WorldWideScience

Sample records for optical light curve

  1. Optical Spectra and Light Curves of Supernovae

    CERN Document Server

    Filippenko, A V

    2003-01-01

    I review recent optical observations of supernovae (SNe) conducted by my group. The Lick Observatory Supernova Search with the 0.76-m Katzman Automatic Imaging Telescope is currently the world's most successful search for nearby SNe. We also use this telescope to obtain multicolor light curves of SNe. One of the more interesting SNe we discovered is SN 2000cx, which differs from all previously observed SNe Ia. Another very strange SN Ia that we studied is SN 2002cx, many of whose properties are opposite those of SN 2000cx. Extensive data on SNe II-P 1999em and 1999gi were used to derive distances with the expanding photosphere method. Results from spectropolarimetry suggest that the deeper we peer into the ejecta of core-collapse SNe, the greater the asphericity. We are using Hubble Space Telescope data to identify, or set limits on, the progenitors of core-collapse SNe.

  2. Studying wave optics in exoplanet microlensing light curves

    CERN Document Server

    Mehrabi, Ahmad

    2012-01-01

    We study the wave optics feature of the gravitational microlensing by a binary system composed of parent star and a planet. In the binary system, near the caustic lines multiple images play the role of secondary sources for the observer, in analogy to the double slit Young's experiment. In the case of having coherent wave fronts from the source on the lens plane, images can produce diffraction pattern on the observer plane. For the binary lensing system we have two modes of close and wide images around the planet and lens star and these images can produce two different types of fringes with the high and low frequencies on the observer plane. By taking into account the finite size of the source star, enhancements in the diffraction fringes get dimmer. For the observational prospects, we study this effect for the SKA project in the case of resonance and the high magnification exoplanet channels. This method can partially break degeneracies between the lens parameters.

  3. The host galaxy and optical light curve of the gamma-ray burst GRB 980703

    DEFF Research Database (Denmark)

    Holland, S.; Fynbo, J.P.U.; Hjorth, J.

    2001-01-01

    We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V-gal = 23.00 +/-0.10, (V - R)(gal) = 0.43 +/-0.13, and a centre that is ......We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V-gal = 23.00 +/-0.10, (V - R)(gal) = 0.43 +/-0.13, and a centre...... 980703 with any special features in the host. The host galaxy appears to be a typical example of a compact star forming galaxy similar to those found in the Hubble Deep Field North. The R-band light curve of the optical afterglow associated with this gamma-ray burst is consistent with a single power......-law decay having a slope of alpha = 1.37 +/-0.14. Due to the bright underlying host galaxy the late time properties of the light-curve are very poorly constrained. The decay of the optical light curve is consistent with a contribution from an underlying type Ic supernova like SN1998bw, or a dust echo...

  4. The host galaxy and optical light curve of the gamma-ray burst GRB 980703

    DEFF Research Database (Denmark)

    Holland, S.; Fynbo, J.P.U.; Hjorth, J.

    2001-01-01

    We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V-gal = 23.00 +/-0.10, (V - R)(gal) = 0.43 +/-0.13, and a centre that is ......We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V-gal = 23.00 +/-0.10, (V - R)(gal) = 0.43 +/-0.13, and a centre...... 980703 with any special features in the host. The host galaxy appears to be a typical example of a compact star forming galaxy similar to those found in the Hubble Deep Field North. The R-band light curve of the optical afterglow associated with this gamma-ray burst is consistent with a single power......-law decay having a slope of alpha = 1.37 +/-0.14. Due to the bright underlying host galaxy the late time properties of the light-curve are very poorly constrained. The decay of the optical light curve is consistent with a contribution from an underlying type Ic supernova like SN1998bw, or a dust echo...

  5. Uninterrupted optical light curves of main-belt asteroids from the K2 Mission

    CERN Document Server

    Szabó, R; Sárneczky, K; Szabó, Gy M; Molnár, L; Kiss, L L; Hanyecz, O; Plachy, E; Kiss, Cs

    2016-01-01

    Due to the failure of the second reaction wheel, a new mission was conceived for the otherwise healthy Kepler space telescope. In the course of the K2 Mission, the telescope is staring at the plane of the Ecliptic, hence thousands of Solar System bodies cross the K2 fields, usually causing extra noise in the highly accurate photometric data. In this paper we follow the someone's noise is another one's signal principle and investigate the possibility of deriving continuous asteroid light curves, that has been unprecedented to date. In general, we are interested in the photometric precision that the K2 Mission can deliver on moving Solar System bodies. In particular, we investigate space photometric optical light curves of main-belt asteroids. We study the K2 superstamps covering the M35 and Neptune/Nereid fields observed in the long cadence (29.4-min sampling) mode. Asteroid light curves are generated by applying elongated apertures. We use the Lomb-Scargle method to find periodicities due to rotation. We deri...

  6. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  7. ASAS-SN Optical Light Curve of Swift J0243.6+6124 Shows Long Term Variability

    Science.gov (United States)

    Stanek, K. Z.; Kochanek, C. S.; Thompson, T. A.; Shappee, B. J.; Holoien, T. W.-S.; Prieto, J. L.; Dong, Subo

    2017-10-01

    Swift J0243.6+6124 (GCN #21960) has been localized (ATel #10809) to likely coincide with B=13 star USNO-B1.0 1514-0083050. Given the statement in ATel #10809 of "no statistically strong evidence of optical variability," we used ASAS-SN Sky Patrol public all-sky light curve interface (Kochanek et al. 2017) to retrieve 1000+ days light curve at the position of USNO-B1.0 1514-0083050.

  8. Optical Transients Powered by Magnetars: Dynamics, Light Curves, and Transition to the Nebular Phase

    CERN Document Server

    Wang, L J; Dai, Z G; Xu, Dong; Han, Yan-Hui; Wu, X F; Wei, Jian-Yan

    2016-01-01

    Millisecond magnetars can be formed via several channels: core-collapse of massive stars, accretion-induced collapse of white dwarfs (WDs), double WD mergers, double neutron star (NS) mergers, and WD-NS mergers. Because the mass of ejecta from these channels could be quite different, their light curves are also expected to be diverse. We evaluate the dynamic evolution of optical transients powered by millisecond magnetars. We find that the magnetar with short spin-down timescale converts its rotational energy mostly into the kinetic energy of the transient, while the energy of a magnetar with long spin-down timescale goes into radiation of the transient. This leads us to speculate that hypernovae could be powered by magnetars with short spin-down timescales. At late times the optical transients will gradually evolve into a nebular phase because of the photospheric recession. We treat the photosphere and nebula separately because their radiation mechanisms are different. In some cases the ejecta could be light...

  9. A unique UV flare in the optical light curve of the quasar J004457.9+412344

    Directory of Open Access Journals (Sweden)

    Hatzidimitriou D.

    2012-12-01

    Full Text Available We found that the nova candidate J004457.9+412344 is a radio-quiet quasar at z ∼ 2. Its optical long-term light curve, covering more than half a century, shows quasar typical flux variations superimposed by a spectacular single flare lasting more than one year (observer frame. We could not find comparable light curves among the several thousand catalogued radio-quiet quasars in the stripe 82 of the Sloan Digital Sky Survey. The decreasing part of the flare light curve roughly follows a power law t−5/3. The quasar spectrum, the total energy of the flare, and the decline of the light curve are consistent with the tidal disruption of a ∼10 Mʘ giant star by a supermassive black hole of a few 108 Mʘ. We argue that the alternative explanation by gravitational microlensing is less likely, though it cannot be definitely excluded.

  10. Early-time polarized optical light curve of GRB 131030A

    CERN Document Server

    King, O G; Giannios, D; Papadakis, I; Angelakis, E; Balokovic, M; Fuhrmann, L; Hovatta, T; Khodade, P; Kiehlmann, S; Kylafis, N; Kus, A; Myserlis, I; Modi, D; Panopoulou, G; Papamastorakis, I; Pavlidou, V; Pazderska, B; Pazderski, E; Pearson, T J; Rajarshi, C; Ramaprakash, A N; Readhead, A C S; Reig, P; Tassis, K; Zensus, J A

    2014-01-01

    We report the polarized optical light curve of a gamma-ray burst afterglow obtained using the RoboPol instrument. Observations began 655 seconds after the initial burst of gamma-rays from GRB131030A, and continued uninterrupted for 2 hours. The afterglow displayed a low, constant fractional linear polarization of $p = (2.1 \\pm 1.6)\\,\\%$ throughout, which is similar to the interstellar polarization measured on nearby stars. The optical brightness decay is consistent with a forward-shock propagating in a medium of constant density, and the low polarization fraction indicates a disordered magnetic field in the shock front. This supports the idea that the magnetic field is amplified by plasma instabilities on the shock front. These plasma instabilities produce strong magnetic fields with random directions on scales much smaller than the total observable region of the shock, and the resulting randomly-oriented polarization vectors sum to produce a low net polarization over the total observable region of the shock.

  11. Optical Transients Powered by Magnetars: Dynamics, Light Curves, and Transition to the Nebular Phase

    Science.gov (United States)

    Wang, Ling-Jun; Wang, S. Q.; Dai, Z. G.; Xu, Dong; Han, Yan-Hui; Wu, X. F.; Wei, Jian-Yan

    2016-04-01

    Millisecond magnetars can be formed via several channels: core collapse of massive stars, accretion-induced collapse of white dwarfs (WDs), double WD mergers, double neutron star (NS) mergers, and WD-NS mergers. Because the mass of ejecta from these channels could be quite different, their light curves are also expected to be diverse. We evaluate the dynamic evolution of optical transients powered by millisecond magnetars. We find that the magnetar with a short spin-down timescale converts its rotational energy mostly into the kinetic energy of the transient, while the energy of a magnetar with a long spin-down timescale goes into radiation of the transient. This leads us to speculate that hypernovae could be powered by magnetars with short spin-down timescales. At late times the optical transients will gradually evolve into a nebular phase because of the photospheric recession. We treat the photosphere and nebula separately because their radiation mechanisms are different. In some cases the ejecta could be light enough that the magnetar can accelerate it to a relativistic speed. It is well known that the peak luminosity of a supernova (SN) occurs when the luminosity is equal to the instantaneous energy input rate, as shown by Arnett. We show that photospheric recession and relativistic motion can modify this law. The photospheric recession always leads to a delay of the peak time {t}{pk} relative to the time {t}× at which the SN luminosity equals the instantaneous energy input rate. Relativistic motion, however, may change this result significantly.

  12. Automated Blazar Light Curves Using Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Spencer James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-27

    This presentation describes a problem and methodology pertaining to automated blazar light curves. Namely, optical variability patterns for blazars require the construction of light curves and in order to generate the light curves, data must be filtered before processing to ensure quality.

  13. Optical light curves of RS Oph (2006) and hydrogen burning turnoff

    CERN Document Server

    Hachisu, Izumi; Kiyota, Seiichiro; Kubotera, Katsuaki; Maehara, Hiroyuki; Nakajima, Kazuhiro; Ishii, Yuko; Kamada, Mari; Mizoguchi, Sahori; Nishiyama, Shinji; Sumitomo, Naoko; Tanaka, Ken'ichi; Yamanaka, Masayuki; Sadakane, Kozo

    2008-01-01

    We report a coordinated multi-band photometry of the RS Oph 2006 outburst and highlight the emission line free y-band photometry that shows a mid-plateau phase at y ~ 10.2 mag from day 40 to day 75 after the discovery followed by a sharp drop of the final decline. Such mid-plateau phases are observed in other two recurrent novae, U Sco and CI Aql, and are interpreted as a bright disk irradiated by the white dwarf. We have calculated theoretical light curves based on the optically thick wind theory and have reproduced the early decline, mid-plateau phase, and final decline. The final decline is identified with the end of steady hydrogen shell-burning, which turned out at about day 80. This turnoff date is consistent with the end of a supersoft X-ray phase observed with Swift. Our model suggests a white dwarf mass of 1.35 \\pm 0.01 M_\\sun, which indicates that RS Oph is a progenitor of Type Ia supernovae. We strongly recommend the y-filter observation of novae to detect both the presence of a disk and the hydrog...

  14. LCC: Light Curves Classifier

    Science.gov (United States)

    Vo, Martin

    2017-08-01

    Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio). Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.

  15. Atypical Light Curves

    CERN Document Server

    Steenwyk, Steven D; Molnar, Lawrence A

    2013-01-01

    We have identified some two-hundred new variable stars in a systematic study of a data archive obtained with the Calvin-Rehoboth observatory. Of these, we present five close binaries showing behaviors presumably due to star spots or other magnetic activity. For context, we first present two new RS CVn systems whose behavior can be readily attribute to star spots. Then we present three new close binary systems that are rather atypical, with light curves that are changing over time in ways not easily understood in terms of star spot activity generally associated with magnetically active binary systems called RS CVn systems. Two of these three are contact binaries that exhibit gradual changes in average brightness without noticeable changes in light curve shape. A third system has shown such large changes in light curve morphology that we speculate this may be a rare instance of a system that transitions back and forth between contact and noncontact configurations, perhaps driven by magnetic cycles in at least o...

  16. ASAS-SN optical light-curve of blazar TXS 0506+056, located inside the IceCube-170922A error region, shows increased optical activity

    Science.gov (United States)

    Franckowiak, A.; Stanek, K. Z.; Kochanek, C. S.; Thompson, T. A.; Holoien, T. W.-S.; Shappee, B. J.; Prieto, J. L.; Dong, Subo

    2017-09-01

    Archival ASAS-SN (Shappee et al. 2014) data show an increased optical activity of the blazar TXS 0506+056, which is located inside the error region of the high-energy neutrino candidate IceCube-170922A, and was found to be in a flaring state by Fermi-LAT (ATel #10791), and it was also observed by Swift Using ASAS-SN Sky Patrol public all-sky light curve interface (Kochanek et al. 2017), we retrieved 200-day light curve of TXS 0506+056, showing a rise of 0.5 mag in V-band over the last 50 days.

  17. On the light curve and spectrum of SN 2003dh separated from the optical afterglow of GRB 030329

    CERN Document Server

    Deng, J; Mazzali, P A; Maeda, K; Nomoto, K

    2005-01-01

    The net optical light curves and spectra of the supernova SN 2003dh are obtained from the published spectra of GRB 030329, covering about 6 days before SN maximum to about 60 days after. The bulk of the U-band flux is subtracted from the observed spectra using early-time afterglow templates, because strong line blanketing greatly depresses the UV and U-band SN flux in a metal-rich, fast-moving SN atmosphere. The blue-end spectra of the GRB-connected "hypernova" SN 1998bw is used to determine the amount of subtraction. The substraction of a host galaxy template affects the late-time results. The derived SN 2003dh light curves are narrower than those of SN 1998bw, rising as fast before maximum, reaching a possibly fainter maximum and then declining ~ 1.2-1.4 times faster. The UVOIR bolometric SN light curve is built. Allowing for uncertainties, it can be reproduced with a spherical ejecta model of Mej ~ 7+/-3 Msun, KE ~ (3.5+/-1.5)E52 ergs, with KE/Mej ~ 5 following previous spectrum modelling, and M(Ni56) ~ (0...

  18. Statistical Analysis of the Parameters of Gamma-Ray Bursts with Known Redshifts and Peaked Optical Light Curves

    CERN Document Server

    Beskin, Gregory; Greco, Giuseppe; Karpov, Sergey

    2015-01-01

    We present the statistical analysis of the properties of gamma-ray bursts with measured host galaxy redshifts and peaked optical light curves in proper frames of reference. The optical transients are classified by comparing the time lag of the optical peak relative to the GRB trigger with the duration of the gamma-ray emission itself. The results of the correlation analysis of all possible pairs of energy, spectral, and temporal characteristics of both gamma-ray and optical emissions are given. We specify the pairs of the parameters with correlation coefficients greater than 50 % at significance levels better than 1 %. The following empirical relations, obtained for the first time, are specifically discussed: a correlation between the peak optical afterglow $R$ band luminosity and redshift $L_{R} \\propto (z+1)^{5.39 \\pm 0.74}$ and a correlation between the peak luminosity of the prompt optical emissions and the time of the peak $L_{R} \\propto T_{\\rm peak}^{-3.85 \\pm 1.22}$. We also analyze the similarity of t...

  19. The Lick AGN Monitoring Project: Photometric Light Curves and Optical Variability Characteristics

    CERN Document Server

    Walsh, Jonelle L; Bentz, Misty C; Barth, Aaron J; Baliber, Nairn; Li, Weidong; Stern, Daniel; Bennert, Vardha Nicola; Brown, Timothy M; Canalizo, Gabriela; Filippenko, Alexei V; Gates, Elinor L; Greene, Jenny E; Malkan, Matthew A; Sakata, Yu; Street, Rachel A; Treu, Tommaso; Woo, Jong-Hak; Yoshii, Yuzuru

    2009-01-01

    The Lick AGN Monitoring Project targeted 13 nearby Seyfert 1 galaxies with the intent of measuring the masses of their central black holes using reverberation mapping. The sample includes 12 galaxies selected to have black holes with masses roughly in the range 10^6-10^7 solar masses, as well as the well-studied AGN NGC 5548. In conjunction with a spectroscopic monitoring campaign, we obtained broad-band B and V images on most nights from 2008 February through 2008 May. The imaging observations were carried out by four telescopes: the 0.76-m Katzman Automatic Imaging Telescope (KAIT), the 2-m Multicolor Active Galactic Nuclei Monitoring (MAGNUM) telescope, the Palomar 60-in (1.5-m) telescope, and the 0.80-m Tenagra II telescope. Having well-sampled light curves over the course of a few months is useful for obtaining the broad-line reverberation lag and black hole mass, and also allows us to examine the characteristics of the continuum variability. In this paper, we discuss the observational methods and the ph...

  20. Kepler and K2 Light Curves of Active Galaxies: Optical Time Domain Windows into the Central Engine

    Science.gov (United States)

    Smith, Krista Lynne; Mushotzky, Richard; Boyd, Patricia T.; Howell, Steve B.; Gehrels, Neil; Gelino, Dawn M.

    2017-01-01

    We have used the Kepler spacecraft, the most precise photometer ever built, to measure aperiodic variability in active galactic nuclei. Kepler's high cadence and even sampling make it an exquisite instrument for astrophysics far beyond exoplanets, especially in the study of active galactic nuclei, which have long been known for their strong optical variability. Because of the very small size of accretion disks, this variability provides the only direct probe of their interior physics. In order to find AGN for study with the Kepler and K2 missions, we have conducted an X-ray survey of the Kepler and K2 fields of view with the Swift XRT, locating hundreds of new AGN that sample a wide parameter space in black hole mass and accretion rate. This survey also yielded an abundant sample of X-ray bright variable stellar targets. We then built a custom pipeline to handle Kepler light curves of extended objects (the AGN host galaxies) with stochastic variability. This was necessary, since the default Kepler pipeline was not optimized for such objects. Power spectral density (PSD) analysis of the AGN light curves exhibit characteristic timescales on the order of 2.5 days to 80 days, consistent with the physical timescales believed to be important in the disk. Optical spectral follow-up of the full sample enables comparison with physical parameters such as black hole mass, Eddington ratio and bolometric luminosity. The black hole mass relationship with characteristic timescale is consistent with an extrapolation of the relationship seen in stellar mass black holes, implying accretion similarities across many orders of magnitude. One object hosts a strong candidate for an optical quasi-periodic oscillation (QPO), the characteristic frequency of which correctly predicts the measured single-epoch black hole mass. The sample also contains bimodal flux distributions, which may indicate accretion states. Many of the high-frequency power spectral density (PSD) slopes are generally

  1. Early ($<$0.3 day) R-band light curve of the optical afterglow of GRB030329

    CERN Document Server

    Urata, Y; Nishiura, S; Tamagawa, T; Burenin, R A; Sekiguchi, T; Miyasaka, S; Yoshizumi, C; Suzuki, J; Mito, H; Nakada, Y; Aoki, T; Soyano, T; Tarusawa, K; Shiki, S; Makishima, K

    2004-01-01

    We observed the optical afterglow of the bright gamma-ray burst GRB030329 on the nights of 2003 March 29, using the Kiso observatory (the University of Tokyo) 1.05 m Schmidt telescope. Data were taken from March 29 13:21:26 UT to 17:43:16 (0.072 to 0.253 days after the burst), using an $Rc$-band filter. The obtained $Rc$-band light curve has been fitted successfully by a single power law function with decay index of $0.891\\pm0.004$. These results remain unchanged when incorporating two early photometric data points at 0.065 and 0.073 days, reported by Price et al.(2003) using the SSO 40 inch telescope, and further including RTT150 data (Burenin et al. 2003) covering at about 0.3 days. Over the period of 0.065-0.285 days after the burst, any deviation from the power-law decay is smaller than $\\pm$0.007 mag. The temporal structure reported by Uemura et al. (2003) does not show up in our $R$-band light curve.

  2. Lasers, lenses and light curves : adaptive optics microscopy and peculiar transiting exoplanets

    NARCIS (Netherlands)

    Werkhoven, Theodorus Isaak Mattheus van

    2014-01-01

    In the first part of this thesis, we present an adaptive optics implementation for multi-photon microscopy correcting sample-induced wavefront aberrations using either direct wavefront sensing to run a close-loop adaptive optics system (Chapter 3), or use a model-based sensorless approach to iterati

  3. Light extraction block with curved surface

    Science.gov (United States)

    Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.

    2016-03-22

    Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.

  4. Light on curved backgrounds

    Science.gov (United States)

    Batic, D.; Nelson, S.; Nowakowski, M.

    2015-05-01

    We consider the motion of light on different spacetime manifolds by calculating the deflection angle, lensing properties and by probing into the possibility of bound states. The metrics in which we examine the light motion include, among other items, a general relativistic dark matter metric, a dirty black hole, and a worm hole metric, the last two inspired by noncommutative geometry. The lensing in a holographic screen metric is discussed in detail. We study also the bending of light around naked singularities like, e.g., the Janis-Newman-Winicour metric and include other cases. A generic property of light behavior in these exotic metrics is pointed out. For the standard metric like the Schwarzschild and Schwarzschild-de Sitter cases, we improve the accuracy of the lensing results for the weak and strong regimes.

  5. Light on curved backgrounds

    CERN Document Server

    Batic, D; Nowakowski, M

    2014-01-01

    We consider the motion of light on different spacetime manifolds by calculating the deflection angle, lensing properties and by probing into the possibility of bound states. The metrics in which we examine the light motion include, among other, a general relativistic Dark Matter metric, a dirty Black Hole and a Worm Hole metric, the last two inspired by non-commutative geometry. The lensing in a Holographic Screen metric is discussed in detail. We study also the bending of light around naked singularities like, e.g., the Janis-Newman-Winicour metric and include other cases. A generic property of light behaviour in these exotic metrics is pointed out. For the standard metric like the Schwarzschild and Schwarzschild-de Sitter cases we improve the accuracy of the lensing results for the weak and strong regime.

  6. Optical light curve of GRB 121011A: a textbook for the onset of GRB afterglow in a mixture of ISM and wind-type medium

    CERN Document Server

    Xin, Li-Ping; Qiu, Yu-Lei; Deng, Jin-Song; Wang, Jing; Han, Xu-Hui

    2016-01-01

    We reported the optical observations of GRB 121011A by 0.8-m TNT telescope at Xinglong observatory, China. The light curve of optical afterglow shows a smooth and featureless bump during the epoch of $\\sim$130 sec and $\\sim$5000 sec with a rising index of $1.57\\pm0.28$ before the break time of $539\\pm44$ sec, and a decaying index of about $1.29\\pm0.07$ up to the end of our observations. Meanwhile, the X-ray light curve decays in a single power-law with a slop of about $1.51\\pm0.03$ observed by $XRT$ onboard ${\\rm} Swift$ from 100 sec to about 10000 sec after the burst trigger. The featureless optical light curve could be understood as an onset process under the external-shock model. The typical frequency has been below or near the optical one before the deceleration time, and the cooling frequency is located between the optical and X-ray wavelengths. The external medium density has a transition from a mixed stage of ISM and wind-type medium before the peak time to the ISM at the later phase. The joint-analysi...

  7. Infrared Light Curves of Type Ia Supernovae

    Science.gov (United States)

    Friedman, Andrew Samuel

    2012-05-01

    This thesis presents the CfAIR2 data set, which includes over 4000 near-Infrared (NIR) JHK8-band measurements of 104 Type Ia Supernovae (SN Ia) observed from 2005-2011 using PAIRITEL, the 1.3-m Peters Automated InfraRed Imaging TELescope at the Fred Lawrence Whipple Observatory (FLWO) on Mount Hopkins, Arizona. While the discovery of dark energy and most subsequent supernova cosmology has been performed using optical and Ultraviolet wavelength observations of SN Ia, a growing body of evidence suggests that NIR SN Ia observations will be crucial for future cosmological studies. Whereas SN Ia observed at optical wavelengths have been shown to be excellent standardizeable candles, using empirical correlations between luminosity, light curve shape, and color, the CfAIR2 data set strengthens the evidence that SN Ia at NIR wavelengths are essentially standard candles, even without correction for light-curve shape or for reddening. CfAIR2 was obtained as part of the CfA Supernova Program, an ongoing multi-wavelength follow-up effort at FLWO designed to observe high-quality, densely sampled light curves and spectra of hundreds of low-redshift SN Ia. CfAIR2 is the largest homogeneously observed and processed NIR data set of its kind to date, nearly tripling the number of individual JHK8-band observations and nearly doubling the set of SN Ia with published NIR light curves in the literature. Matched only by the recently published Carnegie Supernova Project sample, CfAIR2 complements the large and growing set of low-redshift optical and NIR SN Ia observations obtained by the CfA and other programs, making this data set a unique and particularly valuable local universe anchor for future supernova cosmology.

  8. GALEX and Optical Light Curves of WX LMi, SDSSJ103100.5+202832.2 and SDSSJ121209.31+013627.7

    CERN Document Server

    Linnell, Albert P; Plotkin, Richard M; Holtzman, Jon; Seibert, Mark; Harrison, Thomas E; Howell, Steve B

    2010-01-01

    {\\it GALEX} near ultraviolet (NUV) and far-ultraviolet (FUV) light curves of three extremely low accretion rate polars show distinct modulations in their UV light curves. While these three systems have a range of magnetic fields from 13 to 70 MG, and of late type secondaries (including a likely brown dwarf in SDSSJ121209.31+013627.7), the accretion rates are similar, and the UV observations imply some mechanism is operating to create enhanced emission zones on the white dwarf. The UV variations match in phase to the two magnetic poles viewed in the optical in WX LMi and to the single poles evident in the optical in SDSSJ1212109.31+013627.7 and SDSSJ103100.55+202832.2. Simple spot models of the UV light curves show that if hot spots are responsible for the UV variations, the temperatures are on the order of 10,000-14,000K. For the single pole systems, the size of the FUV spot must be smaller than the NUV and in all cases, the geometry is likely more complicated than a simple circular spot.

  9. High accuracy & long timescale light curves

    Directory of Open Access Journals (Sweden)

    Hodgkin S.

    2013-04-01

    Full Text Available We present a theoretical analysis of the optical light curves (LCs for short-period high-mass transiting extrasolar planet systems. Our method considers the primary transit, the secondary eclipse, and the overall phase shape of the LC between the occultations. Phase variations arise from (i reflected and thermally emitted light by the planet, (ii the ellipsoidal shape of the star due to the gravitational pull of the planet, and (iii the Doppler shift of the stellar light as the star orbits the center of mass of the system. Our full model of the out-of-eclipse variations contains information about the planetary mass, orbital eccentricity, the orientation of periastron and the planet's albedo. For a range of hypothetical systems we demonstrate that the ellipsoidal variations (ii. can be large enough to be distinguished from the remaining components and that this effect can be used to constrain the planet's mass. As an example we presend KOI-13b (candidate exoplanet system included in the September 2011 Kepler data release. The Kepler light curve shows both primary and secondary eclipses, as well as significant out-of-eclipse light curve variations. We model the relative contributions from (i thermal emission from the companion, (ii planetary reflected light, (iii doppler beaming, and (iv ellipsoidal variations in the host-star arising from the tidal distortion of the host star by its companion. Our analysis, based on the light curve alone, enables us to constrain the mass of the KOI-13.01 companion to be MC = 8.3 ± 1.25 MJ and thus demonstrates that the transiting companion is a planet. The teqnique is useful for current and future space missions such as Kepler and PLATO.

  10. Recombination Effects on Supernovae Light-Curves

    CERN Document Server

    Goldfriend, Tomer; Sari, Re'em

    2014-01-01

    Supernovae of type IIP are marked by the long plateau seen in their optical light curves. The plateau is believed to be the result of a recombination wave that propagates through the outflowing massive hydrogen envelope. Here, we analytically investigate the transition from a fully ionized envelope to a partially recombined one and its effects on the SN light curve. The motivation is to establish the underlying processes which dominate the evolution at late times when recombination takes place in the envelope, yet early enough so that $^{56}$Ni decay is a negligible source of energy. We assume a simple, yet adequate, hydrodynamic profile of the envelope and study the mechanisms which dominate the energy emission and the observed temperature. We consider the diffusion of photons through the envelope while analyzing the ionization fraction and the coupling between radiation and gas. We find that once recombination starts, the observed temperature decreases slowly in time. However, in a typical red supergiant (R...

  11. Optical conductivity of curved graphene.

    Science.gov (United States)

    Chaves, A J; Frederico, T; Oliveira, O; de Paula, W; Santos, M C

    2014-05-07

    We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far- and mid-infrared frequencies for periodicities ∼100 nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthermore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type.

  12. Detection of Possible Quasi-periodic Oscillations in the Long-term Optical Light Curve of the BL Lac Object OJ 287

    CERN Document Server

    Bhatta, G; Stawarz, Ł; Ostrowski, M; Winiarski, M; Ogłoza, W; Dróżdz, M; Siwak, M; Liakos, A; Kozieł-Wierzbowska, D; Gazeas, K; Debski, B; Kundera, T; Stachowski, G; Paliya, V S

    2016-01-01

    Detection of periodicity in the broad-band non-thermal emission of blazars has so far been proven to be elusive. However, there are a number of scenarios which could lead to quasi-periodic variations in blazar light curves. For example, orbital or thermal/viscous period of accreting matter around central supermassive black holes could, in principle, be imprinted in the multi-wavelength emission of small-scale blazar jets, carrying as such crucial information about plasma conditions within the jet launching regions. In this paper, we present the results of our time series analysis of $\\sim 9.2$ year-long, and exceptionally well-sampled optical light curve of the BL Lac OJ 287. The study primarily uses the data from our own observations performed at the Mt. Suhora and Krak\\'ow Observatories in Poland, and at the Athens Observatory in Greece. Additionally, SMARTS observations were used to fill in some of the gaps in the data. The Lomb-Scargle Periodogram and the Weighted Wavelet Z-transform methods were employed...

  13. Light Curve Analysis of Neon Novae

    CERN Document Server

    Hachisu, Izumi

    2015-01-01

    We analyzed light curves of five neon novae, QU Vul, V351 Pup, V382 Vel, V693 CrA, and V1974 Cyg, and determined their white dwarf (WD) masses and distance moduli on the basis of theoretical light curves composed of free-free and photospheric emission. For QU Vul, we obtained a distance of d~2.4 kpc, reddening of E(B-V)~0.55, and WD mass of M_WD=0.82-0.96 M_sun. This suggests that an oxygen-neon WD lost a mass of more than ~0.1 M_sun since its birth. For V351 Pup, we obtained d~5.5 kpc, E(B-V)~0.45, and M_WD=0.98-1.1 M_sun. For V382 Vel, we obtained d~1.6 kpc, E(B-V)~0.15, and M_WD=1.13-1.28 M_sun. For V693 CrA, we obtained d~7.1 kpc, E(B-V)~0.05, and M_WD=1.15-1.25 M_sun. For V1974 Cyg, we obtained d~1.8 kpc, E(B-V)~0.30, and M_WD=0.95-1.1 M_sun. For comparison, we added the carbon-oxygen nova V1668 Cyg to our analysis and obtained d~5.4 kpc, E(B-V)~0.30, and M_WD=0.98-1.1 M_sun. In QU Vul, photospheric emission contributes 0.4-0.8 mag at most to the optical light curve compared with free-free emission only....

  14. Generating artificial light curves: Revisited and updated

    CERN Document Server

    Emmanoulopoulos, D; Papadakis, I E

    2013-01-01

    The production of artificial light curves with known statistical and variability properties is of great importance in astrophysics. Consolidating the confidence levels during cross-correlation studies, understanding the artefacts induced by sampling irregularities, establishing detection limits for future observatories are just some of the applications of simulated data sets. Currently, the widely used methodology of amplitude and phase randomisation is able to produce artificial light curves which have a given underlying power spectral density (PSD) but which are strictly Gaussian distributed. This restriction is a significant limitation, since the majority of the light curves e.g. active galactic nuclei, X-ray binaries, gamma-ray bursts show strong deviations from Gaussianity exhibiting `burst-like' events in their light curves yielding long-tailed probability distribution functions (PDFs). In this study we propose a simple method which is able to precisely reproduce light curves which match both the PSD an...

  15. Inferring asymmetric limb cloudiness on exoplanets from transit light curves

    CERN Document Server

    von Paris, P; Bordé, P; Leconte, J; Selsis, F

    2016-01-01

    Clouds have been shown to be present in many exoplanetary atmospheres. Cloud formation modeling predicts considerable inhomogeneities of cloud cover, consistent with optical phase curve observations. However, optical phase curves cannot resolve some existing degeneracies between cloud location and cloud optical properties. We present a conceptually simple technique to detect inhomogeneous cloud cover on exoplanets. Such an inhomogeneous cloud cover produces an asymmetric primary transit of the planet in front of the host star. Asymmetric transits produce characteristic residuals compared to a standard symmetric model. Furthermore, bisector spans can be used to determine asymmetries in the transit light curve. We apply a model of asymmetric transits to the light curves of HAT-P-7b, Kepler-7b and HD209458b and search for possible cloud signatures. The nearly uninterrupted Kepler photometry is particularly well-suited for this method since it allows for a very high time resolution. We do not find any statistical...

  16. KAIT Fermi AGN Light-Curve Reservoir

    Data.gov (United States)

    National Aeronautics and Space Administration — This web page shows the light curves of a total of 163 AGNs that are monitored by KAIT with average cadence of 3 days. These are unfiltered observations; in...

  17. On the Light Curves of AM CVn

    CERN Document Server

    Smak, J

    2016-01-01

    Light curves of AM CVn are analyzed by decomposing them into their Fourier components. The amplitudes of the fundamental mode and overtones of the three components: the superhumps, the negative superhumps and the orbital variations, are found to be variable. This implies that variations in the shape of the observed light curve of AM CVn are not only due to the interference between those components, but also due to the variability of their parameters.

  18. Ultraviolet Light Curves of Supernovae with Swift Uvot

    CERN Document Server

    Brown, Peter J; Immler, Stefan; Milne, Peter; Roming, Peter W A; Gehrels, Neil; Nousek, John; Panagia, Nino; Still, Martin; Berk, Daniel Vanden

    2008-01-01

    We present ultravioliet (UV) observations of supernovae (SNe) obtained with the UltraViolet/Optical Telescope (UVOT) on board the Swift spacecraft. This is the largest sample of UV light curves from any single instrument and covers all major SN types and most subtypes. The UV light curves of SNe Ia are fairly homogenous while SNe Ib/c and IIP show more variety in their light curve shapes. The UV-optical colors clearly differentiate SNe Ia and IIP, particularly at early times. The color evolution of SNe IIP, however, makes their colors similar to SNe Ia at about 20 days after explosion. SNe Ib/c are shown to have varied UV-optical colors. The use of UV colors to help type SNe will be important for high redshift SNe discovered in optical observations. These data can be added to ground based optical and near infrared data to create bolometric light curves of individual objects and as checks on generic bolometric corrections used in the absence of UV data. This sample can also be compared with rest-frame UV obser...

  19. The 1.4 GHZ light curve of GRB 970508

    NARCIS (Netherlands)

    Galama, TJ; Wijers, RAMJ; Groot, PJ; Strom, RG; De Bruyn, AG; Kouveliotou, C; Robinson, CR; van Paradus, J

    1998-01-01

    We report on Westerbork 1.4 GHz radio observations of the radio counterpart to gamma-ray burst GRB 970508, between 0.80 and 138 days after this event. The 1.4 GHz light curve shows a transition from optically thick to thin emission between 39 and 54 days after the event. We derive the slope p of the

  20. Inferring asymmetric limb cloudiness on exoplanets from transit light curves

    Science.gov (United States)

    von Paris, P.; Gratier, P.; Bordé, P.; Leconte, J.; Selsis, F.

    2016-05-01

    Context. Clouds have been shown to be present in many exoplanetary atmospheres. Cloud formation modeling predicts considerable inhomogeneities of cloud cover, consistent with optical phase curve observations. However, optical phase curves cannot resolve some existing degeneracies between cloud location and cloud optical properties. Aims: We present a conceptually simple technique for detecting inhomogeneous cloud cover on exoplanets. Such an inhomogeneous cloud cover produces an asymmetric primary transit of the planet in front of the host star. Asymmetric transits produce characteristic residuals that are different from standard symmetric models. Furthermore, bisector spans can be used to determine asymmetries in the transit light curve. Methods: We apply a model of asymmetric transits to the light curves of HAT-P-7b, Kepler-7b, and HD 209458b and search for possible cloud signatures. The nearly uninterrupted Kepler photometry is particularly well suited for this method since it allows for a very high time resolution. Results: We do not find any statistically sound cloud signature in the data of the considered planets. For HAT-P-7b, a tentative detection of an asymmetric cloud cover is found, consistent with analysis of the optical phase curve. Based on Bayesian probability arguments, a symmetric model with an offset in the transit ephemeris is still the most viable model. This work demonstrates that for suitable targets, namely low-gravity planets around bright stars, the method can be used to constrain cloud cover characteristics and is thus a helpful additional tool for the study of exoplanetary atmospheres.

  1. More Unusual Light Curves from Kepler

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    Twenty-three new objects have been added to the growing collection of stars observed to have unusual dips in their light curves. A recent study examines these stars and the potential causes of their strange behavior.An Influx of DataThe primary Kepler mission provided light curves for over 100,000 stars, and its continuation K2 is observing another 20,000 stars every three months. As we enter an era where these enormous photometric data sets become commonplace Gaia will obtain photometry for millions of stars, and LSST billions its crucial that we understand the different categories of variability observed in these stars.The authors find three different types of light curves among their 23 unusual stars. Scallop-shell curves (top) show many undulations; persistent flux-dip class curves (middle) have discrete triangularly shaped flux dips; transient, narrow dip class curves (bottom) have only one dip that is variable in depth. The authors speculate a common cause for the scallop-shell and persistent flux-dip stars, and a different cause for the transient flux-dip stars. [Stauffer et al. 2017]After filtering out the stars with planets, those in binary systems, those with circumstellar disks, and those with starspots, a number of oddities remain: a menagerie of stars with periodic variability that cant be accounted for in these categories. Some of these stars are now famous (for instance, Boyajians star); some are lesser known. But by continuing to build up this sample of stars with unusual light curves, we have a better chance of understanding the sources of variability.Building the MenagerieTo this end, a team of scientists led by John Stauffer (Spitzer Science Center at Caltech) has recently hunted for more additions to this sample in the K2 data set. In particular, they searched through the light curves from stars in the Oph and Upper Scorpius star-forming region a data set that makes up the largest collection of high-quality light curves for low-mass, pre

  2. Modeling and Fitting Exoplanet Transit Light Curves

    Science.gov (United States)

    Millholland, Sarah; Ruch, G. T.

    2013-01-01

    We present a numerical model along with an original fitting routine for the analysis of transiting extra-solar planet light curves. Our light curve model is unique in several ways from other available transit models, such as the analytic eclipse formulae of Mandel & Agol (2002) and Giménez (2006), the modified Eclipsing Binary Orbit Program (EBOP) model implemented in Southworth’s JKTEBOP code (Popper & Etzel 1981; Southworth et al. 2004), or the transit model developed as a part of the EXOFAST fitting suite (Eastman et al. in prep.). Our model employs Keplerian orbital dynamics about the system’s center of mass to properly account for stellar wobble and orbital eccentricity, uses a unique analytic solution derived from Kepler’s Second Law to calculate the projected distance between the centers of the star and planet, and calculates the effect of limb darkening using a simple technique that is different from the commonly used eclipse formulae. We have also devised a unique Monte Carlo style optimization routine for fitting the light curve model to observed transits. We demonstrate that, while the effect of stellar wobble on transit light curves is generally small, it becomes significant as the planet to stellar mass ratio increases and the semi-major axes of the orbits decrease. We also illustrate the appreciable effects of orbital ellipticity on the light curve and the necessity of accounting for its impacts for accurate modeling. We show that our simple limb darkening calculations are as accurate as the analytic equations of Mandel & Agol (2002). Although our Monte Carlo fitting algorithm is not as mathematically rigorous as the Markov Chain Monte Carlo based algorithms most often used to determine exoplanetary system parameters, we show that it is straightforward and returns reliable results. Finally, we show that analyses performed with our model and optimization routine compare favorably with exoplanet characterizations published by groups such as the

  3. Light Curves of Rapidly Rotating Neutron Stars

    CERN Document Server

    Braje, T M; Rauch, K P; Braje, Timothy M.; Romani, Roger W.; Rauch, Kevin P.

    2000-01-01

    We consider the effect of rapid rotation on the light curves of neutron stars with hot polar caps. For $P \\approx 3$ms spin periods, the pulse fractions can be as much as an order of magnitude larger than with simple slowly-rotating (Schwarzschild) estimates. Doppler boosting, in particular, leads to characteristic distortion and ``soft lags'' in the pulse profiles, which are easily measurable in light curves with moderate energy resolution. With $\\sim 10^5$ photons it should also be possible to isolate the more subtle distortions of light travel time variations and frame dragging. Detailed analysis of high quality millisecond pulsar data from upcoming X-ray missions must include these effects.

  4. Type II supernovae Early Light Curves

    CERN Document Server

    Shussman, Tomer; Nakar, Ehud

    2016-01-01

    Observations of type II supernova early light, from breakout until recombination, can be used to constrain the explosion energy and progenitor properties. Currently available for this purpose are purely analytic models, which are accurate only to within an order of magnitude, and detailed numerical simulations, which are more accurate but are applied to any event separately. In this paper we derive an analytic model that is calibrated by numerical simulations. This model is much more accurate than previous analytic models, yet it is as simple to use. To derive the model we analyze simulated light curves from numerical explosion of $124$ red supergiant progenitors, calculated using the stellar evolution code MESA. We find that although the structure of the progenitors we consider varies, the resulting light curves can be described rather well based only on the explosion energy, ejecta mass and progenitor radius. Our calibrated analytic model, which is based on these three parameters, reproduces the bolometric ...

  5. Optics, light and lasers

    CERN Document Server

    Meschede, Dieter

    2008-01-01

    Starting from the concepts of classical optics, Optics, Light and Lasers introduces in detail the phenomena of linear and nonlinear light matter interaction, the properties of modern laser sources, and the concepts of quantum optics. Several examples taken from the scope of modern research are provided to emphasize the relevance of optics in current developments within science and technology. The text has been written for newcomers to the topic and benefits from the author's ability to explain difficult sequences and effects in a straightforward and easily comprehensible way. To this second, c

  6. Probing exoplanet clouds with optical phase curves.

    Science.gov (United States)

    Muñoz, Antonio García; Isaak, Kate G

    2015-11-01

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.

  7. PyTransit: Transit light curve modeling

    Science.gov (United States)

    Parviainen, Hannu

    2015-05-01

    PyTransit implements optimized versions of the Giménez and Mandel & Agol transit models for exoplanet transit light-curves. The two models are implemented natively in Fortran with OpenMP parallelization, and are accessed by an object-oriented python interface. PyTransit facilitates the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations. It offers efficient model evaluation for multicolour observations and transmission spectroscopy, built-in supersampling to account for extended exposure times, and routines to calculate the projected planet-to-star distance for circular and eccentric orbits, transit durations, and more.

  8. SS433 Trek 2: light curve analysis.

    Science.gov (United States)

    Fukue, J.; Obana, Y.; Okugami, M.

    The authors have calculated theoretical light curves of SS433 during eclipse and precession, using a model in which SS433 consists of a geometrically thick torus around a compact star and a companion star filling the Roche lobe. The favorite combination is that the mass ratio is about 2 (a compact star is a black hole) and the surface temperature of the companion is around 17000K.

  9. Atlas of Secular Light Curves of Comets

    Science.gov (United States)

    Ferrin, Ignacio

    2007-12-01

    We have completed work on the secular light curves of 30 periodic and non-periodic comets. The objectives and approach of this project has been explained in Ferrin (Icarus, 178, 493-516, 2005). Each comet requires 2 plots. The time plot shows the reduced (to Δ = 1 AU) magnitude of the comet as a function of time, thus displaying the brightness history of the object. The log plot is a reflected double log plot. The reflection takes place at R=1 AU, to allow the determination of the absolute magnitude by extrapolation. 22 photometric parameters are measured from the plots, most of them new. The plots have been collected in a document that constitutes "The Atlas". We have defined a photometric age, P-AGE, that attempts to measure the age of a comet based on its activity. P-AGE has been scaled to human ages to help in its interpretation. We find that comets Hale-Bopp and 29P/SW 1, are baby comets (P-AGE 100 cy). The secular light curve of 9P/Tempel 1 exhibits sublimation due to H2O and due to CO. Comet 67P/Churyumov-Gerasimento to be visited by the Rossetta spacecraft in 2014 exhibits a photometric anomaly. Comet 65P/Gunn exhibits a lag in maximum brightness of LAG = + 254 days after perihelion. We suggest that the pole is pointing to the sun at that time. The secular light curves will be presented and a preliminary interpretation will be advanced. The secular light curves present complexity beyond current understanding. The observations described in this work were carried out at the National Observatory of Venezuela (ONV), managed by the Center for Research in Astronomy (CIDA), for the Ministry of Science and Technology (MinCyT).

  10. Explosion models, light curves, spectra and H$_{0}$

    CERN Document Server

    Höflich, P; Wheeler, J C; Nomoto, K; Thielemann, F K

    1996-01-01

    From the spectra and light curves it is clear that SNIa are thermonuclear explosions of white dwarfs. However, details of the explosion are highly under debate. Here, we present detailed models which are consistent with respect to the explosion mechanism, the optical and infrared light curves (LC), and the spectral evolution. This leaves the description of the burning front and the structure of the white dwarf as the only free parameters. The explosions are calculated using one-dimensional Lagrangian codes including nuclear networks. Subsequently, optical and IR-LCs are constructed. Detailed NLTE-spectra are computed for several instants of time using the density, chemical and luminosity structure resulting from the LCs. The general methods and critical tests are presented (sect. 2). Different models for the thermonuclear explosion are discussed including detonations deflagrations, delayed detonations, pulsating delayed detonations (PDD) and helium detonations (sect.3). Comparisons between theoretical and obs...

  11. Quantitative Interpretation of Quasar Microlensing Light Curves

    CERN Document Server

    Kochanek, C S

    2004-01-01

    We develop a general method for analyzing the light curves of microlensed quasars and apply it to the OGLE light curves of the four-image lens Q2237+0305. We simultaneously estimate the effective source velocity, the average stellar mass, the stellar mass function, and the size and structure of the quasar accretion disk. The light curves imply an effective source plane velocity of 10200 km/s ) =0.037h^2 solar masses (0.0059h^2 /Msun < 0.20h^2). We were unable to distinguish a Salpeter mass function from one in which all stars had the same mass, but we do find a strong lower bound of 50% on the fraction of the surface mass density represented by the microlenses. Our models favor a standard thin accretion disk model as the source structure over a simple Gaussian source. For a face-on, thin disk radiating as a black body with temperature profile T_s ~ R^(-3/4), the radius r_s where the temperature matches the filter pass band (2000 Angstroms or T_s(r_s)=70000K) is (1.4 x 10^15)/h cm < r_s < (4.5 x 10^15...

  12. New NIR light-curve templates for classical Cepheids

    CERN Document Server

    Inno, L; Romaniello, M; Bono, G; Monson, A; Ferraro, I; Iannicola, G; Persson, E; Buonanno, R; Freedman, W; Gieren, W; Groenewegen, M A T; Ita, Y; Laney, C D; Lemasle, B; Madore, B F; Nagayama, T; Nakada, Y; Nonino, M; Pietrzynski, G; Primas, F; Scowcroft, V; Soszynski, I; Tanabe, T; Udalski, A

    2014-01-01

    We present new near-infrared (NIR) light-curve templates for fundamental (FU, JHK) and first overtone (FO, J) Cepheids. The new templates together with PL and PW relations provide Cepheid distances from single-epoch observations with a precision only limited by the intrinsic accuracy of the method adopted. The templates rely on a very large set of Galactic and Magellanic Clouds (MCs) Cepheids (FU,~600; FO,~200) with well sampled NIR (IRSF data) and optical (V,I; OGLE data) light curves. To properly trace the change in the shape of the light curve as a function of period, we split the sample of calibrating Cepheids into 10 different period bins. The templates for the first time cover FO Cepheids and the FU short-period Cepheids (P<5 days). Moreover, the zero-point phase is anchored to the phase of the mean magnitude along the rising branch. The new approach has several advantages in sampling the light curve of bump Cepheids when compared with the phase of maximum light. We also provide new estimates of the ...

  13. Probing exoplanet clouds with optical phase curves

    CERN Document Server

    Munoz, A Garcia

    2015-01-01

    Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve -- from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the...

  14. Light curves from rapidly rotating neutron stars

    CERN Document Server

    Numata, Kazutoshi

    2010-01-01

    We calculate light curves produced by a hot spot of a rapidly rotating neutron star, assuming that the spot is perturbed by a core $r$-mode, which is destabilized by emitting gravitational waves. To calculate light curves, we take account of relativistic effects such as the Doppler boost due to the rapid rotation and light bending assuming the Schwarzschild metric around the neutron star. We assume that the core $r$-modes penetrate to the surface fluid ocean to have sufficiently large amplitudes to disturb the spot. For a $l'=m$ core $r$-mode, the oscillation frequency $\\omega\\approx2m\\Omega/[l'(l'+1)]$ defined in the co-rotating frame of the star will be detected by a distant observer, where $l'$ and $m$ are respectively the spherical harmonic degree and the azimuthal wave number of the mode, and $\\Omega$ is the spin frequency of the star. In a linear theory of oscillation, using a parameter $A$ we parametrize the mode amplitudes such that ${\\rm max}\\left(|\\xi_\\theta|,|\\xi_\\phi|\\right)/R=A$ at the surface, w...

  15. Properties of analytic transit light curve models

    CERN Document Server

    Pál, András

    2008-01-01

    In this paper a set of analytic formulae are presented with which the partial derivatives of the flux obscuration function can be evaluated -- for planetary transits and eclipsing binaries -- under the assumption of quadratic limb darkening. The knowledge of these partial derivatives are crucial for many of the data modeling algorithms and estimates of the light curve variations directly from the changes in the orbital elements. These derivatives can also be utilized to speed up some of the fitting methods. A gain of 10 in computing time can be achieved in the implementation of the Levenberg-Marquardt algorithm, relative to using numerical derivatives.

  16. Reconstructing light curves from HXMT imaging observations

    CERN Document Server

    Huo, Zhuo-Xi; Li, Yi-Ming; Zhou, Jian-Feng

    2014-01-01

    The Hard X-ray Modulation Telescope (HXMT) is a Chinese space telescope mission. It is scheduled for launch in 2015. The telescope will perform an all-sky survey in hard X-ray band (1 - 250 keV), a series of deep imaging observations of small sky regions as well as pointed observations. In this work we present a conceptual method to reconstruct light curves from HXMT imaging observation directly, in order to monitor time-varying objects such as GRB, AXP and SGR in hard X-ray band with HXMT imaging observations.

  17. Template Reproduction of GRB Pulse Light Curves

    Science.gov (United States)

    Hakkila, Jon E.; Preece, R. D.; Loredo, T. J.; Wolpert, R. L.; Broadbent, M. E.

    2014-01-01

    A study of well-isolated pulses in gamma ray burst light curves indicates that simple models having smooth and monotonic pulse rises and decays are inadequate. Departures from the Norris et al. (2005) pulse shape are in the form of a wave-like pre-peak residual that is mirrored and stretched following the peak. Pulse shape departures are present in GRB pulses of all durations, but placement of the departures relative to pulse peaks correlates with asymmetry. This establishes an additional link between temporal structure and spectral evolution, as pulse asymmetry is related to initial hardness while pulse duration indicates the rate of hard-to-soft pulse evolution.

  18. Spectral optical monitoring of 3C390.3 in 1995-2007: I. Light curves and flux variation of the continuum and broad lines

    CERN Document Server

    Shapovalova, A I; Burenkov, A N; Chavushyan, V H; Kollatschny, D Ilic W; Bochkarev, A Kovacevic N G; Carrasco, L; León-Tavares, J; Mercado, A; Valdes, J R; Vlasuyk, V V; de la Fuente, E

    2010-01-01

    Here we present the results of the long-term (1995-2007) spectral monitoring of the broad line radio galaxy \\object{3C~390.3}, a well known AGN with the double peaked broad emission lines, usually assumed to be emitted from an accretion disk. To explore dimensions and structure of the BLR, we analyze the light curves of the broad H$\\alpha$ and H$\\beta$ line fluxes and the continuum flux. In order to find changes in the BLR, we analyze the H$\\alpha$ and H$\\beta$ line profiles, as well as the change in the line profiles during the monitoring period. First we try to find a periodicity in the continuum and H$\\beta$ light curves, finding that there is a good chance for quasi-periodical oscillations. Using the line shapes and their characteristics (as e.g. peaks separation and their intensity ratio, or FWHM) of broad H$\\beta$ and H$\\alpha$ lines, we discuss the structure of the BLR. Also, we cross-correlate the continuum flux with H$\\beta$ and H$\\alpha$ lines to find dimensions of the BLR. We found that during the ...

  19. HYDRODYNAMICAL MODELS OF TYPE II-P SUPERNOVA LIGHT CURVES

    Directory of Open Access Journals (Sweden)

    M. C. Bersten

    2009-01-01

    Full Text Available We present progress in light curve models of type II-P supernovae (SNe II-P obtained using a newly devel- oped, one-dimensional hydrodynamic code. Using simple initial models (polytropes, we reproduced the global behavior of the observed light curves and we analyzed the sensitivity of the light curves to the variation of free parameters.

  20. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  1. UBVRIz Light Curves of 51 Type II Supernovae

    CERN Document Server

    Galbany, Lluís; Phillips, Mark M; Suntzeff, Nicholas B; Maza, José; de Jaeger, Thomas; Moraga, Tania; González-Gaitán, Santiago; Krisciunas, Kevin; Morrell, Nidia I; Thomas-Osip, Joanna; Krzeminski, Wojtek; González, Luis; Antezana, Roberto; Wischnjewski, Marina; McCarthy, Patrick; Anderson, Joseph P; Gutiérrez, Claudia P; Stritzinger, Maximilian; Folatelli, Gastón; Anguita, Claudio; Galaz, Gaspar; Green, Elisabeth M; Impey, Chris; Kim, Yong-Cheol; Kirhakos, Sofia; Malkan, Mathew A; Mulchaey, John S; Phillips, Andrew C; Pizzella, Alessandro; Prosser, Charles F; Schmidt, Brian P; Schommer, Robert A; Sherry, William; Strolger, Louis-Gregory; Wells, Lisa A; Williger, Gerard M

    2015-01-01

    We present a compilation of UBV RIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986 to 2003: the Cerro Tololo Supernova Survey, the Calan/Tololo Supernova Program (C&T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being thus shorter (longer) for larger (smaller) s values.

  2. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis; Hamuy, Mario; Jaeger, Thomas de; Moraga, Tania; González-Gaitán, Santiago; Gutiérrez, Claudia P. [Millennium Institute of Astrophysics, Universidad de Chile (Chile); Phillips, Mark M.; Morrell, Nidia I.; Thomas-Osip, Joanna [Carnegie Observatories, Las Campanas Observatory, Casilla 60, La Serena (Chile); Suntzeff, Nicholas B. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Maza, José; González, Luis; Antezana, Roberto; Wishnjewski, Marina [Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Krisciunas, Kevin [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Krzeminski, Wojtek [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); McCarthy, Patrick [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Anderson, Joseph P. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago (Chile); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University (Denmark); Folatelli, Gastón, E-mail: lgalbany@das.uchile.cl [Instituto de Astrofísica de La Plata (IALP, CONICET) (Argentina); and others

    2016-02-15

    We present a compilation of UBVRIz light curves of 51 type II supernovae discovered during the course of four different surveys during 1986–2003: the Cerro Tololo Supernova Survey, the Calán/Tololo Supernova Program (C and T), the Supernova Optical and Infrared Survey (SOIRS), and the Carnegie Type II Supernova Survey (CATS). The photometry is based on template-subtracted images to eliminate any potential host galaxy light contamination, and calibrated from foreground stars. This work presents these photometric data, studies the color evolution using different bands, and explores the relation between the magnitude at maximum brightness and the brightness decline parameter (s) from maximum light through the end of the recombination phase. This parameter is found to be shallower for redder bands and appears to have the best correlation in the B band. In addition, it also correlates with the plateau duration, being shorter (longer) for larger (smaller) s values.

  3. Quasi-BLOCH oscillations in curved coupled optical waveguides.

    Science.gov (United States)

    Joushaghani, Arash; Iyer, Rajiv; Poon, Joyce K S; Aitchison, J Stewart; de Sterke, C Martijn; Wan, Jun; Dignam, Marc M

    2009-10-01

    We report the observation of quasi-Bloch oscillations, a recently proposed, new type of dynamic localization in the spatial evolution of light in a curved coupled optical waveguide array. By spatially resolving the optical intensity at various propagation distances, we show the delocalization and final relocalization of the beam in the waveguide array. Through comparisons with other structures, we show that this dynamic localization is robust beyond the nearest-neighbor tight-binding approximation and exhibits a wavelength dependence different from conventional dynamic localization.

  4. Dust in Intermediate Polars: Light Curves from the Spitzer Space Telescope

    Science.gov (United States)

    Belle, Kunegunda E.; Hoard, D. W.; Howell, S. B.

    2010-12-01

    Here we present Spitzer 4.5 μm light curves of two intermediate polars (IPs)-DQ Her and EX Hya-obtained with Cycle 6 observations. Our initial evaluation of the light curves of DQ Her and EX Hya shows that these two IPs exhibit similar behavior as that seen in non-magnetic systems (specifically WZ Sge). The binary eclipses seen in the Spitzer light curves of DQ Her and EX Hya are about three times longer than their optical counterparts, indicating that a reservoir of dust extends beyond the outer edge of the optically visible accretion disk.

  5. Optical bistability controlling light with light

    CERN Document Server

    Gibbs, Hyatt

    1985-01-01

    Optical Bistability: Controlling Light with Light focuses on optical bistability in nonlinear optical systems. Emphasis is on passive (non-laser) systems that exhibit reversible bistability with input intensity as the hysteresis variable, along with the physics and the potential applications of such systems for nonlinear optical signal processing. This book consists of seven chapters and begins with a historical overview of optical bistability in lasers and passive systems. The next chapter describes steady-state theories of optical bistability, including the Bonifacio-Lugiato model, as we

  6. Optical Light Curve of the Type Ia Supernova 1998bu in M96 and the Supernova Calibration of the Hubble Constant

    CERN Document Server

    Suntzeff, N B; Covarrubias, R; Navarrete, M; Pérez, J J; Guerra, A I; Acevedo, M T; Doyle, L R; Harrison, T; Kane, S; Long, K S; Maza, J; Miller, S; Piatti, A E; Claria, J J; Ahumada, A V; Pritzl, B J; Winkler, P F; Suntzeff, Nicholas B.; Doyle, Laurance R.; Harrison, Thomas; Kane, Stephen; Long, Knox S.; Maza, Jose; Miller, Scott; Piatti, Andres E.; Claria, Juan J.; Ahumada, Andrea V.; Pritzl, Barton

    1998-01-01

    We present the UBVRI light curves of the Type Ia supernova SN 1998bu which appeared in the nearby galaxy M96 (NGC 3368). M96 is a spiral galaxy in the Leo I group which has a Cepheid-based distance. Our photometry allows us to calculate the absolute magnitude and reddening of this supernova. These data, when combined with measurements of the four other well-observed supernovae with Cepheid based distances, allow us to calculate the Hubble constant with respect to the Hubble flow defined by the distant Calan/Tololo Type Ia sample. We find a Hubble constant of 64.0 +/- 2.2(internal) +/- 3.5(external) km/s/Mpc, consistent with most previous estimates based on Type Ia supernovae. We note that the two well-observed Type Ia supernovae in Fornax, if placed at the Cepheid distance to the possible Fornax spiral NGC 1365, are apparently too faint with respect to the Calan/Tololo sample calibrated with the five Type Ia supernovae with Cepheid distances to the host galaxies.

  7. CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability

    Energy Technology Data Exchange (ETDEWEB)

    Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.; Carey, Sean [Spitzer Science Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Baglin, Annie [LESIA, Observatoire de Paris-Meudon, 5 place Jules Janssen, F-92195 Meudon (France); Micela, Giuseppina; Flaccomio, Ettore [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Morales-Calderón, María [Centro de Astrobiología, Dpto. de Astrofísica, INTA-CSIC, P.O. Box 78, ESAC Campus, E-28691 Villanueva de la Cañada, Madrid (Spain); Aigrain, Suzanne [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Oxford OX1 3RH (United Kingdom); Bouvier, Jèrôme [UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, F-38041 Grenoble (France); Hillenbrand, Lynne A.; Carpenter, John; Findeisen, Krzysztof [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Gutermuth, Robert [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Song, Inseok [Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602-2451 (United States); Turner, Neal [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Alencar, Silvia H. P. [Departamento de Física - ICEx - UFMG, Av. Antônio Carlos 6627, 30270-901 Belo Horizonte, MG (Brazil); Zwintz, Konstanze [Instituut voor Sterrenkunde, K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Plavchan, Peter [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Terebey, Susan, E-mail: amc@ipac.caltech.edu [Department of Physics and Astronomy, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); and others

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.

  8. Pluto's Light Curve in 1933-1934

    CERN Document Server

    Schaefer, Bradley E; Smith, Luke Timothy

    2008-01-01

    We are reporting on a new accurate photographic light curve of Pluto for 1933-1934 when the heliocentric distance was 40 AU. We used 43 B-band and V-band images of Pluto on 32 plates taken on 15 nights from 19 March 1933 to 10 March 1934. Most of these plates were taken with the Mount Wilson 60" and 100" telescopes, but 7 of the plates (now at the Harvard College Observatory) were taken with the 12" and 16" Metcalf doublets at Oak Ridge. The plates were measured with an iris diaphragm photometer, which has an average one-sigma photometric error on these plates of 0.08 mag as measured by the repeatability of constant comparison stars. The modern B and V magnitudes for the comparison stars were measured with the Lowell Observatory Hall 1.1-m telescope. The magnitudes in the plate's photographic system were converted to the Johnson B- and V-system after correction with color terms, even though they are small in size. We find that the average B-band mean opposition magnitude of Pluto in 1933-1934 was 15.73 +- 0.0...

  9. CBS - A program for close binary system light curve analysis

    Science.gov (United States)

    Solmi, L.; Galli, M.

    CBS is a new program for binary system light curve analysis, it generates synthetic light curves for a binary system, accounting for eclipses, tidal distortion, limb darkening, gravity darkening and reflection; it is also possible to compute the light contribution and eclipses of an accretion disk. The bolometric light curve is generated, as well as curves for the U,B,V,R,I colour bands. In the following we give a brief description of the first version of the program and show some preliminary results.

  10. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Rebull, Luisa; Carey, Sean [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Kepler Science Office, Mountain View, CA 94035 (United States); Hillenbrand, Lynne A.; Carpenter, John [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Terebey, Susan [Department of Physics and Astronomy, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Morales-Calderón, Maria [Centro de Astrobiología, Dpto. de Astrofísica, INTA-CSIC, P.O. BOX 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); Alencar, Silvia H. P.; McGinnis, Pauline; Sousa, Alana [Departamento de Física—ICEx—UFMG, Av. Antônio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil); Bouvier, Jerome; Venuti, Laura [Université de Grenoble, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), F-38000 Grenoble (France); Hartmann, Lee; Calvet, Nuria [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI:48105 (United States); Micela, Giusi; Flaccomio, Ettore [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134, Palermo (Italy); Song, Inseok [Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602-2451 (United States); Gutermuth, Rob, E-mail: stauffer@ipac.caltech.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2016-03-15

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strength of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.

  11. Fast Light Optical Gyroscopes

    Science.gov (United States)

    Smith, David D.

    2015-01-01

    Next-generation space missions are currently constrained by existing spacecraft navigation systems which are not fully autonomous. These systems suffer from accumulated dead-reckoning errors and must therefore rely on periodic corrections provided by supplementary technologies that depend on line-of-sight signals from Earth, satellites, or other celestial bodies for absolute attitude and position determination, which can be spoofed, incorrectly identified, occluded, obscured, attenuated, or insufficiently available. These dead-reckoning errors originate in the ring laser gyros themselves, which constitute inertial measurement units. Increasing the time for standalone spacecraft navigation therefore requires fundamental improvements in gyroscope technologies. One promising solution to enhance gyro sensitivity is to place an anomalous dispersion or fast light material inside the gyro cavity. The fast light essentially provides a positive feedback to the gyro response, resulting in a larger measured beat frequency for a given rotation rate as shown in figure 1. Game Changing Development has been investing in this idea through the Fast Light Optical Gyros (FLOG) project, a collaborative effort which began in FY 2013 between NASA Marshall Space Flight Center (MSFC), the U.S. Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC), and Northwestern University. MSFC and AMRDEC are working on the development of a passive FLOG (PFLOG), while Northwestern is developing an active FLOG (AFLOG). The project has demonstrated new benchmarks in the state of the art for scale factor sensitivity enhancement. Recent results show cavity scale factor enhancements of approx.100 for passive cavities.

  12. Do the Kepler AGN Light Curves Need Re-processing?

    CERN Document Server

    Kasliwal, Vishal P; Richards, Gordon T; Williams, Joshua; Carini, Michael T

    2015-01-01

    We gauge the impact of spacecraft-induced effects on the inferred variability properties of the light curve of the Seyfert 1 AGN Zw 229-15 observed by \\Kepler. We compare the light curve of Zw 229-15 obtained from the Kepler MAST database with a re-processed light curve constructed from raw pixel data (Williams & Carini, 2015). We use the first-order structure function, $SF(\\delta t)$, to fit both light curves to the damped power-law PSD of Kasliwal, Vogeley & Richards, 2015. On short timescales, we find a steeper log-PSD slope ($\\gamma = 2.90$ to within $10$ percent) for the re-processed light curve as compared to the light curve found on MAST ($\\gamma = 2.65$ to within $10$ percent)---both inconsistent with a damped random walk which requires $\\gamma = 2$. The log-PSD slope inferred for the re-processed light curve is consistent with previous results (Carini & Ryle, 2012, Williams & Carini, 2015) that study the same re-processed light curve. The turnover timescale is almost identical for bot...

  13. Chaotic Feature in the Light Curve of 3C 273

    Institute of Scientific and Technical Information of China (English)

    Lei Liu

    2006-01-01

    Some nonlinear dynamical techniques, including state-space reconstruction and correlation integral, are used to analyze the light curve of 3C 273. The result is compared with a chaotic model. The similarities between them suggest there is a low-dimension chaotic attractor in the light curve of 3C 273.

  14. Magnetar Driven Shock Breakout and Double Peaked Supernova Light Curves

    CERN Document Server

    Kasen, Daniel; Bildsten, Lars

    2015-01-01

    The light curves of some luminous supernovae are suspected to be powered by the spindown energy of a rapidly rotating magnetar. Here we describe a possible signature of the central engine: a burst of shock breakout emission occurring several days after the supernova explosion. The energy input from the magnetar inflates a high-pressure bubble that drives a shock through the pre-exploded supernova ejecta. If the magnetar is powerful enough, that shock will near the ejecta surface and become radiative. At the time of shock breakout, the ejecta will have expanded to a large radius (~10^{14} cm) so that the radiation released is at optical/ultraviolet wavelengths (T ~ 20,000 K) and lasts for several days. The luminosity and timescale of this magnetar driven shock breakout are similar to the first peak observed recently in the double-peaked light curve of SN-LSQ14BDQ. However, for a large region of model parameter space, the breakout emission is predicted to be dimmer than the diffusive luminosity from direct magn...

  15. Detection of Periodic Variability in Simulated QSO Light Curves

    CERN Document Server

    Westman, David B; Ivezic, Zeljko

    2010-01-01

    Periodic light curve behavior predicted for some binary black hole systems might be detected in large samples, such as the multi-million quasar sample expected from the Large Synoptic Survey Telescope (LSST). We investigate the false-alarm probability for the discovery of a periodic signal in light curves simulated using damped random walk (DRW) model. This model provides a good description of observed light curves, and does not include periodic behavior. We used the Lomb-Scargle periodogram to search for a periodic signal in a million simulated light curves that properly sample the DRW parameter space, and the LSST cadence space. We find that even a very conservative threshold for the false-alarm probability still yields thousands of "good" binary black hole candidates. We conclude that the future claims for binary black holes based on Lomb-Scargle analysis of LSST light curves will have to be interpreted with caution.

  16. CSI 2264: Simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer-- evidence for multiple origins of variability

    CERN Document Server

    Cody, Ann Marie; Baglin, Annie; Micela, Giuseppina; Rebull, Luisa M; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H P; Zwintz, Konstanze; Plavchan, Peter; Carpenter, John; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Hartmann, Lee; Calvet, Nuria; Teixeira, Paula; Vrba, Frederick J; Wolk, Scott; Covey, Kevin; Poppenhager, Katja; Günther, Hans Moritz; Forbrich, Jan; Whitney, Barbara; Affer, Laura; Herbst, William; Hora, Joseph; Barrado, David; Holtzman, Jon; Marchis, Franck; Wood, Kenneth; Guimarães, Marcelo Medeiros; Box, Jorge Lillo; Gillen, Ed; McQuillan, Amy; Espaillat, Catherine; Allen, Lori; D'Alessio, Paola; Favata, Fabio

    2014-01-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30-day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes, and assess the fractional representati...

  17. Generalized Semi-Analytical Models of Supernova Light Curves

    CERN Document Server

    Chatzopoulos, Emmanouil; Vinko, Jozsef

    2011-01-01

    We present generalized supernova (SN) light curve (LC) models for a variety of power inputs. We provide an expression for the power input that is produced by self-similar forward and reverse shocks in SN ejecta - circumstellar matter (CSM) interaction. We find that this ejecta-CSM interaction luminosity is in agreement with results from multi-dimensional radiation hydrodynamics simulations in the optically-thin case. We develop a model for the case of an optically-thick CSM by invoking an approximation for the effects of radiative diffusion. In the context of this model, we provide predictions for the time of forward shock break-out from the optically-thick part of the CSM envelope. We also introduce a hybrid LC model that incorporates ejecta-CSM interaction plus Ni-56 and Co-56 radioactive decay input. We fit this hybrid model to the LC of the Super-Luminous Supernova (SLSN) 2006gy. We find that this model provides a better fit to the LC of this event than previously presented models. We also address the rel...

  18. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    CERN Document Server

    Stauffer, J R; Gizis, J E; Rebull, L M; Carey, S J; Krick, J; Ingalls, J G; Lowrance, P; Glaccum, W; Kirkpatrick, J D; Simon, A A; Wong, M H

    2016-01-01

    We have used the Spitzer Space Telescope in February 2016 to obtain high cadence, high signal-to-noise, 17-hour duration light curves of Neptune at 3.6 and 4.5 $\\mu$m. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 $\\mu$m and 0.6 mag at 4.5 $\\mu$m. We have also extracted sparsely sampled 18-hour light curves of Neptune at W1 (3.4 $\\mu$m) and W2 (4.6 $\\mu$m) from the WISE/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude $\\sim$0.02 mag) or at 845 nm with the Hubble Space Telescope in 2015 and at 763 nm in 2016 (amplitude $\\sim$ 0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in N...

  19. Afterglow Light Curves of Jetted Gamma-ray Burst Ejecta in Stellar Winds

    Institute of Scientific and Technical Information of China (English)

    Xue-Feng Wu; Zi-Gao Dai; Yong-Feng Huang; Hai-Tao Ma

    2004-01-01

    Optical and radio afterglows arising from shocks by relativistic conical ejecta running into pre-burst massive stellar winds are revisited. Under the homogeneous thin-shell approximation and a realistic treatment for the lateral expansion of jets, our results show that a notable break exists in the optical light curve in most cases we calculated in which the physical parameters are varied within reasonable ranges. For a relatively tenuous wind which cannot decelerate the relativistic jet to cause a light curve break within days, the wind termination shock due to the ram pressure of the surrounding medium occurs at a small radius, namely, a few times 1017 cm. In such a structured wind environment, the jet will pass through the wind within several hours and run into the outer uniform dense medium. The resulting optical light curve flattens with a shallower drop after the jet encounters the uniform medium, and then declines deeply, triggered by runaway lateral expansion.

  20. Are the Variability Properties of the Kepler AGN Light Curves Consistent with a Damped Random Walk?

    CERN Document Server

    Kasliwal, Vishal P; Richards, Gordon T

    2015-01-01

    We test the consistency of active galactic nuclei (AGN) optical flux variability with the \\textit{damped random walk} (DRW) model. Our sample consists of 20 multi-quarter \\textit{Kepler} AGN light curves including both Type 1 and 2 Seyferts, radio-loud and -quiet AGN, quasars, and blazars. \\textit{Kepler} observations of AGN light curves offer a unique insight into the variability properties of AGN light curves because of the very rapid ($11.6-28.6$ min) and highly uniform rest-frame sampling combined with a photometric precision of $1$ part in $10^{5}$ over a period of 3.5 yr. We categorize the light curves of all 20 objects based on visual similarities and find that the light curves fall into 5 broad categories. We measure the first order structure function of these light curves and model the observed light curve with a general broken power-law PSD characterized by a short-timescale power-law index $\\gamma$ and turnover timescale $\\tau$. We find that less than half the objects are consistent with a DRW and ...

  1. Quasi-Periodic Oscillations of ~ 15 minutes in the Optical Light Curve of the BL Lac S5 0716+714

    CERN Document Server

    Rani, Bindu; Joshi, U C; Ganesh, S; Wiita, Paul J

    2010-01-01

    Over the course of three hours on 27 December 2008 we obtained optical (R-band) observations of the blazar S5 0716+714 at a very fast cadence of 10 s. Using several different techniques we find fluctuations with an approximately 15-minute quasi-period to be present in the first portion of that data at a > 3 sigma confidence level. This is the fastest QPO that has been claimed to be observed in any blazar at any wavelength. While this data is insufficient to strongly constrain models for such fluctuations, the presence of such a short timescale when the source is not in a very low state seems to favor the action of turbulence behind a shock in the blazar's relativistic jet.

  2. A Degeneracy in DRW Modelling of AGN Light Curves

    CERN Document Server

    Kozlowski, Szymon

    2016-01-01

    Individual light curves of active galactic nuclei (AGNs) are nowadays successfully modelled with the damped random walk (DRW) stochastic process, characterized by the power exponential covariance matrix of the signal, with the power $\\beta=1$. By Monte Carlo simulation means, we generate mock AGN light curves described by non-DRW stochastic processes ($0.5\\leq\\beta\\leq 1.5$ and $\\beta\

  3. Bolometric Light Curves of Peculiar Type II-P Supernovae

    Science.gov (United States)

    Lusk, Jeremy A.; Baron, E.

    2017-04-01

    We examine the bolometric light curves of five Type II-P supernovae (SNe 1998A, 2000cb, 2006V, 2006au, and 2009E), which are thought to originate from blue supergiant progenitors like that of SN 1987A, using a new python package named SuperBoL. With this code, we calculate SNe light curves using three different common techniques common from the literature: the quasi-bolometric method, which integrates the observed photometry, the direct integration method, which additionally corrects for unobserved flux in the UV and IR, and the bolometric correction method, which uses correlations between observed colors and V-band bolometric corrections. We present here the light curves calculated by SuperBoL, along with previously published light curves, as well as peak luminosities and 56Ni yields. We find that the direct integration and bolometric correction light curves largely agree with previously published light curves, but with what we believe to be more robust error calculations, with 0.2≲ δ {L}{bol}/{L}{bol}≲ 0.5. Peak luminosities and 56Ni masses are similarly comparable to previous work. SN 2000cb remains an unusual member of this sub-group, owing to the faster rise and flatter plateau than the other supernovae in the sample. Initial comparisons with the NLTE atmosphere code PHOENIX show that the direct integration technique reproduces the luminosity of a model supernova spectrum to ∼5% when given synthetic photometry of the spectrum as input. Our code is publicly available. The ability to produce bolometric light curves from observed sets of broadband light curves should be helpful in the interpretation of other types of supernovae, particularly those that are not well characterized, such as extremely luminous supernovae and faint fast objects.

  4. EVEREST: Pixel Level Decorrelation of K2 Light Curves

    Science.gov (United States)

    Luger, Rodrigo; Agol, Eric; Kruse, Ethan; Barnes, Rory; Becker, Andrew; Foreman-Mackey, Daniel; Deming, Drake

    2016-10-01

    We present EPIC Variability Extraction and Removal for Exoplanet Science Targets (EVEREST), an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation to remove systematics introduced by the spacecraft’s pointing error and a Gaussian process to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0-7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than {K}p≈ 13, and within a factor of two of the Kepler precision for fainter targets. We perform cross-validation and transit injection and recovery tests to validate the pipeline, and compare our light curves to the other de-trended light curves available for download at the MAST High Level Science Products archive. We find that EVEREST achieves the highest average precision of any of these pipelines for unsaturated K2 stars. The improved precision of these light curves will aid in exoplanet detection and characterization, investigations of stellar variability, asteroseismology, and other photometric studies. The EVEREST pipeline can also easily be applied to future surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets. The EVEREST light curves and the source code used to generate them are freely available online.

  5. A Light Curve Analysis of Classical Novae: Free-free Emission vs. Photospheric Emission

    CERN Document Server

    Hachisu, Izumi

    2014-01-01

    We analyzed light curves of seven relatively slower novae, PW Vul, V705 Cas, GQ Mus, RR Pic, V5558 Sgr, HR Del, and V723 Cas, based on an optically thick wind theory of nova outbursts. For fast novae, free-free emission dominates the spectrum in optical bands rather than photospheric emission and nova optical light curves follow the universal decline law. Faster novae blow stronger winds with larger mass loss rates. Since the brightness of free-free emission depends directly on the wind mass loss rate, faster novae show brighter optical maxima. In slower novae, however, we must take into account photospheric emission because of their lower wind mass loss rates. We calculated three model light curves of free-free emission, photospheric emission, and the sum of them for various WD masses with various chemical compositions of their envelopes, and fitted reasonably with observational data of optical, near-IR (NIR), and UV bands. From light curve fittings of the seven novae, we estimated their absolute magnitudes,...

  6. Automated Blazar Light Curves Using Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Spencer James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-27

    Every night in a remote clearing called Fenton Hill high in the Jemez Mountains of central New Mexico, a bank of robotically controlled telescopes tilt their lenses to the sky for another round of observation through digital imaging. Los Alamos National Laboratory’s Thinking Telescopes project is watching for celestial transients including high-power cosmic flashes called, and like all science, it can be messy work. To keep the project clicking along, Los Alamos scientists routinely install equipment upgrades, maintain the site, and refine the sophisticated machinelearning computer programs that process those images and extract useful data from them. Each week the system amasses 100,000 digital images of the heavens, some of which are compromised by clouds, wind gusts, focus problems, and so on. For a graduate student at the Lab taking a year’s break between master’s and Ph.D. studies, working with state-of-the-art autonomous telescopes that can make fundamental discoveries feels light years beyond the classroom.

  7. Spitzer Space Telescope Mid-IR Light Curves of Neptune

    Science.gov (United States)

    Stauffer, John; Marley, Mark S.; Gizis, John E.; Rebull, Luisa; Carey, Sean J.; Krick, Jessica; Ingalls, James G.; Lowrance, Patrick; Glaccum, William; Kirkpatrick, J. Davy; Simon, Amy A.; Wong, Michael H.

    2016-11-01

    We have used the Spitzer Space Telescope in 2016 February to obtain high cadence, high signal-to-noise, 17 hr duration light curves of Neptune at 3.6 and 4.5 μm. The light curve duration was chosen to correspond to the rotation period of Neptune. Both light curves are slowly varying with time, with full amplitudes of 1.1 mag at 3.6 μm and 0.6 mag at 4.5 μm. We have also extracted sparsely sampled 18 hr light curves of Neptune at W1 (3.4 μm) and W2 (4.6 μm) from the Wide-feld Infrared Survey Explorer (WISE)/NEOWISE archive at six epochs in 2010-2015. These light curves all show similar shapes and amplitudes compared to the Spitzer light curves but with considerable variation from epoch to epoch. These amplitudes are much larger than those observed with Kepler/K2 in the visible (amplitude ˜0.02 mag) or at 845 nm with the Hubble Space Telescope (HST) in 2015 and at 763 nm in 2016 (amplitude ˜0.2 mag). We interpret the Spitzer and WISE light curves as arising entirely from reflected solar photons, from higher levels in Neptune’s atmosphere than for K2. Methane gas is the dominant opacity source in Neptune’s atmosphere, and methane absorption bands are present in the HST 763 and 845 nm, WISE W1, and Spitzer 3.6 μm filters.

  8. Shedding Light on Fiber Optics.

    Science.gov (United States)

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  9. A LIGHT CURVE ANALYSIS OF CLASSICAL NOVAE: FREE-FREE EMISSION VERSUS PHOTOSPHERIC EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Hachisu, Izumi [Department of Earth Science and Astronomy, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Kato, Mariko, E-mail: hachisu@ea.c.u-tokyo.ac.jp, E-mail: mariko@educ.cc.keio.ac.jp [Department of Astronomy, Keio University, Hiyoshi, Kouhoku-ku, Yokohama 223-8521 (Japan)

    2015-01-10

    We analyzed light curves of seven relatively slower novae, PW Vul, V705 Cas, GQ Mus, RR Pic, V5558 Sgr, HR Del, and V723 Cas, based on an optically thick wind theory of nova outbursts. For fast novae, free-free emission dominates the spectrum in optical bands rather than photospheric emission, and nova optical light curves follow the universal decline law. Faster novae blow stronger winds with larger mass-loss rates. Because the brightness of free-free emission depends directly on the wind mass-loss rate, faster novae show brighter optical maxima. In slower novae, however, we must take into account photospheric emission because of their lower wind mass-loss rates. We calculated three model light curves of free-free emission, photospheric emission, and their sum for various white dwarf (WD) masses with various chemical compositions of their envelopes and fitted reasonably with observational data of optical, near-IR (NIR), and UV bands. From light curve fittings of the seven novae, we estimated their absolute magnitudes, distances, and WD masses. In PW Vul and V705 Cas, free-free emission still dominates the spectrum in the optical and NIR bands. In the very slow novae, RR Pic, V5558 Sgr, HR Del, and V723 Cas, photospheric emission dominates the spectrum rather than free-free emission, which makes a deviation from the universal decline law. We have confirmed that the absolute brightnesses of our model light curves are consistent with the distance moduli of four classical novae with known distances (GK Per, V603 Aql, RR Pic, and DQ Her). We also discussed the reason why the very slow novae are about ∼1 mag brighter than the proposed maximum magnitude versus rate of decline relation.

  10. Accretion disc time lag distributions: applying CREAM to simulated AGN light curves

    Science.gov (United States)

    Starkey, D. A.; Horne, Keith; Villforth, C.

    2016-02-01

    Active galactic nuclei (AGN) vary in their brightness across all wavelengths. Moreover, longer wavelength ultraviolet-optical continuum light curves appear to be delayed with respect to shorter wavelength light curves. A simple way to model these delays is by assuming thermal reprocessing of a variable point source (a lamp post) by a blackbody accretion disc. We introduce a new method, CREAM (Continuum REprocessed AGN Markov Chain Monte Carlo), that models continuum variations using this lamp post model. The disc light curves lag the lamp post emission with a time delay distribution sensitive to the disc temperature-radius profile and inclination. We test CREAM's ability to recover both inclination and product of black hole mass and accretion rate {Mdot{M}}, and show that the code is also able to infer the shape of the driving light curve. CREAM is applied to synthetic light curves expected from 1000 s exposures of a 17th magnitude AGN with a 2-m telescope in Sloan g and i bands with Signal-to-Noise Ratio (SNR) of 500-900 depending on the filter and lunar phase. We also test CREAM on poorer quality g and i light curves with SNR = 100. We find in the high-SNR case that CREAM can recover the accretion disc inclination to within an uncertainty of 5° and an {Mdot{M}} to within 0.04 dex.

  11. The Chaotic Light Curves of Accreting Black Holes

    Science.gov (United States)

    Kazanas, Demosthenes

    2007-01-01

    We present model light curves for accreting Black Hole Candidates (BHC) based on a recently developed model of these sources. According to this model, the observed light curves and aperiodic variability of BHC are due to a series of soft photon injections at random (Poisson) intervals and the stochastic nature of the Comptonization process in converting these soft photons to the observed high energy radiation. The additional assumption of our model is that the Comptonization process takes place in an extended but non-uniform hot plasma corona surrounding the compact object. We compute the corresponding Power Spectral Densities (PSD), autocorrelation functions, time skewness of the light curves and time lags between the light curves of the sources at different photon energies and compare our results to observation. Our model reproduces the observed light curves well, in that it provides good fits to their overall morphology (as manifest by the autocorrelation and time skewness) and also to their PSDs and time lags, by producing most of the variability power at time scales 2 a few seconds, while at the same time allowing for shots of a few msec in duration, in accordance with observation. We suggest that refinement of this type of model along with spectral and phase lag information can be used to probe the structure of this class of high energy sources.

  12. EVEREST: Pixel Level Decorrelation of K2 Light curves

    CERN Document Server

    Luger, Rodrigo; Kruse, Ethan; Barnes, Rory; Becker, Andrew; Foreman-Mackey, Daniel; Deming, Drake

    2016-01-01

    We present EVEREST, an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation (PLD) to remove systematics introduced by the spacecraft's pointing error and a Gaussian process (GP) to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0-7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than $K_p \\approx 13$, and within a factor of two of the Kepler precision for fainter targets. We perform cross-validation and transit injection and recovery tests to validate the pipeline, and compare our light curves to the other de-trended light curves available for download at the MAST High Level Science Products archive. We find that EVEREST achieves the highest average precision of any of these pipelines for unsaturated K2 stars. The improved precision of these light curves will aid in exoplanet detection and characterization, investigations of stellar variabi...

  13. Spatial Reasoning Training Through Light Curves Of Model Asteroids

    Science.gov (United States)

    Ziffer, Julie; Nakroshis, Paul A.; Rudnick, Benjamin T.; Brautigam, Maxwell J.; Nelson, Tyler W.

    2015-11-01

    Recent research has demonstrated that spatial reasoning skills, long known to be crucial to math and science success, are teachable. Even short stints of training can improve spatial reasoning skills among students who lack them (Sorby et al., 2006). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their spatial reasoning skill (Hill et al., 2010). We have designed a hands on asteroid rotation lab that provides practice in spatial reasoning tasks while building the student’s understanding of photometry. For our tool, we mount a model asteroid, with any shape of our choosing, on a slowly rotating motor shaft, whose speed is controlled by the experimenter. To mimic an asteroid light curve, we place the model asteroid in a dark box, shine a movable light source upon our asteroid, and record the light reflected onto a moveable camera. Students may then observe changes in the light curve that result from varying a) the speed of rotation, b) the model asteroid’s orientation with respect to the motor axis, c) the model asteroid’s shape or albedo, and d) the phase angle. After practicing with our tool, students are asked to pair new objects to their corresponding light curves. To correctly pair objects to their light curves, students must imagine how light scattering off of a three dimensional rotating object is imaged on a ccd sensor plane, and then reduced to a series of points on a light curve plot. Through the use of our model asteroid, the student develops confidence in spatial reasoning skills.

  14. Afterglow Light Curves and Broken Power Laws: A Statistical Study

    CERN Document Server

    J'ohannesson, G; Gudmundsson, E H; J\\'ohannesson, Gudlaugur; Bj\\"ornsson, Gunnlaugur; Gudmundsson, Einar H.

    2006-01-01

    In gamma-ray burst research it is quite common to fit the afterglow light curves with a broken power law to interpret the data. We apply this method to a computer simulated population of afterglows and find systematic differences between the known model parameters of the population and the ones derived from the power law fits. In general, the slope of the electron energy distribution is overestimated from the pre-break light curve slope while being underestimated from the post-break slope. We also find that the jet opening angle derived from the fits is overestimated in narrow jets and underestimated in wider ones. Results from fitting afterglow light curves with broken power laws must therefore be interpreted with caution since the uncertainties in the derived parameters might be larger than estimated from the fit. This may have implications for Hubble diagrams constructed using gamma-ray burst data.

  15. Preliminary Analysis of ULPC Light Curves Using Fourier Decomposition Technique

    CERN Document Server

    Ngeow, Chow-Choong; Kanbur, Shashi; Barrett, Brittany; Lin, Bin

    2013-01-01

    Recent work on Ultra Long Period Cepheids (ULPCs) has suggested their usefulness as a distance indicator, but has not commented on their relationship as compared with other types of variable stars. In this work, we use Fourier analysis to quantify the structure of ULPC light curves and compare them to Classical Cepheids and Mira variables. Our preliminary results suggest that the low order Fourier parameters of ULPCs show a continuous trend defined by Classical Cepheids after the resonance around 10 days. However their Fourier parameters also overlapped with those from Miras, which make the classification of long period variable stars difficult based on the light curves information alone.

  16. WASP light curve of the eclipsing binary VZ CVn

    Directory of Open Access Journals (Sweden)

    Latković O.

    2012-01-01

    Full Text Available The WASP light curve of the eclipsing binary VZ CVn, consisting of more than 14000 individual observations, is analyzed for photometric elements using the modeling code of Đurašević (1992. The spectroscopic parameters are adopted from the recent radial velocity work by Pribulla et al. (2009. The results of the study include new times of minimum light, an improved ephemeris, and the updated physical and orbital parameters of the system.

  17. Aberration coefficients of curved holographic optical elements

    Science.gov (United States)

    Verboven, P. E.; Lagasse, P. E.

    1986-11-01

    A general formula is derived that gives all aberration terms of holographic optical elements on substrates of any shape. The spherical substrate shape and the planar substrate shape are treated as important special cases. A numerical example illustrates the need of including higher-order aberrations.

  18. On Correlated-noise Analyses Applied To Exoplanet Light Curves

    CERN Document Server

    Cubillos, Patricio; Loredo, Thomas J; Lust, Nate B; Blecic, Jasmina; Stemm, Madison

    2016-01-01

    Time-correlated noise is a significant source of uncertainty when modeling exoplanet light-curve data. A correct assessment of correlated noise is fundamental to determine the true statistical significance of our findings. Here we review three of the most widely used correlated-noise estimators in the exoplanet field, the time-averaging, residual-permutation, and wavelet-likelihood methods. We argue that the residual-permutation method is unsound in estimating the uncertainty of parameter estimates. We thus recommend to refrain from this method altogether. We characterize the behavior of the time averaging's rms-vs.-bin-size curves at bin sizes similar to the total observation duration, which may lead to underestimated uncertainties. For the wavelet-likelihood method, we note errors in the published equations and provide a list of corrections. We further assess the performance of these techniques by injecting and retrieving eclipse signals into synthetic and real Spitzer light curves, analyzing the results in...

  19. Type II Supernovae: Model Light Curves and Standard Candle Relationships

    Science.gov (United States)

    Kasen, Daniel; Woosley, S. E.

    2009-10-01

    A survey of Type II supernovae explosion models has been carried out to determine how their light curves and spectra vary with their mass, metallicity, and explosion energy. The presupernova models are taken from a recent survey of massive stellar evolution at solar metallicity supplemented by new calculations at subsolar metallicity. Explosions are simulated by the motion of a piston near the edge of the iron core and the resulting light curves and spectra are calculated using full multi-wavelength radiation transport. Formulae are developed that describe approximately how the model observables (light curve luminosity and duration) scale with the progenitor mass, explosion energy, and radioactive nucleosynthesis. Comparison with observational data shows that the explosion energy of typical supernovae (as measured by kinetic energy at infinity) varies by nearly an order of magnitude—from 0.5 to 4.0 × 1051 ergs, with a typical value of ~0.9 × 1051 ergs. Despite the large variation, the models exhibit a tight relationship between luminosity and expansion velocity, similar to that previously employed empirically to make SNe IIP standardized candles. This relation is explained by the simple behavior of hydrogen recombination in the supernova envelope, but we find a sensitivity to progenitor metallicity and mass that could lead to systematic errors. Additional correlations between light curve luminosity, duration, and color might enable the use of SNe IIP to obtain distances accurate to ~20% using only photometric data.

  20. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Betancourt, M., E-mail: nsanders@cfa.harvard.edu [Department of Statistics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-02-10

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.

  1. Light curve and period study of V Trianguli

    Science.gov (United States)

    Gürol, B.; Müyesseroğlu, Z.; Özdemir, T.

    2006-08-01

    New BVR light curves and times of minimum light for the short period β Lyrae system V Tri were analyzed to derive the physical parameters of the system. The light curves were obtained at Ankara University Observatory and at the TÜBİTAK National Observatory during 5 nights in 2001 and 2002. A new ephemeris is determined for the times of primary minimum. The analysis of the light curves is made using the Wilson-Devinney 2003 code. The present solution reveals that V Tri is a near-contact system with a mass ratio near 0.5. The absolute radii and masses estimated for the components, based on our photometric solution, are R1=1.94 Rsun, R2=1.44 Rsun, M1=2.68 Msun, M2=1.36 Msun, respectively, for the primary and secondary components. The period variation of the system can be attributed to the light-time effect. With the assumption of a coplanar orbit of the third body its revealed mass is m3=0.17 Msun.

  2. First light curve and period study of LO Andromedae

    Science.gov (United States)

    Gürol, B.; Müyesseroğlu, Z.

    2005-01-01

    New BV light curves and times of minimum light for the short period W UMa system LO And were analyzed to derive the preliminary physical parameters of the system. The light curves were obtained at Ankara University Observatory during 5 nights in 2003. A new ephemeris is determined for the times of primary minimum. The analysis of the light curves is made using the Wilson-Devinney 2003 code. The present solution reveals that LO And has a photometric mass ratio q = 0.371 and is an A-type contact binary. The period of the system is still increasing, which can be attributed to light-time effect and mass transfer between the components. With the assumption of coplanar orbit of the third body the revealed mass is M3 = 0.21M. If the period change dP/dt = 0.0212 sec/yr is caused only by the mass transfer between components (from the lighter component to the heavier) the calculated mass transfer rate is dm/dt = 1.682 10-7M/yr. The absolute radii and masses estimated for the components, based on our photometric solution and the absolute parameters of the systems which have nearly same period are R1 = 1.30R, R2 = 0.85R, M1 = 1.31M, M2 = 0.49M respectively for the primary and secondary components.

  3. Orbital Signatures from Observed Light Curves of Blazars

    Indian Academy of Sciences (India)

    A. Mangalam; P. Mohan

    2014-09-01

    Variability in active galactic nuclei is observed in UV to X-ray emission based light curves. This could be attributed to orbital signatures of the plasma that constitutes the accretion flow on the putative disk or in the developing jet close to the inner region of the central black hole. We discuss some theoretical models based on this view. These models include general relativistic effects such as light bending, aberration effects, gravitational and Doppler redshifts. The novel aspects relate to the treatment of helical flow in cylindrical and conical geometries in the vicinity of a Schwarzschild black hole that leads to amplitude and frequency modulations of simulated light curves as well as the inclusion of beaming effects in these idealized geometries. We then present a suite of time series analysis techniques applicable to data with varied properties which can extract detailed information for their use in theoretical models.

  4. Accretion Disc Time Lag Distributions: Applying CREAM to Simulated AGN Light Curves

    CERN Document Server

    Starkey, David; Villforth, Carolin

    2015-01-01

    Active Galactic Nuclei (AGN) vary in their brightness across all wavelengths. Moreover, longer wavelength ultraviolet - optical continuum light curves appear to be delayed with respect to shorter wavelength light curves. A simple way to model these delays is by assuming thermal reprocessing of a variable point source (a lamp post) by a blackbody accretion disc. We introduce a new method, CREAM (\\textbf{C}ontinuum \\textbf{RE}processed \\textbf{A}GN \\textbf{M}arkov Chain Monte Carlo), that models continuum variations using this lamp post model. The disc light curves lag the lamp post emission with a time delay distribution sensitive to the disc temperature-radius profile and inclination. We test CREAM's ability to recover both inclination and product of black hole mass and accretion rate $\\mmdot$, and show that the code is also able to infer the shape of the driving light curve. CREAM is applied to synthetic light curves expected from 1000 second exposures of a 17th magnitude AGN with a 2m telescope in Sloan g a...

  5. Supernova 2013by: A Type IIL Supernova with a IIP-like light curve drop

    CERN Document Server

    Valenti, S; Stritzinger, M; Howell, D A; Arcavi, I; McCully, C; Childress, M J; Hsiao, E Y; Contreras, C; Morrell, N; Phillips, M M; Gromadzki, M; Kirshner, R P; Marion, G H

    2015-01-01

    We present multi-band ultraviolet and optical light curves, as well as visual-wavelength and near-infrared spectroscopy of the Type II linear (IIL) supernova (SN) 2013by. We show that SN 2013by and other SNe IIL in the literature, after their linear decline phase that start after maximum, have a sharp light curve decline similar to that seen in Type II plateau (IIP) supernovae. This light curve feature has rarely been observed in other SNe IIL due to their relative rarity and the intrinsic faintness of this particular phase of the light curve. We suggest that the presence of this drop could be used as a physical parameter to distinguish between subclasses of SNe II, rather than their light curve decline rate shortly after peak. Close inspection of the spectra of SN 2013by indicate asymmetric line profiles and signatures of high-velocity hydrogen. Late (less than 90 days after explosion) near-infrared spectra of SN 2013by exhibit oxygen lines, indicating significant mixing within the ejecta. From the late-time...

  6. Measuring the Dispersion Curve of a PMMA-Fibre Optic Cable Using a Dye Laser

    Science.gov (United States)

    Zorba, Serkan; Farah, Constantine; Pant, Ravi

    2010-01-01

    An advanced undergraduate laboratory experiment is outlined which uses a dye laser to map out the chromatic dispersion curve of a polymethyl methacrylate (PMMA) optical fibre. Seven different wavelengths across the visible spectrum are employed using five different dyes. The light pulse is split into two pulses, one to a nearby photodetector and…

  7. Measuring the Dispersion Curve of a PMMA-Fibre Optic Cable Using a Dye Laser

    Science.gov (United States)

    Zorba, Serkan; Farah, Constantine; Pant, Ravi

    2010-01-01

    An advanced undergraduate laboratory experiment is outlined which uses a dye laser to map out the chromatic dispersion curve of a polymethyl methacrylate (PMMA) optical fibre. Seven different wavelengths across the visible spectrum are employed using five different dyes. The light pulse is split into two pulses, one to a nearby photodetector and…

  8. Human Adolescent Phase Response Curves to Bright White Light.

    Science.gov (United States)

    Crowley, Stephanie J; Eastman, Charmane I

    2017-08-01

    Older adolescents are particularly vulnerable to circadian misalignment and sleep restriction, primarily due to early school start times. Light can shift the circadian system and could help attenuate circadian misalignment; however, a phase response curve (PRC) to determine the optimal time for receiving light and avoiding light is not available for adolescents. We constructed light PRCs for late pubertal to postpubertal adolescents aged 14 to 17 years. Participants completed 2 counterbalanced 5-day laboratory sessions after 8 or 9 days of scheduled sleep at home. Each session included phase assessments to measure the dim light melatonin onset (DLMO) before and after 3 days of free-running through an ultradian light-dark (wake-sleep) cycle (2 h dim [~20 lux] light, 2 h dark). In one session, intermittent bright white light (~5000 lux; four 20-min exposures) was alternated with 10 min of dim room light once per day for 3 consecutive days. The time of light varied among participants to cover the 24-h day. For each individual, the phase shift to bright light was corrected for the free-run derived from the other laboratory session with no bright light. One PRC showed phase shifts in response to light start time relative to the DLMO and another relative to home sleep. Phase delay shifts occurred around the hours corresponding to home bedtime. Phase advances occurred during the hours surrounding wake time and later in the afternoon. The transition from delays to advances occurred at the midpoint of home sleep. The adolescent PRCs presented here provide a valuable tool to time bright light in adolescents.

  9. Unsupervised clustering of Type II supernova light curves

    CERN Document Server

    Rubin, Adam

    2016-01-01

    As new facilities come online, the astronomical community will be provided with extremely large datasets of well-sampled light curves (LCs) of transient objects. This motivates systematic studies of the light curves of supernovae (SNe) of all types, including the early rising phase. We performed unsupervised k-means clustering on a sample of 59 R-band Type II SN light curves and find that our sample can be divided into three classes: slowly-rising (II-S), fast-rise/slow-decline (II-FS), and fast-rise/fast-decline (II-FF). We also identify three outliers based on the algorithm. We find that performing clustering on the first two components of a principle component analysis gives equivalent results to the analysis using the full LC morphologies. This may indicate that Type II LCs could possibly be reduced to two parameters. We present several important caveats to the technique, and find that the division into these classes is not fully robust and is sensitive to the uncertainty on the time of first light. Moreo...

  10. SHOCK BREAKOUT AND EARLY LIGHT CURVES OF TYPE II-P SUPERNOVAE OBSERVED WITH KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Garnavich, P. M. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN, 46556-5670 (United States); Tucker, B. E. [The Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, via Cotter Road, Weston Creek, ACT 2611 (Australia); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Shaya, E. J.; Olling, R. P. [Astronomy Department, University of Maryland, College Park, MD 20742-2421 (United States); Kasen, D [Department of Physics and Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Villar, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-03-20

    We discovered two transient events in the Kepler field with light curves that strongly suggest they are type II-P supernovae (SNe II-P). Using the fast cadence of the Kepler observations we precisely estimate the rise time to maximum for KSN2011a and KSN2011d as 10.5 ± 0.4 and 13.3 ± 0.4 rest-frame days, respectively. Based on fits to idealized analytic models, we find the progenitor radius of KSN2011a (280 ± 20 R{sub ⊙}) to be significantly smaller than that for KSN2011d (490 ± 20 R{sub ⊙}), but both have similar explosion energies of 2.0 ± 0.3 × 10{sup 51} erg. The rising light curve of KSN2011d is an excellent match to that predicted by simple models of exploding red supergiants (RSG). However, the early rise of KSN2011a is faster than the models predict, possibly due to the supernova shock wave moving into pre-existing wind or mass-loss from the RSG. A mass-loss rate of 10{sup −4}M{sub ⊙} yr{sup −1} from the RSG can explain the fast rise without impacting the optical flux at maximum light or the shape of the post-maximum light curve. No shock breakout emission is seen in KSN2011a, but this is likely due to the circumstellar interaction suspected in the fast rising light curve. The early light curve of KSN2011d does show excess emission consistent with model predictions of a shock breakout. This is the first optical detection of a shock breakout from a SNe II-P.

  11. Modelling the light curves of Fermi LAT millisecond pulsars

    CERN Document Server

    Venter, C; Harding, AK; Grove, JE

    2014-01-01

    We modelled the radio and gamma-ray light curves of millisecond pulsars using outer gap, two-pole caustic, low-altitude slot gap, and pair-starved polar cap geometric models, combined with a semi-empirical conal radio model. We find that no model fits all cases, with the outer gap and two-pole caustic models providing best fits for comparable numbers of millisecond pulsar light curves. We find a broad distribution of best-fit inclination angles as well as a clustering at large observer angles. The outer gap model furthermore seems to require relatively larger inclination angles, while the two-pole caustic model hints at an inverse trend between inclination angle and pulsar spin-down luminosity.

  12. Focusing of light through turbid media by curve fitting optimization

    Science.gov (United States)

    Gong, Changmei; Wu, Tengfei; Liu, Jietao; Li, Huijuan; Shao, Xiaopeng; Zhang, Jianqi

    2016-12-01

    The construction of wavefront phase plays a critical role in focusing light through turbid media. We introduce the curve fitting algorithm (CFA) into the feedback control procedure for wavefront optimization. Unlike the existing continuous sequential algorithm (CSA), the CFA locates the optimal phase by fitting a curve to the measured signals. Simulation results show that, similar to the genetic algorithm (GA), the proposed CFA technique is far less susceptible to the experimental noise than the CSA. Furthermore, only three measurements of feedback signals are enough for CFA to fit the optimal phase while obtaining a higher focal intensity than the CSA and the GA, dramatically shortening the optimization time by a factor of 3 compared with the CSA and the GA. The proposed CFA approach can be applied to enhance the focus intensity and boost the focusing speed in the fields of biological imaging, particle trapping, laser therapy, and so on, and might help to focus light through dynamic turbid media.

  13. Enhancements of Bayesian Blocks; Application to Large Light Curve Databases

    Science.gov (United States)

    Scargle, Jeff

    2015-01-01

    Bayesian Blocks are optimal piecewise linear representations (step function fits) of light-curves. The simple algorithm implementing this idea, using dynamic programming, has been extended to include more data modes and fitness metrics, multivariate analysis, and data on the circle (Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations, Scargle, Norris, Jackson and Chiang 2013, ApJ, 764, 167), as well as new results on background subtraction and refinement of the procedure for precise timing of transient events in sparse data. Example demonstrations will include exploratory analysis of the Kepler light curve archive in a search for "star-tickling" signals from extraterrestrial civilizations. (The Cepheid Galactic Internet, Learned, Kudritzki, Pakvasa1, and Zee, 2008, arXiv: 0809.0339; Walkowicz et al., in progress).

  14. Unsupervised Transient Light Curve Analysis Via Hierarchical Bayesian Inference

    CERN Document Server

    Sanders, Nathan; Soderberg, Alicia

    2014-01-01

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. We present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometr...

  15. Transit Light Curves with Finite Integration Time: Fisher Information Analysis

    CERN Document Server

    Price, Ellen M

    2014-01-01

    Kepler has revolutionized the study of transiting planets with its unprecedented photometric precision on more than 150,000 target stars. Most of the transiting planet candidates detected by Kepler have been observed as long-cadence targets with 30 minute integration times, and the upcoming Transiting Exoplanet Survey Satellite (TESS) will record full frame images with a similar integration time. Integrations of 30 minutes affect the transit shape, particularly for small planets and in cases of low signal-to-noise. Using the Fisher information matrix technique, we derive analytic approximations for the variances and covariances on the transit parameters obtained from fitting light curve photometry collected with a finite integration time. We find that binning the light curve can significantly increase the uncertainties and covariances on the inferred parameters when comparing scenarios with constant total signal-to-noise (constant total integration time in the absence of read noise). Uncertainties on the tran...

  16. Simulated Performance of Timescale Metrics for Aperiodic Light Curves

    CERN Document Server

    Findeisen, Krzysztof; Hillenbrand, Lynne

    2014-01-01

    Aperiodic variability is a characteristic feature of young stars, massive stars, and active galactic nuclei. With the recent proliferation of time domain surveys, it is increasingly essential to develop methods to quantify and analyze aperiodic variability. We develop three timescale metrics that have been little used in astronomy -- {\\Delta}m-{\\Delta}t plots, peak-finding, and Gaussian process regression -- and present simulations comparing their effectiveness across a range of aperiodic light curve shapes, characteristic timescales, observing cadences, and signal to noise ratios. We find that Gaussian process regression is easily confused by noise and by irregular sampling, even when the model being fit reflects the process underlying the light curve, but that {\\Delta}m-{\\Delta}t plots and peak-finding can coarsely characterize timescales across a broad region of parameter space. We make public the software we used for our simulations, both in the spirit of open research and to allow others to carry out ana...

  17. Early identification of Type I supernova light curves

    CERN Document Server

    Arnett, W David; Matheson, Thomas

    2016-01-01

    We compare analytic light curves for SNIabc supernovae with recent high quality data from (1)) SN2011fe \\citep{sn2011fe}, (2) KSN2011b \\citep{keplersn}, (3) the Palomar Transient Factory (PTF) and the La Silla-QUEST variability survey (LSQ) \\citep{firth}, and (4) a type Ib, SN2008D \\citep{modjaz,soderberg}. We establish a reasonable bolometric conversion between Kepler supernovae and SN2011fe, a crude but instructive one for SN2008D, and discuss the implications of the smoothness of the light-curve for KSN2011b, as well as the meaning of the deviation of early luminosity from $t^2$ behavior. The good agreement of the analytic light curves (which necessarily assume mixing and which can reproduce the Phillips relation) and the observations of highest cadence and stability, are consistent with the occurrence of significant large-scale mixing during the explosion, possibly due to 3D effects (e.g., Rayleigh-Taylor and Richtmeyer-Meshkov instabilities) and consistent with spectrapolarimetry \\citep{amber}. We illust...

  18. Light Curves of Five Type Ia Supernovae at Intermediate Redshift

    CERN Document Server

    Amanullah, R; Goobar, A; Schahmaneche, K; Astier, Pierre; Balland, C; Ellis, Richard S; Fabbro, S; Hardin, D; Hook, I M; Irwin, M J; McMahon, R G; Mendez, J M; Mouchet, M; Pain, R; Ruiz-Lapuente, P; Walton, N A

    2007-01-01

    We present multi-band light curves and redshift-luminosity distances for five type Ia supernovae at intermediate redshifts, 0.18light curve peak luminosities, corrected for light curve shape and colour, are consistent with the expectations for a flat LambdaCDM universe at the 1.5-sigma level. One supernova in the sample, SN1999dr, shows surprisingly large reddening, considering that it is both located at a significant distance from the core of its host (~4 times the fitted exponential radius) and that the galaxy can be spectroscopically classified as early-type with no signs of on-going star formation.

  19. Synthetic Spectra and Light Curves of Interacting Binaries and Exoplanets with Circumstellar Material: SHELLSPEC

    Science.gov (United States)

    Budaj, Ján

    2012-04-01

    Program SHELLSPEC is designed to calculate light-curves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, shell or stars may be defined (embedded) in 3D and their composite synthetic spectrum calculated. The Roche model can be used as a boundary condition for the radiative transfer. Recently, a new model of the reflection effect, dust and Mie scattering were incorporated into the code. ɛ Aurigae is one of the most mysterious objects on the sky. Prior modeling of its light-curve assumed a dark, inclined, disk of dust with a central hole to explain the light-curve with a sharp mid-eclipse brightening. Our model consists of two geometrically thick flared disks: an internal optically thick disk and an external optically thin disk which absorbs and scatters radiation. Shallow mid-eclipse brightening may result from eclipses by nearly edge-on flared (dusty or gaseous) disks. Mid-eclipse brightening may also be due to strong forward scattering and optical properties of the dust which can have an important effect on the light-curves. There are many similarities between interacting binary stars and transiting extrasolar planets. The reflection effect which is briefly reviewed is one of them. The exact Roche shape and temperature distributions over the surface of all currently known transiting extrasolar planets have been determined. In some cases (HAT-P-32b, WASP-12b, WASP-19b), departures from the spherical shape can reach 7-15%.

  20. Doubly curved nanofiber-reinforced optically transparent composites

    Science.gov (United States)

    Shams, Md. Iftekhar; Yano, Hiroyuki

    2015-11-01

    Doubly curved nanofiber-reinforced optically transparent composites with low thermal expansion of 15 ppm/k are prepared by hot pressing vacuum-filtered Pickering emulsions of hydrophobic acrylic resin monomer, hydrophilic chitin nanofibers and water. The coalescence of acrylic monomer droplets in the emulsion is prevented by the chitin nanofibers network. This transparent composite has 3D shape moldability, making it attractive for optical precision parts.

  1. CSI 2264: characterizing accretion-burst dominated light curves for young stars in NGC 2264

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Carey, Sean [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Baglin, Annie [LESIA, Observatoire de Paris-Meudon, 5 place Jules Janssen, F-92195, Meudon (France); Alencar, Silvia [Departamento de Física-ICEx-UFMG, Av. Antônio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil); Hillenbrand, Lynne A.; Carpenter, John; Findeisen, Krzysztof [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Venuti, Laura; Bouvier, Jerome [UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble, F-38041 (France); Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Plavchan, Peter [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Terebey, Susan [Department of Physics and Astronomy, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Morales-Calderón, María [Centro de Astrobiología, Dpto. de Astrofísica, INTA-CSIC, P.O. Box 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); Micela, Giusi; Flaccomio, Ettore [INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134, Palermo (Italy); Song, Inseok [Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602-2451 (United States); Gutermuth, Rob [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Hartmann, Lee, E-mail: stauffer@ipac.caltech.edu [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105 (United States); and others

    2014-04-01

    Based on more than four weeks of continuous high-cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high-quality, multi-wavelength light curves for young stellar objects whose optical variability is dominated by short-duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief—several hours to one day—brightenings at optical and near-infrared wavelengths with amplitudes generally in the range of 5%-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a 30 day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u – g versus g – r color-color diagram with the largest UV excesses. These stars also have large Hα equivalent widths, and either centrally peaked, lumpy Hα emission profiles or profiles with blueshifted absorption dips associated with disk or stellar winds. Light curves of this type have been predicted for stars whose accretion is dominated by Rayleigh-Taylor instabilities at the boundary between their magnetosphere and inner circumstellar disk, or where magneto-rotational instabilities modulate the accretion rate from the inner disk. Among the stars with the largest UV excesses or largest Hα equivalent widths, light curves with this type of variability greatly outnumber light curves with relatively smooth sinusoidal variations associated with long-lived hot spots. We provide quantitative statistics for the average duration and strength of the accretion bursts and for the fraction of the accretion luminosity associated with these bursts.

  2. Illusion optics in chaotic light

    Science.gov (United States)

    Zhang, Su-Heng; Gan, Shu; Xiong, Jun; Zhang, Xiangdong; Wang, Kaige

    2010-08-01

    The time-reversal process provides the possibility to counteract the time evolution of a physical system. Recent research has shown that such a process can occur in the first-order field correlation of chaotic light and result in the spatial interference and phase-reversal diffraction in an unbalanced interferometer. Here we report experimental investigations on the invisibility cloak and illusion phenomena in chaotic light. In an unbalanced interferometer illuminated by thermal light, we have observed the cloak effect and the optical transformation of one object into another object. The experimental results can be understood by the phase-reversal diffraction, and they demonstrate the theoretical proposal of similar effects in complementary media.

  3. EXPLORING THE VARIABLE SKY WITH LINEAR. III. CLASSIFICATION OF PERIODIC LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Palaversa, Lovro; Eyer, Laurent; Rimoldini, Lorenzo [Observatoire Astronomique de l' Université de Genève, 51 chemin des Maillettes, CH-1290 Sauverny (Switzerland); Ivezić, Željko; Loebman, Sarah; Hunt-Walker, Nicholas; VanderPlas, Jacob; Westman, David; Becker, Andrew C. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Ruždjak, Domagoj; Sudar, Davor; Božić, Hrvoje [Hvar Observatory, Faculty of Geodesy, Kačićeva 26, 10000 Zagreb (Croatia); Galin, Mario [Faculty of Geodesy, Kačićeva 26, 10000 Zagreb (Croatia); Kroflin, Andrea; Mesarić, Martina; Munk, Petra; Vrbanec, Dijana [Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb (Croatia); Sesar, Branimir [Division of Physics, Mathematics, and Astronomy, Caltech, Pasadena, CA 91125 (United States); Stuart, J. Scott [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420-9108 (United States); Srdoč, Gregor, E-mail: lovro.palaversa@unige.ch [Saršoni 90, 51216 Viškovo (Croatia); and others

    2013-10-01

    We describe the construction of a highly reliable sample of ∼7000 optically faint periodic variable stars with light curves obtained by the asteroid survey LINEAR across 10,000 deg{sup 2} of the northern sky. The majority of these variables have not been cataloged yet. The sample flux limit is several magnitudes fainter than most other wide-angle surveys; the photometric errors range from ∼0.03 mag at r = 15 to ∼0.20 mag at r = 18. Light curves include on average 250 data points, collected over about a decade. Using Sloan Digital Sky Survey (SDSS) based photometric recalibration of the LINEAR data for about 25 million objects, we selected ∼200,000 most probable candidate variables with r < 17 and visually confirmed and classified ∼7000 periodic variables using phased light curves. The reliability and uniformity of visual classification across eight human classifiers was calibrated and tested using a catalog of variable stars from the SDSS Stripe 82 region and verified using an unsupervised machine learning approach. The resulting sample of periodic LINEAR variables is dominated by 3900 RR Lyrae stars and 2700 eclipsing binary stars of all subtypes and includes small fractions of relatively rare populations such as asymptotic giant branch stars and SX Phoenicis stars. We discuss the distribution of these mostly uncataloged variables in various diagrams constructed with optical-to-infrared SDSS, Two Micron All Sky Survey, and Wide-field Infrared Survey Explorer photometry, and with LINEAR light-curve features. We find that the combination of light-curve features and colors enables classification schemes much more powerful than when colors or light curves are each used separately. An interesting side result is a robust and precise quantitative description of a strong correlation between the light-curve period and color/spectral type for close and contact eclipsing binary stars (β Lyrae and W UMa): as the color-based spectral type varies from K4 to F5, the

  4. High-precision 2MASS JHK{sub s} light curves and other data for RR Lyrae star SDSS J015450 + 001501: Strong constraints for nonlinear pulsation models

    Energy Technology Data Exchange (ETDEWEB)

    Szabó, Róbert; Ivezić, Željko; Kiss, László L.; Kolláth, Zoltán [Konkoly Observatory, MTA CSFK, Konkoly Thege Miklós út 15-17, H-1121 Budapest (Hungary); Jones, Lynne; Becker, Andrew C.; Davenport, James R. A. [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Sesar, Branimir [Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA 91125 (United States); Cutri, Roc M., E-mail: rszabo@konkoly.hu [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-01-01

    We present and discuss an extensive data set for the non-Blazhko ab-type RR Lyrae star SDSS J015450+001501, including optical Sloan Digital Sky Survey ugriz light curves and spectroscopic data, LINEAR and Catalina Sky Survey unfiltered optical light curves, and infrared Two Micron All Sky Survey (2MASS) JHK{sub s} and Wide-field Infrared Survey Explorer W1 and W2 light curves. Most notable is that light curves obtained by 2MASS include close to 9000 photometric measures collected over 3.3 yr and provide an exceedingly precise view of near-infrared variability. These data demonstrate that static atmosphere models are insufficient to explain multiband photometric light-curve behavior and present strong constraints for nonlinear pulsation models for RR Lyrae stars. It is a challenge to modelers to produce theoretical light curves that can explain data presented here, which we make publicly available.

  5. EDITORIAL: Nanostructures + Light = 'New Optics'

    Science.gov (United States)

    Zheludev, Nikolay; Shalaev, Vladimir

    2005-02-01

    Suddenly, at the end of the last century, classical optics and classical electrodynamics became fashionable again. Fields that several generations of researchers thought were comprehensively covered by the famous Born and Wolf textbook and were essentially dead as research subjects were generating new excitement. In accordance with Richard Feynman’s famous quotation on nano-science, the optical community suddenly discovered that 'there is plenty of room at the bottom'—mixing light with small, meso- and nano-structures could generate new physics and new mind-blowing applications. This renaissance began when the concept of band structure was imported from electronics into the domain of optics and led to the development of what is now a massive research field dedicated to two- and three-dimensional photonic bandgap structures. The field was soon awash with bright new ideas and discoveries that consolidated the birth of the 'new optics'. A revision of some of the basic equations of electrodynamics led to the suspicion that we had overlooked the possibility that the triad of wave vector, electric field and magnetic field, characterizing propagating waves, do not necessarily form a right-handed set. This brought up the astonishing possibilities of sub-wavelength microscopy and telescopy where resolution is not limited by diffraction. The notion of meta-materials, i.e. artificial materials with properties not available in nature, originated in the microwave community but has been widely adopted in the domain of optical research, thanks to rapidly improving nanofabrication capabilities and the development of sub-wavelength scanning imaging techniques. Photonic meta-materials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials. The structural units of meta-materials can be tailored in shape and size; their composition and morphology can be artificially tuned, and inclusions can be

  6. Investigation of UBVRI Light Curves of LP Cephei

    Science.gov (United States)

    Carrigan, B.; Samec, R. G.; McDermith, R. J.

    1995-12-01

    In our study of eccentric eclipsing binary candidates (EEB's), we have obtained UBVRI CCD light curves of the LP Cephei, which was discovered by Wachmann (1972). The observations were taken 21 to 25 September 1994, inclusive, at Kitt Peak National Observatory, Arizona. The CCD photometer system (CCDPHOT) was used in conjunction with the 0.9 m Cassegrain reflector telescope. Five mean precision epochs of minimum light were determined from the observations made during primary and secondary eclipses. A period study has been conducted for all available data Analysis of both Wachmann's timings and our timings yielded the following linear ephemeris: HJD Min I = 2 449 621.732 19(78)d + 0.693 0625(1)XE. Despite the reported displacement of the secondary by Wachmann (1972) , we find that the secondary eclipse occurs at 0.5 phase. We have obtained standard magnitudes and estimated the amount of interstellar extinction for LP Cephei. Reddening Estimates indicate that LP Cephei consists of two B-type Near-Contact components. Simultaneous synthetic light curve solutions are discussed. The system is semidetatched: the secondary component fills its Roche lobe, while the primary component has a fillout of ~ 70 % of its Roche lobe.

  7. Light Curve and Orbital Period Analysis of VX Lac

    Science.gov (United States)

    Yılmaz, M.; Nelson, R. H.; Şenavcı, H. V.; İzci, D.; Özavcı, İ.; Gümüş, D.

    2017-04-01

    In this study, we performed simultaneously light curve and radial velocity, and also period analyses of the eclipsing binary system VX Lac. Four color (BVRI) light curves of the system were analysed using the W-D code. The results imply that VX Lac is a classic Algol-type binary with a mass ratio of q=0.27, of which the less massive secondary component fills its Roche lobe. The orbital period behaviour of the system was analysed by assuming the light time effect (LITE) from a third body. The O-C analysis yielded a mass transfer rate of dM/dt=1.86×10-8Mȯyr-1 and the minimal mass of the third body to be M3=0.31Mȯ. The residuals from mass transfer and the third body were also analysed because another cyclic variation is seen in O-C diagram. This periodic variation was examined under the hypotheses of stellar magnetic activity and fourth body.

  8. Characterizing the V-band Light-curves of Hydrogen-rich Type II Supernovae

    Science.gov (United States)

    Anderson, Joseph P.; González-Gaitán, Santiago; Hamuy, Mario; Gutiérrez, Claudia P.; Stritzinger, Maximilian D.; Olivares E., Felipe; Phillips, Mark M.; Schulze, Steve; Antezana, Roberto; Bolt, Luis; Campillay, Abdo; Castellón, Sergio; Contreras, Carlos; de Jaeger, Thomas; Folatelli, Gastón; Förster, Francisco; Freedman, Wendy L.; González, Luis; Hsiao, Eric; Krzemiński, Wojtek; Krisciunas, Kevin; Maza, José; McCarthy, Patrick; Morrell, Nidia I.; Persson, Sven E.; Roth, Miguel; Salgado, Francisco; Suntzeff, Nicholas B.; Thomas-Osip, Joanna

    2014-05-01

    We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the "plateau" phase and peak magnitudes, which has a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the "plateau" stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progenitor envelope masses at the epoch of explosion. During the radioactive tails, we find many supernovae with faster declining light-curves than expected from full trapping of radioactive emission, implying low mass ejecta. It is suggested that the main driver of light-curve diversity is the extent of hydrogen envelopes retained before explosion. Finally, a new classification scheme is introduced where hydrogen-rich events are typed as simply "SN II" with an "s 2" value giving the decline rate during the "plateau" phase, indicating its morphological type. Based on observations obtained with the du-Pont and Swope telescopes at LCO, and the Steward Observatory's CTIO60, SO90 and CTIO36 telescopes.

  9. Characterizing the V-band light-curves of hydrogen-rich type II supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Joseph P.; González-Gaitán, Santiago; Hamuy, Mario; Gutiérrez, Claudia P.; Antezana, Roberto; De Jaeger, Thomas; Förster, Francisco; González, Luis [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Stritzinger, Maximilian D.; Contreras, Carlos [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Olivares E, Felipe [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Phillips, Mark M.; Campillay, Abdo; Castellón, Sergio; Hsiao, Eric [Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena (Chile); Schulze, Steve [Instituto de Astrofísica, Facultad de Física, Pontifícia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Bolt, Luis [Argelander Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53111 Bonn (Germany); Folatelli, Gastón [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Freedman, Wendy L. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Krzemiński, Wojtek, E-mail: janderso@eso.org [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); and others

    2014-05-01

    We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the 'plateau' phase and peak magnitudes, which has a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the 'plateau' stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progenitor envelope masses at the epoch of explosion. During the radioactive tails, we find many supernovae with faster declining light-curves than expected from full trapping of radioactive emission, implying low mass ejecta. It is suggested that the main driver of light-curve diversity is the extent of hydrogen envelopes retained before explosion. Finally, a new classification scheme is introduced where hydrogen-rich events are typed as simply 'SN II' with an 's {sub 2}' value giving the decline rate during the 'plateau' phase, indicating its morphological type.

  10. Nonlinear Time Series Analysis of White Dwarf Light Curves

    Science.gov (United States)

    Jevtic, N.; Zelechoski, S.; Feldman, H.; Peterson, C.; Schweitzer, J.

    2001-12-01

    We use nonlinear time series analysis methods to examine the light intensity curves of white dwarf PG1351+489 obtained by the Whole Earth Telescope (WET). Though these methods were originally introduced to study chaotic systems, when a clear signature of determinism is found for the process generating an observable and it couples the active degrees of freedom of the system, then the notion of phase space provides a framework for exploring the system dynamics of nonlinear systems in general. With a pronounced single frequency, its harmonics and other frequencies of lower amplitude on a broadband background, the PG1351 light curve lends itself to the use of time delay coordinates. Our phase space reconstruction yields a triangular, toroidal three-dimensional shape. This differs from earlier results of a circular toroidal representation. We find a morphological similarity to a magnetic dynamo model developed for fast rotators that yields a union of both results: the circular phase space structure for the ascending portion of the cycle, and the triangular structure for the declining portion. The rise and fall of the dynamo cycle yield both different phase space representations and different correlation dimensions. Since PG1351 is known to have no significant fields, these results may stimulate the observation of light curves of known magnetic white dwarfs for comparison. Using other data obtained by the WET, we compare the phase space reconstruction of DB white dwarf PG1351 with that of GD 358 which has a more complex power spectrum. We also compare these results with those for PG1159. There is some general similarity between the results of the phase space reconstruction for the DB white dwarfs. As expected, the difference between the results for the DB white dwarfs and PG1159 is great.

  11. Transit light curves with finite integration time: Fisher information analysis

    Energy Technology Data Exchange (ETDEWEB)

    Price, Ellen M. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Rogers, Leslie A. [California Institute of Technology, MC249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-10-10

    Kepler has revolutionized the study of transiting planets with its unprecedented photometric precision on more than 150,000 target stars. Most of the transiting planet candidates detected by Kepler have been observed as long-cadence targets with 30 minute integration times, and the upcoming Transiting Exoplanet Survey Satellite will record full frame images with a similar integration time. Integrations of 30 minutes affect the transit shape, particularly for small planets and in cases of low signal to noise. Using the Fisher information matrix technique, we derive analytic approximations for the variances and covariances on the transit parameters obtained from fitting light curve photometry collected with a finite integration time. We find that binning the light curve can significantly increase the uncertainties and covariances on the inferred parameters when comparing scenarios with constant total signal to noise (constant total integration time in the absence of read noise). Uncertainties on the transit ingress/egress time increase by a factor of 34 for Earth-size planets and 3.4 for Jupiter-size planets around Sun-like stars for integration times of 30 minutes compared to instantaneously sampled light curves. Similarly, uncertainties on the mid-transit time for Earth and Jupiter-size planets increase by factors of 3.9 and 1.4. Uncertainties on the transit depth are largely unaffected by finite integration times. While correlations among the transit depth, ingress duration, and transit duration all increase in magnitude with longer integration times, the mid-transit time remains uncorrelated with the other parameters. We provide code in Python and Mathematica for predicting the variances and covariances at www.its.caltech.edu/∼eprice.

  12. On the automatic folding of optical rotation curves

    Science.gov (United States)

    Roscoe, D. F.

    1999-12-01

    \\cite[Mathewson, Ford and Buchhorn (1992]{mat92}, MFB hereafter) published the unreduced data for the optical rotation curves of 967 southern sky spiral galaxies. Recognizing that accurate dynamical modelling of spiral galaxies required the availability of a large data-base of correspondingly accurately folded rotation curves, \\cite[Persic & Salucci (1995]{per95}, PS hereafter) undertook to fold the MFB sample in an appropriately meticulous way; of the 967 folded rotation curves, 900 were judged by PS to be of moderate to excellent quality, whilst 67 were judged to be of poor quality and of very limited use for dynamical studies. The folding process used by PS was a time-consuming and labour-intensive one in which the quality of each fold was judged ``by eye''. Subsequently, MFB (1996) published the unreduced optical rotation curves for approximately another 1100 southern sky spirals and, undoubtedly, more will follow from various sources. For this reason, and because of the importance of having large numbers of accurately folded rotation curves for dynamical studies, we have developed the automatic folding algorithm described herein. An uncompiled Fortran program (using NAG routines) and data files are available via http://www.shef.ac.uk/ tilde ap1dfr. Download the text file ``ReadMe'' and follow instructions.

  13. Analytical Expressions For Light-curves of Supernovae Type Ia

    CERN Document Server

    Dado, Shlomo

    2013-01-01

    A simple analytical model is used to derive the main properties of supernovae type Ia (SNe Ia), which are produced by the thermonuclear explosion of accreting C-O white dwarfs that cross the Chandrasekhar mass limit. The few underlying physical assumptions of the model yield analytical expressions that reproduce quite well the observed bolometric light-curves of SNe Ia and the empirical brighter-slower and brighter-bluer relationships that were used to standardize SNe Ia for their use as distance indicators, which led to the discovery of the accelerating expansion of the universe.

  14. Dependence on supernovae light-curve processing in void models

    Energy Technology Data Exchange (ETDEWEB)

    Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); De Rossi, Maria E., E-mail: derossi@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2014-06-02

    In this work, we show that when supernova Ia (SN Ia) data sets are used to put constraints on the free parameters of inhomogeneous models, certain extra information regarding the light-curve fitter used in the supernovae Ia luminosity fluxes processing should be taken into account. We found that the size of the void as well as other parameters of these models might be suffering extra degenerations or additional systematic errors due to the fitter. A recent proposal to relieve the tension between the results from Planck satellite and SNe Ia is re-analyzed in the framework of these subjects.

  15. On the Analysis of Light Curves in Asteroseismology

    Indian Academy of Sciences (India)

    David L. Mary

    2005-06-01

    We provide a detailed introduction to the main problems arising when analyzing light curves in asteroseismology. Attention is first paid to the signal model delivered by the pulsating stars and to the noise sources corrupting this model in photometric observations. The main pitfalls and ambiguities occurring in Fourier analysis are summarized and illustrated. Someclassical, Least Squares (LS) based methods for spectrum analysis are analyzed and commented on from the point of view of ill-posed problems. The insight that can be gained from such analyses is discussed.

  16. Light curve solutions of the ultrashort-period $Kepler$ binaries

    CERN Document Server

    Kjurkchieva, Diana

    2015-01-01

    We carried out light curve solutions of the ultrashort-period binaries with MS components observed by $Kepler$. All six targets turned out almost in thermal contact with contact or slightly overcontact configurations. Two of them, KID 4921906 and KID 6309193, are not eclipsing but reveal ellipsoidal and spot variability. One of the components of KID 8108785 exhibits inherent, quasi-sinusoidal, small-amplitude variability. KID 12055255 turned out a very rare case of ultrashort-period overcontact binary consisting of two M dwarfs. Our modeling indicated that the variability of KID 9532219 is due to eclipses but not to $\\delta$ Sct pulsations as it was previously supposed.

  17. Evidence for Filamentary Jet Structure: The Light Curve of GRB 011211

    Science.gov (United States)

    Jakobsson, P.; Hjorth, J.; Ramirez-Ruiz, E.; Kouveliotou, C.; Pedersen, K.; Fynbo, J. P. U.; Gorosabel, J.; Watson, D.; Jensen, B. L.; Gray, T.

    2003-01-01

    We report on the discovery of the optical afterglow of the X-ray rich, long-duration gamma-ray burst GRB 011211, and the oscillatory behavior present in its optical and X-ray afterglow light curve. The time scale of the fluctuations, -1 hour, is much smaller than the time of the observations, -12 hours from the onset of the gamma-ray burst. The character and strength of the fluctuations visible in the optical data are unprecedented, and are inconsistent with causally connected variations in the emission of a symmetric, relativistic blast wave. Moreover, the differential time lag between the short-term variations in X-ray and optical energies suggests they do not arise from the same emitting region. Such variability may imply that local spherical symmetry is broken because the energy content across the jet-emitting surface is not uniform, indicating the detection of a small scale substructure within the jet itself.

  18. The Shape of M Dwarf Flares in Kepler Light Curves

    CERN Document Server

    Davenport, James R A

    2015-01-01

    Ultra-precise light curves from Kepler provide the best opportunity to determine rates and statistical properties of stellar flares. From 11 months of data on the active M4 dwarf, GJ 1243, we have built the largest catalog of flares for a single star: over 6100 events. Combining 885 of our most pristine flares, we generated an empirical white-light flare template. This high-fidelity template shows a rapid initial rise, and two distinct exponential cooling phases. This template is useful in constraining flare energies and for improved flare detection in many surveys. Complex, multi-peaked events are more common for higher energy flares in this sample. Using our flare template we characterize the structure of complex events. In this contributed talk, I presented results from our boutique study of GJ 1243, and described an expanded investigation of the structure of complex flares and their connection to solar events.

  19. Light Curves for Rapidly-Rotating Neutron Stars

    CERN Document Server

    Cadeau, C; Leahy, D; Campbell, S S; Cadeau, Coire; Morsink, Sharon M.; Leahy, Denis; Campbell, Sheldon S.

    2006-01-01

    We present raytracing computations for light emitted from the surface of a rapidly-rotating neutron star in order to construct light curves for X-ray pulsars and bursters. These calculations are for realistic models of rapidly-rotating neutron stars which take into account both the correct exterior metric and the oblate shape of the star. We find that the most important effect arising from rotation comes from the oblate shape of the rotating star. We find that approximating a rotating neutron star as a sphere introduces serious errors in fitted values of the star's radius and mass if the rotation rate is very large. However, in most cases acceptable fits to the ratio M/R can be obtained with the spherical approximation.

  20. Light Curves and Spectra from a Unimodal Core-collapse Supernova

    Science.gov (United States)

    Wollaeger, Ryan T.; Hungerford, Aimee L.; Fryer, Chris L.; Wollaber, Allan B.; van Rossum, Daniel R.; Even, Wesley

    2017-08-01

    To assess the effectiveness of optical emission as a probe of spatial asymmetry in core-collapse supernovae (CCSNe), we apply the radiative transfer software SuperNu to a unimodal CCSN model. The SNSPH radiation hydrodynamics software was used to simulate an asymmetric explosion of a 16 {M}⊙ zero-age main-sequence binary star. The ejecta has 3.36 {M}⊙ with 0.024 {M}⊙ of radioactive 56Ni, with unipolar asymmetry along the z-axis. For 96 discrete angular views, we find a ratio between maximum and minimum peak total luminosities of ˜1.36. The brightest light curves emerge from views orthogonal to the z-axis. Multigroup spectra from UV to IR are obtained. We find a shift in wavelength with viewing angle in a near-IR Ca ii emission feature, consistent with Ca being mostly in the unimode. We compare emission from the gray gamma-ray transfer in SuperNu and from the detailed gamma-ray transfer code Maverick. Relative to the optical light curves, the brightness of the gamma-ray emission is more monotonic with respect to viewing angle. UBVRI broadband light curves are also calculated. Parallel with the unimode, the U and B bands have excess luminosity at ≳ 10 days post-explosion, due to 56Ni on the unimode. We compare our CCSN model with SN 2002ap, which is thought to have a similar ejecta morphology.

  1. Synthetic Spectra and Light Curves of Interacting Binaries and Exoplanets with Circumstellar Material: SHELLSPEC

    CERN Document Server

    Budaj, Jan

    2011-01-01

    Program SHELLSPEC is designed to calculate light-curves, spectra and images of interacting binaries and extrasolar planets immersed in a moving circumstellar environment which is optically thin. It solves simple radiative transfer along the line of sight in moving media. The assumptions include LTE and optional known state quantities and velocity fields in 3D. Optional (non)transparent objects such as a spot, disc, stream, jet, ufo, shell or stars may be defined (embedded) in 3D and their composite synthetic spectrum calculated. Roche model can be used as a boundary condition for the radiative transfer. Recently a new model of the reflection effect, dust and Mie scattering were incorporated into the code. $\\epsilon$ Aurigae is one of the most mysterious objects on the sky. Prior modeling of its light-curve assumed dark, inclined, disk of dust with the central hole to explain the light-curve with a sharp mid-eclipse brightening. Our model consists of two geometrically thick flared disks. Internal optically thi...

  2. Unifying Type II Supernova Light Curves with Dense Circumstellar Material

    CERN Document Server

    Morozova, Viktoriya; Valenti, Stefano

    2016-01-01

    A longstanding problem in the study of supernovae (SNe) has been the relationship between the Type IIP and Type IIL subclasses. Whether they come from distinct progenitors or they are from similar stars with some property that smoothly transitions from one class to another has been the subject of much debate. Here we show using one-dimensional radiation-hydrodynamic SN models that the multi-band light curves of SNe IIL are well fit by ordinary red supergiants surrounded by dense circumstellar material (CSM). The inferred extent of this material, coupled with a typical wind velocity of ~10-100 km/s, suggests enhanced activity by these stars during the last ~months to ~years of their lives, which may be connected with advanced stages of nuclear burning. Furthermore, we find that even for more plateau-like SNe that dense CSM provides a better fit to the first ~20 days of their light curves, indicating that the presence of such material may be more widespread than previously appreciated. Here we choose to model t...

  3. WASP-14 b: Transit Timing analysis of 19 light curves

    CERN Document Server

    Raetz, St; Seeliger, M; Marka, C; Fernandez, M; Güver, T; Gögüs, E; Nowak, G; Vanko, M; Berndt, A; Eisenbeiss, T; Mugrauer, M; Trepl, L; Gelszinnis, J

    2015-01-01

    Although WASP-14 b is one of the most massive and densest exoplanets on a tight and eccentric orbit, it has never been a target of photometric follow-up monitoring or dedicated observing campaigns. We report on new photometric transit observations of WASP-14 b obtained within the framework of "Transit Timing Variations @ Young Exoplanet Transit Initiative" (TTV@YETI). We collected 19 light-curves of 13 individual transit events using six telescopes located in five observatories distributed in Europe and Asia. From light curve modelling, we determined the planetary, stellar, and geometrical properties of the system and found them in agreement with the values from the discovery paper. A test of the robustness of the transit times revealed that in case of a non-reproducible transit shape the uncertainties may be underestimated even with a wavelet-based error estimation methods. For the timing analysis we included two publicly available transit times from 2007 and 2009. The long observation period of seven years ...

  4. Broadband turbulent spectra in gamma-ray burst light curves

    Energy Technology Data Exchange (ETDEWEB)

    Van Putten, Maurice H. P. M. [Astronomy and Space Science, Sejong University, 98 Gunja-Dong Gwangin-gu, Seoul 143-747 (Korea, Republic of); Guidorzi, Cristiano; Frontera, Filippo, E-mail: mvp@sejong.ac.kr [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)

    2014-05-10

    Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is one order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.

  5. Flare Characteristics from X-ray Light Curves

    Science.gov (United States)

    Gryciuk, M.; Siarkowski, M.; Sylwester, J.; Gburek, S.; Podgorski, P.; Kepa, A.; Sylwester, B.; Mrozek, T.

    2017-06-01

    A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS- Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single ("elementary") flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16 - 1.51 keV, 1.51 - 15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue - the SphinX Flare Catalogue - which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.

  6. On Correlated-noise Analyses Applied to Exoplanet Light Curves

    Science.gov (United States)

    Cubillos, Patricio; Harrington, Joseph; Loredo, Thomas J.; Lust, Nate B.; Blecic, Jasmina; Stemm, Madison

    2017-01-01

    Time-correlated noise is a significant source of uncertainty when modeling exoplanet light-curve data. A correct assessment of correlated noise is fundamental to determine the true statistical significance of our findings. Here, we review three of the most widely used correlated-noise estimators in the exoplanet field, the time-averaging, residual-permutation, and wavelet-likelihood methods. We argue that the residual-permutation method is unsound in estimating the uncertainty of parameter estimates. We thus recommend to refrain from this method altogether. We characterize the behavior of the time averaging’s rms-versus-bin-size curves at bin sizes similar to the total observation duration, which may lead to underestimated uncertainties. For the wavelet-likelihood method, we note errors in the published equations and provide a list of corrections. We further assess the performance of these techniques by injecting and retrieving eclipse signals into synthetic and real Spitzer light curves, analyzing the results in terms of the relative-accuracy and coverage-fraction statistics. Both the time-averaging and wavelet-likelihood methods significantly improve the estimate of the eclipse depth over a white-noise analysis (a Markov-chain Monte Carlo exploration assuming uncorrelated noise). However, the corrections are not perfect when retrieving the eclipse depth from Spitzer data sets, these methods covered the true (injected) depth within the 68% credible region in only ˜45%-65% of the trials. Lastly, we present our open-source model-fitting tool, Multi-Core Markov-Chain Monte Carlo (MC3). This package uses Bayesian statistics to estimate the best-fitting values and the credible regions for the parameters for a (user-provided) model. MC3 is a Python/C code, available at https://github.com/pcubillos/MCcubed.

  7. Modelling the synchrotron light curves in recurrent novae V745 Scorpii and RS Ophiuchi

    CERN Document Server

    Kantharia, N G; Roy, N; Anupama, G C; Chitale, A; Ishwara-Chandra, C; Prabhu, T P; Ashok, N M; Banerjee, D P K

    2015-01-01

    In this paper, we present the synchrotron light curve at 610 MHz from the recurrent nova V745 Sco following its outburst on 6 February 2014. The system has been detected and periodically monitored with the Giant Metrewave Radio Telescope (GMRT) since 9 February 2014 as part of the Galactic Nova with GMRT (GNovaG) project. The light curves are well fit by a model of synchrotron emitting region obscured by foreground thermal gas which eventually becomes optically thin to the low GMRT frequencies. We present the model fit to the 2014 data on V745 Sco and discuss it alongwith the model fit to the 1.4 GHz data of the recurrent nova RS Ophiuchi following its outburst in 1985.

  8. Kilonova Light Curves from the Disk Wind Outflows of Compact Object Mergers

    CERN Document Server

    Kasen, Daniel; Metzger, Brian

    2014-01-01

    We study the radioactively-powered transients produced by accretion disk winds following a compact object merger. Starting with the outflows generated in two-dimensional hydrodynamical disk models, we use wavelength-dependent radiative transfer calculations to generate synthetic light curves and spectra. We show that the brightness and color of the resulting kilonova transients carry information about the merger physics. In the regions of the wind where neutrino irradiation raises the electron fraction to Ye > 0.25, r-process nucleosynthesis halts before producing high-opacity, complex ions (the lanthanides). The kilonova light curves thus show two distinct components: a brief (~2 day) blue optical transient produced in the outer lanthanide-free ejecta, and a longer (~10 day) infrared transient produced in the inner, lanthanide line-blanketed region. Mergers producing a longer-lived neutron star, or a more rapidly spinning black hole, have stronger neutrino irradiation, generate more lanthanide-free ejecta, a...

  9. Transmission of straight and curved multimode optical fibers

    Science.gov (United States)

    Melnik, Ivan S.; Kravchenko, Igor; Denisov, Nikolay A.; Dets, Sergiy M.; Rusina, Tatyana V.

    1995-01-01

    Bent multimode optical fibers were studied using a 3D ray tracing program. Effect of fiber bending increased with smaller input aperture beams. Transmission of fibers decreased for the longer proximal straight part of the fiber. Significant focusing effect and output light redistribution were detected if a proximal straight part of the fiber was less than 1 fiber diameter. Transmission of hollow waveguides considerably depended on the inner surface quality. Calculated data were in accordance with experimental measurements of fiber transmission and output light distribution. Ray tracing is a useful approach to simulate different delivery systems using optical fibers and hollow waveguides.

  10. Characterizing the V-band light-curves of hydrogen-rich type II supernovae

    CERN Document Server

    Anderson, Joseph P; Hamuy, Mario; Gutiérrez, Claudia P; Stritzinger, Maximilian D; E., Felipe Olivares; Phillips, Mark M; Schulze, Steve; Antezana, Roberto; Bolt, Luis; Campillay, Abdo; Castellón, Sergio; Contreras, Carlos; de Jaeger, Thomas; Folatelli, Gastón; Förster, Francisco; Freedman, Wendy L; González, Luis; Hsiao, Eric; Krzemiński, Wojtek; Krisciunas, Kevin; Maza, José; McCarthy, Patrick; Morrell, Nidia I; Persson, Sven E; Roth, Miguel; Salgado, Francisco; Suntzeff, Nicholas B; Thomas-Osip, Joanna

    2014-01-01

    We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the 'plateau' phase and peak magnitudes, which has a dispersion of 0.56 magnitudes, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the 'plateau' stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progeni...

  11. Vertical Convection in Turbulent Accretion Disks and Light Curves of the A0620-00 1975 Outburst

    CERN Document Server

    Malanchev, Konstantin

    2015-01-01

    We present a model of the non-stationary $\\alpha$-disk with account for the irradiation and the vertical convection in the outer accretion disk where hydrogen is partially ionized. We include the viscous energy generation in the mix-length convection equations in accretion disks. The optical and X-ray light curves of X-ray nova A0620-00 are investigated in terms of this model. The turbulent viscosity parameter of the accretion disk is estimated, $\\alpha = 0.5 \\div 0.6$, which is necessary to explain the luminosity decay rate on the descending branch of the X-ray light curve for the A0620-00 1975 outburst. The secondary luminosity maximum on the light curves is explained by assuming an additional injection of matter into the accretion disk from the optical companion.

  12. Nanoscale optical interferometry with incoherent light

    OpenAIRE

    Dongfang Li,; Jing Feng; Domenico Pacifici

    2016-01-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of...

  13. High Order Harmonics in Light Curves of Kepler Planets

    CERN Document Server

    Armstrong, Caden

    2015-01-01

    The Kepler mission was launched in 2009 and has discovered thousands of planet candidates. In a recent paper, Esteves et al. (2013) found a periodic signal in the light curves of KOI-13 and HAT-P-7, with a frequency triple the orbital frequency of a transiting planet. We found similar harmonics in many systems with a high occurrence rate. At this time, the origins of the signal are not entirely certain. We look carefully at the possibility of errors being introduced through our data processing routines but conclude that the signal is real. The harmonics on multiples of the orbital frequency are a result of non-sinusoidal periodic signals. We speculate on their origin and generally caution that these harmonics could lead to wrong estimates of planet albedos, beaming mass estimates, and ellipsoidal variations.

  14. Periodic Relativity: Deflection of Light, Acceleration, Rotation Curves

    Directory of Open Access Journals (Sweden)

    Zaveri V. H.

    2015-01-01

    Full Text Available Vectorial analysis relating to derivation of deflection of light is presented. Curvilinear acceleration is distinguished from the Newtonian polar conic acceleration. The dif- ference between the two is due to the curvature term. Lorentz invariant expression for acceleration is derived. A physical theory of rotation curves of galaxies based on second solution to Einstein’s field equation is presented. Theory is applied to Milky Way, M31, NGC3198 and Solar system. Modified Kepler’s third law yields correct orbital periods of stars in a galaxy. Deviation factor in the line element of t he theory happens to be the ratio of the Newtonian gravitational acceleration to th e measured acceleration of the star in the galaxy. Therefore this deviation factor can replace the MOND function.

  15. Disk-averaged Spectra & light-curves of Earth

    CERN Document Server

    Tinetti, G; Crisp, D; Fong, W; Kiang, N; Fishbein, E; Velusamy, T; Bosc, E; Turnbull, M

    2005-01-01

    We are using computer models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of biosignatures, in the globally averaged spectra and light-curves of the Earth. Using AIRS (Atmospheric Infrared Sounder) data, as input for atmospheric and surface properties, we have generated spatially resolved high-resolution synthetic spectra using the SMART radiative transfer model, for a variety of conditions, from the UV to the far-IR (beyond the range of current Earth-based satellite data). We have then averaged over the visible disk for a number of different viewing geometries to quantify the sensitivity to surface types and atmospheric features as a function of viewing geometry, and spatial and spectral resolution. These results have been processed with an instrument simulator to improve our understanding of the detectable characteristics of Earth-like planets as viewed by the first generation extrasolar terrestrial planet detection and characterization mis...

  16. Secondary eclipses in the CoRoT light curves

    Directory of Open Access Journals (Sweden)

    Belmonte Juan Antonio

    2013-04-01

    Full Text Available We identify and characterize secondary eclipses in the original light curves of published CoRoT planets using uniform detection and evaluation criteria. Our analysis is based on a Bayesian statistics: the eclipse search is carried out using Bayesian model selection, and the characterization of the plausible eclipse candidates using Bayesian parameter estimation. We discover statistically significant eclipse events for two planets, CoRoT-6b and CoRoT-11b, and for one brown dwarf, CoRoT-15b. We also find marginally significant eclipse events passing our plausibility criteria for CoRoT-3b, 13b, 18b, and 21b, and confirm the previously published CoRoT-1b and CoRoT-2b eclipses.

  17. Analysis of selected Kepler Mission planetary light curves

    CERN Document Server

    Rhodes, M D

    2014-01-01

    We have modified the graphical user interfaced close binary system analysis program CurveFit to the form WinKepler and applied it to 16 representative planetary candidate light curves found in the NASA Exoplanet Archive (NEA) at the Caltech website http://exoplanetarchive.ipac.caltech.edu, with an aim to compare different analytical approaches. WinKepler has parameter options for a realistic physical model, including gravity-brightening and structural parameters derived from the relevant Radau equation. We tested our best-fitting parameter-sets for formal determinacy and adequacy. A primary aim is to compare our parameters with those listed in the NEA. Although there are trends of agreement, small differences in the main parameter values are found in some cases, and there may be some relative bias towards a 90 degrees value for the NEA inclinations. These are assessed against realistic error estimates. Photometric variability from causes other than planetary transits affects at least 6 of the data-sets studie...

  18. VizieR Online Data Catalog: V346 Cen multiwavelength light curves (Mayer+, 2016)

    Science.gov (United States)

    Mayer, P.; Harmanec, P.; Wolf, M.; Nemravova, J.; Prsa, A.; Fremat, Y.; Zejda, M.; Liska, J.; Jurysek, J.; Honkova, K.; Masek, M.

    2016-06-01

    We present photographic light curves from O'Connell (1939, Publications of the Riverview College Observatory, 2, 5), uvby light curves from Gimenez et al. (1986A&AS...66...45G), BVR light curves from 0.6 m reflector with a CCD camera, Mt. John, New Zealand, green light curve from Sonnar 4/135mm telephoto lens with a CCD ATIK16IC camera, Sutherland, South Africa and BVRI light curves from 0.3m Meade Schmidt-Cassegrain reflector with a CCD camera. (5 data files).

  19. The infrared light curve of Periodic Comet Halley 1986 III and its relationship to the visual light curve, C2, and water production rates

    Science.gov (United States)

    Morris, Charles S.; Hanner, Martha S.

    1993-01-01

    The near-IR light curve of Periodic Comet Halley 1986 III is analyzed and compared with C2 production, water production, and the visual light curve. This is the most complete IR light curve compiled to date for any comet. The scattering phase function at small sun-comet-earth angles is shown to affect the slope of near-IR light curve significantly. P/Halley's dust production, as inferred from the IR light curve showed an increased production rate near perihelion which appears to be correlated with the onset of significant jet activity. The near-IR light curve, visual light curve, C2, and water production rates displayed different heliocentric variations, suggesting that one parameter cannot be accurately estimated from another. This is particularly true of the early preperihelion visual light curve. A peak of 0.3-0.5 magnitude in the visual magnitude, representing the integrated brightness of the comet's visible coma, lagged the other parameters by about a day. The near-IR color, J-H, was less red during periods of strong dust activity.

  20. Light Optics for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    In Optical Stochastic Cooling (OSC) radiation generated by a particle in a "pickup" undulator is amplified and transported to a downstream "kicker" undulator where it interacts with the same particle which radiated it. Fermilab plans to carry out both passive (no optical amplifier) and active (optical amplifier) tests of OSC at the Integrable Optics Test Accelerator (IOTA) currently in construction*. The performace of the optical system is analyzed with simulations in Synchrotron Radiation Workshop (SRW) accounting for the specific temporal and spectral properties of undulator radiation and being augmented to include dispersion of lens material.

  1. CfA4: Light Curves for 94 Type Ia Supernovae

    CERN Document Server

    Hicken, Malcolm; Kirshner, Robert P; Rest, Armin; Cramer, Claire E; Wood-Vasey, W Michael; Bakos, Gaspar; Berlind, Perry; Brown, Warren R; Caldwell, Nelson; Calkins, Mike; Currie, Thayne; de Kleer, Kathy; Esquerdo, Gil; Everett, Mark; Falco, Emilio; Fernandez, Jose; Friedman, Andrew S; Groner, Ted; Hartman, Joel; Holman, Matthew J; Hutchins, Robert; Keys, Sonia; Kipping, David; Latham, Dave; Marion, George H; Narayan, Gautham; Pahre, Michael; Pal, Andras; Peters, Wayne; Perumpilly, Gopakumar; Ripman, Ben; Sipocz, Brigitta; Szentgyorgyi, Andrew; Tang, Sumin; Torres, Manuel A P; Vaz, Amali; Wolk, Scott; Zezas, Andreas

    2012-01-01

    We present multi-band optical photometry of 94 spectroscopically-confirmed Type Ia supernovae (SN Ia) in the redshift range 0.0055 to 0.073, obtained between 2006 and 2011. There are a total of 5522 light curve points. We show that our natural system SN photometry has a precision of roughly 0.03 mag or better in BVr'i', 0.06 mag in u', and 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BVr'i'u'U, respectively. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of ~0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al (in prep.). This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well-characteriz...

  2. Afterglow Light Curves from Jetted Gamma-ray Burst Ejecta in Stellar Winds

    CERN Document Server

    Wu, X F; Huang, Y F; Ma, H T

    2003-01-01

    We revisit optical and radio afterglows arising from the shocks by relativistic conical ejecta running into pre-burst massive stellar winds. Under the homogeneous thin-shell approximation and the realistic treatment for lateral expansion of jets, our results show that a notable break of optical light curve within one decade in time indeed exists in most cases of our calculations by varying physical parameters within reasonable ranges. We rectify the conclusions of previous works on the jet+wind model, which claimed that there was no sharp break as the transition time lasts for two decades. Even for a relatively tenuous wind which cannot decelerate the relativistic jet to cause a sharp break within days, the wind termination shock due to the ram pressure balance by surrounding medium occurs at a small radius, i.e. several times $10^{17}$ cm. The jet will pass through the wind environment within several hours and run into the outer uniform dense medium. The resulting optical light curve flattens with a shallowe...

  3. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    Science.gov (United States)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  4. Periods in a 87 Years Light Curve of the Symbiotic Star MWC 560

    CERN Document Server

    Leibowitz, Elia M

    2015-01-01

    We have constructed a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of 3 basic clocks of the periods P1=19000 d, P2=1943 d and P3=722 d. These periods can plausibly, and consistently with the observations, be attributed to 3 physical mechanisms in the system. They are, respectively, the working of a solar-like magnetic dynamo cycle in the outer layers of the giant star of the system, the binary orbit cycle and the sidereal rotation cycle of the giant star. MWC 560 is the 7th symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems.

  5. The 2010 Eruption of the Recurrent Nova U Scorpii: The Multi-Wavelength Light Curve

    CERN Document Server

    Pagnotta, Ashley; Clem, James L; Landolt, Arlo U; Handler, Gerald; Page, Kim L; Osborne, Julian P; Schlegel, Eric M; Hoffman, Douglas I; Kiyota, Seiichiro; Maehara, Hiroyuki

    2015-01-01

    The recurrent nova U Scorpii most recently erupted in 2010. Our collaboration observed the eruption in bands ranging from the Swift XRT and UVOT w2 (193 nm) to K-band (2200 nm), with a few serendipitous observations stretching down to WISE W2 (4600 nm). Considering the time and wavelength coverage, this is the most comprehensively observed nova eruption to date. We present here the resulting multi-wavelength light curve covering the two months of the eruption as well as a few months into quiescence. For the first time, a U Sco eruption has been followed all the way back to quiescence, leading to the discovery of new features in the light curve, including a second, as-yet-unexplained, plateau in the optical and near-infrared. Using this light curve we show that U Sco nearly fits the broken power law decline predicted by Hachisu & Kato, with decline indices of -1.71 +/- 0.02 and -3.36 +/- 0.14. With our unprecedented multi-wavelength coverage, we construct daily spectral energy distributions and then calcul...

  6. THREE FUNDAMENTAL PERIODS IN AN 87 YEAR LIGHT CURVE OF THE SYMBIOTIC STAR MWC 560

    Energy Technology Data Exchange (ETDEWEB)

    Leibowitz, Elia M.; Formiggini, Liliana, E-mail: elia@astro.tau.ac.il [The Wise Observatory and the School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2015-08-15

    We construct a visual light curve of the symbiotic star MWC covering the last 87 years of its history. The data were assembled from the literature and from the AAVSO data bank. Most of the periodic components of the system brightness variation can be accounted for by the operation of three basic clocks of the periods P1 = 19,000 days, P2 = 1943 days, and P3 = 722 days. These periods can plausibly, and consistently with the observations, be attributed to three physical mechanisms in the system: the working of a solar-like magnetic dynamo cycle in the outer layers of the giant star of the system, the binary orbit cycle, and the sidereal rotation cycle of the giant star. MWC 560 is the seventh symbiotic star with historical light curves that reveal similar basic characteristics of the systems. The light curves of all these stars are well interpreted on the basis of the current understanding of the physical processes that are the major sources of the optical luminosity of these symbiotic systems.

  7. Exploring the Variable Sky with LINEAR. III. Classification of Periodic Light Curves

    CERN Document Server

    Palaversa, Lovro; Eyer, Laurent; Ruždjak, Domagoj; Sudar, Davor; Galin, Mario; Kroflin, Andrea; Mesarić, Martina; Munk, Petra; Vrbanec, Dijana; Božić, Hrvoje; Loebman, Sarah; Sesar, Branimir; Rimoldini, Lorenzo; Hunt-Walker, Nicholas; VanderPlas, Jacob; Westman, David; Stuart, J Scott; Becker, Andrew C; Srdoč, Gregor; Wozniak, Przemyslaw; Oluseyi, Hakeem

    2013-01-01

    We describe the construction of a highly reliable sample of approximately 7,000 optically faint periodic variable stars with light curves obtained by the asteroid survey LINEAR across 10,000 sq.deg of northern sky. Majority of these variables have not been cataloged yet. The sample flux limit is several magnitudes fainter than for most other wide-angle surveys; the photometric errors range from ~0.03 mag at $r=15$ to ~0.20 mag at r=18. Light curves include on average 250 data points, collected over about a decade. Using SDSS-based photometric recalibration of the LINEAR data for about 25 million objects, we selected ~200,000 most probable candidate variables and visually confirmed and classified approximately 7,000 periodic variables using phased light curves. The reliability and uniformity of visual classification across eight human classifiers was calibrated and tested using a SDSS Stripe 82 region variable star catalog, and verified using an unsupervised machine learning approach. The resulting sample of p...

  8. The Spitzer 24-micron Photometric Light Curve of the Eclipsing M-dwarf Binary GU Bootis

    CERN Document Server

    von Braun, Kaspar; Ciardi, David; Lopez-Morales, Mercedes; Hoard, D W; Wachter, Stefanie

    2007-01-01

    We present a carefully controlled set of Spitzer 24 \\micron MIPS time series observations of the low mass eclipsing binary star GU Bo\\"otis (GU Boo). Our data cover three secondary eclipses of the system: two consecutive events and an additional eclipse six weeks later. The study's main purpose is the long wavelength characterization of GU Boo's light curve, independent of limb darkening and less sensitive to surface features such as spots. Its analysis allows for independent verification of the results of optical studies of GU Boo. Our mid-infrared results show good agreement with previously obtained system parameters. In addition, the analysis of light curves of other objects in the field of view serves to characterize the photometric stability and repeatability of {\\it Spitzer's} MIPS-24 at flux densities between approximately 300--2,000$\\mu$Jy. We find that the light curve root mean square about the median level falls into the 1--4% range for flux densities higher than 1 mJy.

  9. Phase-transient hierarchical turbulence as an energy correlation generator of blazar light curves

    CERN Document Server

    Honda, Mitsuru

    2008-01-01

    Hierarchical turbulent structure constituting a jet is considered to reproduce energy-dependent variability in blazars, particularly, the correlation between X- and gamma-ray light curves measured in the TeV blazar Markarian 421. The scale-invariant filaments are featured by the ordered magnetic fields that involve hydromagnetic fluctuations serving as electron scatterers for diffusive shock acceleration, and the spatial size scales are identified with the local maximum electron energies, which are reflected in the synchrotron spectral energy distribution (SED) above the near-infrared/optical break. The structural transition of filaments is found to be responsible for the observed change of spectral hysteresis.

  10. Refraction at a curved dielectric interface - Geometrical optics solution

    Science.gov (United States)

    Lee, S.-W.; Sheshadri, M. S.; Mittra, R.; Jamnejad, V.

    1982-01-01

    The transmission of a spherical or plane wave through an arbitrarily curved dielectric interface is solved by the geometrical optics theory. The transmitted field is proportional to the product of the conventional Fresnel's transmission coefficient and a divergence factor (DF), which describes the cross-sectional variation (convergence or divergence) of a ray pencil as the latter propagates in the transmitted region. The factor DF depends on the incident wavefront, the curvatures of the interface, and the relative indices of the two media. Explicit matrix formulas for calculating DF are given, and its physical significance is illustrated via examples.

  11. Supervised detection of anomalous light curves in massive astronomical catalogs

    Energy Technology Data Exchange (ETDEWEB)

    Nun, Isadora; Pichara, Karim [Computer Science Department, Pontificia Universidad Católica de Chile, Santiago (Chile); Protopapas, Pavlos [Institute for Applied Computational Science, Harvard University, Cambridge, MA (United States); Kim, Dae-Won [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-09-20

    The development of synoptic sky surveys has led to a massive amount of data for which resources needed for analysis are beyond human capabilities. In order to process this information and to extract all possible knowledge, machine learning techniques become necessary. Here we present a new methodology to automatically discover unknown variable objects in large astronomical catalogs. With the aim of taking full advantage of all information we have about known objects, our method is based on a supervised algorithm. In particular, we train a random forest classifier using known variability classes of objects and obtain votes for each of the objects in the training set. We then model this voting distribution with a Bayesian network and obtain the joint voting distribution among the training objects. Consequently, an unknown object is considered as an outlier insofar it has a low joint probability. By leaving out one of the classes on the training set, we perform a validity test and show that when the random forest classifier attempts to classify unknown light curves (the class left out), it votes with an unusual distribution among the classes. This rare voting is detected by the Bayesian network and expressed as a low joint probability. Our method is suitable for exploring massive data sets given that the training process is performed offline. We tested our algorithm on 20 million light curves from the MACHO catalog and generated a list of anomalous candidates. After analysis, we divided the candidates into two main classes of outliers: artifacts and intrinsic outliers. Artifacts were principally due to air mass variation, seasonal variation, bad calibration, or instrumental errors and were consequently removed from our outlier list and added to the training set. After retraining, we selected about 4000 objects, which we passed to a post-analysis stage by performing a cross-match with all publicly available catalogs. Within these candidates we identified certain known

  12. Physical characteristics of faint meteors by light curve and high-resolution observations, and the implications for parent bodies

    Science.gov (United States)

    Subasinghe, Dilini; Campbell-Brown, Margaret D.; Stokan, Edward

    2016-04-01

    Optical observations of faint meteors (10-7 single body objects) show mostly symmetric light curves, surprisingly, and this indicates that light-curve shape is not an indication of fragility or fragmentation behaviour. Approximately 90 per cent of meteors observed with high-resolution video cameras show some form of fragmentation. Our results also show, unexpectedly, that meteors which show negligible fragmentation are more often on high-inclination orbits (i > 60°) than low-inclination ones. We also find that dynamically asteroidal meteors fragment as often as dynamically cometary meteors, which may suggest mixing in the early Solar system, or contamination between the dynamic groups.

  13. Complex Light and Optical Forces X

    DEFF Research Database (Denmark)

    This year marked the 10th Anniversary Edition of the conference on Complex Light and Optical Forces that is part of Photonics West. We again had a record number of submissions, indicative of the rising visibility and stature of this conference. Indeed, Complex Light and Optical Forces is still th...... the only yearly venue worldwide for presenting research on complex light. This year we did not find a need to organize joint sessions with other conferences at Photonics West....

  14. The anatomy of $\\gamma$-ray pulsar light curves

    CERN Document Server

    Seyffert, A S; Johnson, T J; Harding, A K

    2015-01-01

    We previously obtained constraints on the viewing geometries of 6 Fermi LAT pulsars using a multiwavelength approach (Seyffert et al., 2011). To obtain these constraints we compared the observed radio and $\\gamma$-ray light curves (LCs) for those 6 pulsars by eye to LCs predicted by geometric models detailing the location and extent of emission regions in a pulsar magnetosphere. As a precursor to obtaining these constraints, a parameter study was conducted to reinforce our qualitative understanding of how the underlying model parameters effect the LCs produced by the geometric models. Extracting useful trends from the $\\gamma$-ray model LCs proved difficult though due to the increased complexity of the geometric models for the $\\gamma$-ray emission relative to those for the radio emission. In this paper we explore a second approach to investigating the interplay between the model parameters and the LC atlas. This approach does not attempt to understand how the set of model parameters influences the LC shapes ...

  15. The light curves of RR Lyrae field stars

    Science.gov (United States)

    Simon, N. R.; Teays, T. J.

    1982-10-01

    Fourier decompositions have been made of the light curves of a large sample of RR Lyrae field stars. The coefficients have been tabulated. Following the scheme of an earlier investigation of classical Cepheids, certain combinations of the low-order coefficients - phi21, R21, and phi31 - are plotted against period. The Bailey-type c pulsators stand out from the type ab stars, particularly on the R21 plot which is found to be a more sensitive discriminator of Bailey type than is the traditionally employed amplitude-period diagram. The RR Lyrae plots of phi21, R21, and phi31 are compared with those previously obtained for classical Cepheids. It is noted that, while the Cepheid plots display a tightly defined progression with period, reflecting the influence of a modal resonance, in the RR Lyrae case there is much more scatter. However, some evidence is shown to exist for a Cepheid-like progression appearing among the longer period RR Lyrae pulsators and culminating in the unique small-amplitude variable XZ Ceti.

  16. CfA Nearby Supernova Ia Light Curves

    Science.gov (United States)

    Hicken, Malcolm; Berlind, P.; Blondin, S.; Calkins, M.; Challis, P.; Esquerdo, G.; Everett, M.; Fernandez, J.; Jha, S.; Kirshner, R. P.; Latham, D.; Modjaz, M.; Rest, A.; Wood-Vasey, M.

    2007-12-01

    Type Ia supernovae (SN Ia) are central in measuring the accelerated expansion of the Universe and the properties of the underlying dark energy. Nearby SN Ia are compared with distant ones to establish the history of cosmic expansion. In fact, current efforts in SN Ia cosmology are constrained by the limited number of well-observed nearby SN Ia. A significantly improved sample of nearby SN Ia, fully covering the space of Ia properties, is needed to maximize the utility of high-redshift SN Ia. Our ongoing project at the CfA has collected such a set of 170 SN Ia. We have used the FLWO 1.2m telescope. About half of our objects were observed in UBVRI with the 4Shooter camera and have an average of 10 epochs each while the other half was taken in UBVr'i' with the Keplercam instrument and have an average of 17 epochs each. We have now reduced this sample of over 25000 images and present calibrated light curves of these SN Ia along with an analysis of their properties. The CfA Supernova program is supported in part by the National Science Foundation through grant AST-0606772 to Harvard University.

  17. CSI 2264: Characterizing Young Stars in NGC 2264 with Stochastically Varying Light Curves

    CERN Document Server

    Stauffer, John; Rebull, Luisa; Hillenbrand, Lynne A; Turner, Neal J; Carpenter, John; Carey, Sean; Terebey, Susan; Morales-Calderon, Maria; Alencar, Silvia H P; McGinnis, Pauline; Sousa, Alana; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J; Covey, Kevin; Herbst, William; Gillen, Edward; Guimaraes, Marcelo Medeiros; Bouy, Herve; Favata, Fabio

    2016-01-01

    We provide CoRoT and Spitzer light curves, as well as broad-band multi-wavelength photometry and high resolution, multi- and single-epoch spectroscopy for 17 classical T Tauris in NGC 2264 whose CoRoT light curves (LCs) exemplify the "stochastic" LC class as defined in Cody et al. (2014). The most probable physical mechanism to explain the optical variability in this LC class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. As evidence in favor of this hypothesis, multi-epoch high resolution spectra for a subset of these stars shows that their veiling levels also vary in time and that this veiling variability is consistent in both amplitude and timescale with the optical LC morphology. Furthermore, the veiling variability is well-correlated with the strength of the HeI 6678A emission line, a feature predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst LC morphology (Stauffer et al. 2014) are also attributed...

  18. Classical Novae in Andromeda: Light Curves from the Palomar Transient Factory and GALEX

    CERN Document Server

    Cao, Yi; Neill, James D; Kulkarni, S R; Lou, Yu-Qing; Ben-Ami, Sagi; Bloom, Joshua S; Cenko, S Bradley; Law, Nicholas M; Nugent, Peter E; Ofek, Eran O; Poznanski, Dovi; Quimby, Robert M

    2012-01-01

    We present optical light curves of twenty-nine novae in M31 during the 2009 and 2010 observing seasons of the Palomar Transient Factory (PTF). The dynamic and rapid cadences in PTF monitoring of M31, from one day to even ten minutes, provide excellent temporal coverage of nova light curves, enabling us to record the photometric evolution of M31 novae in unprecedented detail. We also detect eight of these novae in the near ultraviolet (UV) band with the Galaxy Evolution Explorer (GALEX) satellite. Novae M31N2009-10b and 2010-11a show prominent UV emission peaking a few days prior to their optical maxima, possibly implying aspherical outbursts. Additionally, our blue-shifted spectrum of the recent outburst of PT And (M31N2010-12a) indicates that it is a recurrent nova in M31 and not a dwarf nova in the Milky Way as was previously assumed. Finally, we systematically searched for novae in all confirmed globular clusters of M31 and found only M31N 2010-10f associated with Bol 126. The specific nova rate in the M31...

  19. CSI 2264: Characterizing Accretion-Burst Dominated Light Curves for Young Stars in NGC 2264

    CERN Document Server

    Stauffer, John; Baglin, Annie; Alencar, Silvia H P; Rebull, Luisa; Hillenbrand, Lynne A; Venuti, Laura; Turner, Neal J; Carpenter, John; Plavchan, Peter; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Bouvier, Jerome; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Hartmann, Lee; Calvet, Nuria; Whitney, Barbara; Barrado, David; Vrba, Frederick J; Covey, Kevin; Herbst, William; Furesz, Gabor; Aigrain, Suzanne

    2014-01-01

    Based on more than four weeks of continuous high cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high quality, multi-wavelength light curves for young stellar objects (YSOs) whose optical variability is dominated by short duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief -- several hour to one day -- brightenings at optical and near-infrared (IR) wavelengths with amplitudes generally in the range 5-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a thirty day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u-g vs. g-r color-color diagram with the largest UV excesses. These stars also have large Halpha equivalent widths, and either centrally peaked, lumpy Halpha emission...

  20. Type II supernova energetics and comparison of light curves to shock-cooling models

    CERN Document Server

    Rubin, Adam; De Cia, Annalisa; Horesh, Assaf; Khazov, Danny; Ofek, Eran O; Kulkarni, S R; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer; Vreeswijk, Paul; Kasliwal, Mansi M; Ben-Ami, Sagi; Perley, Daniel A; Cao, Yi; Cenko, S Bradley; Rebbapragada, Umaa D; Woźniak, P R; Filippenko, Alexei V; Clubb, K I; Nugent, Peter E; Pan, Y -C; Badenes, C; Howell, D Andrew; Valenti, Stefano; Sand, David; Sollerman, J; Johansson, Joel; Leonard, Douglas C; Horst, J Chuck; Armen, Stephen F; Fedrow, Joseph M; Quimby, Robert M; Mazzali, Paulo; Pian, Elena; Sternberg, Assaf; Matheson, Thomas; Sullivan, M; Maguire, K; Lazarevic, Sanja

    2015-01-01

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of $57$ $R$-band Type II SN light curves that are well monitored during their rise, having $>5$ detections during the first 10 days after discovery, and a well-constrained time of explosion to within $1-3$ days. We show that the energy per unit mass ($E/M$) can be deduced to roughly a factor of five by comparing early-time optical data to the model of Rabinak & Waxman (2011), while the progenitor radius cannot be determined based on $R$-band data alone. We find that Type II SN explosion energies span a range of $E/M=(0.2-20)\\times 10^{51} \\; \\rm{erg/(10 M}_\\odot$), and have a mean energy per unit mass of $\\left\\langle E/M \\right\\rangle = 0.85\\times 10^{51} \\; \\rm{erg/(10 M}_\\odot$), corrected for Malmquist bias. Assuming a small sp...

  1. The bolometric light curves and physical parameters of stripped-envelope supernovae

    CERN Document Server

    Prentice, S J; Pian, E; Gal-Yam, A; Kulkarni, S R; Rubin, A; Corsi, A; Fremling, C; Sollerman, J; Yaron, O; Arcavi, I; Zheng, W; Kasliwal, M M; Filippenko, V V; Cenko, S B; Cao, Y; Nugent, P

    2016-01-01

    The optical and optical/near-infrared pseudobolometric light curves of 84 stripped-envelope supernovae (SNe) are constructed using a consistent method and a standard cosmology. The light curves are analysed to derive temporal characteristics and peak luminosity $L_{\\mathrm{p}}$, enabling the construction of a luminosity function. Subsequently, the mass of $^{56}$Ni synthesised in the explosion, along with the ratio of ejecta mass to ejecta kinetic energy, are found. Analysis shows that host-galaxy extinction is an important factor in accurately determining luminosity values as it is significantly greater than Galactic extinction in most cases. It is found that broad-lined SNe Ic (SNe Ic-BL) and gamma-ray burst SNe are the most luminous subtypes with a combined median $L_{\\mathrm{p}}$, in erg s$^{-1}$, of log($L_{\\mathrm{p}})=42.99$ compared to $42.51$ for SNe Ic, $42.50$ for SNe Ib, and $42.36$ for SNe IIb. It is also found that SNe Ic-BL synthesise approximately twice the amount of $^{56}$Ni compared with SN...

  2. CLASSICAL NOVAE IN ANDROMEDA: LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY AND GALEX

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yi; Lou Yuqing [Tsinghua Center for Astrophysics (THCA), Department of Physics, Tsinghua University, Beijing 100084 (China); Kasliwal, Mansi M.; Neill, James D.; Kulkarni, S. R.; Quimby, Robert M. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Ben-Ami, Sagi [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Bloom, Joshua S.; Cenko, S. Bradley; Nugent, Peter E. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Law, Nicholas M. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, M5S 3H4 Ontario (Canada); Ofek, Eran O. [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Poznanski, Dovi, E-mail: ycao@astro.caltech.edu [School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 69978 (Israel)

    2012-06-20

    We present optical light curves of 29 novae in M31 during the 2009 and 2010 observing seasons of the Palomar Transient Factory (PTF). The dynamic and rapid cadences in PTF monitoring of M31, from one day to ten minutes, provide excellent temporal coverage of nova light curves, enabling us to record the photometric evolution of M31 novae in unprecedented detail. We also detect eight of these novae in the near-ultraviolet (UV) band with the Galaxy Evolution Explorer (GALEX) satellite. Novae M31N 2009-10b and M31N 2010-11a show prominent UV emission peaking a few days prior to their optical maxima, possibly implying aspherical outbursts. Additionally, our blueshifted spectrum of the recent outburst of PT And (M31N 2010-12a) indicates that it is a recurrent nova in M31 and not a dwarf nova in the Milky Way as was previously assumed. Finally, we systematically searched for novae in all confirmed globular clusters (GCs) of M31 and found only M31N 2010-10f associated with Bol 126. The specific nova rate in the M31 GC system is thus about one per year, which is not enhanced relative to the rate outside the GC system.

  3. Phase Functions and Light Curves of Wide Separation Extrasolar Giant Planets

    CERN Document Server

    Sudarsky, D; Hubeny, I; Li, A; Sudarsky, David; Burrows, Adam; Hubeny, Ivan; Li, Aigen

    2005-01-01

    We calculate self-consistent extrasolar giant planet (EGP) phase functions and light curves for orbital distances ranging from 0.2 AU to 15 AU. We explore the dependence on wavelength, cloud condensation, and Keplerian orbital elements. We find that the light curves of EGPs depend strongly on wavelength, the presence of clouds, and cloud particle sizes. Furthermore, the optical and infrared colors of most EGPs are phase-dependent, tending to be reddest at crescent phases in $V-R$ and $R-I$. Assuming circular orbits, we find that at optical wavelengths most EGPs are 3 to 4 times brighter near full phase than near greatest elongation for highly-inclined (i.e., close to edge-on) orbits. Furthermore, we show that the planet/star flux ratios depend strongly on the Keplerian elements of the orbit, particularly inclination and eccentricity. Given a sufficiently eccentric orbit, an EGP's atmosphere may make periodic transitions from cloudy to cloud-free, an effect that may be reflected in the shape and magnitude of t...

  4. GERLUMPH Data Release 2: 2.5 billion simulated microlensing light curves

    CERN Document Server

    Vernardos, Georgios; Bate, Nicholas F; Croton, Darren; Vohl, Dany

    2015-01-01

    In the upcoming synoptic all--sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimposed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disc. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated $>2.5$ billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to: train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our ...

  5. Optical detection dental disease using polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Matthew J. (Livermore, CA); Colston, Jr., Billy W. (Livermore, CA); Sathyam, Ujwal S. (Livermore, CA); Da Silva, Luiz B. (Danville, CA); Fried, Daniel (San Francisco, CA)

    2003-01-01

    A polarization sensitive optical imaging system is used to detect changes in polarization in dental tissues to aid the diagnosis of dental disease such as caries. The degree of depolarization is measured by illuminating the dental tissue with polarized light and measuring the polarization state of the backscattered light. The polarization state of this reflected light is analyzed using optical polarimetric imaging techniques. A hand-held fiber optic dental probe is used in vivo to direct the incident beam to the dental tissue and collect the reflected light. To provide depth-resolved characterization of the dental tissue, the polarization diagnostics may be incorporated into optical coherence domain reflectometry and optical coherence tomography (OCDR/OCT) systems, which enables identification of subsurface depolarization sites associated with demineralization of enamel or bone.

  6. Optical forces through guided light deflections

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton;

    2013-01-01

    Optical trapping and manipulation typically relies on shaping focused light to control the optical force, usually on spherical objects. However, one can also shape the object to control the light deflection arising from the light-matter interaction and, hence, achieve desired optomechanical effects....... In this work we look into the object shaping aspect and its potential for controlled optical manipulation. Using a simple bent waveguide as example, our numerical simulations show that the guided deflection of light efficiently converts incident light momentum into optical force with one order...... show that the force on the waveguide exceeds the combined forces on spherical trapping handles. Furthermore, it shows that static illumination can exert a constant force on a moving structure, unlike the position-dependent forces from harmonic potentials in conventional trapping....

  7. Shock Breakout and Early Light Curves of Type II-P Supernovae Observed with Kepler

    CERN Document Server

    Garnavich, P M; Rest, A; Shaya, E J; Olling, R P; Kasen, D; Villar, A

    2016-01-01

    We discovered two transient events in the Kepler field with light curves that strongly suggest they are type II-P supernovae. Using the fast cadence of the Kepler observations we precisely estimate the rise time to maximum for KSN2011a and KSN2011d as 10.5$\\pm 0.4$ and 13.3$\\pm 0.4$ rest-frame days respectively. Based on fits to idealized analytic models, we find the progenitor radius of KSN2011a (280$\\pm 20$ R$_\\odot$) to be significantly smaller than that for KSN2011d (490$\\pm 20$ R$_\\odot$) but both have similar explosion energies of 2.0$\\pm 0.3\\times 10^{51}$ erg. The rising light curve of KSN2011d is an excellent match to that predicted by simple models of exploding red supergiants (RSG). However, the early rise of KSN2011a is faster than the models predict possibly due to the supernova shockwave moving into pre-existing wind or mass-loss from the RSG. A mass loss rate of $10^{-4}$ M$_\\odot$ yr$^{-1}$ from the RSG can explain the fast rise without impacting the optical flux at maximum light or the shape ...

  8. The diverse broad-band light-curves of Swift GRBs reproduced with the cannonball model

    CERN Document Server

    Dado, Shlomo; De Rújula, A

    2009-01-01

    Two radiation mechanisms, inverse Compton scattering (ICS) and synchrotron radiation (SR), suffice within the cannonball (CB) model of long gamma ray bursts (LGRBs) and X-ray flashes (XRFs) to provide a very simple and accurate description of their observed prompt emission and afterglows. Simple as they are, the two mechanisms and the burst environment generate the rich structure of the light curves at all frequencies and times. This is demonstrated for 33 selected Swift LGRBs and XRFs, which are well sampled from early time until late time and well represent the entire diversity of the broad band light curves of Swift LGRBs and XRFs. Their prompt gamma-ray and X-ray emission is dominated by ICS of glory light. During their fast decline phase, ICS is taken over by SR which dominates their broad band afterglow. The pulse shape and spectral evolution of the gamma-ray peaks and the early-time X-ray flares, and even the delayed optical `humps' in XRFs, are correctly predicted. The canonical and non-canonical X-ra...

  9. iPTF13beo: The Double-Peaked Light Curve of a Type Ibn Supernova Discovered Shortly after Explosion

    CERN Document Server

    Gorbikov, Evgeny; Ofek, Eran O; Vreeswijk, Paul M; Nugent, Peter E; Chotard, Nicolas; Kulkarni, Shrinivas R; Cao, Yi; De Cia, Annalisa; Yaron, Ofer; Tal, David; Arcavi, Iair; Kasliwal, Mansi M; Cenko, S Bradley; Sullivan, Mark

    2013-01-01

    We present optical photometric and spectroscopic observations of the Type Ibn (SN 2006jc-like) supernova iPTF13beo. Detected by the intermediate Palomar Transient Factory on 2013 May 19.39, ~3 hours after the estimated explosion time, iPTF13beo is the youngest and the most distant (430 Mpc) Type Ibn event ever observed. Type Ibn events are rare, and their early evolution, both photometric and spectroscopic, has not been studied yet. The iPTF13beo light curve is consistent with light curves of other Type Ibn SNe and with light curves of fast Type Ic events, but with a slightly faster rise-time of two days. In addition, the iPTF13beo light curve exhibits a double-peak structure separated by 9 days, not observed before in any Type Ibn SN. Low-resolution spectra were obtained during the two peaks of the iPTF13beo light curve. The spectrum taken during the rising stage (2.4 days after the estimated explosion time) is featureless and similar to early spectra of SNe Ic-BL. The spectrum obtained during the declining ...

  10. Towards All-optical Light Robotics

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    In the Programmable Phase Optics (PPO) group at DTU Fotonik we pioneered the new and emerging research area of so-called Light Robotics including the new and disruptive 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time optically manipulated and “remote-controlled”......In the Programmable Phase Optics (PPO) group at DTU Fotonik we pioneered the new and emerging research area of so-called Light Robotics including the new and disruptive 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time optically manipulated and “remote......-controlled” in a volume with six-degrees-of-freedom. To be exploring the full potential of this new drone-like 3D light robotics approach in challenging microscopic geometries requires a versatile and real-time reconfigurable light coupling that can dynamically track a plurality of “light robots” in 3D to ensure...... continuous optimal light coupling on the fly. Our latest developments in this new and exciting area will be reviewed in this invited presentation....

  11. Magnetar-driven Shock Breakout and Double-peaked Supernova Light Curves

    Science.gov (United States)

    Kasen, Daniel; Metzger, Brian D.; Bildsten, Lars

    2016-04-01

    The light curves of some luminous supernovae are suspected to be powered by the spindown energy of a rapidly rotating magnetar. Here we describe a possible signature of the central engine: a burst of shock breakout emission occurring several days after the supernova explosion. The energy input from the magnetar inflates a high-pressure bubble that drives a shock through the pre-exploded supernova ejecta. If the magnetar is powerful enough, that shock will near the ejecta surface and become radiative. At the time of shock breakout, the ejecta will have expanded to a large radius (∼ {10}14 cm) so that the radiation released is at optical/ultraviolet wavelengths ({T}{{eff}} ≈ 20,000 K) and lasts for several days. The luminosity and timescale of this magnetar-driven shock breakout are similar to the first peak observed recently in the double-peaked light curve of SN-LSQ14BDQ. However, for a large region of model parameter space, the breakout emission is predicted to be dimmer than the diffusive luminosity from direct magnetar heating. A distinct double-peaked light curve may therefore only be conspicuous if thermal heating from the magnetar is suppressed at early times. We describe how such a delay in heating may naturally result from inefficient dissipation and thermalization of the pulsar wind magnetic energy. Without such suppression, the breakout may only be noticeable as a small bump or kink in the early luminosity or color evolution, or as a small but abrupt rise in the photospheric velocity. A similar breakout signature may accompany other central engines in supernovae, such as a black hole accreting fallback material.

  12. Nonlinear optics with stationary pulses of light

    OpenAIRE

    Andre, A.; Bajcsy, M.; Zibrov, A. S.; Lukin, M. D.

    2004-01-01

    We show that the recently demonstrated technique for generating stationary pulses of light [Nature {\\bf 426}, 638 (2003)] can be extended to localize optical pulses in all three spatial dimensions in a resonant atomic medium. This method can be used to dramatically enhance the nonlinear interaction between weak optical pulses. In particular, we show that an efficient Kerr-like interaction between two pulses can be implemented as a sequence of several purely linear optical processes. The resul...

  13. The bumpy light curve of Type IIn supernova iPTF13z over 3 years

    Science.gov (United States)

    Nyholm, A.; Sollerman, J.; Taddia, F.; Fremling, C.; Moriya, T. J.; Ofek, E. O.; Gal-Yam, A.; De Cia, A.; Roy, R.; Kasliwal, M. M.; Cao, Y.; Nugent, P. E.; Masci, F. J.

    2017-08-01

    A core-collapse (CC) supernova (SN) of Type IIn is dominated by the interaction of SN ejecta with the circumstellar medium (CSM). Some SNe IIn (e.g. SN 2006jd) have episodes of re-brightening ("bumps") in their light curves. We present iPTF13z, a Type IIn SN discovered on 2013 February 1 by the intermediate Palomar Transient Factory (iPTF). This SN showed at least five bumps in its declining light curve between 130 and 750 days after discovery. We analyse this peculiar behaviour and try to infer the properties of the CSM, of the SN explosion, and the nature of the progenitor star. We obtained multi-band optical photometry for over 1000 days after discovery with the P48 and P60 telescopes at Palomar Observatory. We obtained low-resolution optical spectra during the same period. We did an archival search for progenitor outbursts. We analyse the photometry and the spectra, and compare iPTF13z to other SNe IIn. In particular we derive absolute magnitudes, colours, a pseudo-bolometric light curve, and the velocities of the different components of the spectral lines. A simple analytical model is used to estimate the properties of the CSM. iPTF13z had a light curve peaking at Mr ≲ - 18.3 mag. The five bumps during its decline phase had amplitudes ranging from 0.4 to 0.9 mag and durations between 20 and 120 days. The most prominent bumps appeared in all the different optical bands, when covered. The spectra of this SN showed typical SN IIn characteristics, with emission lines of Hα (with broad component FWHM 103 - 104 km s-1 and narrow component FWHM 102 km s-1) and He i, but also with Fe ii, Ca ii, Na i D and Hβ P Cygni profiles (with velocities of 103km s-1). A pre-explosion outburst was identified lasting ≳ 50 days, with Mr ≈ - 15 mag around 210 days before discovery. Large, variable progenitor mass-loss rates (≳0.01M⊙ yr-1) and CSM densities (≳10-16 g cm-3) are derived. The SN was hosted by a metal-poor dwarf galaxy at redshift z = 0.0328. We suggest that

  14. Control of optical solitons by light waves.

    Science.gov (United States)

    Grigoryan, V S; Hasegawa, A; Maruta, A

    1995-04-15

    A new method of controlling optical solitons by means of light wave(s) in fibers is presented. By a proper choice of light wave(s), parametric four-wave mixing can control the soliton shape as well as the soliton parameters (amplitude, frequency, velocity, and position).

  15. Optical Linear Algebra for Computational Light Transport

    Science.gov (United States)

    O'Toole, Matthew

    Active illumination refers to optical techniques that use controllable lights and cameras to analyze the way light propagates through the world. These techniques confer many unique imaging capabilities (e.g. high-precision 3D scanning, image-based relighting, imaging through scattering media), but at a significant cost; they often require long acquisition and processing times, rely on predictive models for light transport, and cease to function when exposed to bright ambient sunlight. We develop a mathematical framework for describing and analyzing such imaging techniques. This framework is deeply rooted in numerical linear algebra, and models the transfer of radiant energy through an unknown environment with the so-called light transport matrix. Performing active illumination on a scene equates to applying a numerical operator on this unknown matrix. The brute-force approach to active illumination follows a two-step procedure: (1) optically measure the light transport matrix and (2) evaluate the matrix operator numerically. This approach is infeasible in general, because the light transport matrix is often much too large to measure, store, and analyze directly. Using principles from optical linear algebra, we evaluate these matrix operators in the optical domain, without ever measuring the light transport matrix in the first place. Specifically, we explore numerical algorithms that can be implemented partially or fully with programmable optics. These optical algorithms provide solutions to many longstanding problems in computer vision and graphics, including the ability to (1) photo-realistically change the illumination conditions of a given photo with only a handful of measurements, (2) accurately capture the 3D shape of objects in the presence of complex transport properties and strong ambient illumination, and (3) overcome the multipath interference problem associated with time-of-flight cameras. Most importantly, we introduce an all-new imaging regime---optical

  16. Methodology of light response curves: application of chlorophyll fluorescence to microphytobenthic biofilms

    NARCIS (Netherlands)

    Herlory, O.; Richard, P.; Blanchard, G.F.

    2007-01-01

    The light response curve methodology for microphytobenthic biofilms was studied by comparing the two most usual approaches used in pulse amplitude modulated (PAM) fluorometry. The non-sequential light curve (N-SLC) method is characterized by independent measures of the photosynthetic activity across

  17. appaloosa: Python-based flare finding code for Kepler light curves

    Science.gov (United States)

    Davenport, James R. A.

    2016-08-01

    The appaloosa suite automates flare-finding in every Kepler light curves. It builds quiescent light curve models that include long- and short-cadence data through iterative de-trending and includes completeness estimates via artificial flare injection and recovery tests.

  18. GAMMA-RAY LIGHT CURVE AND PHASE-RESOLVED SPECTRA FROM GEMINGA PULSAR

    Institute of Scientific and Technical Information of China (English)

    ZHANG LI; BIAN XIA; MEI DONG-CHENG

    2001-01-01

    We calculate the light curve and phase-resolved spectra of Geminga in a three-dimensional pulsar magnetosphere model. The light curve of gamma-rays is consistent with that observed if the magnetic inclination and viewing angle are~50° and~86° respectively. We also model the phase-resolved spectra of the Geminga pulsar.

  19. Application of Geodetic VLBI Data to Obtaining Long-Term Light Curves for Astrophysics

    Science.gov (United States)

    Kijima, Masachika

    2010-01-01

    The long-term light curve is important to research on binary black holes and disk instability in AGNs. The light curves have been drawn mainly using single dish data provided by the University of Michigan Radio Observatory and the Metsahovi Radio Observatory. Hence, thus far, we have to research on limited sources. I attempt to draw light curves using VLBI data for those sources that have not been monitored by any observatories with single dish. I developed software, analyzed all geodetic VLBI data available at the IVS Data Centers, and drew the light curves at 8 GHz. In this report, I show the tentative results for two AGNs. I compared two light curves of 4C39.25, which were drawn based on single dish data and on VLBI data. I confirmed that the two light curves were consistent. Furthermore, I succeeded in drawing the light curve of 0454-234 with VLBI data, which has not been monitored by any observatory with single dish. In this report, I suggest that the geodetic VLBI archive data is useful to obtain the long-term light curves at radio bands for astrophysics.

  20. The Carnegie Supernova Project: Light-curve Fitting with SNooPy

    Science.gov (United States)

    Burns, Christopher R.; Stritzinger, Maximilian; Phillips, M. M.; Kattner, ShiAnne; Persson, S. E.; Madore, Barry F.; Freedman, Wendy L.; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Suntzeff, Nicholas B.

    2011-01-01

    In providing an independent measure of the expansion history of the universe, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia supernovae (SNe Ia) in the near-infrared bands Y and J. These can be used to construct rest-frame i-band light curves which, when compared to a low-z sample, yield distance moduli that are less sensitive to extinction and/or decline-rate corrections than in the optical. However, working with NIR observed and i-band rest-frame photometry presents unique challenges and has necessitated the development of a new set of observational tools in order to reduce and analyze both the low-z and high-z CSP sample. We present in this paper the methods used to generate uBVgriYJH light-curve templates based on a sample of 24 high-quality low-z CSP SNe. We also present two methods for determining the distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the Hubble flow is used to calibrate these methods. We then apply the method and derive distances to seven galaxies that are so nearby that their motions are not dominated by the Hubble flow.

  1. The Carnegie Supernova Project: Light Curve Fitting with SNooPy

    CERN Document Server

    Burns, Christopher R; Phillips, M M; Katner, ShiAnne; Persson, S E; Madore, Barry F; Freedman, Wendy L; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; Folatelli, Gaston; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Salgado, Francisco; Suntzeff, Nicholas B

    2010-01-01

    In providing an independent measure of the expansion history of the Universe, the Carnegie Supernova Project (CSP) has observed 71 high-z Type Ia supernovae (SNe Ia) in the near-infrared bands Y and J. These can be used to construct rest-frame i-band light curves which, when compared to a low-z sample, yield distance moduli that are less sensitive to extinction and/or decline-rate corrections than in the optical. However, working with NIR observed and i-band rest frame photometry presents unique challenges and has necessitated the development of a new set of observational tools in order to reduce and analyze both the low-z and high-z CSP sample. We present in this paper the methods used to generate uBVgriYJH light-curve templates based on a sample of 24 high-quality low-z CSP SNe. We also present two methods for determining the distances to the hosts of SN Ia events. A larger sample of 30 low-z SNe Ia in the Hubble Flow are used to calibrate these methods. We then apply the method and derive distances to seve...

  2. The DOHA algorithm: a new recipe for cotrending large-scale transiting exoplanet survey light curves

    Science.gov (United States)

    Mislis, D.; Pyrzas, S.; Alsubai, K. A.; Tsvetanov, Z. I.; Vilchez, N. P. E.

    2017-03-01

    We present DOHA, a new algorithm for cotrending photometric light curves obtained by transiting exoplanet surveys. The algorithm employs a novel approach to the traditional 'differential photometry' technique, by selecting the most suitable comparison star for each target light curve, using a two-step correlation search. Extensive tests on real data reveal that DOHA corrects both intra-night variations and long-term systematics affecting the data. Statistical studies conducted on a sample of ∼9500 light curves from the Qatar Exoplanet Survey reveal that DOHA-corrected light curves show an rms improvement of a factor of ∼2, compared to the raw light curves. In addition, we show that the transit detection probability in our sample can increase considerably, even up to a factor of 7, after applying DOHA.

  3. The DOHA algorithm: a new recipe for cotrending large-scale transiting exoplanet survey light curves

    CERN Document Server

    Mislis, D; Alsubai, K A; Tsvetanov, Z I; Vilchez, N P E

    2016-01-01

    We present DOHA, a new algorithm for cotrending photometric light curves obtained by transiting exoplanet surveys. The algorithm employs a novel approach to the traditional "differential photometry" technique, by selecting the most suitable comparison star for each target light curve, using a two-step correlation search. Extensive tests on real data reveal that DOHA corrects both intra-night variations and long-term systematics affecting the data. Statistical studies conducted on a sample of 9500 light curves from the Qatar Exoplanet Survey reveal that DOHA-corrected light curves show an RMS improvement of a factor of 2, compared to the raw light curves. In addition, we show that the transit detection probability in our sample can increase considerably, even up to a factor of 7, after applying DOHA.

  4. Nanoscale optical interferometry with incoherent light

    Science.gov (United States)

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-01-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171

  5. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Hicken, Malcolm; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Wood-Vasey, W.Michael; /Pittsburgh U.; Blondin, Stephane; /European Southern Observ.; Challis, Peter; /Harvard-Smithsonian Ctr. Astrophys.; Jha, Saurabh; /Rutgers U., Piscataway; Kelly, Patrick L.; /KIPAC, Menlo Park; Rest, Armin; /Harvard U. /Cerro-Tololo InterAmerican Obs.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2012-04-06

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sub -0.068}{sup +0.066} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {Delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  6. The eclipsing binary TY CrA revisited: What near-IR light curves tell us

    CERN Document Server

    Vanko, M; Pribulla, T; Chini, R; Covino, E; Neuhaeuser, R

    2013-01-01

    New photometric observations of the hierarchical eclipsing TY CrA system were taken in the optical with VYSOS6 and in the near-IR with SOFI and REMIR. They are the first observations showing the deep eclipse minimum of the pre-main sequence secondary in the near-IR. For the first time, the secondary minimum can be reliably used in the calculation of the O-C diagram of TY CrA. By now, the O-C diagram can be studied on a time basis of about two decades. We confirm, that the O-C diagram cannot be explained by the spectroscopic tertiary. For the first time, the light curve of the inner eclipsing binary is analysed in both optical and near-IR bands simultaneously. In combination with already published spectroscopic elements, precise absolute dimensions and masses of the primary and the secondary component are obtained using the ROCHE code. The inclusion of the near-IR data puts strong constraints on the third light which is composed of the reflection nebula, the spectroscopic tertiary and a visual fourth component...

  7. Microlensing light curve of a source on the other side of a wormhole

    CERN Document Server

    Tsukamoto, Naoki

    2016-01-01

    The observation of microlensing is a good probe into the topological structure of dark gravitating celestial objects. In this paper, we study the microlensing light curves due to light rays emitted by a source on the other side of a traversable wormhole. The present method will apply for general spherically symmetric traversable wormholes. Based on the obtained light curves, we discuss a possibility to observationally distinguish traversable wormholes with nontrivial topology from usual positive masses and other exotic objects without nontrivial topology.

  8. Type II Supernova Energetics and Comparison of Light Curves to Shock-cooling Models

    Science.gov (United States)

    Rubin, Adam; Gal-Yam, Avishay; De Cia, Annalisa; Horesh, Assaf; Khazov, Danny; Ofek, Eran O.; Kulkarni, S. R.; Arcavi, Iair; Manulis, Ilan; Yaron, Ofer; Vreeswijk, Paul; Kasliwal, Mansi M.; Ben-Ami, Sagi; Perley, Daniel A.; Cao, Yi; Cenko, S. Bradley; Rebbapragada, Umaa D.; Woźniak, P. R.; Filippenko, Alexei V.; Clubb, K. I.; Nugent, Peter E.; Pan, Y.-C.; Badenes, C.; Howell, D. Andrew; Valenti, Stefano; Sand, David; Sollerman, J.; Johansson, Joel; Leonard, Douglas C.; Horst, J. Chuck; Armen, Stephen F.; Fedrow, Joseph M.; Quimby, Robert M.; Mazzali, Paulo; Pian, Elena; Sternberg, Assaf; Matheson, Thomas; Sullivan, M.; Maguire, K.; Lazarevic, Sanja

    2016-03-01

    During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present, for the first time, a sample of 57 R-band SN II light curves that are well-monitored during their rise, with \\gt 5 detections during the first 10 days after discovery, and a well-constrained time of explosion to within 1-3 days. We show that the energy per unit mass (E/M) can be deduced to roughly a factor of five by comparing early-time optical data to the 2011 model of Rabinak & Waxman, while the progenitor radius cannot be determined based on R-band data alone. We find that SN II explosion energies span a range of E/M = (0.2-20) × 1051 erg/(10 {M}⊙ ), and have a mean energy per unit mass of =0.85× {10}51 erg/(10 {M}⊙ ), corrected for Malmquist bias. Assuming a small spread in progenitor masses, this indicates a large intrinsic diversity in explosion energy. Moreover, E/M is positively correlated with the amount of 56Ni produced in the explosion, as predicted by some recent models of core-collapse SNe. We further present several empirical correlations. The peak magnitude is correlated with the decline rate ({{Δ }}{m}15), the decline rate is weakly correlated with the rise time, and the rise time is not significantly correlated with the peak magnitude. Faster declining SNe are more luminous and have longer rise times. This limits the possible power sources for such events.

  9. Polarized light in optics and spectroscopy

    CERN Document Server

    Kliger, David S

    1990-01-01

    This comprehensive introduction to polarized light provides students and researchers with the background and the specialized knowledge needed to fully utilize polarized light. It provides a basic introduction to the interaction of light with matter for those unfamiliar with photochemistry and photophysics. An in-depth discussion of polarizing optics is also given. Different analytical techniques are introduced and compared and introductions to the use of polarized light in various forms of spectroscopy are provided.Key Features* Starts at a basic level and develops tools for resear

  10. Fiber Optics: A New World of Possibilities in Light.

    Science.gov (United States)

    Hutchinson, John

    1990-01-01

    The background and history of light and fiber optics are discussed. Applications for light passed either directly or indirectly through optical fibers are described. Suggestions for science activities that use fiber optics are provided. (KR)

  11. Gamma-Ray Light Curves from Pulsar Magnetospheres with Finite Conductivity

    Science.gov (United States)

    Harding, A. K.; Kalapotharakos, C.; Kazanas, D.; Contopoulos, I.

    2012-01-01

    The Fermi Large Area Telescope has provided an unprecedented database for pulsar emission studies that includes gamma-ray light curves for over 100 pulsars. Modeling these light curves can reveal and constrain the geometry of the particle accelerator, as well as the pulsar magnetic field structure. We have constructed 3D magnetosphere models with finite conductivity, that bridge the extreme vacuum and force-free solutions used in previous light curves modeling. We are investigating the shapes of pulsar gamma-ray light curves using these dissipative solutions with two different approaches: (l) assuming geometric emission patterns of the slot gap and outer gap, and (2) using the parallel electric field provided by the resistive models to compute the trajectories and . emission of the radiating particles. The light curves using geometric emission patterns show a systematic increase in gamma-ray peak phase with increasing conductivity, introducing a new diagnostic of these solutions. The light curves using the model electric fields are very sensitive to the conductivity but do not resemble the observed Fermi light curves, suggesting that some screening of the parallel electric field, by pair cascades not included in the models, is necessary

  12. Optical Doppler shift with structured light

    OpenAIRE

    2011-01-01

    When a light beam with a transverse spatially varying phase is considered for optical remote sensing, in addition to the usual longitudinal Doppler frequency shift of the returned signal induced by the motion of the scatter along the beam axis, a new transversal Doppler shift appears associated to the motion of the scatterer in the plane perpendicular to the beam axis. We discuss here how this new effect can be used to enhance the current capabilities of optical measurement system...

  13. Periodicity Analysis of X-ray Light Curves of SS 433

    Science.gov (United States)

    Jun-yi, Wang; Xiang-long, Lu; Qiu-wen, Zhao; Dian-qiao, Dong; Bao-qiang, Lao; Yang, Lu; Yan-heng, Wei; Xiao-cong, Wu; Tao, An

    2017-01-01

    SS 433 is sofar the unique X-ray binary that has the simultaneously detected orbital period, super-orbital period, and nutation period, as well as a bidirectional spiral jet. The study on its X-ray light variability is helpful for understanding the dynamic process of the system, and the correlations between the different wavebands. In this paper, two time-series analysis techniques, i.e., the Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periods in the Swift/BAT (Burst Alert Telescope) (15-50 keV) and RXTE/ASM (Rose X-ray Timing Explorer/All Sky Monitor) (1.5-3, 3- 4, and 5-12 keV) light curves of SS 433, and the Monte Carlo simulation is performed for the obtained periodical components. For the 15-50 keV energy band, five significant periodical components are detected, which are P1(∼6.29 d), P2 (∼6.54 d), P3 (∼13.08 d), P4 (∼81.50 d), and P5 (∼162.30 d). For the 3-5 and 5-12 keV energy bands, the periodical components P3 (∼13 d) and P5 (∼162 d) are detected in both energy bands. However, for the 1.5-3 keV energy band, no significant periodic signal is detected. P5 is the strongest periodic signal in the power spectrum for all the energy bands of 3-5, 5-12, and 15-50 keV, and it is consistent with the previous result obtained from the study of optical light curves. Furthermore, in combination with the radio spiral jet of SS 433, it is suggested that the X-ray and optical variability of P5 (∼162 d) is probably related to the precession of its relativistic jet. The high correlation between the X-ray and optical light curves may also imply that the X-ray and optical radiations are of the same physical origin. P3 shows a good agreement with the orbital period (∼13.07 d) obtained by the previous study, and P2 and P4 are respectively the high-frequency harmonics of P3 and P5. P1 is detected only in the power spectrum of the 15-50 keV energy band, and it is consistent with the nutation period of the system. As

  14. Light propagation on quantum curved spacetime and back reaction effects

    Energy Technology Data Exchange (ETDEWEB)

    Kozameh, Carlos; Parisi, Florencia [FaMAF, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina)

    2007-09-07

    We study the electromagnetic field equations on an arbitrary quantum curved background in the semiclassical approximation of loop quantum gravity. The effective interaction Hamiltonian for the Maxwell and gravitational fields is obtained and the corresponding field equations, which can be expressed as a modified wave equation for the Maxwell potential, are derived. We use these results to analyze electromagnetic wave propagation on a quantum Robertson-Walker spacetime and show that Lorentz invariance is not preserved. The formalism developed can be applied to the case where back reaction effects on the metric due to the electromagnetic field are taken into account, leading to non-covariant field equations.

  15. Light waves guided by a single curved metallic surface.

    Science.gov (United States)

    Krammer, H

    1978-01-15

    Propagation of TE-waves along a single curved metallic surface with radius of curvature much larger than wavelength is investigated both theoretically and experimentally. Approximate analytic expressions for the field configuration yield that power concentrates in a small region near the metal. The attenuation constant per unit angle of bend (radian) is given by the real part of the inverse of the refractive index, independent of the radius of curvature and of the mode number. In agreement with theory experiments with 10-microm radiation showed that low loss guiding can be realized.

  16. Lighting molded optics: Design and manufacturing

    Directory of Open Access Journals (Sweden)

    Kočárková H.

    2013-05-01

    Full Text Available Proper design and manufacturing of glass molded lenses need to be performed in several steps. The whole process from customer requirements to f nal functional product is shown on two examples - a lens for street light and a lens for spot light with narrow lighting angle. After discussing customer requirements, optical design is made. Thanks to various commercial softwares with optimization, manufacturer of the lens can work as well as a designer which enables simplif cation and acceleration of lens manufacturing, since limitations of the manufacturing process are considered during creation of the design. When the prototype is made, its functionality needs to be evaluated. This work shows measurement of light distribution for street light lens in a dark room using goniometer and measurement of light intensity for spot lens f xed on an optical bench. These measurements can reveal the root cause in case of lens malfunction, which enables to optimize manufacturing process or modify lens design accordingly. Designing, manufacturing and evaluation of molded optics under one roof enables creation of easily manufacturable design and fast solution of problems.

  17. Optical Manipulation with Speckle Light Fields

    CERN Document Server

    Volpe, Giorgio; Gigan, Sylvain

    2014-01-01

    Optical tweezers have been widely applied to trap and manipulate micro- and nano-objects, such as cells, organelles and macromolecules. Generating well-controlled optical forces usually requires a highly focused laser beam, which means a careful engineering of the setups and the samples. Although similar conditions are routinely met in research laboratories, optical imperfections or scattering limit the applicability of this technique to real-life situations, such as in biomedical or microfluidic applications. Nonetheless, scattering of coherent light by disordered structures gives rise to speckles, random diffraction patterns with well-defined statistical properties. Here, we demonstrate how speckle fields can become a versatile tool to perform fundamental optical manipulation tasks such as trapping, guiding and sorting, exploiting the emergence of anomalous diffusion and drift in time-varying speckles. The simplicity and high-throughput of this technique greatly broadens the perspectives of optical manipula...

  18. Analysis of Late--time Light Curves of Type IIb, Ib and Ic Supernovae

    CERN Document Server

    Wheeler, J Craig; Clocchiatti, A

    2014-01-01

    The shape of the light curve peak of radioactive-powered core-collapse "stripped-envelope," supernovae constrains the ejecta mass, nickel mass, and kinetic energy by the brightness and diffusion time for a given opacity and observed expansion velocity. Late-time light curves give constraints on the same parameters, given the gamma-ray opacity. Previous work has shown that the principal light curve peaks for SN IIb with small amounts of hydrogen and for hydrogen/helium-deficient SN Ib/c are often rather similar near maximum light, suggesting similar ejecta masses and kinetic energies, but that late-time light curves show a wide dispersion, suggesting a dispersion in ejecta masses and kinetic energies. It was also shown that SN IIb and SN Ib/c can have very similar late-time light curves, but different ejecta velocities demanding significantly different ejecta masses and kinetic energies. We revisit these topics by collecting and analyzing well-sampled single color and quasi-bolometric light curves from the lit...

  19. Microlensing of Sub-parsec Massive Binary Black Holes in Lensed QSOs: Light Curves and Size-Wavelength Relation

    Science.gov (United States)

    Yan, Chang-Shuo; Lu, Youjun; Yu, Qingjuan; Mao, Shude; Wambsganss, Joachim

    2014-04-01

    Sub-parsec binary massive black holes (BBHs) have long been thought to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circumbinary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circumbinary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii of the emission region at different wavelengths from mock light curves and find that the obtained half-light radius versus wavelength relations of BBH QSO systems can be much flatter than those of single MBH QSO systems at a wavelength range determined by the BBH parameters, such as the total mass, mass ratio, separation, accretion rates, etc. The difference is primarily due to the existence of the gap. Such unique features on the light curves and half-light radius-wavelength relations of BBH QSO systems can be used to select and probe sub-parsec BBHs in a large number of lensed QSOs to be discovered by current and future surveys, including the Panoramic Survey Telescope and Rapid Response System, the Large Synoptic Survey telescope, and Euclid.

  20. Starspot signature on the light curve: Learning about the latitudinal distribution of spots

    CERN Document Server

    Santos, A R G; Avelino, P P; García, R A; Mathur, S

    2016-01-01

    Quasi-periodic modulations of the stellar light curve may result from dark spots crossing the visible stellar disc. Due to differential rotation, spots at different latitudes generally have different rotation periods. Hence, by studying spot-induced modulations, one can learn about stellar surface (differential) rotation and magnetic activity. Recently, Reinhold & Arlt (2015) proposed a method based on the Lomb-Scargle periodogram of light curves to identify the sign of the differential rotation at the stellar surface. Our goal is to understand how the modulation of the stellar light curve due to the presence of spots and the corresponding periodogram are affected by both the stellar and spot properties. We generate synthetic light curves of stars with different properties (inclination angle, limb darkening, and rotation rate) and spot configurations (number of spots, latitude, intensity contrast, and size). By analysing their Lomb-Scargle periodograms, we compute the ratio between the heights of the seco...

  1. A semi-analytical light curve model and its application to type IIP supernovae

    CERN Document Server

    Nagy, Andrea P; Vinko, Jozsef; Wheeler, J Craig

    2014-01-01

    The aim of this work is to present a semi-analytical light curve modeling code which can be used for estimating physical properties of core collapse supernovae (SNe) in a quick and efficient way. To verify our code we fit light curves of Type II SNe and compare our best parameter estimates to those from hydrodynamical calculations. For this analysis we use the quasi-bolometric light curves of five different Type IIP supernovae. In each case we get appropriate results for the initial pre-supernova parameters. We conclude that this semi-analytical light curve model is useful to get approximate physical properties of Type II SNe without using time-consuming numerical hydrodynamic simulations.

  2. All-Optical Photochromic Spatial Light Modulators

    Science.gov (United States)

    Beratan, David N.; Perry, Joseph W.

    1989-01-01

    Photochemical transfer of electrons enables fast reading and writing. New concept based on transfer of electrons between donor and acceptor molecules randomly distributed or covalently linked and dispersed in glassy-polymer host material. Transfer causes significant changes in optical-transmission characteristics of material and used to modulate transmission of reading beam of light impinging on material.

  3. Solar Optics: Projecting Light into Buildings.

    Science.gov (United States)

    Bennett, David; Eijadi, David A.

    1980-01-01

    A comprehensive demonstration project currently being developed at the civil mineral engineering (C/ME) building at the University of Minnesota includes the application of solar optics as a demonstration of the potential for bringing natural light deep into the interior of buildings. (Author/MLF)

  4. Eclipsing binary stars with extreme light curve asymmetries mined from large astronomical surveys

    Science.gov (United States)

    Papageorgiou, Athanasios; Kleftogiannis, Georgios; Christopoulou, Panagiota-Eleftheria

    2017-09-01

    The O'Connell effect is one of the most perplexing challenges in binary studies as it has not been convincingly explained. Furthermore, a simple method to obtain essential parameters for eclipsing binaries exhibiting this effect and to extract information describing the asymmetry in the light curve maxima is needed. We have developed an automated program that characterizes the morphology of light curves by depth of both minima, height of both maxima and curvature outside the eclipses.

  5. Supersoft X-ray Light Curve of RS Oph -- The White Dwarf Mass is Now Increasing

    CERN Document Server

    Kato, Mariko; Luna, Gerardo Juan Manuel

    2008-01-01

    The recurrent nova RS Ophiuchi, one of the candidates for Type Ia supernova progenitors, underwent the sixth recorded outburst in February 2006. We report a complete light curve of supersoft X-ray that is obtained for the first time. A numerical table of X-ray data is provided. The supersoft X-ray flux emerges about 30 days after the optical peak and continues until about 85 days when the optical flux shows the final decline. Such a long duration of supersoft X-ray phase can be naturally understood by our model in which a significant amount of helium layer piles up beneath the hydrogen burning zone during the outburst, suggesting that the white dwarf mass is effectively growing up. We have estimated the white dwarf mass in RS Oph to be 1.35 \\pm 0.01 M_\\sun and its growth rate to be about (0.5-1) \\times 10^{-7} M_\\sun yr^{-1} in average.

  6. Slow light based optical frequency shifter

    CERN Document Server

    Li, Qian; Thuresson, Axel; Nilsson, Adam N; Rippe, Lars; Kröll, Stefan

    2016-01-01

    We demonstrate experimentally and theoretically a controllable way of shifting the frequency of an optical pulse by using a combination of spectral hole burning, slow light effect, and linear Stark effect in a rare-earth-ion doped crystal. We claim that the solid angle of acceptance of a frequency shift structure can be close to $2\\pi$, which means that the frequency shifter could work not only for optical pulses propagating in a specific spatial mode but also for randomly scattered light. As the frequency shift is controlled solely by an external electric field, it works also for weak coherent light fields, and can e.g. be used as a frequency shifter for quantum memory devices in quantum communication.

  7. Neptune's Dynamic Atmosphere from Kepler K2 Observations: Implications for Brown Dwarf Light Curve Analyses

    CERN Document Server

    Simon, Amy A; Gaulme, Patrick; Hammel, Heidi B; Casewell, Sarah L; Fortney, Jonathan J; Gizis, John E; Lissauer, Jack J; Morales-Juberias, Raul; Orton, Glenn S; Wong, Michael H; Marley, Mark S

    2015-01-01

    Observations of Neptune with the Kepler Space Telescope yield a 49-day light curve with 98% coverage at a 1-minute cadence. A significant signature in the light curve comes from discrete cloud features. We compare results extracted from the light curve data with contemporaneous disk-resolved imaging of Neptune from the Keck 10-meter telescope at 1.65 microns and Hubble Space Telescope visible imaging acquired 9 months later. This direct comparison validates the feature latitudes assigned to the K2 light curve periods based on Neptune's zonal wind profile, and confirms observed cloud feature variability. Although Neptune's clouds vary in location and intensity on short and long time scales, a single large discrete storm seen in Keck imaging dominates the K2 and Hubble light curves; smaller or fainter clouds likely contribute to short-term brightness variability. The K2 Neptune light curve, in conjunction with our imaging data, provides context for the interpretation of current and future brown dwarf and extras...

  8. 21 CFR 872.4620 - Fiber optic dental light.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fiber optic dental light. 872.4620 Section 872...) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4620 Fiber optic dental light. (a) Identification. A fiber optic dental light is a device that is a light, usually AC-powered, that consists of glass or...

  9. Light curves, Spherical and Bond albedos of Jupiter, Saturn, and exoplanets.

    Science.gov (United States)

    Dyudina, U.

    2015-12-01

    We estimate how the light curve and stellar light reflection of a planet depends on forward and backward scattering, which was observed on Jupiter and Saturn. We fit analytical scattering phase function to Pioneer 10 and 11 spacecraft observations of Jupiter at 0.64 μm and Saturn at 0.64 and 0.44 μm and to Cassini spacecraft observations of Jupiter at 0.938 μm atmospheric window, 0.889 μm CH4 absorption band, and 0.258 μm UV filter. Using scattering ray-tracing model of a planet by Dyudina et al. (2005)*, the images of the planets with different scattering properties are simulated to calculate the reflected luminosity as it varies with scattering phase to produce full-orbit light curves. We compare the light curve shapes and total reflection integrated in all directions (spherical albedos) for Jupiter and Saturn with the ones for planets with Lambertian and semi-infinite Rayleigh-scattering atmosphere. Saturn-like and especially Jupiter-like atmosphere produces light curves that are several times fainter at half-phase than does a Lambertian planet, given the same brightness at transit. The spherical albedo (and hence the wavelengh-integrated Bond albedo) is lower than for a Lambertian planet. Corresponding absorption of the stellar light and planet's heating rate would be higher than estimated for Lambertian planets, especially for bright planets. In extreme case of Jupiter-like scattering at 0.64 μm Lambertian assumption can overestimate spherical albedo by a factor of ˜1.5. We will discuss how the light curves and absorption for planets covered by atmospheres would differ from the light curves of rocky planet without atmosphere. * Dyudina, U. A., et al., Phase Light Curves for Extrasolar Jupiters and Saturns. ApJ, 618, 973-986, 2005

  10. Tissue optics, light distribution, and spectroscopy

    Science.gov (United States)

    Tuchin, Valery V.; Utz, Sergei R.; Yaroslavsky, Ilya V.

    1994-10-01

    A model of multilayered tissue is considered. The Monte Carlo simulation technique is used to study laser beam transport through tissues with varying optical properties for each layer (absorption, scattering, scattering anisotropy factor, and refractive index). Calculations are performed for some models of the human skin and adjacent tissues for visible and UV wavelength ranges. New technology for human epidermis optical parameters determination is presented. This technology includes epidermis upper layers glue stripping; in vitro measurements of total transmission, diffuse reflection, and angular scattering of stripping samples; and using an inverse calculation technique based on four-flux approximation of radiation transport theory. The technology was successfully used for depth dependence monitoring of epidermis optical parameters. An inverse Monte Carlo technique for determining the optical properties of tissues based on spectrophotometric measurements is developed. This technique takes into accounts the 2-D geometry of the experiment, finite sizes of incident beam and integrating sphere ports, boundary conditions, and sideways losses of light.

  11. Reflected Light Curves, Spherical and Bond Albedos of Jupiter- and Saturn-like Exoplanets

    Science.gov (United States)

    Dyudina, Ulyana A.; Zhang, Xi; Li, Liming; Kopparla, Pushkar; Ingersoll, Andrew P.; Dones, Henry C. Luke; Verbiscer, Anne J.; Yung, Yuk

    2016-10-01

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet's phase. These observations cover broad bands at 0.59-0.72 and 0.39-0.5 μm, and narrow bands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24-0.28 μm. We simulate the images of the planets with a ray-tracing model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ˜1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating. This work is published: Dyudina, U.,et al., 2016: ApJ, 822, 76, http://arxiv.org/abs/1511.04415.

  12. $\\gamma$-Ray Burst Afterglow Polarization and Analytic Light Curves

    CERN Document Server

    Gruzinov, A V; Gruzinov, Andrei; Waxman, Eli

    1999-01-01

    GRB afterglow polarization is discussed. We find an observable, up to 10%, polarization, if the magnetic field coherence length grows at about the speed of light after the field is generated at the shock front. Detection of a polarized afterglow would show that collisionless ultrarelativistic shocks can generate strong large scale magnetic fields and confirm the synchrotron afterglow model. Non-detection, at a 1% level, would imply that either the synchrotron emission model is incorrect, or that strong magnetic fields, after they are generated in the shock, somehow manage to stay un-dissipated at ``microscopic'', skin depth, scales. Analytic lightcurves of synchrotron emission from an ultrarelativistic self-similar blast wave are obtained for an arbitrary electron distribution function, taking into account the effects of synchrotron cooling. The peak synchrotron flux and the flux at frequencies much smaller than the peak frequency are insensitive to the details of the electron distribution function; hence the...

  13. The Light Curve Variations of The Active Binaries With Hot Subdwarf Component

    CERN Document Server

    Sipahi, E; Sipahi, Esin; Evren, Serdar

    2006-01-01

    We present the light curve variations of the two active binaries with hot subdwarf component. According to the brightness variations outside of the eclipses, the giant components of the systems are chromospherically active stars. The dark and cool active structures on this components cause the variations of the total light of the systems.

  14. Optical Doppler shift with structured light.

    Science.gov (United States)

    Belmonte, Aniceto; Torres, Juan P

    2011-11-15

    When a light beam with a transverse spatially varying phase is considered for optical remote sensing, in addition to the usual longitudinal Doppler frequency shift of the returned signal induced by the motion of the scatter along the beam axis, a new transversal Doppler shift appears associated to the motion of the scatterer in the plane perpendicular to the beam axis. We discuss here how this new effect can be used to enhance the current capabilities of optical measurement systems, adding the capacity to detect more complex movements of scatters.

  15. Remote Synchrotron Light Instrumentation Using Optical Fibers

    Energy Technology Data Exchange (ETDEWEB)

    De Santis, S.; Yin, Y.

    2009-05-04

    By coupling the emitted synchrotron light into an optical fiber, it is possible to transmit the signal at substantial distances from the light port, without the need to use expensive beamlines. This would be especially beneficial in all those cases when the synchrotron is situated in areas not easily access because of their location, or due to high radiation levels. Furthermore, the fiber output can be easily switched, or even shared, between different diagnostic instruments. We present the latest results on the coupling and dispersion measurements performed at the Advanced Light Source in Berkeley. In several cases, coupling synchrotron light into optical fibers can substantially facilitate the use of beam diagnostic instrumentation that measures longitudinal beam properties by detecting synchrotron radiation. It has been discussed in with some detail, how fiberoptics can bring the light at relatively large distances from the accelerator, where a variety of devices can be used to measure beam properties and parameters. Light carried on a fiber can be easily switched between instruments so that each one of them has 100% of the photons available, rather than just a fraction, when simultaneous measurements are not indispensable. From a more general point of view, once synchrotron light is coupled into the fiber, the vast array of techniques and optoelectronic devices, developed by the telecommunication industry becomes available. In this paper we present the results of our experiments at the Advanced Light Source, where we tried to assess the challenges and limitations of the coupling process and determine what level of efficiency one can typically expect to achieve.

  16. Photometric Observation and Light Curve Analysis of Binary System ER-Orionis

    Indian Academy of Sciences (India)

    M. M. Lame’e; B. Javanmardi; N. Riazi

    2010-06-01

    Photometric observations of the over-contact binary ER ORI were performed during November 2007 and February to April 2008 with the 51 cm telescope of Biruni Observatory of Shiraz University in U, B and V filters (Johnson system) and an RCA 4509 photomultiplier. We used these data to obtain the light curves and calculate the newtimes of minimum light in each filter and plot the O–C diagram of ER ORI. Using the Wilson’s computer code with the help of an auxiliary computer program to improve the optimizations, the light curve analyses were carried out to find out the photometric elements of the system.

  17. Full Bayesian hierarchical light curve modeling of core-collapse supernova populations

    Science.gov (United States)

    Sanders, Nathan; Betancourt, Michael; Soderberg, Alicia Margarita

    2016-06-01

    While wide field surveys have yielded remarkable quantities of photometry of transient objects, including supernovae, light curves reconstructed from this data suffer from several characteristic problems. Because most transients are discovered near the detection limit, signal to noise is generally poor; because coverage is limited to the observing season, light curves are often incomplete; and because temporal sampling can be uneven across filters, these problems can be exacerbated at any one wavelength. While the prevailing approach of modeling individual light curves independently is successful at recovering inferences for the objects with the highest quality observations, it typically neglects a substantial portion of the data and can introduce systematic biases. Joint modeling of the light curves of transient populations enables direct inference on population-level characteristics as well as superior measurements for individual objects. We present a new hierarchical Bayesian model for supernova light curves, where information inferred from observations of every individual light curve in a sample is partially pooled across objects to constrain population-level hyperparameters. Using an efficient Hamiltonian Monte Carlo sampling technique, the model posterior can be explored to enable marginalization over weakly-identified hyperparameters through full Bayesian inference. We demonstrate our technique on the Pan-STARRS1 (PS1) Type IIP supernova light curve sample published by Sanders et al. (2015), consisting of nearly 20,000 individual photometric observations of more than 70 supernovae in five photometric filters. We discuss the Stan probabilistic programming language used to implement the model, computational challenges, and prospects for future work including generalization to multiple supernova types. We also discuss scientific results from the PS1 dataset including a new relation between the peak magnitude and decline rate of SNe IIP, a new perspective on the

  18. Light trajectory in geometrical optics and metric optics

    Institute of Scientific and Technical Information of China (English)

    朱莳通; 沈文达

    1997-01-01

    The light trajectory in an inhomogeneous medium is studied by the variation of Lagrangians L and which correspond to Fermat’s principle in the geometrical optics and the null geodesic in the metric optics,respectively.The relation between the metric coefficients of the three-dimensional space and of the four-dimensional space-time is established.The physical meaning of the equivalence and difference of both the descriptions is revealed.It is shown that Fermat’s principle is a direct result of the null geodesic.

  19. Chiral light by symmetric optical antennas

    CERN Document Server

    Mekonnen, Addis; Zubritskaya, Irina; Jönsson, Gustav Edman; Dmitriev, Alexandre

    2014-01-01

    Chirality is at the origin of life and is ubiquitous in nature. An object is deemed chiral if it is non-superimposable with its own mirror image. This relates to how circularly polarized light interacts with such object, a circular dichroism, the differential absorption of right and left circularly polarized light. According to the common understanding in biology, chemistry and physics, the circular dichroism results from an internal chiral structure or external symmetry breaking by illumination. We show that circular dichroism is possible with simple symmetric optical nanoantennas at symmetric illumination. We experimentally and theoretically demonstrate that two electromagnetic dipole-like modes with a phase lag, in principle, suffice to produce circular dichroism in achiral structure. Examples of the latter are all visible spectrum optical nanoantennas, symmetric nanoellipses and nanodimers. The simplicity and generality of this finding reveal a whole new significance of the electromagnetic design at a nan...

  20. Optical Tractor Beam with Chiral Light

    CERN Document Server

    Fernandes, David E

    2015-01-01

    We suggest a novel mechanism to induce the motion of a chiral material body towards an optical source. Our solution is based on the interference between a chiral light beam and its reflection on an opaque mirror. Surprisingly, it is theoretically shown that the electromagnetic response of the material may be tailored in such a way that independent of the specific body location with the respect to the mirror, it is always pushed upstream against the photon flow associated with the incoming wave. Moreover, it is proven that by controlling the handedness of the incoming light it may be possible to harness the sign of the optical force, switching from a pulling force to a pushing force.

  1. On-light: optical social network

    Science.gov (United States)

    Dionísio, Rogério P.

    2014-07-01

    Social networks are a recent phenomenon of communication, with a high prevalence of young users. This concept serves as a motto for a multidisciplinary project, which aims to create a simple communication network, using light as the transmission medium. Mixed team, composed by students from secondary and higher education schools, are partners on the development of an optical transceiver. A LED lamp array and a small photodiode are the optical transmitter and receiver, respectively. Using several transceivers aligned with each other, this configuration creates a ring communication network, enabling the exchange of messages between users. Through this project, some concepts addressed in physics classes from secondary schools (e.g. photoelectric phenomena and the properties of light) are experimentally verified and used to communicate, in a classroom or a laboratory.

  2. Timescale Stretch Parameterization of Type Ia Supernova B-band Light Curves

    CERN Document Server

    Goldhaber, Gerson; Kim, A; Aldering, G; Astier, Pierre; Conley, A; Deustua, S E; Ellis, R; Fabbro, S; Fruchter, A S; Goobar, A; Hook, I; Irwin, M; Kim, M; Knop, R A; Lidman, C E; McMahon, R; Nugent, P; Pain, R; Panagia, N; Pennypacker, C R; Perlmutter, S; Ruiz-Lapuente, P; Schaefer, B; Walton, N A; York, T; Project, The Supernova Cosmology

    2001-01-01

    R-band intensity measurements along the light curve of Type Ia supernovae discovered by the Supernova Cosmology Project (SCP) are fitted in brightness to templates allowing a free parameter the time-axis width factor w = s(1+z). The data points are then individually aligned in the time-axis, normalized and K-corrected back to the rest frame, after which the nearly 1300 normalized intensity measurements are found to lie on a well-determined common rest-frame B-band curve which we call the ``composite curve''. The same procedure is applied to 18 low-redshift Calan/Tololo SNe with z < 0.11; these nearly 300 B-band photometry points are found to lie on the composite curve equally well. The SCP search technique produces several measurements before maximum light for each supernova. We demonstrate that the linear stretch factor, s, which parameterizes the light-curve timescale appears independent of z,and applies equally well to the declining and rising parts of the light curve. In fact, the B-band template that ...

  3. Timescale stretch parameterization of Type Ia supernova B-band light curves

    Energy Technology Data Exchange (ETDEWEB)

    Goldhaber, G.; Groom, D.E.; Kim, A.; Aldering, G.; Astier, P.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fruchter, A.S.; Goobar, A.; Hook, I.; Irwin, M.; Kim, M.; Knop, R.A.; Lidman, C.; McMahon, R.; Nugent, P.E.; Pain, R.; Panagia, N.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.A.; York, T.

    2001-04-01

    R-band intensity measurements along the light curve of Type Ia supernovae discovered by the Cosmology Project (SCP) are fitted in brightness to templates allowing a free parameter the time-axis width factor w identically equal to s times (1+z). The data points are then individually aligned in the time-axis, normalized and K-corrected back to the rest frame, after which the nearly 1300 normalized intensity measurements are found to lie on a well-determined common rest-frame B-band curve which we call the ''composite curve.'' The same procedure is applied to 18 low-redshift Calan/Tololo SNe with Z < 0.11; these nearly 300 B-band photometry points are found to lie on the composite curve equally well. The SCP search technique produces several measurements before maximum light for each supernova. We demonstrate that the linear stretch factor, s, which parameterizes the light-curve timescale appears independent of z, and applies equally well to the declining and rising parts of the light curve. In fact, the B band template that best fits this composite curve fits the individual supernova photometry data when stretched by a factor s with chi 2/DoF {approx} 1, thus as well as any parameterization can, given the current data sets. The measurement of the data of explosion, however, is model dependent and not tightly constrained by the current data. We also demonstrate the 1 + z light-cure time-axis broadening expected from cosmological expansion. This argues strongly against alternative explanations, such as tired light, for the redshift of distant objects.

  4. Long-Term Light Curve of Highly-Variable Protostellar Star GM Cep

    CERN Document Server

    Xiao, Limin; Henden, Arne A

    2010-01-01

    We present data from the archival plates at Harvard College Observatory and Sonneberg Observatory showing the field of the solar type pre-main sequence star GM Cep. A total of 186 magnitudes of GM Cep have been measured on these archival plates, with 176 in blue sensitivity, 6 in visible, and 4 in red. We combine our data with data from the literature and from the American Association of Variable Star Observers to depict the long-term light curves of GM Cep in both B and V wavelengths. The light curves span from 1895 until now, with two densely sampled regions (1935 to 1945 in B band, and 2006 until now in V band). The long-term light curves do not show any fast rise behavior as predicted by an accretion mechanism. Both the light curves and the magnitude histograms confirm the conclusion that the light curves are dominated by dips (possibly from extinction) superposed on some quiescence state, instead of outbursts caused by accretion flares.Our result excludes the possibility of GM Cep being a FUor, EXor, or ...

  5. Modeling the X-ray light curves of Cygnus X-3. Possible role of the jet

    CERN Document Server

    Vilhu, Osmi

    2012-01-01

    Context: Physics behind the soft X-ray light curve asymmetries in Cygnus X-3, a well-known microquasar, was studied. AIMS: Observable effects of the jet close to the line-of-sight were investigated and interpreted within the frame of light curve physics. METHODS: The path of a hypothetical imprint of the jet, advected by the WR-wind, was computed and its crossing with the line-of-sight during the binary orbit determined. We explore the possibility that physically this 'imprint' is a formation of dense clumps triggered by jet bow shocks in the wind ("clumpy trail"). Models for X-ray continuum and emission line light curves were constructed using two absorbers: mass columns along the line-of-sight of i) the WR wind and ii) the clumpy trail, as seen from the compact star. These model light curves were compared with the observed ones from the RXTE/ASM (continuum) and Chandra/HETG (emission lines). Results: We show that the shapes of the Cygnus X-3 light curves can be explained by the two absorbers using the incli...

  6. Kepler Eclipsing Binary Stars. III. Classification of Kepler Eclipsing Binary Light Curves with Locally Linear Embedding

    Science.gov (United States)

    Matijevič, Gal; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Bloemen, Steven; Barclay, Thomas

    2012-05-01

    We present an automated classification of 2165 Kepler eclipsing binary (EB) light curves that accompanied the second Kepler data release. The light curves are classified using locally linear embedding, a general nonlinear dimensionality reduction tool, into morphology types (detached, semi-detached, overcontact, ellipsoidal). The method, related to a more widely used principal component analysis, produces a lower-dimensional representation of the input data while preserving local geometry and, consequently, the similarity between neighboring data points. We use this property to reduce the dimensionality in a series of steps to a one-dimensional manifold and classify light curves with a single parameter that is a measure of "detachedness" of the system. This fully automated classification correlates well with the manual determination of morphology from the data release, and also efficiently highlights any misclassified objects. Once a lower-dimensional projection space is defined, the classification of additional light curves runs in a negligible time and the method can therefore be used as a fully automated classifier in pipeline structures. The classifier forms a tier of the Kepler EB pipeline that pre-processes light curves for the artificial intelligence based parameter estimator.

  7. Effect of a High Opacity on the Light Curves of Radioactively Powered Transients from Compact Object Mergers

    CERN Document Server

    Barnes, Jennifer

    2013-01-01

    The coalescence of compact objects are a promising astrophysical sources of gravitational wave (GW) signals. The ejection of r-process material from such mergers may lead to a radioactively-powered electromagnetic counterpart which, if discovered, would enhance the science return of a GW detection. As very little is known about the optical properties of heavy r-process elements, previous light curve models have adopted opacities similar to those of iron group elements. Here we report that the presence of heavier elements, particularly the lanthanides, increase the ejecta opacity by several orders of magnitude. We include these higher opacities in time dependent, multi-wavelength radiative transport calculations to predict the broadband light curves of one-dimensional models over a range of parameters (ejecta masses from 0.001 to 0.1 solar masses and velocities from 0.1 to 0.3c). We find that the higher opacities lead to much longer duration light curves which can last a week or more. The emission is shifted t...

  8. Against the Wind: Radio Light Curves of Type Ia Supernovae Interacting with Low-Density Circumstellar Shells

    CERN Document Server

    Harris, Chelsea E; Kasen, Daniel N

    2016-01-01

    For decades, a wide variety of observations spanning the radio through optical and on to the x-ray have attempted to uncover signs of type Ia supernovae (SNe Ia) interacting with a circumstellar medium (CSM). The goal of these studies is to constrain the nature of the hypothesized SN Ia mass-donor companion. A continuous CSM is typically assumed when interpreting observations of interaction. However, while such models have been successfully applied to core-collapse SNe, the assumption of continuity may not be accurate for SNe Ia, as shells of CSM could be formed by pre-supernova eruptions (novae). In this work, we model the interaction of SNe with a spherical, low density, finite-extent CSM and create a suite of synthetic radio synchrotron light curves. We find that CSM shells produce sharply peaked light curves, and identify a fiducial set of models that all obey a common evolution and can be used to generate radio light curves for interaction with an arbitrary shell. The relations obeyed by the fiducial mod...

  9. The periodicity of 3C 273’s radio light curve at 15 GHz found by the wavelet method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We analyze the radio light curve of 3C 273 at 15 GHz from 1963 to 2006 taken from the database of the literature,and find evidence of quasi-periodic activity.Using the wavelet analysis method to analyze these data,our results indicate that:(1) There is one main outburst period of P1=8.1±0.1 year in 3C 273.This period is in a good agreement with Ozernoi’s analysis in optical bands.(2) Based on the possible periods,we expect the next burst in 2014 October.

  10. Simultaneous Modelling of the Complete SN1993J Expansion and Radio Light Curves

    Science.gov (United States)

    Martí-Vidal, I.; Marcaide, J. M.; Alberdi, A.

    We report on our modelling of all the available VLBI data and radio light curves of supernova SN1993J. We have used the most complete expansion curve of a supernova ever, which spans more than a decade at several frequencies. For the data modelling, we have developed a new software capable of simulating the evolution of the radio emission of a supernova. We find that for explaining both the radio light curves and the expansion curve simultaneously, a radial structure of the magnetic field inside the radiating region and opacity effects from the ejected material have to be considered, together with a constant pre-supernova mass-loss rate (contrary to some results found by other authors).

  11. SN 2011fu: A type IIb Supernova with a luminous double-peaked light curve

    CERN Document Server

    Morales-Garoffolo, A; Bersten, M; Jerkstrand, A; Taubenberger, S; Benetti, S; Cappellaro, E; Kotak, R; Pastorello, A; Bufano, F; Domínguez, R M; Ergon, M; Fraser, M; Gao, X; García, E; Howell, D A; Isern, J; Smartt, S J; Tomasella, L; Valenti, S

    2015-01-01

    We present optical and near infrared observations of the type IIb supernova (SN) 2011fu from a few days to $\\sim300$ d after explosion. The SN presents a double-peaked light curve (LC) similar to that of SN 1993J, although more luminous and with a longer cooling phase after the primary peak. The spectral evolution is also similar to SN 1993J's, with hydrogen dominating the spectra to $\\sim40$ d, then helium gaining strength, and nebular emission lines appearing from $\\sim60$ d post-explosion. The velocities derived from the P-Cygni absorptions are overall similar to those of other type IIb SNe. We have found a strong similarity between the oxygen and magnesium line profiles at late times, which suggests that these lines are forming at the same location within the ejecta. The hydrodynamical modelling of the pseudo-bolometric LC and the observed photospheric velocities suggest that SN 2011fu was the explosion of an extended star ($\\rm R\\sim450$ R$_\\odot$), in which 1.3 $\\times 10^{51}$ erg of kinetic energy wer...

  12. Light curves of the latest FUor: Indication of a close binary

    CERN Document Server

    Hackstein, M; Kóspál, Á; Hambsch, F -J; Chini, R; Ábrahám, P; Moór, A; Nuñez, F Pozo; Ramolla, M; Westhues, Ch; Kaderhandt, L; Fein, Ch; Domínguez, A Barr; Hodapp, K -W

    2015-01-01

    We monitored the recent FUor 2MASS J06593158-0405277 (V960 Mon) since November 2009 at various observatories and multiple wavelengths. After the outburst by nearly 2.9 mag in $r$ around September 2014 the brightness gently fades until April 2015 by nearly 1 mag in $U$ and 0.5 mag in $z$. Thereafter the brightness at $\\lambda>5000 \\AA$ was constant until June 2015 while the shortest wavelengths ($U, B$) indicate a new rise, similar to that seen for the FUor V2493 Cyg (HBC722). Our near-infrared (NIR) monitoring between December 2014 and April 2015 shows a smaller outburst amplitude ($\\sim$2 mag) and a smaller (0.2 $-$ 0.3 mag) post-outburst brightness decline. Optical and NIR color-magnitude diagrams indicate that the brightness decline is caused by growing extinction. The post-outburst light curves are modulated by an oscillating color-neutral pattern with a period of about 17 days and an amplitude declining from $\\sim$0.08 mag in October 2014 to $\\sim$0.04 mag in May 2015. The properties of the oscillating p...

  13. Periodicity Analysis of X-ray Light Curves of SS 433

    Science.gov (United States)

    Wang, J. Y.; Lu, X. L.; Zhao, Q. W.; Dong, D. Q.; Lao, B. Q.; Lu, Y.; Wei, Y. H.; Wu, X. C.; An, T.

    2016-03-01

    SS 433 is the only X-ray binary to date that was detected to have a pair of well-collimated jets, and its orbital period, super orbital period, and nutation period were all detected at the same time. The study on the periodic X-ray variabilities is helpful for understanding its dynamic process of the central engine and the correlation with other bands. In the present paper, two time series analysis techniques, Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periodicities from the Swift/BAT (Burst Alert Telescope)(15--50 keV) and RXTE/ASM (Rossi X-Ray Timing Explorer/All-Sky Monitor)(1.5--3, 3--5 and 5--12 keV) light curves of SS 433, and the Monte Carlo simulation is performed. For the 15--50 keV energy band, five significant periodic signals are detected, which are P_1(˜6.29 d), P_2 (˜6.54 d), P_3 (˜13.08 d), P_4 (˜81.50 d), and P_5 (˜162.30 d). For the 3--5 and 5--12 keV energy bands, periodic signals P_3 (˜13 d) and P_5 (˜162 d) are detected in both energy bands. However, for the 1.5--3 keV energy band, no significant periodic signal is detected. P_5 has the strongest periodic signal in the power spectrum for all the energy bands of 3--5, 5--12, and 15--50 keV, and it is consistent with that obtained by previous study in optical band. Further, due to the existence of relativistic radio jets, the X-ray and optical band variability of P_5 (˜162 d) is probably related to the precession of the relativistic jets. High coherence between X-ray and optical light curves may also imply that the X-ray and optical emissions are of the same physical origin. P_3 shows a good agreement with the orbital period (˜13.07 d) first obtained by previous study, and P_2 and P_4 are the high frequency harmonic components of P_3 and P_5, respectively. P_1 is detected from the power spectrum of 15--50 keV energy band only, and it is consistent with the systematic nutation period. As the power of energy band decreases (from hard X-ray to

  14. AstroImageJ: Image Processing and Photometric Extraction for Ultra-Precise Astronomical Light Curves

    CERN Document Server

    Collins, Karen A; Stassun, Keivan G

    2016-01-01

    ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard FITS files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System (WCS) aware, including an automated interface to the astrometry.net web portal for plate solving images. Although AIJ provides re...

  15. Light Curves and Spectra from a Thermonuclear Explosion of a White Dwarf Merger

    Science.gov (United States)

    van Rossum, Daniel R.; Kashyap, Rahul; Fisher, Robert; Wollaeger, Ryan T.; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2016-08-01

    Double-degenerate (DD) mergers of carbon-oxygen white dwarfs have recently emerged as a leading candidate for normal Type Ia supernovae (SNe Ia). However, many outstanding questions surround DD mergers, including the characteristics of their light curves and spectra. We have recently identified a spiral instability in the post-merger phase of DD mergers and demonstrated that this instability self-consistently leads to detonation in some cases. We call this the spiral merger SN Ia model. Here, we utilize the SuperNu radiative transfer software to calculate three-dimensional synthetic light curves and spectra of the spiral merger simulation with a system mass of 2.1 {M}⊙ from Kashyap et al. Because of their large system masses, both violent and spiral merger light curves are slowly declining. The spiral merger resembles very slowly declining SNe Ia, including SN 2001ay, and provides a more natural explanation for its observed properties than other SN Ia explosion models. Previous synthetic light curves and spectra of violent DD mergers demonstrate a strong dependence on viewing angle, which is in conflict with observations. Here, we demonstrate that the light curves and spectra of the spiral merger are less sensitive to the viewing angle than violent mergers, in closer agreement with observation. We find that the spatial distribution of 56Ni and IMEs follows a characteristic hourglass shape. We discuss the implications of the asymmetric distribution of 56Ni for the early-time gamma-ray observations of 56Ni from SN 2014J. We suggest that DD mergers that agree with the light curves and spectra of normal SNe Ia will likely require a lower system mass.

  16. Light Curve Stability and Period Behavior of the Contact Binary TZ Boo

    Indian Academy of Sciences (India)

    M. M. Elkhateeb; M. I. Nouh

    2013-12-01

    New CCD observations of the eclipsing binary TZ Boo in BVR bands were carried out in 2006 (presented three new minima) and used together with all published minima to study and update the orbital period of the system TZ Boo by means of an (O–C) diagram. The period variation from 1926 to 2011 is represented by polynomial of eighth degree and indicates period variation of about 9.752 × 10-10 days/yr. We studied light curve stability over 85 yr covering all published observations in the V band and confirm the cyclic light curve variations.

  17. Light Curve Analysis of the Late Type Binary V523 Cassiopeiae

    Directory of Open Access Journals (Sweden)

    Latković, O.

    2009-06-01

    Full Text Available We present the analysis of V and R light curves of the late typecontact binary V523 Cas for the season of 2006. These observations make part of the monitoring program aimed at studying the long-term light curve variability in this system. Our results confirm that the system is in an overcontact configuration, and include a bright spot in the neck region of the cooler and larger primary. We compare these results with the previous solution, obtained for the season 2005 dataset and discuss the differences.

  18. Light curve analysis of the late type binary V523 Cassiopeiae

    Directory of Open Access Journals (Sweden)

    Latković O.

    2009-01-01

    Full Text Available We present the analysis of V and R light curves of the late type contact binary V523 Cas for the season of 2006. These observations make part of the monitoring program aimed at studying the long-term light curve variability in this system. Our results confirm that the system is in an over contact configuration, and include a bright spot in the neck region of the cooler and larger primary. We compare these results with the previous solution, obtained for the season 2005 dataset and discuss the differences.

  19. The Varying Light Curve and Timings of the Ultra-short Period Contact Binary KIC 9532219

    CERN Document Server

    Lee, Jae Woo; Koo, Jae-Rim; Park, Jang-Ho

    2016-01-01

    KIC 9532219 is a W UMa-type eclipsing binary with an orbital period of 0.1981549 d that is below the short-period limit ($\\sim$0.22 d) of the period distribution for contact binaries. The {\\it Kepler} light curve of the system exhibits striking light changes in both eclipse depths and light maxima. Applying third-body and spot effects, the light-curve synthesis indicates that the eclipsing pair is currently in a marginal contact stage with a mass ratio of $q$=1.20, an orbital inclination of $i$=66.0 deg, a temperature difference of $\\Delta$ ($T_{1}$--$T_{2}$)=172 K, and a third light of $l_3$=75.9 \\%. To understand the light variations with time, we divided up the light curve into 312 segments and separately analyzed them. The results reveal that variation of eclipse depth is primarily caused by changing amounts of contamination due to the nearby star KIC9532228 between the {\\it Kepler} Quarters and that the variable O'Connell effect originates from the starspot activity on the less massive primary component....

  20. Optical phase curves of exoplanets at small and large phase angles

    Science.gov (United States)

    García Muñoz, Antonio

    2016-10-01

    Phase curves and secondary eclipses provide key information on exoplanet atmospheres. Indeed, recent work on close-in giant planets observed by Kepler has shown that it is possible to constrain various reflecting, dynamical and thermal properties of their atmospheres from the analysis of the planets' phase curves. This presentation discusses new diagnostic possibilities for the characterization of exoplanet atmospheres with optical phase curves. These possibilities benefit from the fact that at optical wavelengths the signal from the planet is either partly or mostly determined by scattering of starlight within its atmosphere, which entails that the structure of the planet's phase curve mimics to some extent the optical properties of the atmospheric medium. In particular, we will show how cloud properties such as the particle size or the atmospheric scale height might be constrained through observations at small (i.e. near transit) and large (i.e. near occultation) phase angles. We will emphasize how the interpretation of optical phase curves differs from the interpretation of phase curves obtained at longer wavelengths. The conclusions are relevant to the study of Kepler planets, but also to the investigation of phase curves to be delivered by upcoming space missions such as CHEOPS, JWST, PLATO and TESS.

  1. Gamma-Ray Pulsar Light Curves in Offset Polar Cap Geometry

    Science.gov (United States)

    Harding, Alice K.; DeCesar, Megan; Miller, M. Coleman

    2011-01-01

    Recent studies have shown that gamma-ray pulsar light curves are very sensitive to the geometry of the pulsar magnetic field. Pulsar magnetic field geometries, such as the retarded vacuum dipole and force-free magnetospheres, used to model high-energy light curves have distorted polar caps that are offset from the magnetic axis in the direction opposite to rotation. Since this effect is due to the sweepback of field lines near the light cylinder, offset polar caps are a generic property of pulsar magnetospheres and their effects should be included in gamma-ray pulsar light curve modeling. In slot gap models (having two-pole caustic geometry), the offset polar caps cause a strong azimuthal asymmetry of the particle acceleration around the magnetic axis. We have studied the effect of the offset polar caps in both retarded vacuum dipole and force-free geometry on the model high-energy pulse profile. We find that. corn pared to the profile:-; derived from :-;ymmetric caps, the flux in the pulse peaks, which are caustics formed along the trailing magnetic field lines. increases significantly relative to the off-peak emission. formed along leading field lines. The enhanced contrast produces greatly improved slot gap model fits to Fermi pulsar light curves like Vela, which show very little off-peak emIssIon.

  2. Matrix light and pixel light: optical system architecture and requirements to the light source

    Science.gov (United States)

    Spinger, Benno; Timinger, Andreas L.

    2015-09-01

    Modern Automotive headlamps enable improved functionality for more driving comfort and safety. Matrix or Pixel light headlamps are not restricted to either pure low beam functionality or pure high beam. Light in direction of oncoming traffic is selectively switched of, potential hazard can be marked via an isolated beam and the illumination on the road can even follow a bend. The optical architectures that enable these advanced functionalities are diverse. Electromechanical shutters and lens units moved by electric motors were the first ways to realize these systems. Switching multiple LED light sources is a more elegant and mechanically robust solution. While many basic functionalities can already be realized with a limited number of LEDs, an increasing number of pixels will lead to more driving comfort and better visibility. The required optical system needs not only to generate a desired beam distribution with a high angular dynamic, but also needs to guarantee minimal stray light and cross talk between the different pixels. The direct projection of the LED array via a lens is a simple but not very efficient optical system. We discuss different optical elements for pre-collimating the light with minimal cross talk and improved contrast between neighboring pixels. Depending on the selected optical system, we derive the basic light source requirements: luminance, surface area, contrast, flux and color homogeneity.

  3. Novel optical filters based on curved grating structure

    Science.gov (United States)

    Wang, Jia-Xian; Zhao, Jing; Qiu, Weibin; Lin, Zhili; Huang, Yixin; Chen, Houbo; Qiu, Pingping

    2017-03-01

    A novel modified Rowland grating structure is proposed in this paper. Optical filters with the proposed structure are designed and fabricated with both high input and output angles. The passband width, coupling loss of the filters are investigated as a function of the output waveguide width. Nearly aberration free diffraction filters with an ultracompact footprint less than 0.5 mm2 were obtained with the proposed structure.

  4. Optical manifold for light-emitting diodes

    Science.gov (United States)

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver

    2008-06-03

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  5. Light propagation in optically induced Fibonacci lattices

    CERN Document Server

    Boguslawski, Martin; Timotijevic, Dejan V; Denz, Cornelia; Savic, Dragana M Jovic

    2015-01-01

    We report on the optical induction of Fibonacci lattices in photorefractive strontium barium niobate by use of Bessel beam waveguide-wise writing techniques. Fibonacci elements A and B are used as lattice periods. We further use the induced structures to execute probing experiments with variously focused Gaussian beams in order to observe light confinement owing to the quasiperiodic character of Fibonacci word sequences. Essentially, we show that Gaussian beam expansion is just slowed down in Fibonacci lattices, as compared with appropriate periodic lattices.

  6. The model parameters of the mean light curves of the variable red giant stars in the near infrared colour-bands and compare them with the visual mean light curves

    CERN Document Server

    Kudashkina, L S

    2016-01-01

    The observational data of the near infrared bands (H and K) have been used for the modeling mean light curves. Also the visual observational data have been fitted the same. The infrared and visual mean light curves were compared. All parameters and Fourier-coefficients of the mean light curves were obtained. The periodogram analysis of the variation of the brightness have been carried out.

  7. THE VARYING LIGHT CURVE AND TIMINGS OF THE ULTRASHORT-PERIOD CONTACT BINARY KIC 9532219

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo; Hong, Kyeongsoo; Koo, Jae-Rim; Park, Jang-Ho, E-mail: jwlee@kasi.re.kr, E-mail: kshong@kasi.re.kr, E-mail: koojr@kasi.re.kr, E-mail: pooh107162@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)

    2016-03-20

    KIC 9532219 is a W UMa-type eclipsing binary with an orbital period of 0.1981549 days that is below the short-period limit (∼0.22 days) of the period distribution for contact binaries. The Kepler light curve of the system exhibits striking changes in both eclipse depths and light maxima. Applying third-body and spot effects, the light-curve synthesis indicates that the eclipsing pair is currently in a marginal contact stage with a mass ratio of q = 1.20, an orbital inclination of i = 66.°0, a temperature difference of T{sub 1}–T{sub 2} = 172 K, and a third light of l{sub 3} = 75.9%. To understand the light variations with time, we divided up the light curve into 312 segments and analyzed them separately. The results reveal that variation of eclipse depth is primarily caused by changing amounts of contamination due to the nearby star KIC 9532228 between the Kepler Quarters and that the variable O’Connell effect originates from the starspot activity on the less massive primary component. Based on our light-curve timings, a period study of KIC 9532219 indicates that the orbital period has varied as a combination of a downward parabola and a light-travel-time (LTT) effect due to a third body, which has a period of 1196 days and a minimum mass of 0.0892 M{sub ⊙} in an orbit of eccentricity 0.150. The parabolic variation could be a small part of a second LTT orbit due to a fourth component in a wider orbit, instead of either mass transfer or angular momentum loss.

  8. An optical fan for light beams for high-precision optical measurements and optical switching

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high precision optical measurements and high capacity and high speed optical communications. Here we show, a totally new method, based on a combination of these two properties and using the thermal dispersion and electro-optical effect of birefringent crystals, the construction of a simple and robust scheme to rotate a light beam like a fan. Using a computer-based digital image processing technique, we determine the temperature and the thermal dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science and optical communication networks.

  9. Light curve modeling of eclipsing binaries towards the constellation of Carina

    CERN Document Server

    Dey, Aniruddha; Kumar, Subhash; Bhardwaj, Hrishabh; Bhattacharya, Barnmoy; Richa,; Sharma, Angad; Chauhan, Akshyata; Tiwari, Neha; Kaur, Sharanjit; Kumar, Suman; Abhishek,

    2015-01-01

    We present a detailed V-band photometric light curve modeling of 30 eclipsing binaries using the data from Pietrukowicz et al. (2009) collected with the European Southern Observatory Very Large Telescope (ESO VLT) of diameter 8-m. The light curve of these 30 eclipsing binaries were selected out of 148 of them available in the database on the basis of complete phase coverage, regular and smooth phased light curve shapes. Eclipsing binaries play pivotal role in the direct measurement of astronomical distances more accurately simply from their geometry of light curves. The accurate value of Hubble constant (H0) which measures the rate of expansion of the Universe heavily relies on extragalactic distance scale measurements. Classification of the selected binary stars in the sample were done, preliminarily on the basis of Fourier parameters in the a2-a4 plane and final classification was obtained from the Roche lobe geometry. Out of these 30 eclipsing binaries, only one was found to be detached binary system while...

  10. The light curve in supernova modeled by a continuous radioactive decay of $^{56}$Ni

    CERN Document Server

    Zaninetti, L

    2014-01-01

    The UVOIR bolometric light curves are usually modeled by the radioactive decay. In order to model more precisely the absolute/apparent magnitude versus time relationship the continuous production of radioactive isotopes is introduced. A differential equation of the first order with separable variables is solved.

  11. Starspot signature on the light curve. Learning about the latitudinal distribution of spots

    Science.gov (United States)

    Santos, A. R. G.; Cunha, M. S.; Avelino, P. P.; García, R. A.; Mathur, S.

    2017-02-01

    Context. Quasi-periodic modulations of the stellar light curve may result from dark spots crossing the visible stellar disc. Owing to differential rotation, spots at different latitudes generally have different rotation periods. Hence, by studying spot-induced modulations, it is possible to learn about stellar surface (differential) rotation and magnetic activity. Recently, a method based on the Lomb-Scargle periodogram of light curves has been proposed to identify the sign of the differential rotation at the stellar surface. Aims: Our goal is to understand how the modulation of the stellar light curve due to the presence of spots and the corresponding periodogram are affected by both the stellar and spot properties. Methods: We generate synthetic light curves of stars with different properties (inclination angle, limb darkening, and rotation rate) and spot configurations (number of spots, latitude, intensity contrast, and size). By analysing their Lomb-Scargle periodograms, we compute the ratio between the heights of the second and first harmonics of the rotation period (peak-height ratio). Results: We find that the peak-height ratios are essentially a function of a single parameter, the fraction of time the spot is visible, which is related to the sinusoidality of the spot modulation. We identify the conditions under which the periodogram analysis can actually provide an estimate of the spot latitudes and/or the stellar inclination angle. We also identify possible sources of error in the identification of the sign of the differential rotation.

  12. Characterizing the V-band light-curves of hydrogen-rich type II supernovae

    DEFF Research Database (Denmark)

    Anderson, Joseph P.; González-Gaitán, Santiago; Hamuy, Mario

    2014-01-01

    We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitude...

  13. The Kepler Light Curve of V344 Lyrae: Constraining the Thermal-viscous Limit Cycle Instability

    Science.gov (United States)

    Cannizzo, J. K.; Still, M. D.; Howell, S. B.; Wood, M. A.; Smale, A. P.

    2010-12-01

    We present time-dependent modeling based on the accretion disk limit cycle model for a 270 d light curve of the short-period SU UMa-type dwarf nova V344 Lyr taken by Kepler. The unprecedented precision and cadence (1 minute) far surpass that generally available for long-term light curves. The data encompass two superoutbursts and 17 normal (i.e., short) outbursts. The main decay of the superoutbursts is nearly perfectly exponential, decaying at a rate ~12 d mag-1, while the much more rapid decays of the normal outbursts exhibit a faster-than-exponential shape. Our modeling using the basic accretion disk limit cycle can produce the main features of the V344 Lyr light curve, including the peak outburst brightness. Nevertheless, there are obvious deficiencies in our model light curves. (1) The rise times we calculate, both for the normal and superoutbursts, are too fast. (2) The superoutbursts are too short. (3) The shoulders on the rise to superoutburst have more structure than the shoulders in the observed superoutbursts and are too slow, comprising about a third to half of the total viscous plateau, rather than the ~10% observed. However, one of the αcold αhot interpolation schemes we investigate (one that is physically motivated) does yield longer superoutbursts with suitably short, less structured shoulders.

  14. The Kepler Light Curve of V344 Lyrae: Constraining the Thermal-Viscous Limit Cycle Instability

    CERN Document Server

    Cannizzo, J K; Howell, S B; Wood, M A; Smale, A P

    2010-01-01

    We present time dependent modeling based on the accretion disk limit cycle model for a 270 d light curve of the short period SU UMa-type dwarf nova V344 Lyr taken by Kepler. The unprecedented precision and cadence (1 minute) far surpass that generally available for long term light curves. The data encompass two superoutbursts and 17 normal (i.e., short) outbursts. The main decay of the superoutbursts is nearly perfectly exponential, decaying at a rate ~12 d/mag, while the much more rapid decays of the normal outbursts exhibit a faster-than-exponential shape. Our modeling using the basic accretion disk limit cycle can produce the main features of the V344 Lyr light curve, including the peak outburst brightness. Nevertheless there are obvious deficiencies in our model light curves: (1) The rise times we calculate, both for the normal and superoutbursts, are too fast. (2) The superoutbursts are too short. (3) The shoulders on the rise to superoutburst have more structure than the shoulder in the observed superou...

  15. Supernova 1987A: neutrino-driven explosions in three dimensions and light curves

    CERN Document Server

    Utrobin, Victor; Janka, H -Thomas; Mueller, Ewald

    2014-01-01

    The well-studied type IIP SN 1987A, produced by the explosion of a blue supergiant (BSG) star, is a touchstone for massive-star evolution, simulations of neutrino-driven explosions, and modeling of light curves and spectra. In the framework of the neutrino-driven mechanism, we study the dependence of explosion properties on the structure of four different BSGs and compare the corresponding light curves with observations of SN 1987A. We perform 3D simulations with the PROMETHEUS code until about one day and map the results to the 1D code CRAB for the light curve calculations. All of our 3D models with explosion energies compatible with SN 1987A produce 56Ni in rough agreement with the amount deduced from fitting the radioactively powered light-curve tail. One of the progenitors yields maximum velocities of ~3000 km/s for the bulk of ejected 56Ni, consistent with observations. In all of our models inward mixing of hydrogen during the 3D evolution leads to minimum H-velocities below 100 km/s, in good agreement w...

  16. Fractal Property in the Light Curve of BL Lac Object S5 0716+714

    Indian Academy of Sciences (India)

    J. W. Ou; Y. G. Zheng

    2014-09-01

    In this paper, we compile the historical R-band data of S5 0716+714 from literature and obtain its fractal dimension by using a fractal method and then simulate the data with the Weierstrass–Mandelbrot (W–M) function. It is considered that the light curve has a fractal property.

  17. Search for light curve modulations among Kepler candidates. Three very low-mass transiting companions

    CERN Document Server

    Lillo-Box, J; Barrado, D; Merín, B; Bouy, H

    2016-01-01

    Light curve modulations in the sample of Kepler planet candidates allows the disentangling of the nature of the transiting object by photometrically measuring its mass. This is possible by detecting the effects of the gravitational pull of the companion (ellipsoidal modulations) and in some cases, the photometric imprints of the Doppler effect when observing in a broad band (Doppler beaming). We aim to photometrically unveil the nature of some transiting objects showing clear modulations in the phase-folded Kepler light curve. We selected a subsample among the large crop of Kepler objects of interest (KOIs) based on their chances to show detectable light curve modulations, i.e., close ($a<12~R_{\\star}$) and large (in terms of radius) candidates. We modeled their phase-folded light curves with consistent equations for the three effects, namely, reflection, ellipsoidal and beaming (known as REB modulations). We provide detailed general equations for the fit of the REB modulations for the case of eccentric or...

  18. Disentangling planetary and stellar activity features in the CoRoT-2 light curve

    CERN Document Server

    Bruno, G; Almenara, J -M; Barros, S C C; Lanza, A F; Montalto, M; Boisse, I; Santerne, A; Lagrange, A -M; Meunier, N

    2016-01-01

    [Abridged] Context. Stellar activity is an important source of systematic errors and uncertainties in the characterization of exoplanets. Most of the techniques used to correct for this activity focus on an ad hoc data reduction. Aims. We have developed a software for the combined fit of transits and stellar activity features in high-precision long-duration photometry. Our aim is to take advantage of the modelling to derive correct stellar and planetary parameters, even in the case of strong stellar activity. Methods. We use an analytic approach to model the light curve. The code KSint, modified by adding the evolution of active regions, is implemented into our Bayesian modelling package PASTIS. The code is then applied to the light curve of CoRoT-2. The light curve is divided in segments to reduce the number of free parameters needed by the fit. We perform a Markov chain Monte Carlo analysis in two ways. In the first, we perform a global and independent modelling of each segment of the light curve, transits ...

  19. Light Curves and Spectra from a Thermonuclear Explosion of a White Dwarf Merger

    CERN Document Server

    van Rossum, Daniel R; Fisher, Robert; Wollaeger, Ryan T; Garcia-Berro, Enrique; Aznar-Siguan, Gabriela; Ji, Suoqing; Loren-Aguilar, Pablo

    2015-01-01

    Double-degenerate (DD) mergers of carbon-oxygen (CO) white dwarfs have recently emerged as a leading candidate for normal Type Ia supernovae (SNe Ia). However, many outstanding questions surround DD mergers, including the characteristics of their light curves and spectra. We have recently identified a spiral instability in the post-merger phase of DD mergers, and demonstrated that this instability self-consistently leads to detonation in some cases. We call this the spiral merger SN Ia model. Here, we utilize the \\supernu\\ radiative transfer software to calculate 3D synthetic light curves and spectra of the spiral merger simulation with a system mass of 2.1 $M_\\odot$ of Kashyap et al. 2015. Because of their large system masses, both violent and spiral merger light curves are slowly declining. The spiral merger resembles very slowly-declining SNe Ia, including SN 2001ay, and provides a more natural explanation for its observed properties than other SN Ia explosion models. Previous synthetic light curves and sp...

  20. Fractal Property in the Light Curve of BL Lac Object S5 0716 + 714

    Science.gov (United States)

    Ou, J. W.; Zheng, Y. G.

    2014-09-01

    In this paper, we compile the historical R-band data of S5 0716 + 714 from literature and obtain its fractal dimension by using a fractal method and then simulate the data with the Weierstrass-Mandelbrot (W-M) function. It is considered that the light curve has a fractal property.

  1. Photoacoustic-guided convergence of light through optically diffusive media.

    Science.gov (United States)

    Kong, Fanting; Silverman, Ronald H; Liu, Liping; Chitnis, Parag V; Lee, Kotik K; Chen, Y C

    2011-06-01

    We demonstrate that laser beams can be converged toward a light-absorbing target through optically diffusive media by using photoacoustic-guided interferometric focusing. The convergence of light is achieved by shaping the wavefront of the incident light with a deformable mirror to maximize the photoacoustic signal, which is proportional to the scattered light intensity at the light absorber.

  2. THE INFORMATION CONTENT IN ANALYTIC SPOT MODELS OF BROADBAND PRECISION LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Walkowicz, Lucianne M. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08534 (United States); Basri, Gibor [Astronomy Department, University of California at Berkeley, Hearst Field Annex, Berkeley, CA 94720 (United States); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2013-04-01

    We present the results of numerical experiments to assess degeneracies in light curve models of starspots. Using synthetic light curves generated with the Cheetah starspot modeling code, we explore the extent to which photometric light curves constrain spot model parameters, including spot latitudes and stellar inclination. We also investigate the effects of spot parameters and differential rotation on one's ability to correctly recover rotation periods and differential rotation in the Kepler light curves. We confirm that in the absence of additional constraints on the stellar inclination, such as spectroscopic measurements of vsin i or occultations of starspots by planetary transits, the spot latitude and stellar inclination are difficult to determine uniquely from the photometry alone. We find that for models with no differential rotation, spots that appear on opposite hemispheres of the star may cause one to interpret the rotation period to be half of the true period. When differential rotation is included, the changing longitude separation between spots breaks the symmetry of the hemispheres and the correct rotation period is more likely to be found. The dominant period found via periodogram analysis is typically that of the largest spot. Even when multiple spots with periods representative of the star's differential rotation exist, if one spot dominates the light curve the signal of differential rotation may not be detectable from the periodogram alone. Starspot modeling is applicable to stars with a wider range of rotation rates than other surface imaging techniques (such as Doppler imaging), allows subtle signatures of differential rotation to be measured, and may provide valuable information on the distribution of stellar spots. However, given the inherent degeneracies and uncertainty present in starspot models, caution should be exercised in their interpretation.

  3. The Peculiar Light Curve of J1415+1320: A Case Study in Extreme Scattering Events

    Science.gov (United States)

    Vedantham, H. K.; Readhead, A. C. S.; Hovatta, T.; Koopmans, L. V. E.; Pearson, T. J.; Blandford, R. D.; Gurwell, M. A.; Lähteenmäki, A.; Max-Moerbeck, W.; Pavlidou, V.; Ravi, V.; Reeves, R. A.; Richards, J. L.; Tornikoski, M.; Zensus, J. A.

    2017-08-01

    The radio light curve of J1415+1320 (PKS 1413+135) shows time-symmetric and recurring U-shaped features across the centimeter-wave and millimeter-wave bands. The symmetry of these features points to lensing by an intervening object as the cause. U-shaped events in radio light curves in the centimeter-wave band have previously been attributed to Extreme scattering events (ESE). ESEs are thought to be the result of lensing by compact plasma structures in the Galactic interstellar medium, but the precise nature of these plasma structures remains unknown. Since the strength of a plasma lens evolves with wavelength λ as {λ }2, the presence of correlated variations at over a wide wavelength range casts doubt on the canonical ESE interpretation for J1415+1320. In this paper, we critically examine the evidence for plasma lensing in J1415+1320. We compute limits on the lensing strength and the associated free-free opacity of the putative plasma lenses. We compare the observed and model ESE light curves, and also derive a lower limit on the lens distance based on the effects of parallax due to the Earth’s orbit around the Sun. We conclude that plasma lensing is not a viable interpretation for J1415+1320's light curves and that symmetric U-shaped features in the radio light curves of extragalactic sources do not present prima facie evidence for ESEs. The methodology presented here is generic enough to be applicable to any plasma-lensing candidate.

  4. SUPERLUMINOUS SUPERNOVAE POWERED BY MAGNETARS: LATE-TIME LIGHT CURVES AND HARD EMISSION LEAKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. Q.; Wang, L. J.; Dai, Z. G. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, X. F., E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2015-01-20

    Recently, research performed by two groups has revealed that the magnetar spin-down energy injection model with full energy trapping can explain the early-time light curves of SN 2010gx, SN 2013dg, LSQ12dlf, SSS120810, and CSS121015 but fails to fit the late-time light curves of these superluminous supernovae (SLSNe). These results imply that the original magnetar-powered model is challenged in explaining these SLSNe. Our paper aims to simultaneously explain both the early- and late-time data/upper limits by considering the leakage of hard emissions. We incorporate quantitatively the leakage effect into the original magnetar-powered model and derive a new semianalytical equation. Comparing the light curves reproduced by our revised magnetar-powered model with the observed data and/or upper limits of these five SLSNe, we found that the late-time light curves reproduced by our semianalytical equation are in good agreement with the late-time observed data and/or upper limits of SN 2010gx, CSS121015, SN 2013dg, and LSQ12dlf and the late-time excess of SSS120810, indicating that the magnetar-powered model might be responsible for these SLSNe and that the gamma-ray and X-ray leakages are unavoidable when the hard photons were down-Comptonized to softer photons. To determine the details of the leakage effect and unveil the nature of SLSNe, more high-quality bolometric light curves and spectra of SLSNe are required.

  5. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    Science.gov (United States)

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  6. Search for light curve modulations among Kepler candidates. Three very low-mass transiting companions

    Science.gov (United States)

    Lillo-Box, J.; Ribas, A.; Barrado, D.; Merín, B.; Bouy, H.

    2016-07-01

    Context. Light curve modulations in the sample of Kepler planet candidates allows the disentangling of the nature of the transiting object by photometrically measuring its mass. This is possible by detecting the effects of the gravitational pull of the companion (ellipsoidal modulations) and in some cases, the photometric imprints of the Doppler effect when observing in a broad band (Doppler beaming). Aims: We aim to photometrically unveil the nature of some transiting objects showing clear light curve modulations in the phase-folded Kepler light curve. Methods: We selected a subsample among the large crop of Kepler objects of interest (KOIs) based on their chances to show detectable light curve modulations, i.e., close (a< 12 R⋆) and large (in terms of radius, according to their transit signal) candidates. We modeled their phase-folded light curves with consistent equations for the three effects, namely, reflection, ellipsoidal and beaming (known as REB modulations). Results: We provide detailed general equations for the fit of the REB modulations for the case of eccentric orbits. These equations are accurate to the photometric precisions achievable by current and forthcoming instruments and space missions. By using this mathematical apparatus, we find three close-in very low-mass companions (two of them in the brown dwarf mass domain) orbiting main-sequence stars (KOI-554, KOI-1074, and KOI-3728), and reject the planetary nature of the transiting objects (thus classifying them as false positives). In contrast, the detection of the REB modulations and transit/eclipse signal allows the measurement of their mass and radius that can provide important constraints for modeling their interiors since just a few cases of low-mass eclipsing binaries are known. Additionally, these new systems can help to constrain the similarities in the formation process of the more massive and close-in planets (hot Jupiters), brown dwarfs, and very low-mass companions.

  7. Microlensing of Sub-parsec Massive Binary Black Holes in Lensed QSOs: Light Curves and Size-Wavelength Relation

    CERN Document Server

    Yan, Chang-Shuo; Yu, Qingjuan; Mao, Shude; Wambsganss, Joachim

    2014-01-01

    Sub-parsec binary massive black holes (BBHs) are long anticipated to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circum-binary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circum-binary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii ...

  8. VizieR Online Data Catalog: BVIc light curves of 57 Cepheids (Berdnikov+,

    Science.gov (United States)

    Berdnikov, L. N.; Kniazev, A. Yu.; Sefako, R.; Kravtsov, V. V.; Zhujko, S. V.

    2014-04-01

    In 2008-2013, we obtained 11333 CCD BV Ic frames for 57 Cepheids from the General Catalogue of Variable Stars. We performed our observations with the 76-cm telescope of the South AfricanAstronomicalObservatory (SAAO, South Africa) and the 40-cm telescope of the Cerro Armazones Astronomical Observatory of the Universidad Catolica del Norte (OCA, Chile) using the SBIG ST-10XME CCD camera. The tables of observations, the plots of light curves, and the current light elements are presented. Comparison of our light curves with those constructed from photoelectric observations shows that the differences between their mean magnitudes exceed 0.05mag in 20% of the cases. This suggests the necessity of performing CCD observations for all Cepheids. (2 data files).

  9. Electrically and Optically Readable Light Emitting Memories

    Science.gov (United States)

    Chang, Che-Wei; Tan, Wei-Chun; Lu, Meng-Lin; Pan, Tai-Chun; Yang, Ying-Jay; Chen, Yang-Fang

    2014-06-01

    Electrochemical metallization memories based on redox-induced resistance switching have been considered as the next-generation electronic storage devices. However, the electronic signals suffer from the interconnect delay and the limited reading speed, which are the major obstacles for memory performance. To solve this problem, here we demonstrate the first attempt of light-emitting memory (LEM) that uses SiO2 as the resistive switching material in tandem with graphene-insulator-semiconductor (GIS) light-emitting diode (LED). By utilizing the excellent properties of graphene, such as high conductivity, high robustness and high transparency, our proposed LEM enables data communication via electronic and optical signals simultaneously. Both the bistable light-emission state and the resistance switching properties can be attributed to the conducting filament mechanism. Moreover, on the analysis of current-voltage characteristics, we further confirm that the electroluminescence signal originates from the carrier tunneling, which is quite different from the standard p-n junction model. We stress here that the newly developed LEM device possesses a simple structure with mature fabrication processes, which integrates advantages of all composed materials and can be extended to many other material systems. It should be able to attract academic interest as well as stimulate industrial application.

  10. Light and Color Curve Properties of Type Ia Supernovae: Theory Versus Observations

    Science.gov (United States)

    Hoeflich, P.; Hsiao, E. Y.; Ashall, C.; Burns, C. R.; Diamond, T. R.; Phillips, M. M.; Sand, D.; Stritzinger, M. D.; Suntzeff, N.; Contreras, C.; Krisciunas, K.; Morrell, N.; Wang, L.

    2017-09-01

    We study the optical light curve (LC) relations of Type Ia supernovae (SNe Ia) for their use in cosmology using high-quality photometry published by the Carnegie Supernova Project (CSP-I). We revisit the classical luminosity decline rate (Δm 15) relation and the Lira relation, as well as investigate the time evolution of the (B ‑ V) color and B(B ‑ V), which serves as the basis of the color–stretch relation and Color–MAgnitude Intercept Calibrations (CMAGIC). Our analysis is based on explosion and radiation transport simulations for spherically symmetric delayed-detonation models (DDT) producing normal-bright and subluminous SNe Ia. Empirical LC relations can be understood as having the same physical underpinnings, i.e., opacities, ionization balances in the photosphere, and radioactive energy deposition changing with time from below to above the photosphere. Some three to four weeks past maximum, the photosphere recedes to 56Ni-rich layers of similar density structure, leading to a similar color evolution. An important secondary parameter is the central density ρ c of the WD because at higher densities, more electron-capture elements are produced at the expense of 56Ni production. This results in a Δm 15 spread of 0.1 mag in normal-bright and 0.7 mag in subluminous SNe Ia and ≈0.2 mag in the Lira relation. We show why color–magnitude diagrams emphasize the transition between physical regimes and enable the construction of templates that depend mostly on Δm 15 with little dispersion in both the CSP-I sample and our DDT models. This allows intrinsic SN Ia variations to be separated from the interstellar reddening characterized by E(B ‑ V) and R B . Invoking different scenarios causes a wide spread in empirical relations, which may suggest one dominant scenario.

  11. Relationship between width of pulses and Lorentz factor expected from the light curve of fireball sources

    Institute of Scientific and Technical Information of China (English)

    Zhang Fu-Wen; Qin Yi-Ping

    2005-01-01

    Time profiles of many gamma-ray bursts consist of distinct pulses, which provides a possibility of characterizing the temporal structure of these bursts. We employ a simple model of highly symmetric fireballs to analyse the effect of the expansion speed on the light curve arising from different forms of local pulses. The relationship between the ratio r of the FWHM width of the rising phase of the light curve to that of the decaying phase and the Lorentz factor is investigated. The analysis shows that, when the rest frame radiation form is ignored, temporal profiles of the light curve arising from pulses of fireballs will not be affected by the expansion speed (that is, r is almost a constant) as long as the fireball expands relativistically. When the rest frame radiation form is taken into account, there will be a break in the curves of r - log Γ. The location of the break depends mainly on the adopted value of the rest frame peak frequency v0,p. One would reach almost the same result when a jet is considered. In addition, we utilize a sample of 48individual GRB pulses to check the relationship between the ratio r and the expansion speed Γ. We find no significant correlation between them, and this is consistent with the theoretical analysis.

  12. Light curves and spectra from off-axis gamma-ray burst single pulses

    CERN Document Server

    Salafia, Om S; Pescalli, Alessio; Ghirlanda, Giancarlo; Nappo, Francesco

    2016-01-01

    We set up a simple model to compute the bolometric light curve and time dependent spectrum of a single pulse of a Gamma-Ray Burst under the assumption that the pulse rise and decay are dominated by the shell curvature effect. For the first time, our model includes the effect of an arbitrary off-axis viewing angle. We show that a pulse observed off-axis is (i) longer, (ii) softer and (iii) displays a different hardness-intensity correlation with respect to the same pulse seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then show how a synthetic light curve made by a superposition of pulses changes with increasing viewing angle. We find that many observed properties found in time-resolved spectral analysis of Gamma-Ray Burst light curves are reproduced in curves with a slightly off-axis viewing angle. Such properties include the fact that the spectral peak energy evolution tracks the variations in flux, leading them slightly. Based on these results, we argue that low lum...

  13. Light curve solution and orbital period analysis of the contact binary V842 Herculis

    Science.gov (United States)

    Selam, S. O.; Albayrak, B.; Şenavci, H. V.; Aksu, O.

    2005-10-01

    New photoelectric BV light curves were obtained for the neglected eclipsing binary V842 Her at the TÜB{İTAK National Observatory (TUG) and studied for the first time in detail to determine the orbital parameters and geometry of the system. The solutions obtained simultaneously for the new light curves and the radial velocity curves in the literature by using the Wilson-Devinney code reveal a typical W-type contact system. The light curves exhibit the so-called O'Connell effect which the level of the primary maxima being higher than that of the secondary ones in both pass-bands. The O'Connell effect in the light curves is explained in terms of a dark-spot located on the more massive component which makes the more massive larger component slightly cooler than the less massive smaller one. The O-C diagram constructed for all available times of minima of V842 Her exhibits a cyclic character superimposed on a quadratic variation. The quadratic character yields a orbital period increase with a rate of dP/dt=7.76×10-7 days yr-1 which can be attributed to the mass exchange/loss mechanism in the system. By assuming the presence of a gravitationally bound third body in the system, the analysis of the cyclic nature in the O-C diagram revealed a third body with mass of 0.4M\\sun orbiting around the eclipsing pair. The possibility of magnetic activity cycle effect as a cause for the observed cyclic variation in the O-C diagram was also discussed.

  14. Optical pulse generator using liquid crystal light valve

    Science.gov (United States)

    Collins, S. A., Jr.

    1984-01-01

    Numerical optical computing is discussed. A design for an optical pulse generator using a Hughes Liquid crystal light valve and intended for application as an optical clock in a numerical optical computer is considered. The pulse generator is similar in concept to the familiar electronic multivibrator, having a flip-flop and delay units.

  15. NetherLight, the experimental optical internet exchange in Amsterdam

    Science.gov (United States)

    Radius, Erik

    Since 2001, SURFnet (the service provider for the research and education community in the Netherlands) is deploying novel optical networking techniques at NetherLight, an experimental optical internet exhange for next-generation (multi)gigabit networking.

  16. Light curve solutions for bright detached eclipsing binaries in SMC: absolute dimensions and distance indicators

    CERN Document Server

    Graczyk, D

    2003-01-01

    This paper presents a careful and detailed light curve analysis of bright detached eclipsing binaries (DEB) in the Small Magellanic Cloud, discovered by OGLE collaboration, on the basis of recently available difference image analysis (DIA) photometry. The 19 binaries brighter than 16.4 mag in I band and with the depth of primary and secondary eclipse greater than 0.25 mag were investigated. The solutions were obtained by a modified version of the Wilson-Devinney program. The quality of DIA light curves - a good phase coverage and relatively small scatter - is enough to calculate realistic estimates for the third light l_3 and the argument of periastron. It was found that solutions of detached, eccentric systems with flat light curve between eclipses usually may suffer from indetermination of l_3 in contrast to those of similar systems having some proximity effects. The physical properties of the stars were estimated on the basis of their photometric elements and indices assuming the distance modulus to SMC ~1...

  17. ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    CERN Document Server

    Maxted, P F L

    2016-01-01

    Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. I have developed a binary star model (ELLC) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaughlin effect). The main features of the model have tested by comparison to observed data and other light curve models. The model is found to be accurate enough t...

  18. Current-voltage characteristics of light-emitting diodes under optical and electrical excitation

    Institute of Scientific and Technical Information of China (English)

    Wen Jing; Wen Yumei; Li Ping; Li Lian

    2011-01-01

    The factors influencing the current-voltage (Ⅰ-Ⅴ) characteristics of light-emitting diodes (LEDs) are investigated to reveal the connection of Ⅰ-Ⅴ characteristics under optical excitation and those under electrical excitation.By inspecting the Ⅰ-Ⅴ curves under optical and electrical excitation at identical injection current,it has been found that the Ⅰ-Ⅴ curves exhibit apparent differences in voltage values.Furthermore,the differences are found to originate from the junction temperatures in diverse excitation ways.Experimental results indicate that if the thermal effect of illuminating spot is depressed to an ignorable extent by using pulsed light,the junction temperature will hardly deflect from that under optical excitation,and then the Ⅰ-Ⅴ characteristics under two diverse excitation ways will be the same.

  19. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH SHORT-DURATION PERIODIC FLUX DIPS IN THEIR LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Plavchan, Peter; Carey, Sean [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); McGinnis, Pauline; Alencar, Silvia H. P. [Departamento de Física—ICEx—UFMG, Av. Antônio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil); Hillenbrand, Lynne A.; Carpenter, John [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Terebey, Susan [Department of Physics and Astronomy, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Morales-Calderón, María [Centro de Astrobiología, Dpto. de Astrofísica, INTA-CSIC, PO BOX 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); Bouvier, Jerome; Venuti, Laura [Université de Grenoble, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Hartmann, Lee; Calvet, Nuria [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105 (United States); Micela, Giusi; Flaccomio, Ettore [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134, Palermo (Italy); Song, Inseok [Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602–2451 (United States); Gutermuth, Rob, E-mail: stauffer@ipac.caltech.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2015-04-15

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow periodic flux dips. All of these stars have infrared excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHMs generally less than 1 day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected in successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard “disk-locking” models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSOs in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel-flow accretion columns arising near the inner disk wall.

  20. CSI 2264: Characterizing Young Stars in NGC 2264 With Short-Duration Periodic Flux Dips in Their Light Curves

    Science.gov (United States)

    Stauffer, John; Cody, Ann Marie; McGinnis, Pauline; Rebull, Luisa; Hillenbrand, Lynne A.; Turner, Neal J.; Carpenter, John; Plavchan, Peter; Carey, Sean; Terebey, Susan; Morales-Calderon, Maria; Alencar, Silvia H. P.; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J.; Covey, Kevin; Padgett, Debbie; Herbst, William; Gillen, Edward; Lyra, Wladimir; Guimaraes, Marcelo Medeiros; Bouy, Herve; Favata, Fabio

    2015-01-01

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow, periodic flux dips. All of these stars have infrared (IR) excesses that are consistent with their having inner disk walls near the Keplerian corotation radius. The repeating photometric dips have FWHM generally less than one day, depths almost always less than 15%, and periods (3 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected on successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard \\disk-locking" models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSO in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel- ow accretion columns arising near the inner disk wall.

  1. Tracing Analytic Ray Curves for Light and Sound Propagation in Non-Linear Media.

    Science.gov (United States)

    Mo, Qi; Yeh, Hengchin; Manocha, Dinesh

    2016-11-01

    The physical world consists of spatially varying media, such as the atmosphere and the ocean, in which light and sound propagates along non-linear trajectories. This presents a challenge to existing ray-tracing based methods, which are widely adopted to simulate propagation due to their efficiency and flexibility, but assume linear rays. We present a novel algorithm that traces analytic ray curves computed from local media gradients, and utilizes the closed-form solutions of both the intersections of the ray curves with planar surfaces, and the travel distance. By constructing an adaptive unstructured mesh, our algorithm is able to model general media profiles that vary in three dimensions with complex boundaries consisting of terrains and other scene objects such as buildings. Our analytic ray curve tracer with the adaptive mesh improves the efficiency considerably over prior methods. We highlight the algorithm's application on simulation of visual and sound propagation in outdoor scenes.

  2. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    Science.gov (United States)

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  3. A Simple yet Accurate Method for Students to Determine Asteroid Rotation Periods from Fragmented Light Curve Data

    Science.gov (United States)

    Beare, R. A.

    2008-01-01

    Professional astronomers use specialized software not normally available to students to determine the rotation periods of asteroids from fragmented light curve data. This paper describes a simple yet accurate method based on Microsoft Excel[R] that enables students to find periods in asteroid light curve and other discontinuous time series data of…

  4. 3D Modeling of Spectra and Light Curves of Hot Jupiters with PHOENIX; a First Approach

    Science.gov (United States)

    Jiménez-Torres, J. J.

    2016-04-01

    A detailed global circulation model was used to feed the PHOENIX code and calculate 3D spectra and light curves of hot Jupiters. Cloud free and dusty radiative fluxes for the planet HD179949b were modeled to show differences between them. The PHOENIX simulations can explain the broad features of the observed 8 μm light curves, including the fact that the planet-star flux ratio peaks before the secondary eclipse. The PHOENIX reflection spectrum matches the Spitzer secondary-eclipse depth at 3.6 μm and underpredicts eclipse depths at 4.5, 5.8 and 8.0 μm. These discrepancies result from the chemical composition and suggest the incorporation of different metallicities in future studies.

  5. 3D MODELING OF SPECTRA AND LIGHT CURVES OF HOT JUPITERS WITH PHOENIX; A FIRST APPROACH

    Directory of Open Access Journals (Sweden)

    Juan J. Jiménez-Torres

    2016-01-01

    Full Text Available A detailed global circulation model was used to feed the PHOENIX code and calculate 3D spectra and light curves of hot Jupiters. Cloud free and dusty radiative fluxes for the planet HD179949b were modeled to show differences between them. The PHOENIX simulations can explain the broad features of the observed 8 µm light curves, including the fact that the planet-star flux ratio peaks before the secondary eclipse. The PHOENIX reflection spectrum matches the Spitzer secondary-eclipse depth at 3.6 µm and underpredicts eclipse depths at 4.5, 5.8 and 8.0 µm. These discrepancies result from the chemical composition and suggest the incorporation of different metallicities in future studies.

  6. Quasi-Periodic Oscillations in the X-ray Light Curves of Blazars

    Indian Academy of Sciences (India)

    Paul J. Wiita

    2011-03-01

    Any quasi-periodic variations discovered in blazar light curves would contain important information on the location and nature of the processes within the emission regions. In non-blazar active galactic nuclei, particularly Seyfert galaxies, any such fluctuations are very likely to be associated with the accretion disks, but in blazars they would almost certainly have to emanate from jets. This brief review summarizes recent claims for the presence of quasi-periodic variability in the X-ray emission of several AGN, focusing on blazars. Although no individual claim of the presence of a QPO in AGN X-ray light curves is absolutely convincing, there are some good cases for the presence of QPOs, including the Narrow Line Seyfert 1 galaxy, RE J1034+396, the quasar, 3C 273 and the BL Lac, PKS 2155−304.

  7. Multi-messenger light curves from gamma-ray bursts in the internal shock model

    CERN Document Server

    Bustamante, Mauricio; Winter, Walter

    2016-01-01

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure tend to be inefficient neutrino emitters and produce delayed high-energy gamma-ray s...

  8. Corot 310266512: A Light Curve With Primary, Secondary And Tertiary Eclipses

    Directory of Open Access Journals (Sweden)

    Fernández Fernández Javier

    2015-01-01

    Full Text Available We present the photometric study of an interesting target in the CoRoT exoplanet database: CoRoT 310266512. Its light curve shows primary, secondary and tertiary eclipses that suggests the presence of at least three celestial bodies. The primary and secondary eclipses have the same orbital period, 7.42 days, and the tertiary eclipse has an orbital period of 3.27 days. Two of the tertiary eclipses fall within a primary eclipse and a secondary eclipse. The properties of the light curve indicate the presence of two physically separated systems. The primary and secondary eclipses corresponds to a binary system (System I. The tertiary eclipses correspond to a star-planet system or a star-dwarf system (System II. Some parameters of these two systems are obtained from JKTEBOP [1] program.

  9. 3D Modeling of Spectra and Light Curves of Hot Jupiters; A First Approach

    CERN Document Server

    Jiménez-Torres, Juan J

    2015-01-01

    In this paper, a detailed Global Circulation Model was employed to feed the PHOENIX code to calculate 3D spectra and light curves of hot Jupiters. Cloud free and dusty radiative luxes for the planet HD179949b were modeled to show differences between them. The PHOENIX simulations can explain the broad features of the observed 8 {\\mu}m light curves, including the fact that the planet-star flux ratio peaks before the secondary eclipse. The PHOENIX reflection spectrum matches the Spitzer secondary-eclipse depth at 3.6 {\\mu}m and underpredicts the eclipse depths at 4.5, 5.8 and 8.0 {\\mu}m. These discrepancies result from the chemical composition and provide motivation for incorporating different metallicities in future studies.

  10. Re-Analysis of QPO in 3C 273 Light Curve

    Indian Academy of Sciences (India)

    P. Mohan; A. Mangalam; Hum Chand; Alok C. Gupta

    2011-03-01

    We have developed analysis tools to search for quasi periodic oscillations in light curves from active galactic nuclei, using the following time series techniques: Wavelets, periodogram, Lomb–Scargle periodogram, structure function and multi-harmonic analysis of variance. The analysis tools incorporate different noise models with significant levels for all the techniques that is an improvement over the previous work. By looking for consistently high significance, we make the detection of periodicities more robust. We apply this tool to a previously reported QPO (Espaillat et al. 2008) in the X-ray light curve of 3C 273 with a periodicity of ∼ 3300 s and find that the significance is only 74% in the wavelet and fails to show up above 95% significance in the periodogram and multi-harmonic analysis of variance.

  11. Single and binary evolution of Population III stars and their supernovae light curves

    CERN Document Server

    Lawlor, T M; Johnson, T A; MacDonald, J

    2007-01-01

    We present stellar evolution calculations for Population III stars for both single and binary star evolution. Our models include 10 Msun and 16.5 Msun single stars and a 10 Msun model star that undergoes an episode of accretion resulting in a final mass of 16.1 Msun. For comparison, we present the evolution of a solar heavy element abundance model. We use the structure from late stage evolution models to calculate simulated supernova light curves. Light curve comparisons are made between accretion and non-accretion progenitor models, and models for single star evolution of comparable masses. Where possible, we make comparisons to previous works. Similar investigations have been carried out, but primarily for solar or near solar heavy metal abundance stars and not including both the evolution and supernovae explosions in one work.

  12. A Periodicity Analysis of the Light Curve of 3C 454.3

    Institute of Scientific and Technical Information of China (English)

    Huai-Zhen Li; Guang-Zhong Xie; Shu-Bai Zhou; Hong-Tao Liu; Guang-Wei Cha; Li Ma; Li-Sheng Mao

    2006-01-01

    We analyzed the radio light curves of 3C 454.3 at frequencies 22 and 37 GHz taken from the database of Mets(a)hovi Radio Observatory, and found evidence of quasi-periodic activity. The light curves show great activity with very complicated non-sinusoidal variations. Two possible periods, a very weak one of 1.57 ± 0.12 yr and a very strong one of 6.15 ± 0.50 yr were consistently identified by two methods, the Jurkevich method and power spectrum estimation. The period of 6.15 ± 0.50 yr is consistent with results previously reported by Ciaramella et al. and Webb et al. Applying the binary black hole model to the central structure we found black hole masses of 1.53 × 109M⊙ and 1.86 × 108M⊙, and predicted that the next radio outburst is to take place in 2006 March and April.

  13. Exposure-based Algorithm for Removing Systematics out of the CoRoT Light Curves

    CERN Document Server

    Guterman, P; Faigler, S

    2015-01-01

    The CoRoT space mission was operating for almost 6 years, producing thousands of continuous photometric light curves. The temporal series of exposures are processed by the production pipeline, correcting the data for known instrumental effects. But even after these model-based corrections, some collective trends are still visible in the light curves. We propose here a simple exposure-based algorithm to remove instrumental effects. The effect of each exposure is a function of only two instrumental stellar parameters, position on the CCD and photometric aperture. The effect is not a function of the stellar flux, and therefore much more robust. As an example, we show that the $\\sim2\\%$ long-term variation of the early run LRc01 is nicely detrended on average. This systematics removal process is part of the CoRoT legacy data pipeline.

  14. Type Ia supernova bolometric light curves and ejected mass estimates from the Nearby Supernova Factory

    CERN Document Server

    Scalzo, R; Antilogus, P; Aragon, C; Bailey, S; Baltay, C; Bongard, S; Buton, C; Cellier-Holzem, F; Childress, M; Chotard, N; Copin, Y; Fakhouri, H K; Gangler, E; Guy, J; Kim, A; Kowalski, M; Kromer, M; Nordin, J; Nugent, P; Paech, K; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigault, M; Runge, K; Saunders, C; Sim, S A; Smadja, G; Tao, C; Taubenberger, S; Thomas, R C; Weaver, B A

    2014-01-01

    We present a sample of normal type Ia supernovae from the Nearby Supernova Factory dataset with spectrophotometry at sufficiently late phases to estimate the ejected mass using the bolometric light curve. We measure $^{56}$Ni masses from the peak bolometric luminosity, then compare the luminosity in the $^{56}$Co-decay tail to the expected rate of radioactive energy re- lease from ejecta of a given mass. We infer the ejected mass in a Bayesian context using a semi-analytic model of the ejecta, incorporating constraints from contemporary numerical models as priors on the density structure and distribution of $^{56}$Ni throughout the ejecta. We find a strong correlation between ejected mass and light curve decline rate, and consequently $^{56}$Ni mass, with ejected masses in our data ranging from 0.9-1.4 $M_\\odot$. Most fast-declining (SALT2 $x_1 < -1$) normal SNe Ia have significantly sub-Chandrasekhar ejected masses in our fiducial analysis.

  15. HEIDI: An Automated Process for the Identification and Extraction of Photometric Light Curves from Astronomical Images

    CERN Document Server

    Todd, M; Tanga, P; Coward, D M; Zadnik, M G

    2014-01-01

    The production of photometric light curves from astronomical images is a very time-consuming task. Larger data sets improve the resolution of the light curve, however, the time requirement scales with data volume. The data analysis is often made more difficult by factors such as a lack of suitable calibration sources and the need to correct for variations in observing conditions from one image to another. Often these variations are unpredictable and corrections are based on experience and intuition. The High Efficiency Image Detection & Identification (HEIDI) pipeline software rapidly processes sets of astronomical images. HEIDI automatically selects multiple sources for calibrating the images using an algorithm that provides a reliable means of correcting for variations between images in a time series. The algorithm takes into account that some sources may intrinsically vary on short time scales and excludes these from being used as calibration sources. HEIDI processes a set of images from an entire nigh...

  16. Comparative Analysis of Phenomenological Approximations of the Light Curves of Eclipsing Binary Stars with Additional Parameters

    CERN Document Server

    Andronov, Ivan L; Chinarova, Lidia

    2016-01-01

    A comparative analysis of the special shapes (patterns, profiles) of the eclipses applied for the phenomenological modeling of the light curves of eclipsing binary stars is conducted. Families of functions are considered, generalizing local approximations (Andronov, 2010, 2012) and the functions theoretically unlimited in a width, based on a Gaussian (Mikulasek, 2015). For an analysis, the light curve of the star V0882 Car = 2MASS J11080308 - 6145589 of the classic Algol - subtype (\\beta Persei) is used. By analyzing dozens of modified functions with additional parameters, it was chosen the 14 best ones according to the criterion of the least sum of squares of deviations. The best are the functions with an additional parameter, describing profiles, which are limited in phase.

  17. The unusual X-ray light-curve of GRB 080307: the onset of the afterglow?

    CERN Document Server

    Page, K L; O'Brien, P T; Tanvir, N R; Osborne, J P; Zhang, B; Holland, S T; Levan, A J; Melandri, A; Starling, R L C; Bersier, D; Burrows, D N; Geach, J E; Maxted, P

    2009-01-01

    Swift-detected GRB 080307 showed an unusual smooth rise in its X-ray light-curve around 100 seconds after the burst, at the start of which the emission briefly softened. This `hump' has a longer duration than is normal for a flare at early times and does not demonstrate a typical flare profile. Using a two component power-law-to-exponential model, the rising emission can be modelled as the onset of the afterglow, something which is very rarely seen in Swift-X-ray light-curves. We cannot, however, rule out that the hump is a particularly slow early-time flare, or that it is caused by upscattered reverse shock electrons.

  18. BEER analysis of Kepler and CoRoT light curves. III. Spectroscopic confirmation of seventy new beaming binaries discovered in CoRoT light curves

    Science.gov (United States)

    Tal-Or, L.; Faigler, S.; Mazeh, T.

    2015-08-01

    Context. The BEER algorithm searches stellar light curves for the BEaming, Ellipsoidal, and Reflection photometric modulations that are caused by a short-period companion. These three effects are typically of very low amplitude and can mainly be detected in light curves from space-based photometers. Unlike eclipsing binaries, these effects are not limited to edge-on inclinations. Aims: Applying the algorithm to wide-field photometric surveys such as CoRoT and Kepler offers an opportunity to better understand the statistical properties of short-period binaries. It also widens the window for detecting intrinsically rare systems, such as short-period brown-dwarf and massive-planetary companions to main-sequence stars. Methods: Applying the search to the first five long-run center CoRoT fields, we identified 481 non-eclipsing candidates with periodic flux amplitudes of 0.5-87 mmag. Optimizing the Anglo-Australian-Telescope pointing coordinates and the AAOmega fiber-allocations with dedicated softwares, we acquired six spectra for 231 candidates and seven spectra for another 50 candidates in a seven-night campaign. Analysis of the red-arm AAOmega spectra, which covered the range of 8342-8842 Å, yielded a radial-velocity precision of ~1 km s-1. Spectra containing lines of more than one star were analyzed with the two-dimensional correlation algorithm TODCOR. Results: The measured radial velocities confirmed the binarity of seventy of the BEER candidates - 45 single-line binaries, 18 double-line binaries, and 7 diluted binaries. We show that red giants introduce a major source of false candidates and demonstrate a way to improve BEER's performance in extracting higher fidelity samples from future searches of CoRoT light curves. The periods of the confirmed binaries span a range of 0.3-10 days and show a rise in the number of binaries per ΔlogP toward longer periods. The estimated mass ratios of the double-line binaries and the mass ratios assigned to the single

  19. Modeling characteristic curves of solar cells and optical detectors with the Simmon–Taylor approximation

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, M.G., E-mail: mdegreef@santafe-conicet.gov.ar [INTEC, Universidad Nacional del Litoral, Güemes 3450, Santa Fe 3000 (Argentina); Rubinelli, F.A. [INTEC, Universidad Nacional del Litoral, Güemes 3450, Santa Fe 3000 (Argentina); Swaaij, Rene van [Delft University of Technology, Photovoltaic Materials and Devices – ESE, P. O. Box 5031, NL-2600 GA, Delft (Netherlands)

    2013-07-01

    The performance of amorphous and microcrystalline silicon based electronic devices is highly dependent on the density of states present in the band gap. The density of states in these materials contains two exponentially decreasing tails and a high number of deep states. Charge trapping and the recombination of electron–hole pairs through gap states are usually described by the Schockley–Read–Hall (SRH) formalism. The equations derived in the SRH formalism can be highly simplified by using the Simmons–Taylor's algorithms, especially the one so called “0 K” approximation, which allows a quasi-analytical derivation of the current–voltage characteristics. Although the validity of these algorithms were discussed in the literature on semiconductor materials, there is not a systematic study where these algorithms were included in a computer code that numerically solves the governing semiconductor device equations in order to compare the characteristic curves predicted by these simplifications with the ones obtained with the SRH formalism. This paper is an attempt to fill this void. The approximations of Simmon–Taylor were implemented in our code D-AMPS and the current–voltage and spectral response curves were evaluated under different conditions: with and without bias light, at forward and reverse bias voltages, at different temperatures, for various intrinsic layer thicknesses and for different key electrical parameters. To simplify the discussion we have assumed a uniform density of states along the intrinsic layer. Our results indicate that the Simmon–Taylor approximation is acceptable when the device is working under illumination. Under dark conditions the approximation is also satisfactory when the device is forward biased but slightly overestimates the dark current when the device is reverse forward. Although the 0 K approximation leads us to unacceptable results when the device is reversed biased and operates under dark conditions it can

  20. New Light Curves and Period Studies of V502 OPH W UMA System

    Science.gov (United States)

    Awadalla, Nabil S.

    NEW LIGHT CURVES AND PERIOD STUDIES OF V502 OPH W UMa SYSTEM N.S.Awadalla National Research Institute of Astronomy and Geophysics( NRIAG ) Helwan Cairo EGYPT New BVR photoelectric observations of the W UMa eclipsing binary system V502 Oph have been presented and analyzed. The geometric and physical elements of the system have been obtained and compared to the previous results. The classification of the system concerning the sub-type of the W UMa binary has been studied as well as its evolution stage. Its period variation in a view of the light time effect has been examin

  1. Light curve analysis of beta Lyrae type binary star EM TrA

    Science.gov (United States)

    Özkardeş, B.

    2017-02-01

    An analysis of photometric observations of the eclipsing binary system EM TrA (TYC 9258-211-1=CD-67 1660) is presented in this study. The V light curve of the system from All Sky Automated Survey (ASAS) was solved using the Wilson-Devinney code. The final solution describes EM TrA as a detached system. The absolute parameters of the components of the system were estimated.

  2. Light curves and spectra from off-axis gamma-ray bursts

    Science.gov (United States)

    Salafia, O. S.; Ghisellini, G.; Pescalli, A.; Ghirlanda, G.; Nappo, F.

    2016-10-01

    If gamma-ray burst prompt emission originates at a typical radius, and if material producing the emission moves at relativistic speed, then the variability of the resulting light curve depends on the viewing angle. This is due to the fact that the pulse evolution time-scale is Doppler contracted, while the pulse separation is not. For off-axis viewing angles θview ≳ θjet + Γ-1, the pulse broadening significantly smears out the light-curve variability. This is largely independent of geometry and emission processes. To explore a specific case, we set up a simple model of a single pulse under the assumption that the pulse rise and decay are dominated by the shell curvature effect. We show that such a pulse observed off-axis is (i) broader, (ii) softer and (iii) displays a different hardness-intensity correlation with respect to the same pulse seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then show how a synthetic light curve made by a superposition of pulses changes with increasing viewing angle. We find that a highly variable light curve (as seen on-axis) becomes smooth and apparently single-pulsed (when seen off-axis) because of pulse overlap. To test the relevance of this fact, we estimate the fraction of off-axis gamma-ray bursts detectable by Swift as a function of redshift, finding that a sizeable fraction (between 10 per cent and 80 per cent) of nearby (z < 0.1) bursts are observed with θview ≳ θjet + Γ-1. Based on these results, we argue that low-luminosity gamma-ray bursts are consistent with being ordinary bursts seen off-axis.

  3. A forgotten episode of the $\\eta ~Car$ light curve in 1860-1865

    CERN Document Server

    Polcaro, V F

    1993-01-01

    We have found previously unreported observations of the galactic Luminous Blue Variable $\\eta ~Car$ covering the period 1860-1865. Contrary to the current belief, these data suggest that the star reached the first magnitude in 1860-1862, with possible large luminosity fluctuations, followed by a steep fading in 1865. A revised historical light curve of this most interesting object is given. Paper in press in Astronomy and Astrophysics.

  4. Characterizing Extrasolar Planets from Transit Light Curves obtained at the Universidad de Monterrey Observatory - Part 2

    Science.gov (United States)

    Valdés Sada, Pedro

    2017-01-01

    At the Universidad de Monterrey Observatory (MPC 720) we have maintained a program for observing extrasolar planet transit light curves with telescopes of modest size and standard photometric filters since 2005. In our archives we have over 325 transits of over 70 known systems. Our goal is to combine individual transit light curves of the same system to increase the S/N of the data. We then analyze it together with the radial velocity information from the literature in order to confirm, improve or revise the main parameters that characterize the transiting system. It is important to continue observing these systems not only to improve and refine our understanding of them, but also to record any possible transient phenomenon and monitor for possible period changes, as reflected in the mid-transit times, due to the gravitational influence of additional planets in the system.In this second presentation we report our observations of 42 individual exoplanet transit light curves and the results from successfully combining six light curves for HAT-P-3 (Ic), twenty-one for TrES-3 (6 in V, 5 in Rc, 6 in Ic and 4 in z’), seven for XO-2 (Ic), four for XO-3 (Ic), and four for XO-4 (Ic). From these we then derive planet sizes (Rp/R*), orbital distances (a/R*) and orbital inclinations (i) for these systems. In most cases we confirm the parameters reported in the literature with similar uncertainties, validating our methodology. From our mid-transit times and those of the literature we do not find any statistically significant deviations from a fixed orbital period for these systems.

  5. Light Curve Periodic Variability of Cyg X-1 using Jurkevich Method

    Indian Academy of Sciences (India)

    Ai-Jun Dong; Yan-Ke Tang; Ning Gai

    2014-09-01

    The Jurkevich method is a useful method to explore periodicity in the unevenly sampled observational data. In this work, we adopted the method to the light curve of Cyg X-1 from 1996 to 2012, and found that there is an interesting period of 370 days, which appears in both low/hard and high/soft states. That period may be correlated with black hole physics and accretion disk geometry.

  6. Using Gaussian Processes to Model Noise in Eclipsing Binary Light Curves

    Science.gov (United States)

    Prsa, Andrej; Hambleton, Kelly M.

    2017-01-01

    The most precise data we have at hand arguably comes from NASA's Kepler mission, for which there is no good flux calibration available since it was designed to measure relative flux changes down to ~20ppm level. Instrumental artifacts thus abound in the data, and they vary with the module, location on the CCD, target brightness, electronic cross-talk, etc. In addition, Kepler's near-uninterrupted mode of observation reveals astrophysical signals and transient phenomena (i.e. spots, flares, protuberances, pulsations, magnetic field features, etc) that are not accounted for in the models. These "nuisance" signals, along with instrumental artifacts, are considered noise when modeling light curves; this noise is highly correlated and it cannot be considered poissonian or gaussian. Detrending non-white noise from light curve data has been an ongoing challenge in modeling eclipsing binary star and exoplanet transit light curves. Here we present an approach using Gaussian Processes (GP) to model noise as part of the overall likelihood function. The likelihood function consists of the eclipsing binary light curve generator PHOEBE, correlated noise model using GP, and a poissonian (shot) noise attributed to the actual stochastic component of the entire noise model. We consider GP parameters and poissonian noise amplitude as free parameters that are being sampled within the likelihood function, so the end result is the posterior probability not only for eclipsing binary model parameters, but for the noise parameters as well. We show that the posteriors of principal parameters are significantly more robust when noise is modeled rigorously compared to modeling detrended data with an eclipsing binary model alone. This work has been funded by NSF grant #1517460.

  7. Properties of Magnetars Mimicking 56Ni-powered Light Curves in Type IC Superluminous Supernovae

    Science.gov (United States)

    Moriya, Takashi J.; Chen, Ting-Wan; Langer, Norbert

    2017-02-01

    Many Type Ic superluminous supernovae have light-curve decline rates after their luminosity peak, which are close to the nuclear decay rate of {}56{Co}, consistent with the interpretation that they are powered by {}56{Ni} and possibly pair-instability supernovae. However, their rise times are typically shorter than those expected from pair-instability supernovae, and Type Ic superluminous supernovae are often suggested to be powered by magnetar spin-down. If magnetar spin-down is actually a major mechanism to power Type Ic superluminous supernovae, it should be able to produce decline rates similar to the {}56{Co} decay rate rather easily. In this study, we investigate the conditions for magnetars under which their spin-down energy input can behave like the {}56{Ni} nuclear decay energy input. We find that an initial magnetic field strength within a certain range is sufficient to keep the magnetar energy deposition within a factor of a few of the {}56{Co} decay energy for several hundreds of days. Magnetar spin-down needs to be by almost pure dipole radiation with the braking index close to three to mimic {}56{Ni} in a wide parameter range. Not only late-phase {}56{Co}-decay-like light curves, but also rise time and peak luminosity of most {}56{Ni}-powered light curves can be reproduced by magnetars. Bolometric light curves for more than 700 days are required to distinguish the two energy sources solely by them. We expect that more slowly declining superluminous supernovae with short rise times should be found if they are mainly powered by magnetar spin-down.

  8. Afterglows from Jetted Gamma-Ray-Burst Remnant: Does the Light Curve Break?

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong-Feng; DAI Zi-Gao; LU Tan

    2000-01-01

    Afterglows from jetted gamma-ray bursts are generally believed to be characterized by an obvious break in the light curve at the relativistic stage. We show that it is not the case. However, an obvious break does exist at the transition from the relativistic phase to the non-relativistic phase. Although this break itself is parameter dependent, afterglows from jetted remnant are uniformly characterized by a quick decay during the non-relativistic phase.

  9. Ensemble Learning Method for Outlier Detection and its Application to Astronomical Light Curves

    Science.gov (United States)

    Nun, Isadora; Protopapas, Pavlos; Sim, Brandon; Chen, Wesley

    2016-09-01

    Outlier detection is necessary for automated data analysis, with specific applications spanning almost every domain from financial markets to epidemiology to fraud detection. We introduce a novel mixture of the experts outlier detection model, which uses a dynamically trained, weighted network of five distinct outlier detection methods. After dimensionality reduction, individual outlier detection methods score each data point for “outlierness” in this new feature space. Our model then uses dynamically trained parameters to weigh the scores of each method, allowing for a finalized outlier score. We find that the mixture of experts model performs, on average, better than any single expert model in identifying both artificially and manually picked outliers. This mixture model is applied to a data set of astronomical light curves, after dimensionality reduction via time series feature extraction. Our model was tested using three fields from the MACHO catalog and generated a list of anomalous candidates. We confirm that the outliers detected using this method belong to rare classes, like Novae, He-burning, and red giant stars; other outlier light curves identified have no available information associated with them. To elucidate their nature, we created a website containing the light-curve data and information about these objects. Users can attempt to classify the light curves, give conjectures about their identities, and sign up for follow up messages about the progress made on identifying these objects. This user submitted data can be used further train of our mixture of experts model. Our code is publicly available to all who are interested.

  10. Evidence for a Canonical GRB Afterglow Light Curve in the Swift/XRT Data

    Energy Technology Data Exchange (ETDEWEB)

    Nousek, J.A.; Kouveliotou, C.; Grupe, D.; Page, K.; Granot, J.; Ramirez-Ruiz, E.; Patel, S.K.; Burrows, D.N.; Mangano, V.; Barthelmy, S.; Beardmore, A.P.; Campana, S.; Capalbi, M.; Chincarini, G.; Cusumano, G.; Falcone, A.D.; Gehrels, N.; Giommi, P.; Goad, M.; Godet, O.; Hurkett, C.; /Penn State U., Astron. Astrophys. /NASA, Marshall /Leicester

    2005-08-17

    We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) detected with the Swift X-ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power law segments: (1) an initial very steep decay ({infinity} t{sup -a} with 3 {approx}< a{sub 1} {approx}< 5) , followed by (2) a very shallow decay (0.2 {approx}< a{sub 2} {approx}< 0.8), and finally (3) a somewhat steeper decay (1 {approx}< a{sub 3} {approx}< 1.5). These power law segments are separated by two corresponding break times, 300 s {approx}< t{sub break,1} {approx}< 500 s and 10{sup 3} s {approx}< t{sub break,2} {approx}< 10{sup 4} s. On top of this canonical behavior of the early X-ray light curve, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (t{sub break,1}) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (a{sub 2}) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (t{sub break,2}). This energy injection increases the energy of the afterglow shock by at least a factor of f {approx}> 4, and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.

  11. Dusty tails of evaporating exoplanets. II. Physical modelling of the KIC 12557548b light curve

    Science.gov (United States)

    van Lieshout, R.; Min, M.; Dominik, C.; Brogi, M.; de Graaff, T.; Hekker, S.; Kama, M.; Keller, C. U.; Ridden-Harper, A.; van Werkhoven, T. I. M.

    2016-11-01

    Context. Evaporating rocky exoplanets, such as KIC 12557548b, eject large amounts of dust, which can trail the planet in a comet-like tail. When such objects occult their host star, the resulting transit signal contains information about the dust in the tail. Aims: We aim to use the detailed shape of the Kepler light curve of KIC 12557548b to constrain the size and composition of the dust grains that make up the tail, as well as the mass loss rate of the planet. Methods: Using a self-consistent numerical model of the dust dynamics and sublimation, we calculated the shape of the tail by following dust grains from their ejection from the planet to their destruction due to sublimation. From this dust cloud shape, we generated synthetic light curves (incorporating the effects of extinction and angle-dependent scattering), which were then compared with the phase-folded Kepler light curve. We explored the free-parameter space thoroughly using a Markov chain Monte Carlo method. Results: Our physics-based model is capable of reproducing the observed light curve in detail. Good fits are found for initial grain sizes between 0.2 and 5.6 μm and dust mass loss rates of 0.6 to 15.6 M⊕ Gyr-1 (2σ ranges). We find that only certain combinations of material parameters yield the correct tail length. These constraints are consistent with dust made of corundum (Al2O3), but do not agree with a range of carbonaceous, silicate, or iron compositions. Conclusions: Using a detailed, physically motivated model, it is possible to constrain the composition of the dust in the tails of evaporating rocky exoplanets. This provides a unique opportunity to probe to interior composition of the smallest known exoplanets.

  12. X-Rays from the Explosion Site: Fifteen Years of Light Curves of SN 1993J

    Science.gov (United States)

    Chandra, Poonam; Dwarkadas, Vikram V.; Ray, Alak; Immler, Stefan; Pooley, David

    2009-01-01

    We present a comprehensive analysis of the X-ray light curves of SN 1993J in a nearby galaxy M81. This is the only supernova other than SN 1987A, which is so extensively followed in the X-ray bands. Here we report on SN 1993J observations with the Chandra in the year 2005 and 2008, and Swift observations in 2005, 2006 and 2008. We combined these observations with all available archival data of SN 1993J, which includes ROSAT, ASCA, Chandra, and XMM-Newton, observations from 1993 April to 2006 August. In this paper we report the X-ray light curves of SN 1993J, extending up to fifteen years, in the soft (0.3-2.4 keV), hard (2-8 keV) and combined (0.3-8 keV) bands. The hard and soft-band fluxes decline at different rates initially, but after about 5 years they both undergo a t(sup -1) decline. The soft X-rays, which are initially low, start dominating after a few hundred days. We interpret that most of the emission below 8 keV is coming from the reverse shock which is radiative initially for around first 1000-2000 days and then turn into adiabatic shock. Our hydrodynamic simulation also confirms the reverse shock origin of the observed light curves. We also compare the Ha line luminosity of SN 1993J with its X-ray light curve and note that the Ha line luminosity has a fairly high fraction of the X-ray emission, indicating presence of clumps in the emitting plasma.

  13. LFN, QPO and fractal dimension of X-ray light curves from black hole binaries

    Science.gov (United States)

    Prosvetov, Art; Grebenev, Sergey

    The origin of the low frequency noise (LFN) and quasi-periodic oscillations (QPO) observed in X-ray flux of Galactic black hole binaries is still not recognized in spite of multiple studies and attempts to model this phenomenon. There are known correlations between the QPO frequency, X-ray power density, X-ray flux and spectral state of the system, but there is no model that can do these dependences understandable. For the low frequency (~1 Hz) QPO we still have no even an idea capable to explain their production and don't know even what part of an accretion disc is responsible for them. Here we attempted to measure the fractal dimension of X-ray light curves of several black hole X-ray binaries and to study its correlation with the frequency of quasi periodic oscillations observed in their X-ray light-curves. The fractal dimension is a measure of the space-filling capacity of the light curves' profile. To measure the fractal dimension we used R/S method, which is fast enough and has good reputation in financial analytic and materials sciences. We found that if no QPO were observed in X-ray flux from the particular source, the fractal dimension is equal to the unique value which is independent on the source, its luminosity or its spectral state. On the other hand if QPO were detected in the flux, the fractal dimension deviated from its usual value. Also, we found a clear correlation between the QPO frequency and the fractal dimension of the emission. The relationship between these two parameters is solid but nonlinear. We believe that the analysis of X-ray light curves of black hole binaries using the fractal dimension has a good scientific potential and may provide an addition information on the geometry of accretion flow and fundamental physical parameters of the system.

  14. The 2003 Nov 14 occultation by Titan of TYC 1343-1865-1. II. Analysis of light curves

    CERN Document Server

    Zalucha, A; Elliot, J L; Thomas-Osip, J; Hammel, H B; Dhillon, V S; Marsh, T R; Taylor, F W; Irwin, P G J

    2007-01-01

    We observed a stellar occultation by Titan on 2003 November 14 from La Palma Observatory using ULTRACAM with three Sloan filters: u', g', and i' (358, 487, and 758 nm, respectively). The occultation probed latitudes 2 degrees S and 1 degrees N during immersion and emersion, respectively. A prominent central flash was present in only the i' filter, indicating wavelength-dependent atmospheric extinction. We inverted the light curves to obtain six lower-limit temperature profiles between 335 and 485 km (0.04 and 0.003 mb) altitude. The i' profiles agreed with the temperature measured by the Huygens Atmospheric Structure Instrument [Fulchignoni, M. et al., 2005. Nature 438, 785-791] above 415 km (0.01 mb). The profiles obtained from different wavelength filters systematically diverge as altitude decreases, which implies significant extinction in the light curves. Applying an extinction model [Elliot, J.L., Young, L.A., 1992. Astron. J. 103, 991-1015] gave the altitudes of line of sight optical depth equal to unit...

  15. MOA-2016-BLG-227Lb: A Massive Planet Characterized by Combining Light-curve Analysis and Keck AO Imaging

    Science.gov (United States)

    Koshimoto, N.; Shvartzvald, Y.; Bennett, D. P.; Penny, M. T.; Hundertmark, M.; Bond, I. A.; Zang, W. C.; Henderson, C. B.; Suzuki, D.; Rattenbury, N. J.; Sumi, T.; and; Abe, F.; Asakura, Y.; Bhattacharya, A.; Donachie, M.; Evans, P.; Fukui, A.; Hirao, Y.; Itow, Y.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Matsuo, T.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Ranc, C.; Saito, To.; Sharan, A.; Shibai, H.; Sullivan, D. J.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; MOA Collaboration; Gelino, C. R.; Beichman, C.; Beaulieu, J.-P.; Marquette, J.-B.; Batista, V.; Keck Team; Friedmann, M.; Hallakoun, N.; Kaspi, S.; Maoz, D.; Wise Group; Bryden, G.; Calchi Novati, S.; Howell, S. B.; UKIRT Team; Wang, T. S.; Mao, S.; Fouqué, P.; Microlensing Survey, CFHT-K2C9; Korhonen, H.; Jørgensen, U. G.; Street, R.; Tsapras, Y.; Dominik, M.; Kerins, E.; Cassan, A.; Snodgrass, C.; Bachelet, E.; Bozza, V.; Bramich, D. M.; VST-K2C9 Team

    2017-07-01

    We report the discovery of a microlensing planet—MOA-2016-BLG-227Lb—with a large planet/host mass ratio of q ≃ 9 × 10-3. This event was located near the K2 Campaign 9 field that was observed by a large number of telescopes. As a result, the event was in the microlensing survey area of a number of these telescopes, and this enabled good coverage of the planetary light-curve signal. High angular resolution adaptive optics images from the Keck telescope reveal excess flux at the position of the source above the flux of the source star, as indicated by the light-curve model. This excess flux could be due to the lens star, but it could also be due to a companion to the source or lens star, or even an unrelated star. We consider all these possibilities in a Bayesian analysis in the context of a standard Galactic model. Our analysis indicates that it is unlikely that a large fraction of the excess flux comes from the lens, unless solar-type stars are much more likely to host planets of this mass ratio than lower mass stars. We recommend that a method similar to the one developed in this paper be used for other events with high angular resolution follow-up observations when the follow-up observations are insufficient to measure the lens-source relative proper motion.

  16. Multi-band Emission Light Curves of Jupiter: Insights on Brown Dwarfs and Directly Imaged Exoplanets

    Science.gov (United States)

    Zhang, Xi; Ge, Huazhi; Orton, Glenn S.; Fletcher, Leigh N.; Sinclair, James; Fernandes, Joshua; Momary, Thomas W.; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya

    2016-10-01

    Many brown dwarfs exhibit significant infrared flux variability (e.g., Artigau et al. 2009, ApJ, 701, 1534; Radigan et al. 2012, ApJ, 750, 105), ranging from several to twenty percent of the brightness. Current hypotheses include temperature variations, cloud holes and patchiness, and cloud height and thickness variations (e.g., Apai et al. 2013, ApJ, 768, 121; Robinson and Marley 2014, ApJ, 785, 158; Zhang and Showman 2014, ApJ, 788, L6). Some brown dwarfs show phase shifts in the light curves among different wavelengths (e.g., Buenzli et al. 2012, ApJ, 760, L31; Yang et al. 2016, arXiv:1605.02708), indicating vertical variations of the cloud distribution. The current observational technique can barely detect the brightness changes on the surfaces of nearby brown dwarfs (Crossfield et al. 2014, Nature, 505, 654) let alone resolve detailed weather patterns that cause the flux variability. The infrared emission maps of Jupiter might shed light on this problem. Using COMICS at Subaru Telescope, VISIR at Very Large Telescope (VLT) and NASA's Infrared Telescope Facility (IRTF), we obtained infrared images of Jupiter over several nights at multiple wavelengths that are sensitive to several pressure levels from the stratosphere to the deep troposphere below the ammonia clouds. The rotational maps and emission light curves are constructed. The individual pixel brightness varies up to a hundred percent level and the variation of the full-disk brightness is around several percent. Both the shape and amplitude of the light curves are significantly distinct at different wavelengths. Variation of light curves at different epochs and phase shift among different wavelengths are observed. We will present principle component analysis to identify dominant emission features such as stable vortices, cloud holes and eddies in the belts and zones and strong emissions in the aurora region. A radiative transfer model is used to simulate those features to get a more quantitative

  17. Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise

    CERN Document Server

    Aigrain, S; Ceillier, T; Chagas, M L das; Davenport, J R A; Garcia, R A; Hay, K L; Lanza, A F; McQuillan, A; Mazeh, T; de Medeiros, J R; Nielsen, M B; Reinhold, T

    2015-01-01

    We present the results of a blind exercise to test the recoverability of stellar rotation and differential rotation in Kepler light curves. The simulated light curves lasted 1000 days and included activity cycles, Sun-like butterfly patterns, differential rotation and spot evolution. The range of rotation periods, activity levels and spot lifetime were chosen to be representative of the Kepler data of solar like stars. Of the 1000 simulated light curves, 770 were injected into actual quiescent Kepler light curves to simulate Kepler noise. The test also included five 1000-day segments of the Sun's total irradiance variations at different points in the Sun's activity cycle. Five teams took part in the blind exercise, plus two teams who participated after the content of the light curves had been released. The methods used included Lomb-Scargle periodograms and variants thereof, auto-correlation function, and wavelet-based analyses, plus spot modelling to search for differential rotation. The results show that th...

  18. Characterizing Exoplanet Atmospheres: From Light-curve Observations to Radiative-transfer Modeling

    CERN Document Server

    Cubillos, Patricio E

    2016-01-01

    Multi-wavelength transit and secondary-eclipse light-curve observations are some of the most powerful techniques to probe the thermo-chemical properties of exoplanets. Although the large planet-to-star brightness contrast and few available spectral bands produce data with low signal-to-noise ratios, a Bayesian approach can robustly reveal what constraints we can set, without over-interpreting the data. Here I performed an end-to-end analysis of transiting exoplanet data. I analyzed space-telescope data for three planets to characterize their atmospheres and refine their orbits, investigated correlated noise estimators, and contributed to the development of the respective data-analysis pipelines. Chapters 2 and 3 describe the Photometry for Orbits, Eclipses and Transits (POET) pipeline to model Spitzer Space Telescope light curves, applied to secondary-eclipse observations of the Jupiter-sized planets WASP-8b and TrES-1. Chapter 4 studies commonly used correlated-noise estimators for exoplanet light-curve mode...

  19. TESTING MICROVARIABILITY IN QUASAR DIFFERENTIAL LIGHT CURVES USING SEVERAL FIELD STARS

    Energy Technology Data Exchange (ETDEWEB)

    De Diego, José A.; De Leo, Mario A.; Verdugo, Tomás [Instituto de Astronomía, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C.P. 04510, Distrito Federal (Mexico); Polednikova, Jana; Bongiovanni, Angel; Pérez García, Ana M.; Cepa, Jordi, E-mail: jdo@astro.unam.mx [Instituto de Astrofísica de Canarias-Universidad de La Laguna (Spain)

    2015-08-15

    Microvariability consists of small timescale variations of low amplitude in the photometric light curves of quasars and represents an important tool to investigate their inner core. Detection of quasar microvariations is challenging because of their non-periodicity, as well as the need for high monitoring frequency and a high signal-to-noise ratio. Statistical tests developed for the analysis of quasar differential light curves usually show either low power or low reliability, or both. In this paper we compare two statistical procedures to perform tests on several stars with enhanced power and high reliability. We perform light curve simulations of variable quasars and non-variable stars and analyze them with statistical procedures developed from the F-test and the analysis of variance. The results show a large improvement in the power of both statistical probes and a larger reliability when several stars are included in the analysis. The results from the simulations agree with those obtained from observations of real quasars. The high power and high reliability of the tests discussed in this paper improve the results that can be obtained from short and long timescale variability studies. These techniques are not limited to quasar variability; on the contrary, they can be easily implemented for other sources, such as variable stars. Their applications to future research and to the analysis of large-field photometric monitoring archives could reveal new variable sources.

  20. Mysterious eclipses in the light curve of KIC8462852: a possible explanation

    Science.gov (United States)

    Neslušan, L.; Budaj, J.

    2017-04-01

    Context. Apart from thousands of "regular" exoplanet candidates, Kepler satellite has discovered a small number of stars exhibiting peculiar eclipse-like events. They are most probably caused by disintegrating bodies transiting in front of the star. However, the nature of the bodies and obscuration events, such as those observed in KIC 8462852, remain mysterious. A swarm of comets or artificial alien mega-structures have been proposed as an explanation for the latter object. Aims: We explore the possibility that such eclipses are caused by the dust clouds associated with massive parent bodies orbiting the host star. Methods: We assumed a massive object and a simple model of the dust cloud surrounding the object. Then, we used the numerical integration to simulate the evolution of the cloud, its parent body, and resulting light-curves as they orbit and transit the star. Results: We found that it is possible to reproduce the basic features in the light-curve of KIC 8462852 with only four objects enshrouded in dust clouds. The fact that they are all on similar orbits and that such models require only a handful of free parameters provides additional support for this hypothesis. Conclusions: This model provides an alternative to the comet scenario. With such physical models at hand, at present, there is no need to invoke alien mega-structures for an explanation of these light-curves.

  1. SDSSJ14584479+3720215: A Benchmark JHK Blazar Light Curve from the 2MASS Calibration Scans

    CERN Document Server

    Davenport, James R A; Becker, Andrew C; Macleod, Chelsea L; Cutri, Roc M

    2015-01-01

    Active galactic nuclei (AGNs) are well-known to exhibit flux variability across a wide range of wavelength regimes, but the precise origin of the variability at different wavelengths remains unclear. To investigate the relatively unexplored near-IR variability of the most luminous AGNs, we conduct a search for variability using well sampled JHKs-band light curves from the 2MASS survey calibration fields. Our sample includes 27 known quasars with an average of 924 epochs of observation over three years, as well as one spectroscopically confirmed blazar (SDSSJ14584479+3720215) with 1972 epochs of data. This is the best-sampled NIR photometric blazar light curve to date, and it exhibits correlated, stochastic variability that we characterize with continuous auto-regressive moving average (CARMA) models. None of the other 26 known quasars had detectable variability in the 2MASS bands above the photometric uncertainty. A blind search of the 2MASS calibration field light curves for AGN candidates based on fitting C...

  2. Fast evolving pair-instability supernova models: evolution, explosion, light curves

    Science.gov (United States)

    Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; Fröhlich, Carla; Blinnikov, Sergey; Wollaeger, Ryan T.; Noebauer, Ulrich M.; van Rossum, Daniel R.; Heger, Alexander; Even, Wesley P.; Waldman, Roni; Tolstov, Alexey; Chatzopoulos, Emmanouil; Sorokina, Elena

    2017-01-01

    With an increasing number of superluminous supernovae (SLSNe) discovered, the question of their origin remains open and causes heated debates in the supernova community. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISNe), (2) magnetar-driven supernovae and (3) models in which the supernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In the current study, we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light-curve evolution with the radiation hydrodynamics code STELLA. We find that high-mass models (200 and 250 M⊙) at relatively high metallicity (Z = 0.001) do not retain hydrogen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light-curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.

  3. Reflected Light Curves, Spherical and Bond Albedos of Jupiter- and Saturn-like Exoplanets

    CERN Document Server

    Dyudina, Ulyana; Li, Liming; Kopparla, Pushkar; Yung, Yuk L; Ingersoll, Andrew P; Dones, Luke

    2015-01-01

    We estimate how the light curve and total stellar heating of a planet depend on forward and backward scattering clouds. To do that, we construct light curves for Jupiter- and Saturn-like planet based on observations. We fit analytical functions to the reflected brightness of Jupiter's and Saturn's surface versus planet's phase. We use Pioneer and Cassini spacecraft images to estimate these functions. These observations cover broad bands at 0.59-0.72 microns and 0.39-0.5 microns, and narrow bands at 0.938 microns (atmospheric window), 0.889 microns (CH4 absorption band), and 0.24-0.28 microns. We simulate the images of the planets at different phases with ray-tracing model of a planet by Dyudina et al. (2005). The full-disk luminosity of these simulated images changes with planet's phase producing the full-orbit light curves. We also derive total planet's reflection integrated in all directions (spherical albedos) for Jupiter, Saturn, and for planets with Lambertian and Rayleigh-scattering atmosphere. For Jupi...

  4. AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves

    Science.gov (United States)

    Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.

    2017-02-01

    ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.

  5. Fast evolving pair-instability supernova models: Evolution, explosion, light curves

    Science.gov (United States)

    Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; Fröhlich, Carla; Blinnikov, Sergey; Wollaeger, Ryan T.; Noebauer, Ulrich M.; van Rossum, Daniel R.; Heger, Alexander; Even, Wesley P.; Waldman, Roni; Tolstov, Alexey; Chatzopoulos, Emmanouil; Sorokina, Elena

    2016-10-01

    With an increasing number of superluminous supernovae (SLSNe) discovered the question of their origin remains open and causes heated debates in the supernova community. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the supernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In the current study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolution with the radiation hydrodynamics code STELLA. We find that high-mass models (200 M⊙ and 250 M⊙) at relatively high metallicity (Z = 0.001) do not retain hydrogen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.

  6. Periodicity in some light curves of the solar analogue V352 CMa

    CERN Document Server

    Kajatkari, P; Cole, E; Hackman, T; Henry, G W; Joutsiniemi, S-L; Lehtinen, J; Mäkelä, V; Porceddu, S; Ryynänen, K; Şolea, V

    2013-01-01

    Our aim was to study the light curve periodicity of the solar analogue V352 CMa and in particular show that the presence or absence of periodicity in low amplitude light curves can be modelled with the Continuous Period Search (CPS) method. We applied the CPS method to 14 years of V-band photometry of V352 CMa and obtained estimates for the mean, amplitude, period and minima of the light curves in the selected datasets. We also applied the Power Spectrum Method (PSM) to these datasets and compared the performance of this frequently applied method to that of CPS. We detected signs of a $11.7 \\pm 0.5$ year cycle in in the mean brightness. The long-term average photometric rotation period was $7.24 \\pm 0.22$ days. The lower limit for the differential rotation coefficient would be $|k| > 0.12$, if the law of solar surface differential rotation were valid for V352 CMa and the period changes traced this phenomenon. Signs of stable active longitudes rotating with a period of $7.157 \\pm 0.002$ days were detected from...

  7. Dusty tails of evaporating exoplanets. II. Physical modelling of the KIC 12557548b light curve

    CERN Document Server

    van Lieshout, R; Dominik, C; Brogi, M; de Graaff, T; Hekker, S; Kama, M; Keller, C U; Ridden-Harper, A; van Werkhoven, T I M

    2016-01-01

    Evaporating rocky exoplanets, such as KIC 12557548b, eject large amounts of dust grains, which can trail the planet in a comet-like tail. When such objects occult their host star, the resulting transit signal contains information about the dust in the tail. We aim to use the detailed shape of the Kepler light curve of KIC 12557548b to constrain the size and composition of the dust grains that make up the tail, as well as the mass loss rate of the planet. Using a self-consistent numerical model of the dust dynamics and sublimation, we calculate the shape of the tail by following dust grains from their ejection from the planet to their destruction due to sublimation. From this dust cloud shape, we generate synthetic light curves (incorporating the effects of extinction and angle-dependent scattering), which are then compared with the phase-folded Kepler light curve. We explore the free-parameter space thoroughly using a Markov chain Monte Carlo method. Our physics-based model is capable of reproducing the obser...

  8. SiFTO: An Empirical Method for Fitting SNe Ia Light Curves

    CERN Document Server

    Conley, A; Hsiao, E Y; Guy, J; Astier, Pierre; Balam, D; Balland, C; Basa, S; Carlberg, R G; Fouchez, D; Hardin, D; Howell, D A; Hook, I M; Pain, R; Perrett, K; Pritchet, C J; Regnault, N

    2008-01-01

    We present SiFTO, a new empirical method for modeling type Ia supernovae (SNe Ia) light curves by manipulating a spectral template. We make use of high-redshift SN observations when training the model, allowing us to extend it bluer than rest frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. We compare SiFTO to other published light-curve models by applying them to the same set of SN photometry, and demonstrate that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best fit luminosity distance relationship. We further demonstrate that when SiFTO ...

  9. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Duller, G.A.T.; Murray, A.S.

    1999-01-01

    (470 nm) gives order of magnitude greater rate of stimulation in quartz than that from conventional blue-green light filtered from a halogen lamp. A practical blue LED OSL configuration is described. From comparisons of OSL decay curves produced by green and blue light sources, and by examination......Recently developed blue light emitting diodes (LEDs) for the optical stimulation of quartz for use in routine optically stimulated luminescence (OSL) dating and retrospective dosimetry have been tested. For similar power densities, it was found that the higher energy light provided by the blue LEDs...... of the dependence of the blue LED OSL on preheat temperature, it is deduced that there is no evidence that the blue LEDs stimulate deep traps in a different manner from broadband filtered light. It is concluded that blue LEDs offer a practical alternative to existing stimulation sources. They have the significant...

  10. Optical-Fiber Fluorosensors With Polarized Light Sources

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1995-01-01

    Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).

  11. Optical-Fiber Fluorosensors With Polarized Light Sources

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1995-01-01

    Chemiluminescent and/or fluorescent molecules in optical-fiber fluorosensors oriented with light-emitting dipoles along transverse axis. Sensor of proposed type captures greater fraction of chemiluminescence or fluorescence and transmits it to photodetector. Transverse polarization increases sensitivity. Basic principles of optical-fiber fluorosensors described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525), "Improved Optical-Fiber Chemical Sensors" (LAR-14607), and "Improved Optical-Fiber Temperature Sensors" (LAR-14647).

  12. Long-term, Multiwavelength Light Curves of Ultra-Cool Dwarfs: II. The evolving Light Curves of the T2.5 SIMP 0136 & the Uncorrelated Light Curves of the M9 TVLM 513

    CERN Document Server

    Croll, Bryce; Lichtman, Jack; Han, Eunkyu; Dalba, Paul A; Radigan, Jacqueline

    2016-01-01

    We present 17 nights of ground-based, near-infrared photometry of the variable L/T transition brown dwarf SIMP J013656.5+093347 and an additional 3 nights of ground-based photometry of the radio-active late M-dwarf TVLM 513-46546. Our TVLM 513-46546 photometry includes 2 nights of simultaneous, multiwavelength, ground-based photometry, in which we detect obvious J-band variability, but do not detect I-band variability of similar amplitude, confirming that the variability of TVLM 513-46546 most likely arises from clouds or aurorae, rather than starspots. Our photometry of SIMP J013656.5+093347 includes 15 nights of J-band photometry that allow us to observe how the variable light curve of this L/T transition brown dwarf evolves from rotation period to rotation period, night-to-night and week-to-week. We estimate the rotation period of SIMP J013656.5+093347 as 2.406 +/- 0.008 hours, and do not find evidence for obvious differential rotation. The peak-to-peak amplitude displayed by SIMP J013656.5+093347 in our l...

  13. Disentangling planetary and stellar activity features in the CoRoT-2 light curve

    Science.gov (United States)

    Bruno, G.; Deleuil, M.; Almenara, J.-M.; Barros, S. C. C.; Lanza, A. F.; Montalto, M.; Boisse, I.; Santerne, A.; Lagrange, A.-M.; Meunier, N.

    2016-11-01

    Aims: Stellar activity is an important source of systematic errors and uncertainties in the characterization of exoplanets. Most of the techniques used to correct for this activity focus on an ad hoc data reduction. Methods: We have developed a software for the combined fit of transits and stellar activity features in high-precision long-duration photometry. Our aim is to take advantage of the modelling to derive correct stellar and planetary parameters, even in the case of strong stellar activity. Results: We use an analytic approach to model the light curve. The code KSint, modified by adding the evolution of active regions, is implemented into our Bayesian modelling package PASTIS. The code is then applied to the light curve of CoRoT-2. The light curve is divided in segments to reduce the number of free parameters needed by the fit. We perform a Markov chain Monte Carlo analysis in two ways. In the first, we perform a global and independent modelling of each segment of the light curve, transits are not normalized and are fitted together with the activity features, and occulted features are taken into account during the transit fit. In the second, we normalize the transits with a model of the non-occulted activity features, and then we apply a standard transit fit, which does not take the occulted features into account. Conclusions: Our model recovers the activity features coverage of the stellar surface and different rotation periods for different features. We find variations in the transit parameters of different segments and show that they are likely due to the division applied to the light curve. Neglecting stellar activity or even only bright spots while normalizing the transits yields a 1.2σ larger and 2.3σ smaller transit depth, respectively. The stellar density also presents up to 2.5σ differences depending on the normalization technique. Our analysis confirms the inflated radius of the planet (1.475 ± 0.031RJ) found by other authors. We show that

  14. OO Aquilae: a solar-type contact binary with intrinsic light curve changes

    Science.gov (United States)

    Li, Hua-Li; Wei, Jian-Yan; Yang, Yuan-Gui; Dai, Hai-Feng

    2016-01-01

    New multi-color photometry of the solar-type contact binary OO Aql was obtained in 2012 and 2013, using the 60 cm telescope at Xinglong Station of the National Astronomical Observatories, Chinese Academy of Sciences. From two sets of light curves LC1 and LC2, photometric models were performed by using the 2003 version of the Wilson-Devinney code. The overcontact factor of the binary system was determined to be f = 37.0(±0.5)%. The intrinsic variability of this binary occurs in light maxima and minima, which could result from a possible third component and magnetic activity of the late type components. Based on all available light minimum times, the orbital period may change in a complicated mode, i.e., sudden period jumps or continuous period variations. The period of OO Aql may possibly undergo a secular period decrease with a rate of dP/dt = -3.63(±0.30) × 10-8 d yr-1, superimposed by two possible cyclic variations in the O - C curve. The long-term period decrease may be interpreted as conserved mass transfer from the more massive component to the less massive one. The 21.5-yr oscillation may be attributed to cyclic magnetic activity, and the 69.3-yr one may result from the light-time effect of an unseen tertiary body.

  15. CCD Photometric Observations and Light Curve Synthesis of the Near-Contact Binary XZ Canis Minoris

    Science.gov (United States)

    Kim, Chun-Hwey; Park, Jang-Ho; Lee, Jae Woo; Jeong, Jang-Hae

    2009-06-01

    Through the photometric observations of the near-contact binary, XZ CMi, new BV light curves were secured and seven times of minimum light were determined. An intensive period study with all published timings, including ours, confirms that the period of XZ CMi has varied in a cyclic period variation superposed on a secular period decrease over last 70 years. Assuming the cyclic change of period to occur by a light-time effect due to a third-body, the light-time orbit with a semi-amplitude of 0.0056d, a period of 29y and an eccentricity of 0.71 was calculated. The observed secular period decrease of -5.26× 10^{-11} d/P was interpreted as a result of simultaneous occurrence of both a period decrease of -8.20 × 10^{-11} d/P by angular momentum loss (AML) due to a magnetic braking stellar wind and a period increase of 2.94 × 10^{-11} d/P by a mass transfer from the less massive secondary to the primary components in the system. In this line the decreasi! ng rate of period due to AML is about 3 times larger than the increasing one by a mass transfer in their absolute values. The latter implies a mass transfer of dot M_{s}= 3.21 × 10^{-8} M_⊙ y^{-1} from the less massive secondary to the primary. The BV light curves with the latest Wilson-Devinney binary code were analyzed for two separate models of 8200K and 7000K as the photospheric temperature of the primary component. Both models confirm that XZ CMi is truly a near-contact binary with a less massive secondary completely filling Roche lobe and a primary inside the inner Roche lobe and there is a third-light corresponding to about 15-17% of the total system light. However, the third-light source can not be the same as the third-body suggested from the period study. At the present, however, we can not determine which one between two models is better fitted to the observations because of a negligible difference of sum (O-C)^2 between them. The diversity of mass ratios, with which previous investigators were in

  16. Spectral optimization simulation of white light based on the photopic eye-sensitivity curve

    Science.gov (United States)

    Dai, Qi; Hao, Luoxi; Lin, Yi; Cui, Zhe

    2016-02-01

    Spectral optimization simulation of white light is studied to boost maximum attainable luminous efficacy of radiation at high color-rendering index (CRI) and various color temperatures. The photopic eye-sensitivity curve V(λ) is utilized as the dominant portion of white light spectra. Emission spectra of a blue InGaN light-emitting diode (LED) and a red AlInGaP LED are added to the spectrum of V(λ) to match white color coordinates. It is demonstrated that at the condition of color temperature from 2500 K to 6500 K and CRI above 90, such white sources can achieve spectral efficacy of 330-390 lm/W, which is higher than the previously reported theoretical maximum values. We show that this eye-sensitivity-based approach also has advantages on component energy conversion efficiency compared with previously reported optimization solutions.

  17. Spectral optimization simulation of white light based on the photopic eye-sensitivity curve

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Qi, E-mail: qidai@tongji.edu.cn [College of Architecture and Urban Planning, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Key Laboratory of Ecology and Energy-saving Study of Dense Habitat (Tongji University), Ministry of Education, 1239 Siping Road, Shanghai 200092 (China); Hao, Luoxi; Lin, Yi; Cui, Zhe [College of Architecture and Urban Planning, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Key Laboratory of Ecology and Energy-saving Study of Dense Habitat (Tongji University), Ministry of Education, 1239 Siping Road, Shanghai 200092 (China)

    2016-02-07

    Spectral optimization simulation of white light is studied to boost maximum attainable luminous efficacy of radiation at high color-rendering index (CRI) and various color temperatures. The photopic eye-sensitivity curve V(λ) is utilized as the dominant portion of white light spectra. Emission spectra of a blue InGaN light-emitting diode (LED) and a red AlInGaP LED are added to the spectrum of V(λ) to match white color coordinates. It is demonstrated that at the condition of color temperature from 2500 K to 6500 K and CRI above 90, such white sources can achieve spectral efficacy of 330–390 lm/W, which is higher than the previously reported theoretical maximum values. We show that this eye-sensitivity-based approach also has advantages on component energy conversion efficiency compared with previously reported optimization solutions.

  18. Silicon micro-optics for smart light control

    Science.gov (United States)

    Vdovin, Gleb; de Lima Monteiro, Davies W.; Akhzar-Mehr, Ourang; Loktev, Mikhail Y.; Sakarya, Serhat; Soloviev, Oleg; Sarro, Pasqualina M.

    2004-01-01

    We present an overview of the results of our recent research in the field of adaptive optical components based on silicon microtechnologies, including membrane deformable mirrors, spatial light modulators, liquid-crystal correctors, wavefront sensors, and both spherical and aspherical micro-optical components. We aim at the realization of adaptive optical systems using standard-technology solutions.

  19. Scattering optical elements: stand-alone optical elements exploiting multiple light scattering

    CERN Document Server

    Park, Jongchan; Park, Chunghyun; Lee, KyeoReh; Lee, Heon; Cho, Yong-Hoon; Park, YongKeun

    2016-01-01

    Optical design and fabrication techniques are crucial for making optical elements. From conventional lenses to diffractive optical elements, and to recent metasurfaces, various types of optical elements have been proposed to manipulate light where optical materials are fabricated into desired structures. Here, we propose a scattering optical element (SOE) which exploits multiple light scattering and wavefront shaping. Instead of fabricating optical materials, the SOE consists of a disordered medium and a photopolymer-based wavefront recorder, with shapes the wavefront of impinging light on demand. With the proposed stand-alone SOEs, we experimentally demonstrate control of various properties of light, including intensity, polarisation, spectral frequency and near field. Due to the tremendous freedom brought about by disordered media, the proposed approach will provide unexplored routes to manipulate arbitrary optical fields in stand-alone optical elements.

  20. ellc: A fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets

    Science.gov (United States)

    Maxted, P. F. L.

    2016-06-01

    Context. Very high quality light curves are now available for thousands of detached eclipsing binary stars and transiting exoplanet systems as a result of surveys for transiting exoplanets and other large-scale photometric surveys. Aims: I have developed a binary star model (ellc) that can be used to analyse the light curves of detached eclipsing binary stars and transiting exoplanet systems that is fast and accurate, and that can include the effects of star spots, Doppler boosting and light-travel time within binaries with eccentric orbits. Methods: The model represents the stars as triaxial ellipsoids. The apparent flux from the binary is calculated using Gauss-Legendre integration over the ellipses that are the projection of these ellipsoids on the sky. The model can also be used to calculate the flux-weighted radial velocity of the stars during an eclipse (Rossiter-McLaghlin effect). The main features of the model have been tested by comparison to observed data and other light curve models. Results: The model is found to be accurate enough to analyse the very high quality photometry that is now available from space-spaced instruments, flexible enough to model a wide range of eclipsing binary stars and extrasolar planetary systems, and fast enough to enable the use of modern Monte Carlo methods for data analysis and model testing. The software package is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A111

  1. Inferring heat recirculation and albedo for exoplanetary atmospheres: Comparing optical phase curves and secondary eclipse data

    CERN Document Server

    von Paris, P; Bordé, P; Selsis, F

    2015-01-01

    Basic atmospheric properties such as albedo and heat redistribution between day and nightside have been inferred for a number of planets using observations of secondary eclipses and thermal phase curves. Optical phase curves have not yet been used to constrain these atmospheric properties consistently. We re-model previously published phase curves of CoRoT-1b, TrES-2b and HAT-P-7b and infer albedos and recirculation efficiencies. These are then compared to previous estimates based on secondary eclipse data. We use a physically consistent model to construct optical phase curves. This model takes Lambertian reflection, thermal emission, ellipsoidal variations and Doppler boosting into account. CoRoT-1b shows a non-negligible scattering albedo (0.11curve analyses. In the case of ...

  2. The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey

    CERN Document Server

    Hayden, Brian T; Kessler, Richard; Frieman, Joshua A; Jha, Saurabh W; Cinabro, David; Dilday, Benjamin; Kasen, Daniel; Marriner, John; Nichol, Robert C; Riess, Adam G; Sako, Masao; Schneider, Donald P; Smith, Mathew; Sollerman, Jesper; Bassett, Bruce

    2010-01-01

    We analyze the rise and fall times of type Ia supernova (SN Ia) light curves discovered by the SDSS-II Supernova Survey. From a set of 391 light curves k-corrected to the rest frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well-observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 +/- 0.17 days. Our average rise time is shorter than the 19.5 days found in previous stud...

  3. NEPTUNE’S DYNAMIC ATMOSPHERE FROM KEPLER K2 OBSERVATIONS: IMPLICATIONS FOR BROWN DWARF LIGHT CURVE ANALYSES

    Science.gov (United States)

    Rowe, Jason F.; Gaulme, Patrick; Hammel, Heidi B.; Casewell, Sarah L.; Fortney, Jonathan J.; Gizis, John E.; Lissauer, Jack J.; Morales-Juberias, Raul; Orton, Glenn S.; Wong, Michael H.; Marley, Mark S.

    2017-01-01

    Observations of Neptune with the Kepler Space Telescope yield a 49 day light curve with 98% coverage at a 1 minute cadence. A significant signature in the light curve comes from discrete cloud features. We compare results extracted from the light curve data with contemporaneous disk-resolved imaging of Neptune from the Keck 10-m telescope at 1.65 microns and Hubble Space Telescope visible imaging acquired nine months later. This direct comparison validates the feature latitudes assigned to the K2 light curve periods based on Neptune’s zonal wind profile, and confirms observed cloud feature variability. Although Neptune’s clouds vary in location and intensity on short and long timescales, a single large discrete storm seen in Keck imaging dominates the K2 and Hubble light curves; smaller or fainter clouds likely contribute to short-term brightness variability. The K2 Neptune light curve, in conjunction with our imaging data, provides context for the interpretation of current and future brown dwarf and extrasolar planet variability measurements. In particular we suggest that the balance between large, relatively stable, atmospheric features and smaller, more transient, clouds controls the character of substellar atmospheric variability. Atmospheres dominated by a few large spots may show inherently greater light curve stability than those which exhibit a greater number of smaller features. PMID:28127087

  4. $Extrasolar~Storms$: Pressure-dependent Changes In Light Curve Phase In Brown Dwarfs From Simultaneous $Hubble$ and $Spitzer$ Observations

    CERN Document Server

    Yang, Hao; Marley, Mark S; Karalidi, Theodora; Flateau, Davin; Showman, Adam P; Metchev, Stanimir; Buenzli, Esther; Radigan, Jacqueline; Artigau, Étienne; Lowrance, Patrick J; Burgasser, Adam J

    2016-01-01

    We present $Spitzer$/IRAC Ch1 and Ch2 monitoring of six brown dwarfs during 8 different epochs over the course of 20 months. For four brown dwarfs, we also obtained simulataneous $HST$/WFC3 G141 Grism spectra during two epochs and derived light curves in five narrow-band filters. Probing different pressure levels in the atmospheres, the multi-wavelength light curves of our six targets all exhibit variations, and the shape of the light curves evolves over the timescale of a rotation period, ranging from 1.4 h to 13 h. We compare the shapes of the light curves and estimate the phase shifts between the light curves observed at different wavelengths by comparing the phase of the primary Fourier components. We use state-of-the-art atmosphere models to determine the flux contribution of different pressure layers to the observed flux in each filter. We find that the light curves that probe higher pressures are similar and in phase, but are offset and often different from the light curves that probe lower pressures. ...

  5. Light Curve Solutions of an Eclipsing Binary OGLE-GD-ECL-04451 with a Dramatic Change in Amplitude

    CERN Document Server

    Gang, Li; jianning, Fu

    2016-01-01

    We present light curve solutions of the W UMa-type eclipsing binary OGLE-GD-ECL-04451, observed by both the \\emph{Optical Gravitational Lensing Ex-periment} (\\emph{OGLE}) program in 2006 and the \\emph{Antarctica Survey Telescope} (\\emph{AST3-1}) in 2012 at Dome A. We analyzed this binary system with the Wilson-Devinney(W-D) method 2013 version and derived the mass ratio $q=2.91 \\pm 0.07$, the inclination $i=76.86^\\circ \\pm 0.23^\\circ$, and the light variattion amplitud was $0^m.51$ based on the \\emph{OGLE} data. From the \\emph{AST3-1}'s data, we find that the amplitude dropped to $0^m.44$(2012) and the difference of magnitudes of the two light maxima is $0^m.03$. A hot spot was then added on the surface of the secondary to demonstrate the amplitude change and O'Conell effect of the binary system.

  6. OLED lightings with optical feedback for luminance difference compensation

    Science.gov (United States)

    Shin, D. K.; Park, J. W.

    2013-12-01

    We have employed an optical feedback circuit in an organic light-emitting diode (OLED) lighting system to ensure uniform light output across large-area OLED lighting tiles. In a lighting system with several large-area OLED lighting tiles involved, the panel aging (luminance decrease) may appear differently in each, resulting in a falling-off in lighting quality. To tackle this, light output from each OLED tile is monitored by the optical feedback circuit that consists of a photodetector, I-V converter, 10-bit analogue-digital converter (ADC), and comparator. A photodetector mounted on a glass side generates a feedback signal (current) by detecting side-emitting OLED light. To monitor bottom-emitting output light by detecting side-emitting OLED light, a mapping table between the ADC value and the luminance of bottom emission has been established. If the ADC value is lower or higher than the reference one corresponding to the target luminance of OLED tiles, a micro controller unit adjusts the pulse width modulation used for the control of the power supplied to OLED tiles in such a way that the ADC value obtained from optical feedback is the same as the reference one. As a result, the target luminance of each individual OLED tile is kept unchanged. With the optical feedback circuit included in the lighting system, we have observed less than 2% difference in relative intensity of neighboring OLED tiles.

  7. Multiperiodicity, modulations and flip-flops in variable star light curves I. Carrier fit method

    CERN Document Server

    Pelt, J; Mantere, M J; Tuominen, I

    2011-01-01

    The light curves of variable stars are commonly described using simple trigonometric models, that make use of the assumption that the model parameters are constant in time. This assumption, however, is often violated, and consequently, time series models with components that vary slowly in time are of great interest. In this paper we introduce a class of data analysis and visualization methods which can be applied in many different contexts of variable star research, for example spotted stars, variables showing the Blazhko effect, and the spin-down of rapid rotators. The methods proposed are of explorative type, and can be of significant aid when performing a more thorough data analysis and interpretation with a more conventional method.Our methods are based on a straightforward decomposition of the input time series into a fast "clocking" periodicity and smooth modulating curves. The fast frequency, referred to as the carrier frequency, can be obtained from earlier observations (for instance in the case of p...

  8. APSIDAL MOTION AND A LIGHT CURVE SOLUTION FOR 13 LMC ECCENTRIC ECLIPSING BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zasche, P.; Wolf, M.; Vraštil, J.; Pilarcik, L. [Astronomical Institute, Charles University in Prague, Faculty of Mathematics and Physics, CZ-180 00 Praha 8, V Holešovičkách 2 (Czech Republic)

    2015-12-15

    New CCD observations for 13 eccentric eclipsing binaries from the Large Magellanic Cloud were carried out using the Danish 1.54 m telescope located at the La Silla Observatory in Chile. These systems were observed for their times of minimum and 56 new minima were obtained. These are needed for accurate determination of the apsidal motion. Besides that, in total 436 times of minimum were derived from the photometric databases OGLE and MACHO. The O – C diagrams of minimum timings for these B-type binaries were analyzed and the parameters of the apsidal motion were computed. The light curves of these systems were fitted using the program PHOEBE, giving the light curve parameters. We derived for the first time relatively short periods of the apsidal motion ranging from 21 to 107 years. The system OGLE-LMC-ECL-07902 was also analyzed using the spectra and radial velocities, resulting in masses of 6.8 and 4.4 M{sub ⊙} for the eclipsing components. For one system (OGLE-LMC-ECL-20112), the third-body hypothesis was also used to describe the residuals after subtraction of the apsidal motion, resulting in a period of about 22 years. For several systems an additional third light was also detected, which makes these systems suspect for triplicity.

  9. Synthetic gauge fields for light beams in optical resonators

    CERN Document Server

    Longhi, Stefano

    2015-01-01

    A method to realize artificial magnetic fields for light waves trapped in passive optical cavities with anamorphic optical elements is theoretically proposed. In particular, when a homogeneous magnetic field is realized, a highly-degenerate Landau level structure for the frequency spectrum of the transverse resonator modes is obtained, corresponding to a cyclotron motion of the optical cavity field. This can be probed by transient excitation of the passive optical resonator.

  10. A phase response curve to single bright light pulses in human subjects

    Science.gov (United States)

    Khalsa, Sat Bir S.; Jewett, Megan E.; Cajochen, Christian; Czeisler, Charles A.

    2003-01-01

    The circadian pacemaker is differentially sensitive to the resetting effects of retinal light exposure, depending upon the circadian phase at which the light exposure occurs. Previously reported human phase response curves (PRCs) to single bright light exposures have employed small sample sizes, and were often based on relatively imprecise estimates of circadian phase and phase resetting. In the present study, 21 healthy, entrained subjects underwent pre- and post-stimulus constant routines (CRs) in dim light (approximately 2-7 lx) with maintained wakefulness in a semi-recumbent posture. The 6.7 h bright light exposure stimulus consisted of alternating 6 min fixed gaze (approximately 10 000 lx) and free gaze (approximately 5000-9000 lx) exposures. Light exposures were scheduled across the circadian cycle in different subjects so as to derive a PRC. Plasma melatonin was used to determine the phase of the onset, offset, and midpoint of the melatonin profiles during the CRs. Phase shifts were calculated as the difference in phase between the pre- and post-stimulus CRs. The resultant PRC of the midpoint of the melatonin rhythm revealed a characteristic type 1 PRC with a significant peak-to-trough amplitude of 5.02 h. Phase delays occurred when the light stimulus was centred prior to the critical phase at the core body temperature minimum, phase advances occurred when the light stimulus was centred after the critical phase, and no phase shift occurred at the critical phase. During the subjective day, no prolonged 'dead zone' of photic insensitivity was apparent. Phase shifts derived using the melatonin onsets showed larger magnitudes than those derived from the melatonin offsets. These data provide a comprehensive characterization of the human PRC under highly controlled laboratory conditions.

  11. ELECTROMAGNETIC EMISSION FROM LONG-LIVED BINARY NEUTRON STAR MERGER REMNANTS. II. LIGHT CURVES AND SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Daniel M. [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D-14476 Potsdam-Golm (Germany); Ciolfi, Riccardo, E-mail: daniel.siegel@aei.mpg.de, E-mail: riccardo.ciolfi@unitn.it [Physics Department, University of Trento, Via Sommarive 14, I-38123 Trento (Italy)

    2016-03-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality thanks to the ground-based advanced LIGO/Virgo GW detector network. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission up to ∼10{sup 7} s. Light curves and spectra are computed for a wide range of post-merger physical properties. We present X-ray afterglow light curves corresponding to the “standard” and the “time-reversal” scenario for SGRBs (prompt emission associated with the merger or with the collapse of the long-lived NS). The light curve morphologies include single and two-plateau features with timescales and luminosities that are in good agreement with Swift observations. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario, the detection of which would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient peaking in the X-ray band at ∼10{sup 2}–10{sup 4} s after the BNS merger with luminosities of L{sub X} ∼ 10{sup 46}–10{sup 48} erg s{sup −1}. This signal represents a very promising EM counterpart to the GW emission from BNS mergers.

  12. A GLOBAL MODEL OF THE LIGHT CURVES AND EXPANSION VELOCITIES OF TYPE II-PLATEAU SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Pejcha, Ondřej [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08540 (United States); Prieto, Jose L., E-mail: pejcha@astro.princeton.edu [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441 Santiago (Chile)

    2015-02-01

    We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of Type II-Plateau supernovae based on their expansion velocities and photometric measurements. We apply the method to a sample of 26 well-observed, nearby supernovae with published light curves and velocities. We simultaneously fit ∼230 velocity and ∼6800 mag measurements distributed over 21 photometric passbands spanning wavelengths from 0.19 to 2.2 μm. The light-curve differences among the Type II-Plateau supernovae are well modeled by assuming different rates of photospheric radius expansion, which we explain as different density profiles of the ejecta, and we argue that steeper density profiles result in flatter plateaus, if everything else remains unchanged. The steep luminosity decline of Type II-Linear supernovae is due to fast evolution of the photospheric temperature, which we verify with a successful fit of SN 1980K. Eliminating the need for theoretical supernova atmosphere models, we obtain self-consistent relative distances, reddenings, and nickel masses fully accounting for all internal model uncertainties and covariances. We use our global fit to estimate the time evolution of any missing band tailored specifically for each supernova, and we construct spectral energy distributions and bolometric light curves. We produce bolometric corrections for all filter combinations in our sample. We compare our model to the theoretical dilution factors and find good agreement for the B and V filters. Our results differ from the theory when the I, J, H, or K bands are included. We investigate the reddening law toward our supernovae and find reasonable agreement with standard R{sub V}∼3.1 reddening law in UBVRI bands. Results for other bands are inconclusive. We make our fitting code publicly available.

  13. Stellar granulation as the source of high-frequency flicker in Kepler light curves

    Energy Technology Data Exchange (ETDEWEB)

    Cranmer, Steven R.; Saar, Steven H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bastien, Fabienne A.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States)

    2014-02-01

    A large fraction of cool, low-mass stars exhibit brightness fluctuations that arise from a combination of convective granulation, acoustic oscillations, magnetic activity, and stellar rotation. Much of the short-timescale variability takes the form of stochastic noise, whose presence may limit the progress of extrasolar planet detection and characterization. In order to lay the groundwork for extracting useful information from these quasi-random signals, we focus on the origin of the granulation-driven component of the variability. We apply existing theoretical scaling relations to predict the star-integrated variability amplitudes for 508 stars with photometric light curves measured by the Kepler mission. We also derive an empirical correction factor that aims to account for the suppression of convection in F-dwarf stars with magnetic activity and shallow convection zones. So that we can make predictions of specific observational quantities, we performed Monte Carlo simulations of granulation light curves using a Lorentzian power spectrum. These simulations allowed us to reproduce the so-called flicker floor (i.e., a lower bound in the relationship between the full light-curve range and power in short-timescale fluctuations) that was found in the Kepler data. The Monte Carlo model also enabled us to convert the modeled fluctuation variance into a flicker amplitude directly comparable with observations. When the magnetic suppression factor described above is applied, the model reproduces the observed correlation between stellar surface gravity and flicker amplitude. Observationally validated models like these provide new and complementary evidence for a possible impact of magnetic activity on the properties of near-surface convection.

  14. Probing Millisecond Pulsar Emission Geometry Using Light Curves From the Fermi Large Area Telescope

    Science.gov (United States)

    Venter, Christo; Harding, Alice; Guillemot, L.

    2009-01-01

    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.

  15. Transformation optics beyond the manipulation of light trajectories.

    Science.gov (United States)

    Ginis, Vincent; Tassin, Philippe

    2015-08-28

    Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces--a quadratic function of the fields--follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics.

  16. The first light-curve analysis of eclipsing binaries observed by the INTEGRAL/OMC

    CERN Document Server

    Zasche, P

    2008-01-01

    Three Algol-type binaries in Cygnus constellation were selected for an analysis from a huge database of observations made by the INTEGRAL/OMC camera. These data were processed and analyzed, resulting in a first light-curve study of these neglected eclipsing binaries. The temperatures of the primary components range from 9500 K to 10500 K and the inclinations are circa 73deg (for PV Cyg and V1011 Cyg), while almost 90deg for V822 Cyg. All of them seem to be main-sequence stars, well within their critical Roche lobes. Nevertheless, further detailed analyses are still needed.

  17. Timing Analysis of Light Curves in the Tartarus Active Galactic Nuclei Database

    CERN Document Server

    O'Neill, P M; Papadakis, I E; Turner, T J; Neill, Paul M. O'; Nandra, Kirpal; Papadakis, Iossif E.

    2004-01-01

    The Tartarus database contains products for 529 ASCA observations of active galactic nuclei. We have been updating Tartarus to include observing sequences conducted after 1999 January. The revised database will contain products for 375 objects, with a total of 614 observing sequences. We have begun a systematic timing analysis of the Tartarus light curves. We present here some preliminary results of an investigation into the relation between excess variance and black-hole mass. Having optimised our analysis to minimize the scatter in the variance measurements, we find that the narrow-line active galactic nuclei follow roughly the same relation as the broad-line objects.

  18. Gamma-Ray emission from SN2014J near maximum optical light

    CERN Document Server

    Isern, J; Bravo, E; Knödlseder, J; Lebrun, F; Churazov, E; Sunyaev, R; Domingo, A; Badenes, C; Hartmann, D H; Hoeflich, P; Renaud, M; Soldi, S; Elias--Rosa, N; Hernanz, M; Domínguez, I; García-Senz, D; Lichti, G G; Vedrenne, G; Von Ballmoos, P

    2016-01-01

    The optical light curve of Type Ia supernovae (SNIa) is powered by thermalized gamma-rays produced by the decay of 56Ni and 56Co, the main radioactive isotopes synthesized by the thermonuclear explosion of a C/O white dwarf. Gamma-rays escaping the ejecta can be used as a diagnostic tool for studying the characteristics of the explosion. In particular, it is expected that the analysis of the early gamma emission, near the maximum of the optical light curve, could provide information about the distribution of the radioactive elements in the debris. In this paper, the gamma data obtained from SN2014J in M82 by the instruments on board of INTEGRAL are analyzed taking special care of the impact that the detailed spectral response has on the measurements of the intensity of the lines. The 158 keV emission of 56Ni has been detected in SN2014J at ~5 sigma at low energy with both ISGRI and SPI around the maximum of the optical light curve. After correcting the spectral response of the detector, the fluxes in the line...

  19. Properties of nonreciprocal light propagation in a nonlinear optical isolator

    OpenAIRE

    Roy, Dibyendu

    2016-01-01

    Light propagation in a nonlinear optical medium is nonreciprocal for spatially asymmetric linear permittivity. We here examine physical mechanism and properties of such nonreciprocity (NR). For this, we calculate transmission of light through a two-level atom asymmetrically coupled to light inside open waveguides. We determine the critical intensity of incident light for maximum NR and a dependence of the corresponding NR on asymmetry in the coupling. Surprisingly, we find that it is mainly c...

  20. Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves

    Science.gov (United States)

    Jiang, Yan-Fei; Green, Paul J.; Greene, Jenny E.; Morganson, Eric; Shen, Yue; Pancoast, Anna; MacLeod, Chelsea L.; Anderson, Scott F.; Brandt, W. N.; Grier, C. J.; Rix, H.-W.; Ruan, John J.; Protopapas, Pavlos; Scott, Caroline; Burgett, W. S.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Tonry, J. T.; Wainscoat, R. J.; Waters, C.

    2017-02-01

    We study the time lags between the continuum emission of quasars at different wavelengths, based on more than four years of multi-band (g, r, i, z) light curves in the Pan-STARRS Medium Deep Fields. As photons from different bands emerge from different radial ranges in the accretion disk, the lags constrain the sizes of the accretion disks. We select 240 quasars with redshifts of z ≈ 1 or z ≈ 0.3 that are relatively emission-line free. The light curves are sampled from day to month timescales, which makes it possible to detect lags on the scale of the light crossing time of the accretion disks. With the code JAVELIN, we detect typical lags of several days in the rest frame between the g band and the riz bands. The detected lags are ∼2–3 times larger than the light crossing time estimated from the standard thin disk model, consistent with the recently measured lag in NGC 5548 and microlensing measurements of quasars. The lags in our sample are found to increase with increasing luminosity. Furthermore, the increase in lags going from g ‑ r to g ‑ i and then to g ‑ z is slower than predicted in the thin disk model, particularly for high-luminosity quasars. The radial temperature profile in the disk must be different from what is assumed. We also find evidence that the lags decrease with increasing line ratios between ultraviolet Fe ii lines and Mg ii, which may point to changes in the accretion disk structure at higher metallicity.

  1. VizieR Online Data Catalog: Light curves for the eclipsing binary V1094 Tau (Maxted+, 2015)

    Science.gov (United States)

    Maxted, P. F. L.; Hutcheon, R. J.; Torres, G.; Lacy, C. H. S.; Southworth, J.; Smalley, B.; Pavlovski, K.; Marschall, L. A.; Clausen, J. V.

    2015-04-01

    Photometric light curves of the detached eclipsing binary V1094 Tau in the Stroemgren u-,v-,b- and y-bands, and in the Johnson V-band. The curves in the Stroemgren bands were obtained with the Stroemgren Automatic Telescope (SAT) at ESO, La Silla. The curves in the V-band were obtained with the NFO telescope in New Mexico and with the URSA telescope at the University of Arkansas. (6 data files).

  2. Understanding the light curves of the HST-1 knot in M87 with internal relativistic shock waves along its jet

    Science.gov (United States)

    Coronado, Y.; López-Corona, O.; Mendoza, S.

    2016-10-01

    Knots or blobs observed in astrophysical jets are commonly interpreted as shock waves moving along them. Long-time observations of the HST-1 knot inside the jet of the galaxy M87 have produced detailed multiwavelength light curves. In this paper, we model these light curves using the semi-analytical approach developed by Mendoza et al. This model was developed to account for the light curves produced by working surfaces (blobs) moving along relativistic jets. These working surfaces are generated by periodic oscillations of the injected flow velocity and mass ejection rates at the base of the jet. Using genetic algorithms to fit the parameters of the model, we are able to explain the outbursts observed in the light curves of the HST-1 knot with an accuracy greater than a 2σ statistical confidence level.

  3. Light beams with orbital angular momentum for free space optics

    Institute of Scientific and Technical Information of China (English)

    Wu Jing-Zhi; Li Yang-Jun

    2007-01-01

    The light's orbital angular momentum (OAM) is a consequence of the spiral flow of the electromagnetic energy. In this paper, an analysis of light beams with OAM used for free space optics (FSO) is conducted. The basic description and conception of light's OAM are reviewed. Both encoding information into OAM states of single light beam and encoding information into spatial structure of the mixed optical vortex with OAM are discussed, and feasibility to improve the FSO's performance of security and obstruction of line of sight is examined.

  4. The effect of background galaxy contamination on the absolute magnitude and light curve speed class of type Ia supernovae

    Science.gov (United States)

    Boisseau, John R.; Wheeler, J. Craig

    1991-01-01

    Observational data are presented in support of the hypothesis that background galaxy contamination is present in the photometric data of Ia supernovae and that this effect can account for the observed dispersion in the light curve speeds of most of Ia supernovae. The implication is that the observed dispersion in beta is artificial and that most of Ia supernovae have nearly homogeneous light curves. The result supports the notion that Ia supernovae are good standard candles.

  5. KIC 4552982: outbursts and pulsations in the longest-ever pseudo-continuous light curve of a ZZ Ceti

    Directory of Open Access Journals (Sweden)

    Bell K. J.

    2015-01-01

    Full Text Available KIC 4552982 was the first ZZ Ceti (hydrogen-atmosphere pulsating white dwarf identified to lie in the Kepler field, resulting in the longest pseudo-continuous light curve ever obtained for this type of variable star. In addition to the pulsations, this light curve exhibits stochastic episodes of brightness enhancement unlike any previously studied white dwarf phenomenon. We briefly highlight the basic outburst and pulsation properties in these proceedings.

  6. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J. [Pennsylvania U.; Guy, J. [LBL, Berkeley; Kessler, R. [Chicago U., KICP; Astier, P. [Paris U., VI-VII; Marriner, J. [Fermilab; Betoule, M. [Paris U., VI-VII; Sako, M. [Pennsylvania U.; El-Hage, P. [Paris U., VI-VII; Biswas, R. [Argonne; Pain, R. [Paris U., VI-VII; Kuhlmann, S. [Argonne; Regnault, N. [Paris U., VI-VII; Frieman, J. A. [Fermilab; Schneider, D. P. [Penn State U.

    2014-08-29

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.

  7. Revealing progenitors of type Ia supernovae from their light curves and spectra

    CERN Document Server

    Kutsuna, Masamichi

    2015-01-01

    In the single degenerate (SD) scenario of type Ia supernovae (SNe Ia), the collision of the ejecta with its companion results in stripping hydrogen rich matter from the companion star. This hydrogen rich matter might leave its trace in the light curves and/or spectra. In this paper, we perform radiation hydrodynamical simulations of this collision for three binary systems. As a result, we find that the emission from the shock-heated region is not as strong as in the previous study. This weak emission, however, may be a result of our underestimate of the coupling between the gas and radiation in the shock interaction. Therefore, though our results suggest that the observed early light curves of SNe Ia can not rule out binary systems with a short separation as the progenitor system, more elaborate numerical studies will be needed to reach a fair conclusion. Alternatively, our results indicate that the feature observed in the early phase of a recent type Ia SN 2014J might result from interaction of the ejecta wi...

  8. Period Estimation for Sparsely-sampled Quasi-periodic Light Curves Applied to Miras

    Science.gov (United States)

    He, Shiyuan; Yuan, Wenlong; Huang, Jianhua Z.; Long, James; Macri, Lucas M.

    2016-12-01

    We develop a nonlinear semi-parametric Gaussian process model to estimate periods of Miras with sparsely sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequency parameter space over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms an existing algorithm on this simulated test data set as measured by period recovery rate and quality of the resulting period-luminosity relations.

  9. EXTRACTING PERIODIC TRANSIT SIGNALS FROM NOISY LIGHT CURVES USING FOURIER SERIES

    Energy Technology Data Exchange (ETDEWEB)

    Samsing, Johan [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States)

    2015-07-01

    We present a simple and powerful method for extracting transit signals associated with a known transiting planet from noisy light curves. Assuming the orbital period of the planet is known and the signal is periodic, we illustrate that systematic noise can be removed in Fourier space at all frequencies by only using data within a fixed time frame with a width equal to an integer number of orbital periods. This results in a reconstruction of the full transit signal, which on average is unbiased despite no prior knowledge of either the noise or the transit signal itself being used in the analysis. The method therefore has clear advantages over standard phase folding, which normally requires external input such as nearby stars or noise models for removing systematic components. In addition, we can extract the full orbital transit signal (360°) simultaneously, and Kepler-like data can be analyzed in just a few seconds. We illustrate the performance of our method by applying it to a dataset composed of light curves from Kepler with a fake injected signal emulating a planet with rings. For extracting periodic transit signals, our presented method is in general the optimal and least biased estimator and could therefore lead the way toward the first detections of, e.g., planet rings and exo-trojan asteroids.

  10. Multi-messenger Light Curves from Gamma-Ray Bursts in the Internal Shock Model

    Science.gov (United States)

    Bustamante, Mauricio; Heinze, Jonas; Murase, Kohta; Winter, Walter

    2017-03-01

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma-rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure can be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.

  11. Multi-messenger light curves from gamma-ray bursts in the internal shock model

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Mauricio [Ohio State Univ., Columbus, OH (United States). Center for Cosmology and AstroParticle Physics (CCAPP); Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Murase, Kohta [Pennsylvania State Univ., University Park, PA (United States). Center for Particle and Gravitational Astrophysics; Pennsylvania State Univ., University Park, PA (United States). Dept. of Astronomy and Astrophysics; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2016-06-15

    Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure tend to be inefficient neutrino emitters and produce delayed high-energy gamma-ray signals. Our results can be applied to quantitative tests of the GRB origin of ultra-high-energy cosmic rays, and have the potential to impact current and future multi-messenger searches.

  12. Fast evolving pair-instability supernova models: evolution, explosion, light curves

    CERN Document Server

    Kozyreva, Alexandra; Hirschi, Raphael; Frohlich, Carla; Blinnikov, Sergey; Wollaeger, Ryan T; Noebauer, Ulrich M; van Rossum, Daniel R; Heger, Alexander; Even, Wesley P; Waldman, Roni; Tolstov, Alexey; Chatzopoulos, Emmanouil; Sorokina, Elena

    2016-01-01

    With an increasing number of superluminous supernovae (SLSNe) discovered the question of their origin remains open and causes heated debates in the supernova community. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the supernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In the current study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolution with the radiation hydrodynamics code STELLA. We find that high-mass models (200 and 250 solar masses) at relatively high metallicity (Z=0.001) do not retain hydrogen in the outer layers and produce r...

  13. CfAIR2: Near Infrared Light Curves of 94 Type Ia Supernovae

    CERN Document Server

    Friedman, Andrew S; Marion, G H; Challis, Peter; Mandel, Kaisey S; Bloom, Joshua S; Modjaz, Maryam; Narayan, Gautham; Hicken, Malcolm; Foley, Ryan; Klein, Christopher R; Starr, Dan L; Morgan, Adam; Rest, Armin; Blake, Cullen H; Miller, Adam A; Falco, Emilio E; Wyatt, William F; Mink, Jessica; Skrutskie, Michael F; Kirshner, Robert P

    2014-01-01

    CfAIR2 is a large homogeneously reduced set of near-infrared (NIR) light curves for Type Ia supernovae (SN Ia) obtained with the 1.3m PAIRITEL (Peters Automated InfraRed Imaging TELescope). This data set includes 4607 measurements of 94 SN Ia and 4 additional SN Iax observed from 2005-2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes JHKs photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z~0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from maximum in the B-band. More than half of the light curves begin before the time of maximum and the coverage typically contains ~13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for supernova cosmology studies in the NIR. ...

  14. Period estimation for sparsely-sampled quasi-periodic light curves applied to Miras

    CERN Document Server

    He, Shiyuan; Huang, Jianhua Z; Long, James; Macri, Lucas M

    2016-01-01

    We develop a non-linear semi-parametric Gaussian process model to estimate periods of Miras with sparsely-sampled light curves. The model uses a sinusoidal basis for the periodic variation and a Gaussian process for the stochastic changes. We use maximum likelihood to estimate the period and the parameters of the Gaussian process, while integrating out the effects of other nuisance parameters in the model with respect to a suitable prior distribution obtained from earlier studies. Since the likelihood is highly multimodal for period, we implement a hybrid method that applies the quasi-Newton algorithm for Gaussian process parameters and search the period/frequency parameter over a dense grid. A large-scale, high-fidelity simulation is conducted to mimic the sampling quality of Mira light curves obtained by the M33 Synoptic Stellar Survey. The simulated data set is publicly available and can serve as a testbed for future evaluation of different period estimation methods. The semi-parametric model outperforms a...

  15. Constraints on the Progenitor of SN 2016gkg From Its Shock-Cooling Light Curve

    CERN Document Server

    Arcavi, Iair; Brown, Peter J; Smartt, Stephen J; Valenti, Stefano; Tartaglia, Leonardo; Piro, Anthony L; Sanchez, Jose L; Nicholls, Brent; Monard, Berto L A G; Howell, D Andrew; McCully, Curtis; Sand, David J; Tonry, John; Denneau, Larry; Stalder, Brian; Heinze, Ari; Rest, Armin; Smith, Ken W; Bishop, David

    2016-01-01

    SN 2016gkg is a nearby Type IIb supernova discovered shortly after explosion. Like several other Type IIb events with early-time data, SN 2016gkg displays a double-peaked light curve, with the first peak associated with the cooling of a low-mass extended progenitor envelope. We present unprecedented intranight-cadence multi-band photometric coverage of the first light-curve peak of SN 2016gkg obtained from the Las Cumbres Observatory Global Telescope network, the Asteroid Terrestrial-impact Last Alert System, the Swift satellite and various amateur-operated telescopes. Fitting these data to analytical shock-cooling models gives a progenitor radius of ~25-140 solar radii with ~2-30 x 10^-2 solar masses of material in the extended envelope (depending on the model and the assumed host-galaxy extinction). Our radius estimates are broadly consistent with values derived independently (in other works) from HST imaging of the progenitor star. However, the shock-cooling model radii are on the lower end of the values i...

  16. Modeling of Gamma-Ray Pulsar Light Curves with Force-Free Magnetic Field

    CERN Document Server

    Bai, Xue-Ning

    2009-01-01

    (Abridged) Gamma-ray emission from pulsars has long been modeled using a vacuum dipole field. This approximation ignores changes in the field structure caused by the magnetospheric plasma and strong plasma currents. We present the first results of gamma-ray pulsar light curve modeling using the more realistic field taken from 3D force-free magnetospheric simulations. Having the geometry of the field, we apply several prescriptions for the location of the emission zone, comparing the light curves to observations. We find that the conventional two-pole caustic model fails to produce double-peak pulse profiles, mainly because the size of the polar cap in force-free magnetosphere is larger than the vacuum field polar cap. The conventional outer-gap model is capable of producing only one peak under general conditions, because a large fraction of open field lines does not cross the null charge surface. We propose a novel "annular gap" model, where the high-energy emission originates from a thin layer on the open fi...

  17. Modelling the $\\gamma$-ray and radio light curves of the double pulsar system

    CERN Document Server

    Seyffert, A S; Harding, A K; Johnson, T J

    2014-01-01

    Guillemot et al. recently reported the discovery of $\\gamma$-ray pulsations from the 22.7ms pulsar (pulsar A) in the famous double pulsar system J0737-3039A/B. The $\\gamma$-ray light curve (LC) of pulsar A has two peaks separated by approximately half a rotation, and these are non-coincident with the observed radio and X-ray peaks. This suggests that the $\\gamma$-ray emission originates in a part of the magnetosphere distinct from where the radio and X-ray radiation is generated. Thus far, three different methods have been applied to constrain the viewing geometry of pulsar A (its inclination and observer angles $\\alpha$ and $\\zeta$): geometric modelling of the radio and $\\gamma$-ray light curves, modelling of the position angle sweep in phase seen in the radio polarisation data, and independent studies of the time evolution of the radio pulse profile of pulsar A. These three independent, complementary methods have yielded consistent results: pulsar A's rotation axis is likely perpendicular to the orbital pla...

  18. The Ultimate Light Curve of SN 1998bw/GRB 980425

    CERN Document Server

    Clocchiatti, Alejandro; Covarrubias, Ricardo; Candia, Pablo

    2011-01-01

    We present multicolor light curves of SN 1998bw which appeared in ESO184-G82 in close temporal and spacial association with GRB 980425. They are based on observations done at Cerro Tololo Inter-American Observatory and data from the literature. The CTIO photometry reaches ~86 days after the GRB in $U$ and ~160 days after the GRB in BV(RI)_C. The observations in U extend by about 30 days the previously known coverage, and determine the slope of the early exponential tail. We calibrate a large set of local standards in common with those of previous studies and use them to transform published observations of the SN to our realization of the standard photometric system. We show that the photometry from different sources merges smoothly and provide a unified set of 300 observations of the SN in five bands. Using the extensive set of spectra in public domain we compute extinction and K corrections, and build quasi-bolometric unreddened rest frame light curves. We provide low degree piecewise spline fits to these li...

  19. The quiescent light curve and orbital period of GRO$\\sim$J0422+32

    CERN Document Server

    Chevalier, C; Chevalier, Claude; Ilovaisky, Sergio A

    1996-01-01

    CCD photometry of the black hole candidate GRO~J0422+32 in quiescence, obtained at Haute-Provence from 1994 November to 1995 February, reveals a double-wave modulation at a period close to the value we found during outbursts and also close to one of the possible periods derived by Filippenko, Matheson and Ho (1995) from spectroscopic observations with the W. M. Keck 10-m telescope. A period of 0.212140 \\pm 0.000003 d (5.09136 \\pm 0.00007 h) fits all our photometric data from 1993 January to 1995 February and yields a minimum in our light curves at the inferior conjunction of the M star, as determined from the radial velocity data of Filippenko et al. (1995). The quiescent R_{c} band light curve exhibits a changing asymmetry of shape and a variable amplitude. On two consecutive nights the source was found constant to within \\pm 0.05 mag, suggesting an upper limit on the ellipsoidal effect in this band.

  20. Gamma-ray Light Curves and Variability of Bright Fermi-Detected Blazars

    CERN Document Server

    Abdo, A A

    2010-01-01

    This paper presents light curves and the first systematic characterization of variability of the 106 objects in the Fermi Large Area Telescope (LAT) Bright AGN Sample (LBAS). Weekly light curves obtained during the first 11 months of survey (August 04, 2008 - July 04, 2009), are tested for variability, and their properties are quantified through autocorrelation and structure function analysis. For the brightest sources power density spectra (PDS) and fit of the temporal structure of major flares is performed. More than 50% of the sources are variable, where high states do not exceed 1/4 of the total observation range. Variation amplitudes are larger for FSRQs and low/intermediate synchrotron peaked (LSP/ISP) BL Lac objects. Autocorrelation time scales vary from 4 to a dozen of weeks. Variable sources of the sample have 1/(f^{a}) PDS and show two modes: (1) rather constant baseline with sporadic flaring activity characterized by flatter PDS slopes resembling flickering and red-noise with occasional intermitten...

  1. Statistical Analysis of Quasar Light Curves from Pan-STARRS1

    Science.gov (United States)

    Hernandez, Betsy; Liu, Tingting; Gezari, Suvi

    2017-01-01

    We present a statistical analysis of variable quasars in the Pan-STARRS1 Medium Deep Survey (PS1 MDS). PS1 MDS obtained multi-epoch images of 10 fields, each 8 square degrees in size, over 4 years, starting in May 2010. The MDS fields were observed in 5 filters (gp1, rp1, ip1, zp1, and yp1) during their season of visibility, with a typical cadence per filter of 3 days. We extracted the light curves of 670 color-selected quasars in the PS1 MDS using Point Spread Function photometry from the Image Processing Pipeline data products. From the quasar sample, we selected 104 quasars whose variability was at least 2 standard deviations higher than the non-variable reference star sample. We performed a statistical analysis of the light curves of the selected quasars in the g,r,i and z bands using a maximum likelihood method to find the best-fit Damped Random Walk parameters (sigma and tau - also incorporating the Zoghbi et al. 2013 method for uneven sampling). The resulting distributions for sigma and tau were similar to those found in previous studies of quasars.

  2. The importance of 56Ni in shaping the light curves of type II supernovae

    CERN Document Server

    Nakar, Ehud; Katz, Boaz

    2015-01-01

    What intrinsic properties shape the light curves of Type II supernovae (SNe)? To address this question we derive observational measures that are robust (i.e., insensitive to detailed radiative transfer) and constrain the contribution from 56Ni, as well as a combination of the ejecta mass, progenitor radius, and explosion energy. By applying our methods to a sample of type II SNe from the literature we find that 56Ni contribution is often significant. It is typically the source of about 20% of the radiated energy during the photospheric phase, and in extreme cases it even dominates. We find that the 56Ni relative contribution is anti-correlated with the luminosity decline rate, while it is not significantly correlated with other properties of the light curve. When added to other clues, this in turn suggests that the flat plateaus often observed in type II SNe are not a generic feature of the cooling envelope emission, and that without 56Ni many of the SNe that are classified as II-P would have shown a decline ...

  3. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.; Sako, M. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N. [LPNHE, CNRS/IN2P3, Université Pierre et Marie Curie Paris 6, Universié Denis Diderot Paris 7, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Kessler, R.; Frieman, J. A. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Marriner, J. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Biswas, R.; Kuhlmann, S. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Schneider, D. P., E-mail: kessler@kicp.chicago.edu [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-09-20

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ∼120 low-redshift (z < 0.1) SNe Ia, ∼255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ∼290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w {sub input} – w {sub recovered}) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is –0.014 ± 0.007.

  4. Period and light curve fluctuations of the Kepler Cepheid V1154 Cyg

    CERN Document Server

    Derekas, A; Berdnikov, L; Szabo, R; Smolec, R; Kiss, L L; Szabados, L; Chadid, M; Evans, N R; Kinemuchi, K; Nemec, J M; Seader, S E; Smith, J C; Tenenbaum, P

    2012-01-01

    We present a detailed period analysis of the bright Cepheid-type variable star V1154 Cygni (V =9.1 mag, P~4.9 d) based on almost 600 days of continuous observations by the Kepler space telescope. The data reveal significant cycle-to-cycle fluctuations in the pulsation period, indicating that classical Cepheids may not be as accurate astrophysical clocks as commonly believed: regardless of the specific points used to determine the O-C values, the cycle lengths show a scatter of 0.015-0.02 days over the 120 cycles covered by the observations. A very slight correlation between the individual Fourier parameters and the O-C values was found, suggesting that the O - C variations might be due to the instability of the light curve shape. Random fluctuation tests revealed a linear trend up to a cycle difference 15, but for long term, the period remains around the mean value. We compare the measurements with simulated light curves that were constructed to mimic V1154 Cyg as a perfect pulsator modulated only by the ligh...

  5. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    CERN Document Server

    Mosher, J; Kessler, R; Astier, P; Marriner, J; Betoule, M; Sako, M; El-Hage, P; Biswas, R; Pain, R; Kuhlmann, S; Regnault, N; Frieman, J A; Schneider, D P

    2014-01-01

    We use simulated SN Ia samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and the bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: 120 low-redshift (z < 0.1) SNe Ia, 255 SDSS SNe Ia (z < 0.4), and 290 SNLS SNe Ia (z <= 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (winput - wrecovered) ranging from -0.005 +/- 0.012 to -0.024 +/- 0.010. These biases a...

  6. Hydrodynamics associated to the X-ray light curve of A0620-00

    CERN Document Server

    Coronado, Y

    2014-01-01

    From 1975 to 1976, an outburst was detected in the light curve of the X-ray transient A0620-00 using the Ariel V and SAS-3 experiments. In this letter we model the outburst with the hydrodynamical model proposed by Mendoza et al. (2009). The physical model is constructed assumming basic mass and momentum conservation laws associated to the motion of the shock waves developed inside the expanding relativistic jet of the source. These internal shock waves are produced as a result of periodic variations of the inyected mass and velocity of the flow at the base of the jet. The observations of this X-ray light curve present two clear bumps. The first one is modelled assuming periodic variations of the inyected velocity at the base of the jet, while the second one can either be modelled by a further velocity oscillations, or by a periodic variation of the mass injection rate at the base of the jet at a latter time. The fitting of the data fixes different parameters of the model, such as the mean mass injection rate...

  7. Hydrodynamics associated to the X-ray light curve of A0620-00

    Science.gov (United States)

    Coronado, Y.; Mendoza, S.

    2015-12-01

    From 1975 to 1976, an outburst was detected in the light curve of the X-ray transient A0620-00 using the Ariel V and SAS-3 experiments. In this article we model the outburst with the hydrodynamical model proposed by Mendoza et al. (Mon. Not. R. Astron. Soc. 395:1403, 2009). The physical model is constructed assuming basic mass and momentum conservation laws associated to the motion of the shock waves developed inside the expanding relativistic jet of the source. These internal shock waves are produced as a result of periodic variations of the injected mass and velocity of the flow at the base of the jet. The observations of this X-ray light curve present two clear bumps. The first one is modelled assuming periodic variations of the injected velocity at the base of the jet, while the second one can either be modelled by further velocity oscillations, or by a periodic variation of the mass injection rate at the base of the jet at a latter time. This latter model is statistically more significant for the observed data, than the former. The fitting of the data fixes different parameters of the model, such as the mean mass injection rate at the base of the jet and the oscillation frequency of the flow as measured on the rest frame of the central source.

  8. POST-FLARE ULTRAVIOLET LIGHT CURVES EXPLAINED WITH THERMAL INSTABILITY OF LOOP PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Reale, F. [Dipartimento di Fisica, Universita degli Studi di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy); Landi, E. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Orlando, S. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo (Italy)

    2012-02-10

    In the present work, we study the C8 flare that occurred on 2000 September 26 at 19:49 UT and observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation spectrometer from the beginning of the impulsive phase to well beyond the disappearance in the X-rays. The emission first decayed progressively through equilibrium states until the plasma reached 2-3 MK. Then, a series of cooler lines, i.e., Ca X, Ca VII, Ne VI, O IV, and Si III (formed in the temperature range log T = 4.3-6.3 under equilibrium conditions), are emitted at the same time and all evolve in a similar way. Here, we show that the simultaneous emission of lines with such a different formation temperature is due to thermal instability occurring in the flaring plasma as soon as it has cooled below {approx}2 MK. We can qualitatively reproduce the relative start time of the light curves of each line in the correct order with a simple (and standard) model of a single flaring loop. The agreement with the observed light curves is greatly improved, and a slower evolution of the line emission is predicted, if we assume that the model loop consists of an ensemble of subloops or strands heated at slightly different times. Our analysis can be useful for flare observations with the Solar Dynamics Observatory/Extreme ultraviolet Variability Experiment.

  9. The Konkoly Blazhko Survey: Is light-curve modulation a common property of RRab stars?

    CERN Document Server

    Jurcsik, J; Szeidl, B; Hurta, Zs; Váradi, M; Posztobányi, K; Vida, K; Hajdu, G; Kővári, Zs; Nagy, I; Molnár, L; Belucz, B

    2009-01-01

    A systematic survey to establish the true incidence rate of the Blazhko modulation among short-period, fundamental-mode, Galactic field RR Lyrae stars has been accomplished. The Konkoly Blazhko Survey (KBS) was initiated in 2004. Since then more than 750 nights of observation have been devoted to this project. A sample of 30 RRab stars was extensively observed, and light-curve modulation was detected in 14 cases. The 47% occurrence rate of the modulation is much larger than any previous estimate. The significant increase of the detected incidence rate is mostly due to the discovery of small-amplitude modulation. Half of the Blazhko variables in our sample show modulation with so small amplitude that definitely have been missed in the previous surveys. We have found that the modulation can be very unstable in some cases, e.g. RY Com showed regular modulation only during one part of the observations while during two seasons it had stable light curve with abrupt, small changes in the pulsation amplitude. This ty...

  10. The 1991-2012 light curve of the old nova HR Lyrae

    Energy Technology Data Exchange (ETDEWEB)

    Honeycutt, R. K. [Astronomy Department, Indiana University, Swain Hall West, Bloomington, IN 47405 (United States); Shears, J. [Bunbury Observatory, Pemberton, School Lane, Bunbury, Tarporley, Cheshire CW6 9NR (United Kingdom); Kafka, S. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Robertson, J. W. [Department of Physical Sciences, Arkansas Tech University, 1701 N. Boulder, Russellville, AR 72801-2222 (United States); Henden, A. A., E-mail: honey@astro.indiana.edu, E-mail: bunburyobservatory@hotmail.com, E-mail: skafka@aip.org, E-mail: Jeff.Robertson@atu.edu, E-mail: arne@aavso.org [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138-1203 (United States)

    2014-05-01

    The 22 yr light curve of HR Lyr, acquired with a typical cadence of 2-6 days, is examined for periodic and quasi-periodic variations. No persistent periodicities are revealed. Rather, the light curve variations often take the form of nearly linear rises and falls having typical e-folding times of about 100 days. Occasional ∼0.6 mag outbursts are also seen, with properties similar to those of small outbursts found in some nova-like cataclysmic variables. When the photometry is formed into yearly averages, a decline of 0.012 ± 0.005 mag yr{sup –1} is apparent, consistent with the fading of irradiation-induced M-dot following the nova. The equivalent width of Hα is tabulated at three epochs over the interval 1986-2008 in order to compare with a recent result for DK Lac in which Hα was found to be fading 50 yr after the nova. However, our results for such a fading in HR Lyr are inconclusive.

  11. Investigation of the energy dependence of the orbital light curve in LS 5039

    CERN Document Server

    Chang, Z; Ji, L; Chen, Y P; Kretschmar, P; Kuulkers, E; Collmar, W; Liu, C Z

    2016-01-01

    LS 5039 is so far the best studied $\\gamma$-ray binary system at multi-wavelength energies. A time resolved study of its spectral energy distribution (SED) shows that above 1 keV its power output is changing along its binary orbit as well as being a function of energy. To disentangle the energy dependence of the power output as a function of orbital phase, we investigated in detail the orbital light curves as derived with different telescopes at different energy bands. We analysed the data from all existing \\textit{INTEGRAL}/IBIS/ISGRI observations of the source and generated the most up-to-date orbital light curves at hard X-ray energies. In the $\\gamma$-ray band, we carried out orbital phase-resolved analysis of \\textit{Fermi}-LAT data between 30 MeV and 10 GeV in 5 different energy bands. We found that, at $\\lesssim$100 MeV and $\\gtrsim$1 TeV the peak of the $\\gamma$-ray emission is near orbital phase 0.7, while between $\\sim$100 MeV and $\\sim$1 GeV it moves close to orbital phase 1.0 in an orbital anti-cl...

  12. Effect of stellar activity on the high precision transit light curve

    Directory of Open Access Journals (Sweden)

    Oshagh, M.

    2015-01-01

    Full Text Available Stellar activity features such as spots and plages can create difficulties in determining planetary parameters through spectroscopic and photometric observations. The overlap of a transiting planet and a stellar spot, for instance, can produce anomalies in the transit light curve that may lead to inaccurate estimation of the transit duration, depth, and timing. Such inaccuracies can affect the precise derivation of the planet’s radius. In this talk we will present the results of a quantitative study on the effects of stellar spots on high precision transit light curves. We show that spot anomalies can lead to the estimate of a planet radius that is 4% smaller than the real value. The effects on the transit duration can also be of the order of 4%, longer or shorter. Depending on the size and distribution of spots, anomalies can also produce transit timing variations with significant amplitudes. For instance, TTVs with signal amplitudes of 200 seconds can be produced by spots as large as the largest sunspot. Finally, we examine the impact of active regions on the transit depth measurements in different wavelengths, in order to probe the impact of this effect on transmission spectroscopy measurements. We show that significant (up to 10% underestimation/overestimation of the planet-to-star radius ratio can be measured, especially in the short wavelength regime.

  13. Phase response curve to 1 h light pulses for the European rabbit (Oryctolagus cuniculus).

    Science.gov (United States)

    Kennedy, Gerard A; Hudson, Robyn

    2016-01-01

    While much is known about the circadian systems of rodents, chronobiological studies of other mammalian groups have been limited. One of the most extensively studied nonrodent species, both in the laboratory and in the wild, is the European rabbit. The aim of this study was to extend knowledge of the rabbit circadian system by examining its phasic response to light. Twelve Dutch-Himalayan cross rabbits of both sexes were allowed to free-run in constant darkness and then administered 1 h light pulses (1000 lux) at multiple predetermined circadian times. Changes in the phase of the rabbits' circadian wheel-running rhythms were measured after each light pulse and used to construct a phase-response curve (PRC). The rabbits' PRC and free-running period (τ) conformed to the empirical regularities reported for other predominantly nocturnal animals, including rodents and predatory marsupials. The results of the study are thus consistent with reports that the rabbit is essentially a nocturnal animal and show that it can entrain to light/dark (LD) cycles via discrete phase shifts. Knowledge about the rabbit's circadian range of entrainment to LD cycles gained in this study will be useful for examining the putative circadian processes believed to underlie the unusual rhythm of very brief, once-daily nest visits by nursing rabbit mothers and other nursing lagomorphs.

  14. The Optical-Infrared Extinction Curve and its Variation in the Milky Way

    CERN Document Server

    Schlafly, E F; Stutz, A M; Kainulainen, J; Peek, J E G; Tchernyshyov, K; Rix, H -W; Finkbeiner, D P; Covey, K R; Green, G M; Bell, E F; Burgett, W S; Chambers, K C; Draper, P W; Flewelling, H; Hodapp, K W; Kaiser, N; Magnier, E A; Martin, N F; Metcalfe, N; Wainscoat, R J; Waters, C

    2016-01-01

    The dust extinction curve is a critical component of many observational programs and an important diagnostic of the physics of the interstellar medium. Here we present new measurements of the dust extinction curve and its variation towards tens of thousands of stars, a hundred-fold larger sample than in existing detailed studies. We use data from the APOGEE spectroscopic survey in combination with ten-band photometry from Pan-STARRS1, 2MASS, and WISE. We find that the extinction curve in the optical through infrared is well characterized by a one-parameter family of curves described by R(V). The extinction curve is more uniform than suggested in past works, with sigma(R(V)) = 0.18, and with less than one percent of sight lines having R(V) > 4. Our data and analysis have revealed two new aspects of Galactic extinction: first, we find significant, wide-area variations in R(V) throughout the Galactic plane. These variations are on scales much larger than individual molecular clouds, indicating that R(V) variatio...

  15. The Optical-infrared Extinction Curve and Its Variation in the Milky Way

    Science.gov (United States)

    Schlafly, E. F.; Meisner, A. M.; Stutz, A. M.; Kainulainen, J.; Peek, J. E. G.; Tchernyshyov, K.; Rix, H.-W.; Finkbeiner, D. P.; Covey, K. R.; Green, G. M.; Bell, E. F.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Martin, N. F.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.

    2016-04-01

    The dust extinction curve is a critical component of many observational programs and an important diagnostic of the physics of the interstellar medium. Here we present new measurements of the dust extinction curve and its variation toward tens of thousands of stars, a hundred-fold larger sample than in existing detailed studies. We use data from the APOGEE spectroscopic survey in combination with ten-band photometry from Pan-STARRS1, the Two Micron All-Sky Survey, and Wide-field Infrared Survey Explorer. We find that the extinction curve in the optical through infrared is well characterized by a one-parameter family of curves described by R(V). The extinction curve is more uniform than suggested in past works, with σ (R(V))=0.18, and with less than one percent of sight lines having R(V)\\gt 4. Our data and analysis have revealed two new aspects of Galactic extinction: first, we find significant, wide-area variations in R(V) throughout the Galactic plane. These variations are on scales much larger than individual molecular clouds, indicating that R(V) variations must trace much more than just grain growth in dense molecular environments. Indeed, we find no correlation between R(V) and dust column density up to E(B-V)≈ 2. Second, we discover a strong relationship between R(V) and the far-infrared dust emissivity.

  16. Implementation of a goodness-of-fit test for finding optimal concurrent radio and {\\gamma}-ray pulsar light curves

    CERN Document Server

    Seyffert, A S; Harding, A K; Allison, J; Schutte, W D

    2016-01-01

    Since the launch of the Fermi Large Area Telescope in 2008 the number of known ${\\gamma}$-ray pulsars has increased immensely to over 200, many of which are also visible in the radio and X-ray bands. Seyffert et al. (2011) demonstrated how constraints on the viewing geometries of some of these pulsars could be obtained by comparing their observed radio and ${\\gamma}$-ray light curves by eye to light curves from geometric models. While these constraints compare reasonably well with those yielded by more rigorous single-wavelength approaches, they are still a somewhat subjective representation of how well the models reproduce the observed radio and ${\\gamma}$-ray light curves. Constructing a more rigorous approach is, however, made difficult by the large uncertainties associated with the ${\\gamma}$-ray light curves as compared to those associated with the radio light curves. Naively applying a ${\\chi}^{2}$-like goodness-of-fit test to both bands invariably results in constraints dictated by the radio light curv...

  17. Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres

    CERN Document Server

    Oreshenko, Maria; Demory, Brice-Olivier

    2016-01-01

    Optical phase curves have become one of the common probes of exoplanetary atmospheres, but the information they encode has not been fully elucidated. Building on a diverse body of work, we upgrade the Flexible Modeling System (FMS) to include scattering in the two-stream, dual-band approximation and generate plausible, three-dimensional structures of irradiated atmospheres to study the radiative effects of aerosols or condensates. In the optical, we treat the scattering of starlight using a generalisation of Beer's law that allows for a finite Bond albedo to be prescribed. In the infrared, we implement the two-stream solutions and include scattering via an infrared scattering parameter. We present a suite of four-parameter general circulation models for Kepler-7b and demonstrate that its climatology is expected to be robust to variations in optical and infrared scattering. The westward and eastward shifts of the optical and infrared phase curves, respectively, are shown to be robust outcomes of the simulation...

  18. Switching of light with light using cold atoms inside a hollow optical fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Peyronel, Thibault

    2010-01-01

    We demonstrate a fiber-optical switch that operates with a few hundred photons per switching pulse. The light-light interaction is mediated by laser-cooled atoms. The required strong interaction between atoms and light is achieved by simultaneously confining photons and atoms inside the microscopic...

  19. Highly curved image sensors: a practical approach for improved optical performance

    Science.gov (United States)

    Guenter, Brian; Joshi, Neel; Stoakley, Richard; Keefe, Andrew; Geary, Kevin; Freeman, Ryan; Hundley, Jake; Patterson, Pamela; Hammon, David; Herrera, Guillermo; Sherman, Elena; Nowak, Andrew; Schubert, Randall; Brewer, Peter; Yang, Louis; Mott, Russell; McKnight, Geoff

    2017-06-01

    The significant optical and size benefits of using a curved focal surface for imaging systems have been well studied yet never brought to market for lack of a high-quality, mass-producible, curved image sensor. In this work we demonstrate that commercial silicon CMOS image sensors can be thinned and formed into accurate, highly curved optical surfaces with undiminished functionality. Our key development is a pneumatic forming process that avoids rigid mechanical constraints and suppresses wrinkling instabilities. A combination of forming-mold design, pressure membrane elastic properties, and controlled friction forces enables us to gradually contact the die at the corners and smoothly press the sensor into a spherical shape. Allowing the die to slide into the concave target shape enables a threefold increase in the spherical curvature over prior approaches having mechanical constraints that resist deformation, and create a high-stress, stretch-dominated state. Our process creates a bridge between the high precision and low-cost but planar CMOS process, and ideal non-planar component shapes such as spherical imagers for improved optical systems. We demonstrate these curved sensors in prototype cameras with custom lenses, measuring exceptional resolution of 3220 line-widths per picture height at an aperture of f/1.2 and nearly 100% relative illumination across the field. Though we use a 1/2.3" format image sensor in this report, we also show this process is generally compatible with many state of the art imaging sensor formats. By example, we report photogrammetry test data for an APS-C sized silicon die formed to a 30$^\\circ$ subtended spherical angle. These gains in sharpness and relative illumination enable a new generation of ultra-high performance, manufacturable, digital imaging systems for scientific, industrial, and artistic use.

  20. Silicon micro-optics for smart light control

    NARCIS (Netherlands)

    Vdovin, G.; De Lima Monteiro, D.W.; Akhzar-Mehr, O.; Loktev, M.; Sakarya, S.; Soloviev, O.; Sarro, P.M.

    2004-01-01

    We present an overview of the results of our recent research in the field of adaptive optical components based on silicon microtechnologies, including membrane deformable mirrors, spatial light modulators, liquid-crystal correctors, wavefront sensors, and both spherical and aspherical micro-optical

  1. Fiber Optic Fourier Transform White-Light Interferometry

    Institute of Scientific and Technical Information of China (English)

    Yi Jiang; Cai-Jie Tang

    2008-01-01

    Fiber optic Fourier transform white-light inter-fereometry is presented to interrogate the absolute optical path difference of an Mach-Zehnder inter-ferometer. The phase change of the interferometer caused by scanning wavelength can be calculated by a Fourier transform-based phase demodulation technique. A linear output is achieved.

  2. EFFECT OF LONGITUDE-DEPENDENT CLOUD COVERAGE ON EXOPLANET VISIBLE WAVELENGTH REFLECTED-LIGHT PHASE CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Matthew W.; Lewis, Nikole K.; Cahoy, Kerri [Department of Earth, Atmospheric, and Planetary Sciences. Massachusetts Institute of Technology (MIT) Cambridge, MA (United States); Marley, Mark [NASA Ames Research Center, Moffett Field, CA (United States); Morley, Caroline; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-05-10

    We use a planetary albedo model to investigate variations in visible wavelength phase curves of exoplanets. Thermal and cloud properties for these exoplanets are derived using one-dimensional radiative-convective and cloud simulations. The presence of clouds on these exoplanets significantly alters their planetary albedo spectra. We confirm that non-uniform cloud coverage on the dayside of tidally locked exoplanets will manifest as changes to the magnitude and shift of the phase curve. In this work, we first investigate a test case of our model using a Jupiter-like planet, at temperatures consistent to 2.0 AU insolation from a solar type star, to consider the effect of H{sub 2}O clouds. We then extend our application of the model to the exoplanet Kepler-7b and consider the effect of varying cloud species, sedimentation efficiency, particle size, and cloud altitude. We show that, depending on the observational filter, the largest possible shift of the phase curve maximum will be ∼2°–10° for a Jupiter-like planet, and up to ∼30° (∼0.08 in fractional orbital phase) for hot-Jupiter exoplanets at visible wavelengths as a function of dayside cloud distribution with a uniformly averaged thermal profile. The models presented in this work can be adapted for a variety of planetary cases at visible wavelengths to include variations in planet–star separation, gravity, metallicity, and source-observer geometry. Finally, we tailor our model for comparison with, and confirmation of, the recent optical phase-curve observations of Kepler-7b with the Kepler space telescope. The average planetary albedo can vary between 0.1 and 0.6 for the 1300 cloud scenarios that were compared to the observations. Many of these cases cannot produce a high enough albedo to match the observations. We observe that smaller particle size and increasing cloud altitude have a strong effect on increasing albedo. In particular, we show that a set of models where Kepler-7b has roughly half of

  3. Searching for transits in the WTS with the difference imaging light curves

    Science.gov (United States)

    Zendejas Dominguez, Jesus

    2013-12-01

    The search for exo-planets is currently one of the most exiting and active topics in astronomy. Small and rocky planets are particularly the subject of intense research, since if they are suitably located from their host star, they may be warm and potentially habitable worlds. On the other hand, the discovery of giant planets in short-period orbits provides important constraints on models that describe planet formation and orbital migration theories. Several projects are dedicated to discover and characterize planets outside of our solar system. Among them, the Wide-Field Camera Transit Survey (WTS) is a pioneer program aimed to search for extra-solar planets, that stands out for its particular aims and methodology. The WTS has been in operation since August 2007 with observations from the United Kingdom Infrared Telescope, and represents the first survey that searches for transiting planets in the near-infrared wavelengths; hence the WTS is designed to discover planets around M-dwarfs. The survey was originally assigned about 200 nights, observing four fields that were selected seasonally (RA = 03, 07, 17 and 19h) during a year. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. For the most complete field (19h-1145 epochs) in the survey, we produce an alternative set of light curves by using the method of difference imaging, which is a photometric technique that has shown important advantages when used in crowded fields. A quantitative comparison between the photometric precision achieved with both methods is carried out in this work. We remove systematic effects using the sysrem algorithm, scale the error bars on the light curves, and perform a comparison of the corrected light curves. The results show that the aperture photometry light curves provide slightly better precision for objects with J type star, which is proposed for photometric follow-up. The independent analysis on the

  4. Super-resolution optical telescopes with local light diffraction shrinkage

    OpenAIRE

    Changtao Wang; Dongliang Tang; Yanqin Wang; Zeyu Zhao; Jiong Wang; Mingbo Pu; Yudong Zhang; Wei Yan; Ping Gao; Xiangang Luo

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found ...

  5. Comparing different approaches to visualizing light waves: An experimental study on teaching wave optics

    Science.gov (United States)

    Mešić, Vanes; Hajder, Erna; Neumann, Knut; Erceg, Nataša

    2016-06-01

    Research has shown that students have tremendous difficulties developing a qualitative understanding of wave optics, at all educational levels. In this study, we investigate how three different approaches to visualizing light waves affect students' understanding of wave optics. In the first, the conventional, approach light waves are represented by sinusoidal curves. The second teaching approach includes representing light waves by a series of static images, showing the oscillating electric field vectors at characteristic, subsequent instants of time. Within the third approach phasors are used for visualizing light waves. A total of N =85 secondary school students were randomly assigned to one of the three teaching approaches, each of which lasted a period of four class hours. Students who learned with phasors and students who learned from the series of static images outperformed the students learning according to the conventional approach, i.e., they showed a much better understanding of basic wave optics, as measured by a conceptual survey administered to the students one week after the treatment. Our results suggest that visualizing light waves with phasors or oscillating electric field vectors is a promising approach to developing a deeper understanding of wave optics for students enrolled in conceptual level physics courses.

  6. Bayesian Estimates of Astronomical Time Delays between Gravitationally Lensed Stochastic Light Curves

    CERN Document Server

    Tak, Hyungsuk; van Dyk, David A; Kashyap, Vinay L; Meng, Xiao-Li; Siemiginowska, Aneta

    2016-01-01

    The gravitational field of a galaxy can act as a lens and deflect the light emitted by a more distant object such as a quasar. If the galaxy is a strong gravitational lens, it can produce multiple images of the same quasar in the sky. Since the light in each gravitationally lensed image traverses a different path length from the quasar to the Earth, fluctuations in the source brightness are observed in the several images at different times. The time delay between these fluctuations can be used to constrain cosmological parameters and can be inferred from the time series of brightness data or light curves of each image. To estimate the time delay, we construct a model based on a state-space representation for irregularly observed time series generated by a latent continuous-time Ornstein-Uhlenbeck process. We account for microlensing, an additional source of independent long-term extrinsic variability, via a polynomial regression. Our Bayesian strategy adopts a Metropolis-Hastings within Gibbs sampler. We impr...

  7. The Multi-color Light Curves of the W UMa type Contact Binary EP Andromedae

    Science.gov (United States)

    Liao, W.-P.; Qian, S.-B.; Li, K.; He, J.-J.; Zhao, E.-G.; Zhou, X.

    2013-10-01

    New multi-color CCD photometric light curves of the eclipsing binary EP And were obtained over six nights in 2006, 2011, and 2012. Using the Wilson-Devinney code, we computed the photometric elements of this system. It was discovered that EP And is a W-type W UMa contact binary system with a mass ratio of q = 2.685 and a degree of contact factor f = 24.9%, rather than an A-type system. Combining 28 newly determined times of minimum light derived from 1999 to 2012 with others collected from the literature, a long-term increase (dP/dt = +5.22 × 10-8 days yr-1) with a sinusoidal variation (A = 0.0109 days T = 40.89 yr) in the orbital period was found. The orbital period secular increases may be interpreted as conservative mass transfer from the less massive component to the more massive one, and cyclic variations of the orbital period may be caused by the light-travel time effect through the presence of a third body. The evolutionary status and the age of the system are also discussed.

  8. First period investigation and light-curve study of the eclipsing contact binary V776 Cas

    Science.gov (United States)

    Noori, Hamid Reza; Abedi, Abbas

    2017-10-01

    CCD photometry of the eclipsing binary system V776 Cas was carried out through Johnson-Cousins UBVR filters in Dr. Mojtahedi observatory of Birjand University during August and September 2014. The physical and geometrical parameters of the system were obtained by analyzing the light curves. Radial velocity data were used to determine the absolute parameters. Five new times of minimum light were found. The O-C diagram was plotted relying on these times and the previously reported times of minimum. New ephemeris of the system, the rate of orbital period variations and the mass transfer rate of the system were derived from the O-C diagram analysis. A periodic variation of about 8 years was found from the O-C diagram analysis. At first light-time effect was considered. Although the results confirmed the probability of the presence of third body, Applegate mechanism was checked as the reason for this periodic variation and this mechanism is also in agreement with the observations.

  9. Coherent broadband light source for parallel optical coherence tomography

    NARCIS (Netherlands)

    Rivier, S.; Laversenne, L.; Bourquin, S.; Salathé, R.P.; Pollnau, M.; Grivas, C.; Shepherd, D.P.; Eason, R.W.; Flury, M.; Philipoussis, I.; Herzig, H.P.

    2004-01-01

    A Ti:sapphire planar waveguide is rib structured by Ar ion milling to provide parallel channel waveguides. By coupling high-power pump light through a microlens array into the waveguides, a novel broadband luminescent parallel emitter is demonstrated as a light source for parallel optical coherence

  10. Theory of Optical-Filtering Enhanced Slow and Fast Light Effects in Semiconductor Optical Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Xue, Weiqi; Öhman, Filip;

    2008-01-01

    A theoretical analysis of slow and fast light effects in semiconductor optical amplifiers based on coherent population oscillations and including the influence of optical filtering is presented. Optical filtering is shown to enable a significant increase of the controllable phase shift experienced...

  11. All-optical slow-light on a photonic chip.

    Science.gov (United States)

    Okawachi, Yoshitomo; Foster, Mark; Sharping, Jay; Gaeta, Alexander; Xu, Qianfan; Lipson, Michal

    2006-03-20

    We demonstrate optically tunable delays in a silicon-on-insulator planar waveguide based on slow light induced by stimulated Raman scattering (SRS). Inside an 8-mm-long nanoscale waveguide, we produce a group-index change of 0.15 and generate controllable delays as large as 4 ps for signal pulses as short as 3 ps. The scheme can be implemented at bandwidths exceeding 100 GHz for wavelengths spanning the entire low-loss fiber-optics communications window and thus represents an important step in the development of chip-scale photonics devices that process light with light.

  12. Dynamic Optical Grating Device and Associated Method for Modulating Light

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Chu, Sang-Hyon (Inventor)

    2012-01-01

    A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity fo the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.

  13. Optical noise suppression device and method. [laser light exposing film

    Science.gov (United States)

    Horner, J. L. (Inventor)

    1976-01-01

    A device and method is disclosed for suppression of optical noise in an optical spatial filtering system using highly coherent light. In the disclosed embodiment, input photographic film to be processed in the system, and output photographic film to be exposed, are each mounted on lateral translation devices. During application of the coherent light for exposure of the output film, the two translation devices are moved in synchronism by a motor-driven gear and linkage assembly. The ratio of the resulting output film translation to the input film translation is equal to the magnification of the optical data processing system. The noise pattern associated with the lenses and other elements in the optical processing system remains stationary while the image-producing light moves laterally through the pattern with the output film, thus averaging out the noise effect at the output film.

  14. Simulation of microlensing light curves by combining contouring and ray-shooting

    CERN Document Server

    Haugan, S V H

    1995-01-01

    The contouring methods described by Lewis et al. (1993) and Witt (1993) are very efficient and elegant for obtaining the magnification of a point source moving along a straight track in the source plane. The method is, however, not very efficient for extended sources, because the amplification needs to be computed for numerous parallel tracks and then convolved with the source profile. Rayshooting is an efficient algorithm for relatively large sources, but the computing time increases with the inverse of the source area for a given noise level. This poster presents a hybrid method, using the contouring method in order to find only those parts of the lens area that contribute to the light curve through the rayshooting. Calculations show that this method has the potential to be 10--10^5 times more efficient than crude rayshooting techniques.

  15. Light-Curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi Pulsars

    Science.gov (United States)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-01-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of a on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from

  16. Finite source sizes and the information content of macho-type lens search light curves

    Science.gov (United States)

    Nemiroff, Robert J.; Wickramasinghe, W. A. D. T.

    1994-01-01

    If the dark halo matter is primarily composed of Massive Compact Halo Objects (MACHOs) toward the lower end of the possible detection range (less than 10(exp -3) solar mass) a fraction of the lens detection events should involve the lens crossing directly in front of the disk of the background star. Previously, Nemiroff has shown that each crossing would create an inflection point in the light curve of the MACHO event. Such inflection points would allow a measure of the time it took for the lens to cross the stellar disk. Given an independent estimate of the stellar radius by other methods, one could then obtain a more accurate estimate of the velocity of the lens. This velocity could then, in turn, be used to obtain a more accurate estimate of the mass range for the MACHO or disk star doing the lensing.

  17. Using Light Charged Particles to Probe the Asymmetry Dependence of the Nuclear Caloric Curve

    CERN Document Server

    McIntosh, Alan B; Kohley, Zachary; Cammarata, Paul J; Hagel, Kris; Heilborn, Lauren; Mabiala, Justin; May, Larry W; Marini, Paola; Raphelt, Andrew; Souliotis, George A; Wuenschel, Sara; Zarrella, Andrew; Yennello, Sherry J

    2013-01-01

    Recently, we observed a clear dependence of the nuclear caloric curve on neutron-proton asymmetry $\\frac{N-Z}{A}$ through examination of fully reconstructed equilibrated quasi-projectile sources produced in heavy ion collisions at E/A = 35 MeV. In the present work, we extend our analysis using multiple light charged particle probes of the temperature. Temperatures are extracted with five distinct probes using a kinetic thermometer approach. Additionally, temperatures are extracted using two probes within a chemical thermometer approach (Albergo method). All seven measurements show a significant linear dependence of the source temperature on the source asymmetry. For the kinetic thermometer, the strength of the asymmetry dependence varies with the probe particle species in a way which is consistent with an average emission-time ordering.

  18. The BVRI Light Curves And Period Analysis Of The Beta Lyrae System XX Leonis

    CERN Document Server

    Zasche, P; Svoboda, P

    2007-01-01

    The contact eclipsing binary system XX Leonis (P = 0.97 days, sp A8) has been analysed using the PHOEBE programme, based on the Wilson Devinney code. The BVRI light curves were obtained during spring 2006 using the 20-cm telescope and ST-7 CCD detector. The effective temperature of the primary component determined from the photometric analysis is T=(7889+/-61)K, the inclination of the orbit is i=(89.98+/-2.45)deg and the photometric mass ratio q=(0.41+/-0.01). Also the third body hypothesis was suggested, based on the period analysis using 57 minimum times and resulting the period of the third body p3= (52.96+/-0.01)yr, amplitude A=(0.057+/-0.029)d and eccentricity e=(0.79+/-0.08) which gives the minimum mass m3,min=(3.6+/-0.8)M_sun.

  19. VizieR Online Data Catalog: Spitzer and WISE light curves of Neptune (Stauffer+, 2016)

    Science.gov (United States)

    Stauffer, J.; Marley, M. S.; Gizis, J. E.; Rebull, L.; Carey, S. J.; Krick, J.; Ingalls, J. G.; Lowrance, P.; Glaccum, W.; Kirkpatrick, J. D.; Simon, A. A.; Wong, M. H.

    2017-02-01

    Neptune was observed between UT 2016 February 21-23 in both of the 3.6μm (IRAC-1) and 4.5μm (IRAC-2) channels of the Infrared Array Camera (IRAC) on Spitzer. The measurements were part of Director's Discretionary Time Program 12125 (PI: Stauffer). The Astronomical Observation Requests (AORs) were made in IRAC's staring mode, where for each channel, the spacecraft is maneuvered so that the target is placed on the well-calibrated peak-up pixel and back-to-back frames taken for the total time of the AOR with no dithering. For each channel, the total duration of the AOR was set to cover a complete rotation of Neptune, or about 17.2hr. In channel 1 (3.6μm), frames with times of 100s were used (corresponding to 96.8s exposure times), resulting in 622 images (see table1); in channel 2 (4.5μm), a frametime of 30s was used (corresponding to 26.8s exposure times), resulting in 2018 images (see table2). The image files were dark-subtracted, linearized, flat-fielded, and calibrated using the S19.2 version of the IRAC pipeline. We had requested that the channel 2 observations be made immediately following the channel 1 observations, but a time-critical exoplanet transit observation was inserted between the two Neptune AORs, resulting in the channel 2 light curve beginning about 2.3 days after the start of the channel 1 observation. Flux densities were measured with aperture photometry on the Spitzer Basic Calibrated Data images. We converted aperture fluxes to magnitudes using the in-band flux densities of Vega: 278Jy (3.6μm) and 180Jy (4.5μm). The light curve data of Neptune measured with Spitzer/IRAC are provided in Tables 1 and 2. These are the first continuous Neptune light curves covering a full rotation at mid-IR wavelengths. WISE was launched on 2009 December 14 to survey the sky in four broad wavelength bands referred to as W1 (3.4μm), W2 (4.6μm), W3 (12μm), and W4 (22μm). Neptune has been observed at six different epochs in the currently available WISE and

  20. Multiple periodic oscillations in the radio light curves of NRAO 530

    CERN Document Server

    Xie, Mingjie; An, Tao; Zheng, Lin; Han, Xu

    2012-01-01

    In this paper, the time series analysis method CLEANest is employed to search for characteristic periodicities in the radio light curves of the blazar NRAO 530 at 4.8, 8.0 and 14.5 GHz over a time baseline of three decades. Two prominent periodicities on time scales of about 6.3 and 9.5 yr are identified at all three frequencies, in agreement with previous results derived from different numerical techniques, confirming the multiplicity of the periodicities in NRAO 530. In addition to these two significant periods, there is also evidence of shorter-timescale periodicities of about 5.0 yr, 4.2 yr, 3.4 yr and 2.8 yr showing lower amplitude in the periodograms. The physical mechanisms responsible for the radio quasi-periodic oscillations and the multiplicity of the periods are discussed.

  1. Observations and light curve solutions of four ultrashort-period binaries

    Directory of Open Access Journals (Sweden)

    Kjurkchieva D.

    2016-01-01

    Full Text Available The paper presents light curve solutions of our observations of four new ultrashort-period eclipsing binaries with MS components. Two of them have periods almost at the upper limit (0.22 days of the ultrashort-period binaries, while the periods of around 0.18 days of CSS J171508.5+350658 and CSS J214633.8+120016 are amongst the shortest known orbital periods. CSS J171410.0+ 445850, CSS J214633.8+120016 and CSS J224326.0+154532 are over contact binaries with fill out factors around 0.25 while CSS J171508.5+350658 is a semidetached system. The two targets with shortest periods consist of M dwarfs.

  2. Assessment of evolutionary status of eclipsing binaries using light-curve parameters and spectral classification

    CERN Document Server

    Ekaterina, Avvakumova

    2014-01-01

    We have developed a procedure for the classification of eclipsing binaries from their light-curve parameters and spectral type. The procedure was tested on more than 1000 systems with known classification, and its efficiency was estimated for every evolutionary status we use. The procedure was applied to about 4700 binaries with no classification, and the vast majority of them was classified successfully. Systems of relatively rare evolutionary classes were detected in that process, as well as systems with unusual and/or contradictory parameters. Also, for 50 previously unclassified cluster binaries evolutionary classes were identified. These stars can serve as tracers for age and distance estimation of their parent stellar systems. The procedure proved itself as fast, flexible and effective enough to be applied to large ground based and space born surveys, containing tens of thousands of eclipsing binaries.

  3. Light-Curve Modelling Constraints on the Obliquities and Aspect Angles of the Young Fermi Pulsars

    Science.gov (United States)

    Pierbattista, M.; Harding, A. K.; Grenier, I. A.; Johnson, T. J.; Caraveo, P. A.; Kerr, M.; Gonthier, P. L.

    2015-01-01

    In more than four years of observation the Large Area Telescope on board the Fermi satellite has identified pulsed gamma-ray emission from more than 80 young or middle-aged pulsars, in most cases providing light curves with high statistics. Fitting the observed profiles with geometrical models can provide estimates of the magnetic obliquity alpha and of the line of sight angle zeta, yielding estimates of the radiation beaming factor and radiated luminosity. Using different gamma-ray emission geometries (Polar Cap, Slot Gap, Outer Gap, One Pole Caustic) and core plus cone geometries for the radio emission, we fit gamma-ray light curves for 76 young or middle-aged pulsars and we jointly fit their gamma-ray plus radio light curves when possible. We find that a joint radio plus gamma-ray fit strategy is important to obtain (alpha, zeta) estimates that can explain simultaneously detectable radio and gamma-ray emission: when the radio emission is available, the inclusion of the radio light curve in the fit leads to important changes in the (alpha, gamma) solutions. The most pronounced changes are observed for Outer Gap and One Pole Caustic models for which the gamma-ray only fit leads to underestimated alpha or zeta when the solution is found to the left or to the right of the main alpha-zeta plane diagonal respectively. The intermediate-to-high altitude magnetosphere models, Slot Gap, Outer Gap, and One pole Caustic, are favored in explaining the observations. We find no apparent evolution of a on a time scale of 106 years. For all emission geometries our derived gamma-ray beaming factors are generally less than one and do not significantly evolve with the spin-down power. A more pronounced beaming factor vs. spin-down power correlation is observed for Slot Gap model and radio-quiet pulsars and for the Outer Gap model and radio-loud pulsars. The beaming factor distributions exhibit a large dispersion that is less pronounced for the Slot Gap case and that decreases from

  4. Constraining spacetime variations of nuclear decay rates from light curves of type Ia supernovae

    CERN Document Server

    Karpikov, Ivan; Troitsky, Sergey

    2015-01-01

    The luminosity of fading type Ia supernovae is governed by radioactive decays of 56Ni and 56Co. The decay rates are proportional to the Fermi coupling constant G_F and, therefore, are determined by the vacuum expectation value v of the Brout--Englert--Higgs field. We use the publicly available SNLS and UNION2.1 sets of light curves of type Ia supernova at various redshifts to constrain possible spacetime variations of the 56Ni decay rate. The resulting constraint is not very tight; however, it is the only direct bound on the variation of the decay rate for redshifts up to z~1. We discuss potential applications of the result to searches for non-constancy of G_F and v.

  5. On the Determination of Transiting Planet Properties from Light and Radial Velocity Curves

    Science.gov (United States)

    Southworth, John

    2017-02-01

    A recent publication has suggested a method to determine the masses and radii of the components of an eclipsing system using only a light curve and radial velocities of one component. If true, this would have immediate impact in expediting the study of transiting extrasolar planet and brown dwarf systems. The method is intended for situations where the mass ratio is significantly different from zero, but implicitly also requires the assumption that the mass ratio is negligible. We investigate both cases, finding that when the mass ratio is significant the method is mathematically identical to existing approaches, and when the mass ratio is negligible the equations become undefined. We therefore conclude that the method cannot be used to measure the physical properties of such systems from observations alone.

  6. Spectral Analysis of Stellar Light Curves by Means of Neural Networks

    CERN Document Server

    Tagliaferri, R; Milano, L; Barone, F; Longo, G

    1999-01-01

    Periodicity analysis of unevenly collected data is a relevant issue in several scientific fields. In astrophysics, for example, we have to find the fundamental period of light or radial velocity curves which are unevenly sampled observations of stars. Classical spectral analysis methods are unsatisfactory to solve the problem. In this paper we present a neural network based estimator system which performs well the frequency extraction in unevenly sampled signals. It uses an unsupervised Hebbian nonlinear neural algorithm to extract, from the interpolated signal, the principal components which, in turn, are used by the MUSIC frequency estimator algorithm to extract the frequencies. The neural network is tolerant to noise and works well also with few points in the sequence. We benchmark the system on synthetic and real signals with the Periodogram and with the Cramer-Rao lower bound.

  7. The Transit Light Curve Project. XII. Six Transits of the Exoplanet XO-2b

    CERN Document Server

    Fernandez, Jose M; Winn, Joshua N; Torres, Guillermo; Shporer, Avi; Mazeh, Tsevi; Esquerdo, Gilbert A; Everett, Mark E

    2009-01-01

    We present photometry of six transits of the exoplanet XO-2b. By combining the light-curve analysis with theoretical isochrones to determine the stellar properties, we find the planetary radius to be 0.996 +0.031/-0.018 rjup and the planetary mass to be 0.565 +/- 0.054 mjup. These results are consistent with those reported previously, and are also consistent with theoretical models for gas giant planets. The mid-transit times are accurate to within 1 min and are consistent with a constant period. However, the period we derive differs by 2.5 sigma from the previously published period. More data are needed to tell whether the period is actually variable (as it would be in the presence of an additional body) or if the timing errors have been underestimated.

  8. Optical design and lighting application of an LED-based sports lighting system

    Science.gov (United States)

    Boxler, Larry

    2011-10-01

    This paper describes both the optical development of an LED-based sports lighting system and the results of the application of the system to an actual sport field. A traditional sport lighting fixture is generally composed of a single 1500 watt High Intensity Discharge (HID) light source with reflectors used to control the light distribution. The efficacy of the HID light source is equivalent or nearly equivalent to most LED light sources, putting LEDs at a large cost disadvantage in a high light output application such as sports lighting due to the number of LEDs and supporting components required to run an LED system. To assess the feasibility and applicability of LEDs in a sports lighting application, an LED-based sport light has been developed and installed on a small soccer field specified to have an average maintained illuminance level of 30 footcandles. An existing HID sport lighting system was also installed on the same size soccer field adjacent to the LED field with the same average footcandle level for comparison. Results indicate that LEDs can provide equivalent average illumination; however the LED source and system component cost is substantially higher. Despite the high cost, it was found that improved optical control afforded by the optical design used in the system provides a significant improvement in offsite wasted spill light, glare control, and on field uniformity. This could provide an advantage for LED systems.

  9. Light scattering in optical CT scanning of Presage dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y; Adamovics, J; Cheeseborough, J C; Chao, K S; Wuu, C S, E-mail: yx2010@columbia.ed

    2010-11-01

    The intensity of the scattered light from the Presage dosimeters was measured using a Thorlabs PM100D optical power meter (Thorlabs Inc, Newton, NJ) with an optical sensor of 1 mm diameter sensitive area. Five Presage dosimeters were made as cylinders of 15.2 cm, 10 cm, 4 cm diameters and irradiated with 6 MV photons using a Varian Clinac 2100EX. Each dosimeter was put into the scanning tank of an OCTOPUS' optical CT scanner (MGS Research Inc, Madison, CT) filled with a refractive index matching liquid. A laser diode was positioned at one side of the water tank to generate a stationary laser beam of 0.8 mm width. On the other side of the tank, an in-house manufactured positioning system was used to move the optical sensor in the direction perpendicular to the outgoing laser beam from the dosimeters at an increment of 1 mm. The amount of scattered photons was found to be more than 1% of the primary light signal within 2 mm from the laser beam but decreases sharply with increasing off-axis distance. The intensity of the scattered light increases with increasing light attenuations and/or absorptions in the dosimeters. The scattered light at the same off-axis distance was weaker for dosimeters of larger diameters and for larger detector-to-dosimeter distances. Methods for minimizing the effect of the light scattering in different types of optical CT scanners are discussed.

  10. Evaluation of tissue optical properties from light distribution images

    Science.gov (United States)

    Tsai, Cheng-Lun; Chang, Ming; Hsieh, Jui-Hsiang; Yang, Yi-Fong; Chou, Yi-Sheong

    2000-06-01

    Images of light distribution in biological soft tissue we used to study the optical characteristics of tissue. The light distribution image was taken under a microscope with light injected through a pinhole close to the edge of the top surface. Images taken on skin, fat, and muscle tissues were compared to study the effect of cellular structure and temperature on the light intensity distribution. Monte Carlo simulation with the same conditions was also performed to simulate the light intensity distribution in tissue for comparison. The anisotropy scattering of light in tissue is affected by the tissue microscopic structure, such as the direction of muscle tissue fibers. The change in optical properties of fat and muscle tissue with temperature was observed. The two-dimensional light distribution images offer more information than general reflectance and transmission measurements. By matching the simulated light intensity distribution with the light distribution image, the optical properties of biological tissue could be estimated. This method might be applied in tissue engineering as an economic way for evaluating the microscopic structure of tissue.

  11. Integrated optical investigation of two light-sensitive proteins

    Science.gov (United States)

    Fábián, László; Krekic, Szilvia; Tóth-Boconádi, Rudolf; Taneva, Stefka G.; Bálint, Agneta M.; Nánai, László; Dér, András

    2017-01-01

    Integrated optics is one of the most intensively investigated fields when working on alternative methods to overcome the disadvantages of integrated electronics. Besides inorganic active optical crystals, dyes and polymers, molecules of biological origin with suitable nonlinear optical properties can also find applications in integrated optical - biophotonic - devices. The state-of-the-art photonic integration technology is ready to provide the passive elements of integrated optical circuits. The bottle-neck in integrated optics is to find a proper nonlinear optical material that is supposed to be the cladding medium in waveguide-based photonic applications, performing light-controlled active functions. Based on our earlier results, here we present the experimental demonstration of subpicosecond photonic switching with an alternative approach, where the active role is performed by a biological material, the chromoprotein bacteriorhodopsin. Moreover, measurements of the light-induced refractive index change performed on a dried film of the Photoactive Yellow Protein are also presented. Our findings show that these photochromic pigments can be promising candidates as active nonlinear optical materials for all-optical data processing in future biophotonic applications. These results may serve as a basis for the future realization of protein-based integrated optical devices that can eventually lead to a conceptual revolution in the development of telecommunication technologies.

  12. Teaching Optics to Biology Students Through Constructing a Light Microscope

    Science.gov (United States)

    Ross, Jennifer

    2015-03-01

    The microscope is familiar to many disciplines, including physics, materials science, chemistry, and the life sciences. It demonstrates fundamental aspects of ray and wave optics, making it an ideal system to help educate students in the basic concepts of optics and in measurement principles and techniques. We present an experimental system developed to teach students the basics of ray and wave optics. The students design, build, and test a light microscope made from optics components. We describe the equipment and the basic measurements that students can perform to develop experimental techniques to understand optics principles. Students measure the magnification and test the resolution of the microscope. The system is open and versatile to allow advanced projects such as epi-fluorescence, total internal reflection fluorescence, and optical trapping. We have used this equipment in an optics course, an advanced laboratory course, and graduate-level training modules.

  13. GAMMA-RAY BURSTS FROM MAGNETIC RECONNECTION: VARIABILITY AND ROBUSTNESS OF LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Jonathan [Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra’anana 4353701 (Israel)

    2016-01-10

    The dissipation mechanism that powers gamma-ray bursts (GRBs) remains uncertain almost half a century after their discovery. The two main competing mechanisms are the extensively studied internal shocks and the less studied magnetic reconnection. Here we consider GRB emission from magnetic reconnection accounting for the relativistic bulk motions that it produces in the jet's bulk rest frame. Far from the source the magnetic field is almost exactly normal to the radial direction, suggesting locally quasi-spherical thin reconnection layers between regions of oppositely directed magnetic field. We show that if the relativistic motions in the jet's frame are confined to such a quasi-spherical uniform layer, then the resulting GRB light curves are independent of their direction distribution within this layer. This renders previous results for a delta-function velocity-direction distribution applicable to a much more general class of reconnection models, which are suggested by numerical simulations. Such models that vary in their velocity-direction distribution differ mainly in the size of the bright region that contributes most of the observed flux at a given emission radius or observed time. The more sharply peaked this distribution, the smaller this bright region, and the stronger the light curve variability that may be induced by deviations from a uniform emission over the thin reconnection layer, which may be expected in a realistic GRB outflow. This is reflected both in the observed image at a given observed time and in the observer-frame emissivity map at a given emission radius, which are calculated here for three simple velocity-direction distributions.

  14. Light curve analysis of GSC 2750-0054 and GSC 03208-02644

    Science.gov (United States)

    Elkhateeb, M. M.; Nouh, M. I.

    2016-11-01

    We present the first photometric analysis for the newly discovered eclipsing binary systems of Algole-type GSC 2750-0054 and GSC 03208-02644. Our analysis was carried out by means of the most recent version of Wilson Devinney (WD) code, which applies the model atmosphere by (Kurucz, R., 1993. In: Milon, E. (Ed.), Light Curve Modeling of Eclipsing Binary Stars. Springer-Verlag, New York, p. 93) with a prescription in passband for the radiative treatment. The accepted light curve solutions reveal absolute physical parameters and the spectral classifications for the components are adopted. We derived the spectral types of the system GSC 2750-0054 as K3 and K7. The physical parameters of the system are M1 = 0.72 ± 0.03 M⊙, M2 = 0.47 ± 0.02 M⊙, R1 = 0.81 ± 0.03 R⊙, R2 = 0.62 ± 0.03 R⊙, L1 = 0.27 ± 0.01 L⊙ and L2 = 0.1 ± 0.004 L⊙. For the system, GSC 03208 02644 the spectral types of the components are A5 and A8. The physical parameters are M1 = 1.86 ± 0.076 M⊙, M2 = 1.21 ± 0.049 M⊙, R1 = 1.84 ± 0.075 R⊙, R2 = 1.75 ± 0.072 R⊙, L1 = 13.58 ± 0.55 L⊙ and L2 = 9.94 ± 0.41 L⊙. Comparison with the evolutionary models as well as the empirical databases is presented.

  15. Ground-based Light Curves Two Pluto Days Before the New Horizons Passage

    Science.gov (United States)

    Bosh, A. S.; Pasachoff, J. M.; Babcock, B. A.; Durst, R. F.; Seeger, C. H.; Levine, S. E.; Abe, F.; Suzuki, D.; Nagakane, M.; Sickafoose, A. A.; Person, M. J.; Zuluaga, C.; Kosiarek, M. R.

    2015-12-01

    We observed the occultation of a 12th magnitude star, one of the two brightest occultation stars ever in our dozen years of continual monitoring of Pluto's atmosphere through such studies, on 29 June 2015 UTC. At Canterbury University's Mt. John University Observatory on the south island of New Zealand, in clear sky, we used our POETS frame-transfer CCD at 10 Hz with GPS timing on the 1-m McLellan telescope as well as an infrared camera on an 0.6-m telescope and three-color photometry at a slower cadence on a second 0.6-m telescope. The light curves show a central flash, indicating that we were close to the center of the occultation path, and allowing us to explore Pluto's atmosphere lower than usual. The light curves show that Pluto's atmosphere remained robust. Observations from 0.5- and 0.4-m telescopes at the Auckland Observatory gave the first half of the occultation before clouds came in. We coordinated our observations with aircraft observations with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) and its High Speed Imaging Photometer for Occultations (HIPO). Our ground-based and airborne stellar-occultation effort came only just over two weeks of Earth days and two Pluto days (based on Pluto's rotational period) before the flyby of NASA's New Horizons spacecraft, meaning that the mission's exquisite snapshot of Pluto's atmosphere can be placed in the context of our series of ground-based occultation observations carried out on a regular basis since 2002 following a first Pluto occultation observed in 1988 from aloft. Our observations were supported by NASA Planetary Astronomy grants NNX12AJ29G to Williams College, NNX15AJ82G to Lowell Observatory, and NNX10AB27G to MIT, and by the National Research Foundation of South Africa. We thank Alan Gilmore, Pam Kilmartin, Robert Lucas, Paul Tristam, and Carolle Varughese for assistance at Mt. John.

  16. Transit Timing Variation analysis with Kepler light curves of KOI 227 and Kepler 93b

    Science.gov (United States)

    Dulz, Shannon; Reed, Mike

    2017-01-01

    By searching for transit signals in approximately 150,000 stars, NASA’s Kepler Space telescope found thousands of exoplanets over its primary mission from 2009 to 2013 (Tenenbaum et al. 2014, ApJS, 211, 6). Yet, a detailed follow-up examination of Kepler light curves may contribute more evidence on system dynamics and planetary atmospheres of these objects. Kepler’s continuous observing of these systems over the mission duration produced light curves of sufficient duration to allow for the search for transit timing variations. Transit timing variations over the course of many orbits may indicate a precessing orbit or the existence of a non-transiting third body such as another exoplanet. Flux contributions of the planet just prior to secondary eclipse may provide a measurement of bond albedo from the day-side of the transiting planet. Any asymmetries of the transit shape may indicate thermal asymmetries which can measure upper atmosphere motion of the planet. These two factors can constrain atmospheric models of close orbiting exoplanets. We first establish our procedure with the well-documented TTV system, KOI 227 (Nesvorny et al. 2014, ApJ, 790, 31). Using the test case of KOI 227, we analyze Kepler-93b for TTVs and day-side flux contributions. Kepler-93b is likely a rocky planet with R = 1.50 ± 0.03 Earth Radii and M = 2.59 ± 2.0 Earth Masses (Marcy et al. 2014, ApJS, 210, 20). This research is funded by a NASA EPSCoR grant.

  17. The long-term light curve of the cataclysmic variable V794 Aquilae

    Energy Technology Data Exchange (ETDEWEB)

    Honeycutt, R. K. [Astronomy Department, Indiana University, Swain Hall West, Bloomington, IN 47405 (United States); Kafka, S. [Department of Terrestrial Magnetism, Carnegie Inst. of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Robertson, J. W., E-mail: honey@astro.indiana.edu, E-mail: skafka@aip.org, E-mail: Jeff.Robertson@atu.edu [Arkansas Tech University, Department of Physical Sciences, 1701 N. Boulder, Russellville, AR 72801-2222 (United States)

    2014-01-01

    The 1990-2012 light curve of the nova-like (NL) cataclysmic variable V794 Aql is studied in order to characterize and better understand the transitions to and from the faint state, and the variations within the bright state. Investigations of earlier portions of this data had concluded that the transitions to the low state were much slower than the rapid recovery, giving a sawtoothed appearance to the light curve. This behavior differs from that of most other VY Scl stars, which led to an interpretation of the large amplitude sawtooths as being due to an accretion disk (AD) instability. However, more recent photometry strongly suggests that the bright state itself has transitions of 1-1.5 mag, and that earlier studies had intermixed these bright state variations with the transitions to the low state. These newly recognized variations within the bright state sometimes appear as small outbursts (OBs) with typical amplitudes of 0.5-1.5 mag and spacings of ∼15-50 days. The rise times of the OBs are 2-3 times faster than the decline times. We argue that the V794 Aql bright state variations are due to AD behavior similar to that seen in dwarf novae, but with varying degrees of stability. Similar regular small OBs have also been reported in other NL CVs, which we compare with V794 Aql. The true deep low states in V794 Aql appear to be normal, having transition speeds and shapes very similar to the transitions in other VY Scl stars.

  18. End-fire injection of guided light into optical microcavity

    CERN Document Server

    Liu, Shuai; Zhang, Nan; Wang, Kaiyang; Xiao, Shumin; Lyu, Quan; Song, Qinghai

    2015-01-01

    Coupling light into microdisk plays a key role in a number of applications such as resonant filters and optical sensors. While several approaches have successfully coupled light into microdisk efficiently, most of them suffer from the ultrahigh sensitivity to the environmental vibration. Here we demonstrate a robust mechanism, which is termed as end-fire injection. By connecting an input waveguide to a circular microdisk directly, the mechanism shows that light can be efficiently coupled into optical microcavity. The coupling efficiency can be as high as 0.75 when the input signals are on resonances. Our numerical results reveal that the high coupling efficiency is attributed to the constructive interference between the whispering gallery modes and the input signals. We have also shown that the end-fire injection can be further extended to the long-lived resonances with low refractive index such as n = 1.45. We believe our results will shed light on the applications of optical microcavities.

  19. Eliminating light shifts in single-atom optical traps

    CERN Document Server

    Hutzler, Nicholas R; Yu, Yichao; Ni, Kang-Kuen

    2016-01-01

    Microscopically controlled neutral atoms in optical tweezers and lattices have led to exciting advances in the study of quantum information and quantum many-body systems. The light shifts of atomic levels from the trapping potential in these systems can result in detrimental effects such as fluctuating dipole force heating, inhomogeneous detunings, and inhibition of laser cooling, which limits the atomic species that can be manipulated. In particular, these light shifts can be large enough to prevent loading into optical tweezers directly from a magneto-optical trap. We present a general solution to these limitations by loading, cooling, and imaging single atoms with temporally alternating beams. Because this technique does not depend on any specific spectral properties, we expect it to enable the optical tweezer method to control nearly any atomic or molecular species that can be laser cooled and optically trapped. Furthermore, we present an analysis of the role of heating and required cooling for single ato...

  20. Learning curve and interobserver variance in quantification of the optical coherence tomography attenuation coefficient.

    Science.gov (United States)

    Wessels, Ronni; de Bruin, Daniel M; Faber, Dirk J; Sanders, Joyce; Vincent, Andrew D; van Beurden, Marc; van Leeuwen, Ton G; Ruers, Theo J M

    2015-01-01

    The learning curve and interobserver variance of attenuation coefficient (μOCT ) determination from optical coherence tomography (OCT) images were quantified. The μOCT of normal and diseased vulvar tissues was determined at five time points by three novice students and three OCT experts who reached consensus for reference. Students received feedback between time points. Eventually, variance in μOCT was smaller in images of diseased tissue than in images of normal vulvar tissue. The difference between the consensus and student μOCT values was larger for smaller values of μOCT . We conclude that routine μOCT determination for tissue classification does not require extensive training.

  1. The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Brian T.; /Notre Dame U.; Garnavich, Peter M.; /Notre Dame U.; Kessler, Richard; /KICP, Chicago /Chicago U., EFI; Frieman, Joshua A.; /KICP, Chicago /Chicago U. /Fermilab; Jha, Saurabh W.; /Stanford U., Phys. Dept. /Rutgers U., Piscataway; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Cinabro, David; /Wayne State U.; Dilday, Benjamin; /Rutgers U., Piscataway; Kasen, Daniel; /UC, Santa Cruz; Marriner, John; /Fermilab; Nichol, Robert C.; /Portsmouth U., ICG /Baltimore, Space Telescope Sci. /Johns Hopkins U.

    2010-01-01

    We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx}< 2 days and t{sub r} - t{sub f} > 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble

  2. A Correlation between the Intrinsic Brightness and Average Decay Rate of Gamma-Ray Burst X-Ray Afterglow Light Curves

    Science.gov (United States)

    Racusin, J. L.; Oates, S. R.; de Pasquale, M.; Kocevski, D.

    2016-07-01

    We present a correlation between the average temporal decay ({α }{{X},{avg},\\gt 200{{s}}}) and early-time luminosity ({L}{{X},200{{s}}}) of X-ray afterglows of gamma-ray bursts as observed by the Swift X-ray Telescope. Both quantities are measured relative to a rest-frame time of 200 s after the γ-ray trigger. The luminosity-average decay correlation does not depend on specific temporal behavior and contains one scale-independent quantity minimizing the role of selection effects. This is a complementary correlation to that discovered by Oates et al. in the optical light curves observed by the Swift Ultraviolet Optical Telescope. The correlation indicates that, on average, more luminous X-ray afterglows decay faster than less luminous ones, indicating some relative mechanism for energy dissipation. The X-ray and optical correlations are entirely consistent once corrections are applied and contamination is removed. We explore the possible biases introduced by different light-curve morphologies and observational selection effects, and how either geometrical effects or intrinsic properties of the central engine and jet could explain the observed correlation.

  3. The EB Factory Project I. A Fast, Neural Net Based, General Purpose Light Curve Classifier Optimized for Eclipsing Binaries

    CERN Document Server

    Paegert, M; Burger, D M

    2014-01-01

    We describe a new neural-net based light curve classifier and provide it with documentation as a ready-to-use tool for the community. While optimized for identification and classification of eclipsing binary stars, the classifier is general purpose, and has been developed for speed in the context of upcoming massive surveys such as LSST. A challenge for classifiers in the context of neural-net training and massive data sets is to minimize the number of parameters required to describe each light curve. We show that a simple and fast geometric representation that encodes the overall light curve shape, together with a chi-square parameter to capture higher-order morphology information results in efficient yet robust light curve classification, especially for eclipsing binaries. Testing the classifier on the ASAS light curve database, we achieve a retrieval rate of 98\\% and a false-positive rate of 2\\% for eclipsing binaries. We achieve similarly high retrieval rates for most other periodic variable-star classes,...

  4. Optical Nanoprobing via Spin-Orbit Interaction of Light

    Science.gov (United States)

    Rodríguez-Herrera, Oscar G.; Lara, David; Bliokh, Konstantin Y.; Ostrovskaya, Elena A.; Dainty, Chris

    2010-06-01

    We show, both theoretically and experimentally, that high-numerical-aperture (NA) optical microscopy is accompanied by strong spin-orbit interaction of light, which translates fine information about the specimen to the polarization degrees of freedom of light. An 80 nm gold nanoparticle scattering the light in the focus of a high-NA objective generates angular momentum conversion, which is seen as a nonuniform polarization distribution at the exit pupil. We demonstrate remarkable sensitivity of the effect to the position of the nanoparticle: Its subwavelength displacement produces the giant spin-Hall effect, i.e., macroseparation of spins in the outgoing light. This brings forth a far-field optical nanoprobing technique based on the spin-orbit interaction of light.

  5. High-resolution fiber optic temperature sensors using nonlinear spectral curve fitting technique

    Science.gov (United States)

    Su, Z. H.; Gan, J.; Yu, Q. K.; Zhang, Q. H.; Liu, Z. H.; Bao, J. M.

    2013-04-01

    A generic new data processing method is developed to accurately calculate the absolute optical path difference of a low-finesse Fabry-Perot cavity from its broadband interference fringes. The method combines Fast Fourier Transformation with nonlinear curve fitting of the entire spectrum. Modular functions of LabVIEW are employed for fast implementation of the data processing algorithm. The advantages of this technique are demonstrated through high performance fiber optic temperature sensors consisting of an infrared superluminescent diode and an infrared spectrometer. A high resolution of 0.01 °C is achieved over a large dynamic range from room temperature to 800 °C, limited only by the silica fiber used for the sensor.

  6. Detection Level Enhancement of Gravitational Microlensing Events from the Light Curves

    CERN Document Server

    Ibrahim, Ichsan; Djamal, Mitra; Kunjaya, Chatief; Jaelani, Anton Timur; Putri, Gerhana Puannandra

    2015-01-01

    In Astronomy, intensity of the source light is expressed in magnitude. Conventionally, magnitude is defined by logarithmic function of the received flux. This relationship is known as Pogson formulae. For received flux with small signal to noise ratio (S/N), the formulae gives large magnitude error. We want to inspect whether using Inverse Hyperbolic Sine function (hereinafter referred to as Asinh magnitude) can give an alternative calculation of magnitudes for small S/N flux and gives better results to represent the magnitude for that region. We study the possibility of increasing detection level of gravitational microlensing from 40 selected microlensing events light curves for 2013 and 2014 season by using Asinh magnitude. We obtained that the use of the Asinh make the events brighter than using logarithmic with average of about 3.42 x 10^-2 magnitude. We find also average of magnitude error difference between logarithmic magnitude and Asinh magnitude to is about 2.21 x 10^-2 magnitude, so we propose a lim...

  7. A method to discriminate solar and antisolar differential rotation in high-precision light curves

    CERN Document Server

    Reinhold, T

    2015-01-01

    Surface differential rotation (DR) is one major ingredient of the magnetic field generation process in the Sun and likely in other stars. The term solar-like differential rotation describes the observation that solar equatorial regions rotate faster than polar ones. The opposite effect of polar regions rotating faster than equatorial ones (termed as antisolar DR) has only been observed in a few stars, although there is evidence from theoretical dynamo models. We present a new method to detect the sign of DR (i.e. solar-like or antisolar DR) by analyzing long-term high-precision light curves with the Lomb-Scargle periodogram.We compute the Lomb-Scargle periodogram and identify a set of significant periods $P_k$, which we associate with active regions located at different latitudes on the the stellar surface. If detectable, the first harmonics ($P_k'$) of these periods were identified to compute their peak-height-ratios $r_k:=h(P_k')/h(P_k)$. Spots rotating at lower latitudes generate less sine-shaped light cur...

  8. Testing Dissipative Magnetosphere Model Light Curves and Spectra with Fermi Pulsars

    Science.gov (United States)

    Brambilla, Gabriele; Kalapotharakos, Constantinos; Harding, Alice K.; Kazanas, Demosthenes

    2015-01-01

    We explore the emission properties of a dissipative pulsar magnetosphere model introduced by Kalapotharakos et al. comparing its high-energy light curves and spectra, due to curvature radiation, with data collected by the Fermi LAT. The magnetosphere structure is assumed to be near the force-free solution. The accelerating electric field, inside the light cylinder (LC), is assumed to be negligible, while outside the LC it rescales with a finite conductivity (sigma). In our approach we calculate the corresponding high-energy emission by integrating the trajectories of test particles that originate from the stellar surface, taking into account both the accelerating electric field components and the radiation reaction forces. First, we explore the parameter space assuming different value sets for the stellar magnetic field, stellar period, and conductivity. We show that the general properties of the model are in a good agreement with observed emission characteristics of young gamma-ray pulsars, including features of the phase-resolved spectra. Second, we find model parameters that fit each pulsar belonging to a group of eight bright pulsars that have a published phase-resolved spectrum. The sigma values that best describe each of the pulsars in this group show an increase with the spin-down rate (E? ) and a decrease with the pulsar age, expected if pair cascades are providing the magnetospheric conductivity. Finally, we explore the limits of our analysis and suggest future directions for improving such models.

  9. Planar Silicon Optical Waveguide Light Modulators

    DEFF Research Database (Denmark)

    Leistiko, Otto; Bak, H.

    1994-01-01

    serve as carrier injectors for controling absorption. Light confinement of single mode devices is good, giving spot sizes of 9 ¿m FWHM. Insertion loss measurements indicate that the absorption losses for these waveguides are extremely low, less 1 dB/cm. Estimates of the switching speed indicate...

  10. The linear and nonlinear optical effects of white light

    Institute of Scientific and Technical Information of China (English)

    QI XinYuan; LIU SiMin; GUO Ru; LU Yi; GAO YuanMei; LIU ZhaoHong; HUANG ChunFu; ZHANG XiaoHua; ZHU Nan; XU JingJun

    2009-01-01

    An overview of our research group's experimental and theoretical developments is provided on the linear and nonlinear optical effects of white light since 2003. Their work includes the experimental researches on the white light one-dimensional photovoltaic dark spatial solitons and the waveguides and directional couplers induced by them, the circular and elliptic white-light dark spatial solitons and the white-light photorefractive phase masks, two-dimensional white-light photonic lattices and the applications of the white-light dark spatial solitons in the digital image transmission field, the interaction between the two-dimensional white-light dark spatial solitons to enhance or to improve the correlateddegree of the white light through the interaction between the white-light beam and coherent dark spatial solitons, the interaction between the one-or two-dimensional white-light dark spatial solitons and the two-dimensional white-light photonic lattices, respectively. We also numerically simulate the interaction between two or more partially incoherent bright spatial solitons and the white bright spatial soliton pairs in the saturated logarithmic nonlinear medium. We have observed experimentally for the first time,the modulation instability of the coherent light and white light, respectively, in self-defocusing medium and so on.

  11. The linear and nonlinear optical effects of white light

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An overview of our research group’s experimental and theoretical developments is provided on the linear and nonlinear optical effects of white light since 2003. Their work includes the experimental researches on the white light one-dimensional photovoltaic dark spatial solitons and the waveguides and directional couplers induced by them, the circular and elliptic white-light dark spatial solitons and the white-light photorefractive phase masks, two-dimensional white-light photonic lattices and the applications of the white-light dark spatial solitons in the digital image transmission field, the interaction between the two-dimensional white-light dark spatial solitons to enhance or to improve the correlated degree of the white light through the interaction between the white-light beam and coherent dark spatial solitons, the interaction between the one- or two-dimensional white-light dark spatial solitons and the two-dimensional white-light photonic lattices, respectively. We also numerically simulate the interaction between two or more partially incoherent bright spatial solitons and the white bright spatial soliton pairs in the saturated logarithmic nonlinear medium. We have observed experimentally for the first time, the modulation instability of the coherent light and white light, respectively, in self-defocusing medium and so on.

  12. Light gradients and optical microniches in coral tissues

    Directory of Open Access Journals (Sweden)

    Daniel eWangpraseurt

    2012-08-01

    Full Text Available Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterise vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with PAR (photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500-700 nm relative to a healthy coral. Photosynthesis peaked around 300 µm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g. ~1000 µm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.

  13. Properties of nonreciprocal light propagation in a nonlinear optical isolator

    CERN Document Server

    Roy, Dibyendu

    2016-01-01

    Light propagation in a nonlinear optical medium is nonreciprocal for spatially asymmetric linear permittivity. We here examine physical mechanism and properties of such nonreciprocity (NR). For this, we calculate transmission of light through a two-level atom asymmetrically coupled to light inside open waveguides. We determine the critical intensity of incident light for maximum NR and a dependence of the corresponding NR on asymmetry in the coupling. Surprisingly, we find that it is mainly coherent elastic scattering compared to incoherent scattering of incident light which causes maximum NR near the critical intensity. We also show a higher NR of an incident light in the presence of an additional weak light at the opposite port.

  14. Robotic visible-light laser adaptive optics

    Science.gov (United States)

    Baranec, Christoph; Riddle, Reed; Law, Nicholas; Ramaprakash, A. N.; Tendulkar, Shriharsh; Bui, Khanh; Burse, Mahesh; Chordia, Pravin; Das, Hillol; Dekany, Richard; Kulkarni, Shrinivas; Punnadi, Sujit

    2013-12-01

    Robo-AO is the first autonomous laser adaptive optics system and science instrument operating on sky. With minimal human oversight, the system robotically executes large scale surveys, monitors long-term astrophysical dynamics and characterizes newly discovered transients, all at the visible diffraction limit. The adaptive optics setup time, from the end of the telescope slew to the beginning of an observation, is a mere ~50-60 s, enabling over 200 observations per night. The first of many envisioned systems has finished 58 nights of science observing at the Palomar Observatory 60-inch (1.5 m) telescope, with over 6,400 robotic observations executed thus far. The system will be augmented in late 2013 with a low-noise wide field infrared camera, which doubles as a tip-tilt sensor, to widen the spectral bandwidth of observations and increase available sky coverage while also enabling deeper visible imaging using adaptive-optics sharpened infrared tip-tilt guide sources. Techniques applicable to larger telescope systems will also be tested: the infrared camera will be used to demonstrate advanced multiple region-of-interest tip-tilt guiding methods, and a visitor instrument port will be used for evaluation of other instrumentation, e.g. single-mode and photonic fibers to feed compact spectrographs.

  15. Advanced optical daylighting systems: light shelves and light pipes

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, L.O.; Lee, E.S.; Selkowitz, S.E.

    1996-05-01

    We present two perimeter daylighting systems that passively redirect beam sunlight further from the window wall using special optical films, an optimized geometry, and a small glazing aperture. The objectives of these systems are (1) to increase daylight illuminance levels at 4.6-9.1 m (15-30 ft) from the window aperture with minimum solar heat gains and (2) to improve the uniformity of the daylighting luminance gradient across the room under variable solar conditions throughout the year. The designs were developed through a series of computer-assisted ray-tracing studies, laser visualization techniques, and photometric measurements and observations using physical scale models. Bi-directional illuminance measurements in combination with analytical routines were then used to simulate daylight performance for any solar position, and were incorporated into the DOE-2.1E building energy analysis computer program to evaluate energy savings. Results show increased daylight levels and an improved luminance gradient throughout the year compared to conventional daylighting systems.

  16. CSI 2264: Characterizing Young Stars in NGC 2264 with Short-Duration, Periodic Flux Dips in their Light Curves

    CERN Document Server

    Stauffer, John; McGinnis, Pauline; Rebull, Luisa; Hillenbrand, Lynne A; Turner, Neal J; Carpenter, John; Plavchan, Peter; Carey, Sean; Terebey, Susan; Morales-Calderón, María; Alencar, Silvia H P; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Barrado, David; Vrba, Frederick J; Covey, Kevin; Padgett, Debbie; Herbst, William; Gillen, Edward; Lyra, Wladimir; Guimaraes, Marcelo Medeiros; Bouy, Herve; Favata, Fabio

    2015-01-01

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical {\\em CoRoT} light curves exhibiting short-duration, shallow, periodic flux dips. All of these stars have infrared (IR) excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHM generally less than one day, depths almost always less than 15%, and periods (3

  17. On the Photometric Error Calibration for the Differential Light Curves of Point-like Active Galactic Nuclei

    Indian Academy of Sciences (India)

    Arti Goyal; Mukul Mhaskey; Gopal-Krishna; Paul J. Wiita; C. S. Stalin; Ram Sagar

    2013-09-01

    It is important to quantify the underestimation of rms photometric errors returned by the commonly used APPHOT algorithm in the IRAF software, in the context of differential photometry of point-like AGN, because of the crucial role it plays in evaluating their variability properties. Published values of the underestimation factor, , using several different telescopes, lie in the range 1.3–1.75. The present study aims to revisit this question by employing an exceptionally large data set of 262 differential light curves (DLCs) derived from 262 pairs of non-varying stars monitored under our ARIES AGN monitoring program for characterizing the intra-night optical variability (INOV) of prominent AGN classes. The bulk of these data were taken with the 1-m Sampurnanad Telescope (ST). We find = 1.54 ± 0.05 which is close to our recently reported value of = 1.5. Moreover, this consistency holds at least up to a brightness mismatch of 1.5 mag between the paired stars. From this we infer that a magnitude difference of at least up to 1.5 mag between a point-like AGN and comparison star(s) monitored simultaneously is within the same CCD chip acceptable, as it should not lead to spurious claims of INOV.

  18. Early-time light curves of Type Ib/c supernovae from the SDSS-II Supernova Survey

    CERN Document Server

    Taddia, F; Leloudas, G; Stritzinger, M D; Valenti, S; Galbany, L; Kessler, R; Schneider, D P; Wheeler, J C

    2014-01-01

    We analyse the early-time optical light curves (LCs) of 20 Type Ib/c supernovae (SNe Ib/c) from the Sloan Digital Sky Survey (SDSS) SN survey II, aiming to study their properties as well as to derive their progenitor parameters. High-cadence, multi-band LCs are fitted with a functional model and the best-fit parameters are compared among the SN types. Bolometric LCs (BLCs) are constructed for the entire sample. We computed the black-body (BB) temperature (T_BB) and photospheric radius (R_ph) evolution for each SN via BB fits on the spectral energy distributions. In addition, the BLC properties are compared to model expectations. Complementing our sample with literature data, we find that SNe Ic and Ic-BL (broad-line) have shorter rise times than those of SNe Ib and IIb. \\Delta m_15 is similar among the different sub-types. SNe Ic appear brighter and bluer than SNe Ib, but this difference vanishes if we consider host galaxy extinction corrections based on colors. Our SNe have typical T_BB ~ 10000 K at peak, an...

  19. Looking for Stars and Finding the Moon: Effects of Lunar Gamma-ray Emission on Fermi LAT Light Curves

    CERN Document Server

    Corbet, Robin; Kerr, Matthew; Ray, Paul S

    2013-01-01

    We are conducting a search for new gamma-ray binaries by making high signal-to-noise light curves of all cataloged Fermi LAT sources and searching for periodic variability using appropriately weighted power spectra. The light curves are created using a variant of aperture photometry where photons are weighted by the probability that they came from the source of interest. From this analysis we find that the light curves of a number of sources near the ecliptic plane are contaminated by gamma-ray emission from the Moon. This shows itself as modulation on the Moon's sidereal period in the power spectra. We demonstrate that this contamination can be removed by excluding times when the Moon was too close to a source. We advocate that this data screening should generally be used when analyzing LAT data from a source located close to the path of the Moon.

  20. Long-Term Transit Timing Monitoring and Refined Light Curve Parameters of HAT-P-13b

    CERN Document Server

    Fulton, Benjamin J; Winn, Joshua N; Holman, Matthew J; Pál, András; Gazak, J Zachary

    2011-01-01

    We present 10 new transit light curves of the transiting hot Jupiter HAT-P-13b, obtained during two observational seasons by three different telescopes. When combined with 12 previously published light curves, we have a sample consisting of 22 transit light curves, spanning 1,041 days across 4 observational seasons. We use this sample to examine the recently observed large-amplitude transit timing variations (P\\'al et al. 2011), and give refined system parameters. We find that the transit times are consistent with a linear ephemeris, with the exception of a single transit time, from UT 2009 Nov 5, for which the measured mid transit time significantly deviates from our linear ephemeris. The nature of this deviation is not clear, and the rest of the data does not show any significant transit timing variation.

  1. A physically inspired model of Dip d792 and d1519 of the Kepler light curve seen at KIC8462852

    CERN Document Server

    Heindl, Eduard

    2016-01-01

    The star KIC 8462852 shows a very unusual and hard to comprehend light curve. The dip d7922 absorbs 16% of the starlight. The light curve is unusually smooth but the very steep edges make it hard to find a simple natural explanation by covering due to comets or other well-known planetary objects. We describe a mathematical approximation to the light curve, which is motivated by a physically meaningful event of a large stellar beam which generates an orbiting cloud. The data might fit to the science fiction idea of star lifting, a mining technology that could extract star matter. We extend the model to d1519 and d1568 using multiple beams and get an encouraging result that fits essential parts of the dips but misses other parts of the measured flux. We recommend further exploration of this concept with refined models.

  2. Optical and Nonlinear Optical Response of Light Sensor Thin Films

    Directory of Open Access Journals (Sweden)

    S. Z. Weisz

    2005-04-01

    Full Text Available For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD and RF co-sputteringtechniques. In photoluminescence (PL measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration.

  3. Resolving enantiomers using the optical angular momentum of twisted light.

    Science.gov (United States)

    Brullot, Ward; Vanbel, Maarten K; Swusten, Tom; Verbiest, Thierry

    2016-03-01

    Circular dichroism and optical rotation are crucial for the characterization of chiral molecules and are of importance to the study of pharmaceutical drugs, proteins, DNA, and many others. These techniques are based on the different interactions of enantiomers with circularly polarized components of plane wave light that carries spin angular momentum (SAM). For light carrying orbital angular momentum (OAM), for example, twisted or helical light, the consensus is that it cannot engage with the chirality of a molecular system as previous studies failed to demonstrate an interaction between optical OAM and chiral molecules. Using unique nanoparticle aggregates, we prove that optical OAM can engage with materials' chirality and discriminate between enantiomers. Further, theoretical results show that compared to circular dichroism, mainly based on magnetic dipole contributions, the OAM analog helical dichroism (HD) is critically dependent on fundamentally different chiral electric quadrupole contributions. Our work opens new venues to study chirality and can find application in sensing and chiral spectroscopy.

  4. (DARPA) Nonlinear Optics at Low Light Levels

    Science.gov (United States)

    2010-05-28

    Stokes and anti-Stokes photons are transmitted through 10 GHz electro- optic amplitude modulators ( Eospace Inc.) with a half-wave voltage, Vπ of 1.3V. To...sinusoidal phase modulators ( EOSPACE ) which are driven at 30 GHz with modulation depths of about 1.5 radians. To set the modulation depth, we adjust...variable attenuator, (e) Atm Inc. P1409-360 phase trimmer, (f) Nextec-RF NA00435 amplifiers, (g) MegaPhase CA- V1K2 K to V coaxial adapters, (h) EOSPACE

  5. Light fidelity (Li-Fi): towards all-optical networking

    Science.gov (United States)

    Tsonev, Dobroslav; Videv, Stefan; Haas, Harald

    2013-12-01

    Motivated by the looming radio frequency (RF) spectrum crisis, this paper aims at demonstrating that optical wireless communication (OWC) has now reached a state where it can demonstrate that it is a viable and matured solution to this fundamental problem. In particular, for indoor communications where most mobile data traffic is consumed, light fidelity (Li-Fi) which is related to visible light communication (VLC) offers many key advantages, and effective solutions to the issues that have been posed in the last decade. This paper discusses all key component technologies required to realize optical cellular communication systems referred to here as optical attocell networks. Optical attocells are the next step in the progression towards ever smaller cells, a progression which is known to be the most significant contributor to the improvements in network spectral efficiencies in RF wireless networks.

  6. Light waves in thin films and integrated optics.

    Science.gov (United States)

    Tien, P K

    1971-11-01

    Integrated optics is a far-reaching attempt to apply thin-film technology to optical circuits and devices, and, by using methods of integrated circuitry, to achieve a better and more economical optical system. The specific topics discussed here are physics of light waves in thin films, materials and losses involved, methods of couplings light beam into and out of a thin film, and nonlinear interactions in waveguide structures. The purpose of this paper is to review in some detail the important development of this new and fascinating field, and to caution the reader that the technology involved is difficult because of the smallness and perfection demanded by thin-film optical devices.

  7. Light Scattering by Optically Soft Particles Theory and Applications

    CERN Document Server

    Sharma, Subodh K

    2006-01-01

    The present monograph deals with a particular class of approximation methods in the context of light scattering by small particles. This class of approximations has been termed as eikonal or soft particle approximations. The eikonal approximation was studied extensively in the potential scattering and then adopted in optical scattering problems. In this context, the eikonal and other soft particle approximations pertain to scatterers whose relative refractive index compared to surrounding medium is close to unity. The study of these approximations is very important because soft particles occur abundantly in nature. For example, the particles that occur in ocean optics, biomedical optics, atmospheric optics and in many industrial applications can be classified as soft particles. This book was written in recognition of the long-standing and current interest in the field of scattering approximations for soft particles. It should prove to be a useful addition for researchers in the field of light scattering.

  8. Light with a twist : ray aspects in singular wave and quantum optics

    NARCIS (Netherlands)

    Habraken, Steven Johannes Martinus

    2010-01-01

    Light may have a very rich spatial and spectral structure. We theoretically study the structure and physical properties of coherent optical modes and quantum states of light, focusing on optical vortices, general astigmatism, orbital angular momentum and rotating light.

  9. VARIABILITY IN PROTO-PLANETARY NEBULAE. III. LIGHT CURVE STUDIES OF MAGELLANIC CLOUD CARBON-RICH OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Hrivnak, Bruce J.; Lu, Wenxian [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Volk, Kevin [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Szczerba, Ryszard; Hajduk, Marcin [N. Copernicus Astronomy Center, Rabianska 8, 87-100 Torun (Poland); Soszyński, Igor, E-mail: bruce.hrivnak@valpo.edu, E-mail: wen.lu@valpo.edu [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw (Poland)

    2015-05-20

    We have investigated the light variability in a sample of 22 carbon-rich post-AGB stars in the LMC and SMC, based primarily on photometric data from the Optical Gravitational Lensing Experiment survey. All are found to vary. Dominant periods are found in eight of them; these periods range from 49 to 157 days, and most of these stars have F spectral types. These eight are found to be similar to the Milky Way Galaxy (MWG) carbon-rich proto-planetary nebulae (PPNs) in several ways: (a) they are in the same period range of ∼38 to ∼160 days, (b) they have similar spectral types, (c) they are (all but one) redder when fainter, (d) they have multiple periods, closely spaced in time, with an average ratio of secondary to primary period of ∼1.0, and as an ensemble, (e) they show a trend of decreasing period with increasing temperature, and (f) they show a trend of decreasing amplitude with decreasing period. However, they possibly differ in that the decreasing trend of period with temperature may be slightly offset from that of the MWG. These eight are classified as PPNs. The other 14 all show evidence of variability on shorter timescales. They are likely hotter PPNs or young planetary nebulae. However, in the MWG the numbers of PPNs peak in the F−G spectral types, while it appears that in the LMC they peak at a hotter B spectral type. One of the periodic ones shows a small, R Coronae Borealis type light curve drop.

  10. A Python Code for the Emmanoulopoulos et al. [arXiv:1305.0304] Light Curve Simulation Algorithm

    CERN Document Server

    Connolly, S D

    2015-01-01

    I have created, for public use, a Python code allowing the simulation of light curves with any given power spectral density and any probability density function, following the algorithm described in Emmanoulopoulos et al. 2013. The simulated products have exactly the same variability and statistical properties as the observed light curves. The code and its documentation are available at: https://github.com/samconnolly/DELightcurveSimulation Note that a Mathematica code of the algorithm is given in Emmanoulopoulos et al. [arXiv:1305.0304

  11. The Infrared Light Curve of SN 2011fe in M101 and the Distance to M101

    Science.gov (United States)

    Matheson, T.; Joyce, R. R.; Allen, L. E.; Saha, A.; Silva, D. R.; Wood-Vasey, W. M.; Adams, J. J.; Anderson, R. E.; Beck, T. L.; Bentz, M. C.; Bershady, M. A.; Binkert, W. S.; Butler, K.; Camarata, M. A.; Eigenbrot, A.; Everett, M.; Gallagher, J. S.; Garnavich, P. M.; Glikman, E.; Harbeck, D.; Hargis, J. R.; Herbst, H.; Horch, E. P.; Howell, S. B.; Jha, S.; Kaczmarek, J. F.; Knezek, P.; Manne-Nicholas, E.; Mathieu, R. D.; Meixner, M.; Milliman, K.; Power, J.; Rajagopal, J.; Reetz, K.; Rhode, K. L.; Schechtman-Rook, A.; Schwamb, M. E.; Schweiker, H.; Simmons, B.; Simon, J. D.; Summers, D.; Young, M. D.; Weyant, A.; Wilcots, E. M.; Will, G.; Williams, D.

    2012-07-01

    We present near-infrared light curves of supernova (SN) 2011fe in M101, including 34 epochs in H band starting 14 days before maximum brightness in the B band. The light curve data were obtained with the WIYN High-Resolution Infrared Camera. When the data are calibrated using templates of other Type Ia SNe, we derive an apparent H-band magnitude at the epoch of B-band maximum of 10.85 ± 0.04. This implies a distance modulus for M101 that ranges from 28.86 to 29.17 mag, depending on which absolute calibration for Type Ia SNe is used.

  12. Implications of the Early X-Ray Afterglow Light Curves of Swift GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Jonathan; /KIPAC, Menlo Park; Konigl, Arieh; /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI; Piran, Tsvi; /Hebrew U.

    2006-01-17

    According to current models, gamma-ray bursts (GRBs) are produced when the energy carried by a relativistic outflow is dissipated and converted into radiation. The efficiency of this process, {epsilon}{sub {gamma}}, is one of the critical factors in any GRB model. The X-ray afterglow light curves of Swift GRBs show an early stage of flattish decay. This has been interpreted as reflecting energy injection. When combined with previous estimates, which have concluded that the kinetic energy of the late ({approx}> 10 hr) afterglow is comparable to the energy emitted in {gamma}-rays, this interpretation implies very high values of {epsilon}{sub {gamma}}, corresponding to {approx}> 90% of the initial energy being converted into {gamma}-rays. Such a high efficiency is hard to reconcile with most models, including in particular the popular internal-shocks model. We re-analyze the derivation of the kinetic energy from the afterglow X-ray flux and re-examine the resulting estimates of the efficiency. We confirm that, if the flattish decay arises from energy injection and the pre-Swift broad-band estimates of the kinetic energy are correct, then {epsilon}{sub {gamma}} {approx}> 0.9. We discuss various issues related to this result, including an alternative interpretation of the light curve in terms of a two-component outflow model, which we apply to the X-ray observations of GRB 050315. We point out, however, that another interpretation of the flattish decay--a variable X-ray afterglow efficiency (e.g., due to a time dependence of afterglow shock microphysical parameters)--is possible. We also show that direct estimates of the kinetic energy from the late X-ray afterglow flux are sensitive to the assumed values of the shock microphysical parameters and suggest that broad-band afterglow fits might have underestimated the kinetic energy (e.g., by overestimating the fraction of electrons that are accelerated to relativistic energies). Either one of these possibilities implies a

  13. Investigation of the energy dependence of the orbital light curve in LS 5039

    Science.gov (United States)

    Chang, Z.; Zhang, S.; Ji, L.; Chen, Y. P.; Kretschmar, P.; Kuulkers, E.; Collmar, W.; Liu, C. Z.

    2016-11-01

    LS 5039 is so far the best-studied γ-ray binary system at multiwavelength energies. A time-resolved study of its spectral energy distribution (SED) shows that above 1 keV its power output is changing along its binary orbit as well as being a function of energy. To disentangle the energy dependence of the power output as a function of orbital phase, we investigated in detail the orbital light curves as derived with different telescopes at different energy bands. We analysed the data from all existing International Gamma-Ray Astrophysics Laboratory (INTEGRAL)/INTEGRAL on-board Imager/INTEGRAL Soft Gamma-Ray Imager observations of the source and generated the most up-to-date orbital light curves at hard X-ray energies. In the γ-ray band, we carried out orbital phase-resolved analysis of Fermi-Large Area Telescope (LAT) data between 30 MeV and 10 GeV in five different energy bands. We found that, at ≲100 MeV and ≳1 TeV the peak of the γ-ray emission is near orbital phase 0.7, while between ˜100 MeV and ˜1 GeV it moves close to orbital phase 1.0 in an orbital anticlockwise manner. This result suggests that the transition region in the SED at soft γ-rays (below a hundred MeV) is related to the orbital phase interval of 0.5-1.0 but not to the one of 0.0-0.5, when the compact object is `behind' its companion. Another interesting result is that between 3 and 20 GeV no orbital modulation is found, although Fermi-LAT significantly (˜18σ) detects LS 5039. This is consistent with the fact that at these energies, the contributions to the overall emission from the inferior conjunction phase region (INFC, orbital phase 0.45-0.9) and from the superior conjunction phase region (orbital phase 0.9-0.45) are equal in strength. At TeV energies the power output is again dominant in the INFC region and the flux peak occurs at phase ˜0.7.

  14. Disk-averaged synthetic spectra and Light-curves for Terrestrial Planets

    Science.gov (United States)

    Tinetti, G.; Meadows, V. S.; Crisp, D.; Fong, W.; Velusamy, T.; Allen, M.

    2004-11-01

    NASA and ESA are currently studying mission concepts for space-based observatories to search for and characterize extrasolar terrestrial planets. Any planet directly detected by this first generation of space-missions will be resolved only as point sources. Basic information can be gleaned from the object's distance from the star and its apparent brightness, but the presence of a planetary atmosphere of unknown composition will complicate the determination of planetary properties. Disk-averaged spectroscopy will be our best tool for discriminating between Jovian/Terrestrial planets, and between Terrestrial planets of different types. We simulate spectrally-dependent light-curves and disk-averaged spectra of a plausible range of extrasolar terrestrial planets to determine the detectability of biosignatures by proposed space-based observatories. The core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model (SMART by D.Crisp), used to generate a database of synthetic spectra for a variety of atmospheric/surface properties, viewing angles, illuminations and cloud coverage. To simulate a wider range of terrestrial planets than those found in our system SMART can be coupled to a versatile climate model (G. Tinetti and D. Crisp) and a chemistry model, (Kinetics, by M. Allen and Y. Yung). Our model generates a variety of products including disk-averaged synthetic spectra, light-curves and the spectral variability at visible and IR wavelengths as a function of viewing angle. These results can be processed with an instrument simulator to improve our understanding of the detectable characteristics as viewed by the first generation extrasolar terrestrial planet detection and characterization missions. These tools were used to simulate an increasingly frozen Mars, an increasingly cloudy/forested/oceanic/tilted/eccentric-orbit Earth-like planet, and to determine the detectability of biosignatures (e.g. red-edge signal). The Earth

  15. What Powers the 3000-Day Light Curve of SN 2006gy?

    CERN Document Server

    Fox, Ori D; Ammons, S Mark; Andrews, Jennifer; Bostroem, K Azalee; Cenko, S Bradley; Clayton, Geoffrey C; Dwek, Eli; Filippenko, Alexei V; Gallagher, Joseph S; Kelly, Patrick L; Mauerhan, Jon C; Miller, Adam M; Van Dyk, Schuyler D

    2015-01-01

    SN 2006gy was the most luminous SN ever observed at the time of its discovery and the first of the newly defined class of superluminous supernovae (SLSNe). The extraordinary energetics of SN 2006gy and all SLSNe (>10^51 erg) require either atypically large explosion energies (e.g., pair-instability explosion) or the efficient conversion of kinetic into radiative energy (e.g., shock interaction). The mass-loss characteristics can therefore offer important clues regarding the progenitor system. For the case of SN 2006gy, both a scattered and thermal light echo from circumstellar material (CSM) have been reported at later epochs (day ~800), ruling out the likelihood of a pair-instability event and leading to constraints on the characteristics of the CSM. Owing to the proximity of the SN to the bright host-galaxy nucleus, continued monitoring of the light echo has not been trivial, requiring the high resolution offered by the Hubble Space Telescope (HST) or ground-based adaptive optics (AO). Here we report detect...

  16. Optical communications. V - Light emitting diodes /LED/

    Science.gov (United States)

    Best, S. W.

    1980-10-01

    The process of assembling diode chips is discussed, along with their application in optical communications. Metal plating is performed with an evaporation technique using primarily AuGe on the back side and Al or AuZn on the front side. The assembling of LED-chips with metal casings is illustrated. The chip is mounted on a flat bottom plate and electrical contact is established by means of an alloying or adhesion procedure. A glass fiber can be attached to the diode and then fitted with a casing, or the diode can be assembled with a metal cap and a lense, or with an open cap that is sealed with a clear synthetic resin plastic. The typical emission spectra of an LED and a semiconductor laser are compared. Limitations in the operation of an LED in a photoconductor are examined, taking into account spectral line width and radiated power criteria.

  17. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    Science.gov (United States)

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  18. Light saturation curves show competence of the water splitting complex in inactive Photosystem II reaction centers.

    Science.gov (United States)

    Nedbal, L; Gibas, C; Whitmarsh, J

    1991-12-01

    Photosystem II complexes of higher plants are structurally and functionally heterogeneous. While the only clearly defined structural difference is that Photosystem II reaction centers are served by two distinct antenna sizes, several types of functional heterogeneity have been demonstrated. Among these is the observation that in dark-adapted leaves of spinach and pea, over 30% of the Photosystem II reaction centers are unable to reduce plastoquinone to plastoquinol at physiologically meaningful rates. Several lines of evidence show that the impaired reaction centers are effectively inactive, because the rate of oxidation of the primary quinone acceptor, QA, is 1000 times slower than in normally active reaction centers. However, there are conflicting opinions and data over whether inactive Photosystem II complexes are capable of oxidizing water in the presence of certain artificial electron acceptors. In the present study we investigated whether inactive Photosystem II complexes have a functional water oxidizing system in spinach thylakoid membranes by measuring the flash yield of water oxidation products as a function of flash intensity. At low flash energies (less that 10% saturation), selected to minimize double turnovers of reaction centers, we found that in the presence of the artificial quinone acceptor, dichlorobenzoquinone (DCBQ), the yield of proton release was enhanced 20±2% over that observed in the presence of dimethylbenzoquinone (DMBQ). We argue that the extra proton release is from the normally inactive Photosystem II reaction centers that have been activated in the presence of DCBQ, demonstrating their capacity to oxidize water in repetitive flashes, as concluded by Graan and Ort (Biochim Biophys Acta (1986) 852: 320-330). The light saturation curves indicate that the effective antenna size of inactive reaction centers is 55±12% the size of active Photosystem II centers. Comparison of the light saturation dependence of steady state oxygen evolution

  19. Zener tunneling of light waves in an optical superlattice.

    Science.gov (United States)

    Ghulinyan, Mher; Oton, Claudio J; Gaburro, Zeno; Pavesi, Lorenzo; Toninelli, Costanza; Wiersma, Diederik S

    2005-04-01

    We report on the observation of Zener tunneling of light waves in spectral and time-resolved transmission measurements, performed on an optical superlattice made of porous silicon. The structure was designed to have two photonic minibands, spaced by a narrow frequency gap. A gradient in the refractive index was introduced to create two optical Wannier-Stark ladders and, at a critical value of the optical gradient, tunneling between energy bands was observed in the form of an enhanced transmission peak and a characteristic time dependence of the transmission.

  20. Geometrical optics approximation of light scattering by large air bubbles

    Institute of Scientific and Technical Information of China (English)

    Haitao Yu; Jianqi Shen; Yuehuan Wei

    2008-01-01

    For large spherical bubbles in water,geometrical optics approximation is considered a better method for calculating light scattering patterns.In this paper,the basic theory of geometrical optics approximation is clarified.The change of phase for bubbles is calculated when total reflection occurs,which is different from particles with relative refractive indices larger than 1.Verification of the method was achieved by assuming a spherical particle and comparing present results to Mie scattering and Debye calculation.Agreement with the Mie theory was excellent in all directions when the dimensionless size parameter is larger than 50.Limitations of the geometrical optics approximation are also discussed.