scans of patients suffering from RVO, categorising scans into three distinct types. OCT scans are preprocessed by motion correction and noise filing followed by segmentation using a kernel graph-cut approach. A statistically derived mask is applied to the resulting scan creating an ROI around the probable fovea location from which the uppermost retinal surface is delineated. For a normal appearance retina, minimisation to zero thickness is computed using the top two retinal surfaces. 3D local minima detection and layer thickness analysis are used

  2. Front lighted optical tooling method and apparatus

    International Nuclear Information System (INIS)

    Stone, W. J.

    1985-01-01

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature

  3. Optical design teaching by computing graphic methods

    Science.gov (United States)

    Vazquez-Molini, D.; Muñoz-Luna, J.; Fernandez-Balbuena, A. A.; Garcia-Botella, A.; Belloni, P.; Alda, J.

    2012-10-01

    One of the key challenges in the teaching of Optics is that students need to know not only the math of the optical design, but also, and more important, to grasp and understand the optics in a three-dimensional space. Having a clear image of the problem to solve is the first step in order to begin to solve that problem. Therefore to achieve that the students not only must know the equation of refraction law but they have also to understand how the main parameters of this law are interacting among them. This should be a major goal in the teaching course. Optical graphic methods are a valuable tool in this way since they have the advantage of visual information and the accuracy of a computer calculation.

  4. Advances on geometric flux optical design method

    Science.gov (United States)

    García-Botella, Ángel; Fernández-Balbuena, Antonio Álvarez; Vázquez, Daniel

    2017-09-01

    Nonimaging optics is focused on the study of methods to design concentrators or illuminators systems. It can be included in the area of photometry and radiometry and it is governed by the laws of geometrical optics. The field vector method, which starts with the definition of the irradiance vector E, is one of the techniques used in nonimaging optics. Called "Geometrical flux vector" it has provide ideal designs. The main property of this model is, its ability to estimate how radiant energy is transferred by the optical system, from the concepts of field line, flux tube and pseudopotential surface, overcoming traditional raytrace methods. Nevertheless this model has been developed only at an academic level, where characteristic optical parameters are ideal not real and the studied geometries are simple. The main objective of the present paper is the application of the vector field method to the analysis and design of real concentration and illumination systems. We propose the development of a calculation tool for optical simulations by vector field, using algorithms based on Fermat`s principle, as an alternative to traditional tools for optical simulations by raytrace, based on reflection and refraction law. This new tool provides, first, traditional simulations results: efficiency, illuminance/irradiance calculations, angular distribution of light- with lower computation time, photometrical information needs about a few tens of field lines, in comparison with million rays needed nowadays. On the other hand the tool will provides new information as vector field maps produced by the system, composed by field lines and quasipotential surfaces. We show our first results with the vector field simulation tool.

  5. A Lightweight Compact Multi-Spectral Imager Using Novel Computer-Generated Micro-Optics and Spectral-Extraction Algorithms

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Early-stage research proposal is to demonstrate an ultra-compact, lightweight broadband hyper- and multi-spectral imaging system that is...

  6. Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems

    International Nuclear Information System (INIS)

    Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.

    2010-01-01

    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

  7. Optical decoherence and persistent spectral hole burning in Er{sup 3+}:LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Macfarlane, R.M. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); IBM Almaden Research Center, San Jose, CA 95120 (United States); Boettger, T. [Department of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Sun, Y. [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Cone, R.L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er{sup 3+}:LiNbO{sub 3}. Effects of spectral diffusion due to interactions between Er{sup 3+} ions and between the Er{sup 3+} ion and {sup 7}Li and {sup 93}Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  8. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  9. hp Spectral element methods for three dimensional elliptic problems

    Indian Academy of Sciences (India)

    This is the first of a series of papers devoted to the study of h-p spec- .... element functions defined on mesh elements in the new system of variables with a uni- ... the spectral element functions on these elements and give construction of the stability .... By Hm( ), we denote the usual Sobolev space of integer order m ≥ 0 ...

  10. hp Spectral element methods for three dimensional elliptic problems

    Indian Academy of Sciences (India)

    elliptic boundary value problems on non-smooth domains in R3. For Dirichlet problems, ... of variable degree bounded by W. Let N denote the number of layers in the geomet- ric mesh ... We prove a stability theorem for mixed problems when the spectral element functions vanish ..... Applying Theorem 3.1,. ∫ r l. |Mu|2dx −.

  11. Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes

    Directory of Open Access Journals (Sweden)

    Bih-Chyun Yeh

    2016-01-01

    Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.

  12. Optical characterization of agricultural pest insects: a methodological study in the spectral and time domains

    Science.gov (United States)

    Li, Y. Y.; Zhang, H.; Duan, Z.; Lian, M.; Zhao, G. Y.; Sun, X. H.; Hu, J. D.; Gao, L. N.; Feng, H. Q.; Svanberg, S.

    2016-08-01

    Identification of agricultural pest insects is an important aspect in insect research and agricultural monitoring. We have performed a methodological study of how spectroscopic techniques and wing-beat frequency analysis might provide relevant information. An optical system based on the combination of close-range remote sensing and reflectance spectroscopy was developed to study the optical characteristics of different flying insects, collected in Southern China. The results demonstrate that the combination of wing-beat frequency assessment and reflectance spectral analysis has the potential to successfully differentiate between insect species. Further, studies of spectroscopic characteristics of fixed specimen of insects, also from Central China, showed the possibility of refined agricultural pest identification. Here, in addition to reflectance recordings also laser-induced fluorescence spectra were investigated for all the species of insects under study and found to provide complementary information to optically distinguish insects. In order to prove the practicality of the techniques explored, clearly fieldwork aiming at elucidating the variability of parameters, even within species, must be performed.

  13. Constellation Shaping for Fiber-optic Channels with QAM and High Spectral Efficiency

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Zibar, Darko; Larsen, Knud J.

    2014-01-01

    In this letter the fiber-optic communication channel with Quadrature Amplitude Modulation (QAM) input constella- tion is treated. Using probabilistic shaping, we show that high order QAM constellations can achieve and slightly exceed the lower bound on the channel capacity, set by ring constellat......In this letter the fiber-optic communication channel with Quadrature Amplitude Modulation (QAM) input constella- tion is treated. Using probabilistic shaping, we show that high order QAM constellations can achieve and slightly exceed the lower bound on the channel capacity, set by ring...... constellations in [1]. We then propose a mapping function for turbo coded bit interleaved coded modulation based on optimization of the mu- tual information between the channel input and output. Using this mapping, spectral efficiency as high as 6.5 bits/s/Hz/polarization is achieved on a simulated single...... channel long-haul fiber-optical link excluding the pilot overhead, used for synchronization, and taking into account frequency and phase mismatch impairments, as well as laser phase noise and analog-to-digital conversion quantization impairments. The simulations suggest that major improvements can...

  14. Optical spectral reshaping for directly modulated 4-pulse amplitude modulation signals

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Da Ros, Francesco; Cristofori, Valentina

    2017-01-01

    The tremendous traffic growth in intra/inter-datacenters requires low-cost high-speed integrated solutions [1]. To enable a significantly reduced footprint directly modulated lasers (DMLs) have been proposed instead of large external modulators. However, it is challenging to use DMLs due to their......The tremendous traffic growth in intra/inter-datacenters requires low-cost high-speed integrated solutions [1]. To enable a significantly reduced footprint directly modulated lasers (DMLs) have been proposed instead of large external modulators. However, it is challenging to use DMLs due...... (PAM) [3] signals. However, moving to 4-PAM,many of the impressive demonstrations reported so far rely heavily on off-line digital signal processing (DSP), which increases latency, power consumption and cost. In this talk, we report on (i) a detailed numerical analysis on the complex transfer function...... of the optical filter for optical spectral reshaping in case of pulse amplitude modulation and(ii) an experimental demonstration of real-time dispersion-uncompensated transmission of 10-GBd and 14-GBd 4-PAM signals up to 10- and 26-km SSMF. This is achieved by combining a commercial 10-Gb/s DML with optical...

  15. An Improved Variational Method for Hyperspectral Image Pansharpening with the Constraint of Spectral Difference Minimization

    Science.gov (United States)

    Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.

    2017-09-01

    Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.

  16. FDTD method and models in optical education

    Science.gov (United States)

    Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhu, Hao; Du, Jihe

    2017-08-01

    In this paper, finite-difference time-domain (FDTD) method has been proposed as a pedagogical way in optical education. Meanwhile, FDTD solutions, a simulation software based on the FDTD algorithm, has been presented as a new tool which helps abecedarians to build optical models and to analyze optical problems. The core of FDTD algorithm is that the time-dependent Maxwell's equations are discretized to the space and time partial derivatives, and then, to simulate the response of the interaction between the electronic pulse and the ideal conductor or semiconductor. Because the solving of electromagnetic field is in time domain, the memory usage is reduced and the simulation consequence on broadband can be obtained easily. Thus, promoting FDTD algorithm in optical education is available and efficient. FDTD enables us to design, analyze and test modern passive and nonlinear photonic components (such as bio-particles, nanoparticle and so on) for wave propagation, scattering, reflection, diffraction, polarization and nonlinear phenomena. The different FDTD models can help teachers and students solve almost all of the optical problems in optical education. Additionally, the GUI of FDTD solutions is so friendly to abecedarians that learners can master it quickly.

  17. Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification.

    Science.gov (United States)

    Bal, Harpreet K; Brodzeli, Zourab; Dragomir, Nicoleta M; Collins, Stephen F; Sidiroglou, Fotios

    2012-05-01

    A method for producing uniformly thinned (etched) optical fibers is described, which can also be employed to etch optical fibers containing a Bragg grating (FBG) uniformly for evanescent-field-based sensing and other applications. Through a simple modification of this method, the fabrication of phase-shifted FBGs based on uneven etching is also shown. The critical role of how a fiber is secured is shown, and the success of the method is illustrated, by differential interference contrast microscopy images of uniformly etched FBGs. An etched FBG sensor for the monitoring of the refractive index of different glycerin solutions is demonstrated.

  18. Dynamic virtual optical network embedding in spectral and spatial domains over elastic optical networks with multicore fibers

    Science.gov (United States)

    Zhu, Ruijie; Zhao, Yongli; Yang, Hui; Tan, Yuanlong; Chen, Haoran; Zhang, Jie; Jue, Jason P.

    2016-08-01

    Network virtualization can eradicate the ossification of the infrastructure and stimulate innovation of new network architectures and applications. Elastic optical networks (EONs) are ideal substrate networks for provisioning flexible virtual optical network (VON) services. However, as network traffic continues to increase exponentially, the capacity of EONs will reach the physical limitation soon. To further increase network flexibility and capacity, the concept of EONs is extended into the spatial domain. How to map the VON onto substrate networks by thoroughly using the spectral and spatial resources is extremely important. This process is called VON embedding (VONE).Considering the two kinds of resources at the same time during the embedding process, we propose two VONE algorithms, the adjacent link embedding algorithm (ALEA) and the remote link embedding algorithm (RLEA). First, we introduce a model to solve the VONE problem. Then we design the embedding ability measurement of network elements. Based on the network elements' embedding ability, two VONE algorithms were proposed. Simulation results show that the proposed VONE algorithms could achieve better performance than the baseline algorithm in terms of blocking probability and revenue-to-cost ratio.

  19. Assessment of modern spectral analysis methods to improve wavenumber resolution of F-K spectra

    International Nuclear Information System (INIS)

    Shirley, T.E.; Laster, S.J.; Meek, R.A.

    1987-01-01

    The improvement in wavenumber spectra obtained by using high resolution spectral estimators is examined. Three modern spectral estimators were tested, namely the Autoregressive/Maximum Entropy (AR/ME) method, the Extended Prony method, and an eigenstructure method. They were combined with the conventional Fourier method by first transforming each trace with a Fast Fourier Transform (FFT). A high resolution spectral estimator was applied to the resulting complex spatial sequence for each frequency. The collection of wavenumber spectra thus computed comprises a hybrid f-k spectrum with high wavenumber resolution and less spectral ringing. Synthetic and real data records containing 25 traces were analyzed by using the hybrid f-k method. The results show an FFT-AR/ME f-k spectrum has noticeably better wavenumber resolution and more spectral dynamic range than conventional spectra when the number of channels is small. The observed improvement suggests the hybrid technique is potentially valuable in seismic data analysis

  20. An experimental method for making spectral emittance and surface temperature measurements of opaque surfaces

    International Nuclear Information System (INIS)

    Moore, Travis J.; Jones, Matthew R.; Tree, Dale R.; Daniel Maynes, R.; Baxter, Larry L.

    2011-01-01

    An experimental procedure has been developed to make spectral emittance and temperature measurements. The spectral emittance of an object is calculated using measurements of the spectral emissive power and of the surface temperature of the object obtained using a Fourier transform infrared (FTIR) spectrometer. A calibration procedure is described in detail which accounts for the temperature dependence of the detector. The methods used to extract the spectral emissive power and surface temperature from measured infrared spectra were validated using a blackbody radiator at known temperatures. The average error in the measured spectral emittance was 2.1% and the average difference between the temperature inferred from the recorded spectra and the temperature indicated on the blackbody radiator was 1.2%. The method was used to measure the spectral emittance of oxidized copper at various temperatures.

  1. [Testing method research for key performance indicator of imaging acousto-optic tunable filter (AOTF)].

    Science.gov (United States)

    Hu, Shan-Zhou; Chen, Fen-Fei; Zeng, Li-Bo; Wu, Qiong-Shui

    2013-01-01

    Imaging AOTF is an important optical filter component for new spectral imaging instruments developed in recent years. The principle of imaging AOTF component was demonstrated, and a set of testing methods for some key performances were studied, such as diffraction efficiency, wavelength shift with temperature, homogeneity in space for diffraction efficiency, imaging shift, etc.

  2. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Lobintsov, A A; Shramenko, M V [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A [' Sigm Plyus' Ltd, Moscow (Russian Federation); Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-11-30

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  3. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    International Nuclear Information System (INIS)

    Andreeva, E V; Il'chenko, S N; Lobintsov, A A; Shramenko, M V; Ladugin, M A; Marmalyuk, A A; Yakubovich, S D

    2013-01-01

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  4. Tunable optical setup with high flexibility for spectrally resolved coherent anti-Stokes Raman scattering microscopy

    International Nuclear Information System (INIS)

    Bergner, G; Akimov, D; Bartelt, H; Dietzek, B; Popp, J; Schlücker, S

    2011-01-01

    A simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy is introduced, which allows for recording CARS images with 30 cm -1 excitation bandwidth for probing Raman bands between 500 and 900 cm -1 with minimal requirements for alignment. The experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broadband light source and an acousto-optical programmable dispersive filter (AOPDF) as tunable wavelength filter. Such spatial light modulator enables selection of a narrow-band spectrum to yield high vibrational contrast and hence chemical contrast in the resultant CARS images. Furthermore, an experimental approach to reconstruct spectral information from CARS image contrast is introduced

  5. Structure-function relationships using spectral-domain optical coherence tomography: comparison with scanning laser polarimetry.

    Science.gov (United States)

    Aptel, Florent; Sayous, Romain; Fortoul, Vincent; Beccat, Sylvain; Denis, Philippe

    2010-12-01

    To evaluate and compare the regional relationships between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness as measured by spectral-domain optical coherence tomography (OCT) and scanning laser polarimetry. Prospective cross-sectional study. One hundred and twenty eyes of 120 patients (40 with healthy eyes, 40 with suspected glaucoma, and 40 with glaucoma) were tested on Cirrus-OCT, GDx VCC, and standard automated perimetry. Raw data on RNFL thickness were extracted for 256 peripapillary sectors of 1.40625 degrees each for the OCT measurement ellipse and 64 peripapillary sectors of 5.625 degrees each for the GDx VCC measurement ellipse. Correlations between peripapillary RNFL thickness in 6 sectors and visual field sensitivity in the 6 corresponding areas were evaluated using linear and logarithmic regression analysis. Receiver operating curve areas were calculated for each instrument. With spectral-domain OCT, the correlations (r(2)) between RNFL thickness and visual field sensitivity ranged from 0.082 (nasal RNFL and corresponding visual field area, linear regression) to 0.726 (supratemporal RNFL and corresponding visual field area, logarithmic regression). By comparison, with GDx-VCC, the correlations ranged from 0.062 (temporal RNFL and corresponding visual field area, linear regression) to 0.362 (supratemporal RNFL and corresponding visual field area, logarithmic regression). In pairwise comparisons, these structure-function correlations were generally stronger with spectral-domain OCT than with GDx VCC and with logarithmic regression than with linear regression. The largest areas under the receiver operating curve were seen for OCT superior thickness (0.963 ± 0.022; P polarimetry, and was better expressed logarithmically than linearly. Measurements with these 2 instruments should not be considered to be interchangeable. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. A spectral approach for the quantitative description of cardiac collagen network from nonlinear optical imaging.

    Science.gov (United States)

    Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia

    2015-01-01

    The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.

  7. Optical CDMA with Embedded Spectral-Polarization Coding over Double Balanced Differential-Detector

    Science.gov (United States)

    Huang, Jen-Fa; Yen, Chih-Ta; Chen, Bo-Hau

    A spectral-polarization coding (SPC) optical code-division multiple-access (OCDMA) configuration structured over arrayed-waveguide grating (AWG) router is proposed. The polarization-division double balanced detector is adopted to execute difference detection and enhances system performance. The signal-to-noise ratio (SNR) is derived by taking the effect of PIIN into account. The result indicates that there would be up to 9-dB SNR improvement than the conventional spectral-amplitude coding (SAC) structures with Walsh-Hadamard codes. Mathematical deriving results of the SNR demonstrate the system embedded with the orthogonal state of polarization (SOP) will suppress effectively phase-induced intensity noise (PIIN). In addition, we will analyze the relations about bit error rate (BER) vs. the number of active users under the different encoding schemes and compare them with our proposed scheme. The BER vs. the effective power under the different encoding scheme with the same number of simultaneous active user conditions are also revealed. Finally, the polarization-matched factor and the difference between simulated and experimental values are discussed.

  8. Sparse Pseudo Spectral Projection Methods with Directional Adaptation for Uncertainty Quantification

    KAUST Repository

    Winokur, J.; Kim, D.; Bisetti, Fabrizio; Le Maî tre, O. P.; Knio, Omar

    2015-01-01

    We investigate two methods to build a polynomial approximation of a model output depending on some parameters. The two approaches are based on pseudo-spectral projection (PSP) methods on adaptively constructed sparse grids, and aim at providing a

  9. Near-infrared spectral tomography integrated with digital breast tomosynthesis: Effects of tissue scattering on optical data acquisition design

    Energy Technology Data Exchange (ETDEWEB)

    Michaelsen, Kelly; Krishnaswamy, Venkat; Pogue, Brian W.; Poplack, Steven P.; Paulsen, Keith D. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Department of Diagnostic Radiology, Dartmouth Medical School, Lebanon, New Hampshire 03756 (United States); Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Department of Diagnostic Radiology, Dartmouth Medical School, Lebanon, New Hampshire 03756 (United States)

    2012-07-15

    Purpose: Design optimization and phantom validation of an integrated digital breast tomosynthesis (DBT) and near-infrared spectral tomography (NIRST) system targeting improvement in sensitivity and specificity of breast cancer detection is presented. Factors affecting instrumentation design include minimization of cost, complexity, and examination time while maintaining high fidelity NIRST measurements with sufficient information to recover accurate optical property maps. Methods: Reconstructed DBT slices from eight patients with abnormal mammograms provided anatomical information for the NIRST simulations. A limited frequency domain (FD) and extensive continuous wave (CW) NIRST system was modeled. The FD components provided tissue scattering estimations used in the reconstruction of the CW data. Scattering estimates were perturbed to study the effects on hemoglobin recovery. Breast mimicking agar phantoms with inclusions were imaged using the combined DBT/NIRST system for comparison with simulation results. Results: Patient simulations derived from DBT images show successful reconstruction of both normal and malignant lesions in the breast. They also demonstrate the importance of accurately quantifying tissue scattering. Specifically, 20% errors in optical scattering resulted in 22.6% or 35.1% error in quantification of total hemoglobin concentrations, depending on whether scattering was over- or underestimated, respectively. Limited frequency-domain optical signal sampling provided two regions scattering estimates (for fat and fibroglandular tissues) that led to hemoglobin concentrations that reduced the error in the tumor region by 31% relative to when a single estimate of optical scattering was used throughout the breast volume of interest. Acquiring frequency-domain data with six wavelengths instead of three did not significantly improve the hemoglobin concentration estimates. Simulation results were confirmed through experiments in two-region breast mimicking

  10. Near-infrared spectral tomography integrated with digital breast tomosynthesis: Effects of tissue scattering on optical data acquisition design

    International Nuclear Information System (INIS)

    Michaelsen, Kelly; Krishnaswamy, Venkat; Pogue, Brian W.; Poplack, Steven P.; Paulsen, Keith D.

    2012-01-01

    Purpose: Design optimization and phantom validation of an integrated digital breast tomosynthesis (DBT) and near-infrared spectral tomography (NIRST) system targeting improvement in sensitivity and specificity of breast cancer detection is presented. Factors affecting instrumentation design include minimization of cost, complexity, and examination time while maintaining high fidelity NIRST measurements with sufficient information to recover accurate optical property maps. Methods: Reconstructed DBT slices from eight patients with abnormal mammograms provided anatomical information for the NIRST simulations. A limited frequency domain (FD) and extensive continuous wave (CW) NIRST system was modeled. The FD components provided tissue scattering estimations used in the reconstruction of the CW data. Scattering estimates were perturbed to study the effects on hemoglobin recovery. Breast mimicking agar phantoms with inclusions were imaged using the combined DBT/NIRST system for comparison with simulation results. Results: Patient simulations derived from DBT images show successful reconstruction of both normal and malignant lesions in the breast. They also demonstrate the importance of accurately quantifying tissue scattering. Specifically, 20% errors in optical scattering resulted in 22.6% or 35.1% error in quantification of total hemoglobin concentrations, depending on whether scattering was over- or underestimated, respectively. Limited frequency-domain optical signal sampling provided two regions scattering estimates (for fat and fibroglandular tissues) that led to hemoglobin concentrations that reduced the error in the tumor region by 31% relative to when a single estimate of optical scattering was used throughout the breast volume of interest. Acquiring frequency-domain data with six wavelengths instead of three did not significantly improve the hemoglobin concentration estimates. Simulation results were confirmed through experiments in two-region breast mimicking

  11. Spectral domain optical coherence tomography as an effective screening test for hydroxychloroquine retinopathy (the “flying saucer” sign

    Directory of Open Access Journals (Sweden)

    Eric Chen

    2010-10-01

    Full Text Available Eric Chen, David M Brown, Matthew S Benz, Richard H Fish, Tien P Wong, Rosa Y Kim, James C MajorRetina Consultants of Houston, The Methodist Hospital, Houston, Texas, USAPurpose: While the long-term incidence of hydroxychloroquine (HCQ retinopathy is low, there remains no definitive clinical screening test to recognize HCQ toxicity before ophthalmoscopic fundus changes or visual symptoms. Patients receiving HCQ were evaluated with spectral domain optical coherence tomography (SD OCT to assess the feasibility of identifying HCQ retinopathy at an early stage.Methods: Twenty-five patients referred for the evaluation of hydroxychloroquine toxicity underwent a comprehensive ocular examination, Humphrey visual field (HVF perimetry, time domain OCT, and SD OCT. Some patients with screening abnormalities also underwent further diagnostic testing at the discretion of the treating providers.Results: Five patients were found to have SD OCT findings corresponding to HCQ toxicity and retinal damage as seen by clinical exam and/or HVF perimetry. Two patients with advanced toxicity were found to have significant outer retina disruption in the macula on SD OCT. Three patients with early HCQ toxicity and HVF 10-2 perifoveal defects were found to have loss of the perifoveal photoreceptor inner segment/outer segment (IS/OS junction with intact outer retina directly under the fovea, creating the “flying saucer” sign. While two of these three patients had early ophthalmoscopic fundus changes, one had none.Conclusion: Outer retinal abnormalities including perifoveal photoreceptor IS/OS junction disruption can be identified by SD OCT in early HCQ toxicity, sometimes even before ophthalmoscopic fundus changes are apparent. SD OCT may have a potential complementary role in screening for HCQ retinopathy due to its quick acquisition and because it is more objective than automated perimetry.Keywords: drug toxicity, hydroxychloroquine, photoreceptors, screening test

  12. Spectral Method with the Tensor-Product Nodal Basis for the Steklov Eigenvalue Problem

    Directory of Open Access Journals (Sweden)

    Xuqing Zhang

    2013-01-01

    Full Text Available This paper discusses spectral method with the tensor-product nodal basis at the Legendre-Gauss-Lobatto points for solving the Steklov eigenvalue problem. A priori error estimates of spectral method are discussed, and based on the work of Melenk and Wohlmuth (2001, a posterior error estimator of the residual type is given and analyzed. In addition, this paper combines the shifted-inverse iterative method and spectral method to establish an efficient scheme. Finally, numerical experiments with MATLAB program are reported.

  13. Reconfigurable optical-to-optical frequency conversion method and apparatus

    Science.gov (United States)

    Zortman, William A.; Lentine, Anthony L.

    2017-04-18

    A photonic device is provided for impressing a modulation pattern on an optical carrier. The device includes a unit in which a photodetector and an optical microresonator are monolithically integrated. The device further includes an optical waveguide evanescently coupled to the optical microresonator and having at least an upstream portion configured to carry at least one optical carrier toward the microresonator. The optical microresonator is tunable so as to resonate with the optical carrier frequency. The optical microresonator and the photodetector are mutually coupled such that in operation, charge carriers photogenerated in the photodetector are injected into the microresonator, where the photocurrent changes the resonant conditions. In some embodiments the device is operable as an optical-to-optical frequency converter. In other embodiments the device is operable as an oscillator.

  14. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng; Cheng, Jiubing

    2017-01-01

    -difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using

  15. Polarization diversity scheme on spectral polarization coding optical code-division multiple-access network

    Science.gov (United States)

    Yen, Chih-Ta; Huang, Jen-Fa; Chang, Yao-Tang; Chen, Bo-Hau

    2010-12-01

    We present an experiment demonstrating the spectral-polarization coding optical code-division multiple-access system introduced with a nonideal state of polarization (SOP) matching conditions. In the proposed system, the encoding and double balanced-detection processes are implemented using a polarization-diversity scheme. Because of the quasiorthogonality of Hadamard codes combining with array waveguide grating routers and a polarization beam splitter, the proposed codec pair can encode-decode multiple code words of Hadamard code while retaining the ability for multiple-access interference cancellation. The experimental results demonstrate that when the system is maintained with an orthogonal SOP for each user, an effective reduction in the phase-induced intensity noise is obtained. The analytical SNR values are found to overstate the experimental results by around 2 dB when the received effective power is large. This is mainly limited by insertion losses of components and a nonflattened optical light source. Furthermore, the matching conditions can be improved by decreasing nonideal influences.

  16. Solar radio bursts of spectral type II, coronal shocks, and optical coronal transients

    Science.gov (United States)

    Maxwell, A.; Dryer, M.

    1981-01-01

    An examination is presented of the association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H-alpha, the green coronal line, and white-light coronagraphs. It is suggested that fast-moving optical coronal transients should for the most part be identified with piston-type phenomena well behind the outward-traveling shock waves that generate type II radio bursts. A general model is presented which relates type II radio bursts and coronal shocks to optically observed ejecta and consists of three main velocity regimes: (1) a quasi-hemispherical shock wave moving outward from the flare at speeds of 1000-2000 km/sec and Alfven Mach number of about 1.5; (2) the velocity of the piston driving the shock, on the order of 0.8 that of the shock; and (3) the regime of the slower-moving H-alpha ejecta, with velocities of 300-500 km/sec.

  17. Variational Multi-Scale method with spectral approximation of the sub-scales.

    KAUST Repository

    Dia, Ben Mansour; Chá con-Rebollo, Tomas

    2015-01-01

    A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base

  18. Investigation of spectral interference effects on determination of uranium concentration in phosphate ore by inductively coupled plasma optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bachari, Ayoob H.; Jalali, Fatemeh; Alahyarizadeh, Ghasem [Tehran Univ. (Iran, Islamic Republic of). Engineering Dept.

    2017-04-01

    Effects of spectral interferences on determination of the uranium concentration in phosphate ore were investigated by inductively coupled plasma optical emission spectroscopy (ICP-OES). Eleven high intensity emission lines including four lines recommended by ICP-OES apparatus were chosen to determine the uranium concentration. The ore samples were collected from phosphate acid producing industry in the south of Iran. Three different acid combinations [(HNO{sub 3}:HCl:HF-2:6:2), (H{sub 3}PO{sub 4}:H{sub 2}SO{sub 4}:HF-3:3:3), (HNO{sub 3}:H{sub 2}O{sub 2}:HF-4:2:2)] used in microwave digestion method to explore the spectral interference effects in different solvent environments. The results showed that the trusty uranium concentration, obtained in the 367.007 nm, 386.592 nm, 389.036 nm and 409.014 nm by second acid digestion method which were 0.665 ppm, 0.972 ppm, 0.670 ppm and 0.801 ppm, respectively. Although the line of 409.014 nm was reported as the best line for determining of the uranium concentration in several literatures, the results showed that this line has a significant spectral interference with vanadium in some ores which should be considered in determining of the uranium concentration. Spectral interference effects of some elements which have high concentrations in the phosphate ore including Ca, Fe, Mg, Pb, V, Mn, and Ti on the line intensities were also investigated. Results indicated that the chosen elements affect emission intensities of all of 11 lines. They also indicated that the line of 409.014 nm provides a trusty precision in the determination of the uranium concentration in the ore sample with low vanadium concentration (at least, U/V ratio of 1:5). Results show that the line of 409.014 nm provides acceptable precision with some corrections in comparison with other selected lines. For instance in high concentrations of other elements including Fe and Ti in the ore samples, strong influences on the line intensities of the 367.007 nm (by Fe

  19. Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Jinkui Liu

    2012-01-01

    Full Text Available A new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent condition gkTdk<−∥gk∥2. Moreover, we prove that the new method is globally convergent under the strong Wolfe line search. The numerical results show that the new method is more effective for the given test problems from the CUTE test problem library (Bongartz et al., 1995 in contrast to the famous CD method, FR method, and PRP method.

  20. Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements.

    Science.gov (United States)

    Pollet-Villard, Frédéric; Chiquet, Christophe; Romanet, Jean-Paul; Noel, Christian; Aptel, Florent

    2014-05-02

    To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT). Prospective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter. We included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL.

  1. High spectral efficiency optical CDMA system based on guard-time and optical hard-limiting (OHL)

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, R M; Bennett, C V; Mendez, A J; Hernandez, V J; Lennon, W J

    2003-12-02

    Optical code-division multiple access (OCDMA) is an interesting subject of research because of its potential to support asynchronous, bursty communications. OCDMA has been investigated for local area networks, access networks, and, more recently, as a packet label for emerging networks. Two-dimensional (2-D) OCDMA codes are preferred in current research because of the flexibility of designing the codes and their higher cardinality and spectral efficiency (SE) compared with direct sequence codes based on on-off keying and intensity modulation/direct detection, and because they lend themselves to being implemented with devices developed for wavelength-division-multiplexed (WDM) transmission (the 2-D codes typically combine wavelength and time as the two dimensions of the codes). This paper shows rigorously that 2-D wavelength/time codes have better SE than one-dimensional (1-D) CDMA/WDM combinations (of the same cardinality). Then, the paper describes a specific set of wavelength/time (W/T) codes and their implementation. These 2-D codes are high performance because they simultaneously have high cardinality (/spl Gt/10), per-user high bandwidth (>1 Gb/s), and high SE (>0.10 b/s/Hz). The physical implementation of these W/T codes is described and their performance evaluated by system simulations and measurements on an OCDMA technology demonstrator. This research shows that OCDMA implementation complexity (e.g., incorporating double hard-limiting and interference estimation) can be avoided by using a guard time in the codes and an optical hard limiter in the receiver.

  2. A Review of Spectral Methods for Variable Amplitude Fatigue Prediction and New Results

    Science.gov (United States)

    Larsen, Curtis E.; Irvine, Tom

    2013-01-01

    A comprehensive review of the available methods for estimating fatigue damage from variable amplitude loading is presented. The dependence of fatigue damage accumulation on power spectral density (psd) is investigated for random processes relevant to real structures such as in offshore or aerospace applications. Beginning with the Rayleigh (or narrow band) approximation, attempts at improved approximations or corrections to the Rayleigh approximation are examined by comparison to rainflow analysis of time histories simulated from psd functions representative of simple theoretical and real world applications. Spectral methods investigated include corrections by Wirsching and Light, Ortiz and Chen, the Dirlik formula, and the Single-Moment method, among other more recent proposed methods. Good agreement is obtained between the spectral methods and the time-domain rainflow identification for most cases, with some limitations. Guidelines are given for using the several spectral methods to increase confidence in the damage estimate.

  3. THE PHOTOMETRIC AND SPECTRAL EVOLUTION OF THE 2008 LUMINOUS OPTICAL TRANSIENT IN NGC 300

    International Nuclear Information System (INIS)

    Humphreys, Roberta M.; Davidson, Kris; Bond, Howard E.; Bedin, Luigi R.; Bonanos, Alceste Z.; Berto Monard, L. A. G.; Prieto, José L.; Walter, Frederick M.

    2011-01-01

    The 2008 optical transient in NGC 300 is one of a growing class of intermediate-luminosity transients that brighten several orders of magnitude from a previously optically obscured state. The origin of their eruptions is not understood. Our multi-wavelength photometry and spectroscopy from maximum light to more than a year later provide a record of its post-eruption behavior. We describe its changing spectral energy distribution, the evolution of its absorption- and emission-line spectrum, the development of a bipolar outflow, and the rapid transition from a dense wind to an optically thin ionized wind. In addition to strong, narrow hydrogen lines, the F-type absorption-line spectrum of the transient is characterized by strong Ca II and [Ca II] emission. The very broad wings of the Ca II triplet and the asymmetric [Ca II] emission lines are due to strong Thomson scattering in the expanding ejecta. Post-maximum, the hydrogen and Ca II lines developed double-peaked emission profiles that we attribute to a bipolar outflow. Between approximately 60 and 100 days after maximum, the F-type absorption spectrum, formed in its dense wind, weakened and the wind became transparent to ionizing radiation. We discuss the probable evolutionary state of the transient and similar objects such as SN 2008S and conclude that they were most likely post-red supergiants or post-asymptotic giant branch stars on a blue loop to warmer temperatures when the eruption occurred. These objects are not luminous blue variables.

  4. Infrared imaging and spectral-domain optical coherence tomography findings correlate with microperimetry in acute macular neuroretinopathy: a case report

    Directory of Open Access Journals (Sweden)

    Grover Sandeep

    2011-10-01

    Full Text Available Abstract Introduction Spectral-domain optical coherence tomography findings in a patient with acute macular neuroretinopathy, and correlation with functional defects on microperimetry, are presented. Case presentation A 25-year old Caucasian woman presented with bitemporal field defects following an upper respiratory tract infection. Her visual acuity was 20/20 in both eyes and a dilated fundus examination revealed bilateral hyperpigmentary changes in the papillomacular bundle. Our patient underwent further evaluation with spectral-domain optical coherence tomography, infrared and fundus autofluorescence imaging. Functional changes were assessed by microperimetry. Infrared imaging showed the classic wedge-shaped defects and spectral-domain optical coherence tomography exhibited changes at the inner segment-outer segment junction, with a thickened outer plexiform layer overlying these areas. Fluorescein and indocyanine green angiography did not demonstrate any perfusion defects or any other abnormality. Microperimetry demonstrated focal elevation in threshold correlating with the wedge-shaped defects in both eyes. Conclusion Spectral-domain optical coherence tomography findings provide new evidence of the involvement of the outer plexiform layer of the retina in acute macular neuroretinopathy.

  5. Spectral, structural, optical and dielectrical studies of UV irradiated Rose Bengal thin films prepared by spin coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Zeyada, H.M., E-mail: hzeyada@gmail.com [Department of Physics, Faculty of Science at New Damietta, University of Damietta, 34517 (Egypt); Youssif, M.I.; El-Ghamaz, N.A. [Department of Physics, Faculty of Science at New Damietta, University of Damietta, 34517 (Egypt); Aboderbala, M.E.O. [Department of Physics, Faculty of Science at New Damietta, University of Damietta, 34517 (Egypt); Department of Physics, Faculty of Science, AlJabl Al Gharbi University (Libya)

    2017-02-01

    Optical properties of pristine and UV irradiated Rose Bengal (RB) films have been investigated using transmittance and reflectance methods. The refractive index(n) and extinction coefficient (k) have been calculated from the absolute values of transmission and reflection spectrum. Single oscillator parameters and Drude model of free carrier absorption have been applied for analysis of the refractive index dispersion. Within the frame work of the band-to-band electron transitions theory; the fundamental absorption edge data were analyzed. Our results suggest that thickness of RB films has no effect on the absorption or the refractive indices in the investigated thicknesses range and within the experimental error. Structural transformation of films from amorphous to polycrystalline has been observed upon UV irradiation. Accordingly, the decreases of all of the absorption coefficient, the energy gap and the refractive index of RB films have been detected. Furthermore, the dependence of the optical functions on UV exposure times has been discussed based on the spectral distribution of the dielectric constant.

  6. Simulation teaching method in Engineering Optics

    Science.gov (United States)

    Lu, Qieni; Wang, Yi; Li, Hongbin

    2017-08-01

    We here introduce a pedagogical method of theoretical simulation as one major means of the teaching process of "Engineering Optics" in course quality improvement action plan (Qc) in our school. Students, in groups of three to five, complete simulations of interference, diffraction, electromagnetism and polarization of light; each student is evaluated and scored in light of his performance in the interviews between the teacher and the student, and each student can opt to be interviewed many times until he is satisfied with his score and learning. After three years of Qc practice, the remarkable teaching and learning effect is obatined. Such theoretical simulation experiment is a very valuable teaching method worthwhile for physical optics which is highly theoretical and abstruse. This teaching methodology works well in training students as to how to ask questions and how to solve problems, which can also stimulate their interest in research learning and their initiative to develop their self-confidence and sense of innovation.

  7. UTILIZATION OF FUNDUS AUTOFLUORESCENCE, SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY, AND ENHANCED DEPTH IMAGING IN THE CHARACTERIZATION OF BIETTI CRYSTALLINE DYSTROPHY IN DIFFERENT STAGES.

    Science.gov (United States)

    Li, Qian; Li, Yang; Zhang, Xiaohui; Xu, Zhangxing; Zhu, Xiaoqing; Ma, Kai; She, Haicheng; Peng, Xiaoyan

    2015-10-01

    To characterize Bietti crystalline dystrophy (BCD) in different stages using multiple imaging modalities. Sixteen participants clinically diagnosed as BCD were included in the retrospective study and were categorized into 3 stages according to fundus photography. Eleven patients were genetically confirmed. Fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging features of BCD were analyzed. On fundus autofluorescence, the abnormal autofluorescence was shown to enlarge in area and decrease in intensity with stages. Using spectral domain optical coherence tomography, the abnormalities in Stage 1 were observed to localize in outer retinal layers, whereas in Stage 2 and Stage 3, more extensive retinal atrophy was seen. In enhanced depth imaging, the subfoveal choroidal layers were delineated clearly in Stage 1; in Stage 2, destructions were primarily found in the choriocapillaris with associated alterations in the outer vessels; Stage 3 BCD displayed severe choroidal thinning. Choroidal neovascularization and macular edema were exhibited with high incidence. IVS6-8del17bp/inGC of the CYP4V2 gene was the most common mutant allele. Noninvasive fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging may help to characterize the chorioretinal pathology of BCD at different degrees, and therefore, we propose staging of BCD depending on those methods. Physicians should be cautious of the vision-threatening complications of the disease.

  8. Establishing a method to measure bone structure using spectral CT

    Science.gov (United States)

    Ramyar, M.; Leary, C.; Raja, A.; Butler, A. P. H.; Woodfield, T. B. F.; Anderson, N. G.

    2017-03-01

    Combining bone structure and density measurement in 3D is required to assess site-specific fracture risk. Spectral molecular imaging can measure bone structure in relation to bone density by measuring macro and microstructure of bone in 3D. This study aimed to optimize spectral CT methodology to measure bone structure in excised bone samples. MARS CT with CdTe Medipix3RX detector was used in multiple energy bins to calibrate bone structure measurements. To calibrate thickness measurement, eight different thicknesses of Aluminium (Al) sheets were scanned one in air and the other around a falcon tube and then analysed. To test if trabecular thickness measurements differed depending on scan plane, a bone sample from sheep proximal tibia was scanned in two orthogonal directions. To assess the effect of air on thickness measurement, two parts of the same human femoral head were scanned in two conditions (in the air and in PBS). The results showed that the MARS scanner (with 90μm voxel size) is able to accurately measure the Al (in air) thicknesses over 200μm but it underestimates the thicknesses below 200μm because of partial volume effect in Al-air interface. The Al thickness measured in the highest energy bin is overestimated at Al-falcon tube interface. Bone scanning in two orthogonal directions gives the same trabecular thickness and air in the bone structure reduced measurement accuracy. We have established a bone structure assessment protocol on MARS scanner. The next step is to combine this with bone densitometry to assess bone strength.

  9. Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.

  10. Prevalence of Split Nerve Fiber Layer Bundles in Healthy People Imaged with Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Sirel Gür Güngör

    2016-12-01

    Full Text Available Objectives: The presence of retinal nerve fiber layer (RNFL split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. Materials and Methods: We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program. In our study, a bundle was defined as ‘split’ when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Results: Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29% and unilateral superior split was observed in 15 cases (4.16%. In 325 cases (90.52% there was no split bundle. Conclusion: Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles.

  11. Comparison of retina specialist preferences regarding spectral-domain and swept-source optical coherence tomography angiography

    Directory of Open Access Journals (Sweden)

    Su GL

    2017-05-01

    Full Text Available Grace L Su,1 Douglas M Baughman,2 Qinqin Zhang,3 Kasra Rezaei,2 Aaron Y Lee,2 Cecilia S Lee2 1Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 2Department of Ophthalmology, 3Department of Bioengineering, University of Washington, Seattle, WA, USA Purpose: The aim of this study was to compare physician preferences regarding the commercially available spectral-domain (SD optical coherence tomography angiography (OCTA and swept-source (SS OCTA prototype device.Design: Comparative analysis of diagnostic instruments was performed.Patients and methods: Subjects at the University of Washington Eye Institute and Harborview Medical Center were prospectively recruited and imaged with the Zeiss SD OCTA (HD-5000, Angioplex and Zeiss SS OCTA (Plex Elite, Everest devices on the same day. The study included 10 eyes from 10 subjects diagnosed with a retinal/choroidal disease. Deidentified images were compiled into a survey and sent to retina specialists in various countries. The survey presented masked SD and SS images of each eye for each retinal sublayer side by side. Respondents were asked about their image preference and impact on clinical management. A priori and post hoc preferences for SD vs SS were collected.Results: Fifty-four retina specialists responded to the survey. Median years in practice was 3.00 (interquartile range [IQR] 1.50–17.00. At baseline, 23 (48% physicians owned an OCTA machine. The majority of physician responses showed a preference for the SS over SD OCTA, independent of the retinal pathology shown (n=454 overall responses, 74%. Nevertheless, the majority indicated that both SD and SS would be equally valuable in informing clinical decisions (n=374 overall responses, 61%.Conclusion: These findings indicate that the majority of retina specialists surveyed prefer SS over SD OCTA based on image quality, regardless of the retinal pathology shown. Regarding the clinical utility of each modality, the majority of

  12. $h - p$ Spectral element methods for elliptic problems on non-smooth domains using parallel computers

    NARCIS (Netherlands)

    Tomar, S.K.

    2002-01-01

    It is well known that elliptic problems when posed on non-smooth domains, develop singularities. We examine such problems within the framework of spectral element methods and resolve the singularities with exponential accuracy.

  13. Fourier spectral methods for fractional-in-space reaction-diffusion equations

    KAUST Repository

    Bueno-Orovio, Alfonso; Kay, David; Burrage, Kevin

    2014-01-01

    approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction

  14. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    Science.gov (United States)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  15. The hand-hold polarization-sensitive spectral domain optical coherence and its applications

    Science.gov (United States)

    Liu, Hao; Gao, Wanrong

    2017-08-01

    The polarization-sensitive spectral domain optical coherence tomography (PSOCT) has the advantages of being able to measure the polarization properties of samples, such as phase-retardation, diattenuation, depolarization, and optical axis orientation, providing a contrast to identify the diseased area and normal area in tissues in PSOCT images. Conventionally, the sample arm of PSOCT is fixed on the stage where biomedical tissues or models is placed, and the OCT images is acquired by scanning with a galvanometer-based mirror. To be applied in the practical diagnosis, a promising way is to design a hand-held device. To this end, it is required that probe is assembled with a small volume to allow for comprehensively imaging large tissues areas at a microscopic scale, and is available to move on different samples to be acquired quickly with negligible motion artifacts. Meanwhile, the probe should be manufactured wih well stability to avoid system jitter error while it is used to detect the biological tissues in vivo. In this work, a design of a hand-hold fiber-based PSOCT is described. The device is of the size of 10 cm (length) × 8 cm (width) × 6 cm (height). Both the axial resolution and the imaging depth of the system are measured and were approximately 7 μm and 2.5 mm in air, respectively, which are in good agreement with the theoretical predictions. The A-scan rate of the system is 70 kHz. The structure is compact and all the components are fixed on the shell to reduce the motion artifact, resulting in a great stability on measuring the tissues in vivo. The cross sectional images of ex vivo chicken breast, ex vivo pork cartilage and in vivo forearm skin of human wolunteer are presented to demonstrate the capability of the system.

  16. Multimodal ophthalmic imaging using spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    Science.gov (United States)

    El-Haddad, Mohamed T.; Malone, Joseph D.; Li, Jianwei D.; Bozic, Ivan; Arquitola, Amber M.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.

    2017-08-01

    Ophthalmic surgery involves manipulation of delicate, layered tissue structures on milli- to micrometer scales. Traditional surgical microscopes provide an inherently two-dimensional view of the surgical field with limited depth perception which precludes accurate depth-resolved visualization of these tissue layers, and limits the development of novel surgical techniques. We demonstrate multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography (SS-SESLO-OCT) to address current limitations of image-guided ophthalmic microsurgery. SS-SESLO-OCT provides inherently co-registered en face and cross-sectional field-of-views (FOVs) at a line rate of 400 kHz and >2 GPix/s throughput. We show in vivo imaging of the anterior segment and retinal fundus of a healthy volunteer, and preliminary results of multi-volumetric mosaicking for ultrawide-field retinal imaging with 90° FOV. Additionally, a scan-head was rapid-prototyped with a modular architecture which enabled integration of SS-SESLO-OCT with traditional surgical microscope and slit-lamp imaging optics. Ex vivo surgical maneuvers were simulated in cadaveric porcine eyes. The system throughput enabled volumetric acquisition at 10 volumes-per-second (vps) and allowed visualization of surgical dynamics in corneal sweeps, compressions, and dissections, and retinal sweeps, compressions, and elevations. SESLO en face images enabled simple real-time co-registration with the surgical microscope FOV, and OCT cross-sections provided depth-resolved visualization of instrument-tissue interactions. Finally, we demonstrate novel augmented-reality integration with the surgical view using segmentation overlays to aid surgical guidance. SS-SESLO-OCT may benefit clinical diagnostics by enabling aiming, registration, and mosaicking; and intraoperative imaging by allowing for real-time surgical feedback, instrument tracking, and overlays of computationally extracted biomarkers of disease.

  17. Spectral dependence of nonlinear optical absorption of silica glass with copper nanoparticles

    International Nuclear Information System (INIS)

    Golubev, A N; Nikitin, S I; Smirnov, M A; Stepanov, A L

    2011-01-01

    The nonlinear optical properties of silica glass with copper nanoparticles synthesized by ion implantation were investigated by z-scan method in nanosecond time scale. The reverse saturation absorption (RSA) at the wavelength range of 450–540 nm and saturation absorption (SA) at 550–585 nm were observed. It was supposed that the two-photon electron absorption from bound of d-states determined the RSA effect and the SA is due to saturation of plasmon excitation.

  18. Analysis of In-Situ Spectral Reflectance of Sago and Other Palms: Implications for Their Detection in Optical Satellite Images

    Science.gov (United States)

    Rendon Santillan, Jojene; Makinano-Santillan, Meriam

    2018-04-01

    We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa) to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345-1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2). Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.

  19. ANALYSIS OF IN-SITU SPECTRAL REFLECTANCE OF SAGO AND OTHER PALMS: IMPLICATIONS FOR THEIR DETECTION IN OPTICAL SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    J. R. Santillan

    2018-04-01

    Full Text Available We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345–1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2. Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.

  20. Synthesis and spectral characterization of hydrazone derivative of furfural using experimental and DFT methods.

    Science.gov (United States)

    Babu, N Ramesh; Subashchandrabose, S; Ali Padusha, M Syed; Saleem, H; Erdoğdu, Y

    2014-01-01

    The Spectral Characterization of (E)-1-(Furan-2-yl) methylene)-2-(1-phenylvinyl) hydrazine (FMPVH) were carried out by using FT-IR, FT-Raman and UV-Vis., Spectrometry. The B3LYP/6-311++G(d,p) level of optimization has been performed on the title compound. The conformational analysis was performed for this molecule, in which the cis and trans conformers were studied for spectral characterization. The recorded spectral results were compared with calculated results. The optimized bond parameters of FMPVH molecule was compared with X-ray diffraction data of related molecule. To study the intra-molecular charge transfers within the molecule the Lewis (bonding) and Non-Lewis (anti-bonding) structural calculation was performed. The Non-linear optical behavior of the title compound was measured using first order hyperpolarizability calculation. The atomic charges were calculated and analyzed. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Characterization of spectral compression of OFDM symbols using optical time lenses

    DEFF Research Database (Denmark)

    Røge, Kasper Meldgaard; Guan, Pengyu; Kjøller, Niels-Kristian

    2015-01-01

    We present a detailed investigation of a double-time-lens subsystem for spectral compression of OFDM symbols. We derive optimized parameter settings by simulations and experimental characterization. The required chirp for OFDM spectral compression is very large.......We present a detailed investigation of a double-time-lens subsystem for spectral compression of OFDM symbols. We derive optimized parameter settings by simulations and experimental characterization. The required chirp for OFDM spectral compression is very large....

  2. Optimization of a Michelson interferometer with a rotating retroreflector in opitcal design, spectral resolution, and optical throughput

    International Nuclear Information System (INIS)

    Haschberger, P.; Tank, V.

    1993-01-01

    A newly designed Michelson interferometer for Fourier spectroscopy utilizes a nutating retroreflector (cube corner mirror) to generate alterations in geometrical and optical paths. The practical optomechanical design of a Fourier-transform spectrometer incorporating a rotating retroreflector for path-length alteration is considered. (The instrument has been given the name MIROR, for Michelson Interferometer with a Rotating Retroreflector.) Two parameters of the instrument are essential: the maximum optical path difference, which yields the spectral resolution of the instrument, and the diameter of the transmitted beam, which determines the throughput and hence the achievable signal-to-noise ratio. The maximum allowable beam diameter is calculated as a function of the geometry and the orientation of the rotating retroreflector and the other optical components. The geometrical configuration and the orientation of all the optical components with respect to one another are also optimized for the maximum transmitted beam diameter when the required path difference is given. A principal investigation of different possible configurations of the optical components is presented. Then a quantitative optimization for an interferometer employing a retroreflector having a 5-in. (12.7-cm) aperture diameter requiring an optical path difference of more than 10 cm (spectral resolution better than 0.1 cm -1 ) is performed. Finally a simplified but enhanced design is described. 10 refs., 15 figs

  3. Three dimensional tracking for volumetric spectral-domain optical coherence tomography.

    Science.gov (United States)

    Maguluri, Gopi; Mujat, Mircea; Park, B H; Kim, K H; Sun, Wei; Iftimia, N V; Ferguson, R D; Hammer, Daniel X; Chen, Teresa C; de Boer, Johannes F

    2007-12-10

    We present a three-dimensional (3D) tracker for a clinical ophthalmic spectral domain optical coherence tomography (SD-OCT) system that combines depth-tracking with lateral tracking, providing a stabilized reference frame for 3D data recording and post acquisition analysis. The depth-tracking system is implemented through a real-time dynamic feedback mechanism to compensate for motion artifact in the axial direction. Active monitoring of the retina and adapting the reference arm of the interferometer allowed the whole thickness of the retina to be stabilized to within +/-100 mum. We achieve a relatively constant SNR from image to image by stabilizing the image of the retina with respect to the depth dependent sensitivity of SD-OCT. The depth tracking range of our system is 5.2 mm in air and the depth is adjusted every frame.nhancement in the stability of the images with the depth-tracking algorithm is demonstrated on a healthy volunteer.

  4. Imaging of the iridocorneal angle with the RTVue spectral domain optical coherence tomography.

    Science.gov (United States)

    Perera, Shamira A; Ho, Ching Lin; Aung, Tin; Baskaran, Mani; Ho, Henrietta; Tun, Tin A; Lee, Tian Loon; Kumar, Rajesh S

    2012-04-02

    To determine the ability of the RTVue spectral domain optical coherence tomography (SDOCT) to image the anterior chamber angle (ACA). Consecutive subjects, recruited from glaucoma clinics, prospectively underwent ophthalmic evaluation including gonioscopy by an ophthalmologist and anterior chamber imaging with SDOCT, adapted with a corneal lens adapter (cornea anterior module-low magnification [CAM-L]) and anterior segment OCT (ASOCT), both performed by a technician. Two different ophthalmologists, masked to gonioscopy findings, assessed visualization of the scleral spur (SS), Schwalbe's line (SL), and trabecular meshwork (TM) by the two modalities. The ability to detect a closed angle was compared with gonioscopy. The average age (SD) of the 81 subjects enrolled was 64.1 (11.4) years; the majority were Chinese (91.4%) and female (61.7%). SDOCT images revealed the SS in 26.9% (56/324) of quadrants and the SL in 44.1% (143/324) of quadrants; in ASOCT images, the SS could be visualized in 69.1% (224/324) of quadrants (P gonioscopy. When analyzing the horizontal quadrants only, both modalities agreed well with gonioscopy, 0.75 and 0.74, respectively (AC1 statistics). The RTVue SDOCT allowed visualization of SL, TM, and SS. However, these landmarks were not detected in a large percentage of images.

  5. Broad-band spectral studies of optical lightnings and possible correlation with solar activity

    International Nuclear Information System (INIS)

    Bhat, C.L.; Sapru, M.L.; Kaul, R.K.; Razdan, H.

    1984-01-01

    Optical pulses from lightning discharges have been recorded in a ground-based experiment, meant primarily for the detection of cosmic X- and γ-ray bursts through the atmospheric fluorescence technique. It is shown that the spectral ratio Asub(v)/Asub(y), i.e. the ratio of pulse amplitudes in the violet to that in yellow wavelength bands (3400-4300 A and 4400-6000 A respectively) provides a good indication of the lightning channel temperature, the range of derived temperatures extending from 5.000 K to 60.000 K. Based on the distribution of observed Asub(v)/Asub(y) values on a daily basis, it has been possible to separate the observed lightning activity into two classes. One class of event is shown to be correlated with the peaking of the global atmospheric electric field and occurs preferentially on days when the ground-level cosmic ray intensity shows a significant decrease in association with an increase in geomagnetic activity. The results are discussed in terms of the contemporary views regarding solar control of atmospheric electricity and the various sun-weather correlations reported earlier. (author)

  6. Acute Retinal Pigment Epitheliitis: Spectral Domain Optical Coherence Tomography, Fluorescein Angiography, and Autofluorescence Findings

    Directory of Open Access Journals (Sweden)

    Tuğba Aydoğan

    2015-01-01

    Full Text Available A 17-year-old presented with central and paracentral scotomas in his right eye for one week. There was no remarkable medical or ocular history. Blood analyses were within normal range. At presentation both eyes’ best-corrected visual acuities were 20/20. Slit-lamp examination result was normal. Fundus examination revealed yellow-white hypopigmented areas in the macula. Fluorescein angiography (FA showed hypofluorescence surrounded by ring of hyperfluorescence. Fundus autofluorescence (FAF was slightly increased. Spectral domain optical coherence tomography (SD-OCT showed disruption of IS/OS junction with expansion of abnormal hyperreflectivity from retinal pigment epithelium to the outer nuclear layer (ONL. One month later fundus examination showed disappearance of the lesions. FA revealed transmission hyperfluorescence. FAF showed increased autofluorescence and pigment clumping. Hyperreflective band in SD-OCT disappeared. Loss of photoreceptor segment layers was observed in some of the macular lesions. The diagnosis of acute retinal pigment epitheliitis can be challenging after disappearance of fundus findings. FA, FAF, and SD-OCT are important tests for diagnosis after resolution of the disease.

  7. Optical spectral characterization of leaves for endemic species from La Primavera forest

    Science.gov (United States)

    Barragán, R. C.; Strojnik, Marija; Rodríguez-Rivas, Antonio; Garcia-Torales, G.; González, Francisco Javier

    2017-09-01

    La Primavera forest is the main climate regulator in the metropolitan area of Guadalajara, the second most populated megalopolis in Mexico with approximately 4.4 million people. This forest area has been a focus of fires in the last decade and it is deteriorating the quality of life of the inhabitants. Leaves from the endemic forest provide information about their biochemical composition and physiology. This information is enclosed in the spectral range of the visible band to the middle infrared (400 nm at 2500 nm). In this paper we examine the reflectance of six endemic species leaves of La Primavera forest, considering the measurement in fresh and dry samples. Measurements will be obtained with a Vis-NIR spectrometer that uses a calibrated light source. A formal collection of the optical properties of tree leaves in La Primavera forest does not exist, but it is important to classify about the type of vegetation in the area. In addition, it will provide information to generate vegetation inventories, provide data to the forest fire prevention systems, pest control and erosion in the area.

  8. Agreement of angle closure assessments between gonioscopy, anterior segment optical coherence tomography and spectral domain optical coherence tomography.

    Science.gov (United States)

    Tay, Elton Lik Tong; Yong, Vernon Khet Yau; Lim, Boon Ang; Sia, Stelson; Wong, Elizabeth Poh Ying; Yip, Leonard Wei Leon

    2015-01-01

    To determine angle closure agreements between gonioscopy and anterior segment optical coherence tomography (AS-OCT), as well as gonioscopy and spectral domain OCT (SD-OCT). A secondary objective was to quantify inter-observer agreements of AS-OCT and SD-OCT assessments. Seventeen consecutive subjects (33 eyes) were recruited from the study hospital's Glaucoma clinic. Gonioscopy was performed by a glaucomatologist masked to OCT results. OCT images were read independently by 2 other glaucomatologists masked to gonioscopy findings as well as each other's analyses of OCT images. Totally 84.8% and 45.5% of scleral spurs were visualized in AS-OCT and SD-OCT images respectively (Pgonioscopy was fair at k=0.31 (95% confidence interval, CI: 0.03-0.59) and k=0.35 (95% CI: 0.07-0.63) for reader 1 and 2 respectively. The agreement for angle closure between SD-OCT and gonioscopy was fair at k=0.21 (95% CI: 0.07-0.49) and slight at k=0.17 (95% CI: 0.08-0.42) for reader 1 and 2 respectively. The inter-reader agreement for angle closure in AS-OCT images was moderate at 0.51 (95% CI: 0.13-0.88). The inter-reader agreement for angle closure in SD-OCT images was slight at 0.18 (95% CI: 0.08-0.45). Significant proportion of scleral spurs were not visualised with SD-OCT imaging resulting in weaker inter-reader agreements. Identifying other angle landmarks in SD-OCT images will allow more consistent angle closure assessments. Gonioscopy and OCT imaging do not always agree in angle closure assessments but have their own advantages, and should be used together and not exclusively.

  9. Interchip link system using an optical wiring method.

    Science.gov (United States)

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  10. Assessment of ischemia in acute central retinal vein occlusion from inner retinal reflectivity on spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Browning DJ

    2016-12-01

    Full Text Available David J Browning, Omar S Punjabi, Chong Lee Department of Ophthalmology, Charlotte Eye, Ear, Nose and Throat Associates, P.A., Charlotte, NC, USA Purpose: To determine the relationship between different spectral domain optical coherence tomography (SD-OCT signs of retinal ischemia in acute central retinal vein occlusion (CRVO and whether they predict anterior segment neovascularization (ASNV.Design: Retrospective, observational study.Subjects: Thirty-nine consecutive patients with acute CRVO and 12 months of follow-up.Methods: We graded baseline SD-OCTs for increased reflectivity of the inner retina, loss of definition of inner retinal layers, presence of a prominent middle-limiting membrane (p-MLM sign, and presence of paracentral acute middle maculopathy (PAMM. Graders were masked with respect to all clinical information.Results: The intraclass correlation coefficients (ICCs of grading–regrading by graders 1 and 2 were 0.8104, 95% confidence interval (CI (0.6686, 0.8956, and 0.7986, 95% CI (0.6475, 0.8892, respectively. The intragrader coefficients of repeatability (COR for graders 1 and 2 were 0.94 and 0.92, respectively. The ICC of graders 1 compared with 2 was 0.8039, 95% CI (0.6544, 0.8916. The intergrader COR was 0.80. SD-OCT grades of baseline ischemia were not associated with baseline visual acuity (VA, central subfield mean thickness (CSMT, or relative afferent pupillary defect; 12-month VA, CSMT, change in VA, change in CSMT, number of antivascular endothelial growth factor injections or corticosteroid injections, or proportion of eyes developing ASNV. SD-OCT grades of ischemia did not correlate with the proportion of eyes having the p-MLM sign or PAMM. PAMM and p-MLM are milder signs of ischemia than increased reflectivity of the inner retinal layers. Eyes with PAMM can evolve, losing PAMM and gaining the p-MLM sign.Conclusion: Grading of ischemia from SD-OCT in acute CRVO was repeatable within graders and reproducible across

  11. Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008

    Directory of Open Access Journals (Sweden)

    J. Jung

    2010-06-01

    Full Text Available As a part of the IGAC (International Global Atmospheric Chemistry Mega-cities program, aerosol physical and optical properties were continuously measured from March 2007 to March 2008 at an urban site (37.57° N, 126.94° E in Seoul, Korea. Spectral optical properties of long-range transported Asian dust and pollution aerosols have been investigated based on the year long measurement data. Optically measured black carbon/thermally measured elemental carbon (BC/EC ratio showed clear monthly variation with high values in summer and low values in winter mainly due to the enhancement of light attenuation by the internal mixing of EC. Novel approach has been suggested to retrieve the spectral light absorption coefficient (babs from Aethalometer raw data by using BC/EC ratio. Mass absorption efficiency, σabs (=babs/EC at 550 nm was determined to be 9.0±1.3, 8.9±1.5, 9.5±2.0, and 10.3±1.7 m2 g−1 in spring, summer, fall, and winter, respectively with an annual mean of 9.4±1.8 m2 g−1. Threshold values to classify severe haze events were suggested in this study. Increasing trend of aerosol single scattering albedo (SSA with wavelength was observed during Asian dust events while little spectral dependence of SSA was observed during long-range transport pollution (LTP events. Satellite aerosol optical thickness (AOT and Hysplit air mass backward trajectory analyses as well as chemical analysis were performed to characterize the dependence of spectral optical properties on aerosol type. Results from this study can provide useful information for studies on regional air quality and aerosol's effects on climate change.

  12. The forward tracking, an optical model method

    CERN Document Server

    Benayoun, M

    2002-01-01

    This Note describes the so-called Forward Tracking, and the underlying optical model, developed in the context of LHCb-Light studies. Starting from Velo tracks, cheated or found by real pattern recognition, the tracks are found in the ST1-3 chambers after the magnet. The main ingredient to the method is a parameterisation of the track in the ST1-3 region, based on the Velo track parameters and an X seed in one ST station. Performance with the LHCb-Minus and LHCb-Light setups is given.

  13. New method for pumping an optical klystron

    International Nuclear Information System (INIS)

    Vignola, G.; Freemen, R.R.; Kincaid, B.M.; Pellegrini, C.; Luccio, A.; Murphy, J.; Galayda, J.; Van Steenbergen, A.

    1985-01-01

    A novel method of operation for a transverse optical klystron (TOK) is proposed. The TOK is a device in which a relativistic electron beam produces tunable coherent radiation at short wavelengths by interacting with a powerful external laser and an undulator field. Here we show that by selecting the external laser wavelengths to be one of the harmonics in the undulator radiation spectrum, excellent output at short wavelength can be realized with significantly reduced performance requirements for the undulator magnet and the storage ring providing the electron beam

  14. DSP-enabled reconfigurable and transparent spectral converters for converging optical and mobile fronthaul/backhaul networks.

    Science.gov (United States)

    Mao, M Z; Giddings, R P; Cao, B Y; Xu, Y T; Wang, M; Tang, J M

    2017-06-12

    Dynamically reconfigurable and transparent signal spectral conversion is expected to play a vital role in seamlessly integrating traditional metropolitan optical networks and mobile fronthaul/backhaul networks. In this paper, a simple digital signal processing (DSP)-enabled spectral converter is proposed and extensively investigated, for the first time, which just utilizes a single standard dual-parallel Mach-Zehnder modulator (DP-MZM) driven by SDN-controllable RF signals and DC bias currents. As an important thrust of the paper, optimum operating conditions of the proposed converter are analytically identified, statistically examined and experimentally verified. Optimum operating condition-supported spectral converter performances in IMDD-based network nodes are explored both theoretically and experimentally in terms of frequency detuning range-dependent conversion efficiency, spectral conversion-induced OSNR/power penalty and transparency to input signal characteristics. The proposed spectral converter has unique advantages including low configuration complexity, strict transparency, SDN-controllable performance reconfigurability and flexibility, as well as negligible spectral conversion-induced latency.

  15. Synthesis, growth, spectral, electrical, mechanical and thermal characterization of a potential optical material: γ-glycine single crystal

    Science.gov (United States)

    Sivakumar, N.; Jayavel, R.; Anbalagan, G.; Yadav, R. R.

    2018-06-01

    Gamma glycine, an organic material was grown by slow solvent evaporation method. Conventional polythermal method was employed in the temperature range, 30-50 °C to obtain the solubility and the metastable zonewidth. The crystal and molecular structures were analyzed by X-ray powder diffraction, FT-IR and FT-Raman spectral studies. Optical refractive index was determined by prism coupling technique and was found to be 1.4488. Electrical properties such as ac conductivity and activation energy were studied for different temperatures in the frequency range from 40 Hz to 6 MHz. The dc electrical conductivity was estimated from the Cole-Cole plot and the values were found to be 2.19 × 10-6 Sm-1 at 353K and 1.46 × 10-6 Sm-1 at 373K respectively. Mechanical studies on the grown crystal revealed that the material belongs to soft materials category. Thermal conductivity and specific heat capacities were estimated by Hot Disk Thermal Constants Analyzer.

  16. Optimisation of a polygon mirror-based spectral filter for swept source optical coherence tomography (SS-OCT)

    Science.gov (United States)

    Everson, Michael; Duma, Virgil-Florin; Dobre, George

    2018-03-01

    Medical imaging using Optical Coherence Tomography (OCT) provides clinicians with 3D, high resolution reconstructions of microscopic structures, in depth. It has been initially developed for ophthalmology, in order to scan the retinas of patients to diagnose illness. The quality of the images depends upon their axial and lateral resolutions and the properties of the light being used. Research using a polygon mirror (PM) as a spectral filter in Swept Source OCT (SS-OCT) has resulted in a variety of different experimental arrangements. Although the application of PM-based SS-OCT sources has been successfully demonstrated, the combination of their components' fundamental properties and the overall impact they have on imaging performance is rarely reported. A more detailed examination of these properties would lead to a full description of their operation and to the best methods to employ if system performance is to be maximised. This work presents our current findings of on-going research into the optimisation of PM-based SS-OCT systems. A swept source spectral filter, consisting of a collimator, a transmission grating, a two-lens telescope and an off-axis PM with an end reflector mirror has been evaluated experimentally and compared with theoretical predictions. The system's performance has been compared for two different fibre collimators. Although the beam width on the grating is different for each of the two collimators, the spot size at the PM facet is made the same by selecting appropriate focal lengths. An improvement in the signal roll-off at the interferometer output of 1.0 dB/mm was obtained when using a 3.4 mm collimator compared to a 1.5 mm collimator.

  17. Peripapillary Retinal Nerve Fiber Measurement with Spectral-Domain Optical Coherence Tomography in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Simon K. Law

    2017-12-01

    Full Text Available Purpose: To evaluate the relationship between the peripapillary retinal nerve fiber layer (RNFL measurements with Spectral-domain Optical Coherence Tomography (OCT and Age-related macular degeneration (AMD. Methods: Patients >60 years of age without glaucoma or record of intraocular pressure >21 mmHg and no systemic or intraocular diseases or treatment or surgical intervention that affected the RNFL underwent OCT measurement of the RNFL. The severity of AMD was staged with the Clinical Age-Related Maculopathy Staging System. The relationship between RNFL measurements and AMD stages of one eye per patient was analyzed. Results: Eighty-six eyes (46 patients with AMD and no glaucoma or other exclusion criteria received OCT RNFL measurements. Nine eyes (10.5% were excluded because of distorted peripapillary anatomy from exudative AMD (7 eyes or failure of the RNFL segmentation algorithm (2 eyes. Mean age ± S.D. of the 43 patients analyzed was 81.2 ± 7.3 years. The mean stage ± S.D. of AMD of the 77 eyes was 3.77 ± 1.05. Higher stages of AMD were statistically significantly associated with lower average RNFL and inferior sector RNFL (p = 0.049, 0 0015, respectively. The association of inferior sector RNFL and AMD stage remained statistically significant after adjusting for age. Conclusions: Spectral domain OCT is generally useful in measuring the peripapillary RNFL in eyes with different stages of AMD. Higher stage of AMD is associated with thinner peripapillary RNFL, which may masquerade as early glaucomatous damage.

  18. Multi-spectral lifetime imaging: methods and applications

    NARCIS (Netherlands)

    Fereidouni, F.

    2013-01-01

    The aim of this PhD project is to further develop multispectral life time imaging hardware and analyses methods. The hardware system, Lambda-Tau, generates a considerable amount of data at high speed. To fully exploit the power of this new hardware, fast and reliable data analyses methods are

  19. Methods for Enhancing Geological Structures in Spectral Spatial Difference-Based on Remote-Sensing Image

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@In this paper, some image processing methods such as directional template (mask) matching enhancement, pseudocolor or false color enhancement, K-L transform enhancement are used to enhance a geological structure, one of important ore-controlling factors, shown in the remote-sensing images.This geological structure is regarded as image anomaly in the remote-sensing image, since considerable differences, based on the spatial spectral distribution pattern, in gray values (spectral), color tones and texture, are always present between the geological structure and background. Therefore,the enhancement of the geological structure in the remotesensing image is that of the spectral spatial difference.

  20. Modified Spectral Fatigue Methods for S-N Curves With MIL-HDBK-5J Coefficients

    Science.gov (United States)

    Irvine, Tom; Larsen, Curtis

    2016-01-01

    The rainflow method is used for counting fatigue cycles from a stress response time history, where the fatigue cycles are stress-reversals. The rainflow method allows the application of Palmgren-Miner's rule in order to assess the fatigue life of a structure subject to complex loading. The fatigue damage may also be calculated from a stress response power spectral density (PSD) using the semi-empirical Dirlik, Single Moment, Zhao-Baker and other spectral methods. These methods effectively assume that the PSD has a corresponding time history which is stationary with a normal distribution. This paper shows how the probability density function for rainflow stress cycles can be extracted from each of the spectral methods. This extraction allows for the application of the MIL-HDBK-5J fatigue coefficients in the cumulative damage summation. A numerical example is given in this paper for the stress response of a beam undergoing random base excitation, where the excitation is applied separately by a time history and by its corresponding PSD. The fatigue calculation is performed in the time domain, as well as in the frequency domain via the modified spectral methods. The result comparison shows that the modified spectral methods give comparable results to the time domain rainflow counting method.

  1. Optical feedback structures and methods of making

    Science.gov (United States)

    None

    2014-11-18

    An optical resonator can include an optical feedback structure disposed on a substrate, and a composite including a matrix including a chromophore. The composite disposed on the substrate and in optical communication with the optical feedback structure. The chromophore can be a semiconductor nanocrystal. The resonator can provide laser emission when excited.

  2. Continuous non-invasive blood glucose monitoring by spectral image differencing method

    Science.gov (United States)

    Huang, Hao; Liao, Ningfang; Cheng, Haobo; Liang, Jing

    2018-01-01

    Currently, the use of implantable enzyme electrode sensor is the main method for continuous blood glucose monitoring. But the effect of electrochemical reactions and the significant drift caused by bioelectricity in body will reduce the accuracy of the glucose measurements. So the enzyme-based glucose sensors need to be calibrated several times each day by the finger-prick blood corrections. This increases the patient's pain. In this paper, we proposed a method for continuous Non-invasive blood glucose monitoring by spectral image differencing method in the near infrared band. The method uses a high-precision CCD detector to switch the filter in a very short period of time, obtains the spectral images. And then by using the morphological method to obtain the spectral image differences, the dynamic change of blood sugar is reflected in the image difference data. Through the experiment proved that this method can be used to monitor blood glucose dynamically to a certain extent.

  3. Systems and methods for enhancing optical information

    Science.gov (United States)

    DeVore, Peter Thomas Setsuda; Chou, Jason T.

    2018-01-02

    An Optical Information Transfer Enhancer System includes a first system for producing an information bearing first optical wave that is impressed with a first information having a first information strength wherein the first optical wave has a first shape. A second system produces a second optical wave. An information strength enhancer module receives the first and said second optical waves and impresses the first optical wave upon the second optical wave via cross-phase modulation (XPM) to produce an information-strength-enhanced second optical wave having a second information strength that is greater than the first information strength of the first optical wave. Following a center-wavelength changer by an Optical Information Transfer Enhancer System improves its performance.

  4. New Spectral Method for Halo Particle Definition in Intense Mis-matched Beams

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, Mikhail A.; Davidson, Ronald C.; Startsev, Edward A.

    2011-04-27

    An advanced spectral analysis of a mis-matched charged particle beam propagating through a periodic focusing transport lattice is utilized in particle-in-cell (PIC) simulations. It is found that the betatron frequency distribution function of a mismatched space-charge-dominated beam has a bump-on-tail structure attributed to the beam halo particles. Based on this observation, a new spectral method for halo particle definition is proposed that provides the opportunity to carry out a quantitative analysis of halo particle production by a beam mismatch. In addition, it is shown that the spectral analysis of the mismatch relaxation process provides important insights into the emittance growth attributed to the halo formation and the core relaxation processes. Finally, the spectral method is applied to the problem of space-charge transport limits.

  5. Multi-spectral temperature measurement method for gas turbine blade

    Science.gov (United States)

    Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong

    2016-02-01

    One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

  6. Methods for deconvoluting and interpreting complex gamma- and x-ray spectral regions

    International Nuclear Information System (INIS)

    Gunnink, R.

    1983-06-01

    Germanium and silicon detectors are now widely used for the detection and measurement of x and gamma radiation. However, some analysis situations and spectral regions have heretofore been too complex to deconvolute and interpret by techniques in general use. One example is the L x-ray spectrum of an element taken with a Ge or Si detector. This paper describes some new tools and methods that were developed to analyze complex spectral regions; they are illustrated with examples

  7. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    Energy Technology Data Exchange (ETDEWEB)

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu [Division of Geological and Planetary Sciences 252-21, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  8. Inspection methods progression of diabetic optic neuropathy

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2015-06-01

    Full Text Available Increasing incidence of diabetes, diet restructuring with excessive intake of high-calorie foods closely related with this. Currently diabetes prevalence rate increased from 7% in 2003 to 14% in 2010. Diabetes can cause a variety of eye diseases, such as corneal ulcers, glaucoma, vitreous hemorrhage and so on. Diabetic retinopathy and cataract are the most common and greater impact on patients. At present, study for diabetic retinopathy(DRis wider than diabetes optic neuropathy(DON. Clinical manifestations of DON are not specific, but DON occurred extensively, also contributed to an important cause of blindness.In this paper, we collected a variety of inspection and early diagnosis methods, try to achieve early detection, interventional therapy and good treatment for this disease. Here to make a presentation on the various types of inspection methods.

  9. Spectral dependence of the refractive index of single-crystalline GaAs for optical applications

    International Nuclear Information System (INIS)

    Plotnichenko, V G; Nazaryants, V O; Kryukova, E B; Dianov, E M

    2010-01-01

    The refractive index of crystalline GaAs is measured by the method of interference refractometry in the wavenumber range from 10 500 to 540 cm -1 (or the wavelength range from 0.9 to 18.6 μm) with a resolution of 0.1 cm -1 . The measurement results are approximated by the generalized Cauchy dispersion formula of the 8th power. Spectral wavelength dependences of the first- and second-order derivatives of the refractive index are calculated, and the zero material dispersion wavelength is found to be λ 0 = 6.61 μm. Using three GaAs plates of different thicknesses we managed to raise the refractive index measurement accuracy up to 4 x 10 -4 or 0.02%, being nearly by an order of magnitude better than the data available.

  10. Spectral dependence of the refractive index of single-crystalline GaAs for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Plotnichenko, V G; Nazaryants, V O; Kryukova, E B; Dianov, E M, E-mail: victor@fo.gpi.ac.r [Fibre Optics Research Center of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119333 (Russian Federation)

    2010-03-17

    The refractive index of crystalline GaAs is measured by the method of interference refractometry in the wavenumber range from 10 500 to 540 cm{sup -1} (or the wavelength range from 0.9 to 18.6 {mu}m) with a resolution of 0.1 cm{sup -1}. The measurement results are approximated by the generalized Cauchy dispersion formula of the 8th power. Spectral wavelength dependences of the first- and second-order derivatives of the refractive index are calculated, and the zero material dispersion wavelength is found to be {lambda}{sub 0} = 6.61 {mu}m. Using three GaAs plates of different thicknesses we managed to raise the refractive index measurement accuracy up to 4 x 10{sup -4} or 0.02%, being nearly by an order of magnitude better than the data available.

  11. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    Science.gov (United States)

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  12. Optical decoherence and persistent spectral hole burning in Tm{sup 3+}:LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States); Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Sun, Y. [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Boettger, T. [Department of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Babbitt, W.R. [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States); Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Cone, R.L. [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States)

    2010-09-15

    We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the {sup 3}H{sub 4} and {sup 3}F{sub 4} excited states of Tm{sup 3+}, persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the {sup 169}Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 {mu}s at zero field to 23 {mu}s in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm{sup 3+} and the {sup 7}Li and {sup 93}Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for {sup 7}Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.

  13. Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range.

    Science.gov (United States)

    Shuvaev, A M; Astakhov, G V; Pimenov, A; Brüne, C; Buhmann, H; Molenkamp, L W

    2011-03-11

    We report the observation of a giant Faraday effect, using terahertz (THz) spectroscopy on epitaxial HgTe thin films at room temperature. The effect is caused by the combination of the unique band structure and the very high electron mobility of HgTe. Our observations suggest that HgTe is a high-potential material for applications as optical isolator and modulator in the THz spectral range.

  14. Fundus autofluorescence in central serous chorioretinopathy:association with spectral-domain optical coherence tomography and fluorescein angiography

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2015-10-01

    Full Text Available AIM: To evaluate the correlation among changes in fundus autofluorescence (AF measured using infrared fundus AF (IR-AF and short-wave length fundus AF (SW-AF with changes in spectral-domain optical coherence tomography (SD-OCT and fluorescein angiography (FA in central serous chorioretinopathy (CSC.METHODS:Two hundred and twenty consecutive patients with CSC were included. In addition to AF, patients were assessed by means of SD-OCT and FA. Abnormalities in images of IR-AF, SW-AF, FA were analyzed and correlated with the corresponding outer retinal alterations in SD-OCT findings.RESULTS:Eyes with abnormalities on either IR-AF or SW-AF were found in 256 eyes (58.18%, among them 256 eyes (100% showed abnormal IR-AF, but SW-AF abnormalities were present only in 213 eyes (83.20%. The hypo-IR-AF corresponded to accumulation of sub-retinal liquid, collapse of retinal pigment epithelium (RPE or detachment of RPE with or without RPE leakage point in the corresponding area. The hyper-IR-AF corresponded to the area with loss of the ellipsoid portion of the inner segments and sub-sensory retinal deposits or focal melanogenesis under sensory retina. The hypo-SW-AF corresponded to accumulation of sub-retinal liquid or atrophy of RPE. The hyper-SW-AF associated with sub-sensory retinal deposits, detachment of RPE and focal melanogenesis.CONCLUSION:IR-AF was more sensitive than SW-AF and FA for identifying pathological abnormalities in CSC. The characteristics of IR-AF in CSC were attributable to the modification of melanin in the RPE. IR-AF should be used as a common diagnostic tool for identifying pathological lesion in CSC.KEYWORDS:central serous chorioretinopathy; fluorescein angiography; fundus autofluorescence; optical coherence tomography

  15. Compensation of spectral artifacts in dual-modality intravascular optical coherence tomography and near-infrared spectroscopy (Conference Presentation)

    Science.gov (United States)

    Fard, Ali M.; Gardecki, Joseph A.; Ughi, Giovanni J.; Hyun, Chulho; Tearney, Guillermo J.

    2016-02-01

    Intravascular optical coherence tomography (OCT) is a high-resolution catheter-based imaging method that provides three-dimensional microscopic images of coronary artery in vivo, facilitating coronary artery disease treatment decisions based on detailed morphology. Near-infrared spectroscopy (NIRS) has proven to be a powerful tool for identification of lipid-rich plaques inside the coronary walls. We have recently demonstrated a dual-modality intravascular imaging technology that integrates OCT and NIRS into one imaging catheter using a two-fiber arrangement and a custom-made dual-channel fiber rotary junction. It therefore enables simultaneous acquisition of microstructural and composition information at 100 frames/second for improved diagnosis of coronary lesions. The dual-modality OCT-NIRS system employs a single wavelength-swept light source for both OCT and NIRS modalities. It subsequently uses a high-speed photoreceiver to detect the NIRS spectrum in the time domain. Although use of one light source greatly simplifies the system configuration, such light source exhibits pulse-to-pulse wavelength and intensity variation due to mechanical scanning of the wavelength. This can be in particular problematic for NIRS modality and sacrifices the reliability of the acquired spectra. In order to address this challenge, here we developed a robust data acquisition and processing method that compensates for the spectral variations of the wavelength-swept light source. The proposed method extracts the properties of the light source, i.e., variation period and amplitude from a reference spectrum and subsequently calibrates the NIRS datasets. We have applied this method on datasets obtained from cadaver human coronary arteries using a polygon-scanning (1230-1350nm) OCT system, operating at 100,000 sweeps per second. The results suggest that our algorithm accurately and robustly compensates the spectral variations and visualizes the dual-modality OCT-NIRS images. These

  16. Incompressible spectral-element method: Derivation of equations

    Science.gov (United States)

    Deanna, Russell G.

    1993-01-01

    A fractional-step splitting scheme breaks the full Navier-Stokes equations into explicit and implicit portions amenable to the calculus of variations. Beginning with the functional forms of the Poisson and Helmholtz equations, we substitute finite expansion series for the dependent variables and derive the matrix equations for the unknown expansion coefficients. This method employs a new splitting scheme which differs from conventional three-step (nonlinear, pressure, viscous) schemes. The nonlinear step appears in the conventional, explicit manner, the difference occurs in the pressure step. Instead of solving for the pressure gradient using the nonlinear velocity, we add the viscous portion of the Navier-Stokes equation from the previous time step to the velocity before solving for the pressure gradient. By combining this 'predicted' pressure gradient with the nonlinear velocity in an explicit term, and the Crank-Nicholson method for the viscous terms, we develop a Helmholtz equation for the final velocity.

  17. Spectral Analysis of Large Finite Element Problems by Optimization Methods

    Directory of Open Access Journals (Sweden)

    Luca Bergamaschi

    1994-01-01

    Full Text Available Recently an efficient method for the solution of the partial symmetric eigenproblem (DACG, deflated-accelerated conjugate gradient was developed, based on the conjugate gradient (CG minimization of successive Rayleigh quotients over deflated subspaces of decreasing size. In this article four different choices of the coefficient βk required at each DACG iteration for the computation of the new search direction Pk are discussed. The “optimal” choice is the one that yields the same asymptotic convergence rate as the CG scheme applied to the solution of linear systems. Numerical results point out that the optimal βk leads to a very cost effective algorithm in terms of CPU time in all the sample problems presented. Various preconditioners are also analyzed. It is found that DACG using the optimal βk and (LLT−1 as a preconditioner, L being the incomplete Cholesky factor of A, proves a very promising method for the partial eigensolution. It appears to be superior to the Lanczos method in the evaluation of the 40 leftmost eigenpairs of five finite element problems, and particularly for the largest problem, with size equal to 4560, for which the speed gain turns out to fall between 2.5 and 6.0, depending on the eigenpair level.

  18. Automated circumferential construction of first-order aqueous humor outflow pathways using spectral-domain optical coherence tomography.

    Science.gov (United States)

    Huang, Alex S; Belghith, Akram; Dastiridou, Anna; Chopra, Vikas; Zangwill, Linda M; Weinreb, Robert N

    2017-06-01

    The purpose was to create a three-dimensional (3-D) model of circumferential aqueous humor outflow (AHO) in a living human eye with an automated detection algorithm for Schlemm’s canal (SC) and first-order collector channels (CC) applied to spectral-domain optical coherence tomography (SD-OCT). Anterior segment SD-OCT scans from a subject were acquired circumferentially around the limbus. A Bayesian Ridge method was used to approximate the location of the SC on infrared confocal laser scanning ophthalmoscopic images with a cross multiplication tool developed to initiate SC/CC detection automated through a fuzzy hidden Markov Chain approach. Automatic segmentation of SC and initial CC’s was manually confirmed by two masked graders. Outflow pathways detected by the segmentation algorithm were reconstructed into a 3-D representation of AHO. Overall, only time and time with 1.4% false positive detection. 3-D representation of AHO pathways demonstrated variably thicker and thinner SC with some clear CC roots. Circumferential (360 deg), automated, and validated AHO detection of angle structures in the living human eye with reconstruction was possible.

  19. Grading of Age-Related Macular Degeneration: Comparison between Color Fundus Photography, Fluorescein Angiography, and Spectral Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Nils F. Mokwa

    2013-01-01

    Full Text Available Purpose. To compare color fundus photography (FP, fluorescein angiography (FA, and spectral domain optical coherence tomography (SDOCT for the detection of age-related macular degeneration (AMD, choroidal neovascularisation (CNV, and CNV activity. Methods. FPs, FAs, and SDOCT volume scans from 120 eyes of 66 AMD and control patients were randomly collected. Control eyes were required to show no AMD, but other retinal pathology was allowed. The presence of drusen, pigmentary changes, CNV, and signs for CNV activity was independently analyzed for all imaging modalities. Results. AMD was diagnosed based on FP in 75 eyes. SDOCT and FA showed sensitivity (specificity of 89% (76% and 92% (82%, respectively. CNV was present on FA in 68 eyes. Sensitivity (specificity was 78% (100% for FP and 94% (98% for SDOCT. CNV activity was detected by SDOCT or FA in 60 eyes with an agreement in 46 eyes. Sensitivity was 88% for SDOCT and 88% for FA. FP showed sensitivity of 38% and specificity of 98%. Conclusions. CNV lesions and activity may be missed by FP alone, but FP may help identifying drusen and pigmentary changes. SDOCT is highly sensitive for the detection of AMD, CNV, and CNV activity; however, it cannot fully replace FA.

  20. Effect of Hydroxychloroquine on the Retinal Layers: A Quantitative Evaluation with Spectral-Domain Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hasim Uslu

    2016-01-01

    Full Text Available Purpose. To evaluate the effect of hydroxychloroquine on retinal pigment epithelium- (RPE- Bruch’s membrane complex, photoreceptor outer segment, and macular ganglion cell-inner plexiform layer (GCIPL thicknesses using spectral-domain optical coherence tomography (SD-OCT. Methods. In this prospective case-control study, 51 eyes of 51 hydroxychloroquine patients and 30 eyes of 30 healthy subjects were included. High-quality images were obtained using a Cirrus HD-OCT with 5-line raster mode; the photoreceptor inner segment (IS and outer segment (OS, sum of the segments (IS + OS, and RPE-Bruch’s membrane complex were analyzed. Results. The thicknesses of the IS + OS and OS layers were significantly lower in the hydroxychloroquine subjects compared to the control subjects (P<0.05. RPE-Bruch’s membrane complex thicknesses were significantly higher in the hydroxychloroquine subjects than for those of the control subjects (P<0.05. The minimum and temporal-inferior macular GCIPL thicknesses were significantly different between the patients with hydroxychloroquine use and the control subjects (P=0.04 and P=0.03, resp.. Conclusions. The foveal photoreceptor OS thinning, loss of GCIPL, and RPE-Bruch’s membrane thickening were detected in patients with hydroxychloroquine therapy. This quantitative approach using SD-OCT images may have important implications to use as an early indicator of retinal toxicity without any visible signs of hydroxychloroquine retinopathy.

  1. En Face Spectral-Domain Optical Coherence Tomography for the Monitoring of Lesion Area Progression in Stargardt Disease

    Science.gov (United States)

    Melillo, Paolo; Testa, Francesco; Rossi, Settimio; Di Iorio, Valentina; Orrico, Ada; Auricchio, Alberto; Simonelli, Francesca

    2016-01-01

    Purpose We investigated the progression of Stargardt disease (STGD1) over a multiyear follow-up by evaluating the macular lesion area as computed by an automatic algorithm from spectral-domain optical coherence tomography (SD-OCT). Methods We reviewed medical records of STGD1 patients, with a clinical and molecular diagnosis of STGD1 at a single institution, who underwent best-corrected visual acuity (BCVA), fundus photography, SD-OCT, full-field electroretinography, and, when available, fundus autofluorescence (FAF). Regression models were fitted on the selected clinical parameters; in particular, on the macular lesion area computed by SD-OCT, to evaluate the disease progression over a multiyear follow-up. Results The comparison between SD-OCT and FAF, available for 22 patients, showed that macular lesion area, assessed by SD-OCT, significantly correlated with the area of absent FAF (P disease, showing a significant progression over the follow-up. Our findings suggest that the evaluation of macular lesion area by en face SD-OCT, together with FAF, could drive the choice of the most amenable candidates and the most suitable area to be treated in gene therapy clinical trials. PMID:27409479

  2. “En-Face” Spectral-Domain Optical Coherence Tomography Findings in Multiple Evanescent White Dot Syndrome

    Directory of Open Access Journals (Sweden)

    Flore De bats

    2014-01-01

    Full Text Available Purpose. The recent use of “en-face” enhanced-depth imaging spectral-domain optical coherence tomography (EDI SD-OCT helps distinguish the retinal layers involved in the physiopathology of multiple evanescent white dot syndrome (MEWDS. Methods. Four patients presenting with MEWDS underwent a comprehensive ocular examination including C-scan (“en-face” EDI SD-OCT at the initial visit and during follow-up. Results. C-scans combined with the other multimodal imaging enabled the visualization of retinal damage. Acute lesions appeared as diffuse and focal disruptions occurring in the ellipsoid and interdigitation zones. The match between autofluorescence imaging, indocyanine green angiography, and “en-face” OCT helped identify the acute microstructural damages in the outer retina further than the choroid. Follow-up using “en-face” EDI-OCT revealed progressive and complete recovery of the central outer retinal layers. Conclusion. “En-face” EDI SD-OCT identified the site of initial damage in MEWDS as the photoreceptors and the interdigitation layers rather than the choroid. Moreover, “en-face” OCT is helpful in the follow-up of these lesions by being able to show the recovery of the outer retinal layers.

  3. Retinal pigment epithelial changes in chronic Vogt-Koyanagi-Harada disease: fundus autofluorescence and spectral domain optical coherence tomography findings

    Science.gov (United States)

    Vasconcelos-Santos, Daniel V.; Sohn, Elliott H.; Sadda, Srinivas; Rao, Narsing A.

    2009-01-01

    Purpose To determine whether fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (SD-OCT) imaging allows better assessment of RPE and outer retina (OR) in subjects with chronic VKH compared to examination and angiography alone. Methods Cross-sectional analysis of a series of seven consecutive patients with chronic VKH undergoing FAF and SD-OCT. Chronic VKH was defined as during >3 months. Color fundus photographs were correlated to FAF and SD-OCT images. The images were later correlated to fluorescein angiography (FA) and indocyanine green angiography (ICG-A). Results All patients had sunset glow fundus, which resulted in no apparent corresponding abnormality on FAF or SD-OCT. Lesions with decreased autofluorescence signal were observed in 11 eyes (85%), being associated with loss of the RPE and involvement of OR on SD-OCT. In 5 eyes (38%) some of these lesions were very subtle on clinical examination but easily detected by FAF. Lesions with increased autofluorescence signal were seen in 8 eyes (61.5%), showing variable involvement of the OR on SD-OCT and corresponding clinically to areas of RPE proliferation and cystoid macular edema. Conclusion Combined use of FAF and SD-OCT imaging allowed noninvasive delineation of RPE/OR changes in patients with chronic VKH, which were consistent with previous histopathological reports. Some of these changes were not apparent on clinical examination. PMID:20010321

  4. Morphometric analysis of fovea with spectral-domain optical coherence tomography and visual outcome postsurgery for retinal detachment

    Directory of Open Access Journals (Sweden)

    Manish Nagpal

    2014-01-01

    Full Text Available Purpose: The purpose of this study was to correlate the postoperative best-corrected visual acuity (BCVA with spectral-domain optical coherence tomography (SD-OCT findings in fovea involving rhegmatogenous retinal detachment (RRD surgery. Materials and Methods: Thirty eyes with preoperative fovea-involving RRD, who underwent scleral buckling (SB (6 eyes and pars plana vitrectomy (PPV (19 eyes and combined SB and PPV (5 eyes were recruited. Patients underwent clinical examination and SD-OCT scan of fovea preoperatively and at 30 days and 90 days postoperatively. The correlations between SD-OCT findings and BCVA were analyzed. Results: Inner segment/outer segment (IS/OS junction integrity was the indicator of better BCVA at 30 days and 90 days (P = 0.0002 and P = 0.0003, respectively whereas outer retinal corrugation (ORC was related to worse BCVA at 30 days and 90 days (P = 0.001. External limiting membrane did not have a co-relation with visual outcome, but cystoid macular edema showed co-relation at 90 days (P = 0.047. All eyes of SB and 3 eyes of PPV had a minimal subfoveal fluid at 30 days follow-up that had no effect on visual acuity. All retinas were attached at final follow-up. Conclusion: IS/OS junction integrity and ORC may be important predictors of postoperative visual outcome after anatomically successful RRD surgery.

  5. Automated circumferential construction of first-order aqueous humor outflow pathways using spectral-domain optical coherence tomography

    Science.gov (United States)

    Huang, Alex S.; Belghith, Akram; Dastiridou, Anna; Chopra, Vikas; Zangwill, Linda M.; Weinreb, Robert N.

    2017-06-01

    The purpose was to create a three-dimensional (3-D) model of circumferential aqueous humor outflow (AHO) in a living human eye with an automated detection algorithm for Schlemm's canal (SC) and first-order collector channels (CC) applied to spectral-domain optical coherence tomography (SD-OCT). Anterior segment SD-OCT scans from a subject were acquired circumferentially around the limbus. A Bayesian Ridge method was used to approximate the location of the SC on infrared confocal laser scanning ophthalmoscopic images with a cross multiplication tool developed to initiate SC/CC detection automated through a fuzzy hidden Markov Chain approach. Automatic segmentation of SC and initial CC's was manually confirmed by two masked graders. Outflow pathways detected by the segmentation algorithm were reconstructed into a 3-D representation of AHO. Overall, only <1% of images (5114 total B-scans) were ungradable. Automatic segmentation algorithm performed well with SC detection 98.3% of the time and <0.1% false positive detection compared to expert grader consensus. CC was detected 84.2% of the time with 1.4% false positive detection. 3-D representation of AHO pathways demonstrated variably thicker and thinner SC with some clear CC roots. Circumferential (360 deg), automated, and validated AHO detection of angle structures in the living human eye with reconstruction was possible.

  6. The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses

    Science.gov (United States)

    Oreshkina, K. V.; Dubrovin, V. D.; Ignat'ev, A. I.; Nikonorov, N. V.

    2017-10-01

    The effect of silver on the optical, spectral-luminescent, and crystallization properties of bromide photo-thermo-refractive glasses is studied. Multicomponent photosensitive glasses of the Na2O-ZnO-Al2O3-SiO2 system with photosensitizing agents (cerium, antimony, silver) and halogenides (fluorine and bromine) are synthesized. Ultraviolet irradiation and thermal treatment below the glass-transition temperature of the glasses cause the formation of silver molecular clusters, which exhibit luminescence in the visible and infrared regions. UV irradiation and thermal treatment of glasses above the glass-transition temperature lead to the growth of silver nanoparticles with plasmon resonance peak in the region of 420 nm. Further thermal treatment of glasses above the glass-transition temperature shifts the plasmon-resonance maximum by 70 nm to longer wavelengths, which is related to the growth of a crystalline shell consisting of mixed silver and sodium bromides on nanoparticles. This formation of a crystalline phase on colloidal centers results in a local increase in the refractive index of the irradiated region by +Δ n 900 ppm compared to the nonirradiated region. Photo-thermo-refractive glasses with increased silver concentration are promising photosensitive materials for creating holographic optical elements and devices for line narrowing and stabilizing filters, spectral beam combiners, and filters for increasing the spectral brightness of laser diodes. A positive change in the refractive index of Photo-thermo-refractive glasses provides the possibility of recording in them 3D waveguide and integrated-optical structures.

  7. UV-Vis-IR spectral complex refractive indices and optical properties of brown carbon aerosol from biomass burning

    Science.gov (United States)

    Sumlin, Benjamin J.; Heinson, Yuli W.; Shetty, Nishit; Pandey, Apoorva; Pattison, Robert S.; Baker, Stephen; Hao, Wei Min; Chakrabarty, Rajan K.

    2018-02-01

    Constraining the complex refractive indices, optical properties and size of brown carbon (BrC) aerosols is a vital endeavor for improving climate models and satellite retrieval algorithms. Smoldering wildfires are the largest source of primary BrC, and fuel parameters such as moisture content, source depth, geographic origin, and fuel packing density could influence the properties of the emitted aerosol. We measured in situ spectral (375-1047 nm) optical properties of BrC aerosols emitted from smoldering combustion of Boreal and Indonesian peatlands across a range of these fuel parameters. Inverse Lorenz-Mie algorithms used these optical measurements along with simultaneously measured particle size distributions to retrieve the aerosol complex refractive indices (m = n + iκ). Our results show that the real part n is constrained between 1.5 and 1.7 with no obvious functionality in wavelength (λ), moisture content, source depth, or geographic origin. With increasing λ from 375 to 532 nm, κ decreased from 0.014 to 0.003, with corresponding increase in single scattering albedo (SSA) from 0.93 to 0.99. The spectral variability of κ follows the Kramers-Kronig dispersion relation for a damped harmonic oscillator. For λ ≥ 532 nm, both κ and SSA showed no spectral dependency. We discuss differences between this study and previous work. The imaginary part κ was sensitive to changes in FPD, and we hypothesize mechanisms that might help explain this observation.

  8. Spectral Domain Optical Coherence Tomography in Glaucoma: Qualitative and Quantitative Analysis of the Optic Nerve Head and Retinal Nerve Fiber Layer (An AOS Thesis)

    Science.gov (United States)

    Chen, Teresa C.

    2009-01-01

    Purpose: To demonstrate that video-rate spectral domain optical coherence tomography (SDOCT) can qualitatively and quantitatively evaluate optic nerve head (ONH) and retinal nerve fiber layer (RNFL) glaucomatous structural changes. To correlate quantitative SDOCT parameters with disc photography and visual fields. Methods: SDOCT images from 4 glaucoma eyes (4 patients) with varying stages of open-angle glaucoma (ie, early, moderate, late) were qualitatively contrasted with 2 age-matched normal eyes (2 patients). Of 61 other consecutive patients recruited in an institutional setting, 53 eyes (33 patients) met inclusion/exclusion criteria for quantitative studies. Images were obtained using two experimental SDOCT systems, one utilizing a superluminescent diode and the other a titanium:sapphire laser source, with axial resolutions of about 6 μm and 3 μm, respectively. Results: Classic glaucomatous ONH and RNFL structural changes were seen in SDOCT images. An SDOCT reference plane 139 μm above the retinal pigment epithelium yielded cup-disc ratios that best correlated with masked physician disc photography cup-disc ratio assessments. The minimum distance band, a novel SDOCT neuroretinal rim parameter, showed good correlation with physician cup-disc ratio assessments, visual field mean deviation, and pattern standard deviation (P values range, .0003–.024). RNFL and retinal thickness maps correlated well with disc photography and visual field testing. Conclusions: To our knowledge, this thesis presents the first comprehensive qualitative and quantitative evaluation of SDOCT images of the ONH and RNFL in glaucoma. This pilot study provides basis for developing more automated quantitative SDOCT-specific glaucoma algorithms needed for future prospective multicenter national trials. PMID:20126502

  9. Influence of corneal power on circumpapillary retinal nerve fiber layer and optic nerve head measurements by spectral-domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Kazunori Hirasawa

    2017-09-01

    Full Text Available AIM: To evaluate the influence of corneal power on circumpapillary retinal nerve fiber layer (cpRNFL and optic nerve head (ONH measurements by spectral-domain optical coherence tomography (SD-OCT. METHODS: Twenty-five eyes of 25 healthy participants (mean age 23.6±3.6y were imaged by SD-OCT using horizontal raster scans. Disposable soft contact lenses of different powers (from −11 to +5 diopters including 0 diopter were worn to induce 2-diopter changes in corneal power. Differences in the cpRNFL and ONH measurements per diopter of change in corneal power were analyzed. RESULTS: As corneal power increased by 1 diopter, total and quadrant cpRNFL thicknesses, except for the nasal sector, decreased by −0.19 to −0.32 μm (P<0.01. Furthermore, the disc, cup, and rim areas decreased by −0.017, −0.007, and −0.015 mm2, respectively (P<0.001; the cup and rim volumes decreased by −0.0013 and −0.006 mm3, respectively (P<0.01; and the vertical and horizontal disc diameters decreased by −0.006 and −0.007 mm, respectively (P<0.001. CONCLUSION: For more precise OCT imaging, the ocular magnification should be corrected by considering both the axial length and corneal power. However, the effect of corneal power changes on cpRNFL thickness and ONH topography are small when compare with those of the axial length.

  10. Optic Nerve Head and Retinal Nerve Fiber Layer Analysis in Ocular Hypertension and Early-Stage Glucoma Using Spectral-Domain Optical Coherence Tomography Copernicus

    Directory of Open Access Journals (Sweden)

    Nilgün Solmaz

    2014-01-01

    Full Text Available Objectives: Evaluation of structural alterations of the optic nerve head (ONH and the retinal nerve fiber layer (RNFL in patients with ocular hypertension (OHT and early-stage glaucoma and assessment of the discriminatory diagnostic performance of spectral-domain optical coherence tomography (SD-OCT Copernicus (Optopol Technology S.A.. Materials and Methods: This study included 59 eyes of a total of 59 patients, 29 of whom were diagnosed with OHT (Group 1 and 30 with early-stage glaucoma (Group 2. The differentiation of early-stage glaucoma and OHT was carried out on the basis of standard achromatic visual field test results. Analysis of the ONH and RNFL thickness of all cases was made using SD-OCT. Group 1 and Group 2 were compared with respect to the ONH parameters and RNFL thickness. The diagnostic sensitivity of the OCT parameters was evaluated by the area under the receiver operating characteristics curves (AUC. Results: The average, superior, inferior, and nasal RNFL thicknesses in early-stage glaucoma cases were approximately 10% (12-14 µm less compared to the OHT eyes, with differences being highly significant (p≤0.001. However, there was no statistically significant difference in the temporal RNFL thicknesses. The most sensitive parameter in the early diagnosis of glaucoma was average RNFL thickness corresponding to AUC: 0.852, followed by AUC: 0.816 and AUC: 0.773 values in superior and inferior RNFL thickness, respectively. In localized RNFL defects, the highest sensitivity corresponded to superior and superonasal quadrants (ACU: 0.805 and ACU: 0.781, respectively. There were not any statistically significant differences between the ONH morphological parameters of the two groups. Conclusion: RNFL analysis obtained using SD-OCT Copernicus is able to discriminate early-stage glaucoma eyes from those with OHT. However, ONH morphological parameters do not have the same diagnostic sensitivity. Turk J Ophthalmol 2014; 44: 35-41

  11. Comparison of two spectral domain optical coherence tomography devices for angle-closure assessment.

    Science.gov (United States)

    Quek, Desmond T; Narayanaswamy, Arun K; Tun, Tin A; Htoon, Hla M; Baskaran, Mani; Perera, Shamira A; Aung, Tin

    2012-08-03

    To compare two spectral domain optical coherence tomography (SD-OCT) devices for the identification of angle structures and the presence of angle closure. This was a prospective comparative study. Consecutive patients underwent gonioscopy and anterior segment imaging using two SD-OCT devices (iVue and Cirrus). Images were evaluated for the ability to detect angle structures such as Schwalbe's line (SL), trabecular meshwork (TM), Schlemm's canal (SC), and scleral spur (SS), and the presence of angle closure. Angle closure was defined as iris contact with the angle wall anterior to the SS on SD-OCT, and nonvisibility of the posterior TM on gonioscopy. Angle closure in an eye was defined as ≥two quadrants of closed angles. AC1 statistic was used to assess the agreement between devices. Of the 69 subjects studied (46.4% male, 84.1% Chinese, mean age 64.0 ± 10.5 years), 40 subjects (40 eyes, 58.0%) had angle closure on gonioscopy. The most identifiable structure on Cirrus SD-OCT was the SS (82.2%) and SL on iVue SD-OCT (74.5%). Angle closure was indeterminable in 14.5% and 50.7% of Cirrus and iVue scans (P gonioscopy was only fair (AC1 = 0.35 and 0.50 for Cirrus and iVue, respectively). It was more difficult to determine angle closure status with iVue compared with Cirrus SD-OCT. There was fair agreement between both devices with gonioscopy for identifying angle closure.

  12. En face spectral domain optical coherence tomography analysis of lamellar macular holes.

    Science.gov (United States)

    Clamp, Michael F; Wilkes, Geoff; Leis, Laura S; McDonald, H Richard; Johnson, Robert N; Jumper, J Michael; Fu, Arthur D; Cunningham, Emmett T; Stewart, Paul J; Haug, Sara J; Lujan, Brandon J

    2014-07-01

    To analyze the anatomical characteristics of lamellar macular holes using cross-sectional and en face spectral domain optical coherence tomography. Forty-two lamellar macular holes were retrospectively identified for analysis. The location, cross-sectional length, and area of lamellar holes were measured using B-scans and en face imaging. The presence of photoreceptor inner segment/outer segment disruption and the presence or absence of epiretinal membrane formation were recorded. Forty-two lamellar macular holes were identified. Intraretinal splitting occurred within the outer plexiform layer in 97.6% of eyes. The area of intraretinal splitting in lamellar holes did not correlate with visual acuity. Eyes with inner segment/outer segment disruption had significantly worse mean logMAR visual acuity (0.363 ± 0.169; Snellen = 20/46) than in eyes without inner segment/outer segment disruption (0.203 ± 0.124; Snellen = 20/32) (analysis of variance, P = 0.004). Epiretinal membrane was present in 34 of 42 eyes (81.0%). En face imaging allowed for consistent detection and quantification of intraretinal splitting within the outer plexiform layer in patients with lamellar macular holes, supporting the notion that an area of anatomical weakness exists within Henle's fiber layer, presumably at the synaptic connection of these fibers within the outer plexiform layer. However, the en face area of intraretinal splitting did not correlate with visual acuity, disruption of the inner segment/outer segment junction was associated with significantly worse visual acuity in patients with lamellar macular holes.

  13. Diabetic retinal pigment epitheliopathy: fundus autofluorescence and spectral-domain optical coherence tomography findings.

    Science.gov (United States)

    Kang, Eui Chun; Seo, Yuri; Byeon, Suk Ho

    2016-10-01

    To describe the characteristics of an unfamiliar disease entity, diabetic retinal pigment epitheliopathy (DRPE), using fundus autofluorescence (FAF) and spectral-domain optical coherence tomography (SD-OCT). This retrospective study included 17 eyes from 10 proliferative diabetic retinopathy (PDR) patients with granular hypo-autofluorescence and/or variable hyper-autofluorescence on FAF (DRPE group) and 17 eyes from 10 age- and sex-matched PDR patients without abnormal autofluorescence (PDR group). Eyes with diabetic macular edema were excluded. Visual acuity (VA), retinal thickness (RT), and choroidal thickness (CT) were compared between the groups. Eyes in the DRPE group had worse logMAR VA than eyes in the PDR group (0.369 ± 0.266 vs. 0.185 ± 0.119; P = 0.026). The thickness of the retinal pigment epithelium plus the inner segment/outer segment of the photoreceptors was reduced to a greater degree in the DRPE group than the PDR group (P retina showed no differences between the two groups. CT was significantly thicker in the DRPE group than in the PDR group (329.00 ± 33.76 vs. 225.62 ± 37.47 μm; P retina, and thicker choroid in comparison with eyes with PDR. Alterations of autofluorescence on FAF and changes in the outer retinal thickness and CT on SD-OCT can be helpful for differentiating DRPE in patients with PDR.

  14. Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images.

    Science.gov (United States)

    Hu, Zhihong; Medioni, Gerard G; Hernandez, Matthias; Hariri, Amirhossein; Wu, Xiaodong; Sadda, Srinivas R

    2013-12-30

    Geographic atrophy (GA) is the atrophic late-stage manifestation of age-related macular degeneration (AMD), which may result in severe vision loss and blindness. The purpose of this study was to develop a reliable, effective approach for GA segmentation in both spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) images using a level set-based approach and to compare the segmentation performance in the two modalities. To identify GA regions in SD-OCT images, three retinal surfaces were first segmented in volumetric SD-OCT images using a double-surface graph search scheme. A two-dimensional (2-D) partial OCT projection image was created from the segmented choroid layer. A level set approach was applied to segment the GA in the partial OCT projection image. In addition, the algorithm was applied to FAF images for the GA segmentation. Twenty randomly chosen macular SD-OCT (Zeiss Cirrus) volumes and 20 corresponding FAF (Heidelberg Spectralis) images were obtained from 20 subjects with GA. The algorithm-defined GA region was compared with consensus manual delineation performed by certified graders. The mean Dice similarity coefficients (DSC) between the algorithm- and manually defined GA regions were 0.87 ± 0.09 in partial OCT projection images and 0.89 ± 0.07 in registered FAF images. The area correlations between them were 0.93 (P segment GA regions in both SD-OCT and FAF images. This approach demonstrated good agreement between the algorithm- and manually defined GA regions within each single modality. The GA segmentation in FAF images performed better than in partial OCT projection images. Across the two modalities, the GA segmentation presented reasonable agreement.

  15. Spectral methods in chemistry and physics applications to kinetic theory and quantum mechanics

    CERN Document Server

    Shizgal, Bernard

    2015-01-01

    This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficient...

  16. A stabilised nodal spectral element method for fully nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele

    2016-01-01

    can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively......We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...

  17. A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas

    International Nuclear Information System (INIS)

    Vay, Jean-Luc; Haber, Irving; Godfrey, Brendan B.

    2013-01-01

    Pseudo-spectral electromagnetic solvers (i.e. representing the fields in Fourier space) have extraordinary precision. In particular, Haber et al. presented in 1973 a pseudo-spectral solver that integrates analytically the solution over a finite time step, under the usual assumption that the source is constant over that time step. Yet, pseudo-spectral solvers have not been widely used, due in part to the difficulty for efficient parallelization owing to global communications associated with global FFTs on the entire computational domains. A method for the parallelization of electromagnetic pseudo-spectral solvers is proposed and tested on single electromagnetic pulses, and on Particle-In-Cell simulations of the wakefield formation in a laser plasma accelerator. The method takes advantage of the properties of the Discrete Fourier Transform, the linearity of Maxwell’s equations and the finite speed of light for limiting the communications of data within guard regions between neighboring computational domains. Although this requires a small approximation, test results show that no significant error is made on the test cases that have been presented. The proposed method opens the way to solvers combining the favorable parallel scaling of standard finite-difference methods with the accuracy advantages of pseudo-spectral methods

  18. Systems and methods for free space optical communication

    Science.gov (United States)

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  19. Methodes spectrales paralleles et applications aux simulations de couches de melange compressibles

    OpenAIRE

    Male , Jean-Michel; Fezoui , Loula ,

    1993-01-01

    La resolution des equations de Navier-Stokes en methodes spectrales pour des ecoulements compressibles peut etre assez gourmande en temps de calcul. On etudie donc ici la parallelisation d'un tel algorithme et son implantation sur une machine massivement parallele, la connection-machine CM-2. La methode spectrale s'adapte bien aux exigences du parallelisme massif, mais l'un des outils de base de cette methode, la transformee de Fourier rapide (lorsqu'elle doit etre appliquee sur les deux dime...

  20. Spectral methods for a nonlinear initial value problem involving pseudo differential operators

    International Nuclear Information System (INIS)

    Pasciak, J.E.

    1982-01-01

    Spectral methods (Fourier methods) for approximating the solution of a nonlinear initial value problem involving pseudo differential operators are defined and analyzed. A semidiscrete approximation to the nonlinear equation based on an L 2 projection is described. The semidiscrete L 2 approximation is shown to be a priori stable and convergent under sufficient decay and smoothness assumptions on the initial data. It is shown that the semidiscrete method converges with infinite order, that is, higher order decay and smoothness assumptions imply higher order error bounds. Spectral schemes based on spacial collocation are also discussed

  1. Towards spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akça, B.I.; Worhoff, Kerstin; Nguyen, V.D.; Kalkman, J.; van Leeuwen, Ton; de Ridder, R.M.; Pollnau, Markus

    Optical coherence tomography (OCT) is a widely used optical imaging technology, particularly in the medical field, since it can provide non-invasive, sub-micrometer resolution diagnostic images of tissue. Current OCT systems contain optical fibers and free-space optical components which make these

  2. Polarization modeling and predictions for DKIST part 3: focal ratio and thermal dependencies of spectral polarization fringes and optic retardance

    Science.gov (United States)

    Harrington, David M.; Sueoka, Stacey R.

    2018-01-01

    Data products from high spectral resolution astronomical polarimeters are often limited by fringes. Fringes can skew derived magnetic field properties from spectropolarimetric data. Fringe removal algorithms can also corrupt the data if the fringes and object signals are too similar. For some narrow-band imaging polarimeters, fringes change the calibration retarder properties and dominate the calibration errors. Systems-level engineering tools for polarimetric instrumentation require accurate predictions of fringe amplitudes, periods for transmission, diattenuation, and retardance. The relevant instabilities caused by environmental, thermal, and optical properties can be modeled and mitigation tools developed. We create spectral polarization fringe amplitude and temporal instability predictions by applying the Berreman calculus and simple interferometric calculations to optics in beams of varying F/ number. We then apply the formalism to superachromatic six-crystal retarders in converging beams under beam thermal loading in outdoor environmental conditions for two of the world's largest observatories: the 10-m Keck telescope and the Daniel K. Inouye Solar Telescope (DKIST). DKIST will produce a 300-W optical beam, which has imposed stringent requirements on the large diameter six-crystal retarders, dichroic beamsplitters, and internal optics. DKIST retarders are used in a converging beam with F/ ratios between 8 and 62. The fringe spectral periods, amplitudes, and thermal models of retarder behavior assisted DKIST optical designs and calibration plans with future application to many astronomical spectropolarimeters. The Low Resolution Imaging Spectrograph with polarimetry instrument at Keck also uses six-crystal retarders in a converging F / 13 beam in a Cassegrain focus exposed to summit environmental conditions providing observational verification of our predictions.

  3. Robust Discontinuity Preserving Optical Flow Methods

    Directory of Open Access Journals (Sweden)

    Nelson Monzón

    2016-11-01

    Full Text Available In this work, we present an implementation of discontinuity-preserving strategies in TV-L1 optical flow methods. These are based on exponential functions that mitigate the regularization at image edges, which usually provide precise flow boundaries. Nevertheless, if the smoothing is not well controlled, it may produce instabilities in the computed motion fields. We present an algorithm that allows three regularization strategies: the first one uses an exponential function together with a TV process; the second one combines this strategy with a small constant that ensures a minimum isotropic smoothing; the third one is a fully automatic approach that adapts the diffusion depending on the histogram of the image gradients. The last two alternatives are aimed at reducing the effect of instabilities. In the experiments, we observe that the pure exponential function is highly unstable while the other strategies preserve accurate motion contours for a large range of parameters.

  4. CLASSIFICATION AND QUANTITATIVE ANALYSIS OF GEOGRAPHIC ATROPHY JUNCTIONAL ZONE USING SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY.

    Science.gov (United States)

    Qu, Jinfeng; Velaga, Swetha Bindu; Hariri, Amir H; Nittala, Muneeswar Gupta; Sadda, Srinivas

    2017-08-22

    The junctional zone at the border of areas of geographic atrophy (GA) in eyes with nonneovascular age-related macular degeneration is an important target region for future therapeutic strategies. The goal of this study was to perform a detailed classification and quantitative characterization of the junctional zone using spectral domain optical coherence tomography. Spectral domain optical coherence tomography volume cube scans (Spectralis OCT, 1024 × 37, Automatic Real Time > 9) were obtained from 15 eyes of 11 patients with GA because of nonneovascular age-related macular degeneration. Volume optical coherence tomography data were imported into previously described validated grading software (3D-OCTOR), and manual segmentation of the retinal pigment epithelium (RPE) and photoreceptor layers was performed on all B-scans (total of 555). Retinal pigment epithelium and photoreceptor defect maps were produced for each case. The borders of the photoreceptor defect area and RPE defect area were delineated individually on separate annotation layers. The two outlines were then superimposed to compare the areas of overlap and nonoverlap. The perimeter of the RPE defect area was calculated by the software in pixels. The superimposed outline of the photoreceptor defect area and the RPE defect area was scrutinized to classify the overlap configuration of the junctional zone into one of three categories: Type 0, exact correspondence between the edge of the RPE defect and photoreceptor defect; Type 1, loss of photoreceptors outside and beyond the edge of the RPE defect; Type 2, preservation of photoreceptors beyond the edge of the RPE defect. The relative proportion of the various border configurations was expressed as a percentage of the perimeter of the RPE defect. Each configuration was then classified into four subgroups according to irregularity of the RPE band and the presence of debris. Fifteen eyes of 11 patients (mean age: 79.3 ± 4.3 years; range: 79-94 years) were

  5. Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators

    Czech Academy of Sciences Publication Activity Database

    Jonáš, A.; Pilát, Zdeněk; Ježek, Jan; Bernatová, Silvie; Fořt, Tomáš; Zemánek, Pavel; Aas, M.; Kiraz, A.

    2017-01-01

    Roč. 34, č. 9 (2017), s. 1855-1864 ISSN 0740-3224 R&D Projects: GA MŠk(CZ) LD14069; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : emission spectroscopy * drops * optical tweezers Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.843, year: 2016

  6. A Spectral-Texture Kernel-Based Classification Method for Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-11-01

    Full Text Available Classification of hyperspectral images always suffers from high dimensionality and very limited labeled samples. Recently, the spectral-spatial classification has attracted considerable attention and can achieve higher classification accuracy and smoother classification maps. In this paper, a novel spectral-spatial classification method for hyperspectral images by using kernel methods is investigated. For a given hyperspectral image, the principle component analysis (PCA transform is first performed. Then, the first principle component of the input image is segmented into non-overlapping homogeneous regions by using the entropy rate superpixel (ERS algorithm. Next, the local spectral histogram model is applied to each homogeneous region to obtain the corresponding texture features. Because this step is performed within each homogenous region, instead of within a fixed-size image window, the obtained local texture features in the image are more accurate, which can effectively benefit the improvement of classification accuracy. In the following step, a contextual spectral-texture kernel is constructed by combining spectral information in the image and the extracted texture information using the linearity property of the kernel methods. Finally, the classification map is achieved by the support vector machines (SVM classifier using the proposed spectral-texture kernel. Experiments on two benchmark airborne hyperspectral datasets demonstrate that our method can effectively improve classification accuracies, even though only a very limited training sample is available. Specifically, our method can achieve from 8.26% to 15.1% higher in terms of overall accuracy than the traditional SVM classifier. The performance of our method was further compared to several state-of-the-art classification methods of hyperspectral images using objective quantitative measures and a visual qualitative evaluation.

  7. Application of Least-Squares Spectral Element Methods to Polynomial Chaos

    NARCIS (Netherlands)

    Vos, P.E.J.; Gerritsma, M.I.

    2006-01-01

    This papers describes the use of the Least-Squares Spectral Element Method to polynomial Chaos to solve stochastic partial differential equations. The method will be described in detail and a comparison will be presented between the least-squares projection and the conventional Galerkin projection.

  8. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    Science.gov (United States)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    transfert function of the DTGS has to be qualified and taken into account. The usual way is to measure it directly by means of an optical shopper and a locking amplifier for different shopping frequencies. We present here an alternative method to estimate this DTGS transfer function, based on the fact that a FTIR continuous scan interfergram contains the different spectral frequencies of interest. Such a calibration method doesn't need a specific setup as it can be performed in standard configuration, playing only with spectrometer parameters. It allows for the precise estimation of detector spectral shapes. However, this measurement is not absolute and the peak response needs therefore to be estimated using a calibrated black body cavity. The method, its results and limits is presented and discussed for a set of different DTGS cells.

  9. Application of the finite-element method and the eigenmode expansion method to investigate the periodic and spectral characteristic of discrete phase-shift fiber Bragg grating

    Science.gov (United States)

    He, Yue-Jing; Hung, Wei-Chih; Syu, Cheng-Jyun

    2017-12-01

    The finite-element method (FEM) and eigenmode expansion method (EEM) were adopted to analyze the guided modes and spectrum of phase-shift fiber Bragg grating at five phase-shift degrees (including zero, 1/4π, 1/2π, 3/4π, and π). In previous studies on optical fiber grating, conventional coupled-mode theory was crucial. This theory contains abstruse knowledge about physics and complex computational processes, and thus is challenging for users. Therefore, a numerical simulation method was coupled with a simple and rigorous design procedure to help beginners and users to overcome difficulty in entering the field; in addition, graphical simulation results were presented. To reduce the difference between the simulated context and the actual context, a perfectly matched layer and perfectly reflecting boundary were added to the FEM and the EEM. When the FEM was used for grid cutting, the object meshing method and the boundary meshing method proposed in this study were used to effectively enhance computational accuracy and substantially reduce the time required for simulation. In summary, users can use the simulation results in this study to easily and rapidly design an optical fiber communication system and optical sensors with spectral characteristics.

  10. Note: Demodulation of spectral signal modulated by optical chopper with unstable modulation frequency.

    Science.gov (United States)

    Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong

    2017-10-01

    When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.

  11. A Legendre Wavelet Spectral Collocation Method for Solving Oscillatory Initial Value Problems

    Directory of Open Access Journals (Sweden)

    A. Karimi Dizicheh

    2013-01-01

    wavelet suitable for large intervals, and then the Legendre-Guass collocation points of the Legendre wavelet are derived. Using this strategy, the iterative spectral method converts the differential equation to a set of algebraic equations. Solving these algebraic equations yields an approximate solution for the differential equation. The proposed method is illustrated by some numerical examples, and the result is compared with the exponentially fitted Runge-Kutta method. Our proposed method is simple and highly accurate.

  12. Application of the spectral correction method to reanalysis data in South Africa

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kruger, Andries C.

    2014-01-01

    of this study is to evaluate the applicability of the method to the relevant region. The impacts from the two aspects are investigated for interior and coastal locations. Measurements from five stations from South Africa are used to evaluate the results from the spectral model S(f)=af−5/3 together...... with the hourly time series of the Climate Forecast System Reanalysis (CFSR) 10 m wind at 38 km resolution over South Africa. The results show that using the spectral correction method to the CFSR wind data produce extreme wind atlases in acceptable agreement with the atlas made from limited measurements across...

  13. A new method of organizing spectral line intensity ratio fluctuations of auroral emissions

    International Nuclear Information System (INIS)

    Thelin, B.

    1986-02-01

    In this paper a new kind of linearization effect between the atmospheric auroral emissions is presented. The same kind of linearization effect has previously been found in nightglow emissions from photometer measurements and in the spectrochemical field from studies of optical light sources. Linear graphs have been obtained for atomic spectral lines and vibrational bandspectra when the spectral line ratio fluctuations were plotted versus the photon energies of these emissions. This new effect has been studied with a spectrophotometer in auroral emissions, where linear graphs have been obtained on different auroral occasions. By doing such studies of auroral light it is possible to see the importance of the inelastic scattering cross section between electrons - atoms and electrons - molecules. In this way it has shown to be possible to determine the mean energy of the interacting thermal electrons that are active in the different auroral phases. (author)

  14. The B3-VLA CSS sample. VIII. New optical identifications from the Sloan Digital Sky Survey The ultraviolet-optical spectral energy distribution of the young radio sources

    Science.gov (United States)

    Fanti, C.; Fanti, R.; Zanichelli, A.; Dallacasa, D.; Stanghellini, C.

    2011-04-01

    Context. Compact steep-spectrum radio sources and giga-hertz peaked spectrum radio sources (CSS/GPS) are generally considered to be mostly young radio sources. In recent years we studied at many wavelengths a sample of these objects selected from the B3-VLA catalog: the B3-VLA CSS sample. Only ≈60% of the sources were optically identified. Aims: We aim to increase the number of optical identifications and study the properties of the host galaxies of young radio sources. Methods: We cross-correlated the CSS B3-VLA sample with the Sloan Digital Sky Survey (SDSS), DR7, and complemented the SDSS photometry with available GALEX (DR 4/5 and 6) and near-IR data from UKIRT and 2MASS. Results: We obtained new identifications and photometric redshifts for eight faint galaxies and for one quasar and two quasar candidates. Overall we have 27 galaxies with SDSS photometry in five bands, for which we derived the ultraviolet-optical spectral energy distribution (UV-O-SED). We extended our investigation to additional CSS/GPS selected from the literature. Most of the galaxies show an excess of ultra-violet (UV) radiation compared with the UV-O-SED of local radio-quiet ellipticals. We found a strong dependence of the UV excess on redshift and analyzed it assuming that it is generated either from the nucleus (hidden quasar) or from a young stellar population (YSP). We also compare the UV-O-SEDs of our CSS/GPS sources with those of a selection of large size (LSO) powerful radio sources from the literature. Conclusions: If the major process of the UV excess is caused by a YSP, our conclusion is that it is the result of the merger process that also triggered the onset of the radio source with some time delay. We do not see evidence for a major contribution from a YSP triggered by the radio sources itself. Appendices A-G are only available in electronic form at http://www.aanda.org

  15. Receiver sensitivity improvement in spectrally-efficient guard-band twin-SSB-OFDM using an optical IQ modulator

    Science.gov (United States)

    Chen, Ming; Peng, Miao; Zhou, Hui; Zheng, Zhiwei; Tang, Xionggui; Maivan, Lap

    2017-12-01

    To further improve receiver sensitivity of spectrally-efficient guard-band direct-detection optical orthogonal frequency-division multiplexing (OFDM) with twin single-side-band (SSB) modulation technique, an optical IQ modulator (IQM) is employed to optimize optical carrier-to-signal power ratio (CSPR). The CSPRs for the guard-band twin-SSB-OFDM signal generated by using dual-drive Mach-Zehnder modulator (DD-MZM) and optical IQM are theoretically analyzed and supported by simulations. The optimal CSPR for the two types of guard-band twin-SSB-OFDM are identified. The simulations exhibit that the error vector magnitude (EVM) performance of the IQM-enabled guard-band twin-SSB-OFDM is improved by more than 4-dB compared to that of the twin-SSB-OFDM enabled by DD-MZM after 80-km single-mode fiber (SMF) transmission. In addition, more than 3-dB and 10 dB receiver sensitivity improvements in terms of received optical power (ROP) and optical signal-to-noise ratio (OSNR) are also achieved, respectively.

  16. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    Energy Technology Data Exchange (ETDEWEB)

    Heera, Pawan, E-mail: sramanb70@mailcity.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India); Govt. College Amb, Himachal Pradesh, INDIA,177203 (India); Kumar, Anup, E-mail: kumar.anup.sml@gmail.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India); Physics Department, Govt. College, Kullu, H. P., INDIA, 175101 (India); Sharma, Raman, E-mail: pawanheera@yahoo.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India)

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  17. Site Characterization in the Urban Area of Tijuana, B. C., Mexico by Means of: H/V Spectral Ratios, Spectral Analysis of Surface Waves, and Random Decrement Method

    Science.gov (United States)

    Tapia-Herrera, R.; Huerta-Lopez, C. I.; Martinez-Cruzado, J. A.

    2009-05-01

    Results of site characterization for an experimental site in the metropolitan area of Tijuana, B. C., Mexico are presented as part of the on-going research in which time series of earthquakes, ambient noise, and induced vibrations were processed with three different methods: H/V spectral ratios, Spectral Analysis of Surface Waves (SASW), and the Random Decrement Method, (RDM). Forward modeling using the wave propagation stiffness matrix method (Roësset and Kausel, 1981) was used to compute the theoretical SH/P, SV/P spectral ratios, and the experimental H/V spectral ratios were computed following the conventional concepts of Fourier analysis. The modeling/comparison between the theoretical and experimental H/V spectral ratios was carried out. For the SASW method the theoretical dispersion curves were also computed and compared with the experimental one, and finally the theoretical free vibration decay curve was compared with the experimental one obtained with the RDM. All three methods were tested with ambient noise, induced vibrations, and earthquake signals. Both experimental spectral ratios obtained with ambient noise as well as earthquake signals agree quite well with the theoretical spectral ratios, particularly at the fundamental vibration frequency of the recording site. Differences between the fundamental vibration frequencies are evident for sites located at alluvial fill (~0.6 Hz) and at sites located at conglomerate/sandstones fill (0.75 Hz). Shear wave velocities for the soft soil layers of the 4-layer discrete soil model ranges as low as 100 m/s and up to 280 m/s. The results with the SASW provided information that allows to identify low velocity layers, not seen before with the traditional seismic methods. The damping estimations obtained with the RDM are within the expected values, and the dominant frequency of the system also obtained with the RDM correlates within the range of plus-minus 20 % with the one obtained by means of the H/V spectral

  18. Narrowband interrogation of plasmonic optical fiber biosensors based on spectral combs

    Science.gov (United States)

    González-Vila, Álvaro; Kinet, Damien; Mégret, Patrice; Caucheteur, Christophe

    2017-11-01

    Gold-coated tilted fiber Bragg gratings can probe surface Plasmon polaritons with high resolution and sensitivity. In this work, we report two configurations to interrogate such plasmonic biosensors, with the aim of providing more efficient alternatives to the widespread spectrometer-based techniques. To this aim, the interrogation is based on measuring the optical power evolution of the cladding modes with respect to surrounding refractive index changes instead of computing their wavelength shift. Both setups are composed of a broadband source and a photodiode and enable a narrowband interrogation around the cladding mode that excites the surface Plasmon resonance. The first configuration makes use of a uniform fiber Bragg grating to filter the broadband response of the source in a way that the final interrogation is based on an intensity modulation measured in transmission. The second setup uses a uniform fiber grating too, but located beyond the sensor and acting as a selective optical mirror, so the interrogation is carried out in reflection. Both configurations are compared, showing interesting differential features. The first one exhibits a very high sensitivity while the second one has an almost temperature-insensitive behavior. Hence, the choice of the most appropriate method will be driven by the requirements of the target application.

  19. Nondestructive analysis of automotive paints with spectral domain optical coherence tomography.

    Science.gov (United States)

    Dong, Yue; Lawman, Samuel; Zheng, Yalin; Williams, Dominic; Zhang, Jinke; Shen, Yao-Chun

    2016-05-01

    We have demonstrated for the first time, to our knowledge, the use of optical coherence tomography (OCT) as an analytical tool for nondestructively characterizing the individual paint layer thickness of multiple layered automotive paints. A graph-based segmentation method was used for automatic analysis of the thickness distribution for the top layers of solid color paints. The thicknesses measured with OCT were in good agreement with the optical microscope and ultrasonic techniques that are the current standard in the automobile industry. Because of its high axial resolution (5.5 μm), the OCT technique was shown to be able to resolve the thickness of individual paint layers down to 11 μm. With its high lateral resolution (12.4 μm), the OCT system was also able to measure the cross-sectional area of the aluminum flakes in a metallic automotive paint. The range of values measured was 300-1850  μm2. In summary, the proposed OCT is a noncontact, high-resolution technique that has the potential for inclusion as part of the quality assurance process in automobile coating.

  20. Spectral analysis of an algebraic collapsing acceleration for the characteristics method

    International Nuclear Information System (INIS)

    Le Tellier, R.; Hebert, A.

    2005-01-01

    A spectral analysis of a diffusion synthetic acceleration called Algebraic Collapsing Acceleration (ACA) was carried out in the context of the characteristics method to solve the neutron transport equation. Two analysis were performed in order to assess the ACA performances. Both a standard Fourier analysis in a periodic and infinite slab-geometry and a direct spectral analysis for a finite slab-geometry were investigated. In order to evaluate its performance, ACA was compared with two competing techniques used to accelerate the convergence of the characteristics method, the Self-Collision Re-balancing technique and the Asymptotic Synthetic Acceleration. In the restricted framework of 1-dimensional slab-geometries, we conclude that ACA offers a good compromise between the reduction of the spectral radius of the iterative matrix and the resources to construct, store and solve the corrective system. A comparison on a monoenergetic 2-dimensional benchmark was performed and tends to confirm these conclusions. (authors)

  1. Wave propagation numerical models in damage detection based on the time domain spectral element method

    International Nuclear Information System (INIS)

    Ostachowicz, W; Kudela, P

    2010-01-01

    A Spectral Element Method is used for wave propagation modelling. A 3D solid spectral element is derived with shape functions based on Lagrange interpolation and Gauss-Lobatto-Legendre points. This approach is applied for displacement approximation suited for fundamental modes of Lamb waves as well as potential distribution in piezoelectric transducers. The novelty is the model geometry extension from flat to curved elements for application in shell-like structures. Exemplary visualisations of waves excited by the piezoelectric transducers in curved shell structure made of aluminium alloy are presented. Simple signal analysis of wave interaction with crack is performed. The crack is modelled by separation of appropriate nodes between elements. An investigation of influence of the crack length on wave propagation signals is performed. Additionally, some aspects of the spectral element method implementation are discussed.

  2. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    Science.gov (United States)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  3. Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis).

    Science.gov (United States)

    Grover, Sandeep; Murthy, Ravi K; Brar, Vikram S; Chalam, Kakarla V

    2009-08-01

    To establish normative data for the macular thickness by spectral-domain optical coherence tomography (SD-OCT) in subjects with no known retinal disease. Prospective, observational study in an academic institutional setting. Fifty subjects (age range, 20 to 84 years) with no known retinal disease, best-corrected visual acuity 20/20, and normal intraocular pressure were enrolled. The subjects were divided into 3 age groups: group 1 included subjects 20 to 40 years of age; group 2 included subjects 41 to 60 years of age; and group 3 included subjects 61 years of age and older. All subjects underwent a complete ophthalmologic examination to rule out any retinal diseases or glaucoma. All the OCT scans were performed by a single operator, and data obtained from the right eyes were analyzed by default, unless the right eye did not meet the inclusion criteria, and then data from left eyes were analyzed (n = 4). Central point thickness (CPT) and retinal thickness (RT) in 9 Early Treatment Diabetic Retinopathy Study (ETDRS) subfields, including central subfield (CSF), were analyzed. Statistical analyses were carried out using the analysis of variance. Overall, the mean CPT was 227.3 +/- 23.2 microm, and mean CSF was 270.2 +/- 22.5 microm. Among the ETDRS subfields, the outer nasal quadrant had the maximum thickness (mean +/- standard deviation, 339.5 +/- 16.9 microm). The RT did not show significant difference with age (P = .62) or with gender (P = .1). However, there was a suggestion of significant difference in RT of Black subjects as compared with White subjects (P = .007) in the present study. Normative values for macular thickness in otherwise healthy eyes were measured to be 227.3 microm (CPT) and 270.2 microm (CSF) using commercially available Spectralis SD-OCT. Based on the data, the present study proposes the guidelines for normal CSF thickness to be 315 microm for future studies using macular thickness measurements with Spectralis SD-OCT (Heidelberg Engineering

  4. Spectral methods for study of the G-protein-coupled receptor rhodopsin. II. Magnetic resonance methods

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2016-02-01

    This article continues our review of spectroscopic studies of G-protein-coupled receptors. Magnetic resonance methods including electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) provide specific structural and dynamical data for the protein in conjunction with optical methods (vibrational, electronic spectroscopy) as discussed in the accompanying article. An additional advantage is the opportunity to explore the receptor proteins in the natural membrane lipid environment. Solid-state 2H and 13C NMR methods yield information about both the local structure and dynamics of the cofactor bound to the protein and its light-induced changes. Complementary site-directed spin-labeling studies monitor the structural alterations over larger distances and correspondingly longer time scales. A multiscale reaction mechanism describes how local changes of the retinal cofactor unlock the receptor to initiate large-scale conformational changes of rhodopsin. Activation of the G-protein-coupled receptor involves an ensemble of conformational substates within the rhodopsin manifold that characterize the dynamically active receptor.

  5. A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2013-01-01

    Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.

  6. Evaluating Surgical Margins with Optical Spectroscopy and Spectral Imaging Following Breast Cancer Resection

    Science.gov (United States)

    2009-08-01

    Raman spectral features of hydroxyapatite crystals (found in breast calcifications) through overlying lean chicken breast tissue [18]. Thus, the...Raman signature of bone through several mm of soft tissue [3-5]. It has also been used to detect the Ram an spectral features of hydroxyapatite ...all f eaturing in- line f iltering at the ir tips (Em vision). All seve n f ibers we re bin ned a fter a sing le 3 se cond acquisition, and these

  7. Method and apparatus for bistable optical information storage for erasable optical disks

    Science.gov (United States)

    Land, Cecil E.; McKinney, Ira D.

    1990-01-01

    A method and an optical device for bistable storage of optical information, together with reading and erasure of the optical information, using a photoactivated shift in a field dependent phase transition between a metastable or a bias-stabilized ferroelectric (FE) phase and a stable antiferroelectric (AFE) phase in an lead lanthanum zirconate titanate (PLZT). An optical disk contains the PLZT. Writing and erasing of optical information can be accomplished by a light beam normal to the disk. Reading of optical information can be accomplished by a light beam at an incidence angle of 15 to 60 degrees to the normal of the disk.

  8. Optical seismic sensor systems and methods

    Science.gov (United States)

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  9. The next step in coastal numerical models: spectral/hp element methods?

    DEFF Research Database (Denmark)

    Eskilsson, Claes; Engsig-Karup, Allan Peter; Sherwin, Spencer J.

    2005-01-01

    In this paper we outline the application of spectral/hp element methods for modelling nonlinear and dispersive waves. We present one- and two-dimensional test cases for the shallow water equations and Boussinesqtype equations – including highly dispersive Boussinesq-type equations....

  10. The application of the Chebyshev-spectral method in transport phenomena

    CERN Document Server

    Guo, Weidong; Narayanan, Ranga

    2012-01-01

    Transport phenomena problems that occur in engineering and physics are often multi-dimensional and multi-phase in character.  When taking recourse to numerical methods the spectral method is particularly useful and efficient. The book is meant principally to train students and non-specialists  to use the spectral method for solving problems that model fluid flow in closed geometries with heat or mass transfer.  To this aim the reader should bring a working knowledge of fluid mechanics and heat transfer and should be readily conversant with simple concepts of linear algebra including spectral decomposition of matrices as well as solvability conditions for inhomogeneous problems.  The book is neither meant to supply a ready-to-use program that is all-purpose nor to go through all manners of mathematical proofs.  The focus in this tutorial is on the use of the spectral methods for space discretization, because this is where most of the difficulty lies. While time dependent problems are also of great interes...

  11. A new approach to passivity preserving model reduction : the dominant spectral zero method

    NARCIS (Netherlands)

    Ionutiu, R.; Rommes, J.; Antoulas, A.C.; Roos, J.; Costa, L.R.J.

    2010-01-01

    A new model reduction method for circuit simulation is presented, which preserves passivity by interpolating dominant spectral zeros. These are computed as poles of an associated Hamiltonian system, using an iterative solver: the subspace accelerated dominant pole algorithm (SADPA). Based on a

  12. Mass anomalous dimension of SU(2) with Nf=8 using the spectral density method

    DEFF Research Database (Denmark)

    Suorsa, Joni M.; Leino, Viljami; Rantaharju, Jarno

    2015-01-01

    SU(2) with Nf=8 is believed to have an infrared conformal fixed point. We use the spectral density method to evaluate the coupling constant dependence of the mass anomalous dimension for massless HEX smeared, clover improved Wilson fermions with Schr\\"odinger functional boundary conditions....

  13. Spectral mimetic least-squares method for div-curl systems

    NARCIS (Netherlands)

    Gerritsma, Marc; Palha, Artur; Lirkov, I.; Margenov, S.

    2018-01-01

    In this paper the spectral mimetic least-squares method is applied to a two-dimensional div-curl system. A test problem is solved on orthogonal and curvilinear meshes and both h- and p-convergence results are presented. The resulting solutions will be pointwise divergence-free for these test

  14. Stability Estimates for h-p Spectral Element Methods for Elliptic Problems

    NARCIS (Netherlands)

    Dutt, Pravir; Tomar, S.K.; Kumar, B.V. Rathish

    2002-01-01

    In a series of papers of which this is the first we study how to solve elliptic problems on polygonal domains using spectral methods on parallel computers. To overcome the singularities that arise in a neighborhood of the corners we use a geometrical mesh. With this mesh we seek a solution which

  15. The spectral method and the central limit theorem for general Markov chains

    Science.gov (United States)

    Nagaev, S. V.

    2017-12-01

    We consider Markov chains with an arbitrary phase space and develop a modification of the spectral method that enables us to prove the central limit theorem (CLT) for non-uniformly ergodic Markov chains. The conditions imposed on the transition function are more general than those by Athreya-Ney and Nummelin. Our proof of the CLT is purely analytical.

  16. Aerosol spectral optical depths and size characteristics at a coastal industriallocation in India - effect of synoptic and mesoscale weather

    Directory of Open Access Journals (Sweden)

    K. Niranjan

    2004-06-01

    Full Text Available The aerosol spectral optical depths at ten discrete channels in the visible and near IR bands, obtained from a ground-based passive multi-wavelength solar radiometer at a coastal industrial location, Visakhapatnam, on the east coast of India, are used to study the response of the aerosol optical properties and size distributions to the changes in atmospheric humidity, wind speed and direction. It is observed that during high humidity conditions, the spectral optical depths show about 30% higher growth factors, and the size distributions show the generation of a typical new mode around 0.4 microns. The surface wind speed and direction also indicate the formation of new particles when the humid marine air mass interacts with the industrial air mass. This is interpreted in terms of new particle formation and subsequent particle growth by condensation and self-coagulation. The results obtained on the surface-size segregated aerosol mass distribution from a co-located Quartz Crystal Microbalance during different humidity conditions also show a large mass increase in the sub-micron size range with an increase in atmospheric humidity, indicating new particle formation at the sub-micron size range.

  17. A reflectivity profilometer for the optical characterisation of graded reflectivity mirrors in the 250 nm - 1100 nm spectral region

    International Nuclear Information System (INIS)

    Colucci, Alessandro; Nichelatti, Enrico

    1998-04-01

    It's developed the prototype of an instrument that can be used for the optical characterisation of graded reflectivity mirrors at any wavelength in the spectral region from 250 nm to 1100 nm. The instrument utilises a high-pressure Xe arc lamp as light source. Light is spectrally filtered by means of a grating monochromator. The sample is illuminated with an image of the monochromator exit slit. After reflection from the sample, this image is projected onto a 1024-elements charge-coupled device linear array driven by a digital frame board and interfaced with a personal computer. It's tested the instrument accuracy by comparing measurement results with the corresponding ones obtained by means of a laser scanning technique. Measurement Rms repeatability has been estimated to be approximately of 0.8% [it

  18. Testing the accuracy and stability of spectral methods in numerical relativity

    International Nuclear Information System (INIS)

    Boyle, Michael; Lindblom, Lee; Pfeiffer, Harald P.; Scheel, Mark A.; Kidder, Lawrence E.

    2007-01-01

    The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the Kidder, Scheel, and Teukolsky (KST) representation of the Einstein evolution equations. The basic 'Mexico City tests' widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error or by truncation error in the time integration. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test

  19. Spectral density analysis of time correlation functions in lattice QCD using the maximum entropy method

    International Nuclear Information System (INIS)

    Fiebig, H. Rudolf

    2002-01-01

    We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss the practical issues of the approach

  20. THE POTENTIAL IMPORTANCE OF BINARY EVOLUTION IN ULTRAVIOLET-OPTICAL SPECTRAL FITTING OF EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li; Zhang, Qian; Li, Maocai

    2013-01-01

    Most galaxies possibly contain some binaries, and more than half of Galactic hot subdwarf stars, which are thought to be a possible origin of the UV-upturn of old stellar populations, are found in binaries. However, the effect of binary evolution has not been taken into account in most works on the spectral fitting of galaxies. This paper studies the role of binary evolution in the spectral fitting of early-type galaxies, via a stellar population synthesis model including both single and binary star populations. Spectra from ultraviolet to optical bands are fitted to determine a few galaxy parameters. The results show that the inclusion of binaries in stellar population models may lead to obvious change in the determination of some parameters of early-type galaxies and therefore it is potentially important for spectral studies. In particular, the ages of young components of composite stellar populations become much older when using binary star population models instead of single star population models. This implies that binary star population models will measure significantly different star formation histories for early-type galaxies compared to single star population models. In addition, stellar population models with binary interactions on average measure larger dust extinctions than single star population models. This suggests that when binary star population models are used, negative extinctions are possibly no longer necessary in the spectral fitting of galaxies (see previous works, e.g., Cid Fernandes et al. for comparison). Furthermore, it is shown that optical spectra have strong constraints on stellar age while UV spectra have strong constraints on binary fraction. Finally, our results suggest that binary star population models can provide new insight into the stellar properties of globular clusters

  1. A complex guided spectral transform Lanczos method for studying quantum resonance states

    International Nuclear Information System (INIS)

    Yu, Hua-Gen

    2014-01-01

    A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO, and compared to previous calculations

  2. Multiscale finite element methods for high-contrast problems using local spectral basis functions

    KAUST Repository

    Efendiev, Yalchin

    2011-02-01

    In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.

  3. NEW OPTICAL/ULTRAVIOLET COUNTERPARTS AND THE SPECTRAL ENERGY DISTRIBUTIONS OF NEARBY, THERMALLY EMITTING, ISOLATED NEUTRON STARS

    International Nuclear Information System (INIS)

    Kaplan, D. L.; Kamble, A.; Van Kerkwijk, M. H.; Ho, W. C. G.

    2011-01-01

    We present Hubble Space Telescope optical and ultraviolet photometry for five nearby, thermally emitting neutron stars. With these measurements, all seven such objects have confirmed optical and ultraviolet counterparts. Combining our data with archival space-based photometry, we present spectral energy distributions for all sources and measure the 'optical excess': the factor by which the measured photometry exceeds that extrapolated from X-ray spectra. We find that the majority have optical and ultraviolet fluxes that are inconsistent with that expected from thermal (Rayleigh-Jeans) emission, exhibiting more flux at longer wavelengths. We also find that most objects have optical excesses between 5 and 12, but that one object (RX J2143.0+0654) exceeds the X-ray extrapolation by a factor of more than 50 at 5000 A, and that this is robust to uncertainties in the X-ray spectra and absorption. We consider explanations for this ranging from atmospheric effects, magnetospheric emission, and resonant scattering, but find that none is satisfactory.

  4. Systems and methods for optically measuring properties of hydrocarbon fuel gases

    Science.gov (United States)

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz; Gersh, Michael E.; Goldstein, Neil

    1998-10-13

    A system and method for optical interrogation and measurement of a hydrocarbon fuel gas includes a light source generating light at near-visible wavelengths. A cell containing the gas is optically coupled to the light source which is in turn partially transmitted by the sample. A spectrometer disperses the transmitted light and captures an image thereof. The image is captured by a low-cost silicon-based two-dimensional CCD array. The captured spectral image is processed by electronics for determining energy or BTU content and composition of the gas. The innovative optical approach provides a relatively inexpensive, durable, maintenance-free sensor and method which is reliable in the field and relatively simple to calibrate. In view of the above, accurate monitoring is possible at a plurality of locations along the distribution chain leading to more efficient distribution.

  5. PREVALENCE OF FOVEOLAR LUCENCY WITH DIFFERENT GAS TAMPONADES IN SURGICALLY CLOSED MACULAR HOLES ASSESSED BY SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY.

    Science.gov (United States)

    Zarranz-Ventura, Javier; Ellabban, Abdallah A; Sim, Dawn A; Keane, Pearse A; Kirkpatrick, James N; Sallam, Ahmed A B

    2017-07-07

    To evaluate the prevalence of foveolar lucency (FL) in surgically closed macular holes by spectral domain optical coherence tomography. One hundred forty-two eyes of 132 patients underwent pars plana vitrectomy, internal limiting membrane peeling, and gas tamponade in a 60-month time frame. Anatomical success and FL rates assessed by spectral domain optical coherence tomography, mean preoperative, and postoperative best-measured visual acuity and surgical details were retrospectively analyzed. Spectral domain optical coherence tomography confirmed closed holes with FL in 33.7% (34/101) of eyes at 1 month, 7.3% (9/123) at 3 months, 4.6% (6/129) at 6 months, and 3% (4/133) at 12 months. Prevalence of FL in closed holes at Month 1 was lower in C3F8-treated eyes (9.5%, 2/21) compared with C2F6 (40.9%, 18/44, P = 0.03) and SF6-treated eyes (38.9%, 14/36, P = 0.05). No differences were observed at Month 3. No differences in best-measured visual acuity change were observed between closed holes with or without FL at Month 1 (-0.14 ± 0.19 vs. -0.11 ± 0.23, P = 0.48) or any of the other time points. Temporary FL is a highly prevalent feature in successfully closed macular holes. Eyes treated with C3F8 gas had lower rates of FL at Month 1 than C2F6 and SF6-treated eyes. The presence of FL in closed holes does not seem to have any effect on the visual outcomes.

  6. Magnetic field effects on spectrally resolved lifetime of on-line oxygen monitoring using magneto-optic probes

    Science.gov (United States)

    Mermut, O.; Gallant, P.; Le Bouch, N.; Leclair, S.; Noiseux, I.; Vernon, M.; Morin, J.-F.; Diamond, K.; Patterson, M. S.; Samkoe, K.; Pogue, B.

    2009-02-01

    Multimodal agents that serve as both probes for contrast and light-activated effectors of cellular processes in diseased tissue were developed. These agents were introduced into multicellular tumor spheroids (3D tissue models) and in the chorioallantoic membrane (CAM) of a chicken embryo. The luminescence decay was examined using a novel technique involving a spectrally-resolved fluorescence lifetime apparatus integrated with a weak electromagnet. A spectrallyresolved lifetime setup was used to identify magneto-optic species sensitive to magnetic field effects and distinguish from background emissions. We demonstrate that the applied magnetic fields can alter reaction rates and product distribution of some dyes detected by time- and spectrally-resolved luminescence changes. We will discuss the use of exogenous magneto-optical probes taken up in tumors to both induce phototoxicity, a process that is governed by complex and dynamically evolving mechanisms involving reactive oxygen species, and monitor treatment progress. The magnetic field enhancement, measured over a range of weak fields (0-300 mT) is correlated to oxygenation and may be used to monitor dynamic changes occurring due to oxygen consumption over the course of photodynamic therapy. Such online measurements provide the possibility to derive real-time information about response to treatment via monitoring magnetic field enhancement/suppression of the time-resolved, spectrally-resolved luminescence of the probe at the site of the treatment directly. Magnetic perturbation of lifetime can serve as a status reporter, providing optical feedback of oxygen-mediated treatments in situ and allowing for real-time adjustment of a phototherapy treatment plan.

  7. Development and validation of a new fallout transport method using variable spectral winds

    International Nuclear Information System (INIS)

    Hopkins, A.T.

    1984-01-01

    A new method was developed to incorporate variable winds into fallout transport calculations. The method uses spectral coefficients derived by the National Meteorological Center. Wind vector components are computed with the coefficients along the trajectories of falling particles. Spectral winds are used in the two-step method to compute dose rate on the ground, downwind of a nuclear cloud. First, the hotline is located by computing trajectories of particles from an initial, stabilized cloud, through spectral winds to the ground. The connection of particle landing points is the hotline. Second, dose rate on and around the hotline is computed by analytically smearing the falling cloud's activity along the ground. The feasibility of using spectral winds for fallout particle transport was validated by computing Mount St. Helens ashfall locations and comparing calculations to fallout data. In addition, an ashfall equation was derived for computing volcanic ash mass/area on the ground. Ashfall data and the ashfall equation were used to back-calculate an aggregated particle size distribution for the Mount St. Helens eruption cloud

  8. The optical + infrared L dwarf spectral sequence of young planetary-mass objects in the Upper Scorpius association

    Science.gov (United States)

    Lodieu, N.; Zapatero Osorio, M. R.; Béjar, V. J. S.; Peña Ramírez, K.

    2018-01-01

    We present the results of photometric and spectroscopic follow-ups of the lowest mass member candidates in the nearest OB association, Upper Scorpius (∼5-10 Myr; 145 ± 17 pc), with the Gran Telescopio de Canarias (GTC) and European Southern Observatory (ESO) Very Large Telescope (VLT). We confirm the membership of the large majority (>80 per cent) of candidates originally selected photometrically and astrometrically based on their spectroscopic features, weak equivalent widths of gravity-sensitive doublets and radial velocities. Confirmed members follow a sequence over a wide magnitude range (J = 17.0-19.3 mag) in several colour-magnitude diagrams with optical, near- and mid-infrared photometry and have near-infrared spectral types in the L1-L7 interval with likely masses below 15 Jupiter masses. We find that optical spectral types tend to be earlier than near-infrared spectral types by a few subclasses for spectral types later than M9. We investigate the behaviour of spectral indices, defined in the literature as a function of spectral type and gravity, by comparison with values reported in the literature for young and old dwarfs. We also derive effective temperatures in the 1900-1600 K range from fits of synthetic model-atmosphere spectra to the observed photometry, but we caution that the procedure carries large uncertainties. We determine bolometric corrections for young L dwarfs with ages of ∼5-10 Myr (Upper Sco association) and find them to be similar in the J band but larger by 0.1-0.4 mag in the K band with respect to field L dwarfs. Finally, we discover two faint young L dwarfs, Visible and Infrared Survey Telescope for Astronomy (VISTA) J1607-2146 (L4.5) and VISTA J1611-2215 (L5), that have Hα emission and possible flux excesses at 4.5 μm, pointing to the presence of accretion from a disc on to the central objects of mass below ∼15MJup at an age of 5-10 Myr.

  9. Potential of remote sensing of cirrus optical thickness by airborne spectral radiance measurements at different sideward viewing angles

    Science.gov (United States)

    Wolf, Kevin; Ehrlich, André; Hüneke, Tilman; Pfeilsticker, Klaus; Werner, Frank; Wirth, Martin; Wendisch, Manfred

    2017-03-01

    Spectral radiance measurements collected in nadir and sideward viewing directions by two airborne passive solar remote sensing instruments, the Spectral Modular Airborne Radiation measurement sysTem (SMART) and the Differential Optical Absorption Spectrometer (mini-DOAS), are used to compare the remote sensing results of cirrus optical thickness τ. The comparison is based on a sensitivity study using radiative transfer simulations (RTS) and on data obtained during three airborne field campaigns: the North Atlantic Rainfall VALidation (NARVAL) mission, the Mid-Latitude Cirrus Experiment (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems (ACRIDICON) campaign. Radiative transfer simulations are used to quantify the sensitivity of measured upward radiance I with respect to τ, ice crystal effective radius reff, viewing angle of the sensor θV, spectral surface albedo α, and ice crystal shape. From the calculations it is concluded that sideward viewing measurements are generally better suited than radiance data from the nadir direction to retrieve τ of optically thin cirrus, especially at wavelengths larger than λ = 900 nm. Using sideward instead of nadir-directed spectral radiance measurements significantly improves the sensitivity and accuracy in retrieving τ, in particular for optically thin cirrus of τ ≤ 2. The comparison of retrievals of τ based on nadir and sideward viewing radiance measurements from SMART, mini-DOAS and independent estimates of τ from an additional active remote sensing instrument, the Water Vapor Lidar Experiment in Space (WALES), shows general agreement within the range of measurement uncertainties. For the selected example a mean τ of 0.54 ± 0.2 is derived from SMART, and 0.49 ± 0.2 by mini-DOAS nadir channels, while WALES obtained a mean value of τ = 0.32 ± 0.02 at 532 nm wavelength, respectively. The mean of τ derived from the sideward viewing mini

  10. Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching

    Czech Academy of Sciences Publication Activity Database

    Aas, M.; Jonáš, A.; Kiraz, A.; Ježek, Jan; Brzobohatý, Oto; Pilát, Zdeněk; Zemánek, Pavel

    2013-01-01

    Roč. 21, č. 18 (2013), s. 21380-21394 ISSN 1094-4087 R&D Projects: GA ČR GPP205/11/P294; GA MŠk ED0017/01/01; GA TA ČR TA03010642 Institutional support: RVO:68081731 Keywords : Microcavities * Dye lasers * Optical tweezers * Optical manipulation * Fluorescence, laser-induced Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.525, year: 2013

  11. Optical Modeling of Spectral Backscattering and Remote Sensing Reflectance From Emiliania huxleyi Blooms

    Directory of Open Access Journals (Sweden)

    Griet Neukermans

    2018-05-01

    Full Text Available In this study we develop an analytical model for spectral backscattering and ocean color remote sensing of blooms of the calcifying phytoplankton species Emiliania huxleyi. Blooms of this coccolithophore species are ubiquitous and particularly intense in temperate and subpolar ocean waters. We first present significant improvements to our previous analytical light backscattering model for E. huxleyi coccoliths and coccospheres by accounting for the elliptical shape of coccoliths and the multi-layered coccosphere architecture observed on detailed imagery of E. huxleyi liths and coccospheres. Our new model also includes a size distribution function that closely matches measured E. huxleyi size distributions. The model for spectral backscattering is then implemented in an analytical radiative transfer model to evaluate the variability of spectral remote sensing reflectance with respect to changes in the size distribution of the coccoliths and during a hypothetical E. huxleyi bloom decay event in which coccospheres shed their liths. Our modeled remote sensing reflectance spectra reproduced well the bright milky turquoise coloring of the open ocean typically associated with the final stages of E. huxleyi blooms, with peak reflectance at a wavelength of 0.49 μm. Our results also show that the magnitude of backscattering from coccoliths when attached to or freed from the coccosphere does not differ much, contrary to what is commonly assumed, and that the spectral shape of backscattering is mainly controlled by the size and morphology of the coccoliths, suggesting that they may be estimated from spectral backscattering.

  12. A hybrid spatial-spectral denoising method for infrared hyperspectral images using 2DPCA

    Science.gov (United States)

    Huang, Jun; Ma, Yong; Mei, Xiaoguang; Fan, Fan

    2016-11-01

    The traditional noise reduction methods for 3-D infrared hyperspectral images typically operate independently in either the spatial or spectral domain, and such methods overlook the relationship between the two domains. To address this issue, we propose a hybrid spatial-spectral method in this paper to link both domains. First, principal component analysis and bivariate wavelet shrinkage are performed in the 2-D spatial domain. Second, 2-D principal component analysis transformation is conducted in the 1-D spectral domain to separate the basic components from detail ones. The energy distribution of noise is unaffected by orthogonal transformation; therefore, the signal-to-noise ratio of each component is used as a criterion to determine whether a component should be protected from over-denoising or denoised with certain 1-D denoising methods. This study implements the 1-D wavelet shrinking threshold method based on Stein's unbiased risk estimator, and the quantitative results on publicly available datasets demonstrate that our method can improve denoising performance more effectively than other state-of-the-art methods can.

  13. High-precision solution to the moving load problem using an improved spectral element method

    Science.gov (United States)

    Wen, Shu-Rui; Wu, Zhi-Jing; Lu, Nian-Li

    2018-02-01

    In this paper, the spectral element method (SEM) is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem. In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases. Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.

  14. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    Science.gov (United States)

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  15. Ultrafast method of calculating the dynamic spectral line shapes for integrated modelling of plasmas

    International Nuclear Information System (INIS)

    Lisitsa, V.S.

    2009-01-01

    An ultrafast code for spectral line shape calculations is presented to be used in the integrated modelling of plasmas. The code is based on the close analogy between two mechanisms: (i) Dicke narrowing of the Doppler-broadened spectral lines and (ii) transition from static to impact regime in the Stark broadening. The analogy makes it possible to describe the dynamic Stark broadening in terms of an analytical functional of the static line shape. A comparison of new method with the widely used Frequency Fluctuating Method (FFM) developed by the Marseille University group (B. Talin, R. Stamm, et al.) shows good agreement, with the new method being faster than the standard FFM by nearly two orders of magnitude. The method proposed may significantly simplify the radiation transport modeling and opens new possibilities for integrated modeling of the edge and divertor plasma in tokamaks. (author)

  16. Retinal ganglion cell complex changes using spectral domain optical coherence tomography in diabetic patients without retinopathy

    Institute of Scientific and Technical Information of China (English)

    Ahmed; I.Hegazy; Rasha; H.Zedan; Tamer; A.Macky; Soheir; M.Esmat

    2017-01-01

    AIM:To assess the ganglion cell complex(GCC)thickness in diabetic eyes without retinopathy. METHODS:Two groups included 45 diabetic eyes without retinopathy and 21 non diabetic eyes. All subjects underwent full medical and ophthalmological history,full ophthalmological examination,measuring GCC thickness and central foveal thickness(CFT)using the RTVue~? spectral domainoptical coherence tomography(SD-OCT),and HbA1C level.RESULTS:GCC focal loss volume(FLV%)was significantly more in diabetic eyes(22.2% below normal)than normal eyes(P=0.024). No statistically significant difference was found between the diabetic group and the control group regarding GCC global loss volume(GLV%)(P=0.160). CFT was positively correlated to the average,superior and inferior GCC(P=0.001,0.000 and 0.001 respectively)and negatively correlated to GLV% and FLV%(P=0.002 and0.031 respectively)in diabetic eyes. C/D ratio in diabetic eyes was negatively correlated to average,superior and inferior GCC(P=0.015,0.007 and 0.017 respectively). The FLV% was negatively correlated to the refraction and level of Hb A1c(P=0.019 and 0.013 respectively)and positively correlated to the best corrected visual acuity(BCVA)in log MAR in diabetic group(P=0.004).CONCLUSION:Significant GCC thinning in diabetes predates retinal vasculopathy,which is mainly focal rather than diffuse. It has no preference to either the superior or inferior halves of the macula. Increase of myopic error is significantly accompanied with increased focal GCC loss. GCC loss is accompanied with increased C/D ratio in diabetic eyes.

  17. A sparse-mode spectral method for the simulation of turbulent flows

    International Nuclear Information System (INIS)

    Meneguzzi, M.; Politano, H.; Pouquet, A.; Zolver, M.

    1996-01-01

    We propose a new algorithm belonging to the family of the sparsemode spectral method to simulate turbulent flows. In this method the number of Fourier modes k increases with k more slowly than k D-1 in dimension D, while retaining the advantage of the fast Fourier transform. Examples of applications of the algorithm are given for the one-dimensional Burger's equation and two-dimensional incompressible MHD flows

  18. Numerical Solution of Nonlinear Fredholm Integro-Differential Equations Using Spectral Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Z. Pashazadeh Atabakan

    2013-01-01

    Full Text Available Spectral homotopy analysis method (SHAM as a modification of homotopy analysis method (HAM is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.

  19. Macular laser photocoagulation guided by spectral-domain optical coherence tomography versus fluorescein angiography for diabetic macular edema

    Directory of Open Access Journals (Sweden)

    Gallego-Pinazo R

    2011-05-01

    Full Text Available Roberto Gallego-Pinazo1,2, Ana Marina Suelves-Cogollos1, Rosa Dolz-Marco1, J Fernando Arevalo3, Salvador García-Delpech1, J Luis Mullor4, Manuel Díaz-Llopis1,2,51Department of Ophthalmology, Hospital Universitario La Fe, Valencia, Spain; 2Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; 3Retina and Vitreous Service, Clinical Ophthalmology Center, Caracas, Venezuela; 4Unit of Experimental Ophthalmology, Hospital Universitario La Fe, Valencia, Spain; 5University of Valencia, Faculty of Medicine, Valencia, SpainBackground: The aim of this study was to compare the efficacy of spectral-domain optical coherence tomography (SD-OCT and fluorescein angiography (FA in the guidance of macular laser photocoagulation for diabetic macular edema.Methods: This was a prospective interventional clinical comparative pilot study. Forty eyes from 24 consecutive patients with diabetic macular edema were allocated to receive laser photocoagulation guided by SD-OCT or FA. Best-corrected visual acuity (BCVA, central macular thickness, and retinal volume were assessed at baseline and two months after treatment.Results: Subjects treated using FA-guided laser improved BCVA from the logarithm of the minimum angle of resolution (logMAR 0.52 ± 0.2 to 0.37 ± 0.2 (P < 0.001, and decreased mean central macular thickness from 397.25 ± 139.1 to 333.50 ± 105.7 µm (P < 0.001 and retinal volume from 12.61 ± 1.6 to 10.94 ± 1.4 mm3 (P < 0.001. Subjects treated using SD-OCT guided laser had improved BCVA from 0.48 ± 0.2 to 0.33 ± 0.2 logMAR (P < 0.001, and decreased mean central macular thickness from 425.90 ± 149.6 to 353.4 ± 140 µm (P < 0.001 and retinal volume from 12.38 ± 2.1 to 11.53 ± 1.1 mm3 (P < 0.001. No significant differences between the groups were found in two-month BCVA (P = 0.505, two-month central macular thickness (P = 0.660, or two-month retinal volume (P = 0.582.Conclusion: The short-term results of this pilot study

  20. Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model.

    Science.gov (United States)

    Cang, Ji; Liu, Xu

    2011-09-26

    Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links. © 2011 Optical Society of America