WorldWideScience

Sample records for optical measurement

  1. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  2. Rural Optical-Propagation Measurements

    Directory of Open Access Journals (Sweden)

    B. Epple

    2011-04-01

    Full Text Available Compared with traditional communication technologies like wired or radio frequency communications, optical wireless communication has a unique fading behavior of the received signal, that does not allow to use existing channel models without modification. In this paper the statistics of received optical power obtained from experimental data are compared to often used statistical mathematical models. These models are the log-normal and the gamma-gamma distribution. It was found that the gamma-gamma gives better fits to the measured data, but the quality of the log-normal fits is sufficient for most needs. This means that the log-normal distribution can be used for the development of simplified channel models which have a better mathematical tractability than the models based on the gamma-gamma distribution.

  3. Cross-Sectional Measuring of Optical Beam

    Directory of Open Access Journals (Sweden)

    Tomas David

    2011-01-01

    Full Text Available This article deals with problematic of measuring of optical beam in free space optics (FSO. The professional FSO link was created between two buildings standing 1,5 kilometers apart from each other. Signal passing through the atmospheric media between optical heads is affected. This happens due to effects in atmospheric media. This article describes creating of the device for measuring the intensity of optical beam in 2D space and its subsequent rendering into 3D graph.

  4. Optical Measurement Techniques for Optical Fiber and Waveguide Devices

    Institute of Scientific and Technical Information of China (English)

    D.Y.; Kim; Y.; Park; N.H.; Seong; Y.C.Youk; J.Y.; Lee; S.; Moon; I.H.; Shin; H.S.; Ryu

    2003-01-01

    We describe three major optical characterization methods for fiber and fiber devices. A simple servo controlled scanning fiber-optic confocal microscope is proposed for determining the refractive index profile of an optical fiber. To measure the chromatic dispersion of a short length fiber a Mach-Zehnder fiber interferometer with a novel interferometric distance meter is introduced. At the end, a tomographic method is demonstrated for determining the 2-D stress profile of a fiber.

  5. Optical measurement techniques - A push for digitization

    Science.gov (United States)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2016-12-01

    Over the years, optical measurement techniques have been the problem-solving backbone of many engineering applications such as nondestructive testing of materials, measurement of various material properties, structural analysis and experimental mechanics [1-3]. Probably the most important advantage associated with any optical measurement system over other systems is its non-contact type of measurement capability. Apart from their non-contact nature, the optical measurement systems are capable of providing full-field measurements at scales ranging from milli-meters to nano-meters.

  6. New Measuring Temperature Setup with Optical Probe①

    Institute of Scientific and Technical Information of China (English)

    HOUPeiguo; LIUJianming

    1997-01-01

    A new setup of measuring temperature is developed,which the probe is a micro-power consumptive one with CMOS circuit and is driven by optical power.For transmitting the measured signal and optical signal in a long distance,the fiber technology is applied in this setup.

  7. Traceability of optical roughness measurements on polymers

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Gasparin, Stefania; Carli, Lorenzo;

    2008-01-01

    An experimental investigation on surface roughness measurements on plastics was carried out with the objective of developing a methodology to achieve traceability of optical instruments. A ground steel surface and its replicas were measured using a stylus instrument, an optical auto-focus......% for the auto-focus instrument and 10% for confocal microscope....

  8. LHC injection optics measurements at commissioning (2015)

    CERN Document Server

    Garcia-Tabares Valdivieso, Ana; Coello De Portugal - Martinez Vazquez, Jaime Maria; Garcia-Bonilla, Alba-Carolina; Langner, Andy Sven; Maclean, Ewen Hamish; Malina, Lukas; Mcateer, Meghan Jill; Persson, Tobias Hakan Bjorn; Skowronski, Piotr Krzysztof; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2016-01-01

    This report describes the measurement and correction process followed during the 2015 LHC injection optics commissioning which extended into Machine Developments (MDs). Results have been analyzed and compared to the 2012 measurements.

  9. Optical vibration measurement of mechatronics devices

    Science.gov (United States)

    Yanabe, Shigeo

    1993-09-01

    An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.

  10. Linear and chromatic optics measurements at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Aiba, M.; Calaga, R.; Aiba, M.; Tomas, R.; Vanbavinkove, G.

    2010-05-23

    Measurements of chromatic beta-beating were carried out for the first time in the RHIC accelerator during Run 2009. The analysis package developed for the LHC was used to extract the off-momentum optics for injection and top energy. Results from the beam experiments and compassion to the optics model are presented. The primary goal of the RHIC experiments were execute an on-line measurement of the optics using the tools developed for the LHC. Turn-by-turn BPM trajectories (typically 1000 turns) acquired immediately after an external dipole kick are numerically analyzed to determine the optical parameters at the location of the beam position monitors (BPMs). For chromatic optics, a similar analysis, but on a beam with finite momentum offset(s). Each optical measurement typically is calculated from multiple data sets to capture statistical variations and ensure reproducibility. The procedure of measurement and analysis is detailed in ref [1, 2]. Two dedicated experiments were performed at RHIC with protons during Run 2009. The first at injection energy and optics and the other at 250 GeV and squeezed optics. The basic RHIC parameters relevant for the two experiments are listed in Table 1.

  11. Measurement of Optical Properties of Small Particles

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, E.T.; Tuminello, P.S. [Oak Ridge National Lab., TN (United States); Khare, B.N. [NASA Ames Research Center, Moffett Field, CA (United States); Millham, M.E. [USAMCCOM, Edgewood Research, Development, and Engineering Center, Aberdeen Proving Ground, MD (United States); Authier, S. [Ecole Superiere d`Optique, Orsay (France); Pierce, J. [University of Tennessee, Knoxville, TN (United States)

    1997-12-01

    We have measured the optical constants of montmorillonite and the separated coats and cores of B. subtilis spores over the wavelength interval from 200 nm to 2500 nm. The optical constants of kaolin were obtained over the wavelength interval from 130 nm to 2500 nm. Our results are applicable to the development of systems for detection of airborne biological contaminants. Future work will include measurement of the optical constants of B. cereus spores, B. sub tilts vegetative cells, egg albumin, illite, and a mixture (by weight) of one third kaolin, one third montmorillonite, and one third illite.

  12. The optical axis optimization in measurement of decentration of lens

    Science.gov (United States)

    Wang, Yajing; Yang, Lin; Wang, Chunyu

    2013-09-01

    Measure of optical decentration plays an important role in inspection, installation and adjustment of optical system. This article describes optical measurement principle of decentration, analyzes the reason of the decentration measurement accuracy, and indicates the necessity of optimizing the optical axis. Finally, because of the error of the decentration optical axis fitting. A new method of optical axis optimization is put forward here. A mathematical model to find the best optical axis is established, which improved the optical performance of the system.

  13. Optical 3D motion measurement

    NARCIS (Netherlands)

    Sabel, J.C.

    1996-01-01

    This paper presents a CCD-camera based system for high-speed and accurate measurement of the three-dimensional movement of reflective targets. These targets are attached to the moving object under study. The system has been developed at TU Delft and consists of specialized hardware for real-time mul

  14. Optical scattering measurement and analysis

    CERN Document Server

    Stover, John C

    2012-01-01

    Newly included are scatter models for pits and particles as well as the use of wafer scanners to locate and size isolated surface features. New sections cover the multimillion-dollar wafer scanner business, establishing that microroughness is the noise, not the signal, in these systems. Scatter measurements, now routinely used to determine whether small-surface features are pits or particles and inspiring new technology that provides information on particle material, are also discussed. These new capabilities are now supported by a series of international standards, and a new chapter reviews t

  15. Dynamic temperature measurements with embedded optical sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  16. An optical fan for light beams for high-precision optical measurements and optical switching

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high precision optical measurements and high capacity and high speed optical communications. Here we show, a totally new method, based on a combination of these two properties and using the thermal dispersion and electro-optical effect of birefringent crystals, the construction of a simple and robust scheme to rotate a light beam like a fan. Using a computer-based digital image processing technique, we determine the temperature and the thermal dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science and optical communication networks.

  17. Measurements using optic and RF waves

    CERN Document Server

    De Fornel, Frederique

    2013-01-01

    Scientific and technical knowledge for measurements in modern electromagnetism must be vast as our electromagnetic environment covers all frequencies and wavelengths. These measurements must be applied to fields as varied as nanotechnologies, telecommunications, meteorology, geolocalization, radioastronomy, health, biology, etc. In order to cover the multiple facets of the topic, this book sweeps the entire electromagnetic spectrum, from several hertz to terahertz; considers distances ranging from nanometers to light-years in optics; before extending towards the various measurement techniques

  18. Precision optical displacement measurements using biphotons

    CERN Document Server

    Lyons, Kevin; Kwiat, Paul G; Jordan, Andrew N

    2016-01-01

    We propose and examine the use of biphoton pairs, such as those created in parametric down conversion or four-wave mixing, to enhance the precision and the resolution of measuring optical displacements by position-sensitive detection. We show that the precision of measuring a small optical beam displacement with this method can be significantly enhanced by the correlation between the two photons, given the same optical mode. The improvement is largest if the correlations between the photons are strong, and falls off as the biphoton correlation weakens. More surprisingly, we find that the smallest resolvable parameter of a simple split detector scales as the inverse of the number of biphotons for small biphoton number ("Heisenberg scaling"), because the Fisher information diverges as the parameter to be estimated decreases in value. One usually sees this scaling only for systems with many entangled degrees of freedom. We discuss the transition for the split-detection scheme to the standard quantum limit scalin...

  19. Measuring method for optical fibre sensors

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Fluitman, J.H.J.

    1984-01-01

    A new measuring method for the signal amplitude in intensity modulating fibre optic sensors is described. A reference signal is generated in the time domain. The method is insensitive for the sensitivity fluctuations of the light transmitter and the light receiver. The method is experimentally

  20. Measuring method for optical fibre sensors

    NARCIS (Netherlands)

    Lammerink, T.S.J.; Fluitman, J.H.J.

    1984-01-01

    A new measuring method for the signal amplitude in intensity modulating fibre optic sensors is described. A reference signal is generated in the time domain. The method is insensitive for the sensitivity fluctuations of the light transmitter and the light receiver. The method is experimentally teste

  1. Turbidity Measurement Using An Optical Tomography System

    OpenAIRE

    Sallehuddin Bin Ibrahim

    2013-01-01

    Turbidity is used to describe water quality and it can be caused by the presence of suspended particles and organic matter such as algae, clay and silt. The measurement of turbidity level of water is vital to domestic water supplies since it is related to public health and water treatment process. This paper presents an investigation on an optical tomography system to estimate the turbidity level in a sample of water. The optical sensors consist of infrared light-emitting diodes (LED) as tran...

  2. Measuring optical transmission matrices by wavefront shaping

    CERN Document Server

    Yoon, Jonghee; Park, Jongchan; Park, YongKeun

    2015-01-01

    We introduce a simple but practical method to measure the optical transmission matrix (TM) of complex media. The optical TM of a complex medium is obtained by modulating the wavefront of a beam impinging on the complex medium and imaging the transmitted full-field speckle intensity patterns. Using the retrieved TM, we demonstrate the generation and linear combination of multiple foci on demand through the complex medium. This method will be used as a versatile tool for coherence control of waves through turbid media.

  3. New optical technique for bulk magnetostriction measurement

    CERN Document Server

    Samata, H; Uchida, T; Abe, S

    2000-01-01

    A new optical technique was applied to the measurement of magnetostriction in bulk samples. This technique utilizes an optical fiber bundle, AC-modulated light and lock-in detection. Deformation of the sample is determined from the ratio of the incident and reflected light intensities. Noise due to the instability of the light source is eliminated by obtaining the ratio of the incident and reflected light intensities, and the noise caused in the detector circuit can be reduced by lock-in detection. The performance of this method was characterized with a series of measurements using a gold film and crystal disks of pure iron and nickel. This technique offers a resolution of 0.5 nm and is sensitive enough to measure magnetostriction as small as 5x10 sup - sup 7 in 1 mm thick samples.

  4. Measurement of magnetic moment via optical transmission

    Energy Technology Data Exchange (ETDEWEB)

    Heidsieck, Alexandra, E-mail: aheidsieck@tum.de; Schmid, Daniel; Gleich, Bernhard

    2016-03-01

    The magnetic moment of nanoparticles is an important property for drug targeting and related applications as well as for the simulation thereof. However, the measurement of the magnetic moment of nanoparticles, nanoparticle–virus-complexes or microspheres in solution can be difficult and often yields unsatisfying or incomparable results. To measure the magnetic moment, we designed a custom measurement device including a magnetic set-up to observe nanoparticles indirectly via light transmission in solution. We present a simple, cheap device of manageable size, which can be used in any laboratory as well as a novel evaluation method to determine the magnetic moment of nanoparticles via the change of the optical density of the particle suspension in a well-defined magnetic gradient field. In contrast to many of the established measurement methods, we are able to observe and measure the nanoparticle complexes in their natural state in the respective medium. The nanoparticles move along the magnetic gradient and thereby away from the observation point. Due to this movement, the optical density of the fluid decreases and the transmission increases over time at the measurement location. By comparing the measurement with parametric simulations, we can deduce the magnetic moment from the observed behavior. - Highlights: • Performance of a direct detection camera in the context of off-axis electron holography has been evaluated. • A measurement device to indirectly observe magnetic nanoparticles (MNPs) is described. • MNPs can be observed in the respective medium via light transmission. • An evaluation method to determine the magnetic moment of the MNPs is presented. • The magnetic moment can be deduced from the observed change in optical density.

  5. Surface Wear Measurement Using Optical Correlation Technique

    Science.gov (United States)

    Acinger, Kresimir

    1983-12-01

    The coherent optical correlation technique was applied for measuring the surface wear of a tappet (part of car engine), worn by friction with the camshaft. It was found that maximum correlation intensity decays exponentially with the number of wear cycles (i.e. camshaft revolutions). Tappets of the same make have an identical rate of correlation decay. Tappets of different makes have different rates of correlation decay which are in agreement with observed long term wear.

  6. Optical tomography system for laboratory turbulence measurements

    Science.gov (United States)

    McMackin, Lenore J.; Pierson, Robert E.; Hugo, Ronald J.; Truman, C. Randall

    1998-10-01

    We describe the design and operation of a high speed optical tomography system for measuring 2D images of a dynamic phase object at a rate of 5 kHz. Data from a set of eight Hartmann wavefront sensors is back-projected to produce phase images showing the details of the inner structure of a heated air flow. Series of reconstructions at different downstream locations illustrate the development of flow structure and the effect of acoustic flow forcing.

  7. Monolithically integrated interferometer for optical displacement measurement

    Science.gov (United States)

    Hofstetter, Daniel; Zappe, Hans P.

    1996-01-01

    We discuss the fabrication of a monolithically integrated optical displacement sensors using III-V semiconductor technology. The device is configured as a Michelson interferometer and consists of a distributed Bragg reflector laser, a photodetector and waveguides forming a directional coupler. Using this interferometer, displacements in the 100 nm range could be measured at distances of up to 45 cm. We present fabrication, device results and characterization of the completed interferometer, problems, limitations and future applications will also be discussed.

  8. Optical Reflectance Measurements for Commonly Used Reflectors

    Science.gov (United States)

    Janecek, Martin; Moses, William W.

    2008-08-01

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.

  9. Optical measurement of drug concentrations in tissue

    Energy Technology Data Exchange (ETDEWEB)

    Mourant, J.R.; Bigio, I.J.; Jack, D.A.; Johnson, T.M.; Miller, H.D. [Los Alamos National Lab., NM (United States). Chemical Sciences and Technology Div.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The aim of this project was to develop noninvasive fiber-optic methods for measuring drug concentrations in tissue. Such a system would make possible the study of chemotherapy drug kinetics at specific, targeted locations in the body after the drug is administered. The major result of this project is the development of techniques for measuring changes in absorption of a medium with unknown scattering properties. The developed method was verified by testing on several media with scattering properties in the range typically found for tissue.

  10. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  11. Precision optical displacement measurements using biphotons

    Science.gov (United States)

    Lyons, Kevin; Pang, Shengshi; Kwiat, Paul G.; Jordan, Andrew N.

    2016-04-01

    We propose and examine the use of biphoton pairs, such as those created in parametric down-conversion or four-wave mixing, to enhance the precision and the resolution of measuring optical displacements by position-sensitive detection. We show that the precision of measuring a small optical beam displacement with this method can be significantly enhanced by the correlation between the two photons, given the same optical mode. The improvement is largest if the correlations between the photons are strong, and falls off as the biphoton correlation weakens. More surprisingly, we find that the smallest resolvable parameter of a simple split detector scales as the inverse of the number of biphotons for small biphoton number ("Heisenberg scaling"), because the Fisher information diverges as the parameter to be estimated decreases in value. One usually sees this scaling only for systems with many entangled degrees of freedom. We discuss the transition for the split-detection scheme to the standard quantum limit scaling for imperfect correlations as the biphoton number is increased. An analysis of an N -pixel detector is also given to investigate the benefit of using a higher resolution detector. The physical limit of these metrology schemes is determined by the uncertainty in the birth zone of the biphoton in the nonlinear crystal.

  12. Turbidity Measurement Using An Optical Tomography System

    Directory of Open Access Journals (Sweden)

    Sallehuddin Bin Ibrahim

    2013-10-01

    Full Text Available Turbidity is used to describe water quality and it can be caused by the presence of suspended particles and organic matter such as algae, clay and silt. The measurement of turbidity level of water is vital to domestic water supplies since it is related to public health and water treatment process. This paper presents an investigation on an optical tomography system to estimate the turbidity level in a sample of water. The optical sensors consist of infrared light-emitting diodes (LED as transmitters and photodiodes as the receivers where the projections of the sensors are designed in fan beam mode. The system was tested using a vertical flow pipe. The Independent Component Analysis (ICA method was used to display the concentration profile. Results obtained proved that the technique can provide the concentration profile representing the turbidity level of water.

  13. Local electric field measurements by optical tweezers

    Directory of Open Access Journals (Sweden)

    G. Pesce

    2011-09-01

    Full Text Available We report a new technique to measure direction and amplitude of electric fields generated by microelectrodes embedded in polar liquid environment, as often used in microfluidic devices. The method is based on optical tweezers which act as sensitive force transducer while a trapped charged microsphere behaves as a probe. When an electric field is applied the particles moves from its equilibrium position and finishes in a new equilibrium position where electric and optical forces are balanced. A trapped bead is moved to explore the electric field in a wide region around the microelectrodes. In such way maps of electric fields with high spatial resolution can be reconstructed even for complex electrode geometries where numerical simulation approaches can fail. Experimental results are compared with calculations based on finite element analysis simulation.

  14. Portable optical fiber probe for in vivo brain temperature measurements.

    Science.gov (United States)

    Musolino, Stefan; Schartner, Erik P; Tsiminis, Georgios; Salem, Abdallah; Monro, Tanya M; Hutchinson, Mark R

    2016-08-01

    This work reports on the development of an optical fiber based probe for in vivo measurements of brain temperature. By utilizing a thin layer of rare-earth doped tellurite glass on the tip of a conventional silica optical fiber a robust probe, suitable for long-term in vivo measurements of temperature can be fabricated. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories.

  15. Continuous optical measurement of cold atomic spins

    Science.gov (United States)

    Smith, Gregory A.

    Quantum measurement is one of the most important features of quantum theory. Although mathematical predictions have been verified in great detail, practical implementation has lagged behind. Only recently have people begun to take advantage of quantum measurement properties to produce new technologies. This research helps fill that technological gap by experimental examination of a continuous, optical measurement for an ensemble of cold atomic spins. The essential physics reduces to the interaction between an atomic ensemble and a weak optical field, which has many well known results. While this work demonstrates many novel applications of the interaction, it also shows that the whole can be more than the sum of the individual parts. Starting with basic characterization of the measurement system using laser-cooled caesium atoms, the mean value of a spin component is obtained in real time. In essence, the angular momentum of the atomic spins creates a Faraday-like rotation in the polarization of a laser probe beam. With slight modifications, additional spin components are also observed, and are shown to be in good agreement with predictions. In measuring spin dynamics, it is important to account for effects of the probe on the spin states as well. Capitalizing on this as a resource, the probe-induced ac-Stark shift is used to transform a quasi-classical spin-coherent state into a highly quantum Schrodinger cat type of superposition between two spin states. Finally, this work combines all the previous results to demonstrate how a continuous measurement of the spin with a carefully crafted evolution created in part by the probe, allows for nearly real-time determination of the complete spin density matrix. In a single 1.5 millisecond run, a spin density matrix is determined with fidelities ranging from about 85% to 90% across a wide spectrum of test states.

  16. A Reference Optical System of Laser Doppler Longitudinal Displacement Measurement

    Institute of Scientific and Technical Information of China (English)

    张存满; 赵洋; 李达成

    2001-01-01

    In this paper, a new reference optical system is put forward to achieve longitudinal displacement measurement. An optical grating is used for frequency mixing and getting high SNR signals in the measurement. Conditions and methods for getting Doppler beat signals are presented.The experiments indicate that this optical syetem can be used to measure the longitudinal displacement with high accuracy.

  17. Tear film measurement by optical reflectometry technique.

    Science.gov (United States)

    Lu, Hui; Wang, Michael R; Wang, Jianhua; Shen, Meixiao

    2014-02-01

    Evaluation of tear film is performed by an optical reflectometer system with alignment guided by a galvanometer scanner. The reflectometer system utilizes optical fibers to deliver illumination light to the tear film and collect the film reflectance as a function of wavelength. Film thickness is determined by best fitting the reflectance-wavelength curve. The spectral reflectance acquisition time is 15 ms, fast enough for detecting film thickness changes. Fast beam alignment of 1 s is achieved by the galvanometer scanner. The reflectometer was first used to evaluate artificial tear film on a model eye with and without a contact lens. The film thickness and thinning rate have been successfully quantified with the minimum measured thickness of about 0.3 μm. Tear films in human eyes, with and without a contact lens, have also been evaluated. A high-contrast spectral reflectance signal from the precontact lens tear film is clearly observed, and the thinning dynamics have been easily recorded from 3.69 to 1.31 μm with lipid layer thickness variation in the range of 41 to 67 nm. The accuracy of the measurement is better than ±0.58% of the film thickness at an estimated tear film refractive index error of ±0.001. The fiber-based reflectometer system is compact and easy to handle.

  18. Integration of optical measurement methods with flight parameter measurement systems

    Science.gov (United States)

    Kopecki, Grzegorz; Rzucidlo, Pawel

    2016-05-01

    During the AIM (advanced in-flight measurement techniques) and AIM2 projects, innovative modern techniques were developed. The purpose of the AIM project was to develop optical measurement techniques dedicated for flight tests. Such methods give information about aircraft elements deformation, thermal loads or pressure distribution, etc. In AIM2 the development of optical methods for flight testing was continued. In particular, this project aimed at the development of methods that could be easily applied in flight tests in an industrial setting. Another equally important task was to guarantee the synchronization of the classical measuring system with cameras. The PW-6U glider used in flight tests was provided by the Rzeszów University of Technology. The glider had all the equipment necessary for testing the IPCT (image pattern correlation technique) and IRT (infrared thermometry) methods. Additionally, equipment adequate for the measurement of typical flight parameters, registration and analysis has been developed. This article describes the designed system, as well as presenting the system’s application during flight tests. Additionally, the results obtained in flight tests show certain limitations of the IRT method as applied.

  19. Noncontacting Optical Measurement And Inspection Systems

    Science.gov (United States)

    Asher, Jeffrey A.; Jackson, Robert L.

    1986-10-01

    Product inspection continues to play a growing role in the improvement of quality and reduction of scrap. Recent emphasis on precision measurements and in-process inspection have been a driving force for the development of noncontacting sensors. Noncontacting sensors can provide long term, unattended use due to the lack of sensor wear. Further, in applications where, sensor contact can damage or geometrically change the part to be measured or inspected, noncontacting sensors are the only technical approach available. MTI is involved in the development and sale of noncontacting sensors and custom inspection systems. This paper will review the recent advances in noncontacting sensor development. Machine vision and fiber optics sensor systems are finding a wide variety of industrial inspection applications. This paper will provide detailed examples of several state-of-the-art applications for these noncontacting sensors.

  20. Measurement of Rotatory Optics Element in Tensor Dielectric Matrix for Rotatory Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    LIU Jinghao; ZHANG Xiaofan; LI Huazhou; BAO Zhenwu

    2005-01-01

    The rotatory optics element in the tensor dielectric coefficient matrix is an important parameter for analyzing and calculating a rotatory optical fiber by electromagnetic theory. But the mea-surement of rotatory optics element is difficult for the rotatory optical fiber. A simple principle and method for measuring rotatory optics element are put forward in this paper. Firstly by using electromagnetic theory it was demonstrated that the rotatory optics element has a simple linear relation with the rotatory angle, and then the rotatory optics element has a simple linear relation with the magnetic field strength (or bias current in the helix coil) . Secondly a measurement system for the rotatory optics element in the rotatory optical fiber was designed. Using the measurement system the rotatory element can be obtained by measuring the bias current simply.

  1. Optical dynamic deformation measurements at translucent materials.

    Science.gov (United States)

    Philipp, Katrin; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Fischer, Andreas; Czarske, Jürgen

    2015-02-15

    Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

  2. Displacement and Force Measurements with Quadrant Photodetector in Optical Tweezers

    Institute of Scientific and Technical Information of China (English)

    郭红莲; 刘春香; 李兆霖; 段建发; 韩学海; 程丙英; 张道中

    2003-01-01

    A technique of displacement and force measurements with a photodiode quadrant detector in an optical tweezers system is presented. The stiffness of optical trap is calibrated and the leukemia cell membrane tension is measured.The results show that the optical tweezers combined with the quadrant detector is a very useful tool for detecting the displacement and force with a millisecond-order response.

  3. Optical Parametric Technology for Methane Measurements

    Science.gov (United States)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  4. Optical parametric technology for methane measurements

    Science.gov (United States)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-09-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 μJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  5. Terahertz wave electro-optic measurements with optical spectral filtering

    Energy Technology Data Exchange (ETDEWEB)

    Ilyakov, I. E., E-mail: igor-ilyakov@mail.ru; Shishkin, B. V. [Institute of Applied Physic RAS, Nizhny Novgorod 603950 (Russian Federation); Kitaeva, G. Kh. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Akhmedzhanov, R. A. [Institute of Applied Physic RAS, Nizhny Novgorod 603950 (Russian Federation); N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950 (Russian Federation)

    2015-03-23

    We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.

  6. Electrical, Magnetic, and Optical Measurement Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides tools necessary for electrical, magnetic, and optical characterization of bulk and thin-film materials. This includes the ability to determine the...

  7. Noninvasive blood pressure measurement scheme based on optical fiber sensor

    Science.gov (United States)

    Liu, Xianxuan; Yuan, Xueguang; Zhang, Yangan

    2016-10-01

    Optical fiber sensing has many advantages, such as volume small, light quality, low loss, strong in anti-jamming. Since the invention of the optical fiber sensing technology in 1977, optical fiber sensing technology has been applied in the military, national defense, aerospace, industrial, medical and other fields in recent years, and made a great contribution to parameter measurement in the environment under the limited condition .With the rapid development of computer, network system, the intelligent optical fiber sensing technology, the sensor technology, the combination of computer and communication technology , the detection, diagnosis and analysis can be automatically and efficiently completed. In this work, we proposed a noninvasive blood pressure detection and analysis scheme which uses optical fiber sensor. Optical fiber sensing system mainly includes the light source, optical fiber, optical detector, optical modulator, the signal processing module and so on. wavelength optical signals were led into the optical fiber sensor and the signals reflected by the human body surface were detected. By comparing actual testing data with the data got by traditional way to measure the blood pressure we can establish models for predicting the blood pressure and achieve noninvasive blood pressure measurement by using spectrum analysis technology. Blood pressure measurement method based on optical fiber sensing system is faster and more convenient than traditional way, and it can get accurate analysis results in a shorter period of time than before, so it can efficiently reduce the time cost and manpower cost.

  8. POTDR Measurements on Buried Optical Fibers

    Science.gov (United States)

    2007-11-02

    A. M. Vengsarkar and L. G. Cohen , "Polarization optical time domain reflectometry for statistical evaluation of polarization mode dispersion...312-331 (1983). 14. C. D. Poole and J. Nagel , "Polarization effects in lightwave systems" in Optical Fiber Telecommunications MA, I. P. Kaminow and T

  9. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  10. Optical metrology techniques for dimensional stability measurements

    NARCIS (Netherlands)

    Ellis, Jonathan David

    2010-01-01

    This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.

  11. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography.

    Science.gov (United States)

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-02-10

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3 x 3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  12. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsu-Chih; Liu, Yi-Cheng

    2010-02-10

    Optical coherence tomography (OCT), based on a Michelson interferometer and utilizing low coherence light as the optical source, is a novel technique for the noninvasive imaging of optical scattering media. A simple OCT scheme based on a 3x3 fiber coupler is presented for the simultaneous measurement of the refractive index and thickness of optical samples. The proposed system enables the refractive index and thickness to be determined without any prior knowledge of the sample parameters and is characterized by a simple and compact configuration, a straightforward measurement procedure, and a low cost. The feasibility of the proposed approach is demonstrated experimentally using BK7 and B270 optical glass samples.

  13. Conditional linear-optical measurement schemes generate effective photon nonlinearities

    CERN Document Server

    Lapaire, G G; Dowling, J P; Sipe, J E; Dowling, Jonathan P.

    2003-01-01

    We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.

  14. Laboratory testing & measurement on optical imaging systems

    CSIR Research Space (South Africa)

    Theron, B

    2013-04-01

    Full Text Available  “Rectification” of Greek literature Reproduction of a page of Ibn Sahl's manuscript showing his discovery of the law of refraction”, now known as Snell's law. [5] Some History of Arabic Optics 2 See [4]  Arabic military interest in optics (Caliphs... science. Vol 2. Mathematics and the physical sciences, Routledge, 1996 [5] image used: “Reproduction of a page of Ibn Sahl's manuscript showing his discovery of the law of refraction”, now known as Snell's law.”, image from http...

  15. Compact optical integration instrument to measure intraocular straylight.

    Science.gov (United States)

    Ginis, Harilaos; Sahin, Onurcan; Pennos, Alexandros; Artal, Pablo

    2014-09-01

    Optical measurement of straylight in the human eye is a challenging task. Issues such as illumination geometry, detector sensitivity and dynamic range as well as various inherent artifacts must be addressed. We developed a novel instrument based on the principle of double-pass optical integration adapted for fast measurements in a clinical setting. The experimental setup was validated using four different diffusers introduced in front of the eyes of ten subjects. Measurement limitations and future implications of rapid optical measurement of straylight in ophthalmic diagnosis are discussed.

  16. Perspective of remote optical measurement techniques

    OpenAIRE

    Gregorio, Eduard; Rocadenbosch Burillo, Francisco

    2007-01-01

    This article presents an intercomparison between four different ROMTs: differential optical absorption spectroscopy (DOAS), differential absorption LIDAR (DIAL), Fourier transform infrared spectroscopy (FTIR), and tunable diode laser absorption spectroscopy (TDLAS). The main focus is on the TDLAS technique, where the main laser-diode typologies and modulation schemes, namely, wavelength modulation spectroscopy (WMS) and frequency modulation spectroscopy (FMS), are reviewed. At present, new pr...

  17. Measurement and Correction of the Fermilab Booster Optics with LOCO*

    CERN Document Server

    Tan, C Y; Triplett, A K; McAteer, M

    2015-01-01

    The optics of the original Booster lacked the ability for full optics correction and it was not until 2009 when new optics corrector packages were installed between gradient magnets that this ability became available. The optics correction method that is chosen is called LOCO (Linear Optics from Closed Orbits) that measures the orbit response from every beam position monitor (BPM) in the ring from every kick of every dipole corrector. The large data set collected allows LOCO to not only calculate the quadrupole and skew quadrupole currents that both reduces beta beatings and corrects coupling, it also finds the dipole kicker strengths, BPM calibrations and their tilts by minimizing the difference between the measured and ideal orbit response of the beam. The corrected optics have been loaded into Booster and it is currently being tested to be eventually used in normal operations.

  18. Applied photometry, radiometry, and measurements of optical losses

    CERN Document Server

    Bukshtab, Michael

    2012-01-01

    Applied Photometry, Radiometry, and Measurements of Optical Losses reviews and analyzes physical concepts of radiation transfer, providing quantitative foundation for the means of measurements of optical losses, which affect propagation and distribution of light waves in various media and in diverse optical systems and components. The comprehensive analysis of advanced methodologies for low-loss detection is outlined in comparison with the classic photometric and radiometric observations, having a broad range of techniques examined and summarized: from interferometric and calorimetric, resonator and polarization, phase-shift and ring-down decay, wavelength and frequency modulation to pulse separation and resonant, acousto-optic and emissive - subsequently compared to direct and balancing methods for studying free-space and polarization optics, fibers and waveguides. The material is focused on applying optical methods and procedures for evaluation of transparent, reflecting, scattering, absorbing, and aggregat...

  19. Measuring System of Magnetostriction Under AC Excitation Using Optical Methods

    OpenAIRE

    Nakase, Tomoya; Nakano, Masanori; Fujiwara, F.; TAKAHASHI, N

    1998-01-01

    A measuring system for magnetostriction of silicon steel sheet using optical methods and a single sheet tester has been developed to establish a standard test method for IEC and JIS. Various factors affecting measurement accuracy and reproducibility of the developed system are examined. Two optical instruments, such as a laser Doppler vibrometer and a heterodyne displacement meter, are compared. 3-D characteristics of magnetostriction under ac excitation in the rolling direction are measured ...

  20. Optical fiber sensors measurement system and special fibers improvement

    Science.gov (United States)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment

  1. Measurement of Laterally Induced Optical Forces at the Nanoscale

    CERN Document Server

    Huang, Fei; Wickramasinghe, Hemanta Kumar

    2016-01-01

    We demonstrate the measurement of laterally induced optical forces using an Atomic Force Microscope (AFM). The lateral electric field distribution between a gold coated AFM probe and a nano-aperture in a gold film is mapped by measuring the lateral optical force between the apex of the AFM probe and the nano-aperture. Torsional eigenmodes of an AFM cantilever probe were used to detect the laterally induced optical forces. We engineered the cantilever shape using a focused ion beam to enhance the torsional eigenmode resonance. The measured lateral optical force agrees well with simulations. This technique can be extended to simultaneously detect both lateral and longitudinal optical forces at the nanoscale by using an AFM cantilever as a multichannel detector. This will enable simultaneous Photon Induced Force Microscopy (PIFM) detection of molecular responses with different incident field polarizations. The technique can be implemented on both cantilever and tuning fork based AFMs.

  2. Machine Optics Studies for the LHC Measurements

    CERN Document Server

    Trzebiński, Maciej

    2014-01-01

    In this work the properties of scattered protons in the vicinity of the ATLAS Interaction Point (IP1) for various LHC optics settings are discussed. Firstly, the beam elements installed around IP1 are presented. Then the ATLAS forward detector systems: Absolute Luminosity For ATLAS (ALFA) and ATLAS Forward Protons (AFP) are described and their similarities and differences are discussed. Next, the various optics used at Large Hadron Collider (LHC) are described and the beam divergence and width at the Interaction Point as well as at the ATLAS forward detectors locations are calculated. Finally, the geometric acceptance of the ATLAS forward detectors is shown and the impact of the LHC collimators on it is discussed.

  3. Optical methods for measuring DNA folding

    Science.gov (United States)

    Smith, Adam D.; Ukogu, Obinna A.; Devenica, Luka M.; White, Elizabeth D.; Carter, Ashley R.

    2017-03-01

    One of the most important biological processes is the dynamic folding and unfolding of deoxyribonucleic acid (DNA). The folding process is crucial for DNA to fit within the boundaries of the cell, while the unfolding process is essential for DNA replication and transcription. To accommodate both processes, the cell employs a highly active folding mechanism that has been the subject of intense study over the last few decades. Still, many open questions remain. What are the pathways for folding or unfolding? How does the folding equilibrium shift? And, what is the energy landscape for a particular process? Here, we review these emerging questions and the in vitro, optical methods that have provided answers, introducing the topic for those physicists seeking to step into biology. Specifically, we discuss two iconic experiments for DNA folding, the tethered particle motion (TPM) experiment and the optical tweezers experiment.

  4. Optical skin friction measurement technique in hypersonic wind tunnel

    Science.gov (United States)

    Chen, Xing; Yao, Dapeng; Wen, Shuai; Pan, Junjie

    2016-10-01

    Shear-sensitive liquid-crystal coatings (SSLCCs) have an optical characteristic that they are sensitive to the applied shear stress. Based on this, a novel technique is developed to measure the applied shear stress of the model surface regarding both its magnitude and direction in hypersonic flow. The system of optical skin friction measurement are built in China Academy of Aerospace Aerodynamics (CAAA). A series of experiments of hypersonic vehicle is performed in wind tunnel of CAAA. Global skin friction distribution of the model which shows complicated flow structures is discussed, and a brief mechanism analysis and an evaluation on optical measurement technique have been made.

  5. Measurement of Supersonic Jet Noise with Optical Wave Microphone System

    Institute of Scientific and Technical Information of China (English)

    Masataka KOSAKA; Kunisato SETO; MD. Tawhidul Islam KHAN; Yoichi NAKAZONO

    2005-01-01

    An optical wave microphone system is a new technique of sound measurement. This technique has been developed as a new plasma diagnostic technique to measure electron density fluctuations in the nuclear fusion research. Because the sound wave is a pressure or a density fluctuation, it is possible for this technique to measure the sound wave, too. The acoustical characteristics of the optical wave microphone system were examined by using a speaker as a first step. Next, feasibility of this device to measure jet noise was examined. It was found that the optical wave microphone system could measure the jet noise as well as a sound from speaker.Hence the optical wave microphone system can be considered one of the devices equivalent to condenser microphone. Because of these reason, this device is very convenient to scan the acoustic filed through jet flow from the inside to the out side and more preferable for not disturbing the observation field.

  6. Small Device For Short-Range Antenna Measurements Using Optics

    DEFF Research Database (Denmark)

    Yanakiev, Boyan Radkov; Nielsen, Jesper Ødum; Christensen, Morten

    2011-01-01

    This paper gives a practical solution for implementing an antenna radiation pattern measurement device using optical fibers. It is suitable for anechoic chambers as well as short range channel sounding. The device is optimized for small size and provides a cheap and easy way to make optical antenna...

  7. The Measurement of Displacement and Optical Force in Multi-Optical Tweezers

    Institute of Scientific and Technical Information of China (English)

    LING Lin; GUO Hong-Lian; HUANG Lu; QU E; LI Zhao-Lin; LI Zhi-Yuan

    2012-01-01

    We set up a system of multiple optical tweezers based on a spatial light modulator, and measured the displacement and optical force of the trapped particles simultaneously. All of the trapped particles can be clearly imaged in three dimensions by several CCDs. The displacement is obtained by calculating the gray weighted centroid in the trapped particle's image. The stiffness of the trapped particles in the optical traps is measured by oscillating the sample stage in a triangular wave based on Stokes fluid dynamics. The optical force of each trapped particle can be calculated by the measured displacement and stiffness.%We set up a system of multiple optical tweezers based on a spatial light modulator,and measured the displacement and optical force of the trapped particles simultaneously.All of the trapped particles can be clearly imaged in three dimensions by several CCDs.The displacement is obtained by calculating the gray weighted centroid in the trapped particle's image.The stiffness of the trapped particles in the optical traps is measured by oscillating the sample stage in a triangular wave based on Stokes fluid dynamics.The optical force of each trapped particle can be calculated by the measured displacement and stiffness.

  8. Absolute Measurement Fiber-optic Sensors in Large Structural Monitoring

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The security of civil engineering is an important task due to the economic, social and environmental significance. Compared with conventional sensors, the optical fiber sensors have their unique characteristics.Being durable, stable and insensitive to external perturbations,they are particular interesting for the long-term monitoring of civil structures.Focus is on absolute measurement optical fiber sensors, which are emerging from the monitoring large structural, including SOFO system, F-P optical fiber sensors, and fiber Bragg grating sensors. The principle, characteristic and application of these three kinds of optical fiber sensors are described together with their future prospects.

  9. Improvements for Optics Measurement and Corrections software

    CERN Document Server

    Bach, T

    2013-01-01

    This note presents the improvements for the OMC software during a 14 month technical student internship at CERN. The goal of the work was to improve existing software in terms of maintainability, features and performance. Significant improvements in stability, speed and overall development process were reached. The main software, a Java GUI at the LHC CCC, run for months without noteworthy problems. The overall running time of the software chain used for optics corrections was reduced from nearly half an hour to around two minutes. This was the result of analysing and improving several involved programs and algorithms.

  10. The influence of underwater turbulence on optical phase measurements

    Science.gov (United States)

    Redding, Brandon; Davis, Allen; Kirkendall, Clay; Dandridge, Anthony

    2016-05-01

    Emerging underwater optical imaging and sensing applications rely on phase-sensitive detection to provide added functionality and improved sensitivity. However, underwater turbulence introduces spatio-temporal variations in the refractive index of water which can degrade the performance of these systems. Although the influence of turbulence on traditional, non-interferometric imaging has been investigated, its influence on the optical phase remains poorly understood. Nonetheless, a thorough understanding of the spatio-temporal dynamics of the optical phase of light passing through underwater turbulence are crucial to the design of phase-sensitive imaging and sensing systems. To address this concern, we combined underwater imaging with high speed holography to provide a calibrated characterization of the effects of turbulence on the optical phase. By measuring the modulation transfer function of an underwater imaging system, we were able to calibrate varying levels of optical turbulence intensity using the Simple Underwater Imaging Model (SUIM). We then used high speed holography to measure the temporal dynamics of the optical phase of light passing through varying levels of turbulence. Using this method, we measured the variance in the amplitude and phase of the beam, the temporal correlation of the optical phase, and recorded the turbulence induced phase noise as a function of frequency. By bench marking the effects of varying levels of turbulence on the optical phase, this work provides a basis to evaluate the real-world potential of emerging underwater interferometric sensing modalities.

  11. Fibre-Optic Strain Measurement For Structural Integrity Monitoring

    NARCIS (Netherlands)

    Bruinsma, A.J.A.; Zuylen, P. van; Lamberts, C.W.; Krijger, A.J.T. de

    1984-01-01

    A method is demonstrated for monitoring the structural integrity of large structures, using an optical fibre. The strain distribution along the structure is monitored by measuring the attentuation of light along the length of the fibre.

  12. Measurement of inherent optical properties in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Kurian, J.; Mascarenhas, A.A.M.Q.

    Inherent optical properties, absorption and began attenuation were measured in situ using a reflective tube absorption meter at nint wavelength, 412, 440, 488, 510, 555, 630, 650, 676 and 715 nm, in the Arabian Sea during March. Since inherent...

  13. Comparison of optic area measurement using fundus photography and optical coherence tomography between optic nerve head drusen and control subjects.

    Science.gov (United States)

    Flores-Rodríguez, Patricia; Gili, Pablo; Martín-Ríos, María Dolores; Grifol-Clar, Eulalia

    2013-03-01

    To compare optic disc area measurement between optic nerve head drusen (ONHD) and control subjects using fundus photography, time-domain optical coherence tomography (TD-OCT) and spectral-domain optical coherence tomography (SD-OCT). We also made a comparison between each of the three techniques. We performed our study on 66 eyes (66 patients) with ONHD and 70 healthy control subjects (70 controls) with colour ocular fundus photography at 20º (Zeiss FF 450 IR plus), TD-OCT (Stratus OCT) with the Fast Optic Disc protocol and SD-OCT (Cirrus OCT) with the Optic Disc Cube 200 × 200 protocol for measurement of the optic disc area. The measurements were made by two observers and in each measurement a correction of the image magnification factor was performed. Measurement comparison using the Student's t-test/Mann-Whitney U test, the intraclass correlation coefficient, Pearson/Spearman rank correlation coefficient and the Bland-Altman plot was performed in the statistical analysis. Mean and standard deviation (SD) of the optic disc area in ONHD and in controls was 2.38 (0.54) mm(2) and 2.54 (0.42) mm(2), respectively with fundus photography; 2.01 (0.56) mm(2) and 1.66 (0.37) mm(2), respectively with TD-OCT, and 2.03 (0.49) mm(2) and 1.75 (0.38) mm(2), respectively with SD-OCT. In ONHD and controls, repeatability of optic disc area measurement was excellent with fundus photography and optical coherence tomography (TD-OCT and SD-OCT), but with a low degree of agreement between both techniques. Optic disc area measurement is smaller in ONHD compared to healthy subjects with fundus photography, unlike time-domain and spectral-domain optical coherence tomography in which the reverse is true. Both techniques offer good repeatability, but a low degree of correlation and agreement, which means that optic disc area measurement is not interchangeable or comparable between techniques. Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  14. Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels

    DEFF Research Database (Denmark)

    Hübner, Jörg; Mogensen, Klaus Bo; Jørgensen, Anders Michael

    2001-01-01

    A transportable miniaturized fiber-pigtailed measurement system is presented which allows quantitative fluorescence detection in microliquid handling systems. The microliquid handling chips are made in silica on silicon technology and the optical functionality is monolithically integrated...... with the microfluidic channel system. This results in inherent stability and photolithographic alignment precision. Permanently attached optical fibers provide a rugged connection to the light source, detection, and data processing unit, which potentially allows field use of such systems. Fluorescence measurements...

  15. A Fast and Robust Method for Measuring Optical Channel Gain

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob; Villemoes, L.F.

    2000-01-01

    We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions......We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions...

  16. Determining Aerodynamic Loads Based on Optical Deformation Measurements

    Science.gov (United States)

    Liu, Tianshu; Barrows, D. A.; Burner, A. W.; Rhew, R. D.

    2001-01-01

    This paper describes a videogrammetric technique for determining aerodynamic loads based on optical elastic deformation measurements. The data reduction methods are developed to extract the normal force and pitching moment from beam deformation data. The axial force is obtained by measuring the axial translational motion of a movable shaft in a spring/bearing device. Proof-of-concept calibration experiments are conducted to assess the accuracy of this optical technique.

  17. International standards for optical circuit board fabrication, assembly and measurement

    Science.gov (United States)

    Pitwon, Richard; Immonen, Marika; Wang, Kai; Itoh, Hideo; Shioda, Tsuyoshi; Wu, Jinhua; Zhu, Long Xiu; Yan, Hui Juan; Worrall, Alex

    2016-03-01

    The commercial adoption of electro-optical printed circuit board (EOCB) technology will be accelerated by the development of industrial and conformity standards for high volume fabrication, connector assembly and waveguide measurement. In this paper, we introduce international standardisation activities surrounding EOCBs and report on industrial processes developed for the high volume fabrication of complex EOCBs with embedded multimode polymer waveguides including a first connector standard for polymer waveguide termination. We focus on solving a serious historic problem with the measurement of optical waveguide systems, namely the lack of harmonised measurement conditions for optical waveguides, which to this day gives rise to strong inconsistencies in the results of measurements by different parties on the same waveguide. We report on the development of a standard to ensure repeatable measurement of optical waveguides, whereby we demonstrate how the application of a measurement identification system and proposed reference measurement conditions can bring variation in measurement results to within 5%, thereby serving as the basis for a formal reliable optical waveguide measurement methodology.

  18. Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells.

    Science.gov (United States)

    Hendricks, Adam G; Goldman, Yale E

    2017-01-01

    Optical tweezers have been instrumental in uncovering the mechanisms motor proteins use to generate and react to force. While optical traps have primarily been applied to purified, in vitro systems, emerging methods enable measurements in living cells where the actively fluctuating, viscoelastic environment and varying refractive index complicate calibration of the instrument. Here, we describe techniques to calibrate optical traps in living cells using the forced response to sinusoidal oscillations and spontaneous fluctuations, and to measure the forces exerted by endogenous ensembles of kinesin and dynein motor proteins as they transport cargoes in the cell.

  19. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Ido [Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel); Aluma, Yaniv; Ilan, Micha [Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Kityk, Iwan [Institute of Electronic Systems, Faculty of Electrical Engineering, Czestochowa University, Czestochowa 42-201 (Poland); Mastai, Yitzhak, E-mail: Yitzhak.Mastai@biu.ac.il [Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2015-03-15

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties.

  20. Optical alignment of the Global Precipitation Measurements (GPM) star trackers

    Science.gov (United States)

    Hetherington, Samuel; Osgood, Dean; McMann, Joe; Roberts, Viki; Gill, James; McLean, Kyle

    2013-09-01

    The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship information and matrix transformations necessary to determine star tracker alignment. Unfortunately, due to unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube calibration data, we required a method that could be used to measure the same reference cube faces as originally measured by the vendor. We describe an alternative technique to theodolite autocollimation for measurement of an optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular metrology data.

  1. Electro-optical imaging system performance measurement

    NARCIS (Netherlands)

    Bijl, P.; Toet, A.; Valeton, J.M.

    2003-01-01

    The minimum resolvable temperature difference (MRTD), the minimum resolvable contrast (MRC), and the triangle orientation discrimination (TOD) are end-to-end EO system performance measures; that is, laboratory measures that characterize EO system performance with a human observer in the loop. Such s

  2. Development of a New Generation of Optical Slope Measuring Profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, V.V.; Takacs, P.; McKinney, W.R.; Assoufid, L.; Siewert, F.; Zeschke, T.

    2011-10-26

    A collaboration including all DOE synchrotron laboratories and industrial vendors of X-ray optics, and with active participation of the HBZ-BESSY-II optics group, has been established to work together on a new slope measuring profiler - the Optical Slope Measuring System (OSMS). The slope measurement accuracy of the instrument is expected to be <50 nrad for the current and future metrology of X-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable, and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  3. Development of a new generation of optical slope measuring profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V., E-mail: vvyashchuk@lbl.gov [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Takacs, Peter Z. [Brookhaven National Laboratory, Upton, NY 11973 (United States); McKinney, Wayne R. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Assoufid, Lahsen [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Siewert, Frank; Zeschke, Thomas [Helmholtz Zentrum Berlin fuer Materialien und Energie, Elektronenspeicherring BESSY-II, Albert-Einstein-Street 15, 12489 Berlin (Germany)

    2011-09-01

    A collaboration including all DOE synchrotron laboratories and industrial vendors of X-ray optics, and with active participation of the HBZ-BESSY-II optics group, has been established to work together on a new slope measuring profiler-the Optical Slope Measuring System (OSMS). The slope measurement accuracy of the instrument is expected to be <50 nrad for the current and future metrology of X-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable, and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  4. Development of a new generation of optical slope measuring profiler

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Takacs, Peter Z.; McKinney, Wayne R.; Assoufid, Lahsen; Siewert, Frank; Zeschke, Thomas

    2010-09-16

    A collaboration, including all DOE synchrotron labs, industrial vendors of x-ray optics, and with active participation of the HBZ-BESSY-II optics group has been established to work together on a new slope measuring profiler -- the optical slope measuring system (OSMS). The slope measurement accuracy of the instrument is expected to be<50 nrad for the current and future metrology of x-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable; and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010).

  5. Traceability of optical length measurements on sand surfaces

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Yazdanbakhsh, Seyed Alireza; Tiedje, Niels Skat

    2016-01-01

    This work concerns traceable measurements on moulds used in automatic casting lines made of green sand, which has a very low strength against the force of a contact probe. A metrological set-up was made based on the use of calibrated workpieces following ISO 15530-3 to determine the uncertainty...... of optical measurements on a sand surface. A new customised sand sample was developed using a hard binder to withstand the contact force of a touch probe, while keeping optical cooperativeness similar to that of green sand. The length of the sample was calibrated using a dial gauge set-up. An optical 3D...... scanner with fringe pattern projection was used to measure the length of a green sand sample (soft sample) with traceability transfer through the hard sample. Results confirm that the uncertainty of the optical scanner on the substituted hard sample is similar to that of the soft sample, so the hard...

  6. Measurement of small dispersion values in optical components

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Liu, Fenghai; Pedersen, Rune Johan Skullerud

    1999-01-01

    It is reported that small dispersion values in optical components can be measured using the RF modulation method originally restricted to large dispersions. Using a constant dispersion offset, arbitrarily small dispersion values can be measured with a resolution as good as 1.2 ps/nm.......It is reported that small dispersion values in optical components can be measured using the RF modulation method originally restricted to large dispersions. Using a constant dispersion offset, arbitrarily small dispersion values can be measured with a resolution as good as 1.2 ps/nm....

  7. MIMO channel measurements using optical links on small mobile terminals

    DEFF Research Database (Denmark)

    Yanakiev, Boyan; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2010-01-01

    This paper looks at a novel measurement device for propagation channel measurements using a fiber optic link. Although the idea of using optical links is not new, most of the developments in the area are either too big [5], short range [6] or suitable for anechoic chamber only [7]. The device...... presented here is specifically designed to fit in a very small volume and is optimized for low power consumption (runs on small battery), thus imitating the phone electronics. It can be used for anechoic chamber measurements, however it is designed for long range channel sounding measurements....

  8. Measurement of the thermo-optical effect of integrated waveguides

    Science.gov (United States)

    Kremmel, Johannes; Lamprecht, Tobias; Michler, Markus

    2016-05-01

    Thermo-optical switches are widely used in integrated optics and various types of integrated optical structures have been reported in literature. These structures include, but are not limited to Mach-Zehnder-Interferometer (MZI) switches and digital optical switches. The thermo-optical effect depends on the refractive index, the polarizability and the density of a material. The polarizability effect can often be neglected and the change of refractive index is dominated by a density change due to the thermal expansion of the material. We report herein a new method to measure the thermo-optical effect of waveguides directly, using integrated MZIs fabricated in polymer waveguide technology. Common methods rely on macroscopic samples, but the properties can differ significantly for micro-structured waveguides. Using a floodlight halogen rod lamp and metal-shields, we realized a radiation heater with a trapezoidal-shaped heating pattern. While the heating occurred from the bottom side, a thermocouple was placed on top of the sample. By dynamically measuring the temperature and the corresponding output-power of the MZI, the temperature difference between constructive and destructive interference can be determined. Multiple measurements of different sample MZIs exhibit an average thermo-optical coefficient (TOC) of 1.6 ∗ 10-4 1/K .

  9. Novel method for high accuracy figure measurement of optical flat

    Science.gov (United States)

    E, Kewei; Li, Dahai; Yang, Lijie; Guo, Guangrao; Li, Mengyang; Wang, Xuemin; Zhang, Tao; Xiong, Zhao

    2017-01-01

    Phase Measuring Deflectometry (PMD) is a non-contact, high dynamic-range and full-field metrology which becomes a serious competitor to interferometry. However, the accuracy of deflectometry metrology is strongly influenced by the level of the calibrations, including test geometry, imaging pin-hole camera and digital display. In this paper, we propose a novel method that can measure optical flat surface figure to a high accuracy. We first calibrate the camera using a checker pattern shown on a LCD display at six different orientations, and the last orientation is aligned at the same position as the test optical flat. By using this method, lens distortions and the mapping relationship between the CCD pixels and the subaperture coordinates on the test optical flat can be determined at the same time. To further reduce the influence of the calibration errors on measurements, a reference optical flat with a high quality surface is measured, and then the system errors in our PMD setup can be eliminated by subtracting the figure of the reference flat from the figure of the test flat. Although any expensive coordinates measuring machine, such as laser tracker and coordinates measuring machine are not applied in our measurement, our experimental results of optical flat figure from low to high order aberrations still show a good agreement with that from the Fizeau interferometer.

  10. Space camera optical axis pointing precision measurement system

    Science.gov (United States)

    Chen, Gang; Meng, Fanbo; Yang, Zijun; Guo, Yubo; Ye, Dong

    2016-01-01

    In order to realize the space camera which on satellite optical axis pointing precision measurement, a monocular vision measurement system based on object-image conjugate is established. In this system the algorithms such as object-image conjugate vision models and point by point calibration method are applied and have been verified. First, the space camera axis controller projects a laser beam to the standard screen for simulating the space camera's optical axis. The laser beam form a target point and has been captured by monocular vision camera. Then the two-dimensional coordinates of the target points on the screen are calculated by a new vision measurement model which based on a looking-up and matching table, the table has been generated by object-image conjugate algorithm through point by point calibration. Finally, compare the calculation of coordinates offered by measurement system with the theory of coordinate offered by optical axis controller, the optical axis pointing precision can be evaluated. Experimental results indicate that the absolute precision of measurement system up to 0.15mm in 2m×2m FOV. This measurement system overcome the nonlinear distortion near the edge of the FOV and can meet the requirement of space camera's optical axis high precision measurement and evaluation.

  11. Measurement of the total optical angular momentum transfer in optical tweezers

    CERN Document Server

    Parkin, S; Knoener, G; Nieminen, T A; Rubinsztein-Dunlop, H; Heckenberg, Norman R.; Knoener, Gregor; Nieminen, Timo A.; Parkin, Simon; Rubinsztein-Dunlop, Halina

    2006-01-01

    We describe a way to determine the total angular momentum, both spin and orbital, transferred to a particle trapped in optical tweezers. As an example an LG02 mode of a laser beam with varying degrees of circular polarisation is used to trap and rotate an elongated particle with a well defined geometry. The method successfully estimates the total optical torque applied to the particle. For this technique, there is no need to measure the viscous drag on the particle, as it is an optical measurement. Therefore, knowledge of the particle's size and shape, as well as the fluid's viscosity, is not required.

  12. Hybrid Optical Unobtrusive Blood Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Guangfei Zhang

    2017-07-01

    Full Text Available Blood pressure (BP is critical in diagnosing certain cardiovascular diseases such as hypertension. Some previous studies have proved that BP can be estimated by pulse transit time (PTT calculated by a pair of photoplethysmography (PPG signals at two body sites. Currently, contact PPG (cPPG and imaging PPG (iPPG are two feasible ways to obtain PPG signals. In this study, we proposed a hybrid system (called the ICPPG system employing both methods that can be implemented on a wearable device, facilitating the measurement of BP in an inconspicuous way. The feasibility of the ICPPG system was validated on a dataset with 29 subjects. It has been proved that the ICPPG system is able to estimate PTT values. Moreover, the PTT measured by the new system shows a correlation on average with BP variations for most subjects, which could facilitate a new generation of BP measurement using wearable and mobile devices.

  13. 3D refractive index measurements of special optical fibers

    Science.gov (United States)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  14. Free-form surface measuring method based on optical theodolite measuring system

    Science.gov (United States)

    Yu, Caili

    2012-10-01

    The measurement for single-point coordinate, length and large-dimension curved surface in industrial measurement can be achieved through forward intersection measurement by the theodolite measuring system composed of several optical theodolites and one computer. The measuring principle of flexible large-dimension three-coordinate measuring system made up of multiple (above two) optical theodolites and composition and functions of the system have been introduced in this paper. Especially for measurement of curved surface, 3D measured data of spatial free-form surface is acquired through the theodolite measuring system and the CAD model is formed through surface fitting to directly generate CAM processing data.

  15. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    Science.gov (United States)

    Fuchs, Ido; Aluma, Yaniv; Ilan, Micha; Kityk, Iwan; Mastai, Yitzhak

    2015-03-01

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica.

  16. Optical measurement of surface roughness in manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Brodmann, R.

    1984-11-01

    The measuring system described here is based on the light-scattering method, and was developed by Optische Werke G. Rodenstock, Munich. It is especially useful for rapid non-contact monitoring of surface roughness in production-related areas. This paper outlines the differences between this system and the common stylus instrument, including descriptions of some applications in industry.

  17. Measurement of optical Feshbach resonances in an ideal gas.

    Science.gov (United States)

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  18. Estimating of pulsed electric fields using optical measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Timothy McGuire; Chantler, Gary.

    2013-09-01

    We performed optical electric field measurements ion nanosecond time scales using the electrooptic crystal beta barium borate (BBO). Tests were based on a preliminary bench top design intended to be a proofofprinciple stepping stone towards a modulardesign optical Efield diagnostic that has no metal in the interrogated environment. The long term goal is to field a modular version of the diagnostic in experiments on large scale xray source facilities, or similarly harsh environments.

  19. Measuring optical properties of a blood vessel model using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  20. Axial dependence of optical weak measurements in the critical region

    CERN Document Server

    Araujo, Manoel P; Maia, Gabriel G

    2015-01-01

    The interference between optical beams of different polarizations plays a fundamental role in reproducing the optical analog of the electron spin weak measurement. The extraordinary point in optical weak measurements is represented by the possibility to estimate with great accuracy the Goos-Haenchen (GH) shift by measuring the distance between the peak of the outgoing beams for two opposite rotation angles of the polarizers located before and after the dielectric block. Starting from the numerical calculation of the GH shift, which clearly shows a frequency crossover for incidence near to the critical angle, we present a detailed study of the interference between s and p polarized waves in the critical region. This allows to determine in which conditions it is possible to avoid axial deformations and reproduce the GH curves. In view of a possible experimental implementation, we give the expected weak measurement curves for Gaussian lasers of different beam waist sizes propagating through borosilicate (BK7) an...

  1. Research of optical rotation measurement system based on centroid algorithm

    Science.gov (United States)

    Cao, Junjie; Jia, Hongzhi; Shen, Xinrong; Jiang, Shixin

    2016-09-01

    An optical rotation measurement system based on digital signal processor, modulated laser, and step motor rotating stage is established. Centroid algorithm featured fast and simple calculation is introduced to process light signals with or without sample to obtain the optical rotating angle through the step difference between two centroids. The system performance is proved experimentally with standard quartz tubes and glucose solutions. After various measurements, the relative error and precision of the system are determined to 0.4% and 0.004°, which demonstrates the reliable repeatability and high accuracy of whole measurement system.

  2. Internal Defect Measurement of Scattering Media by Optical Coherence Microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHU Yong-kai; ZHAO Hong; WANG Zhao; WANG Jun-li

    2005-01-01

    Optical coherence microscopy is applied to measure scattering media's internal defect, which based on low coherence interferometry and confocal microscopy. Optical coherence microscopy is more effective in the rejection of out of focus and multiple scattered photons originating further away of the focal plane. With the three-dimension scanning, the internal defect is detected by measuring the thickness of different points on the sample. The axial resolution is 6 μm and lateral resolution is 1.2 μm. This method is possessed of the advantages over the other measurement method of scattering media, such as non-destruction and highresolution.

  3. An Optical Fiber Sensor for Electrification Measurement in Power Transformers

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Static electrification and partial discharges caused by oil flow in power transformers lead to many accidents. In this paper, an optical fiber sensor which can be directly mounted inside high-voltage electric devices for electrification measurement in power transformers is introduced. Unlike the existing normal electrification measurement methods which only be used in static oil, the new one takes optical fiber as its probe and measures the electrification in flowing oil by detecting luminous flux, and is available for on-line monitoring.

  4. Electro-optic probe measurements of electric fields in plasmas

    Science.gov (United States)

    Nishiura, M.; Yoshida, Z.; Mushiake, T.; Kawazura, Y.; Osawa, R.; Fujinami, K.; Yano, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2017-02-01

    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

  5. Optical and mechanical nondestructive tests for measuring tomato fruit firmness

    Science.gov (United States)

    Manivel-Chávez, Ricardo A.; Garnica-Romo, M. G.; Arroyo-Correa, Gabriel; Aranda-Sánchez, Jorge I.

    2011-08-01

    Ripening is one of the most important processes to occur in fruits which involve changes in color, flavor, and texture. An important goal in quality control of fruits is to substitute traditional sensory testing methods with reliable nondestructive tests (NDT). In this work we study the firmness of tomato fruits by using optical and mechanical NDT. Optical and mechanical parameters, measured along the tomato shelf life, are shown.

  6. Fluorescence decay time measurement - a new optical sensing scheme

    Science.gov (United States)

    Draxler, Sonja; Lippitsch, Max E.

    1994-02-01

    Optical sensors often suffer from poor long-term stability. This drawback can be overcome by using fluorescence decay-time measurement as the sensing principle. In this way calibration- free chemical sensors can be developed. The sensing scheme has been used so far mainly in connection with dynamic quenching, for example in oxygen sensors. We have succeeded in extending it to ground-state indicator-analyte reactions, thus obtaining stable optical sensors for decay-time sensing of various analytes.

  7. Non-Invasive Optical Blood Glucose Measurement

    Directory of Open Access Journals (Sweden)

    Megha C.Pande

    2013-07-01

    Full Text Available The method for noninvasively blood glucose monitoring system is discussed in this paper. Lot of research work has been done in developing the device which is completely noninvasive to avoid the pros & cons because of frequent pricking. In this paper we are trying to analyze the noninvasive blood glucose measurement study in the near infrared region which is the most suitable region for blood glucose measurement. For this purpose we use a technique which is similar to pulseoximetry based on near infrared spectrometry .An infrared light of particular wavelength is passed through fingertip containing an arterial pulse component are derived,thus minimizing influences of basal components such as resting blood volume,skin, muscle and bone.

  8. Uncertainty budget for optical coordinate measurements of circle diameter

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    An uncertainty analysis for circle diameter measurements using a coordinate measuring machine (CMM) equipped with an optical probe is presented in this paper. A mathematical model for data evaluation and uncertainty assessment was formulated in accordance with Guide to the Expression of Uncertain...

  9. Optically Powered Temperature Measuring Instrument for Big Rotor①

    Institute of Scientific and Technical Information of China (English)

    ZHENGDezhong

    1997-01-01

    A micro-power consumption non-contact temperature measuring instrument for big rotos is introduced.As it solver very well the signal coupling under high speed rotation and power supply problem for probe,the instrument can realize persistent on-line temperature measurement for big rotor drived by the ordinary light transmitted by optical fiber under the room light.

  10. Novel Fiber Optic Fluorometer for the Measurement of Alga Concentration

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel fluorometer based on fiber optics is briefly introduced for the measurement of alga concentration. Both the exciting light and the fluorescence from alga chlorophyll are transmitted along a fiber cable. By this way, we can get alga concentration by measuring its chlorophyll-a fluorescence intensity. The experiment results show that this instrument is characterized by good sensitivity, linearity and accuracy.

  11. Optical telecom networks as weak measurements with post-selection

    CERN Document Server

    Brunner, N

    2003-01-01

    In this work we establish a link between two apparently unrelated subjects: polarization effects in optical fibers and devices, and the quantum theory of weak measurements. We show that the abstract concept of weak measurements followed by post-selection, introduced a decade ago by quantum theorists, naturally appears in the everyday physics of telecom networks.

  12. Projective measurements in quantum and classical optical systems

    CSIR Research Space (South Africa)

    Roux, FS

    2014-09-01

    Full Text Available Experimental setups for the optical implementation of projective measurements in the Laguerre-Gaussian basis are discussed. Special attention is given to the case where the measurements are made with the aid of single-mode fibers that are used...

  13. Optical fibers and their applications for radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kakuta, Tsunemi [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-07-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as `Key Component` for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  14. Measurement of the Length of an Optical Trap

    Science.gov (United States)

    Wrbanek, Susan Y.

    2010-01-01

    NASA Glenn has been involved in developing optical trapping and optical micromanipulation techniques in order to develop a tool that can be used to probe, characterize, and assemble nano and microscale materials to create microscale sensors for harsh flight environments. In order to be able to assemble a sensor or probe candidate sensor material, it is useful to know how far an optical trap can reach; that is, the distance beyond/below the stable trapping point through which an object will be drawn into the optical trap. Typically, to measure the distance over which an optical trap would influence matter in a horizontal (perpendicular to beam propagation) direction, it was common to hold an object in one optical trap, place a second optical trap a known distance away, turn off the first optical trap, and note if the object was moved into the second trap when it was turned on. The disadvantage of this technique is that it only gives information of trap influence distance in horizontal (x y) directions. No information about the distance of the influence of the trap is gained in the direction of propagation of the beam (the z direction). A method was developed to use a time-of-flight technique to determine the length along the propagation direction of an optical trap beam over which an object may be drawn into the optical trap. Test objects (polystyrene microspheres) were held in an optical trap in a water-filled sample chamber and raised to a pre-determined position near the top of the sample chamber. Next, the test objects were released by blocking the optical trap beam. The test objects were allowed to fall through the water for predetermined periods of time, at the end of which the trapping beam was unblocked. It was noted whether or not the test object returned to the optical trap or continued to fall. This determination of the length of an optical trap's influence by this manner assumes that the test object falls through the water in the sample chamber at

  15. Optical measurements of chemically heterogeneous particulate surfaces

    Science.gov (United States)

    Zubko, Nataliya; Gritsevich, Maria; Zubko, Evgenij; Hakala, Teemu; Peltoniemi, Jouni I.

    2016-07-01

    We experimentally study light scattering by particulate surfaces consisting of two high-contrast materials. Using the Finnish Geodetic Institute field goniospectropolarimeter, reflectance and degree of linear polarization are measured in dark volcanic sand, bright salt (NaCl) and bright ferric sulfate (Fe2(SO4)3); and in mixtures of bright and dark components. We found that the light-scattering response monotonically changes with volume ratio of dark and bright components. In contrast to previous finding, we do not detect an enhancement of the negative polarization amplitude in two-component high-contrast mixtures. Two-component mixtures reveal an inverse correlation between maximum of their linear polarization and reflectance near backscattering, the so-called Umov effect. In log-log scales this inverse correlation takes a linear form for the dark and moderate-dark samples, while for the brightest samples there is a noticeable deviation from the linear trend.

  16. Optical methods for measurements of skin penetration.

    Science.gov (United States)

    Gotter, B; Faubel, W; Neubert, R H H

    2008-01-01

    Fourier transform infrared photoacoustic (PAS), photothermal deflection (PDS) and Raman spectroscopy belong to the modern innovative noninvasive analytical tools that are beginning to be recognized as highly potential techniques for the noninvasive study of biological tissues and human skin under in vivo conditions. They can be applied to obtain information regarding the molecular composition of the skin down to several hundred micrometers below the skin surface. All three methods allow depth-resolved investigations. While PAS and PDS use a frequency modulation of the excitation beam to reach deeper regions in the sample, the principle of confocal Raman microspectroscopy (CRM) is a movement of the specimen in the focal plane. In consideration of depth measurements PAS and PDS complete the applicable spectrum of CRM, since Raman microscopy requires particular transparent materials.

  17. Optics measurements and corrections at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Bai M.; Aronson, J.; Blaskiewicz, M.; Luo, Y.; Robert-Demolaize, G.; White, S.

    2012-05-20

    The further improvement of RHIC luminosity performance requires more precise understanding of the RHIC modeling. Hence, it is necessary to minimize the beta-beat, deviation of measured beta function from the calculated beta functions based on an model. The correction of betabeat also opens up the possibility of exploring operating RHIC polarized protons at a working point near integer, a prefered choice for both luminosity as well as beam polarization. The segment-by-segment technique for reducing beta-beat demonstrated in the LHC operation for reducing the beta-beat was first tested in RHIC during its polarized proton operation in 2011. It was then fully implemented during the RHIC polarized proton operation in 2012. This paper reports the commissioning results. Future plan is also presented.

  18. Optical Fiber Grating Sensor for Force Measurement of Anchor Cable

    Institute of Scientific and Technical Information of China (English)

    JIANG Desheng; FU Jinghua; LIU Shengchun; SUI Lingfeng; FU Rong

    2006-01-01

    The development of the sensor suitable for measuring large load stress to the anchor cable becomes an important task in bridge construction and maintenance. Therefore, a new type of optical fiber sensor was developed in the laboratory - optical fiber grating sensor for force measurement of anchor cable (OFBFMAC). No similar report about this kind of sensor has been found up to now in China and other countries. This sensor is proved to be an effective way of monitoring in processes of anchor cable installation, cable cutting, cable force regulation, etc, with the accurate and repeatable measuring results. Its successful application in the tie bar cable force safety monitoring for Wuhan Qingchuan bridge is a new exploration of optical fiber grating sensing technology in bridge tie bar monitoring system.

  19. Strength measurements of silica optical fibers under severe environment

    Science.gov (United States)

    Severin, I.; El Abdi, R.; Poulain, M.

    2007-03-01

    Optical fibers are key components in telecommunication technologies. Apart from optical specifications, optical fibers are expected to keep most of their physical properties for 10-20 years in current operating conditions. The reliability and the expected lifetime of optical links are closely related to action of the chemical environment on the silica network. However, the coating also contributes largely to the mechanical properties of the fibers. The aim of this work was to study the strength and the mechanical behavior of the silica optical fibers in an acid environment and with a permanent deformation. A container with ammonium bifluoride acid salt was plunged into hot water at different temperatures (55 and 75 °C). This emitted acid vapors which attacked the optical fibers for a period of 1-18 days. An aging study was performed on silica optical fibers with standard polyacrylate coating and with hermetic carbon coating. A dynamic two-point bending bench at different faceplate velocities (100, 200, 400 and 800 μm/s) was used. For comparison, the same dynamic measurements were also carried out on non-aged fibers. After acid vapor condensation, salt crystal deposits on the fibers were displayed using an electron scanning microscope. These crystals became visible to the naked eye from the seventh day.

  20. Accurate measurement of microscopic forces and torques using optical tweezers

    Directory of Open Access Journals (Sweden)

    Andrew Forbes

    2011-09-01

    Full Text Available It is now well known that matter may be trapped by optical fields with high intensity gradients. Once trapped, it is then possible to manipulate microscopic particles using such optical fields, in so-called optical tweezers. Such optical trapping and tweezing systems have found widespread application across diverse fields in science, from applied biology to fundamental physics. In this article we outline the design and construction of an optical trapping and tweezing system, and show how the resulting interaction of the laser light with microscopic particles may be understood in terms of the transfer of linear and angular momentum of light. We demonstrate experimentally the use of our optical tweezing configuration for the measurement of microscopic forces and torques. In particular, we make use of digital holography to create so-called vortex laser beams, capable of transferring orbital angular momentum to particles. The use of such novel laser beams in an optical trapping and tweezing set-up allows for the control of biological species at the single-cell level.

  1. Distributed fibre optic strain measurements on a driven pile

    Science.gov (United States)

    Woschitz, Helmut; Monsberger, Christoph; Hayden, Martin

    2016-05-01

    In civil engineering pile systems are used in unstable areas as a foundation of buildings or other structures. Among other parameters, the load capacity of the piles depends on their length. A better understanding of the mechanism of load-transfer to the soil would allow selective optimisation of the system. Thereby, the strain variations along the loaded pile are of major interest. In this paper, we report about a field trial using an optical backscatter reflectometer for distributed fibre-optic strain measurements along a driven pile. The most significant results gathered in a field trial with artificial pile loadings are presented. Calibration results show the performance of the fibre-optic system with variations in the strain-optic coefficient.

  2. Uncertainty budget for optical coordinate measurements of circle diameter

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    An uncertainty analysis for circle diameter measurements using a coordinate measuring machine (CMM) equipped with an optical probe is presented in this paper. A mathematical model for data evaluation and uncertainty assessment was formulated in accordance with Guide to the Expression of Uncertainty...... in Measurement (GUM). Various input quantities such as CCD camera resolution, influence of illuminating system, CMM errors etc. were considered in the model function and experimentally investigated....

  3. Optical fiber sensor for membrane submicrometer vibration measurement.

    Science.gov (United States)

    Prokopczuk, Krzysztof; Rozwadowski, Krzysztof; Aleksandra Starzyńska, M D; Domański, Andrzej W

    2014-09-10

    This paper presents an optical fiber sensor for membrane submicrometer vibration measurement. The sensor is designed ultimately for low-cost medical audiometric applications such as determining the mobility of the tympanic membrane stimulated by the tone. The sensing method is minimally invasive, and the sensing head does not contact the surface of the membrane. Measurements were performed on tympanic membrane phantoms. Deflections of a few nanometers were measured, and vibration maps of phantoms were taken.

  4. Ship Effect Measurements With Fiber Optic Neutron Detector

    Energy Technology Data Exchange (ETDEWEB)

    King, Kenneth L.; Dean, Rashe A.; Akbar, Shahzad; Kouzes, Richard T.; Woodring, Mitchell L.

    2010-08-10

    The main objectives of this research project was to assemble, operate, test and characterize an innovatively designed scintillating fiber optic neutron radiation detector manufactured by Innovative American Technology with possible application to the Department of Homeland Security screening for potential radiological and nuclear threats at US borders (Kouzes 2004). One goal of this project was to make measurements of the neutron ship effect for several materials. The Virginia State University DOE FaST/NSF summer student-faculty team made measurements with the fiber optic radiation detector at PNNL above ground to characterize the ship effect from cosmic neutrons, and underground to characterize the muon contribution.

  5. Optical telecom networks as weak quantum measurements with post- selection

    CERN Document Server

    Brunner, N; Collins, D; Gisin, Nicolas; Scarani, V; Acin, Antonio; Brunner, Nicolas; Collins, Daniel; Gisin, Nicolas; Scarani, Valerio

    2003-01-01

    We show that weak measurements with post-selection, proposed in the context of the quantum theory of measurement, naturally appear in the everyday physics of fiber optics telecom networks through polarization-mode dispersion (PMD) and polarization-dependent losses (PDL). Specifically, the PMD leads to a time-resolved discrimination of polarization; the post-selection is done in the most natural way: one post-selects those photons that have not been lost because of the PDL. The quantum formalism is shown to simplify the calculation of optical networks in the telecom limit of weak PMD.

  6. Optical telecom networks as weak quantum measurements with postselection.

    Science.gov (United States)

    Brunner, Nicolas; Acín, Antonio; Collins, Daniel; Gisin, Nicolas; Scarani, Valerio

    2003-10-31

    We show that weak measurements with postselection, proposed in the context of the quantum theory of measurement, naturally appear in the everyday physics of fiber optics telecom networks through polarization-mode dispersion (PMD) and polarization-dependent losses (PDL). Specifically, the PMD leads to a time-resolved discrimination of polarization; the postselection is done in the most natural way: one postselects those photons that have not been lost because of the PDL. The quantum formalism is shown to simplify the calculation of optical networks in the telecom limit of weak PMD.

  7. Optical Alignment of the Global Precipitation Measurement (GPM) Star Trackers

    Science.gov (United States)

    Hetherington, Samuel; Osgood, Dean; McMann, Joe; Roberts, Viki; Gill, James; Mclean, Kyle

    2013-01-01

    The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship information and matrix transformations necessary to determine star tracker alignment. Unfortunately, due to unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube calibration data, we required a method that could be used to measure the same reference cube faces as originally measured by the vendor. We describe an alternative technique to theodolite auto-collimation for measurement of an optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular metrology data.

  8. Measurement of laterally induced optical forces at the nanoscale

    Science.gov (United States)

    Huang, Fei; Tamma, Venkata Ananth; Rajaei, Mohsen; Almajhadi, Mohammad; Kumar Wickramasinghe, H.

    2017-02-01

    We demonstrate the measurement of laterally induced optical forces using an Atomic Force Microscope (AFM). The lateral electric field distribution between a gold coated AFM probe and a single nano-aperture in a gold film is mapped by measuring the lateral optical force between the apex of the AFM probe and the nano-aperture. The fundamental torsional eigen-mode of an AFM cantilever probe was used to detect the laterally induced optical forces. We engineered the cantilever shape using focused ion beam milling to improve the detected signal to noise ratio. The measured distributions of lateral optical force agree well with electromagnetic simulations of the metal coated AFM probe interacting with the nano-aperture. This technique can be extended to simultaneously detect both lateral and longitudinal optical forces at the nanoscale by using an AFM cantilever as a multi-channel detector. This will enable simultaneous Photon Induced Force Microscopy detection of molecular responses with different incident field polarizations. The technique can be implemented on both cantilever and tuning fork based AFMs.

  9. Optics measurement and correction for the Relativistic Heavy Ion Collider

    Science.gov (United States)

    Shen, Xiaozhe

    The quality of beam optics is of great importance for the performance of a high energy accelerator like the Relativistic Heavy Ion Collider (RHIC). The turn-by-turn (TBT) beam position monitor (BPM) data can be used to derive beam optics. However, the accuracy of the derived beam optics is often limited by the performance and imperfections of instruments as well as measurement methods and conditions. Therefore, a robust and model-independent data analysis method is highly desired to extract noise-free information from TBT BPM data. As a robust signal-processing technique, an independent component analysis (ICA) algorithm called second order blind identification (SOBI) has been proven to be particularly efficient in extracting physical beam signals from TBT BPM data even in the presence of instrument's noise and error. We applied the SOBI ICA algorithm to RHIC during the 2013 polarized proton operation to extract accurate linear optics from TBT BPM data of AC dipole driven coherent beam oscillation. From the same data, a first systematic estimation of RHIC BPM noise performance was also obtained by the SOBI ICA algorithm, and showed a good agreement with the RHIC BPM configurations. Based on the accurate linear optics measurement, a beta-beat response matrix correction method and a scheme of using horizontal closed orbit bumps at sextupoles for arc beta-beat correction were successfully applied to reach a record-low beam optics error at RHIC. This thesis presents principles of the SOBI ICA algorithm and theory as well as experimental results of optics measurement and correction at RHIC.

  10. Research on optical measurement for additive manufacturing surfaces

    Science.gov (United States)

    Cheng, Fang; Fu, Shao Wei; Leong, Yong Shin

    2017-02-01

    Surfaces made by Additive Manufacturing (AM) processes normally show higher roughness and more complicated microstructures than conventional machined surfaces. In this study, AM surface roughness measurements using both tactile and optical techniques are analyzed, theoretically and experimentally. Analytical results showed both techniques have comparable performance when measuring AM samples with good surface integrity. For surfaces with steep features, coherence scanning interferometry showed more reliable performance especially when peak-to-valley value was required. In addition of the benchmarking study, development of a low-cost measurement system, using laser confocal technology, is also presented in this paper. By comparing the measurement results with those from a coherent scanning interferometer, accuracy levels of the proposed system can be evaluated. It was concluded that with comparable accuracy, the proposed low-cost optical system was able to achieve much faster measurements, which would make it possible for in-situ surface quality checking.

  11. Estimation of measuring uncertainty for optical micro-coordinate measuring machine

    Institute of Scientific and Technical Information of China (English)

    Kang Song(宋康); Zhuangde Jiang(蒋庄德)

    2004-01-01

    Based on the evaluation principle of the measuring uncertainty of the traditional coordinate measuring machine (CMM), the analysis and evaluation of the measuring uncertainty for optical micro-CMM have been made. Optical micro-CMM is an integrated measuring system with optical, mechanical, and electronic components, which may influence the measuring uncertainty of the optical micro-CMM. If the influence of laser speckle is taken into account, its longitudinal measuring uncertainty is 2.0 μm, otherwise it is 0.88 μm. It is proved that the estimation of the synthetic uncertainty for optical micro-CMM is correct and reliable by measuring the standard reference materials and simulating the influence of the diameter of laser beam. With Heisenberg's uncertainty principle and quantum mechanics theory, a method for improving the measuring accuracy of optical micro-CMM through adding a diaphragm in the receiving terminal of the light path was proposed, and the measuring results are verified by experiments.

  12. Comparison of two different methods for the uncertainty estimation of circle diameter measurements using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the uncertainty estimation of measurements performed on optical coordinate measuring machines (CMMs). Two different methods were used to assess the uncertainty of circle diameter measurements using an optical CMM: the sensitivity analysis developing an uncertainty budget...

  13. Absolute small-angle measurement based on optical feedback interferometry

    Institute of Scientific and Technical Information of China (English)

    Jingang Zhong; Xianhua Zhang; Zhixiang Ju

    2008-01-01

    We present a simple but effective method for small-angle measurement based on optical feedback inter-ferometry (or laser self-mixing interferometry). The absolute zero angle can be defined at the biggest fringe amplitude point, so this method can also achieve absolute angle measurement. In order to verify the method, we construct an angle measurement system. The Fourier-transform method is used to analysis the interference signal. Rotation angles are experimentally measured with a resolution of 10-6 rad and a measurement range of approximately from -0.0007 to +0.0007 rad.

  14. A displacement measurement system based on optical triangulation method

    Institute of Scientific and Technical Information of China (English)

    FU Xian-bin; LIU Bin; ZHANG Yu-cun

    2011-01-01

    A new displacement measurement system is described in this paper according to the basic principles of traditional laser triangulation method.The range of the traditional measuring method is enlarged by measuring in sections.Three independent CCDs,which are distributed uniformly along the optical axis,are used to achieve subsection measurement.The plane mirror is regarded as a virtual detector.When imaging beam is reflected by the plane mirror,the beam is imaged on the CCD.The designed system is equivalent to add a CCD.The feasibility of the displacement measurement system is verified by the experiment.

  15. Measuring Large Optical Transmission Matrices of Disordered Media

    Science.gov (United States)

    Choi, Wonshik; Lee, Ji Oon; Feld, Michael S.; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We report a measurement of the large optical transmission matrix (TM) of a complex turbid medium. The TM is acquired using polarization-sensitive, full-field interferometric microscopy equipped with a rotating galvanometer mirror. It is represented with respect to input and output bases of optical modes, which correspond to plane wave components of the respective illumination and transmitted waves. The modes are sampled so finely in angular spectrum space that their number exceeds the total number of resolvable modes for the illuminated area of the sample. As such, we investigate the singular value spectrum of the TM in order to detect evidence of open transmission channels, predicted by random-matrix theory. Our results comport with theoretical expectations, given the experimental limitations of the system. We consider the impact of these limitations on the usefulness of transmission matrices in optical measurements. PMID:24160602

  16. Optical sensor for measuring humidity, strain and temperature

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to an optical sensor (100) adapted to measure at least three physical parameters, said optical sensor comprising a polymer-based optical waveguide structure comprising a first Bragg grating structure (101) being adapted to provide information about a first, a second...... and a third physical parameter, a second Bragg grating structure (102) being adapted to provide information about the second and the third physical parameter only, and a third Bragg grating structure (103) being adapted to provide information about the third physical parameter only. The invention further...... relates to a method for measuring the first, the second and the third physical parameter. Preferably, the first, the second and the third physical parameter, are humidity, strain and temperature, respectively....

  17. Measuring large optical transmission matrices of disordered media.

    Science.gov (United States)

    Yu, Hyeonseung; Hillman, Timothy R; Choi, Wonshik; Lee, Ji Oon; Feld, Michael S; Dasari, Ramachandra R; Park, YongKeun

    2013-10-11

    We report a measurement of the large optical transmission matrix (TM) of a complex turbid medium. The TM is acquired using polarization-sensitive, full-field interferometric microscopy equipped with a rotating galvanometer mirror. It is represented with respect to input and output bases of optical modes, which correspond to plane wave components of the respective illumination and transmitted waves. The modes are sampled so finely in angular spectrum space that their number exceeds the total number of resolvable modes for the illuminated area of the sample. As such, we investigate the singular value spectrum of the TM in order to detect evidence of open transmission channels, predicted by random-matrix theory. Our results comport with theoretical expectations, given the experimental limitations of the system. We consider the impact of these limitations on the usefulness of transmission matrices in optical measurements.

  18. Comparative study of optic disc measurement by Copernicus optical coherence tomography and Heidelberg retinal tomography.

    Science.gov (United States)

    Yang, Qing-Song; Yu, Ya-Jie; Li, Shu-Ning; Liu, Juan; Hao, Ying-Juan

    2012-08-01

    Copernicus optical coherence tomography (SOCT) is a new, ultra high-speed and high-resolution instrument available for clinical evaluation of optic nerve. The purpose of the study was to compare the agreements between SOCT and Heidelberg retinal tomography (HRT). A total of 44 healthy normal volunteers were recruited in this study. One eye in each subject was selected randomly. Agreement between SOCT and HRT-3 in measuring optic disc area was assessed using Bland-Altman plots. Relationships between measurements of optic nerve head parameter obtained by SOCT and HRT-3 were assessed by Pearson correlation. There was no significant difference in the average cup area (0.306 vs. 0.355 mm, P = 0.766), cup volume (0.158 vs. 0.130 mm, P = 0.106) and cup/disc ration (0.394 vs. 0.349 mm, P = 0.576) measured by the two instruments. However, other optic disc parameters from SOCT were significantly lower compared with HRT-3. The Bland-Altman plot revealed good agreement of cup area and cup volume measured by SOCT and HRT-3. Bad agreement of disc area, rim area, rim volume and cup/disc ratio were found between SOCT and HRT-3. The highest correlations between the two instruments were observed for cup area (r(2) = 0.783, P = 0.000) and cup/disc ratio (r(2) = 0.669, P = 0.000), whereas the lowest correlation was observed for disc area (r(2) = 0.100, P = 0.037), rim area (r(2) = 0.275, P = 0.000), cup volume (r(2) = 0.005, P = 0.391) and rim volume (r(2) = 0.021, P = 0.346). There were poor agreements between SOCT and HRT-3 for measurement of optic nerve parameters except cup area and cup volume. Measurement results of the two instruments are not interchangeable.

  19. Optical Effects at projection measurements for Terahertz tomography

    Science.gov (United States)

    Brahm, A.; Wilms, A.; Tymoshchuk, M.; Grossmann, C.; Notni, G.; Tünnermann, A.

    2014-10-01

    Optical effects like refraction, diffraction and edge effects have an influence on Terahertz measurements. They can result in image artifacts which makes it difficult to detect and resolve material defects inside the samples. We used a geometrical optical ray tracing approach to analyze the optical effects at Terahertz projection measurements which can be used to perform 2D or 3D THz images. We measured rectangular and cylindrical samples made of PEEK (Polyetheretherketon), POM (Polyoxymethylen), and PMMA (Polymethylmethacrylat) and compared the results to simulations that are realized with the software ZEMAX. We were able to simulate the measured Fresnel refraction and transmission behavior for rectangular cuboids with a length of 25 mm and cylinders with diameter of 25 mm. We showed the influence of diffraction and edge effects at samples with different sizes made of PMMA. Thus, the optical effect of refraction was significant and observable for cylinders with diameters greater than 1.5 mm and holes with diameter greater than 2.5 mm.

  20. Optical vibration and deviation measurement of rotating machine parts

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    It is of interest to get appropriate information about the dynamic behaviour of rotating machinery parts in service. This paper presents an approach of optical vibration and deviation measurement of such parts. Essential of this method is an image derotator combined with a high speed camera or a laser doppler vibrometer (LDV).

  1. Measuring System for Interference Optical Fiber Acoustic Emission①

    Institute of Scientific and Technical Information of China (English)

    LUQizhu; ZHENGShengxuan

    1997-01-01

    A type of interference optical fiber acoustic emission sensor is described.With 10-10 m level resolution,megahertz-level frequency and response time less than 1 μs,this sensor possesses prominent measuring stability and can be used in state supervision and trouble diagnosis.

  2. Optical Transmission Line For Streak Camera Measurements at Pitz

    CERN Document Server

    Bähr, J; Lüdecke, H

    2003-01-01

    The photoinjector injector test facility at DESY Zeuthen (PITZ) [1] produces electrons with a momentum of about 4 MeV/c. It is the aim to measure the temporal characteristics of the electron bunch train and single bunches with high accuracy of the order of 1 ps and less. Several types of streak cameras will be used in combination with different radiators which transform particle energy in light. The problem to be solved is the light transport over a distance of about 27 m. Basic demands to the optical system and design principles will be explained. The optical and technical solutions will be presented. The strategy of adjustment and commissioning of the optical system will be described. The system contains switchable optics to use different radiators (OTR, Cherenkov radiators). Diagnostic tools are foreseen at different positions along the optical axis. The results of different measurements in the lab and using the original system will be presented. The problems on the minimalization of the time dipersion in ...

  3. Quantum metrology. Optically measuring force near the standard quantum limit.

    Science.gov (United States)

    Schreppler, Sydney; Spethmann, Nicolas; Brahms, Nathan; Botter, Thierry; Barrios, Maryrose; Stamper-Kurn, Dan M

    2014-06-27

    The Heisenberg uncertainty principle sets a lower bound on the noise in a force measurement based on continuously detecting a mechanical oscillator's position. This bound, the standard quantum limit, can be reached when the oscillator subjected to the force is unperturbed by its environment and when measurement imprecision from photon shot noise is balanced against disturbance from measurement back-action. We applied an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity and measured the resulting motion optically. When the driving force is resonant with the cloud's oscillation frequency, we achieve a sensitivity that is a factor of 4 above the standard quantum limit and consistent with theoretical predictions given the atoms' residual thermal disturbance and the photodetection quantum efficiency.

  4. Optically Measuring Force near the Standard Quantum Limit

    CERN Document Server

    Schreppler, Sydney; Brahms, Nathan; Botter, Thierry; Barrios, Maryrose; Stamper-Kurn, Dan M

    2013-01-01

    The Heisenberg uncertainty principle sets a lower bound on the sensitivity of continuous optical measurements of force. This bound, the standard quantum limit, can only be reached when a mechanical oscillator subjected to the force is unperturbed by its environment, and when measurement imprecision from photon shot-noise is balanced against disturbance from measurement backaction. We apply an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity. The optomechanically transduced response clearly demonstrates the trade-off between measurement imprecision and back-action noise. We achieve a sensitivity that is consistent with theoretical predictions for the quantum limit given the atoms' slight residual thermal disturbance and the photodetection quantum efficiency, and is a factor of 4 above the absolute standard quantum limit.

  5. Photoacoustic Doppler flow measurement in optically scattering media

    Science.gov (United States)

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V.

    2007-12-01

    We recently observed the photoacoustic Doppler effect from flowing small light-absorbing particles. Here, we apply the effect to measure blood-mimicking fluid flow in an optically scattering medium. The light scattering in the medium decreases the amplitude of the photoacoustic Doppler signal but does not affect either the magnitude or the directional discrimination of the photoacoustic Doppler shift. This technology may hold promise for a new Doppler method for measuring blood flow in microcirculation with high sensitivity.

  6. Aircraft Transparency Optical Quality: New Methods of Measurement

    Science.gov (United States)

    1981-02-01

    AFAMRL.TR-1-21 X AIRCRAFT TRANSPARENCY OPTICAL QUALITY: NEW METHODS OF MEASUREMENT LOUIS V. GENCO , O.D., Lt. Colonel HARRY L. TASK, Ph.D. FEBRUARY...aircraft transparency with simple modifications of a positioning fixture ( Genco , 1979). DESIRABLE CHARACTERISTICS The ideal field evaluation unit for...34Windscreen Angular Deviation Measurement Device," U.S. Air Force Invention No. 13647, Patent Pending. Task, Harry L., Louis V. Genco , and Kenneth L. Smith

  7. Optical Telecom Networks as Weak Quantum Measurements with Postselection

    OpenAIRE

    Brunner, Nicolas; Acin, Antonio; Collins, Daniel Geoffrey; Gisin, Nicolas; Scarani, Valerio

    2003-01-01

    We show that weak measurements with post-selection, proposed in the context of the quantum theory of measurement, naturally appear in the everyday physics of fiber optics telecom networks through polarization-mode dispersion (PMD) and polarization-dependent losses (PDL). Specifically, the PMD leads to a time-resolved discrimination of polarization; the post-selection is done in the most natural way: one post-selects those photons that have not been lost because of the PDL. The quantum formali...

  8. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    Science.gov (United States)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  9. IR Optics Measurement with Linear Coupling's Action-Angle Parameterization

    CERN Document Server

    Luo, Yun; Pilat, Fulvia Caterina; Satogata, Todd; Trbojevic, Dejan

    2005-01-01

    The interaction region (IP) optics are measured with the two DX/BPMs close to the IPs at the Relativistic Heavy Ion Collider (RHIC). The beta functions at IP are measured with the two eigenmodes' phase advances between the two BPMs. And the beta waists are also determined through the beta functions at the two BPMs. The coupling parameters at the IPs are also given through the linear coupling's action-angle parameterization. All the experimental data are taken during the driving oscillations with the AC dipole. The methods to do these measurements are discussed. And the measurement results during the beta*

  10. AC dipole based optics measurement and correction at RHIC

    CERN Document Server

    Shen, X; Bai, M; White, S; Robert-Domolaize, G; Luo, Y; Marusic, A; Tomas, R

    2013-01-01

    Independent component analysis (ICA) was applied to the AC dipole based optics measurement at RHIC to extract beta functions as well as phase advances at each BPM. Existence of excessive beta-beat was observed in both rings of RHIC at polarized proton store energy. A unique global optics correction scheme was then developed and tested successfully during the RHIC polarized proton run in 2013. The feasibility of using horizontal closed orbit bump at sextupole for arc beta-beat correction was also demonstrated.

  11. Differential optical absorption spectrometer for measurement of tropospheric pollutants.

    Science.gov (United States)

    Evangelisti, F; Baroncelli, A; Bonasoni, P; Giovanelli, G; Ravegnani, F

    1995-05-20

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO(2), NO(2), O(3), and HNO(2) averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  12. Automatic quadrature control and measuring system. [using optical coupling circuitry

    Science.gov (United States)

    Hamlet, J. F. (Inventor)

    1974-01-01

    A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.

  13. Biochemical measurement of bilirubin with an evanescent wave optical sensor

    Science.gov (United States)

    Poscio, Patrick; Depeursinge, Christian D.; Emery, Y.; Parriaux, Olivier M.; Voirin, Guy

    1991-09-01

    Optical sensing techniques can be considered as powerful information sources on the biochemistry of tissue, blood, and physiological fluids. Various sensing modalities can be considered: spectroscopic determination of the fluorescence or optical absorption of the biological medium itself, or more generally, of a reagent in contact with the biological medium. The principle and realization of the optical sensor developed are based on the use of polished fibers: the cladding of a monomode fiber is removed on a longitudinal section. The device can then be inserted into an hypodermic needle for in-vivo measurements. Using this minute probe, local measurements of the tissue biochemistry or metabolic processes can be obtained. The sensing mechanism is based on the propagation of the evanescent wave in the tissues or reagent: the proximity of the fiber core allows the penetration of the model field tail into the sensed medium, with a uniquely defined field distribution. Single or multi-wavelength analysis of the light collected into the fiber yields the biochemical information. Here an example of this sensing technology is discussed. In-vitro measurement of bilirubin in gastric juice demonstrates that the evanescent wave optical sensor provides a sensitivity which matches the physiological concentrations. A device is proposed for in-vivo monitoring of bilirubin concentration in the gastro-oesophageal tract.

  14. Experimental arrangement to measure dispersion in optical fiber devices

    Energy Technology Data Exchange (ETDEWEB)

    Armas Rivera, Ivan [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica (Mexico); Beltran Perez, Georgina; Castillo Mixcoatl, Juan; Munoz Aguirre, Severino [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas (Mexico); Zaca Moran, Placido, E-mail: ivan_rr1@hotmail.com [Benemerita Universidad Autonoma de Puebla, Fisicoquimica de Materiales ICUAP (Mexico)

    2011-01-01

    Dispersion is a quite important parameter in systems based on optical fiber, especially in pulsed emission lasers, where the temporal width is affected by such parameter. Therefore, it is necessary to consider the dispersion provoked by each component in the cavity. There are various experimental interferometric arrangements to evaluate this parameter. Generally, these systems modify the wavelength to obtain information about the n({lambda}) dependency, which is contained in the interferogram phase. However, this makes the system quite slow and it requires tunable and narrow bandwidth laser sources. In the present work, results obtained from an arrangement based on Mach-Zehnder interferometer where one of the arms is the optical fiber under study, while the reference one is air, are presented. In order to determine the n({lambda}) dependency, a wide spectrum light source was used in the wavelength range of interest. The phase information was evaluated from the interferometric signal measured by an optical spectrum analyzer.

  15. Optical tweezers force measurements to study parasites chemotaxis

    Science.gov (United States)

    de Thomaz, A. A.; Pozzo, L. Y.; Fontes, A.; Almeida, D. B.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.; Ayres, D. C.; Giorgio, S.; Cesar, C. L.

    2009-07-01

    In this work, we propose a methodology to study microorganisms chemotaxis in real time using an Optical Tweezers system. Optical Tweezers allowed real time measurements of the force vectors, strength and direction, of living parasites under chemical or other kinds of gradients. This seems to be the ideal tool to perform observations of taxis response of cells and microorganisms with high sensitivity to capture instantaneous responses to a given stimulus. Forces involved in the movement of unicellular parasites are very small, in the femto-pico-Newton range, about the same order of magnitude of the forces generated in an Optical Tweezers. We applied this methodology to investigate the Leishmania amazonensis (L. amazonensis) and Trypanossoma cruzi (T. cruzi) under distinct situations.

  16. Step-height measurements on sand surfaces: A comparison between optical scanner and coordinate measuring machine

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Yazdanbakhsh, Seyed Alireza; Tiedje, Niels Skat

    2016-01-01

    the same routine to touch the different positions on the polygonised mesh. Each measurement was repeated 5 times. The results of step height measurements on sand surfaces showed a maximum error of ± 12 µm for CMM, while scanner shows only ± 4 µm. Generally speaking, optical step height values were measured...

  17. Parallel changes in structural and functional measures of optic nerve myelination after optic neuritis.

    Directory of Open Access Journals (Sweden)

    Anneke van der Walt

    Full Text Available Visual evoked potential (VEP latency prolongation and optic nerve lesion length after acute optic neuritis (ON corresponds to the degree of demyelination, while subsequent recovery of latency may represent optic nerve remyelination. We aimed to investigate the relationship between multifocal VEP (mfVEP latency and optic nerve lesion length after acute ON.Thirty acute ON patients were studied at 1, 3, 6 and 12 months using mfVEP and at 1 and 12 months with optic nerve MRI. LogMAR and low contrast visual acuity were documented. By one month, the mfVEP amplitude had recovered sufficiently for latency to be measured in 23 (76.7% patients with seven patients having no recordable mfVEP in more than 66% of segments in at least one test. Only data from these 23 patients was analysed further.Both latency and lesion length showed significant recovery during the follow-up period. Lesion length and mfVEP latency were highly correlated at 1 (r = 0.94, p = <0.0001 and 12 months (r = 0.75, p < 0.001. Both measures demonstrated a similar trend of recovery. Speed of latency recovery was faster in the early follow-up period while lesion length shortening remained relatively constant. At 1 month, latency delay was worse by 1.76 ms for additional 1mm of lesion length while at 12 months, 1mm of lesion length accounted for 1.94 ms of latency delay.A strong association between two putative measures of demyelination in early and chronic ON was found. Parallel recovery of both measures could reflect optic nerve remyelination.

  18. Parallel changes in structural and functional measures of optic nerve myelination after optic neuritis.

    Science.gov (United States)

    van der Walt, Anneke; Kolbe, Scott; Mitchell, Peter; Wang, Yejun; Butzkueven, Helmut; Egan, Gary; Yiannikas, Con; Graham, Stuart; Kilpatrick, Trevor; Klistorner, Alexander

    2015-01-01

    Visual evoked potential (VEP) latency prolongation and optic nerve lesion length after acute optic neuritis (ON) corresponds to the degree of demyelination, while subsequent recovery of latency may represent optic nerve remyelination. We aimed to investigate the relationship between multifocal VEP (mfVEP) latency and optic nerve lesion length after acute ON. Thirty acute ON patients were studied at 1, 3, 6 and 12 months using mfVEP and at 1 and 12 months with optic nerve MRI. LogMAR and low contrast visual acuity were documented. By one month, the mfVEP amplitude had recovered sufficiently for latency to be measured in 23 (76.7%) patients with seven patients having no recordable mfVEP in more than 66% of segments in at least one test. Only data from these 23 patients was analysed further. Both latency and lesion length showed significant recovery during the follow-up period. Lesion length and mfVEP latency were highly correlated at 1 (r = 0.94, p = <0.0001) and 12 months (r = 0.75, p < 0.001). Both measures demonstrated a similar trend of recovery. Speed of latency recovery was faster in the early follow-up period while lesion length shortening remained relatively constant. At 1 month, latency delay was worse by 1.76 ms for additional 1mm of lesion length while at 12 months, 1mm of lesion length accounted for 1.94 ms of latency delay. A strong association between two putative measures of demyelination in early and chronic ON was found. Parallel recovery of both measures could reflect optic nerve remyelination.

  19. Interferometric strain measurements with a fiber-optic probe

    Science.gov (United States)

    Burnham-Fay, E. D.; Jacobs-Perkins, D. W.; Ellis, J. D.

    2015-09-01

    Experience at the Laboratory for Laser Energetics has shown that broadband base vibrations make it difficult to position cryogenic inertial confinement fusion targets. These effects must be mitigated for National Ignition Facility-scale targets; to this end an active vibration stabilization system is proposed. A single-mode optical fiber strain probe and a novel fiber contained heterodyne interferometer have been developed as a position feedback sensor for the vibration control system. A resolution limit of 54.5 nƐ; is measured with the optical strain gauge, limited by the lock-in amplifier. Experimental measurements of the sensor that show good agreement with reference resistive strain gauge measurements are presented.

  20. Measuring large optical reflection matrices of turbid media

    CERN Document Server

    Yu, Hyeonseung; Park, YongKeun

    2015-01-01

    We report the measurement of a large optical reflection matrix (RM) of a highly disordered medium. Incident optical fields onto a turbid sample are controlled by a spatial light modulator, and the corresponding fields reflected from the sample are measured using full-field Michelson interferometry. The number of modes in the measured RM is set to exceed the number of resolvable modes in the scattering media. We successfully study the subtle intrinsic correlations in the RM which agrees with the theoretical prediction by random-matrix theory when the effect of the limited numerical aperture on the eigenvalue distribution of the RM is taken into account. The possibility of the enhanced delivery of incident energy into scattering media is also examined from the eigenvalue distribution which promises efficient light therapeutic applications.

  1. Optical measurements of degradation in aircraft boundary layers

    Science.gov (United States)

    Kelsall, D.

    1980-01-01

    Visible wavelength measurements of the degradation of optical beams when transmitted through the thin aerodynamic boundary layers around an aircraft are reviewed. The measured results indicated degradation levels for the KC-135 airplanes between 0.10 to 0.13 lambda increasing to 0.18 lambda (rms wavefront distortion). For the Lear Jet, degradation with a 25 mm diameter optics was roughly 0.07 lambda. The corresponding infinite aperture degradation levels are also calculated. The corresponding measured correlation lengths of roughly 12 mm for the KC-135 aircraft and 6 mm for the Lear Jet scale to roughly 20 and 25 mm, respectively, for infinite apertures. These boundary layer correlation lengths do not appear to reflect the different boundary layer thicknesses on the two different aircraft.

  2. Optical displacement measurement using a monolithic Michelson interferometer

    Science.gov (United States)

    Hofstetter, Daniel; Zappe, Hans P.

    1997-04-01

    Contactless optical displacement measurement has the potential for a variety of industrial and scientific applications. For highly accurate displacement measurements at distances below 1 m, interferometric methods are preferred over most other methods. This is mainly because of the good resolution and the possibility of doing the measurements in real-time. Furthermore, the use of direct bandgap semiconductor materials also enables the fabrication of a compact interferometer-based device which unites all necessary components, including the light emitter, on a single chip. In this paper, a monolithically integrated optical displacement sensor fabricated in the GaAs/AlGaAs material system is reported. This single chip microsystem is configured as a double Michelson interferometer and comprises a distributed Bragg reflector laser, photodetectors, phase shifters and waveguide couplers. In the course of this paper, we will also briefly discuss possible scientific and industrial applications of such devices.

  3. Remote optical sensor system for E-field measurements

    Science.gov (United States)

    Heinzelmann, Robert; Stoehr, Andreas; Alder, Thomas; Kalinowski, D.; Schmidt, Manuel; Gross, Matthias; Jaeger, Dieter

    1998-12-01

    The concept of a remote optical sensor system for frequency selective electric field measurements will be presented. The system will be applicable to field measurement problems up to frequencies in the microwave regime. Additionally, it will provide minimum interference with the measured field, due to the optical fiber coupled sensor head. The electrooptic key components within the head of this sensor system are an array of photovoltaic cells and an electroabsorption waveguide modulator. Based on experimental results these components will be discussed and evaluated for the application within the sensor system. Furthermore, a novel fiber modulator coupling technique employing the monolithic integration of the device with InP V-grooves will be presented.

  4. Optical diffraction for measurements of nano-mechanical bending

    CERN Document Server

    Hermans, Rodolfo I; Ndieyira, Joseph Wafula; McKendry, Rachel A; Aeppli, Gabriel

    2015-01-01

    Micromechanical transducers such as cantilevers for AFM often rely on optical readout methods that require illumination of a specific region of the microstructure. Here we explore and exploit the diffraction effects that have been previously neglected when modeling cantilever bending measurement techniques. The illumination of a cantilever end causes an asymmetric diffraction pattern at the photodetector that significantly affects the calibration of the signal in the popular optical beam deflection technique (OBDT). Conditions for optimized linear signals that avoid detection artifacts conflict with small numerical aperture illumination and narrow cantilevers which are softer and therefore more sensitive. Embracing diffraction patterns as a physical measurable allows a richer detection technique that decouples measurements of tilt and curvature and simultaneously relaxes the requirements on the alignment of illumination and detector. We show analytical results, numerical simulations and physiologically releva...

  5. Full-field optical coherence tomography apply in sphere measurements

    Science.gov (United States)

    Shi, Wei; Li, Weiwei; li, Juncheng; Wang, Jingyu; Wang, Jianguo

    2016-10-01

    The geometry of a spherical surface, for example that of a precision optic, is completely determined by the radius -of-curvature at one point and the deviation from the perfect spherical form at all other points of the sphere. Full-field Optical Coherence Tomography (FF-OCT) is a parallel detection OCT technique that utilizes a 2D detector array. This technique avoids mechanical scanning in imaging optics, thereby speeding up the imaging process and enhancing the quality of images. The current paper presents an FF-OCT instrument that is designed to be used in sphere measurement with the principle of multiple delays (MD) OCT to evaluate the curvature and radius of curved objects in single-shot imaging. The optimum combination of the MD principle with the FF-OCT method was evaluated, and the radius of a metal ball was measured with this method. The generated 2n-1 contour lines were obtained by using an MDE with n delays in a single en-face OCT image. This method of measurement, it engaged in the measurement accuracy of spherical and enriches the means of measurement, to make a spherical scan techniques flexible application.

  6. Absolute frequency measurement of unstable lasers with optical frequency combs

    Science.gov (United States)

    Beverini, N.; Poli, N.; Sutyrin, D.; Wang, F.-Y.; Schioppo, M.; Tarallo, M. G.; Tino, G. M.

    2010-09-01

    Here we report on absolute frequency measurements of a commercial high power CW diode-pumped solid-state laser (Coherent Verdi-V5). This kind of lasers usually presents large frequency jitter (up to 50 MHz) both in the short term (1 ms time scale) and in the long term (>10 s time scale). A precise measurement of absolute frequency deviations in both temporal scales should require a set of different devices (optical cavities, optical wave-meters), each suited for measurements only at a specific integration time. Here we demonstrate how a frequency comb can be used to overcome this difficulty, allowing in a single step a full characterization of both short ( 103 s) absolute frequency jitter with a resolution better than 1 MHz. We demonstrate in this way the flexibility of optical frequency combs for absolute frequency measurements not only of ultra-stable lasers but also of relatively unstable lasers. The absolute frequency calibration of the Verdi laser that we have obtained have been used in order to improve the accuracy of the measurements of the local gravitational acceleration value with 88Sr atoms trapped in 1D vertical lattices.

  7. Dynamic steering beams for efficient force measurement in optical manipulation

    Institute of Scientific and Technical Information of China (English)

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  8. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement.

    Science.gov (United States)

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-11-01

    A compact multifunctional optical correlator system for pulse width measurement of ultrashort ultraviolet (UV) pulses has been designed and experimentally demonstrated. Both autocorrelation and cross-correlation functions are measured using a single nonlinear crystal, and the switching between two measurements requires no adjustment of phase matching and detector. The system can measure UV pulse widths from sub-picoseconds to 100 ps, and it involves no auxiliary pulse in the measurement. The measurement results on a burst-mode picosecond UV laser show a high-quality performance on speed, accuracy, resolution, and dynamic range. The proposed correlator can be applied to measure any ultrashort UV pulses produced through sum-frequency generation or second-harmonic generation.

  9. Study on a transient optical fiber high temperature measurement system

    Science.gov (United States)

    Cai, Lulu; Liu, Yusha; Wang, Yutian

    2009-07-01

    High temperature is one of the most important parameters in the fields of scientific research and industrial production. At present, thermocouple, thermo resistive and radiance thermometer are already technologically mature which can be adopted to measure the general temperature, but when it comes to the transient high temperature that changes pretty quickly in wretched conditions, those traditional pyrometers can not meet the requirements any more. In this paper, we designed a transient optical high temperature measurement system. First, design of the temperature measurement probe. The system took blackbody cavity sensor together with optical fiber to receive the measured signal, here, the integrated emissivity model of the blackbody cavity was established and the optimum structure parameters were confirmed. Secondly, design of the entire temperature measurement system. A contact-noncontact measurement method was applied, which is to make the blackbody cavity and the measured high-temperature source contact, the fiber probe and the blackbody cavity noncontact, as a result, the error caused by contact measurement is overcame and the precision is guaranteed at the same time. In addition, a fiber grating was introduced as the wavelength filter device which can realize the dynamic filter of narrow-band signals and reduce the impact of background light. Thirdly, signal processing. In this part, we applied labVIEW software and wavelet analysis method. All of the signal acquisition and processing were realized in the labVIEW environment. Through calling matlab in labVIEW, the signals from optical fiber detector were wavelet denoised and decomposed, thus the temperature information was extracted, and the temperature value was obtained. On basis of wavelet transformation, the paper adopted the 4dB wavelet with horizontal scale of 5 to realize the feature extraction and noise removal, parts of the signals before and after the wavelet noise removal were given and analyzed

  10. Measurement of aerosol optical properties by cw cavity enhanced spectroscopy

    Science.gov (United States)

    Jie, Guo; Ye, Shan-Shan; Yang, Xiao; Han, Ye-Xing; Tang, Huai-Wu; Yu, Zhi-Wei

    2016-10-01

    The CAPS (Cavity Attenuated Phase shift Spectroscopy) system, which detects the extinction coefficients within a 10 nm bandpass centered at 532 nm, comprises a green LED with center wavelength in 532nm, a resonant optical cavity (36 cm length), a Photo Multiplier Tube detector, and a lock in amplifier. The square wave modulated light from the LED passes through the optical cavity and is detected as a distorted waveform which is characterized by a phase shift with respect to the initial modulation. Extinction coefficients are determined from changes in the phase shift of the distorted waveform of the square wave modulated LED light that is transmitted through the optical cavity. The performance of the CAPS system was evaluated by using measurements of the stability and response of the system. The minima ( 0.1 Mm-1) in the Allan plots show the optimum average time ( 100s) for optimum detection performance of the CAPS system. In the paper, it illustrates that extinction coefficient was correlated with PM2.5 mass (0.91). These figures indicate that this method has the potential to become one of the most sensitive on-line analytical techniques for extinction coefficient detection. This work aims to provide an initial validation of the CAPS extinction monitor in laboratory and field environments. Our initial results presented in this paper show that the CAPS extinction monitor is capable of providing state-of-the-art performance while dramatically reducing the complexity of optical instrumentation for directly measuring the extinction coefficients.

  11. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  12. Improvements in the optics measurement resolution for the LHC

    CERN Document Server

    Langner, A

    2014-01-01

    Optics measurement algorithms which are based on the measurement of beam position monitor (BPM) turn-by-turn data are currently being improved in preparation for the commissioning of the LHC at higher energy. The turn-by-turn data of one BPM may be used more than once, but the implied correlations were not considered in the final error bar. In this paper the error propagation including correlations is studied for the statistical part of the uncertainty. The confidence level of the measurement is investigated analytically and with simulations.

  13. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  14. Optical density measurements in a multiphase cryogenic fluid flow system

    Science.gov (United States)

    Korman, Valentin; Wiley, John; Gregory, Don A.

    2006-05-01

    An accurate determination of fluid flow in a cryogenic propulsion environment is difficult under the best of circumstances. The extreme thermal environment increases the mechanical constraints, and variable density conditions create havoc with traditional flow measurement schemes. Presented here are secondary results of cryogenic testing of an all-optical sensor capable of a mass flow measurement by directly interrogating the fluid's density state and a determination of the fluid's velocity. The sensor's measurement basis does not rely on any inherent assumptions as to the state of the fluid flow (density or otherwise). The fluid sensing interaction model will be discussed. Current test and evaluation data and future development work will be presented.

  15. Chemical measurements with optical fibers for process control.

    Science.gov (United States)

    Boisde, G; Blanc, F; Perez, J J

    1988-02-01

    Several aspects of remote in situ spectrophotometric measurement by means of optical fibers are considered in the context of chemical process control. The technique makes it possible to measure a species in a particular oxidation state, such as plutonium(VI), sequentially, under the stringent conditions of automated analysis. For the control of several species in solution, measurements at discrete wavelengths on the sides of the absorption peaks serve to increase the dynamic range. Examples are given concerning the isotopic separation of uranium in the Chemex process. The chemical control of complex solutions containing numerous mutually interfering species requires a more elaborate spectral scan and real-time processing to determine the chemical kinetics. Photodiode array spectrophotometers are therefore ideal for analysing the uranium and plutonium solutions of the Purex process. Remote on-line control by ultraviolet monitoring exhibits limitations chiefly due to Rayleigh scattering in the optical fibers. The measurement of pH in acidic (0.8-3.2) and basic media (10-13) has also been attempted. Prior calibration, signal processing and optical spectra modeling are also discussed.

  16. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2014-09-01

    Full Text Available A thermal/optical carbon analyzer equipped with seven-wavelength light source/detector (405–980 nm for monitoring spectral reflectance (R and transmittance (T of filter samples allows "thermal spectral analysis (TSA" and wavelength (λ-dependent organic carbon (OC-elemental carbon (EC measurements. Optical sensing is calibrated with transfer standards traceable to absolute R and T measurements and adjusted for loading effects to determine spectral light absorption (as absorption optical depth [τa, λ] using diesel exhaust samples as a reference. Tests on ambient and source samples show OC and EC concentrations equivalent to those from conventional carbon analysis when based on the same wavelength (~635 nm for pyrolysis adjustment. TSA provides additional information that evaluates black carbon (BC and brown carbon (BrC contributions and their optical properties in the near-IR to the near-UV parts of the solar spectrum. The enhanced carbon analyzer can add value to current aerosol monitoring programs and provide insight into more accurate OC and EC measurements for climate, visibility, or health studies.

  17. Integrated optical waveguide sensor for lighting impulse electric field measurement

    Science.gov (United States)

    Zhang, Jiahong; Chen, Fushen; Sun, Bao; Chen, Kaixin

    2014-09-01

    A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the pulsed electric field. The minimum detectable E-field of the sensor was 10 kV/m. The sensor showed a good linear characteristic while the input E-fields varied from 10 kV/m to 370 kV/m. Furthermore, the maximum detectable E-field of the sensor, which could be calculated from the sensor input/output characteristic, was approximately equal to 1000 kV/m. All these results suggest that such sensor can be used for the measurement of the lighting impulse electric field.

  18. Estimation of Apollo lunar dust transport using optical extinction measurements

    CERN Document Server

    Lane, John E

    2015-01-01

    A technique to estimate mass erosion rate of surface soil during landing of the Apollo Lunar Module (LM) and total mass ejected due to the rocket plume interaction is proposed and tested. The erosion rate is proportional to the product of the second moment of the lofted particle size distribution N(D), and third moment of the normalized soil size distribution S(D), divided by the integral of S(D)D^2/v(D), where D is particle diameter and v(D) is the vertical component of particle velocity. The second moment of N(D) is estimated by optical extinction analysis of the Apollo cockpit video. Because of the similarity between mass erosion rate of soil as measured by optical extinction and rainfall rate as measured by radar reflectivity, traditional NWS radar/rainfall correlation methodology can be applied to the lunar soil case where various S(D) models are assumed corresponding to specific lunar sites.

  19. Direct Tunneling Delay Time Measurement in an Optical Lattice.

    Science.gov (United States)

    Fortun, A; Cabrera-Gutiérrez, C; Condon, G; Michon, E; Billy, J; Guéry-Odelin, D

    2016-07-01

    We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics.

  20. Anticlastic curvature measurements on unribbed crystal optics for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, J.P.; Dolin, Y.; Georgopoulos, P. (DND-CAT Synchrotron Research Center, APS/ANL Sector 5, Building 400, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)); Kushnir, V.I. (APS/XFD, Bldg. 362, 9700 South Cass Ave., Argonne, Illinois 60439 (United States))

    1995-02-01

    Various methods have been proposed for measuring the distortion in perfect crystals using double-crystal methods. The majority of these methods rely on making comparisons between double-crystal rocking curve measurements under the spatial extent of an extended x-ray beam. Unless the beam is large and parallel (such as at a synchrotron bending magnet), these methods are not easily scalable to large crystals (e.g., crystal focusing elements for synchrotron beamlines) due to the mechanical inaccuracies inherent in moving the various optical components. We present a method based on a scanning source which simplifies the problems in scaling double-crystal methods to large optics. In addition, results using this method are presented on a ribless sagittal focusing Si(111) crystal demonstrating that the anticlastic deviation can be made to be less than [plus minus]1 s of arc over a 1-cm-long section parallel to the sagittal axis.

  1. Development of an optical fiber sensor for angular displacement measurements.

    Science.gov (United States)

    Jung, Gu-In; Kim, Ji-Sun; Lee, Tae-Hee; Choi, Ju-Hyeon; Oh, Han-Byeol; Kim, A-Hee; Eom, Gwang-Moon; Lee, Jeong-Hwan; Chung, Soon-Cheol; Park, Jong-Rak; Lee, Young-Jae; Park, Hee-Jung; Jun, Jae-Hoon

    2014-01-01

    For diagnostic and therapeutic purposes, the joint angle measurement of a patient after an accident or a surgical operation is significant for monitoring and evaluating the recovering process. This paper proposed an optical fiber sensor for the measurement of angular displacement. The effect of beveled fiber angle on the detected light signal was investigated to find an appropriate mathematical model. Beveled fiber tips redirected the light over a range of angles away from the fiber axis. Inverse polynomial models were applied to directly obtain and display the joint angle change in real time with the Lab-VIEW program. The actual joint angle correlated well with the calculated LabVIEW output angle over the test range. The proposed optical sensor is simple, cost effective, small in size, and can evaluate the joint angle in real time. This method is expected to be useful in the field of rehabilitation and sport science.

  2. Confocal Image 3D Surface Measurement with Optical Fiber Plate

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao; ZHU Sheng-cheng; LI Bing; TAN Yu-shan

    2004-01-01

    A whole-field 3D surface measurement system for semiconductor wafer inspection is described.The system consists of an optical fiber plate,which can split the light beam into N2 subbeams to realize the whole-field inspection.A special prism is used to separate the illumination light and signal light.This setup is characterized by high precision,high speed and simple structure.

  3. Navy Precision Optical Interferometer Measurements of 10 Stellar Oscillators

    Science.gov (United States)

    2014-02-01

    Kornilov et al. (1991), Eggen (1968), Johnson et al. (1966), Cutri et al. (2003), and Gezari et al. (1993) as well as spectrophotometry from Glushneva...Two Micron All Sky Survey infrared measure- ments are as reported in Cutri et al. (2003), and an uncertainty of 0.05 mag was assigned to the optical...makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing

  4. Analysis of the measurement field of the optical klystron

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The measured fields of the optical klystron in NSRL (National Sychrotron Radiation Laboratory) are given, including the distribution on the axis, and the integrated field distribution. The harmonic magnet field and the spectra of the spontaneous emission are analyzed, and the multiple field is presented by fitting the diagram. The influence of the integrated field on the close orbit of the beam and on the operation parameters of the storage ring, and the compensation in the experiment are also discussed.

  5. Noncontact optical measurement of lens capsule thickness ex vivo

    Science.gov (United States)

    Ziebarth, Noel M.; Manns, Fabrice; Uhlhorn, Stephen; Parel, Jean-Marie

    2004-07-01

    Purpose: To design a non-contact optical system to measure lens capsule thickness in cadaver eyes. Methods: The optical system uses a 670nm laser beam delivered to a single-mode fiber coupler. The output of the fiber coupler is focused onto the tissue using an aspheric lens (NA=0.68) mounted on a motorized translation stage. Light reflected from the sample is collected by the fiber coupler and sent to a silicon photodiode connected to a power meter. Peaks in the power signal are detected when the focal point of the aspheric lens coincides with the capsule boundaries. The capsule thickness is proportional to the distance between successive peaks. Anterior and posterior lens capsule thickness measurements were performed on 13 human, 10 monkey, and 34 New Zealand white rabbit lenses. The cadaver eyes were prepared for optical measurements by bonding a PMMA ring on the sclera. The posterior pole was sectioned, excess vitreous was removed, and the eye was placed on a Teflon slide. The cornea and iris were then sectioned. After the experiments, the lenses were excised, placed in 10% buffered formalin, and prepared for histology. Results: Central anterior lens capsule thickness was 9.4+/-2.9μm (human), 11.2+/-6.6μm (monkey), and 10.3+/-3.6μm (rabbit) optically and 14.9+/-1.6μm (human), 17.7+/-4.9μm (monkey), and 12.6+/-2.3μm (rabbit) histologically. The values for the central posterior capsule were 9.4+/-2.9μm (human), 6.6+/-2.5μm (monkey), and 7.9+/-2.3μm (rabbit) optically and 4.6+/-1.4μm (human), 4.5+/-1.2μm (monkey), and 5.7+/-1.7μm (rabbit) histologically. Conclusions: This study demonstrates that a non-contact optical system can successfully measure lens capsule thickness in cadaver eyes.

  6. Performance comparison of fiber optic tips in interferrometric displacement measurement

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Erik A [Los Alamos National Laboratory; Puckett, Anthony D [Los Alamos National Laboratory; Grahn, Rick [UNM; Karimi, Hussain [UCSD; Wilson, Kyle [ROSE HULMAN INSTITUTE OT TECH.

    2010-10-21

    Fiber optic displacement sensors have many potential advantages over traditional displacement measurement techniques, including small size, immunity to electromagnetic interference, electrical isolation, and high resolution. In this report, we focus on an interferometric fiber optic sensor, where the gap between the fiber tip and the device under test forms a Fabry-Perot resonant cavity. An optical interrogator measures the reflected intensity at wavelengths ranging from 1510 to 1590 nm. The spacing between resonant frequencies allows us to determine the distance from the tip to the device under test. We consider ferrule connector angled physical contact (FC/APC), ferrule connector ultra physical contact (FC/UPC) and unpolished cleaved tips and compare their influence on sensor performance. A plane wave propagation model is proposed for predicting tip effects. Comparisons are made on the basis of sensor measurement range, resolution, and sensitivity to changes in test conditions. In this paper, we discuss the experimental setup, detail our analysis, and present test results with recommendations for the applications of each tip.

  7. Performance of the APS optical slope measuring system

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jun, E-mail: jqian@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, 60439 (United States); Sullivan, Joe; Erdmann, Mark; Khounsary, Ali; Assoufid, Lahsen [Advanced Photon Source, Argonne National Laboratory, 9700S. Cass Avenue, Argonne, 60439 (United States)

    2013-05-11

    An optical slope measuring system (OSMS) was recently brought into operation at the Advanced Photon Source of the Argonne National Laboratory. This system is equipped with a precision autocollimator and a very accurate mirror-based pentaprism on a scanning stage and kept in an environment-controlled enclosure. This system has the capability to measure precision optics with sub-microradian rms slope errors as documented with a series of tests demonstrating accuracy, stability, reliability and repeatability. Measurements of a flat mirror with 0.2 μrad rms slope error are presented which show that the variation of the slope profile measurements with the mirror setting at different locations along the scanning direction is only 60 nrad and the corresponding height error profile has 2 nm rms. -- Highlights: ► This is the first time to present the APS OSMS in publication. ► The APS OSMS is capable to measure flat and near flat mirrors with slope error <100 nrad rms. ► The accuracy of the slope error measurements of a 350 mm long mirror is less than 60 nrad rms.

  8. Using optical soliton stability for magnetic field measurement

    Science.gov (United States)

    Şchiopu, IonuÅ£ Romeo; ǎgulinescu, Andrei, Dr; Marinescu, Andrei

    2015-02-01

    In this paper we propose a novel optical method for measuring the circular magnetic field. In practice, many situations may appear in which there are difficulties in measuring the magnetic field, as inside coils, motors etc., where the magnetic field lines are circular or elliptical. The proposed method, applied for measuring the current on high voltage lines, strongly benefits from the advantages that it offers as compared to classical solutions based on the inductive principle. Some of the advantages of optoelectronic and optic measurement methods have a real importance. These advantages consist in: avoiding the use of energy intensive materials (Cu, Fe etc.), reducing the weight of the measuring system, reducing at the minimum the fire danger due to the use of paper-oil insulation in high voltage devices etc. The novelty of our proposed method consists in using the electromagnetic radiation in ultrashort pulses, having a relatively large frequency band and a much improved resistance to external perturbations, for measuring the circular magnetic field generated from the current of high voltage lines, inside power transformers or high power motors.

  9. Lightning Current Measurement with Fiber-Optic Sensor

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2014-01-01

    A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.

  10. Verification of optical coordinate measuring machines along the vertical measurement axis

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the performance verification of optical coordinate measuring machines (CMMs) equipped with video probes along the vertical measurement axis. The aim of this work was to investigate the capability of artefacts like gauge blocks and angle blocks for calibrating, verifying and ...

  11. Quantum Sensors: Improved Optical Measurement via Specialized Quantum States

    Directory of Open Access Journals (Sweden)

    David S. Simon

    2016-01-01

    Full Text Available Classical measurement strategies in many areas are approaching their maximum resolution and sensitivity levels, but these levels often still fall far short of the ultimate limits allowed by the laws of physics. To go further, strategies must be adopted that take into account the quantum nature of the probe particles and that optimize their quantum states for the desired application. Here, we review some of these approaches, in which quantum entanglement, the orbital angular momentum of single photons, and quantum interferometry are used to produce optical measurements beyond the classical limit.

  12. Fiber optic displacement measurement model based on finite reflective surface

    Science.gov (United States)

    Li, Yuhe; Guan, Kaisen; Hu, Zhaohui

    2016-10-01

    We present a fiber optic displacement measurement model based on finite reflective plate. The theoretical model was derived, and simulation analysis of light intensity distribution, reflective plate width, and the distance between fiber probe and reflective plate were conducted in details. The three dimensional received light intensity distribution and the characteristic curve of light intensity were studied as functions of displacement of finite reflective plate. Experiments were carried out to verify the established model. The physical fundamentals and the effect of operating parameters on measuring system performance were revealed in the end.

  13. Ground strain measuring system using optical fiber sensors

    Science.gov (United States)

    Sato, Tadanobu; Honda, Riki; Shibata, Shunjiro; Takegawa, Naoki

    2001-08-01

    This paper presents a device to measure the dynamic horizontal shear strain of the ground during earthquake. The proposed device consists of a bronze plate with fiber Bragg grating sensors attached on it. The device is vertically installed in the ground, and horizontal shear strain of the ground is measured as deflection angle of the plate. Employment of optical fiber sensors makes the proposed device simple in mechanism and highly durable, which makes it easy to install our device in the ground. We conducted shaking table tests using ground model to verify applicability of the proposed device.

  14. Imaging photothermal microscopy for absorption measurements of optical coatings

    Institute of Scientific and Technical Information of China (English)

    Chunxian Tao; Yuanan Zhao; Hongbo He; Dawei Li; Jianda Shao; Zhengxiu Fan

    2009-01-01

    @@ For absorption measurement of large-aperture optical coatings, a novel method of imaging photothermal microscopy based on image lock-in technique is presented.Detailed theoretical analysis and numerical calculation are made based on the image photothermal technique.The feasibility of this imaging method is proved through the coincidence between the theoretical results of single spot method and multi-channel method.The measuring speed of this imaging method can be increased hundreds of times compared with that of the raster scanning.This technique can expand the applications of photothermal technique.

  15. INCREASING MEASUREMENT ACCURACY IN ELECTRO-OPTICAL METHOD FOR MEASURING VELOCITY OF DETONATION

    Directory of Open Access Journals (Sweden)

    Mario Dobrilović

    2014-12-01

    Full Text Available In addition to other detonation parameters detonation velocity is a value that provides indirect information on the strength i.e. brisance of an explosive and explosive performance. In addition to that, detonation velocity is a value which can be measured in a relatively simpler and more precise manner, by developed and accessible methods when compared to other detonation parameters Due to its simple use, compact instruments and satisfactory accuracy, electro-optical method of detonation velocity measurement is widely used. The paper describes the electro-optical measurement method and points out the factors that affect its accuracy. The accuracy of measurement is increased and measurement uncertainty is reduced by the measurement result analysis with the application of different measurement setups.

  16. Optical-mechanical properties of diseased cells measured by interferometry

    Science.gov (United States)

    Shaked, Natan T.; Bishitz, Y.; Gabai, H.; Girshovitz, P.

    2013-04-01

    Interferometric phase microscopy (IPM) enables to obtain quantitative optical thickness profiles of transparent samples, including live cells in-vitro, and track them in time with sub-nanometer accuracy without any external labeling, contact or force application on the sample. The optical thickness measured by IPM is a multiplication between the cell integral refractive index differences and its physical thickness. Based on the time-dependent optical thickness profile, one can generate the optical thickness fluctuation map. For biological cells that are adhered to the surface, the variance of the physical thickness fluctuations in time is inversely proportional to the spring factor indicating on cell stiffness, where softer cells are expected fluctuating more than more rigid cells. For homogenous refractive index cells, such as red blood cells, we can calculate a map indicating on the cell stiffness per each spatial point on the cell. Therefore, it is possible to obtain novel diagnosis and monitoring tools for diseases changing the morphology and the mechanical properties of these cells such as malaria, certain types of anaemia and thalassemia. For cells with a complex refractive-index structure, such as cancer cells, decoupling refractive index and physical thickness is not possible in single-exposure mode. In these cases, we measure a closely related parameter, under the assumption that the refractive index does not change much within less than a second of measurement. Using these techniques, we lately found that cancer cells fluctuate significantly more than healthy cells, and that metastatic cancer cells fluctuate significantly more than primary cancer cells.

  17. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  18. Measurements of optical underwater turbulence under controlled conditions

    Science.gov (United States)

    Kanaev, A. V.; Gladysz, S.; Almeida de Sá Barros, R.; Matt, S.; Nootz, G. A.; Josset, D. B.; Hou, W.

    2016-05-01

    Laser beam propagation underwater is becoming an important research topic because of high demand for its potential applications. Namely, ability to image underwater at long distances is highly desired for scientific and military purposes, including submarine awareness, diver visibility, and mine detection. Optical communication in the ocean can provide covert data transmission with much higher rates than that available with acoustic techniques, and it is now desired for certain military and scientific applications that involve sending large quantities of data. Unfortunately underwater environment presents serious challenges for propagation of laser beams. Even in clean ocean water, the extinction due to absorption and scattering theoretically limit the useful range to few attenuation lengths. However, extending the laser light propagation range to the theoretical limit leads to significant beam distortions due to optical underwater turbulence. Experiments show that the magnitude of the distortions that are caused by water temperature and salinity fluctuations can significantly exceed the magnitude of the beam distortions due to atmospheric turbulence even for relatively short propagation distances. We are presenting direct measurements of optical underwater turbulence in controlled conditions of laboratory water tank using two separate techniques involving wavefront sensor and LED array. These independent approaches will enable development of underwater turbulence power spectrum model based directly on the spatial domain measurements and will lead to accurate predictions of underwater beam propagation.

  19. Optical and thermodynamic property measurements of liquid metals and alloys

    Science.gov (United States)

    Weber, J. K. Richard; Krishnan, Shankar; Schiffman, Robert A.; Nordine, Paul C.

    Optical properties and spectral emissivities of liquid silicon, titanium, niobium, and zirconium were investigated by HeNe laser polarimetry at λ = 632.8 nm. The metals were of a high purity and, except for zirconium, clean. The more demanding environmental requirements for eliminating oxide or nitride phases from zirconium were not met. Containerless conditions were achieved by electromagnetic levitation and heating. CO2 laser beam heating was also used to extend the temperature range for stable levitation and to heat solid silicon to form the metallic liquid phase. Corrections to previously reported calorimetric measurements of the heat capacity of liquid niobium were derived from the measured temperature dependence of its spectral emissivity. Property measurements were obtained for supercooled liquid silicon and supercooling of liquid zirconium was accomplished. The purification of liquid metals and the extension of this work on liquids to the measurement of thermodynamic properties and phase equilibria are discussed.

  20. Optical properties of soot particles: measurement - model comparison

    Science.gov (United States)

    Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.

    2013-12-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) VED > ~160 nm. The discrepancy is most

  1. Fiber optic micro sensor for the measurement of tendon forces

    Directory of Open Access Journals (Sweden)

    Behrmann Gregory P

    2012-10-01

    Full Text Available Abstract A fiber optic sensor developed for the measurement of tendon forces was designed, numerically modeled, fabricated, and experimentally evaluated. The sensor incorporated fiber Bragg gratings and micro-fabricated stainless steel housings. A fiber Bragg grating is an optical device that is spectrally sensitive to axial strain. Stainless steel housings were designed to convert radial forces applied to the housing into axial forces that could be sensed by the fiber Bragg grating. The metal housings were fabricated by several methods including laser micromachining, swaging, and hydroforming. Designs are presented that allow for simultaneous temperature and force measurements as well as for simultaneous resolution of multi-axis forces. The sensor was experimentally evaluated by hydrostatic loading and in vitro testing. A commercial hydraulic burst tester was used to provide uniform pressures on the sensor in order to establish the linearity, repeatability, and accuracy characteristics of the sensor. The in vitro experiments were performed in excised tendon and in a dynamic gait simulator to simulate biological conditions. In both experimental conditions, the sensor was found to be a sensitive and reliable method for acquiring minimally invasive measurements of soft tissue forces. Our results suggest that this sensor will prove useful in a variety of biomechanical measurements.

  2. Fiber-Optic Current Sensor Validation with Triggered Lightning Measurements

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2013-01-01

    A fiber optic current sensor based on the Faraday Effect is developed that is highly suitable for aircraft installation and can measure total current enclosed in a fiber loop down to DC. Other attributes include being small, light-weight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate when exposed to a magnetic field in the direction of light propagation. Measuring the induced light polarization rotation in fiber loops yields the total current enclosed. Two sensor systems were constructed and installed at Camp Blanding, Florida, measuring rocket-triggered lightning. The systems were similar in design but with different laser wavelengths, sensitivities and ranges. Results are compared to a shunt resistor as reference. The 850nm wavelength system tested in summer 2011 showed good result comparison early. However, later results showed gradual amplitude increase with time, attributed to corroded connections affecting the 50-ohm output termination. The 1550nm system also yielded good results in the summer 2012. The successful measurements demonstrate the fiber optic sensor's accuracies in capturing real lightning currents, and represent an important step toward future aircraft installation.

  3. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    Science.gov (United States)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters

  4. Mechanical and optical characteristics of a new fiber optical system used for cardiac contraction measurement.

    Science.gov (United States)

    Kloppe, A; Hoeland, K; Müller, S; Hexamer, M; Nowack, G; Mügge, A; Werner, J

    2004-10-01

    In order to obtain a better physiological performance and a closer restoration of the regular rhythm of failing hearts, a new fiber optical sensor system for the measurement of cardiac contraction has been developed. It consists of an opto-electrical unit and a sensing fiber which has to be positioned in the heart. The objective of this new fiber optic sensor system is to use the inotropic information to adjust a stimulation algorithm in single or multichamber pacing or to detect arrhythmia in insufficient heart function. In this study, the mechanical and optical characteristics of different fibers are investigated. The relationship between the attenuation (with an achieved numerical maximum of 0.3 dB), the bending diameter and the angle of bending is determined in a range of 20-160 mm. The most suitable fiber for the application in cardiological problems is determined (WT8 fiber), for which the sensitivity is analyzed. Additionally, power spectra are calculated from WT8 fiber signals obtained from pig hearts, working under physiological conditions. The maximal frequency response was 23 Hz. It is concluded that the fiber optical measurement of cardiac contraction is not only feasible and reproducible, but the WT8 fiber also shows optimal behavior in the range of parameters occurring in the heart chambers. Nevertheless, in order to restrict the measured signal reliably to bending processes within the chambers only, it is concluded that a special combined fiber has to be constructed with a high sensitivity only at its terminal section within the heart.

  5. Thermal, Electrical, and Optical Measurements of Electrical Discharges in Saline

    Science.gov (United States)

    Moore, Cameron; Ward, Arlen; Sato, Kazunari; Collins, George

    2008-10-01

    We report measurements of electrical discharges in saline that are electrically excited at 100 kHz from a commercial electrosurgical system. Using a one-dimensional thermocouple array, we estimate that these discharges in saline, in contrast to prior work, induce local temperatures > 100 C. Simultaneous measurement of voltage, current, and optical emission of Na* at 589 nm show that these discharges have frequent arcs, and that these arcs dominate energy flow into the saline. Finally we present measurements of Stark splitting of the sodium D1 and D2 resonant emission lines and from these data estimate the thickness of sheath-like region where most of the applied voltage is dropped.

  6. Evaluation of colour space transformation suitability to optical temperature measurements

    Science.gov (United States)

    Ziemba, A.; Fornalik-Wajs, E.

    2016-09-01

    All optical measurement methods base on the image analysis and relation between the measured parameter and some image features. In Digital Particle Image Thermometry (DPIT), such relation represents a function between the temperature and particles’ colour (i.a. Thermochromic Liquid Crystals). For the quantitative data acquisition the “colour” information is necessary, therefore the colour spaces based on hue H are used. Due to the big number of numerical operations needed in the analysis, the choice of colour space transformation is significant due to the accuracy and computational time. In this paper commonly applied RGB to HSI colour spaces’ transformations were compared and evaluation of their suitability to temperature measurement was performed. Time of obtaining the final results was considered as the main criterion. Appropriate calculations were conducted and presented.

  7. Microcantilever Displacement Measurement Using a Mechanically Modulated Optical Feedback Interferometer

    Directory of Open Access Journals (Sweden)

    Francisco J. Azcona

    2016-06-01

    Full Text Available Microcantilever motion detection is a useful tool for the characterization of the physical, chemical and biological properties of materials. In the past, different approaches have been proposed and tested to enhance the behavior, size and simplicity of microcantilever motion detectors. In this paper, a new approach to measure microcantilever motion with nanometric resolution is presented. The proposed approach is based on the concept of mechanically-modulated optical feedback interferometry, a technique that has shown displacement measurement capabilities well within the nanometric scale and that, due to its size, compactness and low cost, may be a suitable choice for measuring nanometric motions in cantilever-like sensors. It will be shown that the sensor, in its current state of development, is capable of following a cantilever sinusoidal trajectory at different sets of frequencies ranging up to 200 Hz and peak to peak amplitudes up to λ / 2 with experimental resolutions in the λ / 100 range.

  8. Macrobend optical sensing for pose measurement in soft robot arms

    Science.gov (United States)

    Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar

    2015-12-01

    This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic

  9. Optic-microwave mixing velocimeter for superhigh velocity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Weng Jidong; Wang Xiang; Tao Tianjiong; Liu Cangli; Tan Hua [Laboratory for Shock Waves and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, Mianyang, Sichuan 621900 (China)

    2011-12-15

    The phenomenon that a light beam reflected off a moving object experiences a Doppler shift in its frequency underlies practical interferometric techniques for remote velocity measurements, such as velocity interferometer system for any reflector (VISAR), displacement interferometer system for any reflector (DISAR), and photonic Doppler velocimetry (PDV). While VISAR velocimeters are often bewildered by the fringe loss upon high-acceleration dynamic process diagnosis, the optic-fiber velocimeters such as DISAR and PDV, on the other hand, are puzzled by high velocity measurement over 10 km/s, due to the demand for the high bandwidth digitizer. Here, we describe a new optic-microwave mixing velocimeter (OMV) for super-high velocity measurements. By using currently available commercial microwave products, we have constructed a simple, compact, and reliable OMV device, and have successfully obtained, with a digitizer of bandwidth 6 GH only, the precise velocity history of an aluminum flyer plate being accelerated up to 11.2 km/s in a three stage gas-gun experiment.

  10. Optical diffraction for measurements of nano-mechanical bending

    Science.gov (United States)

    Hermans, Rodolfo I.; Dueck, Benjamin; Ndieyira, Joseph Wafula; McKendry, Rachel A.; Aeppli, Gabriel

    2016-06-01

    We explore and exploit diffraction effects that have been previously neglected when modelling optical measurement techniques for the bending of micro-mechanical transducers such as cantilevers for atomic force microscopy. The illumination of a cantilever edge causes an asymmetric diffraction pattern at the photo-detector affecting the calibration of the measured signal in the popular optical beam deflection technique (OBDT). The conditions that avoid such detection artefacts conflict with the use of smaller cantilevers. Embracing diffraction patterns as data yields a potent detection technique that decouples tilt and curvature and simultaneously relaxes the requirements on the illumination alignment and detector position through a measurable which is invariant to translation and rotation. We show analytical results, numerical simulations and physiologically relevant experimental data demonstrating the utility of the diffraction patterns. We offer experimental design guidelines and quantify possible sources of systematic error in OBDT. We demonstrate a new nanometre resolution detection method that can replace OBDT, where diffraction effects from finite sized or patterned cantilevers are exploited. Such effects are readily generalized to cantilever arrays, and allow transmission detection of mechanical curvature, enabling instrumentation with simpler geometry. We highlight the comparative advantages over OBDT by detecting molecular activity of antibiotic Vancomycin.

  11. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  12. Retrieval of aerosol aspect ratio from optical measurements in Vienna

    Science.gov (United States)

    Kocifaj, M.; Horvath, H.; Gangl, M.

    The phase function and extinction coefficient measured simultaneously are interpreted in terms of surface distribution function and mean effective aspect ratio of aerosol particles. All optical data were collected in the atmosphere of Vienna during field campaign in June 2005. It is shown that behavior of aspect ratio of Viennese aerosols has relation to relative humidity in such a way, that nearly spherical particles (with aspect ratio ɛ≈1) might became aspherical with ɛ≈1.3-1.6 under low relative humidity conditions. Typically, >80% of all Viennese aerosols have the aspect ratio Vienna.

  13. Optical and thermophysical parameters measurement using sandwich photodetectors

    Science.gov (United States)

    Turinov, Valery I.

    1993-12-01

    A method is reported for estimating thermophysical and optical parameters, in which a two- spectral band sandwich photodetector is used. The sensitivity ranges of such a sensor are 2 - 5 micrometers and 8 - 14 micrometers . On irradiating an object's surface by a short radiation pulse the photodetector collected signals U1, U2 and the rates of their changes (dU1/dt), (dU2/dt) are recorded. These pertain to the same area on the object's surface and belong to the two spectral ranges mentioned. The parameters of the object are evaluated by means of calculations with the values measured.

  14. Repeatability and reproducibility of optic nerve head perfusion measurements using optical coherence tomography angiography

    Science.gov (United States)

    Chen, Chieh-Li; Bojikian, Karine D.; Xin, Chen; Wen, Joanne C.; Gupta, Divakar; Zhang, Qinqin; Mudumbai, Raghu C.; Johnstone, Murray A.; Chen, Philip P.; Wang, Ruikang K.

    2016-06-01

    Optical coherence tomography angiography (OCTA) has increasingly become a clinically useful technique in ophthalmic imaging. We evaluate the repeatability and reproducibility of blood perfusion in the optic nerve head (ONH) measured using optical microangiography (OMAG)-based OCTA. Ten eyes from 10 healthy volunteers are recruited and scanned three times with a 68-kHz Cirrus HD-OCT 5000-based OMAG prototype system (Carl Zeiss Meditec Inc., Dublin, California) centered at the ONH involving two separate visits within six weeks. Vascular images are generated with OMAG processing by detecting the differences in OCT signals between consecutive B-scans acquired at the same retina location. ONH perfusion is quantified as flux, vessel area density, and normalized flux within the ONH for the prelaminar, lamina cribrosa, and the full ONH. Coefficient of variation (CV) and intraclass correlation coefficient (ICC) are used to evaluate intravisit and intervisit repeatability, and interobserver reproducibility. ONH perfusion measurements show high repeatability [CV≤3.7% (intravisit) and ≤5.2% (intervisit)] and interobserver reproducibility (ICC≤0.966) in all three layers by three metrics. OCTA provides a noninvasive method to visualize and quantify ONH perfusion in human eyes with excellent repeatability and reproducibility, which may add additional insight into ONH perfusion in clinical practice.

  15. Optical Signature Analysis of Tumbling Rocket Bodies via Laboratory Measurements

    Science.gov (United States)

    Cowardin, H.; Lederer, S.; Liou, J.-C.

    2012-01-01

    The NASA Orbital Debris Program Office has acquired telescopic lightcurve data on massive intact objects, specifically spent rocket bodies, in order to ascertain tumble rates in support of the Active Debris Removal (ADR) task to help remediate the LEO environment. Rotation rates are needed to plan and develop proximity operations for potential future ADR operations. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA/JSC emulates illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The OMC employs a 75-watt Xenon arc lamp as a solar simulator, an SBIG CCD camera with standard Johnson/Bessel filters, and a robotic arm to simulate an object's position and rotation. The light source is mounted on a rotary arm, allowing access any phase angle between 0 -- 360 degrees. The OMC does not attempt to replicate the rotation rates, but focuses on how an object is rotating as seen from multiple phase angles. The two targets studied are scaled (1:48), SL-8 Cosmos 3M second stages. The first target is painted in the standard government "gray" scheme and the second target is primary white, as used for commercial missions. This paper summarizes results of the two scaled rocket bodies, each rotated about two primary axes: (a) a spin-stabilized rotation and (b) an end-over-end rotation. The two rotation states are being investigated as a basis for possible spin states of rocket bodies, beginning with simple spin states about the two primary axes. The data will be used to create a database of potential spin states for future works to convolve with more complex spin states. The optical signatures will be presented for specific phase angles for each rocket body and shown in conjunction with acquired optical data from multiple telescope sources.

  16. Study on portable optical 3D coordinate measuring system

    Science.gov (United States)

    Ren, Tongqun; Zhu, Jigui; Guo, Yinbiao

    2009-05-01

    A portable optical 3D coordinate measuring system based on digital Close Range Photogrammetry (CRP) technology and binocular stereo vision theory is researched. Three ultra-red LED with high stability is set on a hand-hold target to provide measuring feature and establish target coordinate system. Ray intersection based field directional calibrating is done for the intersectant binocular measurement system composed of two cameras by a reference ruler. The hand-hold target controlled by Bluetooth wireless communication is free moved to implement contact measurement. The position of ceramic contact ball is pre-calibrated accurately. The coordinates of target feature points are obtained by binocular stereo vision model from the stereo images pair taken by cameras. Combining radius compensation for contact ball and residual error correction, object point can be resolved by transfer of axes using target coordinate system as intermediary. This system is suitable for on-field large-scale measurement because of its excellent portability, high precision, wide measuring volume, great adaptability and satisfying automatization. It is tested that the measuring precision is near to +/-0.1mm/m.

  17. Fiber optic low-coherence Michelson interferometer for silicon growth measurement

    Science.gov (United States)

    Michael, Robert R., Jr.; Lawson, Christopher M.

    1994-02-01

    We report on the use of optical low coherence reflectometry for silicon characterization. The measurement system uses a low coherence light source (edge-emitting LED) in conjunction with a fiber optic Michelson interferometer. This non-contact fiber optic measurement system has been used to measure silicon thickness and flatness to an accuracy of +/- 1.5 micrometers in the laboratory.

  18. Optical Field Measurement of Nano-Apertures with a Scanning Near-Field Optical Microscope

    Institute of Scientific and Technical Information of China (English)

    XU Tie-Jun; XU Ji-Ying; WANG Jia; TIAN Qian

    2004-01-01

    @@ We investigate optical near-field distributions of the unconventional C-apertures and the conventional square apertures in preliminary experiment with an aperture scanning near-field optical microscope. These nano-apertures are fabricated in Au film on a glass substrate with focused ion beam technology. The experimental results indicate the uptrend of output light intensity that a C-aperture enables the intensity maximum to increase at least 10times more than a square aperture with same unit length. The measured near-field light spot sizes of C-apertureand square aperture with 200-nm unit length are 439nm × 500nm and 245nm × 216nm, respectively.

  19. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    We report on an initial airborne demonstration of atmospheric methane column measurements at 1.65 micrometers using a widely tunable, seeded optical parametric amplifier (OPA) lidar and a photon counting detector. Methane is an important greenhouse gas and accurate knowledge of its sources and sinks is needed for climate modeling. Our lidar system uses 20 pulses at increasing wavelengths and integrated path differential absorption (IPDA) to map a methane line at 1650.9 nanometers. The wavelengths are generated by using a Nd:YAG pump laser at 1064.5 nanometers and distributed feedback diode laser at 1650.9 nanometers and a periodically-poled lithium niobate (PPLN) crystal. The pulse width was 3 nanoseconds and the pulse repetition rate was 6.28 KHz. The outgoing energy was approximately 13 microJoules/pulse. A commercial 20 nanometer diameter fiber-coupled telescope with a photon counting detector operated in analog mode with a 0.8 nanometer bandpass filter was used as the lidar receiver. The lidar system was integrated on NASA's DC-8 flying laboratory, based at Dryden Airborne operations Facility (DAOF) in Palmdale CA. Three flights were performed in the central valley of California. Each flight lasted about 2.5 hours and it consisted of several flight segments at constant altitudes at approximately 3, 4.5, 6, 7.6, 9.1, 10.6 km (l0, 15, 20, 25, 30, 35 kft). An in-situ cavity ring down spectrometer made by Picarro Inc. was flown along with the lidar instrument provided us with the "truth" i.e. the local CH4, CO2 and H2O concentrations at the constant flight altitude segments. Using the aircraft's altitude, GPS, and meteorological data we calculated the theoretical differential optical depth of the methane absorption at increasing altitudes. Our results showed good agreement between the experimentally derived optical depth measurements from the lidar instrument and theoretical calculations as the flight altitude was increased from 3 to 10.6 kilometers, assuming a

  20. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  1. Application of optical scanning for measurements of castings and cores

    Directory of Open Access Journals (Sweden)

    M. Wieczorowski

    2010-01-01

    Full Text Available In the paper application of non destructive method for dimensional control of elements in initial phase of car manufacturing, at Volks-wagen Poznań foundry was presented. VW foundry in Poznań is responsible of series production of chill and dies castings made of light alloys using contemporary technologies. Castings have a complex shape: they are die castings of housings for steering columns and gravity chill castings of cylinder heads, for which cores are manufactured using both hot box and cold box method. Manufacturing capabilities of VW foundry in Poznań reach 26.000 tons of aluminum castings per year. Optical system ATOS at Volkswagen Poznań foundry is used to digitize object and determination of all dimensions and shapes of inspected object. This technology is applied in car industry, reverse engineering, quality analysis and control and to solve many similar tasks. System is based on triangulation: sensor head projects different fringes patterns onto a measured object while scanner observes their trajectories using two cameras. Basing on optical transform equations a processing unit automatically and with a great accuracy calculates 3D coordinates for every pixel of camera. Depending on camera reso-lution as an effect of such a scan we obtain a cloud of up to 4 million points for every single measurement. In the paper examples of di-mensional analysis regarding castings and cores were presented.

  2. Measuring human ventilation for apnoea detection using an optical encoder.

    Science.gov (United States)

    Weinberg, G M; Webster, J G

    1998-08-01

    We have designed, built and tested a proof-of-concept system based on optical encoder technology for measuring adult or infant ventilation. It uses change in chest circumference to provide an indirect measure of ventilation. The Hewlett-Packard HEDS-9720 optical encoder senses displacement of its matching codestrip. It yields a resolution of 0.17 mm and is accurate to 0.008 mm over a 10 mm test distance. The encoder is mounted on a nylon web belt wrapped around the torso and responds to changes in circumference. Motion of the code strip during respiration is converted to direction of movement (inhalation or exhalation) as well as magnitude of circumference change. Use of two sensor bands, one on the chest and one on the abdomen, may allow detection of obstructive apnoea in which there is no air flow out of or into the subject despite respiratory movement. Applications of this technology include infant apnoea monitoring as well as long-term adult monitoring.

  3. Accurate measurement of microscopic forces and torques using optical tweezers

    CSIR Research Space (South Africa)

    McLaren, M

    2011-09-01

    Full Text Available It is now well known that matter may be trapped by optical fields with high intensity gradients. Once trapped, it is then possible to manipulate microscopic particles using such optical fields, in so-called optical tweezers. Such optical trapping...

  4. Remote measurement of microwave distribution based on optical detection

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhong; Ding, Wenzheng; Yang, Sihua; Chen, Qun, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn; Xing, Da, E-mail: redrocks-chenqun@hotmail.com, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631 (China)

    2016-01-04

    In this letter, we present the development of a remote microwave measurement system. This method employs an arc discharge lamp that serves as an energy converter from microwave to visible light, which can propagate without transmission medium. Observed with a charge coupled device, quantitative microwave power distribution can be achieved when the operators and electronic instruments are in a distance from the high power region in order to reduce the potential risk. We perform the experiments using pulsed microwaves, and the results show that the system response is dependent on the microwave intensity over a certain range. Most importantly, the microwave distribution can be monitored in real time by optical observation of the response of a one-dimensional lamp array. The characteristics of low cost, a wide detection bandwidth, remote measurement, and room temperature operation make the system a preferred detector for microwave applications.

  5. Dust optical properties retrieved from ground-based polarimetric measurements.

    Science.gov (United States)

    Li, Zhengqiang; Goloub, Philippe; Blarel, Luc; Damiri, Bahaiddin; Podvin, Thierry; Jankowiak, Isabelle

    2007-03-20

    We have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.25. Retrieved F(11) and F(12) differ significantly from those of spherical particles. The degree of linear polarization -F(12)/F(11) for single scattering of atmospheric total column dust aerosols in the case of unpolarized incident light is systematically retrieved for the first time to our knowledge from sunphotometer measurements and shows consistency with previous laboratory characterizations of nonspherical particles.

  6. Objective Measurement of Vitreous Inflammation using Optical Coherence Tomography

    Science.gov (United States)

    Keane, Pearse A.; Karampelas, Michael; Sim, Dawn A.; Sadda, Srinivas R.; Tufail, Adnan; Sen, H. Nida; Nussenblatt, Robert B.; Dick, Andrew D.; Lee, Richard W.; Murray, Philip I.; Pavesio, Carlos E.; Denniston, Alastair K.

    2014-01-01

    Purpose To obtain measurements of vitreous signal intensity from optical coherence tomography (OCT) image sets in patients with uveitis, with the aim of developing an objective, quantitative marker of inflammatory activity in patients with this disease. Design Retrospective, observational case-control series. Participants Thirty patients (30 eyes), with vitreous haze secondary to intermediate, posterior, or panuveitis; twelve patients (12 eyes) with uveitis but without evidence of vitreous haze; and 18 patients (18 eyes) without intraocular inflammation or vitreoretinal disease. Methods Clinical and demographic characteristics were recorded, including visual acuity (VA), diagnosis, and anatomic type of uveitis. In each eye, the anterior chamber (AC) was graded for cellular activity and flare according to standardized protocols. The presence and severity of vitreous haze was classified according to the National Eye Institute system. Spectral domain OCT images were analyzed using custom software. This software provided an “absolute” measurement of vitreous signal intensity, which was then compared to that of the retinal pigment epithelium (RPE), generating an optical density ratio with arbitrary units (“VIT/RPE-Relative Intensity”). Main Outcome Measures Correlation between clinical vitreous haze scores and OCT-derived measurements of vitreous signal intensity. Results VIT/RPE-Relative Intensity was significantly higher in uveitic eyes with known vitreous haze (0.150) than in uveitic eyes without haze or in healthy controls (0.0767, p=0.0001). VIT/RPE-Relative intensity showed a significant, positive correlation with clinical vitreous haze scores (r=0.566, p=0.0001). Other ocular characteristics significantly associated with VIT/RPE-Relative Intensity included VA (r=0.573, p=0.0001), AC cells (r=0.613, p=0.0001), AC flare (r=0.385, p=0.003). Measurement of VIT/RPE-Relative Intensity showed a good degree of inter-grader reproducibility (95% limits of agreement

  7. A portable optical fiber probe for in vivo brain temperature measurements

    Science.gov (United States)

    Musolino, Stefan; Schartner, Erik P.; Tsiminis, Georgios; Salem, Abdallah; Monro, Tanya M.; Hutchinson, Mark R.

    2016-11-01

    We report on the development of an optical fiber based probe for in vivo measurements of brain temperature. By using a thin layer of rare-earth doped tellurite glass on the tip of a silica optical fiber a durable probe, suitable for long-term in vivo measurements of temperature can be fabricated. The probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories as no alignment of components is required. This setup is deployed to a medical research laboratory to show preliminary results on the use of these optical fibers for in vivo pre-clinical measurements of brain temperature.

  8. Calibrated, multiband radiometric measurements of the optical radiation from lightning

    Science.gov (United States)

    Quick, Mason G.

    Calibrated, multiband radiometric measurements of the optical radiation emitted by rocket-triggered lightning (RTL) have been made in the ultraviolet (UV, 200-360 nm), the visible and near infrared (VNIR, 400-1000 nm), and the long wave infrared (LWIR, 8-12 microm) spectral bands. Measurements were recorded from a distance of 198 m at the University of Florida International Center for Lightning Research and Testing (ICLRT) during the summers of 2011 and 2012. The ICLRT provided time-correlated measurements of the current at the base of the RTL channels. Following the onset of a return stroke, the dominant mechanism for the initial rise of the UV and VNIR waveforms was the geometrical growth of the channel in the field-of-view of the sensors. The UV emissions peaked about 0.7 micros after the current peak, with a peak spectral power emitted by the source per unit length of channel of 10 +/- 7 kW/(nm-m) in the UV. The VNIR emissions peaked 0.9 micros after the current peak, with a spectral power of at 7 +/- 4 kW/(nm-m). The LWIR emissions peaked 30-50 micros after the current peak, and the mean peak spectral power was 940 +/- 380 mW/(nm-m), a value that is about 4 orders of magnitude lower than the other spectral band emissions. In some returns strokes the LWIR peak coincides with a secondary maximum in the VNIR band that occurs during a steady decrease in channel current. Examples of the optical waveforms in each spectral band are shown as a function of time and are discussed in the context of the current measured at the channel base. Source power estimates in the VNIR band have a mean and standard deviation of 2.5 +/- 2.2 MW/m and are in excellent agreement with similar estimates of the emission from natural subsequent strokes that remain in a pre-existing channel which have a mean and standard deviation of 2.3 +/- 3.4 MW/m. The peak optical power emitted by RTL in the UV and VNIR bands are observed to be proportional to the square of the peak current at the

  9. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    Science.gov (United States)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  10. The Effect of Optic Disc Center Displacement on Retinal Nerve Fiber Layer Measurement Determined by Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Uhm, Ki Bang; Sung, Kyung Rim; Kang, Min Ho; Cho, Hee Yoon; Seong, Mincheol

    2016-01-01

    Purpose To investigate the effect of optic disc center displacement on retinal nerve fiber layer (RNFL) measurement determined by spectral domain optical coherence tomography (SD-OCT). Methods The optic disc center was manipulated at 1-pixel intervals in horizontal, vertical, and diagonal directions. According to the manipulated optic disc center location, the RNFL thickness data were resampled: (1) at a 3.46-mm diameter circle; and (2) between a 2.5-mm diameter circle and 5.4-mm square. Error was calculated between the original and resampled RNFL measurements. The tolerable error threshold of the optic disc center displacement was determined by considering test-retest variability of SD-OCT. The unreliable zone was defined as an area with 10% or more variability. Results The maximum tolerable error thresholds of optic disc center displacement on the RNFL thickness map were distributed from 0.042 to 0.09 mm in 8 directions. The threshold shape was vertically elongated. Clinically important unreliable zones were located: (1) at superior and inferior region in the vertical displacement; (2) at inferotemporal region in the horizontal displacement, and (3) at superotemporal or inferotemporal region in the diagonal displacement. The unreliable zone pattern and threshold limit varied according to the direction of optic disc displacement. Conclusions Optic disc center displacement had a considerable impact on whole RNFL thickness measurements. Understanding the effect of optic disc center displacement could contribute to reliable RNFL measurements. PMID:27783663

  11. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    Science.gov (United States)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in

  12. Comparison of two different methods for the uncertainty estimation of circle diameter measurements using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper deals with the uncertainty estimation of measurements performed on optical coordinate measuring machines (CMMs). Two different methods were used to assess the uncertainty of circle diameter measurements using an optical CMM: the sensitivity analysis developing an uncertainty budget and...

  13. Optical radiation measurements for photovoltaic applications: instrumentation uncertainty and performance

    Science.gov (United States)

    Myers, Daryl R.; Reda, Ibrahim; Wilcox, Stephen; Andreas, Afshin

    2004-11-01

    Evaluating the performance of photovoltaic (PV) devices in the laboratory and in the field requires accurate knowledge of the optical radiation stimulating the devices. We briefly describe the radiometric instrumentation used for characterizing broadband and spectral irradiance for PV applications. Spectral radiometric measurement systems are used to characterize solar simulators (continuous and pulsed, or flash sources) and natural sunlight. Broadband radiometers (pyranometers and pyrheliometers) are used to assess solar resources for renewable applications and develop and validate broadband solar radiation models for estimating system performance. We describe the sources and magnitudes of uncertainty associated with calibrations and measuremens using these instruments. The basic calibration and measurement uncertainty associated with this instrumentaion are based on the guidlines described in the International Standards Organization (ISO) and Bureau INternationale des Poids et Mesures (BIPM) Guide to Uncertainty in Measurement. The additional contributions to uncertainty arising from the uncertainty in characterization functions and correction schemes are discussed and ilustrated. Finally, empirical comparisons of several solar radiometer instrumentation sets illustrate that the best measurement accuracy for broadband radiation is on the order of 3%, and spectrally dependent uncertainty for spectroradiometer systems range from 4% in the visible to 8% to 10% in the ultraviolet and infrared.

  14. Time-resolved optical spectroscopy measurements of shocked liquid deuterium

    Science.gov (United States)

    Bailey, J. E.; Knudson, M. D.; Carlson, A. L.; Dunham, G. S.; Desjarlais, M. P.; Hanson, D. L.; Asay, J. R.

    2008-10-01

    Time-resolved optical spectroscopy has been used to measure the shock pressure steadiness, emissivity, and temperature of liquid deuterium shocked to 22-90 GPa. The shock was produced using magnetically accelerated flyer plate impact, and spectra were acquired with a suite of four fiber-optic-coupled spectrometers with streak camera detectors. The shock pressure changes by an average of -1.2% over the 10-30 ns cell transit time, determined from the relative changes in the shock front self-emission with time. The shock front reflectivity was measured from 5140Å and 5320Å laser light reflected from the D2 shock. The emissivity inferred from the reflectivity measurements was in reasonably good agreement with quantum molecular dynamics simulation predictions. The spectral radiance wavelength dependence was found to agree well (average normalized χ2=1.6 ) with a Planckian multiplied by the emissivity. The shock front temperature was determined from the emissivity and the wavelength-dependent shock self-emission. Thirty-seven temperature measurements spanning the 22-90 GPa range were accumulated. The large number of temperature measurements enables a comparison of the scatter in the data with expectations for a Gaussian distribution. This facilitates determination of uncertainties that incorporate both apparatus contributions and otherwise unquantified systematic effects that cause self-emission variations from one experiment to another. Agreement between temperatures determined from the absolute spectral radiance and from the relative shape of the spectrum further substantiates the absence of systematic biases. The weighted mean temperature uncertainties were as low as ±3-4% , enabling the discrimination between competing models for the D2 equation of state (EOS). The temperature results agree well with models that predict a maximum compression of ˜4.4 . Softer models that predict approximately sixfold compression are inconsistent with the data to a very high

  15. A Cs-Based Optical Frequency Measurement Using Cross-Linked Optical and Microwave Oscillators

    CERN Document Server

    Tamm, Chr; Lipphardt, B; Gerginov, V; Nemitz, N; Kazda, M; Weyers, S; Peik, E

    2013-01-01

    We describe a measurement of the frequency of the 2S1/2(F = 0) - 2D3/2(F' = 2) transition of 171Yb+ at the wavelength 436 nm (frequency 688 THz), using a single Yb+ ion confined in a Paul trap and two caesium fountains as references. In one of the fountains, the frequency of the microwave oscillator that interrogates the caesium atoms is stabilized by the laser that excites the Yb+ reference transition with a linewidth in the hertz range. The stability is transferred to the microwave oscillator with the use of a fiber laser based optical frequency comb generator that also provides the frequency conversion for the absolute frequency measurement. The frequency comb generator is configured as a transfer oscillator so that fluctuations of the pulse repetition rate and of the carrier offset frequency do not degrade the stability of the frequency conversion. The phase noise level of the generated ultrastable microwave signal is comparable to that of a cryogenic sapphire oscillator. For fountain operation with optic...

  16. Measurement of particle speed through optical reflective sensing

    Energy Technology Data Exchange (ETDEWEB)

    McCardle, J.

    1993-12-31

    Two methods determine the speed of 3 m glass spheres using optical reflective sensors embedded in a micro-processor system. The first method, which will be referred to as the one pulse method, is sensitive to particle size and shape. The pulse width of a detected particle is measured and normalized by a shape correction factor resulting in a speed estimate. Three models are developed to correct for effects due to particle shape and light scattering inhomogeneities. The second method, which will be referred to as the two pulse method, measures individual particle velocity components independent of size and shape with two detectors spaced a known distance apart. This distance is divided by the delay between the two detector output pulses to determine speed. A by-product of both methods is a localized particle flux. The microprocessor subsystem automates the pulse detection, timing, velocity calculation and display which are accomplished by the micro-processor subsystem. In the laboratory, a chute is used to generate particle flows with different characteristics. The detection system is tested in the chute for two different flows. A mechanical speed measurement is used for comparison to the one pulse method. The one pulse method is used for comparison to the two pulse method. A mechanical average mass flow rate is used for comparison to the flow rate measurements. Results obtained indicate that the one pulse method estimate is within 4% of the mechanically measured speed. The two pulse method gives erroneous results, in this application, due to detector separation distance greater than 3 particle diameters. The mass flow rate measurement gives erroneous results due to detector head placement. Solutions are proposed to correct discrepancies.

  17. Low temperature thermal expansion measurements on optical materials.

    Science.gov (United States)

    Browder, J S; Ballard, S S

    1969-04-01

    A three-terminal capacitance type dilatometer has been developed for investigating the thermal expansion of optical materials at low temperatures. The method is applicable when only small sample lengths (13 mm or less) are available. The thermal expansion coefficients of six polycrystalline materials (the Irtrans) and of one nonoxide glass have been determined in the range from room temperature down to about 60 K. Minute changes of the length of a sample produce a change of the spacing of a parallel plate capacitor with guard ring; the resulting change of capacitance is measured on a highly sensitive bridge. The expansion coefficients are then determined by relating the change of capacitance to the change of dimensions of the sample.

  18. Development of Optical Fiber Sensor for Water Quality Measurement

    Science.gov (United States)

    Omar, A. F.; MatJafri, M. Z.

    2008-05-01

    The development of water quality fiber sensor through spectroscopy analysis utilizes the emission of incident light and detection of backscattered light through fiber optic cables as key elements of the design. The system has the capability to detect the light scattered 180° away from the incident light when there is an interaction between the light and the solids suspended in the water. The empirical analysis is conducted for the measurement of the capacity of clay suspended in water (in mg/L). The system consists of two separate light detector circuitry that is sensitive to blue (470 nm) and red (635 nm) monochromatic light. The heart of the system is the sensor, TSLB257 and TSLR257 that having a peak response at wavelength of 470 nm and 635 nm respectively. The final result of detection is submitted to Basic Stamp 2 microcontroller for processing and analysis. The level of turbidity is then defined and displayed by the microcontroller.

  19. Measurement of the Waveguide Near-field Optical Spot

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The characteristic of near-field spots is analyzed.The size of the near field and the heat response time of the hybrid record medium to overcome super paramagnetic effect are calculated based on the heat transfer theory. A novel measuring method for the diameter of near-field recording spot is also presented. Since the grain of the recording media is tiny enough,near-field optical lithography can be accomplished with the aid of atomic force microscope (AFM).The diameter of near-field recording spot can be obtained by specifically designed computer.So the relationship between the near-field recording spot diameter and the probe size of near-field recording system, the near field recording distance coupling between head and disc can be got.

  20. Optical measurements of long-range protein vibrations

    Science.gov (United States)

    Acbas, Gheorghe; Niessen, Katherine A.; Snell, Edward H.; Markelz, A. G.

    2014-01-01

    Protein biological function depends on structural flexibility and change. From cellular communication through membrane ion channels to oxygen uptake and delivery by haemoglobin, structural changes are critical. It has been suggested that vibrations that extend through the protein play a crucial role in controlling these structural changes. While nature may utilize such long-range vibrations for optimization of biological processes, bench-top characterization of these extended structural motions for engineered biochemistry has been elusive. Here we show the first optical observation of long-range protein vibrational modes. This is achieved by orientation-sensitive terahertz near-field microscopy measurements of chicken egg white lysozyme single crystals. Underdamped modes are found to exist for frequencies >10 cm-1. The existence of these persisting motions indicates that damping and intermode coupling are weaker than previously assumed. The methodology developed permits protein engineering based on dynamical network optimization.

  1. Optical technique for measurement of random water wave surfaces

    Science.gov (United States)

    Sorrell, F. Y.; Withers, A. L.

    1976-01-01

    An optical system using the refraction of a vertical light ray has been developed for measuring the slope of random wind-generated water waves. The basic elements of the system are photovoltaic cells which are connected to individual amplifiers so that when the refracted light beam is incident on a cell, the output of the cell is amplified and then supplied as input to a comparator. The comparator then provides a specified voltage output, independent of the incident light intensity, as long as it is above a designated background value. The comparators are designed to give output voltages comparable with standard TTL. This arrangement provides a high signal from the cell when it experiences incident light, and a low signal when there is only background light, with the high and low signals at TTL voltage levels.

  2. High Performance Acousto-Optic Arrays based on Fiber Bragg Gratings for Measuring Launch Acoustics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes to prove the feasibility of innovations in acousto-optic sensor development for measurement of launch...

  3. Fabrication and Measurement of Precision Structures for External Occulter Optical Edges Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project proposes to develop an occulter optical edge and optical edge measurement verification system suitable for astrophysics missions including JWST and the...

  4. Feasibility study on fiber-optic goniometer for measuring knee joint angle

    Science.gov (United States)

    Kim, Seon Geun; Jang, Kyoung Won; Yoo, Wook Jae; Shin, Sang Hun; Cho, Seunghyun; Lee, Bongsoo

    2014-09-01

    In this study, we fabricated a fiber-optic goniometer using a plastic optical fiber, a light-emitting diode, and a photodiode. The cladding of the plastic optical fiber was removed at 0.5-3mm intervals regularly to increase the bending loss of the plastic optical fiber. Also, the output voltages of the photodiode based on light intensity that measured using the fiber-optic goniometer were measured light intensities using the fiber-optic goniometer were measured to evaluate the linearity of the fiber-optic goniometer. Finally, we measured the responses of the fiber-optic goniometer for gait speeds of 3, 5, and 10 km/h using a data acquisition board and a LabVIEW program.

  5. Guidelines and quality measures for the diagnosis of optic ataxia

    Directory of Open Access Journals (Sweden)

    Svenja eBorchers

    2013-07-01

    Full Text Available Since the first description of a systematic mis-reaching by Bálint in 1909, a reasonable number of patients showing a similar phenomenology, later termed optic ataxia (OA, has been described. However, there is surprising inconsistency regarding the behavioral measures that are used to detect OA in experimental and clinical reports, if the respective measures are reported at all. A typical screening method, that was presumably used by most researchers and clinicians, reaching for a target object in the peripheral visual space, has never been evaluated. We developed a set of instructions and evaluation criteria for the scoring of a semi-standardized version of this reaching task. We tested 36 healthy participants, a group of 52 acute and chronic stroke patients, and 24 patients suffering from cerebellar ataxia. We found a high interrater reliability and a moderate test-retest reliability comparable to other clinical instruments in the stroke sample. The calculation of cut-off thresholds based on healthy control and cerebellar patient data showed an unexpected high number of false positives in these samples due to individual outliers that made a considerable number of errors in peripheral reaching. This study provides first empirical data from large control and patient groups for a screening procedure that seems to be widely used but rarely explicity reported and prepares the grounds for its use as a standard tool for the description of patients who are included in single case or group studies addressing optic ataxia similar to the use of neglect, extinction, or apraxia screening tools.

  6. Foveal thickness after phacoemulsification as measured by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Gerasimos Th Georgopoulos

    2008-08-01

    Full Text Available Gerasimos Th Georgopoulos, Dimitrios Papaconstantinou, Maria Niskopoulou, Marilita Moschos, Ilias Georgalas, Chrysanthi KoutsandreaGlaucoma Department, Medical School, Athens University, Athens, GreeceBackground: Despite a significant body of research, no consistency on postoperative foveal thickness as measured by optical coherence tomography (OCT, can be recorded. The purpose of our study was to evaluate the effect of uncomplicated cataract surgery in the thickness of the retina in the foveal area during the early postoperative period.Methods: In a prospective study, 79 eyes were assessed by OCT, on day 1, and weeks 2 and 4 after uncomplicated phacoemulsification with intraocular lens implantation in the Athens University Clinic. The outcome measure was the thickness of the retina in the foveal area.Results: The thickness of the retina preoperatively is significantly smaller (150.4 ± 18.8 (p < 0.05 than the thickness of the retina on day 1 (171.8 ± 21 and week 2 (159.7 ± 19 and returned to the initial levels on week 4 (152 ± 17.1. The estimated correlation coefficients between preoperative and postoperative thickness of the retina were significant (p < 0.05. Conversely, no association was found between postoperative visual acuity and thickness of the retina, neither between the phacoemulsification energy and retinal thickness. Operation time, although inversely related with postoperative visual acuity, was not associated with the thickness of the retina.Conclusions: Following phacoemulsification, an increase in the foveal thickness was detected in the early postoperative period, quantified and followed up by OCT. The foveal thickness returned to the preoperative level, 1 month following surgery in our study. No association was shown between intraoperative parameters and increased postoperative retinal thickness.Keywords: optical coherence tomography, phacoemulsification, retinal thickness

  7. Measurements of optical polarization properties in dental tissues and biomaterials

    Science.gov (United States)

    Fernández-Oliveras, Alicia; Pecho, Oscar E.; Rubiño, Manuel; Pérez, María M.

    2011-05-01

    Since biological tissues can have the intrinsic property of altering the polarization of incident light, optical polarization studies are important for a complete characterization. We have measured the polarized light scattered off of different dental tissues and biomaterials for a comparative study of their optical polarization property. The experimental setup was composed by a He-Ne laser, two linear polarizers and a detection system based on a photodiode. The laser beam was passed through one linear polarizer placed in front of the sample, beyond which the second linear polarizer (analyzer) and the photodiode detector were placed. First, the maximum laser-light intensity (reference condition) was attained without the sample in the laser path. Then, the sample was placed between the two polarizers and the polarization shift of the scattered laser light was determined by rotating the analyzer until the reference condition was reached. Two dental-resin composites (nanocomposite and hybrid) and two human dental tissues (enamel and dentine) were analyzed under repeatability conditions at three different locations on the sample: 20 measurements of the shift were taken and the average value and the uncertainty associated were calculated. For the human dentine the average value of the polarization shift found was 7 degrees, with an associated uncertainty of 2 degrees. For the human enamel and both dental-resin composites the average shift values were found to be similar to their corresponding uncertainties (2 degrees). The results suggest that although human dentine has notable polarization properties, dental-resin composites and human enamel do not show significant polarization shifts.

  8. Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph

    2017-04-01

    It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.

  9. Geopotential measurements with synchronously linked optical lattice clocks

    Science.gov (United States)

    Takano, Tetsushi; Takamoto, Masao; Ushijima, Ichiro; Ohmae, Noriaki; Akatsuka, Tomoya; Yamaguchi, Atsushi; Kuroishi, Yuki; Munekane, Hiroshi; Miyahara, Basara; Katori, Hidetoshi

    2016-10-01

    According to Einstein's theory of relativity, the passage of time changes in a gravitational field. On Earth, raising a clock by 1 cm increases its apparent tick rate by 1.1 parts in 1018, allowing chronometric levelling through comparison of optical clocks. Here, we demonstrate such geopotential measurements by determining the height difference of master and slave clocks separated by 15 km with an uncertainty of 5 cm. A subharmonic of the master clock laser is delivered through a telecom fibre to synchronously operate the distant clocks. Clocks operated under such phase coherence reject clock laser noise and facilitate proposals for linking clocks and interferometers. Taken over half a year, 11 measurements determine the fractional frequency difference between the two clocks to be 1,652.9(5.9) × 10-18, consistent with an independent measurement by levelling and gravimetry. Our system demonstrates a building block for an internet of clocks, which may constitute ‘quantum benchmarks’, serving as height references with dynamic responses.

  10. Macular thickness measurements using Copernicus Spectral Domain Optical Coherence Tomography.

    Science.gov (United States)

    Gella, Laxmi; Raman, Rajiv; Sharma, Tarun

    2015-01-01

    To provide normal macular thickness measurements using Spectral Domain Optical Coherence Tomography (SDOCT, Copernicus, Optopol Technologies, Zawierci, Poland). Fifty-eight eyes of 58 healthy subjects were included in this prospective study. All subjects had comprehensive ophthalmic examination including best-corrected visual acuity (BCVA). All the subjects underwent Copernicus SDOCT. Central foveal thickness (CFT) and photoreceptor layer (PRL) thickness were measured and expressed as mean and standard deviation. Mean retinal thickness for each of the 9 regions defined in the Early Treatment Diabetic Retinopathy Study was reported. The data were compared with published literature in Indians using Stratus and Spectralis OCTs to assess variation in instrument measurements. The mean CFT in the study sample was 173.8 ± 18.16 microns (131-215 microns) and the mean PRL thickness was 65.48 ± 4.23 microns (56-74 microns). No significant difference (p = 0.148) was found between CFT measured automated (179.28 ± 22 microns) and manually (173.83 ± 18.1 microns). CFT was significantly lower in women (167.62 ± 16.36 microns) compared to men (180.03 ± 18 microns) (p = 0.008). Mean retinal thickness reported in this study was significantly different from published literature using Stratus OCT and Spectralis OCT. We report the normal mean retinal thickness in central 1 mm area to be between 138 and 242 microns in Indian population using Copernicus SDOCT. We suggest that different OCT instruments cannot be used interchangeably for the measurement of macular thickness as they vary in segmentation algorithms.

  11. Simulating Scintillator Light Collection Using Measured Optical Reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Janecek, Martin; Moses, William

    2010-01-28

    To accurately predict the light collection from a scintillating crystal through Monte Carlo simulations, it is crucial to know the angular distribution from the surface reflectance. Current Monte Carlo codes allow the user to set the optical reflectance to a linear combination of backscatter spike, specular spike, specular lobe, and Lambertian reflections. However, not all light distributions can be expressed in this way. In addition, the user seldom has the detailed knowledge about the surfaces that is required for accurate modeling. We have previously measured the angular distributions within BGO crystals and now incorporate these data as look-up-tables (LUTs) into modified Geant4 and GATE Monte Carlo codes. The modified codes allow the user to specify the surface treatment (ground, etched, or polished), the attached reflector (Lumirror(R), Teflon(R), ESR film, Tyvek(R), or TiO paint), and the bonding type (air-coupled or glued). Each LUT consists of measured angular distributions with 4o by 5o resolution in theta and phi, respectively, for incidence angles from 0? to 90? degrees, in 1o-steps. We compared the new codes to the original codes by running simulations with a 3 x 10 x 30 mm3 BGO crystal coupled to a PMT. The simulations were then compared to measurements. Light output was measured by counting the photons detected by the PMT with the 3 x 10, 3 x 30, or 10 x 30 mm2 side coupled to the PMT, respectively. Our new code shows better agreement with the measured data than the current Geant4 code. The new code can also simulate reflector materials that are not pure specular or Lambertian reflectors, as was previously required. Our code is also more user friendly, as no detailed knowledge about the surfaces or light distributions is required from the user.

  12. Potential of optical spectral transmission measurements for joint inflammation measurements in rheumatoid arthritis patients

    Science.gov (United States)

    Meier, A. J. Louise; Rensen, Wouter H. J.; de Bokx, Pieter K.; de Nijs, Ron N. J.

    2012-08-01

    Frequent monitoring of rheumatoid arthritis (RA) patients enables timely treatment adjustments and improved outcomes. Currently this is not feasible due to a shortage of rheumatologists. An optical spectral transmission device is presented for objective assessment of joint inflammation in RA patients, while improving diagnostic accuracy and clinical workflow. A cross-sectional, nonrandomized observational study was performed with this device. In the study, 77 proximal interphalangeal (PIP) joints in 67 patients have been analyzed. Inflammation of these PIP joints was also assessed by a rheumatologist with a score varying from 1 (not inflamed) to 5 (severely inflamed). Out of 77 measurements, 27 were performed in moderate to strongly inflamed PIP joints. Comparison between the clinical assessment and an optical measurement showed a correlation coefficient r=0.63, p<0.001, 95% CI [0.47, 0.75], and a ROC curve (AUC=0.88) that shows a relative good specificity and sensitivity. Optical spectral transmission measurements in a single joint correlate with clinical assessment of joint inflammation, and therefore might be useful in monitoring joint inflammation in RA patients.

  13. Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement

    Science.gov (United States)

    Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao

    2016-10-01

    The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.

  14. Substrate-dependent cell elasticity measured by optical tweezers indentation

    Science.gov (United States)

    Yousafzai, Muhammad S.; Ndoye, Fatou; Coceano, Giovanna; Niemela, Joseph; Bonin, Serena; Scoles, Giacinto; Cojoc, Dan

    2016-01-01

    In the last decade, cell elasticity has been widely investigated as a potential label free indicator for cellular alteration in different diseases, cancer included. Cell elasticity can be locally measured by pulling membrane tethers, stretching or indenting the cell using optical tweezers. In this paper, we propose a simple approach to perform cell indentation at pN forces by axially moving the cell against a trapped microbead. The elastic modulus is calculated using the Hertz-model. Besides the axial component, the setup also allows us to examine the lateral cell-bead interaction. This technique has been applied to measure the local elasticity of HBL-100 cells, an immortalized human cell line, originally derived from the milk of a woman with no evidence of breast cancer lesions. In addition, we have studied the influence of substrate stiffness on cell elasticity by performing experiments on cells cultured on two substrates, bare and collagen-coated, having different stiffness. The mean value of the cell elastic modulus measured during indentation was 26±9 Pa for the bare substrate, while for the collagen-coated substrate it diminished to 19±7 Pa. The same trend was obtained for the elastic modulus measured during the retraction of the cell: 23±10 Pa and 13±7 Pa, respectively. These results show the cells adapt their stiffness to that of the substrate and demonstrate the potential of this setup for low-force probing of modifications to cell mechanics induced by the surrounding environment (e.g. extracellular matrix or other cells).

  15. Measurement of imaging properties of scintillating fiber optic plate

    Science.gov (United States)

    Zentai, George; Ganguly, Arundhuti; Star-Lack, Josh; Virshup, Gary; Hirsh, Hayley; Shedlock, Daniel; Humber, David

    2014-03-01

    Scintillating Fiber Optic Plates (SFOP) or Fiber Optic Scintillator (FOS) made with scintillating fiber-glass, were investigated for x-ray imaging. Two different samples (T x W x L = 2cm x 5cm x 5cm) were used; Sample A: 10μm fibers, Sample B: 50μm fibers both with statistically randomized light absorbing fibers placed in the matrix. A customized holder was used to place the samples in close contact with photodiodes in an amorphous silicon flat panel detector (AS1000, Varian), typically used for portal imaging. The detector has a 392μm pixel pitch and in the standard configuration uses a gadolinium oxy-sulphide (GOS) screen behind a copper plate. X-ray measurements were performed at 120kV (RQA 9 spectrum), 1MeV (5mm Al filtration) and 6MeV (Flattening Filter Free) for Sample A and the latter 2 spectra for Sample B. A machined edge was used for MTF measurements. The measurements showed the MTF degraded with increased X-ray energies because of the increase in Compton scattering. However, at the Nyquist frequency of 1.3lp/mm, the MTF is still high (FOS value vs. Cu+GOS): (a) 37% and 21% at 120kVp for the 10μm FOS and the Cu+GOS arrays, (b) 31%, 20% and 20% at 1MeV and (c) 17%, 11% and 14% at 6MeV for the 10μm FOS, 50μm FOS and the Cu+GOS arrays. The DQE(0) value comparison were (a) at 120kV ~24% and ~13 % for the 10μm FOS and the Cu+GOS arrays (b) at 1MV 10%, 10% and 7% and (c) at 6MV 12%, ~19% and 1.6% for the 10μm FOS , 50μm FOS and Cu+GOS arrays.

  16. Flow measurement using speckle in optical coherence tomography images

    Science.gov (United States)

    Barton, Jennifer K.; Stromski, Steven

    2005-04-01

    Doppler optical coherence tomography (DOCT) is a valuable tool for depth-resolved flow measurements in tissue. However, DOCT suffers from two disadvantages: it is insensitive to flow in the direction normal to the imaging beam, and it requires knowledge of the phase of the demodulated signal. We present an alternative method of extracting flow information, using speckle of conventional amplitude optical coherence tomography images. The two techniques can be shown to be essentially equivalent, with the distinction that speckle methods are sensitive to flow in all directions but do not provide information on the direction of flow. It is well known in other imaging modalities that moving scatterers cause a time-varying speckle pattern. Due to the pixel-by-pixel acquisition scheme of conventional OCT, time-varying speckle is manifested as a change of OCT image spatial speckle frequencies. We tested the ability of speckle to provide quantitative flow information using a flow phantom (a tube filled with Intralipid flowing at a constant volumetric flow rate). Initially, m-scans were taken at over the center of the tube. Images were averaged to reduce noise and the region corresponding to the center one-quarter of the tube lumen was selected. Sequential a-scans were concatenated, the Fourier transform performed, and a ratio of high to low spatial frequencies computed. We found that, over a range of velocities, this ratio bore a linear relation to flow velocity. For two-dimensional imaging, the program was modified to use a sliding window. Parabolic flow profile was visualized inside the tube. This study shows the feasibility of extracting quantitative flow data in all directions without phase information.

  17. Optical reflectance measurements of Co1-xCrx

    Science.gov (United States)

    Leng, Jing; Fong, C. Y.; Wooten, F.; Perlov, C. M.

    1987-04-01

    The optical reflectance of Co1-xCrx for 0.12≤x≤0.22 has been measured with photon energy between 1.5 and 4.1 eV. Light was unpolarized. For atmospheric pressure, two sets of samples have been used. Spectra were obtained under vacuum (10-3 Torr) with one set of samples. Samples are in the film form with thicknesses of the order of 1 μm. Between 1.5≤ℏω≤3.5 eV, the measured alloy spectra are similar to that for pure Co with Ē∥ĉ. The reflectance decreases monotonically as the photon energy increases. This suggests that the alloying Cr to Co at x≤0.22 has not changed appreciably the electronic properties of Co within 3.0 eV of the Fermi energy EF. At higher energy the present results show a minimum in reflectance at 4.0 eV. Therefore, the alloying of Cr seems to show its effect in higher-energy interband transitions.

  18. Lightweight Integrated Optical Sensor for Atmospheric Measurements on Mobile Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Krishnan R. [Physical Sciences Inc.

    2013-12-02

    The goal of the Phase I program was to develop a novel open path sensor platform technology based on integration of semiconductor waveguides with efficient optoelectronic components on a monolithic platform. The successful Phase I effort resulted in demonstration of a novel optical resonator structure based on semiconductor high contrast gratings (HCGs) that will enable implementation of an ultra-compact, low-power gas sensor suitable for use on mobile platforms. Extensive numerical modeling was performed to design a device optimized for measuring CO2 at a wavelength for which a laser was available for proof of concept. Devices were fabricated and tested to match the target wavelength, angle, and operating temperature. This demonstration is the first implementation of HCGs at the wavelengths of interest and shows the flexibility of the proposed architecture for gas sensing applications. The measured cavity Q was lower than anticipated due to fabrication process challenges. The PSI and UC Berkeley team has identified solutions to these challenges and will produce optimized devices in a Phase II program where a prototype sensor will be fabricated and tested.

  19. Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker

    Science.gov (United States)

    Hagopian, John; Connelly, Joseph

    2011-01-01

    The determination of radius of curvature (ROC) of optics typically uses either a phase measuring interferometer on an adjustable stage to determine the position of the ROC and the optics surface under test. Alternatively, a spherometer or a profilometer are used for this measurement. The difficulty of this approach is that for large optics, translation of the interferometer or optic under test is problematic because of the distance of translation required and the mass of the optic. Profilometry and spherometry are alternative techniques that can work, but require a profilometer or a measurement of subapertures of the optic. The proposed approach allows a measurement of the optic figure simultaneous with the full aperture radius of curvature.

  20. Optical calculations and in-situ measurement of transmittance spectra of contaminant thin films

    Science.gov (United States)

    Shimazaki, Kazunori; Miyazaki, Eiji; Kimoto, Yugo

    2016-09-01

    Molecular contaminants outgassed from organic materials used for the spacecraft degrade the performance of optical surfaces of spacecraft. The influence of contaminants outgassed from epoxy resin on the spectral transmittance of the quartz substrate was investigated with an in-situ measurement system. The system can deposit the contaminants on temperature-controlled quartz substrates and the transmittance spectra were measured immediately after deposition in vacuum ambient. We tried to obtain the optical constants of the contaminant using transmittance spectrum and simple optical models for optical calculations. The optical constants were described with a harmonic oscillator model and the effective medium approximation model. This paper reports the in-situ measurement results of transmittance spectra of the epoxy-resin-induced contaminants. In addition, the result of optical calculations using the obtained optical constants were compared to the measurement results.

  1. Noninvasive optical cytochrome c oxidase redox state measurements using diffuse optical spectroscopy

    Science.gov (United States)

    Lee, Jangwoen; Kim, Jae G.; Mahon, Sari B.; Mukai, David; Yoon, David; Boss, Gerry R.; Patterson, Steven E.; Rockwood, Gary; Isom, Gary; Brenner, Matthew

    2014-05-01

    A major need exists for methods to assess organ oxidative metabolic states in vivo. By contrasting the responses to cyanide (CN) poisoning versus hemorrhage in animal models, we demonstrate that diffuse optical spectroscopy (DOS) can detect cytochrome c oxidase (CcO) redox states. Intermittent decreases in inspired O2 from 100% to 21% were applied before, during, and after CN poisoning, hemorrhage, and resuscitation in rabbits. Continuous DOS measurements of total hemoglobin, oxyhemoglobin, deoxyhemoglobin, and oxidized and reduced CcO from muscle were obtained. Rabbit hemorrhage was accomplished with stepwise removal of blood, followed by blood resuscitation. CN treated rabbits received 0.166 mg/min NaCN infusion. During hemorrhage, CcO redox state became reduced concurrently with decreases in oxyhemoglobin, resulting from reduced tissue oxygen delivery and hypoxia. In contrast, during CN infusion, CcO redox state decreased while oxyhemoglobin concentration increased due to CN binding and reduction of CcO with resultant inhibition of the electron transport chain. Spectral absorption similarities between hemoglobin and CcO make noninvasive spectroscopic distinction of CcO redox states difficult. By contrasting physiological perturbations of CN poisoning versus hemorrhage, we demonstrate that DOS measured CcO redox state changes are decoupled from hemoglobin concentration measurement changes.

  2. Classical stochastic measurement trajectories: Bosonic atomic gases in an optical cavity and quantum measurement backaction

    Science.gov (United States)

    Lee, Mark D.; Ruostekoski, Janne

    2014-08-01

    We formulate computationally efficient classical stochastic measurement trajectories for a multimode quantum system under continuous observation. Specifically, we consider the nonlinear dynamics of an atomic Bose-Einstein condensate contained within an optical cavity subject to continuous monitoring of the light leaking out of the cavity. The classical trajectories encode within a classical phase-space representation a continuous quantum measurement process conditioned on a given detection record. We derive a Fokker-Planck equation for the quasiprobability distribution of the combined condensate-cavity system. We unravel the dynamics into stochastic classical trajectories that are conditioned on the quantum measurement process of the continuously monitored system. Since the dynamics of a continuously measured observable in a many-atom system can be closely approximated by classical dynamics, the method provides a numerically efficient and accurate approach to calculate the measurement record of a large multimode quantum system. Numerical simulations of the continuously monitored dynamics of a large atom cloud reveal considerably fluctuating phase profiles between different measurement trajectories, while ensemble averages exhibit local spatially varying phase decoherence. Individual measurement trajectories lead to spatial pattern formation and optomechanical motion that solely result from the measurement backaction. The backaction of the continuous quantum measurement process, conditioned on the detection record of the photons, spontaneously breaks the symmetry of the spatial profile of the condensate and can be tailored to selectively excite collective modes.

  3. Weather and Atmospheric Effects on the Measurement and Use of Electro-Optical Signature Data

    Science.gov (United States)

    2017-02-01

    Atmospheric Effects on the Measurement and Use of Electro-Optical Signature Data RCC 469-17 February 2017 3 Table 1. General Sub- Region Terms of the...Atmospheric Effects on the Measurement and Use of Electro-Optical Signature Data RCC 469-17 February 2017 6 eye in all quantities. Multiple human eye ...on the Measurement and Use of Electro-Optical Signature Data RCC 469-17 February 2017 7 Table 4. Relative Spectral Response of the Eye λ

  4. Quantum nondemolition measurement with a nonclassical meter input and an electro-optic enhancement

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Buchler, B.C.; Bachor, H.A.

    2002-01-01

    Optical quantum nondemolition measurements are performed using a beamsplitter with a nonclassical meter input and a electro-optic feedforward loop. The nonclassical meter input is provided by a stable 4.5 dB amplitude squeezed source generated by an optical parametric amplifier. We show...

  5. Investigation of the limits of a fibre optic sensor system for measurement of temperature distribution

    DEFF Research Database (Denmark)

    Brehm, Robert; Johnson, Frank

    2006-01-01

    The aim of this project is to develop an innovative temperature sensor system which is able to measure the temperature distribution along a fibre optical cable. This technique for temperature measurement is based on Optical Time Domain Reflectometry (OTDR). ©2006 IEEE.......The aim of this project is to develop an innovative temperature sensor system which is able to measure the temperature distribution along a fibre optical cable. This technique for temperature measurement is based on Optical Time Domain Reflectometry (OTDR). ©2006 IEEE....

  6. Soft tissue strain measurement using an optical method

    Science.gov (United States)

    Toh, Siew Lok; Tay, Cho Jui; Goh, Cho Hong James

    2008-11-01

    Digital image correlation (DIC) is a non-contact optical technique that allows the full-field estimation of strains on a surface under an applied deformation. In this project, the application of an optimized DIC technique is applied, which can achieve efficiency and accuracy in the measurement of two-dimensional deformation fields in soft tissue. This technique relies on matching the random patterns recorded in images to directly obtain surface displacements and to get displacement gradients from which the strain field can be determined. Digital image correlation is a well developed technique that has numerous and varied engineering applications, including the application in soft and hard tissue biomechanics. Chicken drumstick ligaments were harvested and used during the experiments. The surface of the ligament was speckled with black paint to allow for correlation to be done. Results show that the stress-strain curve exhibits a bi-linear behavior i.e. a "toe region" and a "linear elastic region". The Young's modulus obtained for the toe region is about 92 MPa and the modulus for the linear elastic region is about 230 MPa. The results are within the values for mammalian anterior cruciate ligaments of 150-300 MPa.

  7. Rheological properties of cells measured by optical tweezers.

    Science.gov (United States)

    Ayala, Yareni A; Pontes, Bruno; Ether, Diney S; Pires, Luis B; Araujo, Glauber R; Frases, Susana; Romão, Luciana F; Farina, Marcos; Moura-Neto, Vivaldo; Viana, Nathan B; Nussenzveig, H Moysés

    2016-01-01

    The viscoelastic properties of cells have been investigated by a variety of techniques. However, the experimental data reported in literature for viscoelastic moduli differ by up to three orders of magnitude. This has been attributed to differences in techniques and models for cell response as well as to the natural variability of cells. In this work we develop and apply a new methodology based on optical tweezers to investigate the rheological behavior of fibroblasts, neurons and astrocytes in the frequency range from 1Hz to 35Hz, determining the storage and loss moduli of their membrane-cortex complex. To avoid distortions associated with cell probing techniques, we use a previously developed method that takes into account the influence of under bead cell thickness and bead immersion. These two parameters were carefully measured for the three cell types used. Employing the soft glass rheology model, we obtain the scaling exponent and the Young's modulus for each cell type. The obtained viscoelastic moduli are in the order of Pa. Among the three cell types, astrocytes have the lowest elastic modulus, while neurons and fibroblasts exhibit a more solid-like behavior. Although some discrepancies with previous results remain and may be inevitable in view of natural variability, the methodology developed in this work allows us to explore the viscoelastic behavior of the membrane-cortex complex of different cell types as well as to compare their viscous and elastic moduli, obtained under identical and well-defined experimental conditions, relating them to the cell functions.

  8. Intercomparison of desert dust optical depth from satellite measurements

    Directory of Open Access Journals (Sweden)

    E. Carboni

    2012-08-01

    Full Text Available This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify the differences between current datasets. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR, polarisation measurements (POLDER, single-view approaches using solar wavelengths (OMI, MODIS, and the thermal infrared spectral region (SEVIRI, AIRS. Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as assumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, it is important to note that differences in sampling, related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset can be an important issue.

  9. Choroidal thinning in high myopia measured by optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Ikuno Y

    2013-05-01

    Full Text Available Yasushi Ikuno, Satoko Fujimoto, Yukari Jo, Tomoko Asai, Kohji NishidaDepartment of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, JapanPurpose: To investigate the rate of choroidal thinning in highly myopic eyes.Patients and methods: A retrospective observational study of 37 eyes of 26 subjects (nine males and 17 females, mean age 39.6 ± 7.7 years with high myopia but no pathologies who had undergone spectral domain optical coherence tomography and repeated the test 1 year later (1 ± 0.25 year at Osaka University Hospital, Osaka, Japan. Patients older than 50 years with visual acuity worse than 20/40 or with whitish chorioretinal atrophy involving the macula were excluded. Two masked raters measured the choroidal thicknesses (CTs at the foveda, 3 mm superiorly, inferiorly, temporally, and nasally on the images and averaged the values. The second examination was about 365 days after the baseline examination. The CT reduction per year (CTRPY was defined as (CT 1 year after - baseline CT/days between the two examinations × 365. The retinal thicknesses were also investigated.Results: The CTRPY at the fovea was −1.0 ± 22.0 µm (range –50.2 to 98.5 at the fovea, –6.5 ± 24.3 µm (range −65.8 to 90.2 temporally, –0.5 ± 22.3 µm (range –27.1 to 82.5 nasally, –9.7 ± 21.7 µm (range –40.1 to 60.1 superiorly, and –1.4 ± 25.5 µm (range –85.6 to 75.2 inferiorly. There were no significant differences in the CTRPY at each location (P = 0.34. The CT decreased significantly (P < 0.05 only superiorly. The superior CTRPY was negatively correlated with the axial length (P < 0.05. The retinal thickness at the fovea did not change. Stepwise analysis for CTRPY selected axial length (P = 0.04, R2 = 0.13 and age (P = 0.08, R2 = 0.21 as relevant factors.Conclusions: The highly myopic choroid might gradually thin and be affected by many factors. Location and axial length are key factors to regulate the rate of choroidal

  10. Application of low-coherence optical fiber Doppler anemometry to fluid-flow measurement: optical system considerations

    Science.gov (United States)

    Boyle, William J. O.; Grattan, Kenneth T. V.; Palmer, Andrew W.; Meggitt, B. T.

    1991-08-01

    A fiber optic Doppler anemometric (FODA) sensor using an optical delay cavity technique and having the advantage of detecting velocity rather than simple speed is outlined. In this sensor the delay in a sensor cavity formed from light back-reflected from a fiber tip (Fresnel reflection) and light back-reflected from particles flowing in a fluid is balanced by the optical delay when light from this sensor cavity passes through a reference cavity formed by a combination of the zero and first diffraction orders produced by a Bragg cell inserted into the optical arrangement. The performance of an experimental sensor based on this scheme is investigated, and velocity measurements using the Doppler shift data from moving objects are presented. The sensitivity of the scheme is discussed, with reference to the other techniques of fluid flow measurement.

  11. Flexibility of LHC Optics for Forward Proton Measurements

    CERN Document Server

    Cieśla, Krzysztof

    2016-01-01

    The geometric acceptance of the ATLAS Forward Proton detectors is studied. The elements of the LHC magnetic lattice that are most important for the acceptance are identified. The effects of possible changes of the LHC optics are studied.

  12. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices

    CERN Document Server

    He, Li; Li, Mo

    2016-01-01

    Photons carry linear momentum, and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, while angular momentum transfer induces optical torque. Optical forces including radiation pressure and gradient forces have long been utilized in optical tweezers and laser cooling. In nanophotonic devices optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect remain unexplored in integrated photonics. Here, we demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mecha...

  13. Measurement of Optical Response of a Detuned Resonant Sideband Extraction Interferometer

    CERN Document Server

    Miyakawa, O; Adhikari, R; Evans, M; Abbott, B; Bork, R; Busby, D; Heefner, J; Ivanov, A; Smith, M; Taylor, R; Vass, S; Weinstein, A; Varvella, M; Kawamura, S; Kawazoe, F; Sakata, S; Mow-Lowry, C; Miyakawa, Osamu; Ward, Robert; Adhikari, Rana; Evans, Matthew; Abbott, Benjamin; Bork, Rolf; Busby, Daniel; Heefner, Jay; Ivanov, Alexander; Smith, Michael; Taylor, Robert; Vass, Stephen; Weinstein, Alan; Varvella, Monica; Kawamura, Seiji; Kawazoe, Fumiko; Sakata, Shihori; Mow-Lowry, Conor

    2006-01-01

    We report on the optical response of a suspended-mass detuned resonant sideband extraction (RSE) interferometer with power recycling. The purpose of the detuned RSE configuration is to manipulate and optimize the optical response of the interferometer to differential displacements (induced by gravitational waves) as a function of frequency, independently of other parameters of the interferometer. The design of our interferometer results in an optical gain with two peaks: an RSE optical resonance at around 4 kHz and a radiation pressure induced optical spring at around 41 Hz. We have developed a reliable procedure for acquiring lock and establishing the desired optical configuration. In this configuration, we have measured the optical response to differential displacement and found good agreement with predictions at both resonances and all other relevant frequencies. These results build confidence in both the theory and practical implementation of the more complex optical configuration being planned for Advanc...

  14. Study of Electro-Optical Measuring System for Measuring the Swaying of Rocket Launcher and Artillery Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yang; YAN Yu-feng; CAI Li-juan; LIU Zhen-bo

    2008-01-01

    A scheme is proposed, of that the axis of directional barrel is simulated by a laser beam and an electro-optical axial angle encoder is using to measure the swaying of rocket Muncher or artillery. The measuring principle is stated, and an electro-optical measuring system is designed, including automatic force-applying device, angle-measurement device and photodetecting screen. The measurement accuracy of the system is analyzed. The measuring error of system is less then 17.3"(0.08 mil).

  15. Fibre-optical techniques for measuring various properties of shock waves

    NARCIS (Netherlands)

    Prinse, W.C.; Esveld, R.J. van; Oostdam, R. van; Rooijen, M. van; Bouma, R.H.B.

    1999-01-01

    For the past years we have developed several optical techniques to measure properties of shock waves. The fibre optic probe (FOP) is developed to measure the shock-wave velocity and/or the detonation velocity inside an explosive. The space resolution can be as small as 0.5 mm. Single fibres are used

  16. Development of fiber optic sensors at TNO for explosion and shock wave measurements

    NARCIS (Netherlands)

    Cheng, L.K.; Smorenburg, C.; Bree, J.L.M.J. van; Bouma, R.H.B.; Meer, B.J. van der; Prinse, W.C.; Scholtes, J.H.G.

    2000-01-01

    Fiber Optic sensors are found to be very suitable for explosion and shock wave measurements because they are immune to Electromagnetic Interference (EMI). In the past few years, TNO has developed a number of sensor systems for explosion and shock wave measurements in which the optical fiber is a vit

  17. Development of fiber optic sensors at TNO for explosion and shock wave measurements

    NARCIS (Netherlands)

    Cheng, L.K.; Smorenburg, C.; Bree, J.L.M.J. van; Bouma, R.H.B.; Meer, B.J. van der; Prinse, W.C.; Scholtes, J.H.G.

    2000-01-01

    Fiber Optic sensors are found to be very suitable for explosion and shock wave measurements because they are immune to Electromagnetic Interference (EMI). In the past few years, TNO has developed a number of sensor systems for explosion and shock wave measurements in which the optical fiber is a vit

  18. A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements

    NARCIS (Netherlands)

    Taminiau, Tim H.; Segerink, Franciscus B.; van Hulst, N.F.

    2007-01-01

    We present a monopole antenna for optical frequencies (~600 THz) and discuss near-field measurements with single fluorescent molecules as a technique to characterize such antennas. The similarities and differences between near-field antenna measurements at optical and radio frequencies are discussed

  19. Effect of noise on Frequency-Resolved Optical Gating measurements of ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fittinghoff, D.N.; DeLong, K.W.; Ladera, C.L.; Trebino, R.

    1995-02-01

    We study the effects of noise in Frequency-Resolved Optical Gating measurements of ultrashort pulses. We quantify the measurement accuracy in the presence of additive, muliplicative, and quantization noise, and discuss filtering and pre-processing of the data.

  20. Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy

    National Research Council Canada - National Science Library

    Molotch, Noah P; Barnard, David M; Burns, Sean P; Painter, Thomas H

    2016-01-01

    .... In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest...

  1. In vitro measurements of optical properties of porcine brain using a novel compact device

    CSIR Research Space (South Africa)

    Yavari, N

    2005-09-01

    Full Text Available describes measurements of the optical properties of porcine brain tissue using novel instrumentation for simultaneous absorption and scattering characterisation of small turbid samples. Integrating sphere measurements are widely used as a reference method...

  2. Interferometric velocity measurements through a fluctuating gas-liquid interface employing adaptive optics.

    Science.gov (United States)

    Büttner, Lars; Leithold, Christoph; Czarske, Jürgen

    2013-12-16

    Optical transmission through fluctuating interfaces of mediums with different refractive indexes is limited by the occurring distortions. Temporal fluctuations of such distortions deteriorate optical measurements. In order to overcome this shortcoming we propose the use of adaptive optics. For the first time, an interferometric velocity measurement technique with embedded adaptive optics is presented for flow velocity measurements through a fluctuating air-water interface. A low order distortion correction technique using a fast deformable mirror and a Hartmann-Shack camera with high frame rate is employed. The obtained high control bandwidth enables precise measurements also at fast fluctuating media interfaces. This methodology paves the way for several kinds of optical flow measurements in various complex environments.

  3. Single Camera 3-D Coordinate Measuring System Based on Optical Probe Imaging

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new vision coordinate measuring system——single camera 3-D coordinate measuring system based on optical probe imaging is presented. A new idea in vision coordinate measurement is proposed. A linear model is deduced which can distinguish six freedom degrees of optical probe to realize coordinate measurement of the object surface. The effects of some factors on the resolution of the system are analyzed. The simulating experiments have shown that the system model is available.

  4. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity

    Directory of Open Access Journals (Sweden)

    Mohd Zubir Bin MatJafri

    2009-10-01

    Full Text Available Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ.

  5. Turbidimeter design and analysis: a review on optical fiber sensors for the measurement of water turbidity.

    Science.gov (United States)

    Omar, Ahmad Fairuz Bin; Matjafri, Mohd Zubir Bin

    2009-01-01

    Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ.

  6. A Comparison between Two Heterodyne Light Sources Using Different Electro-Optic Modulators for Optical Temperature Measurements at Visible Wavelengths

    Directory of Open Access Journals (Sweden)

    Ruey-Ching Twu

    2010-10-01

    Full Text Available In this paper we have successfully demonstrated a z-propagating Zn-indiffused lithium niobate electro-optic modulator used for optical heterodyne interferometry. Compared to a commercial buck-type electro-optic modulator, the proposed waveguide-type modulator has a lower driving voltage and smaller phase variation while measuring visible wavelengths of 532 nm and 632.8 nm. We also demonstrate an optical temperature measurement system using a homemade modulator. The results show that the measurement sensitivities are almost the same values of 25 deg/°C for both the homemade and the buck-type modulators for a sensing light with a wavelength of 632.8 nm. Because photorefractive impacts are essential in the buck-type modulator at a wavelength of 532 nm, it is difficult to obtain reliable phase measurements, whereas the stable phase operation of the homemade one allows the measurement sensitivity to be improved up to 30 deg/°C with the best measurement resolution at about 0.07 °C for 532 nm.

  7. Measuring the optical properties of IceCube drill holes

    Directory of Open Access Journals (Sweden)

    Rongen Martin

    2016-01-01

    Full Text Available The IceCube Neutrino Observatory consists of 5160 digital optical modules (DOMs in a cubic kilometer of deep ice below the South Pole. The DOMs record the Cherenkov light from charged particles interacting in the ice. A good understanding of the optical properties of the ice is crucial to the quality of the event reconstruction. While the optical properties of the undisturbed ice are well understood, the properties of the refrozen drill holes still pose a challenge. A new data-acquisition and analysis approach using light originating from LEDs within one DOM detected by the photomultiplier of the same DOM will be described. This method allows us to explore the scattering length in the immediate vicinity of the considered DOMs.

  8. Altitudinal dependence of meteor radio afterglows measured via optical counterparts

    CERN Document Server

    Obenberger, K S; Dowell, J D; Schinzel, F K; Stovall, K; Sutton, E K; Taylor, G B

    2016-01-01

    Utilizing the all-sky imaging capabilities of the LWA1 radio telescope along with a host of all-sky optical cameras, we have now observed 44 optical meteor counterparts to radio afterglows. Combining these observations we have determined the geographic positions of all 44 afterglows. Comparing the number of radio detections as a function of altitude above sea level to the number of expected bright meteors we find a strong altitudinal dependence characterized by a cutoff below $\\sim$ 90 km, below which no radio emission occurs, despite the fact that many of the observed optical meteors penetrated well below this altitude. This cutoff suggests that wave damping from electron collisions is an important factor for the evolution of radio afterglows, which agrees with the hypothesis that the emission is the result of electron plasma wave emission.

  9. Long term attenuation measurements on optical ground wires

    Energy Technology Data Exchange (ETDEWEB)

    Lamarche, L.; Gagnon, D.; Miron, M. [Hydro-Quebec, Varennes, Quebec1 (Canada)

    1996-11-01

    The attenuation stability of optical fibers integrated in optical ground wires (OPGW) cables over temperature and time is of paramount importance in the planning of long distance links. The authors report here a mean thermal attenuation dependence of 5.5{center_dot}10{sup {minus}5} dB/(km{center_dot}C) at 1,550 nm, on a 220 km span of dispersion shifted (DS) fibers of an installed OPGW cable. This optical link is installed in the James Bay region over a 735 kV power line where temperature varies from {minus}40 C to +30 C annually. The data sample presented covers 1.5 year starting December 1993. The data sample presented covers 1.5 year starting December 1993. During that period, the authors also observed a temporal evolution of the attenuation described by the empirical relation A = A{sub 0} (t{minus}t{sub 0}){sup 0.00394}.

  10. Force measuring optical tweezers system for long time measurements of P pili stability

    Science.gov (United States)

    Andersson, Magnus; Fällman, Erik; Uhlin, Bernt Eric; Axner, Ove

    2006-02-01

    A force-measuring optical tweezers instrumentation and long time measurements of the elongation and retraction of bacterial fimbriae from Uropathogenic E. coli (UPEC) under strain are presented. The instrumentation is presented in some detail. Special emphasis is given to measures taken to reduce the influence of noise and drifts in the system and from the surrounding, which makes long term force measurements possible. Individual P pili from UPEC bacteria were used as a biological model system for repetitive unfolding and refolding cycles of bacterial fimbriae under equilibrium conditions. P pili have evolved into a three-dimensional helix-like structure, the PapA rod, that can be successively and significantly elongated and/or unfolded when exposed to external forces. The instrumentation is used for characterization of the force-vs.-elongation response of the PapA rod of individual P pili, with emphasis on the long time stability of the forced unfolding and refolding of the helical structure of the PapA rod. The results show that the PapA rod is capable of withstanding extensive strain, leading to a complete unfolding of the helical structure, repetitive times during the life cycle of a bacterium without any noticeable alteration of the mechanical properties of the P pili. This function is believed to be importance for UPEC bacteria in vivo since it provides a close contact to a host cell (which is an initial step of invasion) despite urine cleaning attempts.

  11. Nonlinear optical properties and optical limiting measurements of graphene oxide - Ag@TiO2 compounds

    Science.gov (United States)

    Ebrahimi, M.; Zakery, A.; Karimipour, M.; Molaei, M.

    2016-07-01

    In this work Graphene Oxide (GO), Ag@TiO2 core-shells and GO-Ag@TiO2 compounds were prepared and experimentally verified. Using a low power laser diode with 532 nm wavelength, the magnitude and the sign of the nonlinear refractive index and nonlinear absorption were determined by the Z-scan technique. It was observed that the nonlinear absorption of GO-Ag@TiO2 mixture was higher than pure GO. The optical limiting effect of these samples was also investigated using the 2nd harmonics of a pulsed Nd-YAG laser at 532 nm. Our results showed that the sole Ag@TiO2 didn't show any appreciable optical limiting effect, however after just mixing with graphene oxide the threshold of optical limiting was increased and the compound showed an enhancement of optical limiting behavior compared to GO itself. The presented results are discussed and compared with other literature reports.

  12. Alignment and measurement for back-end optical system of quantum communication

    Science.gov (United States)

    Xu, Qi-rui; Fan, Bin

    2016-09-01

    This paper introduced the method of alignment and measurement for back-end optical system of quantum communication ground station. The alignment methods of important components of system such as 20 constriction multiplicator, single photon detector mechanism and so on were introduced at first. The alignment method of the key receiving optical path and the entanglement receiving optical path which were integrated into coaxial multi optical path with other three optical paths were described in detail. Finally the back-end optical system was tested indoors with an optical power meter and a collimator. The results shows that the quantum key signal (@850nm) receiving efficiency is 27.6%, the average polarization contrast is better than 320:1, the receiving efficiency of quantum entanglement signal (@810nm) was 28.6%, and the average polarization contrast is better than 180:1.

  13. Measurement and Mapping of Riverine Environments by Optical Remote Sensing

    Science.gov (United States)

    2011-09-30

    we also 4 conduted a high-resolution, intensive survey of a meander bend that we have monitired each year since 2005 and is now in the midst of a...optical and thermal remote sensing as part of their Riverine Dynamics Experiment 4. Beginning tomorrow (9-30-2011), we will be working with Arete at

  14. Distributed Optical Fiber Sensor for Multi-point Temperature Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-tian; LIU Zhan-wei; HOU Pei-guo; SHAN Wei

    2004-01-01

    The distributed optical fiber sensing technology is overviewed, which is based on Raman scattering light theory. Basic operation principle, structure, system characteristics and signal processing are discussed. This structure and method of the signal processing possess of certain spatial resolution, hence will ensure the practicability of system.

  15. Improved axial position detection in optical tweezers measurements

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kisbye; Berg-Sørensen, Kirstine; Oddershede, Lene

    2004-01-01

    We investigate the axial position detection of a trapped microsphere in an optical trap by using a quadrant photodiode. By replacing the photodiode with a CCD camera, we obtain detailed information on the light scattered by the microsphere. The correlation of the interference pattern with the axial...

  16. In Vivo Optical Measurements for Diagnostics and Monitoring of Treatment

    NARCIS (Netherlands)

    R.L.P. van Veen (Robert)

    2006-01-01

    textabstractThe interaction of light with tissue and its use for medical purposes has been under investigation for centuries. Since the early nineteen sixties, the development of novel optical technology and advances in laser design/technology allowed a wide range of innovative applications in ma

  17. Fast optical measurements and imaging of flow mixing

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Fateev, Alexander; Nielsen, Karsten Lindorff

    in combustion enhancement can be also obtained. The infrared camera was also used together with special endoscope optics for fast thermal imaging of a coal-straw flame in an industrial boiler. Obtained time-resolved infrared images provided useful information for the diagnostics of the flame and fuel...

  18. Spectral measurement using IC-compatible linear variable optical filter

    NARCIS (Netherlands)

    Emadi, A.; Grabarnik, S.; Wu, H.; De Graaf, G.; Hedsten, K.; Enoksson, P.; Correia, J.H.; Wolffenbuttel, R.F.

    2010-01-01

    This paper reports on the functional and spectral characterization of a microspectrometer based on a CMOS detector array covered by an IC-Compatible Linear Variable Optical Filter (LVOF). The Fabry-Perot LVOF is composed of 15 dielectric layers with a tapered middle cavity layer, which has been

  19. Application of fiber optic interferometers for Cook-off measurements

    NARCIS (Netherlands)

    Cheng, L.K.; Smorenburg, C.; Scholtes, J.H.G.; Meer, B.J. van der

    2000-01-01

    A fiber optic interferometer comprising of a Sagnac interferometer and a Mach-Zehnder interferometer was developed. The interferometer enabled detection of explosive subtonic expansion velocities during the Cook-off test. The system enabled a comparison between the results of the two interferometer

  20. Optics measurement algorithms and error analysis for the proton energy frontier

    CERN Document Server

    Langner, A

    2015-01-01

    Optics measurement algorithms have been improved in preparation for the commissioning of the LHC at higher energy, i.e., with an increased damage potential. Due to machine protection considerations the higher energy sets tighter limits in the maximum excitation amplitude and the total beam charge, reducing the signal to noise ratio of optics measurements. Furthermore the precision in 2012 (4 TeV) was insufficient to understand beam size measurements and determine interaction point (IP) β-functions (β). A new, more sophisticated algorithm has been developed which takes into account both the statistical and systematic errors involved in this measurement. This makes it possible to combine more beam position monitor measurements for deriving the optical parameters and demonstrates to significantly improve the accuracy and precision. Measurements from the 2012 run have been reanalyzed which, due to the improved algorithms, result in a significantly higher precision of the derived optical parameters and decreased...

  1. Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure

    Science.gov (United States)

    Tzortziou, Maria; Herman, Jay R.; Gallegos, Charles L.; Neale, Patrick J.; Subramaniam, Ajit; Harding, Lawrence W., Jr.; Ahmad, Ziauddin

    2006-06-01

    We combined detailed bio-optical measurements and radiative transfer modeling to perform an 'optical closure' experiment for an optically complex and biologically productive region of the Chesapeake Bay. We used this experiment to evaluate certain assumptions commonly used in bio-optical models, and to investigate which optical characteristics are most important to accurately model and interpret remote sensing ocean-color observations in these Case 2 waters. Direct measurements were made of the magnitude, variability, and spectral characteristics of backscattering and absorption that are critical for accurate parameterizations in satellite bio-optical algorithms and underwater radiative transfer simulations. We found that the ratio of backscattering to total scattering (i.e. the backscattering fraction, bb/ b) varied considerably depending on particulate loading, distance from land, and mixing processes, and had an average value of 0.0128 at 530 nm. Incorporating information on the magnitude, variability, and spectral characteristics of particulate backscattering into the radiative transfer model, rather than using a volume scattering function commonly assumed for turbid waters, was critical to obtaining agreement between model calculations and measured radiometric quantities. In-situ measurements of absorption coefficients need to be corrected for systematic overestimation due to scattering errors, and this correction commonly employs the assumption that absorption by particulate matter at near-infrared wavelengths is zero. Direct measurements, however, showed that particulate matter in the Bay had small, but non-zero, absorption in the 700-730 nm wavelength region. Accounting for this residual particulate absorption when correcting in-situ measured absorption spectra for scattering errors was important in model simulations of water reflectance in the green wavelengths, where reflectance spectra in estuarine waters peak. Sun-induced chlorophyll fluorescence

  2. Comparative measurements of the level of turbulence atmosphere by optical and acoustic devices

    Science.gov (United States)

    Lukin, V. P.; Botugina, N. N.; Gladkih, V. A.; Emaleev, O. N.; Konyaev, P. A.; Odintsov, S. L.; Torgaev, A. V.

    2014-11-01

    The complex measurements of level of atmospheric turbulence are conducted by the differential measurement device of turbulence (DMT), wave-front sensor (WFS), and also by ultrasonic weather-stations. Daytime measurements of structure parameters of refractive index of atmospheric turbulence carried out on horizontal optical paths on the Base Experimental Complex (BEC) of V.E. Zuev Institute of Atmospheric Optics SB RAS (IOA). A comparative analysis over of the got results is brought.

  3. High-sensitive Optical Pulse-Shape Characterization using a Beating-Contrast-Measurement Technique

    CERN Document Server

    Roncin, Vincent; Millaud, Audrey; Cramer, Romain; Jaouën, Yves; Simon, Jean-Claude

    2014-01-01

    Ultrahigh-speed optical transmission technology, such as optical time domain multiplexing or optical signal processing is a key point for increasing the communication capacity. The system performances are strongly related to pulse properties. We present an original method dedicated to short pulse-shape characterization with high repetition rate using standard optical telecommunications equipments. Its principle is based on temporal measurement of the contrast produced by the beating of two delayed optical pulses in a high bandwidth photo detector. This technique returns firstly reliable information on the pulse-shape, such as pulse width, shape and pedestal. Simulation and experimental results evaluate the high-sensitivity and the high-resolution of the technique allowing the measurement of pulse extinction ratio up to 20 dB with typical timing resolution of about 100 fs. The compatibility of the technique with high repetition rate pulse measurement offers an efficient tool for short pulse analysis.

  4. A study on the real-time radiation dosimetry measurement system based on optically stimulated luminescence

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-Ping; CHEN Zhao-Yang; BA Wei-Zhen; FAN Yan-Wei; DU Yan-Zhao; PAN Shi-Lie; GUO Qi

    2008-01-01

    The optically stimulated luminescent (OSL) radiation dosimeter technically surveys a wide dynamic measurement range and a high sensitivity.Optical fiber dosimeters provide capability for remote monitoring of the radiation in the locations which are difficult-to-acoess and hazardous.In addition.optical fiber dosimeters are immune to electrical and radio-frequency interference.In this paper,a novel remote optical fiber radiation dosimeter is described.The optical fiber dosimeter takes advantage of the charge trapping materials CaS:Ce, Sm that exhibit OSL.The measuring range of the dosimeter is from 0.1 to 100 Gy.The equipment is relatively simple and small in size,and has low power consumption.This device is suitable for measuring the space radiation dose and also can be used in high radiation dose condition and other dangerous radiation occasions.

  5. Measurement of absolute optical thickness of mask glass by wavelength-tuning Fourier analysis.

    Science.gov (United States)

    Kim, Yangjin; Hbino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2015-07-01

    Optical thickness is a fundamental characteristic of an optical component. A measurement method combining discrete Fourier-transform (DFT) analysis and a phase-shifting technique gives an appropriate value for the absolute optical thickness of a transparent plate. However, there is a systematic error caused by the nonlinearity of the phase-shifting technique. In this research the absolute optical-thickness distribution of mask blank glass was measured using DFT and wavelength-tuning Fizeau interferometry without using sensitive phase-shifting techniques. The error occurring during the DFT analysis was compensated for by using the unwrapping correlation. The experimental results indicated that the absolute optical thickness of mask glass was measured with an accuracy of 5 nm.

  6. Cryogenic Q-factor measurement of optical substrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, S; Nawrodt, R; Zimmer, A; Thuerk, M; Vodel, W; Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany)

    2006-03-02

    Upcoming generations of interferometric gravitational wave detectors are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of optical components (e.g. end mirrors, cavity couplers, beam splitters). The main contributions to this noise are due to the substrate, the optical coating, and the suspension. The thermal noise can be reduced by cooling to cryogenic temperatures. In addition the overall mechanical quality factor should preferable increase at low temperatures. The experimental details of a new cryogenic apparatus for investigations of the temperature dependency of the Q-factor of several substrate materials in the range of 5 to 300 K are presented. To perform a ring down recording an electrostatic mode excitation of the samples and an interferometric read-out of the amplitude of the vibrations was used.

  7. Measuring microscopic forces and torques using optical tweezers

    CSIR Research Space (South Africa)

    McLaren, MG

    2009-07-01

    Full Text Available f1 f2 f 3 Objective lens Illumination source M1 M2 Dichroic mirror Sample stage Our home-built optical trapping and tweezing setup, complete with in-house microscope objective Optical tweezing and micromanipulation, MSc (Wits), 2009 60.5 µm... v v α−= Velocity of fluid as bead escapes trap Trap stiffnessViscosity of fluid Drag force method Drag force method mW 100at pN 26.024.5 =±= PFtrap Equipartition Method Tkx B2 1 2 1 2 =α N/m 105109.9 -65 ×±×= −α xF v v α...

  8. Obsidian hydration profiles measured by sputter-induced optical emission.

    Science.gov (United States)

    Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W

    1978-07-28

    The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique.

  9. Fiber-Optic Sensors for Measurements of Torsion, Twist and Rotation: A Review

    Directory of Open Access Journals (Sweden)

    Vedran Budinski

    2017-02-01

    Full Text Available Optical measurement of mechanical parameters is gaining significant commercial interest in different industry sectors. Torsion, twist and rotation are among the very frequently measured mechanical parameters. Recently, twist/torsion/rotation sensors have become a topic of intense fiber-optic sensor research. Various sensing concepts have been reported. Many of those have different properties and performances, and many of them still need to be proven in out-of-the laboratory use. This paper provides an overview of basic approaches and a review of current state-of-the-art in fiber optic sensors for measurements of torsion, twist and/or rotation.Invited Paper

  10. Measuring water activity of aviation fuel using a polymer optical fiber Bragg grating

    Science.gov (United States)

    Zhang, Wei; Webb, David J.; Carpenter, Mark; Williams, Colleen

    2014-05-01

    Poly(methyl methacrylate) (PMMA) based polymer optical fiber Bragg gratings have been used for measuring water activity of aviation fuel. Jet A-1 samples with water content ranging from 100% ERH (wet fuel) to 10 ppm (dried fuel), have been conditioned and calibrated for measurement. The PMMA based optical fiber grating exhibits consistent response and a good sensitivity of 59±3pm/ppm (water content in mass). This water activity measurement allows PMMA based optical fiber gratings to detect very tiny amounts of water in fuels that have a low water saturation point, potentially giving early warning of unsafe operation of a fuel system.

  11. Low level optical absorption measurements on organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stella, M.; Rojas, F.; Escarre, J.; Asensi, J.M.; Bertomeu, J.; Andreu, J. [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona. Av. Diagonal 647, 08028 Barcelona (Spain); Voz, C.; Puigdollers, J.; Fonrodona, M. [Micro and Nano Technology Group (MNT), Dept. d' Enginyeria Electronica, Universitat Politecnica de Catalunya, C/Jordi Girona 1-3, Campus Nord - Modul C4, 08034 Barcelona (Spain)

    2006-06-15

    The optical absorption of n-type (C{sub 60} and PTCDA) and p-type (CuPc and pentacene) organic semiconductors is investigated by optical transmission and photothermal deflection spectroscopy. The usual absorption bands related to HOMO-LUMO transitions are observed in the high absorption region of transmission spectra. Photothermal deflection spectroscopy also evidences exponential absorption shoulders with characteristic energies 47meV for CuPc, 38meV for pentacene, 50 meV for PTCDA and 87meV for C{sub 60}. In addition, broad bands in the low absorption level are observed for C{sub 60} and PTCDA. These bands have been attributed to contamination due to air exposure. On the other hand, in CuPc a clear absorption peak at 1.12eV is observed with smaller features at 1.04eV, 1.20eV and 1.33eV. These peaks are attributed to transitions between the Pc levels of CuPc ions. Finally, the optical absorption expected in blends of organic semiconductors is estimated by an effective media approximation. (author)

  12. Optical layer development for thin films thermal conductivity measurement by pulsed photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Martan, J., E-mail: jmartan@ntc.zcu.cz [New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic)

    2015-01-15

    Measurement of thermal conductivity and volumetric specific heat of optically transparent thin films presents a challenge for optical-based measurement methods like pulsed photothermal radiometry. We present two approaches: (i) addition of an opaque optical layer to the surface and (ii) approximate correction of the mathematical model to incorporate semitransparency of the film. Different single layer and multilayer additive optical layers were tested. The materials of the optical layers were chosen according to analysis and measurement of their optical properties: emissivity and absorption coefficient. Presented are thermal properties’ measurement results for 6 different thin films with wide range of thermal conductivity in three configurations of surface: as deposited, added Ti layer, and added Ti/TiAlSiN layer. Measurements were done in dependence on temperature from room temperature to 500 °C. The obtained thermal effusivity evolution in time after the laser pulse shows different effects of the surface layers: apparent effusivity change and time delay. Suitability of different measurement configurations is discussed and results of high temperature testing of different optical layers are presented.

  13. Measurement of Rotating Blade Tip Clearance with Fibre-Optic Probe

    Energy Technology Data Exchange (ETDEWEB)

    Cao, S Z; Duan, F J; Zhang, Y G [State Key Laboratory of Measurement Technology and Instruments, Tianjin, University. Tianjin, 300072 (China)

    2006-10-15

    This paper described a tip clearance measuring system with fibre-optic probe. The system is based on a novel tip clearance sensor of optical fibre-bundle mounted on the casing, rotating speed synchronization sensor mounted on the rotating shaft, the tip clearance preamplification processing circuit followed by high speed data-acquisition unit. A novel tip clearance sensor of trifurcated optical fibre bundle was proposed and demonstrated. It is independent of material of measured surface but capacitive probe demands target conductive. Measurements can be taken under severe conditions such as ionization. Sensor circuitry and data acquisition circuit were successfully designed. With the help of Rotation synchronized sensor, all the blades can be detected in real-time. Because of fibre-optic sensor, the measuring system has commendably frequency response, which can work well in high rotating speed from 0-15000rpm.The measurement range of tip clearance is 0-3mm with 25um precision.

  14. Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part I: methodological review

    NARCIS (Netherlands)

    Yanez Rausell, L.; Schaepman, M.E.; Clevers, J.G.P.W.; Malenovsky, Z.

    2014-01-01

    Optical properties (OPs) of non-flat narrow plant leaves, i.e., coniferous needles, are extensively used by the remote sensing community, in particular for calibration and validation of radiative transfer models at leaf and canopy level. Optical measurements of such small living elements are, howeve

  15. Inherent and apparent optical measurements in the Hudson/Raritan estuary

    NARCIS (Netherlands)

    Bagheri, S.; Rijkeboer, M.; Gons, H.J.

    2002-01-01

    During an August, 1999 field campaign, measurements were made to establish hydrologic optical properties of the Hudson/Raritan Estuary (New York-New Jersey): 1) concurrent above-and below-surface spectral irradiance; 2) sampling for laboratory determination of inherent optical properties; and 3) con

  16. [Equipment for measuring the optical density of wide-format x-ray films].

    Science.gov (United States)

    Mikhaĭlov, V A; Ennenberg, M G

    1980-01-01

    For qualitative estimation of the dynamics of medical treatment in the patients with pulmonary diseases a device has been produced based on measuring the optical density of X-ray films. This device comprises the optical part of the microphotometer MF-2, a modified microscope stand, with its moving mechanism, electronic circuit with a logarithmic amplifier, control circuit and a double-coordinate-recorder.

  17. Derivation and use of simple relationships between aerodynamic and optical particle measurements

    Science.gov (United States)

    A simple relationship, referred to as a mass conversion factor (MCF), is presented to convert optically based particle measurements to mass concentration. It is calculated from filter-based samples and optical particle counter (OPC) data on a daily or sample period basis. The MCF allows for greater ...

  18. Integrating sphere-based setup as an accurate system for optical properties measurements

    CSIR Research Space (South Africa)

    Abdalmonem, S

    2010-09-01

    Full Text Available Determination of the optical properties of solid and liquid samples has great importance. Since the integrating sphere-based setup is used to measure the amount of reflected and transmitted light by the examined samples, optical properties could...

  19. Review on an Advanced High-Temperature Measurement Technology: The Optical Fiber Thermometry

    Directory of Open Access Journals (Sweden)

    Y. B. Yu

    2009-01-01

    Full Text Available Optical fiber thermometry technology for high-temperature measurement is briefly reviewed in this paper. The principles, characteristics, recent progresses and advantages of the technology are described. Examples of using the technology are introduced. Many blackbody, infrared, and fluorescence optical thermometers are developed for practical applications.

  20. Minimizing measurement uncertainties of coniferous needle-leaf optical properties, part I: methodological review

    NARCIS (Netherlands)

    Yanez Rausell, L.; Schaepman, M.E.; Clevers, J.G.P.W.; Malenovsky, Z.

    2014-01-01

    Optical properties (OPs) of non-flat narrow plant leaves, i.e., coniferous needles, are extensively used by the remote sensing community, in particular for calibration and validation of radiative transfer models at leaf and canopy level. Optical measurements of such small living elements are, howeve

  1. Measuring Hemoglobin Levels in the Optic Disc of Parkinson's Disease Patients Using New Colorimetric Analysis Software

    Science.gov (United States)

    Bambo, Maria Pilar; Garcia-Martin, Elena; Satue, Maria; Perez-Olivan, Susana; Alayon, Silvia; Gonzalez-Hernandez, Marta; Polo, Vicente; Larrosa, Jose Manuel; Gonzalez-De la Rosa, Manuel

    2014-01-01

    Objective. To evaluate a new method of measuring hemoglobin (Hb) levels and quantifying the color changes in the optic nerve head of Parkinson's disease (PD) patients. We also compared differences in retinal nerve fiber layer (RNFL) thicknesses obtained using spectral domain optical coherence tomography (OCT) device between PD group and healthy group. Methods. One hundred and fifty-five PD patients and 91 sex- and age-matched healthy subjects were included in this cross-sectional study. OCT examinations and one photograph of the optic disc were performed. The Laguna ONhE (“optic nerve hemoglobin”; Insoft SL, Tenerife, Spain) software was used to analyze the Hb level on the acquired optic disc photographs. Results. PD patients exhibited significantly reduced mean optic disc Hb percentages (57.56% in PD, 67.63% in healthy subjects; P = 0.001) as well as reduced Hb in almost all analyzed sectors, with the largest differences detected in the inferior and nasal sectors. RNFL parameters were significantly reduced in PD patients compared with healthy subjects, especially in the inferior quadrant. Conclusions. Measurements of optic disc Hb levels obtained with the Laguna ONhE software had good ability to detect optic nerve color changes (more papillary paleness and consequently this could suggest optic atrophy and axonal loss) in PD patients. PMID:25587487

  2. Compound interferometer system for large-scale optical components surface measurement

    Science.gov (United States)

    Wang, Qiwei; Sun, Tao; Han, Chengshun; Dong, Shen; Rodionov, A. Y.; Shirin, A. S.; Shekhtman, V. N.

    2010-10-01

    Large-scale optical components is being applied more and more widely in the astronomical optics, space optics, groundbased space target detection and identification, laser propagation in the atmosphere, inertial confinement fusion (ICF) and other fields, especially the large-scale aspherical optical component is one of key parts which play a supportive role in those fields. Large-scale optical components surface measurement instrument and technique has become a research focus of many scholars in recent years. In this paper introduced a compound interferometer system, which based on the principle of traditional Fizeau interferometer and lateral shear interferometer. In this system, produces two probe light beams by a He-Ne laser, one of probe light beams is used to measure flat optical surface by using comparison with the reference wavefront, and the other probe light beam is used to measure spherical and aspherical optical surface according to the principle of lateral shear interferometer and without using reference wavefront. Discussed in detail optical layout of the system as well as the principle of surface measurement, and the preliminary test results were given. The compound interferometer system has a compact, multi-function, and good anti-vibration performance can be used for large-scale optical plane (diameter less than 320mm), spherical and aspherical optical components surface measurement. Due to the information that lateral shear interferogram carries does not show directly the deviation between the wavefront under test and the ideal wavefront, but the wavefront difference, so the wavefront reconstruction method is more complex, and the wavefront reconstruction algorithm from lateral shearing interferograms is also analyzed and discussed.

  3. Measurement of creep of optical fiber by a low coherent white light double interferometer system

    Institute of Scientific and Technical Information of China (English)

    Farhad; ANSARI

    2009-01-01

    The creep properties of optical fiber used in fiber optical sensors were studied in this paper. A low co- herent white light double interferometer system was designed and calibrated and the creep deforma- tions of optical fibers under static and cyclic loadings were measured with this device. The research results showed that polymer coated optical fibers crept at the beginning when they were under static or cyclic load. As the number of the cyclic loading or the static loading times increased the creep tended to stop. Thus to ensure that the optical fiber keeps pre-stress for long time in pressure transducer, it is recommended that the optical fiber should be tensioned cyclically before being fixed into the sensor device.

  4. Measurement of creep of optical fiber by a low coherent white light double interferometer system

    Institute of Scientific and Technical Information of China (English)

    XU ZhiHong; Farhad ANSARI

    2009-01-01

    The creep properties of optical fiber used in fiber optical sensors were studied in this paper. A low co-herent white light double interferometer system was designed and calibrated and the creep deforma-tions of optical fibers under static and cyclic Ioadings were measured with this device. The research results showed that polymer coated optical fibers crept at the beginning when they were under static or cyclic load. As the number of the cyclic loading or the static loading times increased the creep tended to stop. Thus to ensure that the optical fiber keeps pro-stress for long time in pressure transducer, it is recommended that the optical fiber should be tensioned cyclically before being fixed into the sensor device.

  5. The design of equipment for optical power measurement in FSO link beam cross-section

    Science.gov (United States)

    Latal, Jan; David, Tomas; Wilfert, Otakar; Kolka, Zdenek; Koudelka, Petr; Hanacek, Frantisek; Vitasek, Jan; Siska, Petr; Skapa, Jan; Vasinek, Vladimir

    2012-06-01

    The free space optical links have found their major application in today's technological society. The demand for quality broadband is a must for all types of end users in these times. Because of the large jamming from wireless radio networks in non-licensed ISM bands, the free space optical links provide bridging of some densely populated urban areas. Their advantage is the high transmission rate for relatively long distances. However, the disadvantage is the dependence of free space optical links on atmospheric influences. Aired collimated optical beam passes through the atmospheric transmission environment and by its influence cause the deformation of the optical beam. Author's team decided to construct a special measuring device for measurement of optical power in FSO link beam cross-section. The equipment is mobile and can be rearranged and adjust according to the given location and placement of the FSO link at any time. The article describes the individual structural elements of the measuring equipment, its controlling and application for evaluation and adjustment of measuring steps. The graphs from optical power measurements in the beam cross-section of professional FSO links are presented at the end.

  6. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.

    Science.gov (United States)

    He, Li; Li, Huan; Li, Mo

    2016-09-01

    Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torque effect have only been used in optical tweezers but remain unexplored in integrated photonics. We demonstrate the measurement of the spin angular momentum of photons propagating in a birefringent waveguide and the use of optical torque to actuate rotational motion of an optomechanical device. We show that the sign and magnitude of the optical torque are determined by the photon polarization states that are synthesized on the chip. Our study reveals the mechanical effect of photon's polarization degree of freedom and demonstrates its control in integrated photonic devices. Exploiting optical torque and optomechanical interaction with photon angular momentum can lead to torsional cavity optomechanics and optomechanical photon spin-orbit coupling, as well as applications such as optomechanical gyroscopes and torsional magnetometry.

  7. Investigation on influence parameters in measurements of the optomechanical hole plate using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2003-01-01

    This paper describes the results of an experimental investigation on influence parameters in optical coordinate measurements of the optomechanical hole plate. Special attention was paid to the background of the object, which strongly influences the measurement result. Furthermore, it is seen that...

  8. Investigation on influence parameters in measurements of the optomechanical hole plate using an optical coordinate measuring machine

    DEFF Research Database (Denmark)

    Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo;

    2003-01-01

    This paper describes the results of an experimental investigation on influence parameters in optical coordinate measurements of the optomechanical hole plate. Special attention was paid to the background of the object, which strongly influences the measurement result. Furthermore, it is seen...

  9. Shipboard Sunphotometer Measurements of Aerosol Optical Depth During ACE-2 and Comparison with Selected Ship, Aircraft and Satellite Measurements

    Science.gov (United States)

    Livingston, J. M.; Kapustin, V. N.; Schmid, B.; Russell, P. B.; Quinn, P. K.; Bates, T. S.; Durkee, P. A.; Nielsen, K.; Freudenthaler, V.; Wiegner, M.; Covert, D. S.

    2000-01-01

    We present analyses of aerosol optical depth (AOD) measurements taken with a shipboard six-channel tracking sunphotometer during ACE-2. For 10 July 1997, results are also shown for measurements acquired 70 km from the ship with a fourteen-channel airborne tracking sunphotometer.

  10. Measurements of longitudinal gamma ray distribution using a multichannel fiber-optic Cerenkov radiation sensor

    Science.gov (United States)

    Shin, S. H.; Jeon, D.; Kim, J. S.; Jang, J. S.; Jang, K. W.; Yoo, W. J.; Moon, J. H.; Park, B. G.; Kim, S.; Lee, B.

    2014-11-01

    Cerenkov radiation occurs when charged particles are moving faster than the speed of light in a transparent dielectric medium. In optical fibers, Cerenkov radiation can also be generated due to the fiber’s dielectric components. Accordingly, the radiation-induced light signals can be obtained using the optical fibers without any scintillating material. In this study, we fabricated a multichannel, fiber-optic Cerenkov radiation sensor (FOCRS) system using silica optical fibers (SOFs), plastic optical fibers (POFs), an optical spectrometer, multi-anode photomultiplier tubes (MA-PMTs) and a scanning system to measure the light intensities of Cerenkov radiation induced by gamma rays. To evaluate the fading effects in optical fibers, the spectra of Cerenkov radiation generated in the SOFs and POFs were measured based on the irradiation time by using an optical spectrometer. In addition, we measured the longitudinal distribution of gamma rays emitted from the cylindrical type Co-60 source by using MA-PMTs. The result was also compared with the distribution of the electron flux calculated by using the Monte Carlo N-particle transport code (MCNPX).

  11. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    Directory of Open Access Journals (Sweden)

    N. Utry

    2014-09-01

    Full Text Available Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite, oxides (quartz, hematite and rutile, and carbonate (limestone were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  12. Low temperature fiber optic pyrometer for fast time resolved temperature measurements

    Science.gov (United States)

    Willsch, M.; Bosselmann, T.; Gaenshirt, D.; Kaiser, J.; Villnow, M.; Banda, M.

    2016-05-01

    Low temperature Pyrometry at temperatures beyond 150°C is limited in the measurement speed due to slow pyroelectric detectors. To detect the circumferential temperature distribution of fast rotating machines a novel Fiber Optical Pyrometer Type is presented here.

  13. First Measurements of Higher Order Optics Parameters in the LHC

    CERN Document Server

    Vanbavinckhove, G; Bartolini, R; Calaga, R; Giovannozzi, M; Maclean, E H; Miyamoto, R; Schmidt, F; Tomas, R

    2011-01-01

    Higher order effects can play an important role in the performance of the LHC. Lack of knowledge of these pa- rameters can increase the tune footprint and compromise the beam lifetime. First measurements of these parameters at injection and flattop have been conducted. Detailed sim- ulations are compared to the measurements together with discussions on the measurement limitations.

  14. A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Liang, E-mail: gaol@illinois.edu [Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, 306 N. Wright St., Urbana, IL 61801 (United States); Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, 405 North Mathews Avenue, Urbana, IL 61801 (United States); Wang, Lihong V., E-mail: lhwang@wustl.edu [Optical imaging laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., MO, 63130 (United States)

    2016-02-29

    Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons’ spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition–also dubbed snapshot imaging–has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications.

  15. Refractive Index Measurement of Liquids Based on Microstructured Optical Fibers

    Directory of Open Access Journals (Sweden)

    Susana Silva

    2014-12-01

    Full Text Available This review is focused on microstructured optical fiber sensors developed in recent years for liquid RI sensing. The review is divided into three parts: the first section introduces a general view of the most relevant refractometric sensors that have been reported over the last thirty years. Section 2 discusses several microstructured optical fiber designs, namely, suspended-core fiber, photonic crystal fiber, large-core air-clad photonic crystal fiber, and others. This part is also divided into two main groups: the interferometric-based and resonance-based configurations. The sensing methods rely either on full/selective filling of the microstructured fiber air holes with a liquid analyte or by simply immersing the sensing fiber into the liquid analyte. The sensitivities and resolutions are tabled at the end of this section followed by a brief discussion of the obtained results. The last section concludes with some remarks about the microstructured fiber-based configurations developed for RI sensing and their potential for future applications.

  16. Estimation of Satellite Orientation from Space Surveillance Imagery Measured with an Adaptive Optics Telescope

    Science.gov (United States)

    1996-12-01

    SATELLITE ORIENTATION FROM SPACE SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE OPTICS TELESCOPE THESIS Gregory E. Wood Lieutenant, USAF AFIT/GSO/ENP...the official policy or position of the Department of Defense or the U. S. Government. AFIT/GSO/ENP/96D-02 ESTIMATION OF SATELLITE ORIENTATION FROM...surveillance operations. xii ESTIMATION OF SATELLITE ORIENTATION FROM SPACE SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE OPTICS TELESCOPE

  17. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity

    OpenAIRE

    Mohd Zubir Bin MatJafri; Ahmad Fairuz Bin Omar

    2009-01-01

    Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentr...

  18. Frequency-resolved noise figure measurements of phase (in)sensitive fiber optical parametric amplifiers.

    Science.gov (United States)

    Malik, R; Kumpera, A; Lorences-Riesgo, A; Andrekson, P A; Karlsson, M

    2014-11-17

    We measure the frequency-resolved noise figure of fiber optical parametric amplifiers both in phase-insensitive and phase-sensitive modes in the frequency range from 0.03 to 3 GHz. We also measure the variation in noise figure due to the degradation in pump optical signal to noise ratio and also as a function of the input signal powers. Noise figure degradation due to stimulated Brillouin scattering is observed.

  19. Measurement of interaction forces between red blood cells in aggregates by optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Maklygin, A Yu; Priezzhev, A V; Karmenian, A; Nikitin, Sergei Yu; Obolenskii, I S; Lugovtsov, Andrei E; Kisun Li

    2012-06-30

    We have fabricated double-beam optical tweezers and demonstrated the possibility of their use for measuring the interaction forces between red blood cells (erythrocytes). It has been established experimentally that prolonged trapping of red blood cells in a tightly focused laser beam does not cause any visible changes in their shape or size. We have measured the interaction between red blood cells in the aggregate, deformed by optical tweezers.

  20. Optical measurement of torque exerted on an elongated object by a non-circular laser beam

    CERN Document Server

    Parkin, S J; Heckenberg, N R; Rubinsztein-Dunlop, H; Parkin, Simon J.; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina

    2004-01-01

    We have developed a scheme to measure the optical torque, exerted by a laser beam on a phase object, by measuring the orbital angular momentum of the transmitted beam. The experiment is a macroscopic simulation of a situation in optical tweezers, as orbital angular momentum has been widely used to apply torque to microscopic objects. A hologram designed to generate LG02 modes and a CCD camera are used to detect the orbital component of the beam. Experimental results agree with theoretical numerical calculations, and the strength of the orbital component suggest its usefulness in optical tweezers for micromanipulation.

  1. CW-OSL measurement protocols using optical fibre Al2O3:C dosemeters

    DEFF Research Database (Denmark)

    Edmund, J.M.; Andersen, C.E.; Marckmann, C.J.

    2006-01-01

    A new system for in vivo dosimetry during radiotherapy has been introduced. Luminescence signals from a small crystal of carbon-doped aluminium oxide (Al2O3:C) are transmitted through an optical fibre cable to an instrument that contains optical filters, a photomultiplier tube and a green (532 nm......) laser. The prime output is continuous wave optically stimulated luminescence (CW-OSL) used for the measurement of the integrated dose. We demonstrate a measurement protocol with high reproducibility and improved linearity, which is suitable for clinical dosimetry. A crystal-specific minimum pre...

  2. Traceability of Height Measurements on Green Sand Molds using Optical 3D Scanning

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Yazdanbakhsh, S.A.; Tiedje, N. S.

    2016-01-01

    (CMM) which is traceable to the meter unit. Optical scanners are increasingly used for dimensional metrology without the risk of damaging the surface, but lack of international standards makes it difficult to establish traceability of their measurements and compare them to tactile instruments....... This paper presents a metrological approach for height measurement on green sand molds using an optical 3D scanner with fringe projection. A new sand sample was developed with a hard binder to withstand the contact force of a touch probe, while keeping optical cooperativeness similar to green sand...

  3. Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephen R.; Krainak, Michael; Abshire, James

    2011-01-01

    Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source.

  4. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship.

    Science.gov (United States)

    Parry, Christopher; Blonquist, J Mark; Bugbee, Bruce

    2014-11-01

    In situ optical meters are widely used to estimate leaf chlorophyll concentration, but non-uniform chlorophyll distribution causes optical measurements to vary widely among species for the same chlorophyll concentration. Over 30 studies have sought to quantify the in situ/in vitro (optical/absolute) relationship, but neither chlorophyll extraction nor measurement techniques for in vitro analysis have been consistent among studies. Here we: (1) review standard procedures for measurement of chlorophyll; (2) estimate the error associated with non-standard procedures; and (3) implement the most accurate methods to provide equations for conversion of optical to absolute chlorophyll for 22 species grown in multiple environments. Tests of five Minolta (model SPAD-502) and 25 Opti-Sciences (model CCM-200) meters, manufactured from 1992 to 2013, indicate that differences among replicate models are less than 5%. We thus developed equations for converting between units from these meter types. There was no significant effect of environment on the optical/absolute chlorophyll relationship. We derive the theoretical relationship between optical transmission ratios and absolute chlorophyll concentration and show how non-uniform distribution among species causes a variable, non-linear response. These results link in situ optical measurements with in vitro chlorophyll concentration and provide insight to strategies for radiation capture among diverse species.

  5. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    Science.gov (United States)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  6. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS)

    Science.gov (United States)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Sarkissian, A.; Foujols, T.

    2016-02-01

    A small and sophisticated optical depth sensor (ODS) has been designed to work in the atmosphere of Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the Sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD) and to detect very high and optically thin clouds, crucial parameters in understanding the Martian meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds). In addition, ODS is capable to retrieve the aerosol optical depth during nighttime from moonlight measurements. Recently, ODS has been selected at the METEO meteorological station on board the ExoMars 2018 Lander. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa) between November 2004 and October 2005, a Sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL sunphotometer of the AERONET (Aerosol Robotic NETwork) network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.77 for the whole data set and 0.94 considering only the cloud-free days. From the whole data set, a total of 71 sub-visual cirrus (SVC) were detected at twilight with opacities as thin as 1.10-3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further optimizations and comparisons of ODS terrestrial measurements are required, results indicate the potential of these measurements to retrieve the AOD and detect sub-visual clouds.

  7. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    Science.gov (United States)

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  8. Measurements of displacement and trapping force on micron-sized particles in optical tweezers system

    Institute of Scientific and Technical Information of China (English)

    郭红莲; 姚新程; 李兆霖; 程丙英; 韩学海; 张道中

    2002-01-01

    A high-stability optical tweezers equipped with a high-precision measurement system of displacement and force is set up. The results show that this combination can be used to carry out quantitative measurements of small displacements and forces for micron-sized spheres. The precision of measurements has reached nanometers and piconewtons, respectively.

  9. LIDAR Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    Science.gov (United States)

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5 and PM10 mass and chemical ...

  10. Non-contact precision profile measurement to rough-surface objects with optical frequency combs

    Science.gov (United States)

    Onoe, Taro; Takahashi, Satoru; Takamasu, Kiyoshi; Matsumoto, Hirokazu

    2016-12-01

    In this research, we developed a new method for the high precision and contactless profile measurement of rough-surfaced objects using optical frequency combs. The uncertainty of the frequency beats of an optical frequency comb is very small (relative uncertainty is 10-10 in our laboratory). In addition, the wavelengths corresponding to these frequency beats are long enough to measure rough-surfaced objects. We can conduct high-precision measurement because several GHz frequency beats can be used if the capability of the detector permits. Moreover, two optical frequency combs with Rb-stabilized repetition frequencies are used for the measurement instead of an RF frequency oscillator; thus, we can avoid the cyclic error caused by the RF frequency oscillator. We measured the profile of a wood cylinder with a rough surface (diameter is approximately 113.2 mm) and compared the result with that of coordinate measuring machine (CMM).

  11. Evaluation of a cheap ultrasonic stage for light source coherence function measurement, optical coherence tomography, optical coherence microscopy, and dynamic focusing

    NARCIS (Netherlands)

    Krstajic, Nikola; Matcher, Stephen J.; Childs, David; Hogg, Richard; Smallwood, Rod; Steenbergen, Wiendelt; Andersen, Peter E.; Bouma, Brett E.

    2009-01-01

    We evaluate the performance of a cheap ultrasonic stage in setups related to optical coherence tomography. The stage was used in several configurations: 1) optical delay line in optical coherence tomography (OCT) setup; 2) as a delay line measuring coherence function of a low coherence source (e.g.

  12. Dynamic properties of bacterial pili measured by optical tweezers

    CERN Document Server

    Fallman, Erik; Schedin, Staffan; Jass, Jana; Uhlin, Bernt Eric; Axner, Ove

    2014-01-01

    The ability of uropathogenic Escherichia coli (UPEC) to cause urinary tract infections is dependent on their ability to colonize the uroepithelium. Infecting bacteria ascend the urethra to the bladder and then kidneys by attaching to the uroepithelial cells via the differential expression of adhesins. P pili are associated with pyelonephritis, the more severe infection of the kidneys. In order to find means to treat pyelonephritis, it is therefore of interest to investigate the properties P pili. The mechanical behavior of individual P pili of uropathogenic Escherichia coli has recently been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of ~1000 PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. We have earlier studied P pili regarding its stretching/elongation properties where we have found and characterized three different elongation regions, of which one constitute an unfolding of the quate...

  13. Measuring spin correlations in optical lattices using superlattice potentials

    DEFF Research Database (Denmark)

    Pedersen, Kim Georg Lind; Andersen, Brian Møller; Bruun, Georg Morten;

    2011-01-01

    We suggest two experimental methods for probing both short- and long-range spin correlations of atoms in optical lattices using superlattice potentials. The first method involves an adiabatic doubling of the periodicity of the underlying lattice to probe neighboring singlet (triplet) correlations...... for fermions (bosons) by the occupation of the resulting vibrational ground state. The second method utilizes a time-dependent superlattice potential to generate spin-dependent transport by any number of prescribed lattice sites, and probes correlations by the resulting number of doubly occupied sites....... For experimentally relevant parameters, we demonstrate how both methods yield large signatures of antiferromagnetic correlations of strongly repulsive fermionic atoms in a single shot of the experiment. Lastly, we show how this method may also be applied to probe d-wave pairing, a possible ground-state candidate...

  14. Quadrant photometer for satellite-borne auroral and optical measurements.

    Science.gov (United States)

    Criswell, D R; O'Brien, B J

    1967-06-01

    A multichannel photometer has been developed for space applications requiring low weight and power, no moving parts, and high sensitivity. The photocathode of a special phototube is divided into four electrically and optically distinct quadrants. The system operates without degradation after exposure to full sunlight, and has a sensitivity down to the order of rayleighs (10(6) photons cm(-2) sec(-1)). The complete photometer, including high voltage and control circuitry and signal conditioning with A/D converter and three lenses and interference filters, has a weight of 1.7 kg, power consumption of less than 0.3 W, and switching speeds up to 30 cycles/sec. These are to be compared with a previous multichannel photometer with a moving filter wheel, whose corresponding characteristics were 9 kg, 7-9 W, and 0.1 cycles/sec.

  15. Solar Thermal Propulsion Optical Figure Measuring and Rocket Engine Testing

    Science.gov (United States)

    Bonometti, Joseph

    1997-01-01

    Solar thermal propulsion has been an important area of study for four years at the Propulsion Research Center. Significant resources have been devoted to the development of the UAH Solar Thermal Laboratory that provides unique, high temperature, test capabilities. The facility is fully operational and has successfully conducted a series of solar thruster shell experiments. Although presently dedicated to solar thermal propulsion, the facility has application to a variety of material processing, power generation, environmental clean-up, and other fundamental research studies. Additionally, the UAH Physics Department has joined the Center in support of an in-depth experimental investigation on Solar Thermal Upper Stage (STUS) concentrators. Laboratory space has been dedicated to the concentrator evaluation in the UAH Optics Building which includes a vertical light tunnel. Two, on-going, research efforts are being sponsored through NASA MSFC (Shooting Star Flight Experiment) and the McDonnell Douglas Corporation (Solar Thermal Upper Stage Technology Ground Demonstrator).

  16. Optical properties of enamel and translucent composites by diffuse reflectance measurements.

    Science.gov (United States)

    Li, Rong; Ma, Xiao; Liang, Shanshan; Sa, Yue; Jiang, Tao; Wang, Yining

    2012-07-01

    The aim of this study was to evaluate the optical properties of natural enamel and translucent composites by diffuse reflectance measurements and Kubelka-Munk's theory. Twenty natural enamel slabs and 80 composite replicas using four brands of translucent composites (Gradia Direct, Venus, Brilliant New line and Beautiful II; n=20) were evaluated at thicknesses of 1.0mm. The spectral distributions of enamel and composites were measured by means of a reflectance spectrophotometer. Optical constants including scattering coefficient (S), absorption coefficient (K), light reflectivity (RI) and infinite optical thickness (X(∞)) were calculated from the spectral reflectance data using Kubelka's equations. Paired t-tests were performed to evaluate the differences of optical constants (S, K, RI and X(∞)) between natural enamel and composites. The optical constants S and K decreased with increasing wavelength, while RI and X(∞) increased with increasing wavelength within the visible spectrum. The values of enamel were in the range of the optical constants of these composites within the visible spectrum. However, there were significant differences of optical constants (S, K, RI and X(∞)) between enamel and translucent composites (pcomposites were not completely consistent with that of natural enamel. In addition, the optical properties of these translucent composites varied with the brands of the composites. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Optical measurement of a micro coriolis mass flow sensor

    NARCIS (Netherlands)

    Kristiansen, L.; Mehendale, A.; Brouwer, D.M.; Zwikker, J.M.; Klein, M.E.

    2009-01-01

    Haneveld [1,2] demonstrated a micro Coriolis mass flow sensor, operating in the measurement range of 0 to 1 g/hr achieving a resolution in the order of 10 mg/hr using a laser vibrometer. Equipped with an integrated capacitive [3] readout the measurement uncertainty amounted to 2% of the full scale r

  18. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff

    2013-01-01

    was validated for high resolution measurements at temperatures of up to 800 K (527 degrees C) in the ultraviolet (UV) and infrared (IR) regions (190-20 000 nm). Verification of the gas temperature in the cell is provided by a thermocouple and emission/transmission measurements in the IR and UV regions. High...

  19. Optical moisture measurements from municipal and industrial press sludges

    Energy Technology Data Exchange (ETDEWEB)

    Haapalainen, M.; Prittinen, K.; Niskanen, I. (Univ. of Oulu, Measurement and Sensor Lab., Kajaani (Finland)). email: ilpo.niskanen@oulu.fi; Parviainen, J.; Kolehmainen, M. (Univ. of Kuopio, Dept. of Environmental Science (Finland))

    2009-07-01

    To increase the utilization of sludge, more information is needed on its quality. Moisture is one of the key parameters of sludge quality. Information about moisture would help in optimizing the pressing process of sludge, and in the thermal drying of fuel making process. In this project, sludge moisture was measured using infrared spectroscopy and microwave technique. The research material consisted of one sludge sample from Helsinki Water, twelve samples from UPM-Kymmene Kajaani paper mill and one sample from UPM-Kymmene Jaemsaenkoski paper mill. At the start of the measurements, moisture of the samples was 54-75%. Microwave measurements were made with Slim Form Probe (Agilent Technologies) at 200 MHz-40 MHz frequency band. NIR-reflection spectra were measured at 714 nm-2631 nm with a spectrophotometer (ABB FTPA2000-263) based on Fourier transformation. The probe was Axiom FDR-780 diffuse measuring head. Microwave and NIR-reflection spectra were measured at four points in every sample, 2-4 times per working day, during four days. Samples were weighed at the start of every measuring time. Afterwards, the samples were dried in an oven and residual moisture was measured

  20. Determination of magneto-optical constant of Fe films with weak measurements

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaodong; Hu, Dejiao; Du, Jinglei; Gao, Fuhua; Zhang, Zhiyou, E-mail: zhangzhiyou@scu.edu.cn [Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Zhou, Xinxing; Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [Laboratory for Spin Photonics, College of Physics and Electronic Science, Hunan University, Changsha 410082 (China)

    2014-09-29

    In this letter, a detecting method for the magneto-optical constant is presented by using weak measurements. The photonic spin Hall effect (PSHE), which manifests itself as spin-dependent splitting, is introduced to characterize the magneto-optical constant, and a propagation model to describe the quantitative relation between the magneto-optical constant and the PSHE is established. According to the amplified shift of the PSHE detected by weak measurements, we determinate the magneto-optical constant of the Fe film sample. The Kerr rotation is measured via the standard polarimetry method to verify the rationality and feasibility of our method. These findings may provide possible applications in magnetic physics research.

  1. A FrFT based method for measuring chromatic dispersion and SPM in optical fibers

    Science.gov (United States)

    Yang, Aiying; Liu, Xiang; Chen, Xiaoyu

    2017-03-01

    A fractional Fourier transformation based method is proposed to blindly estimate the chromatic dispersion and self phase modulation in optical fibers. The experimental results demonstrate that up to 20,000 ps/nm accumulative chromatic dispersion of a fiber link is measured with the error less than 0.8%. If the chromatic dispersion is compensated by multiplying an opposite chromatic dispersion function in frequency domain, the 1st order chirp parameter caused by SPM in an optical fiber communication system can be measured by fractional Fourier transformation based method, i.e. the accumulative SPM of a fiber link can be quantitatively measured. The results of equalizing chromatic dispersion and self phase modulation in an optical fiber communication system demonstrated that the FrFT based method is promising to blindly monitor and equalize the chromatic dispersion and SPM of the fiber link in an optical network with dynamical routing function.

  2. Determination of magneto-optical constant of Fe films with weak measurements

    Science.gov (United States)

    Qiu, Xiaodong; Zhou, Xinxing; Hu, Dejiao; Du, Jinglei; Gao, Fuhua; Zhang, Zhiyou; Luo, Hailu

    2014-09-01

    In this letter, a detecting method for the magneto-optical constant is presented by using weak measurements. The photonic spin Hall effect (PSHE), which manifests itself as spin-dependent splitting, is introduced to characterize the magneto-optical constant, and a propagation model to describe the quantitative relation between the magneto-optical constant and the PSHE is established. According to the amplified shift of the PSHE detected by weak measurements, we determinate the magneto-optical constant of the Fe film sample. The Kerr rotation is measured via the standard polarimetry method to verify the rationality and feasibility of our method. These findings may provide possible applications in magnetic physics research.

  3. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    Science.gov (United States)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  4. Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS

    Directory of Open Access Journals (Sweden)

    D. Toledo

    2015-09-01

    Full Text Available A small and sophisticated optical depth sensor (ODS has been designed to work in the atmosphere of Earth and Mars. The instrument measures alternatively the diffuse radiation from the sky and the attenuated direct radiation from the sun on the surface. The principal goals of ODS are to retrieve the daily mean aerosol optical depth (AOD and to detect very high and optically thin clouds, crucial parameters in understanding the Martian and Earth meteorology and climatology. The detection of clouds is undertaken at twilight, allowing the detection and characterization of clouds with opacities below 0.03 (sub-visual clouds. In addition, ODS is capable to retrieve the aerosol optical depth during night-time from moonlight measurements. In order to study the performance of ODS under Mars-like conditions as well as to evaluate the retrieval algorithms for terrestrial measurements, ODS was deployed in Ouagadougou (Africa between November 2004 and October 2005, a sahelian region characterized by its high dust aerosol load and the frequent occurrence of Saharan dust storms. The daily average AOD values retrieved by ODS were compared with those provided by a CIMEL Sun-photometer of the AERONET (Aerosol Robotic NETwork network localized at the same location. Results represent a good agreement between both ground-based instruments, with a correlation coefficient of 0.79 for the whole data set and 0.96 considering only the cloud-free days. From the whole dataset, a total of 71 sub-visual cirrus (SVC were detected at twilight with opacities as thin as 1.10−3 and with a maximum of occurrence at altitudes between 14 and 20 km. Although further analysis and comparisons are required, results indicate the potential of ODS measurements to detect sub-visual clouds.

  5. Human tissue optical properties measurements and light propagation modelling

    CSIR Research Space (South Africa)

    Dam, JS

    2006-07-01

    Full Text Available measurements and light propagation modelling J. S. Dam , A. Singh , and A. E. Karsten Biophotonics Group, National Laser Centre, CSIR, Pretoria. www.csir.co.za/biophotonics SAIP 2006 Slide 2 © CSIR 2006 www... and µ’s S a m p l e S a m p l e S a m p l e Integrating Sphere measurementsMeasurements of the total transmittance and reflectance of a thin slab-shaped multiple scattering sample can yield the absorption- and the reduced...

  6. Apparatus designed for very accurate measurement of the optical reflection.

    Science.gov (United States)

    Piombini, Hervé; Voarino, Philippe

    2007-12-20

    The described instrument is a new reflectometer designed to check the normal specular reflectance of 40,000 reflectors necessary for the Laser Megajoule (LMJ). This new reflectometer has a high accuracy over the 400-950 nm wavelength range and allows the delicate measurement of shaped parts. The measurements are relative and several reference mirrors, which are low loss dielectric mirrors [R(lambda)>99.9%], are used for the standardization. The apparatus gives an excellent repeatability (spectrophotometers, our facility and its components are described. The methodology of focusing and calibration are explained. The capabilities of our device are illustrated through some measurements realized on flat or shaped samples.

  7. Study on a reference optical system applied to the outline loss measurement of complicated three-dimension object

    Institute of Scientific and Technical Information of China (English)

    Shunzhong He(贺顺忠); Yongjie Wei(魏永杰); Chengzhi Jiang(蒋诚志); Jinfeng Liu(刘金凤); Yanyu Liu(刘彦宇); Lincai Chen(陈林才)

    2003-01-01

    In this paper, laser Doppler reference optical technique is studied, and an optical system with high resolving power which is applied to longitudinal displacement measurement of complicated 3-D object is brought forward. Structure of the measuring optical head is designed reasonably. The experiments prove that the new-type reference optical system can achieve the outline loss measurement of object with the relative error of 0.3%.

  8. Optical Measurement System for Motion Characterization of Surface Mount Technology

    Institute of Scientific and Technical Information of China (English)

    LI Song; AN Bing; ZHANG Tong-jun; XIE Yong-jun

    2006-01-01

    Advanced testing methods for the dynamics of mechanical microdevices are necessary to develop reliable,marketable microelectromechanical systems. A system for measuring the nanometer motions of microscopic structures has been demonstrated. Stop-action images of a target have been obtained with computer microvision,microscopic interferometry,and stroboscopic illuminator. It can be developed for measuring the in-plane-rigid-body motions,surface shapes,out-of-plane motions and deformations of microstructures. A new algorithm of sub-pixel step length correlation template matching is proposed to extract the in-plane displacement from vision images. Hariharan five-step phase-shift interferometry algorithm and unwrapping algorithms are adopted to measure the out-of-plane motions. It is demonstrated that the system can measure the motions of solder wetting in surface mount technology(SMT).

  9. Onboard Optical Navigation Measurement Processing in GEONS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this IRAD is to establish in-house onboard OpNav measurement data processing capabilities through software development and testing.  Software...

  10. Aerosol Optical Thickness Derived From Atmospheric Transmittance Using Spectroradiometer Measurements

    Science.gov (United States)

    Hwee San, Hslim; Matjafri, M. Z.; Abdullah, Abdul K.; Chow Jeng, C. J.

    section The objective of this study was to test the feasibility of hand held spectroradiometer measurements for the retrieval AOT values Twenty-six stations were chosen randomly around Penang Island and the atmospheric transmittance measurements were collected using a handheld spectroradiometer The corresponding PM10 concentrations were measured using a portable DustTrak Aerosol Monitor 8520 simultaneously with the measurements of the transmittance data The AOT values were calculated using the Beer-Lambert-Bouguer law Linear relationship was found between AOT and PM10 values in this study Finally a PM10 map was created using Kriging interpolation technique The result of the study showed the potential of a spectroradiometer data for the retrieval of AOT and PM10 to provide the air pollution information

  11. Measuring the optical chirality of molecular aggregates at liquid-liquid interfaces.

    Science.gov (United States)

    Watarai, Hitoshi; Adachi, Kenta

    2009-10-01

    Some new experimental methods for measuring the optical chirality of molecular aggregates formed at liquid-liquid interfaces have been reviewed. Chirality measurements of interfacial aggregates are highly important not only in analytical spectroscopy but also in biochemistry and surface nanochemistry. Among these methods, a centrifugal liquid membrane method was shown to be a highly versatile method for measuring the optical chirality of the liquid-liquid interface when used in combination with a commercially available circular dichroism (CD) spectropolarimeter, provided that the interfacial aggregate exhibited a large molar absorptivity. Therefore, porphyrin and phthalocyanine were used as chromophoric probes of the chirality of itself or guest molecules at the interface. A microscopic CD method was also demonstrated for the measurement of a small region of a film or a sheet sample. In addition, second-harmonic generation and Raman scattering methods were reviewed as promising methods for detecting interfacial optical molecules and measuring bond distortions of chiral molecules, respectively.

  12. Optical 3D shape measurement for dynamic process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    3D shape dynamic measurement is essential to the study of machine vision, hydromechanics, high-speed rotation, deformation of material, stress analysis, deformation in impact, explosion process and biomedicine. in recent years. In this paper,the results of our research, including the theoretical analysis, some feasible methods and relevant verifying experiment results, are compendiously reported. At present, these results have been used in our assembling instruments for 3D shape measurement of dynamic process.

  13. Optical reflectance, optical refractive index and optical conductivity measurements of nonlinear optics for L-aspartic acid nickel chloride single crystal

    Science.gov (United States)

    Anbazhagan, G.; Joseph, P. S.; Shankar, G.

    2013-03-01

    Single crystals of L-aspartic acid nickel chloride (LANC) were grown by the slow evaporation technique at room temperature. The grown crystals were subjected to Powder X-ray diffraction studies to confirm the crystal structure. The modes of vibration of different molecular groups present in LANC have been identified by FTIR spectral analysis. Optical transferency of the grown crystal was investigated by UV-Vis-NIR spectrum. The lower optical cut off wavelength for this crystal is observed at 240 nm and energy band gap 5.179 eV. The optical reflectance and optical refractive index studies have been carried out in this crystal. Finally, the optical conductivity and electrical conductivity studies have been carried out on LANC single crystal.

  14. MANUFACTURE OF FIBER OPTIC SENSORS TO MEASURE THE PH WATER

    Directory of Open Access Journals (Sweden)

    Bushra R. Mahdi

    2016-07-01

    Full Text Available A fiber-optic pH sensor based on evanescent wave penetration is presented. Evanescent wave penetration is generated by removing the clad and contact the core with the solution. Testing samples were perpetrated by add a strong acid (HCL or a strong base (NaOH at distilled water to produce different value of pH (from 4 to 13. To determine the absorption or transmission of the evanescent waves, that generate after where obtained on appropriate calibration curve to determine a wide range of pH, by using pH indicators. Where using methyl red, by add fixed amounts of this dyes to the water samples were obtained on samples with colors vary with pH values. Calculate the transmission and absorption with draw a relationship between the transmissions or absorption with the pH values, to obtain on suitable curves, considered as calibration curves. Calibration curve for methyl red is best, where extends (from 4 to 12 for pH value. Can calculate the pH value for any water sample to tested, by the add the same ratios of the organic dyes it used.

  15. Advanced optical measurements for characterizing photophysical properties of single nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Ronen; Davis, Ryan W.; Arango, Dulce C.; Brozik, Susan Marie; Wheeler, David Roger

    2009-09-01

    Formation of complex nanomaterials would ideally involve single-pot reaction conditions with one reactive site per nanoparticle, resulting in a high yield of incrementally modified or oriented structures. Many studies in nanoparticle functionalization have sought to generate highly uniform nanoparticles with tailorable surface chemistry necessary to produce such conjugates, with limited success. In order to overcome these limitations, we have modified commercially available nanoparticles with multiple potential reaction sites for conjugation with single ssDNAs, proteins, and small unilamellar vesicles. These approaches combined heterobifunctional and biochemical template chemistries with single molecule optical methods for improved control of nanomaterial functionalization. Several interesting analytical results have been achieved by leveraging techniques unique to SNL, and provide multiple paths for future improvements for multiplex nanoparticle synthesis and characterization. Hyperspectral imaging has proven especially useful for assaying substrate immobilized fluorescent particles. In dynamic environments, temporal correlation spectroscopies have been employed for tracking changes in diffusion/hydrodynamic radii, particle size distributions, and identifying mobile versus immobile sample fractions at unbounded dilution. Finally, Raman fingerprinting of biological conjugates has been enabled by resonant signal enhancement provided by intimate interactions with nanoparticles and composite nanoshells.

  16. Research on measurement method of optical transmittance of the artificial fog

    Science.gov (United States)

    Hu, Jianghua; Jian, Chaochao; Cui, Guangzhen; Lv, Xuliang; Rong, Xianhui

    2016-10-01

    The attenuation of light was a common result that the light was absorbed and scattered by the artificial fog particles when it transmitted in the artificial fog. The absorbing attenuation process of light transmission in the artificial fog was that the artificial fog converting incident light energy into other forms of internal energy (such as heat energy). The scattering attenuation process of light transmission in the artificial fog was that the artificial fog particles intercepting incident radiation energy to form infrasonic waves and to radiate peripherally so that the incident light energy was reduced on the original direction of transmission. The mechanism of light transmission attenuation in the artificial fog was analyzed. The formation method of the artificial fog was expounded and the measuring principle of the artificial fog transmittance was described. A simple and reliable measurement method of the optical transmittance of the artificial fog in the fog chamber was proposed. The optical transmittance measurement system of the artificial fog was built by using incandescent lamp, power with steady current and voltage, lens, selenium photocell, micro-galvanometer, optical bench, hygrothermograph, humidifier, etc. Under different conditions of humidity, the optical transmittance of the artificial fog was obtained on the basis of measuring the photocurrent before the fog was formed in the fog chamber. The test results show that the measurement system is stable and reliable. During the 43 minutes after the artificial fog was formed, the optical transmittance of the artificial fog was averagely less than 5 percent and the optical transmittance increased gradually with the extension of time. In addition, the optical transmittance of artificial fog didn't produce obvious change while air humidity increased from 68.7% to 85%. The measurement system can be used to measure transmittance of smoke screen, water mist and other aerosol.

  17. Measuring ultrashort pulses using frequency-resolved optical gating

    Energy Technology Data Exchange (ETDEWEB)

    Trebino, R. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The purpose of this program is the development of techniques for the measurement of ultrafast events important in gas-phase combustion chemistry. Specifically, goals of this program include the development of fundamental concepts and spectroscopic techniques that will augment the information currently available with ultrafast laser techniques. Of equal importance is the development of technology for ultrafast spectroscopy. For example, methods for the production and measurement of ultrashort pulses at wavelengths important for these studies is an important goal. Because the specific vibrational motion excited in a molecule depends sensitively on the intensity, I(t), and the phase, {psi}(t), of the ultrashort pulse used to excite the motion, it is critical to measure both of these quantities for an individual pulse. Unfortunately, this has remained an unsolved problem for many years. Fortunately, this year, the authors present a technique that achieves this goal.

  18. The thickness of the retrobulbar portion of the optic nerve in Graves ophthalmopathy measured by ultrasound

    Directory of Open Access Journals (Sweden)

    Stefanović Ivan

    2009-01-01

    Full Text Available Introduction. The clinical diagnostic of Graves ophthalmopathy is based on the association of ocular signs and the disease of the thyroid gland. The evolution of the disease involves the development of eye globe protrusion, extraocular muscle thickening pressuring the optic nerve, which can result in its thickness. Objective. The aim of the paper is to find whether the retrobulbar optic nerve thickened and if there was a correlation between its possible thickening and the thickness of the muscles in Graves ophthalmopathy. We also wished to test the theory of compressive aetiology of such thickening using a 30-degree test. Methods. We examined 28 patients with Graves ophthalmopathy. The thickness of the retrobulbar optic nerve was measured by ultrasound on a B-scan using the Schraeder's method and by the largest thickness of the internal muscle. Results. The thickness of the retrobulbar portion of the optic nerve in the 52 analyzed eyes with signs of the disease ranged between 3.24 mm to 6.30 mm, with median of 5.13 mm, indicating that the majority of the patients had optic nerve thickening rating at this value. Forty-eight eyes had a marked retrobulbar optic nerve thickening, with the thickening over 4 mm, while in 4 eyes with signs of Graves ophthalmopathy the thickness of the optic nerve was within normal limits. We detected that 92.3% of the patients with muscular thickening also had a directly proportional thickening of the retrobulbar optic nerve. By using the 30-degree test we confirmed the diagnosis of compressive neuropathy. Conclusion. Patients with Graves ophthalmopathy and thickened muscles, also have a thickening of the retrobulbar optic nerve; the rate of the thickness directly depends on the degree of the muscular thickness. The word is of compressive neuropathy, i.e. the thickness of the optic nerve is the result of subarachnoid fluid stasis caused by the compression on the optic nerve.

  19. Application of fiber optic distributed sensor for strain measurement in civil engineering

    Science.gov (United States)

    Kurashima, Toshio; Usu, Tomonori; Tanaka, Kuniaki; Nobiki, Atsushi; Sato, Masashi; Nakai, Kenji

    1997-11-01

    We report on civil engineering applications of a fiber optic distributed strain sensor. It consists of a sensing fiber and a high performance optical time domain reflectometer (OTDR), for measuring both strain and optical loss distribution along optical fibers by accessing only one end of the fiber. The OTDR can measure distributed strain with an accuracy of better than +/- 60 X 10-6 and a high spatial resolution of up to 1 m over a 10 km long fiber. In model experiments using the OTDR, we measured the strain changes in fibers attached to the surface of a concrete test beam. The performance of the fiber strain sensor was tested by measuring the strain distribution in optical fibers and comparing the results with resistance strain gage measurements for several loads. We found that the two sets of results were similar, and in addition, we demonstrated experimentally that the sensor was able to measure an induced strain change of less than 100 by 10-6, which is nearly the elastic limit of the concrete material. These results show the potential of the OTDR to extend the application of monitoring systems to such areas as large building diagnostics for civil engineering.

  20. Internal Strain Measurement in 3D Braided Composites Using Co-braided Optical Fiber Sensors

    Institute of Scientific and Technical Information of China (English)

    Shenfang YUAN; Rui HUANG; Yunjiang RAO

    2004-01-01

    3D braided composite technology has stimulated a great deal of interest in the world at large. But due to the threedimensional nature of these kinds of composites, coupled with the shortcomings of currently-adopted experimental test methods, it is difficult to measure the internal parameters of this materials, hence causes it difficult to understand the material performance. A new method is introduced herein to measure the internal strain of braided composite materials using co-braided fiber optic sensors. Two kinds of fiber optic sensors are co-braided into 3D braided composites to measure internal strain. One of these is the Fabry-Parrot (F-P) fiber optic sensor; the other is the polarimetric fiber optic sensor. Experiments are conducted to measure internal strain under tension, bending and thermal environments in the 3D carbon fiber braided composite specimens, both locally and globally. Experimental results show that multiple fiber optic sensors can be braided into the 3D braided composites to measure the internal parameters, providing a more accurate measurement method and leading to a better understanding of these materials.

  1. Biological processes and optical measurements near the sea surface: Some issues relevant to remote sensing

    Science.gov (United States)

    Cullen, John J.; Lewis, Marlon R.

    1995-01-01

    The advent of remote sensing, the develpmemt of new optical instrumentation, and the associated advances in hydrological optics have transformed oceanography; it is now feasible to describe ocean-scale biogeochemical dynamcis from satellite observations, verified and complemented by measurements from optical sensors on profilers, moorings, and drifters. Only near-surface observations are common to both remote sensing and in situ observation, so it is critical to understand processes in the upper euphotic zone. Unfortunately, the biological principles that must be used to interpret optical variability near the sea surface are weaker than we would like, because relatively few experiments and analyses have examined bio-optical relationships under high irradiance characteristic of the upper optical depth. Special consideration of this stratum is justified, because there is good evidence that bio-optical relationships are altered near the surface; (1) the fluorescence yield from chlorophyll declines, leading to bias in the estimation of pigment from fluorometry; (2) the modeled relationship between solar-stimulated fluorecence and photosynthesis seems to deviate significantly from that presented for the lower euphotic zone; and (3) carbon-specific and cellular attenuation cross sections of phytoplankton change substantially during exposures to bright light. Even the measurement of primary productivity is problematic near the sea surface, because vertical mixing is not simulated and artifactual inhibition of photosynthesis can result. These problems can be addressed by focusing more sampling effort, experimental simulation, and analytical consideration on the upper optical depth, and by shortening timescales for the measurement of marine photosynthesis. Special efforts to study near-surface processes are justified, because new bio-optical algorithms will require quantitaitve descriptions of the responses of phytoplankton to bright light.

  2. The road towards accurate optical width measurements at the industrial level

    Science.gov (United States)

    Bodermann, Bernd; Köning, Rainer; Bergmann, Detlef; Buhr, Egbert; Hässler-Grohne, Wolfgang; Flügge, Jens; Bosse, Harald

    2013-04-01

    Optical vision systems require both unidirectional and bidirectional measurements for the calibrations and the verification of the tool performance to enable accurate measurements traceable to the SI unit Metre. However, for bidirectional measurements up to now the national metrology institutes are unable to provide internationally recognized calibrations of suitable standards. Furthermore often users are not aware of the specific difficulties of these measurements. In this paper the current status and limitations of bidirectional optical measurements at the industrial level are summarised and compared to state-of-the-art optical linewidth measurements performed at PTB on measurement objects of semiconductor industry. It turns out, that for optical widths measurements at an uncertainty level below 1 μm edge localisation schemes are required, which are based on tool and sample dependent threshold values, which usually need to be determined by a rigorous simulation of the microscopic image. Furthermore the calibration samples and structures must have a sufficient quality, e. g. high edge angle and low edge roughness and the structure materials and their material parameters have to be known. The experience obtained within the accreditation process of industrial labs for width calibrations shows that, in order to be able to achieve a desired measurement uncertainties of about 100 nm, the imaging system needs to have a monochromatic Koehler illumination, numerical aperture larger than 0.5, a magnification greater than 50x and the ability to control the deviation of the focus position to better than 100 nm.

  3. Fast optical measurements and imaging of flow mixing: Fast optical measurements and imaging of temperature in combined fossil fuel and biomass/waste systems

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Soennik; Fateev, A.; Lindorff Nielsen, K.; Evseev, V.

    2012-02-15

    Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics. Fast time-and spectral-resolved measurements in 1.5-5.1 mu spectral range give information about flame characteristics like gas and particle temperatures, eddies and turbulent gas mixing. Time-resolved gas composition in that spectral range (H{sub 2}O, CH{sub 4}, CO{sub 2}, CO) which is one of the key parameters in combustion enhancement can be also obtained. The infrared camera was also used together with special endoscope optics for fast thermal imaging of a coal-straw flame in an industrial boiler. Obtained time-resolved infrared images provided useful information for the diagnostics of the flame and fuel distribustion. The applicability of the system for gas leak detection is also demonstrated. The infrared spectrometer system with minor developments was applied for fast time-resolved exhaust gas temperature measurements performed simultaneously at the three optical ports of the exhaust duct of a marine Diesel engine and visualisation of gas flow behaviour in cylinder. (Author)

  4. Dynamic properties of bacterial pili measured by optical tweezers

    Science.gov (United States)

    Fallman, Erik G.; Andersson, Magnus J.; Schedin, Staffan S.; Jass, Jana; Uhlin, Bernt Eric; Axner, Ove

    2004-10-01

    The ability of uropathogenic Escherichia coli (UPEC) to cause urinary tract infections is dependent on their ability to colonize the uroepithelium. Infecting bacteria ascend the urethra to the bladder and then kidneys by attaching to the uroepithelial cells via the differential expression of adhesins. P pili are associated with pyelonephritis, the more severe infection of the kidneys. In order to find means to treat pyelonephritis, it is therefore of interest to investigate the properties P pili. The mechanical behavior of individual P pili of uropathogenic Escherichia coli has recently been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of ~1000 PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. We have earlier studied P pili regarding its stretching/elongation properties where we have found and characterized three different elongation regions, of which one constitute an unfolding of the quaternary (helical) structure of the PapA rod. It was shown that this unfolding takes place at an elongation independent force of 27 +/- 2 pN. We have also recently performed studies on its folding properties and shown that the unfolding/folding of the PapA rod is completely reversible. Here we present a study of the dynamical properties of the PapA rod. We show, among other things, that the unfolding force increases and that the folding force decreases with the speed of unfolding and folding respectively. Moreover, the PapA rod can be folded-unfolded a significant number of times without loosing its characteristics, a phenomenon that is believed to be important for the bacterium to keep close contact to the host tissue and consequently helps the bacterium to colonize the host tissue.

  5. A Novel Technique of Measuring SOA Differential Carrier Lifetime and a -Factor Using SOA Optical Modulation Response

    Institute of Scientific and Technical Information of China (English)

    Ki-Hyuk Lee; Woo-Young Choi

    2003-01-01

    We demonstrate a new technique of measuring differential carrier lifetime and linewidth enhancement factor in a semiconductor optical amplifier. In our method, the optical responses and fiber transfer functions of a self-gain modulated SOA are measured and, from these, values of carrier lifetimes and linewidth enhancement factors are determined for various SOA input optical powers.

  6. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms.

    Science.gov (United States)

    Parigi, Valentina; Bimbard, Erwan; Stanojevic, Jovica; Hilliard, Andrew J; Nogrette, Florence; Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Grangier, Philippe

    2012-12-07

    We observe and measure dispersive optical nonlinearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical nonlinearities are due to the progressive appearance of a Rydberg blockaded volume within the medium. The measurements allow a direct estimation of the "blockaded fraction" of atoms within the atomic ensemble.

  7. Construction of force measuring optical tweezers instrumentation and investigations of biophysical properties of bacterial adhesion organelles

    CERN Document Server

    Andersson, Magnus

    2015-01-01

    Optical tweezers are a technique in which microscopic-sized particles, including living cells and bacteria, can be non-intrusively trapped with high accuracy solely using focused light. The technique has therefore become a powerful tool in the field of biophysics. Optical tweezers thereby provide outstanding manipulation possibilities of cells as well as semi-transparent materials, both non-invasively and non-destructively, in biological systems. In addition, optical tweezers can measure minute forces (< 10-12 N), probe molecular interactions and their energy landscapes, and apply both static and dynamic forces in biological systems in a controlled manner. The assessment of intermolecular forces with force measuring optical tweezers, and thereby the biomechanical structure of biological objects, has therefore considerably facilitated our understanding of interactions and structures of biological systems. Adhesive bacterial organelles, so called pili, mediate adhesion to host cells and are therefore crucial...

  8. Damage induced in red blood cells by infrared optical trapping: an evaluation based on elasticity measurements

    Science.gov (United States)

    de Oliveira, Marcos A. S.; Moura, Diógenes S.; Fontes, Adriana; de Araujo, Renato E.

    2016-07-01

    We evaluated the damage caused to optically trapped red blood cells (RBCs) after 1 or 2 min of exposure to near-infrared (NIR) laser beams at 785 or 1064 nm. Damage was quantified by measuring cell elasticity using an automatic, real-time, homemade, optical tweezer system. The measurements, performed on a significant number (hundreds) of cells, revealed an overall deformability decrease up to ˜104% after 2 min of light exposure, under 10 mW optical trapping for the 785-nm wavelength. Wavelength dependence of the optical damage is attributed to the light absorption by hemoglobin. The results provided evidence that RBCs have their biomechanical properties affected by NIR radiation. Our findings establish limits for laser applications with RBCs.

  9. Implantable optogenetic device with CMOS IC technology for simultaneous optical measurement and stimulation

    Science.gov (United States)

    Haruta, Makito; Kamiyama, Naoya; Nakajima, Shun; Motoyama, Mayumi; Kawahara, Mamiko; Ohta, Yasumi; Yamasaki, Atsushi; Takehara, Hiroaki; Noda, Toshihiko; Sasagawa, Kiyotaka; Ishikawa, Yasuyuki; Tokuda, Takashi; Hashimoto, Hitoshi; Ohta, Jun

    2017-05-01

    In this study, we have developed an implantable optogenetic device that can measure and stimulate neurons by an optical method based on CMOS IC technology. The device consist of a blue LED array for optically patterned stimulation, a CMOS image sensor for acquiring brain surface image, and eight green LEDs surrounding the CMOS image sensor for illumination. The blue LED array is placed on the CMOS image sensor. We implanted the device in the brain of a genetically modified mouse and successfully demonstrated the stimulation of neurons optically and simultaneously acquire intrinsic optical images of the brain surface using the image sensor. The integrated device can be used for simultaneously measuring and controlling neuronal activities in a living animal, which is important for the artificial control of brain functions.

  10. Mapping coherence in measurement via full quantum tomography of a hybrid optical detector

    CERN Document Server

    Zhang, Lijian; Datta, Animesh; Puentes, Graciana; Lundeen, Jeff S; Jin, Xian-Min; Smith, Brian J; Plenio, Martin B; Walmsley, Ian A

    2012-01-01

    Quantum states and measurements exhibit wave-like --- continuous, or particle-like --- discrete, character. Hybrid discrete-continuous photonic systems are key to investigating fundamental quantum phenomena, generating superpositions of macroscopic states, and form essential resources for quantum-enhanced applications, e.g. entanglement distillation and quantum computation, as well as highly efficient optical telecommunications. Realizing the full potential of these hybrid systems requires quantum-optical measurements sensitive to complementary observables such as field quadrature amplitude and photon number. However, a thorough understanding of the practical performance of an optical detector interpolating between these two regions is absent. Here, we report the implementation of full quantum detector tomography, enabling the characterization of the simultaneous wave and photon-number sensitivities of quantum-optical detectors. This yields the largest parametrization to-date in quantum tomography experiments...

  11. Prospects for the LHC optics measurements and corrections at higher energy

    CERN Document Server

    Tomas, R; Coello, J; Kain, V; Kuhn, M; Langner, A S; Levinsen, Y I; Li, K S B; Maclean, E H; Maier, V; Magnin, N; McAteer, MJ; Persson, T H B; Skowronski, P; Westenberger, R; White, S

    2014-01-01

    LHC will resume operation in 2015 at 6.5 TeV. The higher energy allows for smaller IP beta functions, further enhancing the optics errors in the triplet quadrupoles. Moreover the uncertainty in the calibration of some quadrupoles will slightly increase due to saturation effects. The complete magnetic cycle of the LHC will take longer due to the higher energy and extended squeeze sequence. All these issues require more precise and more efficient optics measurements and corrections to guarantee the same optics quality level as in 2012 when a 7% peak beta-beating was achieved. This paper summarizes the on-going efforts for achieving faster and more accurate optics measurements and corrections.

  12. Measurement of "optical" transition probabilities in the silver atom

    NARCIS (Netherlands)

    Terpstra, J.; Smit, J.A.

    1958-01-01

    For 22 spectral lines of the silver atom the probability of spontaneous transition has been derived from measurements of the emission intensity of the line and the population of the corresponding upper level. The medium of excitation was the column of a vertical arc discharge in air of atmospheric

  13. Comparison of central corneal thickness measurements using optical low-coherence reflectometry, Fourier domain optical coherence tomography, and Scheimpflug camera

    Directory of Open Access Journals (Sweden)

    Saban Gonul

    2014-12-01

    Full Text Available Purpose: To compare the results of central corneal thickness (CCT measurements obtained using optical low-coherence reflectometry (OLCR, Fourier domain optical coherence tomography (FD-OCT, and a Scheimpflug camera (SC, combined with Placido corneal topography. Methods: A total of 25 healthy subjects were enrolled in the present study, and one eye of each subject was included. A detailed ophthalmic examination was performed in all cases following CCT measurements with OLCR, FD-OCT, and SC. The results were compared using an ANOVA test. Bland-Altman analysis was used to demonstrate agreement between methods. Intra-examiner repeatability was assessed by using intraclass correlation coefficients (ICCs. Results: Statistically significant differences were observed between the results of the CCT measurements obtained using the three different devices (p=0.009. Significant correlations were found between OLCR and FD-OCT (r=0.97; p0.98. Conclusion: Although the results of CCT measurements obtained from these three devices were highly correlated with one another and the mean differences between instruments were comparable with the reported diurnal CCT fluctuation, the measurements are not directly interchangeable in clinical practice because of the wide LOA values.

  14. Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes.

    Science.gov (United States)

    Bernier, Maxime; Gaborit, Gwenaël; Duvillaret, Lionel; Paupert, Alain; Lasserre, Jean-Louis

    2008-05-01

    We present pigtailed electro-optic probes that allow a simultaneous measurement of high frequency electric fields and temperature using a unique laser probe beam. This has been achieved by the development of a novel probe design associated with a fully automated servo-controlled optical bench, initially developed to stabilize the electric field sensor response. The developed electro-optic probes present a stable response in outdoors conditions over a time duration exceeding 1 h, a frequency bandwidth from kHz to tens of GHz with a sensitivity of 0.7 Vm(-1)Hz(-(1/2)), and a temperature accuracy of 40 mK.

  15. Measurement of the linear electro-optic coefficient of a minute cBN sample

    Institute of Scientific and Technical Information of China (English)

    DOU; Qingping; MA; Haitao; JIA; Gang; CHEN; Zhanguo; ZHANG

    2005-01-01

    Cubic boron nitride (Cbn) is a kind of artificial (synthetic) crystal. Transverse electro-optic modulation in a minute Cbn sample was carried out. Basing on the practical form of the crystal, we established the theoretical and experimental method according to the sample. For the first time, the linear electro-optic effect was observed in Cbn, and half-wave voltage of the Cbn sample was measured successfully. Furthermore, its linear electro-optic coefficient was calculated at 1.17×10-14 m/V.

  16. Optics measurement and correction during acceleration with beta-squeeze in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    In the past, beam optics correction at RHIC has only taken place at injection and at final energy, with interpolation of corrections partially into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats that, if corrected, could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoiding the high-order multipole fields sampled by particles within the bunch. We recently demonstrated successful beam optics corrections during acceleration at RHIC. We verified conclusively the superior control of the beam realized via these corrections

  17. Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements

    Science.gov (United States)

    Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.

    2017-02-01

    Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. We report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. We demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ±0.018 , and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.

  18. Measurement of localized heating in the focus of an optical trap

    Energy Technology Data Exchange (ETDEWEB)

    Celliers, Peter M. [Lawerence Livermore National Laboratory, P. O. Box 808, Livermore, California 94550 (United States); Conia, Jerome [Cell Robotics, Inc., 2715 Broadbent Parkway NE, Albuquerque, New Mexico 87107 (United States)

    2000-07-01

    Localized heating in the focus of an optical trap operating in water can result in a temperature rise of several kelvins. We present spatially resolved measurements of the refractive-index distribution induced by the localized heating produced in an optical trap and infer the temperature distribution. We have determined a peak temperature rise in water of 4 K in the focus of a 985-nm-wavelength 55-mW laser beam. The localized heating is directly proportional to power and the absorption coefficient. The temperature distribution is in excellent agreement with a model based on the heat equation. (c) 2000 Optical Society of America.

  19. Study of a fibre optics current sensor for the measurement of plasma current in ITER

    Science.gov (United States)

    Wuilpart, Marc; Vanus, Benoit; Andrasan, Alina; Gusarov, Andrei; Moreau, Philippe; Mégret, Patrice

    2016-05-01

    In this article, we study the feasibility of using a fibre-optics current sensor (FOCS) for the measurement of plasma current in the future fusion reactor ITER. The sensor is based on a classical FOCS interrogator involving the measurement of the state of polarization rotation undergone by the light in presence of a magnetic field (Faraday effect) in an optical fibre surrounding the current and terminated by a Faraday mirror. We considered a uniformly spun optical fibre as the sensing element and we used the Stokes formalism to simulate the sensor. The objective of the simulations is to quantify the ratio LB/SP (beat length over the spun period of the spun fibre) enabling a measurement error in agreement with the ITER specifications. The simulator takes into account the temperature variations undergone by the measurement system under ITER operation. The simulation work showed that a LB/SP ratio of 19.2 is adequate.

  20. Pseudo working-point control measurement scheme for acoustic sensitivity of interferometric fiber-optic hydrophones

    Institute of Scientific and Technical Information of China (English)

    Zefeng Wang; Yongming Hu; Zhou Meng; Ming Ni

    2008-01-01

    A novel pseudo working-point control measurement scheme for the acoustic sensitivity of interferometric fiber-optic hydrophones is described and demonstrated.The measurement principle is introduced in detail.An experimental system,which interrogates an interferometric fiber-optic hydrophone with this method,is designed.The acoustic pressure phase sensitivity of the fiber-optic hydrophone is measured over the frequency range of 20-2500Hz.The measured acoustic sensitivity is about-156.5dB re 1rad/μPa with a fluctuation lower than ±1.2dB,which is in good agreement with the results obtained by the method of phase generated carrier.The experimental results testify the validity of this new method which has the advantages of no electric elements in the sensing head,the simplicity of signal processing,and wide working bandwidth.

  1. A transparent Pyrex μ-reactor for combined in situ optical characterization and photocatalytic reactivity measurements

    DEFF Research Database (Denmark)

    Dionigi, Fabio; Nielsen, Morten Godtfred; Pedersen, Thomas;

    2013-01-01

    -vis-near infrared range of wavelengths (photon energies between ∼0.4 and ∼4.1 eV). The absorbance of a photocatalytic film obtained with a light transmission measurement during a photocatalytic reaction is presented as a proof of concept of a photocatalytic reactivity measurement combined with in situ optical...... characterization. Diffuse reflectance measurements of highly scattering photocatalytic nanopowders in a sealed Pyrex μ-reactor are also possible using an integrating sphere as shown in this work. These experiments prove that a photocatalyst can be characterized with optical techniques after a photocatalytic...

  2. A new sensitive system for measurement of thermally and optically stimulated luminescence

    DEFF Research Database (Denmark)

    Markey, B.G.; Bøtter-Jensen, L.; Poolton, N.R.J.

    1996-01-01

    An automatic system developed at RisO National Laboratory for measuring thermally and optically stimulated luminescence (TL, OSL) is widely used for radiation dose measurements. In the present model, high excitation and detection efficiencies were attempted, but inevitably there is a constant...... optics of the system with a combination of ellipsoidal mirrors and light guides, which also serve to make the system more flexible in choice of excitation source when OSL measurements are required. A variety of new light sources might be employed, adapted to allow the most efficient wavelengths...

  3. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2015-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  4. Concurrence Measurement for the Two-Qubit Optical and Atomic States

    Directory of Open Access Journals (Sweden)

    Lan Zhou

    2015-06-01

    Full Text Available Concurrence provides us an effective approach to quantify entanglement, which is quite important in quantum information processing applications. In the paper, we mainly review some direct concurrence measurement protocols of the two-qubit optical or atomic system. We first introduce the concept of concurrence for a two-qubit system. Second, we explain the approaches of the concurrence measurement in both a linear and a nonlinear optical system. Third, we introduce some protocols for measuring the concurrence of the atomic entanglement system.

  5. Macro-Bending Influence on Radiation Induced Attenuation Measurement in Optical Fibres

    CERN Document Server

    Guillermain, E; Ricci, D; Weinand, U

    2014-01-01

    Influence of the bending radius on the measurement of radiation induced attenuation in glass optical fibres is discussed in this paper. Radiation induced attenuation measured in two single-mode fibre types shows discrepancies when coiled around a low bending radius spool: the observed attenuation is lower than expected. A series of dedicated tests reveals that this invalid measurement is related to the displacement of the mode field towards the cladding when the fibre is bent with a low radius, and to the different radiation resistances of the core and cladding glasses. For irradiation tests of optical fibres, the spool radius should therefore be carefully chosen.

  6. Signal measurement system for intra-body communication using optical isolation method

    Science.gov (United States)

    Matsumoto, Kazuki; Katsuyama, Jun; Sugiyama, Ryo; Takizawa, Yasuaki; Ishii, Seita; Shinagawa, Mitsuru; Kado, Yuichi

    2014-09-01

    In this paper, we describe an induced signal measurement on the human body for developing a high-performance transceiver of an intra-body communication system. It is important to isolate awearable transceiver from an electrical instrument for precise measurement. We have developed a probe system using an optical isolation method including a laser diode, photo-diode, and optical fiber. The probe system can be successfully applied to the precise measurement of a receiving signal power at a wearable transceiver. We verify that the experimental results agree with the simulation results based on our previous channel model of intra-body communication.

  7. Measuring the correlation of two optical frequencies using four-wave mixing.

    Science.gov (United States)

    Anthur, Aravind P; Watts, Regan T; Huynh, Tam N; Venkitesh, Deepa; Barry, Liam P

    2014-11-10

    We use the physics of four-wave mixing to study the decorrelation of two optical frequencies as they propagate through different fiber delays. The phase noise relationship between the four-wave mixing components is used to quantify and measure the correlation between the two optical frequencies using the correlation coefficient. We show the difference in the evolution of decorrelation between frequency-dependent and frequency-independent components of phase noise.

  8. Measurement of nonlinear coefficient of optical fiber based on small chirped soliton transmission

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We measure the waveform and phase curves of short optical pulses before and after transmission over different lengths of fibers by use of the pulse analyzer with the frequency-resolved optical gating (FROG),and numerically simulate pulse evolution under the experimental conditions.The nonlinear coefficient of the fiber is given by comparing the experimental results with the numerical ones.Difference between the experiment and numerical simulation is analyzed.

  9. Experimental assesment of optical uncertainty components in the measurement of an optomechanical hole plate

    DEFF Research Database (Denmark)

    Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2004-01-01

    An investigation on the effect of imaging parameters such as the direction of illumination and the magnification of the objective in the optical coordinate measurements is described in this paper. An optomechanical hole plate with 5x5 holes was measured using various configurations of illuminatio...

  10. Systematic characterization of optical beam deflection measurement system for micro and nanomechanical systems

    NARCIS (Netherlands)

    Herfst, R.W.; Klop, W.A.; Eschen, M.; Dool, T.C. van den; Koster, N.B.; Sadeghian Marnani, H.

    2014-01-01

    Optical beam deflection (OBD) measurement method is very popular in various types of scanning probe microscopy (SPM) and micro/nanomechanical sensors to measure a mechanical motion. This paper reports the detail design and implementation of a very low drift (2 nm over 1000 s), high bandwidth (40 MHz

  11. General theory of three-dimensional radiance measurements with optical microprobes RID A-1977-2009

    DEFF Research Database (Denmark)

    FukshanskyKazarinova, N.; Fukshansky, L.; Kuhl, M.;

    1997-01-01

    Measurements of the radiance distribution and fluence rate within turbid samples with fiber-optic radiance microprobes contain a large variable instrumental error caused by the nonuniform directional sensitivity of the microprobes. A general theory of three-dimensional radiance measurements...

  12. Systematic characterization of optical beam deflection measurement system for micro and nanomechanical systems

    NARCIS (Netherlands)

    Herfst, R.W.; Klop, W.A.; Eschen, M.; Dool, T.C. van den; Koster, N.B.; Sadeghian Marnani, H.

    2014-01-01

    Optical beam deflection (OBD) measurement method is very popular in various types of scanning probe microscopy (SPM) and micro/nanomechanical sensors to measure a mechanical motion. This paper reports the detail design and implementation of a very low drift (2 nm over 1000 s), high bandwidth (40

  13. Specifics of the hail parameter measurements using the optical precipitation gauge

    Science.gov (United States)

    Kalchikhin, V. V.; Kobzev, A. A.; Korolkov, V. A.; Tikhomirov, A. A.

    2015-11-01

    There are specifics of use of the obtaining and analyzing precipitation particle shadow images method for the hail precipitation investigations. Descriptions of the method and operation of the new optical rain gauge measuring system are presented. There are estimations of the device capabilities and prospects of its use for measurement of hail characteristics.

  14. Optical-Thickness Corrections to Transient Ece Temperature-Measurements in Tokamak and Stellarator Plasmas

    NARCIS (Netherlands)

    Peters, M.; Gorini, G.; Mantica, P.

    1995-01-01

    The conditions are examined under which optical thickness (tau) corrections to electron cyclotron emission (ECE) measurements of electron temperature (T-e) can be neglected. By means of simple algebra it is demonstrated that for measurements of T-e transients the ECE radiation temperature (T-rad) ca

  15. Measurement of biofilm growth and local hydrodynamics using optical coherence tomography

    NARCIS (Netherlands)

    Weiss, Nicolas; El Tayeb El Obied, Khalid; Kalkman, Jeroen; Lammertink, Rob G.H.; Leeuwen, van Ton G.

    2016-01-01

    We report on localized and simultaneous measurement of biofilm growth and local hydrodynamics in a microfluidic channel using optical coherence tomography. We measure independently with high spatio-temporal resolution the longitudinal flow velocity component parallel to the imaging beam and the tran

  16. Atmospheric Turbulence Measurements in Support of Adaptive Optics Technology

    Science.gov (United States)

    1989-03-01

    Pittsburgh rawinsonde. Potential temperature profiles were obtained using isentropically interpolated T and Td soundings. The combination of measured...dB POWER SPEC2 55Avg 75%Ovlp Hann Ov210 " , I I I, I i I dBl rms V2 / Hzj 1 -70.0jj j IL Fxd Y 125m Log Hz 100 Figure 2. (continued) - C-50 - CHAPTER

  17. Direct Position Resolution Measurement with DROIDs at Optical Wavelengths

    Science.gov (United States)

    Hijmering, R. A.; Verhoeve, P.; Martin, D. D. E.; Jerjen, I.; Kozorezov, A. G.; Venn, R.

    2008-04-01

    The DROID (Distributed Read-Out Imaging Detector) is being developed to overcome the limitation in sensitive area with the use of single STJ’s (Superconducting Tunnel Junctions). The DROID configuration allows the reconstruction of the position of the photon absorption and therefore it can replace a number of single STJ’s in a detector array. The position resolution dictates how many STJ the DROID can replace. We present direct measurements of the position resolution in DROIDs, using a 10 µm spot of visible light which illuminates the DROID locally and which is scanned along the absorber length. The DROIDs used for the measurements have 100 nm thick Ta absorber strips with Ta/Al/AlO x /Al/Ta STJ’s on either end. The STJ’s are square with the same size as the absorber width and the base Ta layer are adjacent to the absorber. The position resolution is measured for absorber length ranging from 200 to 400 µm and 30 µm width.

  18. Comments on the paper: 'Optical reflectance, optical refractive index and optical conductivity measurements of nonlinear optics for L-aspartic acid nickel chloride single crystal'

    Science.gov (United States)

    Srinivasan, Bikshandarkoil R.; Naik, Suvidha G.; Dhavskar, Kiran T.

    2016-02-01

    We argue that the 'L-aspartic acid nickel chloride' crystal reported by the authors of the title paper (Optics Communications, 291 (2013) 304-308) is actually the well-known diaqua(L-aspartato)nickel(II) hydrate crystal.

  19. A Special Fiber Optic Sensor for Measuring Wheel Loads of Vehicles on Highways

    Directory of Open Access Journals (Sweden)

    Norman W. Garrick

    2008-04-01

    Full Text Available This paper presents results from an investigation on a special optical fiber as a load sensor for application in Weigh-in-Motion (WIM systems to measure wheel loads of vehicles traveling at normal speed on highways. The fiber used has a unique design with two concentric light guiding regions of different effective optical path lengths, which has the potential to enable direct measurement of magnitudes as well as locations of forces acting at multiple points along a single fiber. The optical characteristic of the fiber for intended sensing purpose was first assessed by a simple fiber bending experiment and by correlating the bend radii with the output light signal intensities. A simple laboratory load transmitting/fiber bending device was then designed and fabricated to appropriately bend the optical fiber under applied loads in order to make the fiber work as load sensor. The device with the optical fiber was tested under a universal loading machine and an actual vehicle wheel in the laboratory. The test results showed a good relationship between the magnitude of the applied load and the output optical signal changes. The results also showed a good correlation between the time delay between the inner and outer core light pulses and the distance of the applied load as measured from the output end of the fiber.

  20. Measurements of the force fields within an acoustic standing wave using holographic optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Bassindale, P. G.; Drinkwater, B. W. [Faculty of Engineering, Queens building, University of Bristol, Bristol BS8 1TR (United Kingdom); Phillips, D. B. [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Barnes, A. C. [Department of Physics, H.H.Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom)

    2014-04-21

    Direct measurement of the forces experienced by micro-spheres in an acoustic standing wave device have been obtained using calibrated optical traps generated with holographic optical tweezers. A micro-sphere, which is optically trapped in three dimensions, can be moved through the acoustic device to measure forces acting upon it. When the micro-sphere is subjected to acoustic forces, it's equilibrium position is displaced to a position where the acoustic forces and optical forces are balanced. Once the optical trapping stiffness has been calibrated, observation of this displacement enables a direct measurement of the forces acting upon the micro-sphere. The measured forces are separated into a spatially oscillating component, attributed to the acoustic radiation force, and a constant force, attributed to fluid streaming. As the drive conditions of the acoustic device were varied, oscillating forces (>2.5 pN{sub pp}) and streaming forces (<0.2 pN) were measured. A 5 μm silica micro-sphere was used to characterise a 6.8 MHz standing wave, λ = 220 μm, to a spatial resolution limited by the uncertainty in the positioning of the micro-sphere (here to within 2 nm) and with a force resolution on the order of 10 fN. The results have application in the design and testing of acoustic manipulation devices.

  1. Integrating measuring uncertainty of tactile and optical coordinate measuring machines in the process capability assessment of micro injection moulding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Gasparin, Stefania

    2010-01-01

    Process capability of micro injection moulding was investigated in this paper by calculating the Cp and Cpk statistics. Uncertainty of both optical and tactile measuring systems employed in the quality control of micro injection moulded products was assessed and compared with the specified...... tolerances. Limits in terms of manufacturing process capability as well as of suitability of such measuring systems when employed for micro production inspection were quantitatively determined....

  2. Vibration measurement based on the optical cross-correlation technique with femtosecond pulsed laser

    Science.gov (United States)

    Han, Jibo; Wu, Tengfei; Zhao, Chunbo; Li, Shuyi

    2016-10-01

    Two vibration measurement methods with femtosecond pulsed laser based on the optical cross-correlation technique are presented independently in this paper. The balanced optical cross-correlation technique can reflect the time jitter between the reference pluses and measurement pluses by detecting second harmonic signals using type II phase-matched nonlinear crystal and balanced amplified photo-detectors. In the first method, with the purpose of attaining the vibration displacement, the time difference of the reference pulses relative to the measurement pluses can be measured using single femtosecond pulsed laser. In the second method, there are a couple of femtosecond pulsed lasers with high pulse repetition frequency. Vibration displacement associated with cavity length can be calculated by means of precisely measuring the pulse repetition frequency. The results show that the range of measurement attains ±150μm for a 500fs pulse. These methods will be suited for vibration displacement measurement, including laboratory use, field testing and industrial application.

  3. Nanometer profile measurement of large aspheric optical surface by scanning deflectometry with rotatable devices

    Science.gov (United States)

    Xiao, Muzheng; Jujo, Satomi; Takahashi, Satoru; Takamasu, Kiyoshi

    2011-09-01

    Large aspheric optical mirrors and lens are wildly used in high-tech industry such as huge telescopes and synchrotron radiation facilities. The measurement uncertainty of the surfaces is needed to be under several tens of nanometers. Current methods such as interferometry method are not available for measuring aspheric surface with departure over hundreds of wavelength. In this paper, we proposed a new method called improved 3D deflectometry method. Rotatable optical devices are applied to enlarge the measuring range of autocollimator with highly accuracy but small measuring range. Data processing methods are also proposed to improve the measurement uncertainty. Experimental setup is designed based on proposed method. Spherical concave mirror with curvature radius of 5000 mm is measured successfully. The repeatability (mean standard deviation) of 10 times measurement is less than 10 nanometers.

  4. Measurements of pattern formation in a confocal optical parametrical oscillator with applications in quantum optics

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Buchhave, Preben

    We describe simultaneous measurements of signal/idler near field and far field patterns of a 2nd order nonlinear multi-mode parametric downconverter. We also describe the use of auto- and cross correlation techniques to obtain statistical data.......We describe simultaneous measurements of signal/idler near field and far field patterns of a 2nd order nonlinear multi-mode parametric downconverter. We also describe the use of auto- and cross correlation techniques to obtain statistical data....

  5. Optical measurements on overhead optical fiber cables for stresses and damage identification

    Science.gov (United States)

    Ravet, Fabien L.; Heens, Bernard; Daniaux, D.; Froidure, Jean-Christophe; Blondel, Michel; Dascotte, M.; Lots, P.

    1998-12-01

    This paper concerns the characterization of various trunks of an OPGW based network. No strong fiber aging has been observed but combined OTDR and PMD measurements have pointed out strong cable clamping at suspension pylon. Large local losses have been measured at both 1.55 micrometers and 1.6 micrometers and stress induced birefringent behavior have been experienced. PMD temporal evolution has also been studied. A correlation between temperature variation and PMD evolution has been observed.

  6. LHC optics and elastic scattering measured by the TOTEM experiment

    CERN Document Server

    Nemes, Frigyes

    2016-01-01

    The TOTEM experiment at the LHC has measured proton-proton elastic scattering in dedicated runs at $\\sqrt{s}=7$ and 8 TeV centre-of-mass LHC energies. The proton-proton total cross-section $\\sigma_{\\rm tot}$ has been derived for both energies using a luminosity independent method. TOTEM has excluded a purely exponential differential cross-section for elastic proton-proton scattering with significance greater than 7$\\sigma$ in the $|t|$ range from 0.027 to 0.2 GeV$^{2}$ at $\\sqrt{s}=8$ TeV.

  7. Laboratory measurements of the optical properties of sea salt aerosol

    Directory of Open Access Journals (Sweden)

    R. Irshad

    2009-01-01

    Full Text Available The extinction spectra of laboratory generated sea salt aerosols have been measured from 1 μm to 20 μm using a Bruker 66v/S FTIR spectrometer. Concomitant measurements include temperature, pressure, relative humidity and the aerosol size distribution. The refractive indices of the sea salt aerosol have been determined using a simple harmonic oscillator band model (Thomas et al., 2004 for aerosol with relative humidities at eight different values between 0.4% to 86%. The resulting refractive index spectra show significant discrepancies when compared to existing sea salt refractive indices calculated using volume mixing rules (Shettle and Fenn, 1979. Specifically, an additional band is found in the refractive indices of dry sea salt aerosol and the new data shows increased values of refractive index at almost all wavelengths. This implies that the volume mixing rules, currently used to calculate the refractive indices of wet sea salt aerosols, are inadequate. Furthermore, the existing data for the real and imaginary parts of the refractive indices of dry sea salt aerosol are found not to display the Kramers-Kronig relationship. This implies that the original data used for the volume mixing calculations is also inaccurate.

  8. Computer Vision Aided Measurement of Morphological Features in Medical Optics

    Directory of Open Access Journals (Sweden)

    Bogdana Bologa

    2010-09-01

    Full Text Available This paper presents a computer vision aided method for non invasive interupupillary (IPD distance measurement. IPD is a morphological feature requirement in any oftalmological frame prescription. A good frame prescription is highly dependent nowadays on accurate IPD estimation in order for the lenses to be eye strain free. The idea is to replace the ruler or the pupilometer with a more accurate method while keeping the patient eye free from any moving or gaze restrictions. The method proposed in this paper uses a video camera and a punctual light source in order to determine the IPD with under millimeter error. The results are compared against standard eye and object detection routines from literature.

  9. Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments

    Science.gov (United States)

    Moeller, Trevor M.; Montgomery Smith, L.; Collins, Frank G.; Labello, Jesse M.; Rogers, James P.; Lowry, Heard S.; Crider, Dustin H.

    2012-11-01

    Standard vacuum practices mitigate the presence of water vapor and contamination inside cryogenic vacuum chambers. However, anomalies can occur in the facility that can cause the accumulation of amorphous water ice on optics and test articles. Under certain conditions, the amorphous ice on optical components shatters, which leads to a reduction in signal or failure of the component. An experiment was performed to study and measure the deposition of water (H2O) ice on optical surfaces under high-vacuum cryogenic conditions. Water was introduced into a cryogenic vacuum chamber, via a hydrated molecular sieve zeolite, through an effusion cell and impinged upon a quartz-crystal microbalance (QCM) and first-surface gold-plated mirror. A laser and photodiode setup, external to the vacuum chamber, monitored the multiple-beam interference reflectance of the ice-mirror configuration while the QCM measured the mass deposition. Data indicates that water ice, under these conditions, accumulates as a thin film on optical surfaces to thicknesses over 45 microns and can be detected and measured by nonintrusive optical methods which are based upon multiple-beam interference phenomena. The QCM validated the interference measurements. This experiment established proof-of-concept for a miniature system for monitoring ice accumulation within the chamber.

  10. Measuring the spin Chern number in time-reversal-invariant Hofstadter optical lattices

    Science.gov (United States)

    Zhang, Dan-Wei; Cao, Shuai

    2016-10-01

    We propose an experimental scheme to directly measure the spin Chern number of the time-reversal-invariant Hofstadter model in optical lattices. We first show that this model can be realized by using ultracold Fermi atoms with two pseudo-spin states encoded by the internal Zeeman states in a square optical lattice and the corresponding topological Bloch bands are characterized by the spin Chern number. We then propose and numerically demonstrate that this topological invariant can be extracted from the shift of the hybrid Wannier center in the optical lattice. By spin-resolved in situ detection of the atomic densities along the transverse direction combined with time-of-flight measurement along another spatial direction, the spin Chern number in this system is directly measured.

  11. Simultaneous Optical Measurements of Axial and Tangential Steady-State Blade Deflections

    Science.gov (United States)

    Kurkov, Anatole P.; Dhadwal, Harbans S.

    1999-01-01

    Currently, the majority of fiber-optic blade instrumentation is being designed and manufactured by aircraft-engine companies for their own use. The most commonly employed probe for optical blade deflection measurements is the spot probe. One of its characteristics is that the incident spot on a blade is not fixed relative to the blade, but changes depending on the blade deformation associated with centrifugal and aerodynamic loading. While there are geometrically more complicated optical probe designs in use by different engine companies, this paper offers an alternate solution derived from a probe-mount design feature that allows one to change the probe axial position until the incident spot contacts either a leading or a trailing edge. By tracing the axial position of either blade edge one is essentially extending the deflection measurement to two dimensions, axial and tangential. The blade deflection measurements were obtained during a wind tunnel test of a fan prototype.

  12. A distributed optical fiber sensing system for synchronous vibration and loss measurement

    Science.gov (United States)

    Zhang, Xu-ping; Qiao, Wei-yan; Sun, Zhen-hong; Shan, Yuan-yuan; Zeng, Jie; Zhang, Yi-xin

    2016-09-01

    We propose a fully distributed fusion system combining phase-sensitive optical time-domain reflectometry (Φ-OTDR) and OTDR for synchronous vibration and loss measurement by setting an ingenious frequency sweep rate ( FSR) of the optical source. The relationships between FSR, probe pulse width and repeat period are given to balance the amplitude fluctuation of OTDR traces, the dead zone probability and the measurable frequency range of vibration events. In the experiment, we achieve synchronous vibration and loss measurement with FSR of 40 MHz/s, the proble pulse width of 100 ns and repeat rate of 0.4 ms. The fluctuation of OTDR trace is less than 0.45 dB when the signal-to-noise ratio ( SNR) is over 12 dB for a captured vibration event located at 9.1 km. The proposed method can be used for not only detection but also early warning of damage events in optical communication networks.

  13. Single-crystal Sapphire Based Optical Polarimetric Sensor for High Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Anbo Wang

    2006-08-01

    Full Text Available Optical sensors have been investigated and widely deployed in industrial andscientific measurement and control processes, mainly due to their accuracy, high sensitivityand immunity to electromagnetic interference and other unique characteristics. They areespecially suited for harsh environments applications, where no commercial electricalsensors are available for long-term stable operations. This paper reports a novel contactoptical high temperature sensor targeting at harsh environments. Utilizing birefringentsingle crystal sapphire as the sensing element and white light interferometric signalprocessing techniques, an optical birefringence based temperature sensor was developed.With a simple mechanically structured sensing probe, and an optical spectrum-codedinterferometric signal processor, it has been tested to measure temperature up to 1600 °Cwith high accuracy, high resolution, and long-term measurement stability.

  14. Ultra-wide frequency response measurement of an optical system with a DC photo-detector

    KAUST Repository

    Kuntz, Katanya B.

    2017-01-09

    Precise knowledge of an optical device\\'s frequency response is crucial for it to be useful in most applications. Traditional methods for determining the frequency response of an optical system (e.g. optical cavity or waveguide modulator) usually rely on calibrated broadband photo-detectors or complicated RF mixdown operations. As the bandwidths of these devices continue to increase, there is a growing need for a characterization method that does not have bandwidth limitations, or require a previously calibrated device. We demonstrate a new calibration technique on an optical system (consisting of an optical cavity and a high-speed waveguide modulator) that is free from limitations imposed by detector bandwidth, and does not require a calibrated photo-detector or modulator. We use a low-frequency (DC) photo-detector to monitor the cavity\\'s optical response as a function of modulation frequency, which is also used to determine the modulator\\'s frequency response. Knowledge of the frequency-dependent modulation depth allows us to more precisely determine the cavity\\'s characteristics (free spectral range and linewidth). The precision and repeatability of our technique is demonstrated by measuring the different resonant frequencies of orthogonal polarization cavity modes caused by the presence of a non-linear crystal. Once the modulator has been characterized using this simple method, the frequency response of any passive optical element can be determined to a fine resolution (e.g. kilohertz) over several gigahertz.

  15. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  16. Laser-optical fiber Bragg grating anemometer for measuring gas flows: application to measuring the electric wind.

    Science.gov (United States)

    Lamb, David W; Hooper, Adam

    2006-04-15

    A novel laser-optical fiber Bragg grating anemometer (FBGA) has been devised for measuring the speed of a moving gas in the range 0-1.5 m s(-1). As a test, the FBGA was applied to measuring the speed of the electric wind generated in the particularly harsh, high-voltage environment of a dc, negative-polarity, partial (corona) discharge in atmospheric air. The instrument proved more stable and yielded an order-of-magnitude improvement in sensitivity (deltav approximately 4 x 10(-3) ms(-1)) compared with other optical-fiber-based anemometers. On-axis wind speeds ranging from zero to 1.1 m s(-1) were measured in the vicinity of the corona discharge.

  17. Vibration-displacement measurement employing phase tracking technique with an optical fiber Michelson interferometer

    Science.gov (United States)

    Ma, Sen; Li, Zhaoying; Xie, Fang

    2011-11-01

    A vibration-displacement measurement system by tracking the phase variation of an optical fiber Michelson interferometer with an electronic feedback loop is presented. The measurement system includes an electronic feedback loop which is used to track the phase variation induced by the measured vibration-displacement and provides a sense of direction of the displacement simultaneously. The measurement system is designed to be capable of measuring vibration-displacement with frequencies up to 200Hz and the measurement resolution can reach 13nm.

  18. Cloud and aerosol optics by polarized micro pulse Lidar and ground based measurements of zenith radiance

    Science.gov (United States)

    Delgadillo, Rodrigo

    Clouds impact Earth's climate through cloud transmission and reflection properties. Clouds reflect approximately 15 percent of the incoming solar radiation at the top of the atmosphere. A key cloud radiative variable is cloud optical depth, which gives information about how much light is transmitted through a cloud. Historically, remote measurements of cloud optical depth have been limited to uniform overcast conditions and had low temporal and spatial resolution. We present a novel method to measure cloud optical depth for coastal regions from spectral zenith radiance measurements for optically thin clouds, which removes some of these limitations. Our measurement site is part of South Florida's Cloud-Aerosol-Rain Observatory (CAROb), located on Virginia Key, FL (6 km from Miami). This work is based on Marshak et al.'s method for finding cloud optical depth from vegetative sites that provide a strong spectral contrast between red and near infrared surface albedo. However, given the unique nature of our site, which contains water, vegetation, beach, and urban surface types, we found no such spectral contrast at those wavelength pairs. We measured albedo, with hyperspectral resolution, for different surface types around our measurement site to estimate the effective spectral albedo for the area centered on the site with a 5km radius. From this analysis, we found the best possible albedo contrast (573.9 and 673.1 nm) for our site. We tested the derived cloud optical depth from zenith radiance at these two wavelengths against a concurrently running polarized micro pulse LIDAR (MPL) and found good agreement.

  19. The measurement system of birefringence and Verdet constant of optical fiber

    Science.gov (United States)

    Huang, Yi; Chen, Li; Guo, Qiang; Pang, Fufei; Wen, Jianxiang; Shang, Yana; Wang, Tingyun

    2013-12-01

    The Faraday magneto-optical effect of optical fiber has many applications in monitoring magnetic field and electric current. When a linearly polarized light propagates in the direction of a magnetic field, the plane of polarization will rotate linearly proportional to the strength of the applied magnetic field, which following the relationship of θF =VBl. θF is the Faraday rotation angle, which is proportional to the magnetic flux density B and the Verdet constant V . However, when the optical fiber contains the effect of linear birefringence, the detection of Faraday rotation angle will depend on the line birefringence. In order to determine the Verdet constant of an optical fiber under a linear birefringence, the fiber birefringence needs to be accurately measured. In this work, a model is applied to analyze the polarization properties of an optical fiber by using the Jones matrix method. A measurement system based on the lock-in amplifier technology is designed to test the Verdet constant and the birefringence of optical fiber. The magnetic field is produced by a solenoid with a DC current. A tunable laser is intensity modulated with a motorized rotating chopper. The actuator supplies a signal as the phase-locked synchronization reference to the signal of the lock-in amplifier. The measurement accuracy is analyzed and the sensitivity of the system is optimized. In this measurement system, the Verdet constant of the SMF-28 fiber was measured to be 0.56±0.02 rad/T·m at 1550nm. This setup is well suitable for measuring the high signal-to-noise ratio (SNR) sensitivity for lock-in amplifier at a low magnetic field strength.

  20. Testing the performance of freeform LED optics by gradient based measurement

    Science.gov (United States)

    Hilbig, David; Fleischmann, Friedrich; Henning, Thomas

    2016-08-01

    Light-emitting diodes (LED) increasingly replace conventional filaments in various illumination applications due to higher performance and efficiency. However, their common luminous intensity profiles do not match all requirements and need to be adapted using secondary beam shaping optics. Aside from reflectors, such optics are commonly realized by freeform optical components. More sophisticated tasks such as safety and security applications are covered by strict regulations and demand a well defined spatial distribution of the emitted light. Up to now, correct functionality is only verified at system level by determining the resulting radiation pattern with a photogoniometer after packaging the optic with the light source and the fixture. However, the correct functionality of the individual optical component is usually not verified and in a fail case, the actual error source cannot be identified. A new measurement method based on experimental ray tracing (ERT) is introduced that enables performance testing of beam shaping secondary optics at component level. Rays emerging from a virtual point source are traced through the device under test. The angle of the refracted ray is recorded as a function of the incident angle. In an additional step, the resulting radiation distribution is determined based on the energy conservation law. Measurement result of a freeform lens for marine application are presented as an example and compared to results from a photogoniometer.

  1. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    Science.gov (United States)

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352

  2. Intrinsic artefacts in optical oxygen sensors--how reliable are our measurements?

    Science.gov (United States)

    Lehner, Philipp; Staudinger, Christoph; Borisov, Sergey M; Regensburger, Johannes; Klimant, Ingo

    2015-03-01

    Optical oxygen sensing is of broad interest in many areas of research, such as medicine, food processing, and micro- and marine biology. The operation principle of optical oxygen sensors is well established and these sensors are routinely employed in lab and field experiments. Ultratrace oxygen sensors, which enable measurements in the sub-nanomolar region (dissolved oxygen), are becoming increasingly important. Such sensors prominently exhibit phenomena that complicate calibration and measurements. However, these phenomena are not constrained to ultratrace sensors; rather, these effects are inherent to the way optical oxygen sensors work and may influence any optical oxygen measurement when certain conditions are met. This scenario is especially true for applications that deal with high-excitation light intensities, such as microscopy and microfluidic applications. Herein, we present various effects that we could observe in our studies with ultratrace oxygen sensors and discuss the reasons for their appearance, the mechanism by which they influence measurements, and how to best reduce their impact. The phenomena discussed are oxygen photoconsumption in the sensor material; depletion of the dye ground state by high-excitation photon-flux values, which can compromise both intensity and ratiometric-based measurements; triplet-triplet annihilation; and singlet-oxygen accumulation, which affects measurements at very low oxygen concentrations.

  3. Optics measurement algorithms and error analysis for the proton energy frontier

    Directory of Open Access Journals (Sweden)

    A. Langner

    2015-03-01

    Full Text Available Optics measurement algorithms have been improved in preparation for the commissioning of the LHC at higher energy, i.e., with an increased damage potential. Due to machine protection considerations the higher energy sets tighter limits in the maximum excitation amplitude and the total beam charge, reducing the signal to noise ratio of optics measurements. Furthermore the precision in 2012 (4 TeV was insufficient to understand beam size measurements and determine interaction point (IP β-functions (β^{*}. A new, more sophisticated algorithm has been developed which takes into account both the statistical and systematic errors involved in this measurement. This makes it possible to combine more beam position monitor measurements for deriving the optical parameters and demonstrates to significantly improve the accuracy and precision. Measurements from the 2012 run have been reanalyzed which, due to the improved algorithms, result in a significantly higher precision of the derived optical parameters and decreased the average error bars by a factor of three to four. This allowed the calculation of β^{*} values and demonstrated to be fundamental in the understanding of emittance evolution during the energy ramp.

  4. Flow measurements in micro holes with electrochemical and optical methods

    Energy Technology Data Exchange (ETDEWEB)

    Zosel, J.; Guth, U.; Thies, A.; Reents, B

    2003-09-30

    The decreasing feature size of electronic compounds down to the micrometer range is paralleled by an increase in the aspect ratio, worsening all mass transport related processes. In this paper the conditions of liquid flow into micro holes and blind micro vias (BMV) with diameter of 100-300 {mu}m and depth between 100 {mu}m and 1.5 mm are investigated. The flow was induced by surface directed jet flows, visualised by microscopy aided particle image velocimetry ({mu}-PIV) and correlated with electrochemical mass transfer measurements using the ferro/ferri-hexacyanide redox couple. It was found that the mean flow velocity in the holes and the penetration depth in the blind holes are influenced especially by the roughness of the inner walls and, at a lower scale, by the velocity and the impinging angle of the jet. The results enable the estimation of the mean flow rate in through holes and the penetration depth in BMV at defined hydrodynamic conditions in the bath. This is one of the preconditions for the appropriate engineering of plating lines designed for micro structures.

  5. Measuring In-Plane Micro-Motion of Micro-Structure Using Optical Flow

    Institute of Scientific and Technical Information of China (English)

    JIN Cuiyun; JIN Shijiu; LI Dachao; WANG Jianlin

    2009-01-01

    Optical flow method is one of the most important methods of analyzing motion images.Optical flow field is used to analyze characteristics of motion objects.According to motion features of micro-electronic mechanical system(MEMS)micro-structure,the optical algorithm based on label field and neighborhood optimization is presented to analyze the in-plane micro-motion of micro-structure.Firstly,high speed motion states for each frequency segment of micro-structure in cyclic motion are frozen based on stroboscopic principle.Thus a series of image sequences,and can obtain reliable and precise optical field and reduce computing time.As micro-resonator of urement precision of the presented algorithm is high,and measurement repeatability reaches 40 am under the same experiment condition.

  6. Photon-correlation measurements of atomic-cloud temperature using an optical nanofiber

    CERN Document Server

    Grover, J A; Orozco, L A; Rolston, S L

    2015-01-01

    We develop a temperature measurement of an atomic cloud based on the temporal correlations of fluorescence photons evanescently coupled into an optical nanofiber. We measure the temporal width of the intensity-intensity correlation function due to atomic transit time and use it to determine the most probable atomic velocity, hence the temperature. This technique agrees well with standard time-of-flight temperature measurements. We confirm our results with trajectory simulations.

  7. Simultaneous Strain and Temperature Measurement with Optical Fiber Gratings: Error Analysis

    Institute of Scientific and Technical Information of China (English)

    JIA Hongzhi; LI Yulin

    2000-01-01

    Many schemes designed to simultaneously measure strain and temperature with optical fiber grating sensors have been reported in recent years. In this paper, the influence of systematic errors associated with the measurement process is analyzed and the error formulas are derived. The results are applied to a range of techniques that are of current interest in the literature. The performance of these schemes is contrasted with respect to the influence of wavelength measurement error and sensitivity matrix error.

  8. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers

    OpenAIRE

    Cai, Chen; Stewart, David J.; Reid, Jonathan P; Zhang, Yun Hong; Ohm, Peter; Dutcher, Cari S.; Clegg, Simon L.

    2015-01-01

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate re...

  9. Information measurement system based on the device for evaluation of optical surface quality

    Science.gov (United States)

    Izotov, Pavel Y.

    2016-03-01

    The work describes steps taken in order to create the information-measurement system based on the device for evaluation of surface cleanliness and smoothness of optical substrates. The approach used leads to the improvement the stability and accuracy of measurements. Structural changes applied to both the software and hardware of the device which allowed retrieval of better quality images during the course of measurements are designated. Problems emerged during the implementation of the system and their solutions are described.

  10. Comparing deflection measurements of a magnetically steerable catheter using optical imaging and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lillaney, Prasheel, E-mail: Prasheel.Lillaney@ucsf.edu; Caton, Curtis; Martin, Alastair J.; Losey, Aaron D.; Evans, Leland; Saeed, Maythem; Cooke, Daniel L.; Wilson, Mark W.; Hetts, Steven W. [Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143 (United States)

    2014-02-15

    Purpose: Magnetic resonance imaging (MRI) is an emerging modality for interventional radiology, giving clinicians another tool for minimally invasive image-guided interventional procedures. Difficulties associated with endovascular catheter navigation using MRI guidance led to the development of a magnetically steerable catheter. The focus of this study was to mechanically characterize deflections of two different prototypes of the magnetically steerable catheterin vitro to better understand their efficacy. Methods: A mathematical model for deflection of the magnetically steerable catheter is formulated based on the principle that at equilibrium the mechanical and magnetic torques are equal to each other. Furthermore, two different image based methods for empirically measuring the catheter deflection angle are presented. The first, referred to as the absolute tip method, measures the angle of the line that is tangential to the catheter tip. The second, referred to the base to tip method, is an approximation that is used when it is not possible to measure the angle of the tangent line. Optical images of the catheter deflection are analyzed using the absolute tip method to quantitatively validate the predicted deflections from the mathematical model. Optical images of the catheter deflection are also analyzed using the base to tip method to quantitatively determine the differences between the absolute tip and base to tip methods. Finally, the optical images are compared to MR images using the base to tip method to determine the accuracy of measuring the catheter deflection using MR. Results: The optical catheter deflection angles measured for both catheter prototypes using the absolute tip method fit very well to the mathematical model (R{sup 2} = 0.91 and 0.86 for each prototype, respectively). It was found that the angles measured using the base to tip method were consistently smaller than those measured using the absolute tip method. The deflection angles measured

  11. Evaluation of Correction Algorithm for the Reflectance Measured with Optical Glass

    Institute of Scientific and Technical Information of China (English)

    车江宁; 周志华; 陈东辉

    2003-01-01

    The proposed algorithm for reflectance measured with optical glass has been verified with materials of various forms. The refiectances measured with optical glass (raw), without glass (true) and corrected by the algorithm are compared. The results show that the corrected reflectance agrees very well with true one and their color differences fall below the acceptable limit, which indicates the validity of the correction algorithm. The algorithm could be used not only for fiber-forming materials, but also for powder- forming, granulate-forming, etc.

  12. Distributed Strain Measurement along a Concrete Beam via Stimulated Brillouin Scattering in Optical Fibers

    Directory of Open Access Journals (Sweden)

    Romeo Bernini

    2011-01-01

    Full Text Available The structural strain measurement of tension and compression in a 4 m long concrete beam was demonstrated with a distributed fiber-optic sensor portable system based on Brillouin scattering. Strain measurements provided by the fiber-optic sensor permitted to detect the formation of a crack in the beam resulting from the external applied load. The sensor system is valuable for structural monitoring applications, enabling the long-term performance and health of structures to be efficiently monitored.

  13. Quantum-limited measurements of optical signals from a geostationary satellite

    CERN Document Server

    Günthner, Kevin; Elser, Dominique; Stiller, Birgit; Bayraktar, Ömer; Müller, Christian R; Saucke, Karen; Tröndle, Daniel; Heine, Frank; Seel, Stefan; Greulich, Peter; Zech, Herwig; Gütlich, Björn; Richter, Ines; Lutzer, Michael; Philipp-May, Sabine; Meyer, Rolf; Marquardt, Christoph; Leuchs, Gerd

    2016-01-01

    The measurement of quantum signals that traveled through long distances is of fundamental and technical interest. We present quantum-limited coherent measurements of optical signals, sent from a satellite in geostationary Earth orbit to an optical ground station. We bound the excess noise that the quantum states could have acquired after having propagated 38600 km through Earth's gravitational potential as well as its turbulent atmosphere. Our results indicate that quantum communication is feasible in principle in such a scenario, highlighting the possibility of a global quantum key distribution network for secure communication.

  14. Magnetostriction measuring device based on an optical fiber sensor with an annular photodiode.

    Science.gov (United States)

    de Manuel, V; Del Real, R P; Alonso, J; Guerrero, H

    2007-09-01

    A new simple and sensitive dilatometer to measure magnetostriction of ribbons has been developed, based on an optical fiber sensor using an annular photodiode. The optical fiber is used bidirectionally, both for emission and detection of light, simplifying the access to the ribbon under test. The working principle is based on the measurement by reflection of the longitudinal displacement of the ribbon end. For a Vitroperm amorphous ribbon of 100 mm length, 21 microm thickness, and 8.3 mm width, a displacement of 2.571 microm with a maximum uncertainty of 8 nm has been obtained.

  15. Real time mass flow rate measurement using multiple fan beam optical tomography.

    Science.gov (United States)

    Abdul Rahim, R; Leong, L C; Chan, K S; Rahiman, M H; Pang, J F

    2008-01-01

    This paper presents the implementing multiple fan beam projection technique using optical fibre sensors for a tomography system. From the dynamic experiment of solid/gas flow using plastic beads in a gravity flow rig, the designed optical fibre sensors are reliable in measuring the mass flow rate below 40% of flow. Another important matter that has been discussed is the image processing rate or IPR. Generally, the applied image reconstruction algorithms, the construction of the sensor and also the designed software are considered to be reliable and suitable to perform real-time image reconstruction and mass flow rate measurements.

  16. A novel method for sub-micrometer transverse electron beam size measurements using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Aryshev, A; Boogert, S T; Karataev, P [John Adams Institute at Royal Holloway, Egham, Surrey, TW20 0EX (United Kingdom); Howell, D [John Adams Institute at Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Terunuma, N; Urakawa, J, E-mail: alar@post.kek.j [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-06-01

    Optical Transition Radiation (OTR) appearing when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in various facilities worldwide. The resolution of the monitor is defined by so-called Point Spread Function (PSF), source distribution generated by a single electron and projected by an optical system onto a screen. In this paper we represent the development of a novel sub-micrometre electron beam profile monitor based on the measurements of the PSF structure. The first experimental results are presented and future plans on the optimization of the monitor are discussed

  17. Beam Optics Measurements Through Turn by Turn Beam Position Data in the SLS

    CERN Document Server

    Zisopoulos, P; Streun, A; Ziemann, v

    2013-01-01

    Refined Fourier analysis of turn-by-turn (TBT) transverse position data measurements can be used for determining several beam properties of a ring, such as transverse tunes, optics functions, phases, chromatic properties and coupling. In particular, the Numerical Analysis of Fundamental Frequencies (NAFF) algorithm is used to analyse TBT data from the Swiss Light Source (SLS) storage ring in order to estimate on and off-momentum beam characteristics. Of particular interest is the potential of using the full position information within one turn in order to measure beam optics properties.

  18. Arbitrarily complete Bell-state measurement using only linear optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Grice, W. P. [Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Tennessee (United States)

    2011-10-15

    A complete Bell-state measurement is not possible using only linear-optic elements, and most schemes achieve a success rate of no more than 50%, distinguishing, for example, two of the four Bell states but returning degenerate results for the other two. It is shown here that the introduction of a pair of ancillary entangled photons improves the success rate to 75%. More generally, the addition of 2{sup N}-2 ancillary photons yields a linear-optic Bell-state measurement with a success rate of 1-1/2{sup N}.

  19. Effect of refractive correction on ocular optical quality measurement using double-pass system

    Institute of Scientific and Technical Information of China (English)

    WAN Xiu-hua; CAI Xiao-gu; QIAO Li-ya; ZHANG Ye; TAN Jia-xuan; Jhanji Vishal; WANG Ning-li

    2013-01-01

    Background Optical Quality Analysis System Ⅱ (OQAS,Visiometrics,Terrassa,Spain) that uses double-pass (DP) technique is the only commercially available device that allows objective measurement of ocular retinal image quality.This study aimed to evaluate the impact of spectacle lenses on the ocular optical quality parameters and the validity of the optometer within OQAS.Methods Seventy eyes of healthy volunteers were enrolled.Optical quality measurements were performed using OQAS with an artificial pupil diameter of 4.0 mm.Three consecutive measurements were obtained from spectacle correction corresponding to subjective refraction and from the OQAS built-in optometer separately.The modulation transfer function cutoff frequency,the Strehl ratio,the width of the point spread function (PSF) at 10% of its maximal height (PSF10),and the width of the PSF at 50% of its maximal height (PSF50) were analyzed.Results There was no significant difference in any of the parameters between the spectacle correction and the optometer correction (all P >0.05,paired t-test).A good agreement was found between both the methods and a good intraobserver repeatability in both the correction methods.Difference in best focus between two methods was the only parameter associated significantly with optical quality parameter differences.Best focus difference,built-in optometer correction with or without external cylindrical lens,and age were associated significantly with PSF10 difference.No linear correlation between refractive status and optical quality measurement difference was observed.A hyperopic bias (best focus difference of (0.50±0.44) D) and a relatively better optical quality using spectacle correction in high myopia group were found.Conclusions OQAS based on DP system is a clinically reliable instrument.In patients with high myopia,measurements using built-in optometer correction should be considered and interpreted with caution.

  20. Three-axis distributed fiber optic strain measurement in 3D woven composite structures

    Science.gov (United States)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-03-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading.

  1. Uncertainty in stratiform cloud optical thickness inferred from pyranometer measurements at the sea surface

    Directory of Open Access Journals (Sweden)

    Anna Rozwadowska

    2004-06-01

    Full Text Available The relative "plane-parallel" error in a mean cloud optical thickness retrieved from ground-based pyranometer measurements is estimated. The plane-parallel error is defined as the bias introduced by the assumption in the radiative transfer model used in cloud optical thickness retrievals that the atmosphere, including clouds, is horizontally homogeneous on the scale of an individual retrieval. The error is estimated for the optical thickness averaged over the whole domain, which simulates the mean cloud optical thickness obtained from a time series of irradiance measurements. The study is based on 3D Monte Carlo radiative transfer simulations for non-absorbing, all-liquid, layer clouds. Liquid water path distributions in the clouds are simulated by a bounded cascade fractal model. The sensitivity of the error is studied with respect to the following factors: averaging time of irradiance used in an individual retrieval, mean cloud optical thickness, cloud variability, cloud base height and solar zenith angle. In the simulations presented in this paper, the relative bias in the domain averaged cloud optical thickness retrieved from pyranometer measurements varies from +1% for optically thin clouds to nearly -20%. The highest absolute value of the relative bias is expected for thick and variable clouds with high bases (e.g. 1 km and retrievals based on long-term mean irradiances (averaging time of the order of several tens of minutes or hours. The bias can be diminished by using short-term irradiance averages, e.g. of one minute, and by limiting retrievals to low-level clouds.

  2. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    Science.gov (United States)

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  3. Precision measurement of the nuclear polarization in laser-cooled, optically pumped $^{37}\\mathrm{K}$

    CERN Document Server

    Fenker, Benjamin; Melconian, Dan; Anderson, Rhys M A; Anholm, Melissa; Ashery, Daniel; Behling, Richard S; Cohen, Iuliana; Craiciu, Ioana; Donohue, John M; Farfan, Christian; Friesen, Daniel; Gorelov, Alexandre; McNeil, James; Mehlman, Michael; Norton, Heather; Olchanski, Konstantin; Smale, Scott; Theriault, O; Vantyghem, Adrian N; Warner, Claire L

    2016-01-01

    We report a measurement of the nuclear polarization of laser-cooled, optically-pumped $^{37}\\mathrm{K}$ atoms which will allow us to precisely measure angular correlation parameters in the beta-decay of the same atoms. These results will be used to test the $V-A$ framework of the weak interaction at high precision. At the TRIUMF Neutral Atom Trap (TRINAT), a magneto-optical trap (MOT) confines and cools neutral $^{37}\\mathrm{K}$ atoms and optical pumping spin-polarizes them. We monitor the nuclear polarization of the same atoms that are decaying in situ by photoionizing a small fraction of the partially polarized atoms and then use the standard optical Bloch equations to model their population distribution. We obtain an average nuclear polarization of $P = 0.9913\\pm0.0008$, which is significantly more precise than previous measurements with this technique. Since our current measurement of the beta-asymmetry has $0.2\\%$ statistical uncertainty, the polarization measurement reported here will not limit its over...

  4. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods.

    Science.gov (United States)

    Fantini, Sergio; Sassaroli, Angelo; Tgavalekos, Kristen T; Kornbluth, Joshua

    2016-07-01

    Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation.

  5. Contact Electrification of Individual Dielectric Microparticles Measured by Optical Tweezers in Air.

    Science.gov (United States)

    Park, Haesung; LeBrun, Thomas W

    2016-12-21

    We measure charging of single dielectric microparticles after interaction with a glass substrate using optical tweezers to control the particle, measure its charge with a sensitivity of a few electrons, and precisely contact the particle with the substrate. Polystyrene (PS) microparticles adhered to the substrate can be selected based on size, shape, or optical properties and repeatedly loaded into the optical trap using a piezoelectric (PZT) transducer. Separation from the substrate leads to charge transfer through contact electrification. The charge on the trapped microparticles is measured from the response of the particle motion to a step excitation of a uniform electric field. The particle is then placed onto a target location of the substrate in a controlled manner. Thus, the triboelectric charging profile of the selected PS microparticle can be measured and controlled through repeated cycles of trap loading followed by charge measurement. Reversible optical trap loading and manipulation of the selected particle leads to new capabilities to study and control successive and small changes in surface interactions.

  6. Force spectroscopy with dual-trap optical tweezers: molecular stiffness measurements and coupled fluctuations analysis.

    Science.gov (United States)

    Ribezzi-Crivellari, M; Ritort, F

    2012-11-07

    Dual-trap optical tweezers are often used in high-resolution measurements in single-molecule biophysics. Such measurements can be hindered by the presence of extraneous noise sources, the most prominent of which is the coupling of fluctuations along different spatial directions, which may affect any optical tweezers setup. In this article, we analyze, both from the theoretical and the experimental points of view, the most common source for these couplings in dual-trap optical-tweezers setups: the misalignment of traps and tether. We give criteria to distinguish different kinds of misalignment, to estimate their quantitative relevance and to include them in the data analysis. The experimental data is obtained in a, to our knowledge, novel dual-trap optical-tweezers setup that directly measures forces. In the case in which misalignment is negligible, we provide a method to measure the stiffness of traps and tether based on variance analysis. This method can be seen as a calibration technique valid beyond the linear trap region. Our analysis is then employed to measure the persistence length of dsDNA tethers of three different lengths spanning two orders of magnitude. The effective persistence length of such tethers is shown to decrease with the contour length, in accordance with previous studies. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Optical tweezers with fluorescence detection for temperature-dependent microrheological measurements.

    Science.gov (United States)

    Shundo, Atsuomi; Hori, Koichiro; Penaloza, David P; Tanaka, Keiji

    2013-01-01

    We introduce a setup of optical tweezers, capable of carrying out temperature-dependent rheological measurements of soft materials. In our setup, the particle displacement is detected by imaging a bright spot due to fluorescence emitted from a dye-labeled particle against a dark background onto a quadrant photodiode. This setup has a relatively wide space around the sample that allows us to further accessorize the optical tweezers by a temperature control unit. The applicability of the setup was examined on the basis of the rheological measurements using a typical viscoelastic system, namely a worm-like micelle solution. The temperature and frequency dependences of the local viscoelastic functions of the worm-like micelle solution obtained by this setup were in good accordance with those obtained by a conventional oscillatory rheometer, confirming the capability of the optical tweezers as a tool for the local rheological measurements of soft materials. Since the optical tweezers measurements only require a tiny amount of sample (~40 μL), the rheological measurements using our setup should be useful for soft materials of which the available amount is limited.

  8. Optical Measurement of Mass Flow of a Two-Phase Fluid

    Science.gov (United States)

    Wiley, John; Pedersen, Kevin; Koman, Valentin; Gregory, Don

    2008-01-01

    An optoelectronic system utilizes wavelength-dependent scattering of light for measuring the density and mass flow of a two-phase fluid in a pipe. The apparatus was invented for original use in measuring the mass flow of a two-phase cryogenic fluid (e.g., liquid hydrogen containing bubbles of hydrogen gas), but underlying principles of operation can readily be adapted to non-cryogenic two-phase fluids. The system (see figure) includes a laser module, which contains two or more laser diodes, each operating at a different wavelength. The laser module also contains beam splitters that combine the beams at the various wavelengths so as to produce two output beams, each containing all of the wavelengths. One of the multiwavelength output beams is sent, via a multimode fiberoptic cable, to a transmitting optical coupler. The other multiwavelength output beam is sent, via another multimode fiber-optic cable, to a reference detector module, wherein fiber-optic splitters split the light into several multiwavelength beams, each going to a photodiode having a spectral response that is known and that differs from the spectral responses of the other photodiodes. The outputs of these photodiodes are digitized and fed to a processor, which executes an algorithm that utilizes the known spectral responses to convert the photodiode outputs to obtain reference laser-power levels for the various wavelengths. The transmitting optical coupler is mounted in (and sealed to) a hole in the pipe and is oriented at a slant with respect to the axis of the pipe. The transmitting optical coupler contains a collimating lens and a cylindrical lens that form the light emerging from the end of the fiber-optic cable into a fan-shaped beam in a meridional plane of the pipe. Receiving optical couplers similar to the transmitting optical couplers are mounted in the same meridional plane at various longitudinal positions on the opposite side of the pipe, approximately facing the transmitting optical

  9. Relative hardness measurement of soft objects by a new fiber optic sensor

    Science.gov (United States)

    Ahmadi, Roozbeh; Ashtaputre, Pranav; Abou Ziki, Jana; Dargahi, Javad; Packirisamy, Muthukumaran

    2010-06-01

    The measurement of relative hardness of soft objects enables replication of human finger tactile perception capabilities. This ability has many applications not only in automation and robotics industry but also in many other areas such as aerospace and robotic surgery where a robotic tool interacts with a soft contact object. One of the practical examples of interaction between a solid robotic instrument and a soft contact object occurs during robotically-assisted minimally invasive surgery. Measuring the relative hardness of bio-tissue, while contacting the robotic instrument, helps the surgeons to perform this type of surgery more reliably. In the present work, a new optical sensor is proposed to measure the relative hardness of contact objects. In order to measure the hardness of a contact object, like a human finger, it is required to apply a small force/deformation to the object by a tactile sensor. Then, the applied force and resulting deformation should be recorded at certain points to enable the relative hardness measurement. In this work, force/deformation data for a contact object is recorded at certain points by the proposed optical sensor. Recorded data is used to measure the relative hardness of soft objects. Based on the proposed design, an experimental setup was developed and experimental tests were performed to measure the relative hardness of elastomeric materials. Experimental results verify the ability of the proposed optical sensor to measure the relative hardness of elastomeric samples.

  10. Elevation angle alignment of quasi optical receiver mirrors of collective Thomson scattering diagnostic by sawtooth measurements

    DEFF Research Database (Denmark)

    Moseev, D.; Meo, Fernando; Korsholm, Søren Bang;

    2012-01-01

    Localized measurements of the fast ion velocity distribution function and the plasma composition measurements are of significant interest for the fusion community. Collective Thomson scattering (CTS) diagnostics allow such measurements with spatial and temporal resolution. Localized measurements...... require a good alignment of the optical path in the transmission line. Monitoring the alignment during the experiment greatly benefits the confidence in the CTS measurements. An in situ technique for the assessment of the elevation angle alignment of the receiver is developed. Using the CTS diagnostic...

  11. Phase modulation parallel optical delay detector for microwave angle-of-arrival measurement with accuracy monitored

    CERN Document Server

    Cao, Z; Lu, R; Boom, H P A van den; Tangdiongga, E; Koonen, A M J

    2014-01-01

    A novel phase modulation parallel optical delay detector is proposed for microwave angle-of-arrival (AOA) measurement with accuracy monitored by using only one dual-electrode Mach-Zenhder modulator. A theoretical model is built up to analyze the proposed system including measurement accuracy monitoring. The spatial delay measurement is translated into the phase shift between two replicas of a microwave signal. Thanks to the accuracy monitoring, the phase shifts from 5{\\deg} to 165{\\deg} are measured with less than 3.1{\\deg} measurement error.

  12. Correction of optical absorption and scattering variations in Laser Speckle Rheology measurements.

    Science.gov (United States)

    Hajjarian, Zeinab; Nadkarni, Seemantini K

    2014-03-24

    Laser Speckle Rheology (LSR) is an optical technique to evaluate the viscoelastic properties by analyzing the temporal fluctuations of backscattered speckle patterns. Variations of optical absorption and reduced scattering coefficients further modulate speckle fluctuations, posing a critical challenge for quantitative evaluation of viscoelasticity. We compare and contrast two different approaches applicable for correcting and isolating the collective influence of absorption and scattering, to accurately measure mechanical properties. Our results indicate that the numerical approach of Monte-Carlo ray tracing (MCRT) reliably compensates for any arbitrary optical variations. When scattering dominates absorption, yet absorption is non-negligible, diffusing wave spectroscopy (DWS) formalisms perform similar to MCRT, superseding other analytical compensation approaches such as Telegrapher equation. The computational convenience of DWS greatly simplifies the extraction of viscoelastic properties from LSR measurements in a number of chemical, industrial, and biomedical applications.

  13. Cryogenic Q-factor measurement of optical substrates for optimization of gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, S [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Nawrodt, R [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Zimmer, A [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Schnabel, R [Max-Planck-Institut fuer Gravitationsphysik, Universitaet Hannover, Callinstrasse 38, D-30167 Hannover (Germany); Vodel, W [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany)

    2006-05-15

    Future generations of gravitational wave interferometers are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of end mirrors and beam splitters that occurs in the optical substrates as well as in the dielectric coatings. A possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical quality factor Q, and maximizing the eigenfrequencies of the substrate. We present experimental details of a new cryogenic apparatus that is suitable for the measurement of the temperature-dependent Q-factor of reflective, transmissive as well as nano-structured grating optics down to 5 K. In particular, the SQUID-based and the optical interferometric approaches to the measurement of the amplitude of vibrating test bodies are compared and the method of ring-down recording is described.

  14. Parameters measurement of rigid gas permeable contact lens based on optical coherence tomography

    Science.gov (United States)

    Zhu, Dexi; Shen, Meixiao; Li, Yiyu

    2012-10-01

    Spectral domain optical coherence tomography (OCT) was developed in order to measure the geometric parameters of rigid gas permeable (RGP) contact lens. With custom designed OCT system, an ultra-high axial resolution of 3.3 μm in lens was achieved. The OCT image was corrected to eliminate the optical distortion and actual surfaces of lens were shown in contour map. Central thickness, lens diameter, base curve and front surface curvature at optical zone were calculated from the contour map. The results match well with the real values measured by conventional instruments. Our research indicates that OCT can be used to test the RGP lens in a simple and exact way.

  15. Measurements of indoor/outdoor atmospheric turbulence through optical triangulation method

    Science.gov (United States)

    de Oliveira, Gúbio; Silva, Vinicius N. H.; Barbero, Andrés P. L.; Ribeiro, Ricardo M.; Coelho, Thiago V. N.; Bessa dos Santos, A.

    2017-05-01

    Atmospheric turbulence degrades the performance of wireless optical communication links. This phenomenon distorts the light wave-front, and changes the spatial optical power distribution, spread and wander of the beam on the receiver plane. In this paper we present measurements of indoor and outdoor atmospheric turbulence taken using a simple and low-cost device based on an optical triangulation method. The device tracks a Gaussian beam due to the beam wander effect and measures the effective Gaussian width due to beam spread in order to calculate the refractive index structure constant in real time. Thus, the device operation principle, the outdoor/indoor turbulence profile during the day, the hotspot dispersion and the beam width variation are shown.

  16. Sub-Doppler temperature measurements of laser-cooled atoms using optical nanofibres

    Science.gov (United States)

    Russell, Laura; Deasy, Kieran; Daly, Mark J.; Morrissey, Michael J.; Chormaic, Síle Nic

    2012-01-01

    We present a method for measuring the average temperature of a cloud of cold 85Rb atoms in a magneto-optical trap using an optical nanofibre. A periodic spatial variation is applied to the magnetic fields generated by the trapping coils and this causes the trap centre to oscillate, which, in turn, causes the cloud of cold atoms to oscillate. The optical nanofibre is used to collect the fluorescence emitted by the cold atoms, and the frequency response between the motion of the centre of the oscillating trap and the cloud of atoms is determined. This allows us to make measurements of cloud temperature both above and below the Doppler limit, thereby paving the way for nanofibres to be integrated with ultracold atoms for hybrid quantum devices.

  17. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold rydberg atoms

    DEFF Research Database (Denmark)

    Parigi, V.; Bimbard, E.; Stanojevic, J.

    2012-01-01

    We observe and measure dispersive optical nonlinearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical nonlinearities are due to the progressive appearance of a Rydberg blockaded volume within ...

  18. Evaluation of a cheap ultrasonic stage for light source coherence function measurement, optical coherence tomography and dynamic focusing

    NARCIS (Netherlands)

    Krstajic, Nikola; Matcher, Stephen J.; Childs, David; Steenbergen, Wiendelt; Hogg, Richard; Smallwood, Rod

    2009-01-01

    We evaluate the performance of a cheap ultrasonic stage in setups related to optical coherence tomography. The stage was used in several configurations: (1) optical delay line in an optical coherence tomography (OCT) setup; (2) as a delay line measuring coherence function of a low coherence source (

  19. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone.

    Science.gov (United States)

    Fresvig, T; Ludvigsen, P; Steen, H; Reikerås, O

    2008-01-01

    Strain gauges are currently the default method for measuring deformation in bone. Strain gauges are not well suited for in vivo measurements because of their size and because they are difficult to use in bone. They are also unsuitable for repeated measurements over time since they cannot be left in the patient. The optical Bragg grating fibres behave like selective filters of light. As a result the structure will transmit most wavelengths of light, but will reflect certain specific wavelengths. If the Bragg grating is strained along the fibre axis, the wavelength will shift, and this change represents a measure of strain. The optical fibres are very thin, no thicker than a standard surgical suture and are easy to adhere to bone by use of the FDA approved polymethyl-methacrylate (PMMA) as bonding adhesive. Since they are made of biocompatible silica porous bioglass ceramics, it should also be possible to leave the fibres in the patient between and after measurements. We have shown that fibre optic Bragg grating sensors can be used as a measurement tool for bone strain by performing measurements both on an acryl tube and on an extracted sample of human femur diaphysis. On either of them we used four fibre optic sensors and four strain gauges, interspersed at every 45 degrees around the circumference. The standard deviation of the measurements on the acrylic tube for each of the sensors, both optical fibres and strain gauges, varied from 1.0 to 5.2%. Every sensor, both optical fibre and strain gauge, correlated significantly with all of the rest at the 0.01 level with a Pearson correlation coefficient r ranging from 0.986 to 1.0. The linearity for all of the sensors versus load was excellent, the lowest linearity of the eight sensors was 0.996 as expressed by r(2) (coefficient of determination), with no significant difference in linearity between optical fibres and strain gauges. Bone is not an ideal isotropic material, and we found that the strain readings of the

  20. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  1. Deformation Measurement of a Driven Pile Using Distributed Fibre-optic Sensing

    Science.gov (United States)

    Monsberger, Christoph; Woschitz, Helmut; Hayden, Martin

    2016-03-01

    New developments in distributed fibre-optic sensing allow the measurement of strain with a very high precision of about 1 µm / m and a spatial resolution of 10 millimetres or even better. Thus, novel applications in several scientific fields may be realised, e. g. in structural monitoring or soil and rock mechanics. Especially due to the embedding capability of fibre-optic sensors, fibre-optic systems provide a valuable extension to classical geodetic measurement methods, which are limited to the surface in most cases. In this paper, we report about the application of an optical backscatter reflectometer for deformation measurements along a driven pile. In general, pile systems are used in civil engineering as an efficient and economic foundation of buildings and other structures. Especially the length of the piles is crucial for the final loading capacity. For optimization purposes, the interaction between the driven pile and the subsurface material is investigated using pile testing methods. In a field trial, we used a distributed fibre-optic sensing system for measuring the strain below the surface of an excavation pit in order to derive completely new information. Prior to the field trial, the fibre-optic sensor was investigated in the laboratory. In addition to the results of these lab studies, we briefly describe the critical process of field installation and show the most significant results from the field trial, where the pile was artificially loaded up to 800 kN. As far as we know, this is the first time that the strain is monitored along a driven pile with such a high spatial resolution.

  2. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture

    Science.gov (United States)

    Nadkarni, Seemantini K.

    2013-12-01

    During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.

  3. Measurements of liposome biomechanical properties by combining line optical tweezers and dielectrophoresis.

    Science.gov (United States)

    Spyratou, Ellas; Cunaj, Efrosini; Tsigaridas, George; Mourelatou, Elena A; Demetzos, Costas; Serafetinides, Alexander A; Makropoulou, Mersini

    2014-12-09

    Abstract Liposomes are well-known cell simulators and are currently studied as drug delivery systems, for a targeted delivery of higher drug concentrations, in specific cells. Novel biophotonic techniques for manipulation and characterization of liposomes have been developed; among which are optical tweezers. In our work, we demonstrate a novel use of line optical tweezers to manipulate and cause liposome deformations. Optical forces induce tension on liposomes, which are stretched along the line optical trap. The method of dielectrophoresis, combined with optical tweezers, was used to measure the exerted optical forces. As a consequence, in the case of reversible liposome deformations, the value of the shear and bending moduli of liposomes was calculated. We anticipate that the selective manipulation of liposomes will help us toward a better understanding of the cellular-liposome interactions. Studying the biomechanical properties of liposomes will provide an insight into the mechanical behavior of individual living cells, which have recently been implicated in many aspects of human physiology and patho-physiology. The biomechanical properties of cells (i.e. deformability, stiffness and elasticity) can be useful biomarkers for various disease processes and changes of the cell state.

  4. Dynamic measurement of the optical properties of bovine enamel demineralization models using four-dimensional optical coherence tomography

    Science.gov (United States)

    Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.

    2017-07-01

    Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization

  5. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    Science.gov (United States)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  6. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- and right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.

  7. The amplitude and the phase or: Measuring directional and random motion with optical coherence tomography

    NARCIS (Netherlands)

    Weiss, N.M.

    2016-01-01

    Optical coherence tomography (OCT) uses a low coherence light source and a Michelson interferometer to measure path-length resolved backscatter profiles of samples with micrometer resolution and up to a few millimeters long. The OCT amplitude is typically used to generate images of the sample. Addit

  8. Design of a Sensor Based on Plastic Optical Fibre (POF) to Measure Fluid Flow and Turbidity.

    Science.gov (United States)

    Aiestaran, Pedro; Arrue, Jon; Zubia, Joseba

    2009-01-01

    Although many optical fibre applications are based on their capacity to transmit optical signals with low losses, it can also be desirable for the optical fibre to be strongly affected by a certain physical parameter in the environment. In this way, it can be used as a sensor for this parameter. There are many strong arguments for the use of POFs as sensors. In addition to being easy to handle and low cost, they demonstrate advantages common to all multimode optical fibres. These specifically include flexibility, small size, good electromagnetic compatibility behaviour, and in general, the possibility of measuring any phenomenon without physically interacting with it. In this paper, a sensor based on POF is designed and analysed with the aim of measuring the volume and turbidity of a low viscosity fluid, in this case water, as it passes through a pipe. A comparative study with a commercial sensor is provided to validate the proven flow measurement. Likewise, turbidity is measured using different colour dyes. Finally, this paper will present the most significant results and conclusions from all the tests which are carried out.

  9. Validation of an Endoscopic Fibre-Optic Pressure Sensor for Noninvasive Measurement of Variceal Pressure

    Directory of Open Access Journals (Sweden)

    Bin Sun

    2016-01-01

    Full Text Available In this study, the authors have developed endoscopic fibre-optic pressure sensor to detect variceal pressure and presented the validation of in vivo and in vitro studies, because the HVPG requires catheterization of hepatic veins, which is invasive and inconvenient. Compared with HVPG, it is better to measure directly the variceal pressure without puncturing the varices in a noninvasive way.

  10. Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography

    NARCIS (Netherlands)

    Weiss, N.; Van Leeuwen, T.G.; Kalkman, J.

    2013-01-01

    We report on localized measurement of the longitudinal and transverse flow velocities in a colloidal suspension using optical coherence tomography. We present a model for the path-length resolved autocorrelation function including diffusion and flow, which we experimentally verify. For flow that is

  11. Measurement of optically and thermally stimulated electron emission from natural minerals

    DEFF Research Database (Denmark)

    Ankjærgaard, C.; Murray, A.S.; Denby, P.M.

    2006-01-01

    Electron emission during thermal stimulation has been studied before in some detail, but there has been less work on the optically stimulated signal, especially in natural dosimeters. We report on measurements obtained using a windowless pancake Geiger-Nifiller electron detector attachment...

  12. Optical coherence elastography for measuring the deformation within glass fiber composite

    NARCIS (Netherlands)

    Liu, P.; Groves, R.M.; Benedictus, R.

    2014-01-01

    Optical coherence elastography (OCE) has been applied to the study of microscopic deformation in biological tissue under compressive stress for more than a decade. In this paper, OCE has been extended for the first time, to the best of our knowledge, to deformation measurement in a glass fiber

  13. An optical method for measuring the thickness of a falling condensate in gravity assisted heat pipe

    Directory of Open Access Journals (Sweden)

    Kasanický Martin

    2015-01-01

    Full Text Available A large number of variables is the main problem of designing systems which uses heat pipes, whether it is a traditional - gravity, or advanced - capillary, pulsating, advanced heat pipes. This article is a methodology for measuring the thickness of the falling condensate in gravitational heat pipes, with using the optical triangulation method, and the evaluation of risks associated with this method.

  14. An optical method for measuring the thickness of a falling condensate in gravity assisted heat pipe

    Science.gov (United States)

    Kasanický, Martin; Lenhard, Richard; Kaduchová, Katarína; Malcho, Milan

    2015-05-01

    A large number of variables is the main problem of designing systems which uses heat pipes, whether it is a traditional - gravity, or advanced - capillary, pulsating, advanced heat pipes. This article is a methodology for measuring the thickness of the falling condensate in gravitational heat pipes, with using the optical triangulation method, and the evaluation of risks associated with this method.

  15. Test Measurements on Thermal, Electrical and Optical Properties of the CMS/ECAL Prototype Setup

    CERN Document Server

    Badier, Jean; Karar, Akli; Vanel, Jean-Charles

    1997-01-01

    Beside the intrinsic characteristics of the CMS electromagnetic calorimeter like crystal quality and APD performance, also electromagnetic shielding, thermal and optical behaviour of the alveole and their supporting mechanics have a large impact on the overall calorimeter performance. The results of test measurements, which have been performed on these items, will be reported and discussed.

  16. Comparisons of LASE, aircraft, and satellite measurements of aerosol optical properties and water vapor during TARFOX

    NARCIS (Netherlands)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Kooi, S.; Clayton, M.; Hobbs, P.V.; Hartley, S.; Veefkind, J.P.; Russell, P.; Livingston, J.; Tanré, D.; Hignett, P.

    2000-01-01

    We examine aerosol extinction and optical thickness from the Lidar Atmospheric Sensing Experiment (LASE), the in situ nephelometer and absorption photometer on the University of Washington C-131A aircraft, and the NASA Ames Airborne Tracking Sun Photometer (AATS-6) on the C-131A measured during the

  17. Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2002-01-01

    In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...

  18. Optical sensor technology for simultaneous measurement of particle speed and concentration of micro sized particles

    DEFF Research Database (Denmark)

    Clausen, Casper; Han, Anpan; Kristensen, Martin

    2013-01-01

    Experimental characterization of a sensor technology that can measure particle speed and concentration simultaneously in liquids and gases is presented here. The basic sensor principle is based on an optical element that shapes a light beam into well-defined fringes. The technology can be described...... independently from particle speeds and is a key advantage compared to normal Laser Particle Counters....

  19. Laboratory feasibility study of a composite embedded fiber optic sensor for measurement of structural vibrations

    Science.gov (United States)

    Dube, C. M.; Wang, Tom D.; Melton, Robert G.; Jenson, David W.; Koharchik, Mike

    1988-02-01

    The feasibility is assessed of using fiber optic strain sensors embedded in a composite material to measure the magnitude and frequency of structural vibrations for control of flexible elements. This study demonstrates the ability to embed fiber optic strain sensors in a composite material, determines the performance of these sensors, identifies active control system architectures that are matched to the fiber optic system measurands to damp vibrations of large space structures, and estimates the stability achievable by these methods. A detailed laboratory study was performed using a wide band closed-loop-fiber Mach-Zehnder interferometer to conduct transverse vibration measurements on sub-scale composite elements with embedded fiber sensors. The interferometer detects vibrations by measuring the strain transferred by the composite to the embedded optical fiber. The strain sensor demonstrated the ability to track the vibrations of a cantilever beam over a frequency bandwidth ranging from approximately 5 Hz to almost 1000 Hz. The sensor was unable to detect dc strains because of thermal drift and laser power fluctuations. These factors produced a drift in the dc signal level, which was indistinguishable from static strain measurements. Beyond 1000 Hz, the composite element was unable to follow the drive mechanism. The noise equivalent strain was epsilon is approximately 10 to the minus 10th power.

  20. Optical transmission versus ac magnetization measurements for monitoring colloidal Ni nanorod rotational dynamics

    Science.gov (United States)

    Gratz, M.; Tschöpe, A.

    2017-01-01

    Ni nanorods with an average length transmission of nanorod colloidal dispersions in alternating magnetic fields were measured and analyzed with the objective of comparing the intrinsic Brownian relaxation times obtained with the two methods. The different physical origin of the measured signal, related to different moments of the orientation distribution function, and the non-linear effects expected for the large magnetic moments of the Ni nanorods at common field amplitudes required a comprehensive modelling. The time-dependent magnetization and optical transmission in ac magnetic fields was derived by numerical solution of the Fokker-Planck equation. The simulated time-dependent magnetization and optical transmission at a given frequency and field amplitude were analyzed analogous to experimental data to determine characteristic relaxation frequencies. Empirical relationships were derived which enabled extraction of the intrinsic Brownian relaxation time from the characteristic frequencies measured in the non-linear regime. Despite large differences in the characteristic frequencies obtained from magnetization and optical transmission measurements, the retrieved intrinsic Brownian relaxation times were found to agree well. The potential of ac magnetic field-dependent optical transmission for biosensing applications was demonstrated by monitoring the adsorption of the protein gelatine on the nanorod labels.