WorldWideScience

Sample records for optical lenses

  1. Optics Demonstrations Using Cylindrical Lenses

    Science.gov (United States)

    Ivanov, Dragia; Nikolov, Stefan

    2015-01-01

    In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…

  2. Ray optics of generalized lenses.

    Science.gov (United States)

    Chaplain, Gregory J; Macauley, Gavin; Bělín, Jakub; Tyc, Tomáš; Cowie, Euan N; Courtial, Johannes

    2016-05-01

    We study the ray optics of generalized lenses (glenses), which are ideal thin lenses generalized to have different object- and image-sided focal lengths, and the most general light-ray-direction-changing surfaces that stigmatically image any point in object space to a corresponding point in image space. Gabor superlenses [UK patent541,753 (1940); J. Opt. A1, 94 (1999)JOAOF81464-425810.1088/1464-4258/1/1/013] can be seen as pixelated realizations of glenses. Our analysis is centered on the nodal point. Whereas the nodal point of a thin lens always resides in the lens plane, that of a glens can reside anywhere on the optical axis. Utilizing the nodal point, we derive simple equations that describe the mapping between object and image space and the light-ray-direction change. We demonstrate our findings with the help of ray-tracing simulations. Glenses allow novel optical instruments to be realized, at least theoretically, and our results facilitate the design and analysis of such devices.

  3. Optical aberrations in a gas lenses

    CSIR Research Space (South Africa)

    Mafusire, C

    2010-08-01

    Full Text Available and Security Presented at the Laser Beam Shaping XI, 2010 SPIE Optics + Photonics Annual Conference San Diego Convention Centre San Diego, California 1-5 August 2010 Page 2 © CSIR 2010 www.csir.co.za Gas Lenses • Gas Lenses and M...

  4. Antifouling leaching technique for optical lenses

    Science.gov (United States)

    Strahle, William J.; Perez, C. L.; Martini, Marinna A.

    1994-01-01

    The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics

  5. Energy-Efficient Optical Signal Processing Using Optical Time Lenses

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen;

    2015-01-01

    This chapter describes advanced functionalities for optical signal processing using optical time lenses. A special focus is devoted to functionalities that allow for energy-savings. In particular, we find that optical signal processing, where the processing is broadband and capable of handling ma...

  6. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu;

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  7. Optical lenses and magnification in archery*

    Directory of Open Access Journals (Sweden)

    B. Strydom

    2010-12-01

    Full Text Available The use of optical lenses to increase or magnify a target of concern is commonly used in compound bow archery.  The principles and factors that may influence the use of these lenses may, however, not be fully understood by archers.  Two types of lens systems, the one-lens system and the two-lens system, as described by the authors, may be used. Different factors such as the draw length of the archer,the ametropic condition of the archer, depth of field, depth of focus, age, accommodation, the power of F1 and F2 (see Figures 1 and 2 in the paper and the distance the lens is placed from the archer may influence the results of the lens used by the archer. (S Afr Optom 2010 69(1 29-34

  8. Designing novel anisotropic lenses with transformation optics

    Science.gov (United States)

    Jiang, Wei Xiang; Bao, Di; Cui, Tie Jun

    2016-04-01

    Transformation optics (TO), based on the formally invariant property of Maxwell’s equations, has provided a powerful strategy to design anisotropic or nearly-isotropic devices, in both time-varied and static fields. In this paper, we present and investigate the negative refraction or reflection phenomena by positive-index anisotropic materials based on transformation-optics design. First, we propose and design an inhomogeneous transformed planar lens, in which we will show the negative-refraction-like properties of transformation media. Secondly, we present a homogeneous transformed lens based on linear spatial transformation, in which we will reveal the negative-reflection properties of positive transformation media. Both transformed lenses have unusual properties which are different from those in natural materials.

  9. Ultrathin lensed fiber-optic probe for optical coherence tomography.

    Science.gov (United States)

    Qiu, Y; Wang, Y; Belfield, K D; Liu, X

    2016-06-01

    We investigated and validated a novel method to develop ultrathin lensed fiber-optic (LFO) probes for optical coherence tomography (OCT) imaging. We made the LFO probe by attaching a segment of no core fiber (NCF) to the distal end of a single mode fiber (SMF) and generating a curved surface at the tip of the NCF using the electric arc of a fusion splicer. The novel fabrication approach enabled us to control the length of the NCF and the radius of the fiber lens independently. By strategically choosing these two parameters, the LFO probe could achieve a broad range of working distance and depth of focus for different OCT applications. A probe with 125μm diameter and lateral resolution up to 10μm was demonstrated. The low-cost, disposable and robust LFO probe is expected to have great potential for interstitial OCT imaging.

  10. Feedback control of optical beam spatial profiles using thermal lensing

    CERN Document Server

    Liu, Zhanwei; Arain, Muzammil A; Williams, Luke; Mueller, Guido; Tanner, David B; Reitze, David H

    2013-01-01

    A method for active control of the spatial profile of a laser beam using adaptive thermal lensing is described. A segmented electrical heater was used to generate thermal gradients across a transmissive optical element, resulting in a controllable thermal lens. The segmented heater also allows the generation of cylindrical lenses, and provides the capability to steer the beam in both horizontal and vertical planes. Using this device as an actuator, a feedback control loop was developed to stabilize the beam size and position.

  11. Active Learning Environment with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  12. Active Learning Environment with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  13. Electron optics of skewed micro-Einzel lenses

    NARCIS (Netherlands)

    Van Bruggen, M.J.; Van Someren, B.; Kruit, P.

    2009-01-01

    Micro-Einzel lenses always suffer from chromatic and spherical aberration, even when the electron beam is exactly on the optical axis of the lens. When the inclination of the electron beam with respect to the lens axis increases, additional effects such as coma, astigmatism, and defocus start to dom

  14. Thermal lensing compensation for AIGO high optical power test facility

    Science.gov (United States)

    Degallaix, Jérôme; Zhao, Chunnong; Ju, Li; Blair, David

    2004-03-01

    We present finite element modelling of thermal lensing occurring in an interferometer test mass. Our simulations include the thermo-optic effect and mechanical expansion of the optics. For the High Optical Power Test Facility (HOPTF) operated by the Australian International Gravitational Observatory (AIGO), the optical path length measured across the laser beam radius is 45 nm for 1.2 W absorbed power for the input sapphire test mass. The AIGO thermal lens is much stronger than the one in Advanced LIGO and will degrade the interferometer performance. Direct thermal compensation and the use of an external compensation plate were investigated to minimize thermal lensing consequences in the interferometer. For the AIGO situation, a fused silica external plate is the most practical solution to correct thermally induced wavefront distortions. The compensation plate requires lower thermal power than direct compensation and does not increase the test mass temperature.

  15. Thermal lensing compensation for AIGO high optical power test facility

    Energy Technology Data Exchange (ETDEWEB)

    Degallaix, Jerome [School of Physics, University of Western Australia, Stirling Highway, Crawley, WA 6009 (Australia); Zhao Chunnong [Computer and Information Science, Edith Cowan University, Mount Lawley, WA 6050 (Australia); Ju Li [School of Physics, University of Western Australia, Stirling Highway, Crawley, WA 6009 (Australia); Blair, David [School of Physics, University of Western Australia, Stirling Highway, Crawley, WA 6009 (Australia)

    2004-03-07

    We present finite element modelling of thermal lensing occurring in an interferometer test mass. Our simulations include the thermo-optic effect and mechanical expansion of the optics. For the High Optical Power Test Facility (HOPTF) operated by the Australian International Gravitational Observatory (AIGO), the optical path length measured across the laser beam radius is 45 nm for 1.2 W absorbed power for the input sapphire test mass. The AIGO thermal lens is much stronger than the one in Advanced LIGO and will degrade the interferometer performance. Direct thermal compensation and the use of an external compensation plate were investigated to minimize thermal lensing consequences in the interferometer. For the AIGO situation, a fused silica external plate is the most practical solution to correct thermally induced wavefront distortions. The compensation plate requires lower thermal power than direct compensation and does not increase the test mass temperature.

  16. Omnidirectional transformation-optics cloak made from lenses and glenses.

    Science.gov (United States)

    Tyc, Tomáš; Oxburgh, Stephen; Cowie, Euan N; Chaplain, Gregory J; Macauley, Gavin; White, Chris D; Courtial, Johannes

    2016-06-01

    We present a design for an omnidirectional transformation-optics (TO) cloak comprising thin lenses and glenses (generalized thin lenses) [J. Opt. Soc. Am. A33, 962 (2016)1084-7529JOAOD610.1364/JOSAA.33.000962]. It should be possible to realize such devices in pixelated form. Our design is a piecewise nonaffine generalization of piecewise affine pixelated-TO devices [Proc. SPIE9193, 91931E (2014)PSISDG0277-786X10.1117/12.2061404; J. Opt18, 044009 (2016)]. It is intended to be a step in the direction of TO devices made entirely from lenses, which should be readily realizable on large length scales and for a broad range of wavelengths.

  17. Optical loss due to diffraction by concentrator Fresnel lenses

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, Thorsten, E-mail: thorsten.hornung@ise.fraunhofer.de; Nitz, Peter, E-mail: thorsten.hornung@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg (Germany)

    2014-09-26

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.

  18. Blue-Light Filtering Spectacle Lenses: Optical and Clinical Performances.

    Science.gov (United States)

    Leung, Tsz Wing; Li, Roger Wing-Hong; Kee, Chea-Su

    2017-01-01

    To evaluate the optical performance of blue-light filtering spectacle lenses and investigate whether a reduction in blue light transmission affects visual performance and sleep quality. Experiment 1: The relative changes in phototoxicity, scotopic sensitivity, and melatonin suppression of five blue-light filtering plano spectacle lenses were calculated based on their spectral transmittances measured by a spectrophotometer. Experiment 2: A pseudo-randomized controlled study was conducted to evaluate the clinical performance of two blue-light filtering spectacle lenses (BF: blue-filtering anti-reflection coating; BT: brown-tinted) with a regular clear lens (AR) serving as a control. A total of eighty computer users were recruited from two age cohorts (young adults: 18-30 yrs, middle-aged adults: 40-55 yrs). Contrast sensitivity under standard and glare conditions, and colour discrimination were measured using standard clinical tests. After one month of lens wear, subjective ratings of lens performance were collected by questionnaire. All tested blue-light filtering spectacle lenses theoretically reduced the calculated phototoxicity by 10.6% to 23.6%. Although use of the blue-light filters also decreased scotopic sensitivity by 2.4% to 9.6%, and melatonin suppression by 5.8% to 15.0%, over 70% of the participants could not detect these optical changes. Our clinical tests revealed no significant decrease in contrast sensitivity either with (95% confidence intervals [CI]: AR-BT [-0.05, 0.05]; AR-BF [-0.05, 0.06]; BT-BF [-0.06, 0.06]) or without glare (95% CI: AR-BT [-0.01, 0.03]; AR-BF [-0.01, 0.03]; BT-BF [-0.02, 0.02]) and colour discrimination (95% CI: AR-BT [-9.07, 1.02]; AR-BF [-7.06, 4.46]; BT-BF [-3.12, 8.57]). Blue-light filtering spectacle lenses can partially filter high-energy short-wavelength light without substantially degrading visual performance and sleep quality. These lenses may serve as a supplementary option for protecting the retina from potential

  19. Veselago lensing with ultracold atoms in an optical lattice

    CERN Document Server

    Leder, Martin; Weitz, Martin

    2014-01-01

    Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, i.e. photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman $\\pi$-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wave imaging applications.

  20. Laser-induced lensing effects in solid-state optical refrigerators

    Science.gov (United States)

    Silva, J. R.; Andrade, L. H. C.; Lima, S. M.; Hehlen, M. P.; Guyot, Y.; Medina, A. N.; Malacarne, L. C.; Baesso, M. L.; Astrath, N. G. C.

    2013-04-01

    Laser-induced thermal and population lensing effects in solid-state optical refrigerator materials are quantitatively evaluated. Time-resolved lensing transients in Yb3+ doped ZBLAN and aluminosilicate glasses are measured, and the model decouples thermal and population lensing effects. The analysis yields the net power density, the cooling efficiency, and important photo-physical parameters. The respective values are in good agreement with previously reported parameters for ZBLAN glass. Aluminosilicate glass is found to be a promising optical refrigerator material. We show that the measurement of laser-induced lensing is a valuable tool that can advance the characterization and optimization of materials for cryogenic optical refrigerators.

  1. Precision glass molding: Toward an optimal fabrication of optical lenses

    Science.gov (United States)

    Zhang, Liangchi; Liu, Weidong

    2016-12-01

    It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pas due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

  2. Experimental and Numerical Studies of Thermal Lensing in Optical Materials

    Science.gov (United States)

    Franklin, Samantha

    2010-10-01

    A common issue found in near-IR laser applications with multi kW beams is thermo-optical effects due to small levels of absorption of the optical material used in the beam train elements. To validate current beam propagation codes for this application, a closed-aperture Z-scan experiment was performed. Commercially available NG11 and NG4 (Schott glass) absorptive neutral density filters were used as the sample with optical densities ranging from 0.1-0.5. They were exposed with a 532 nm beam at 100mW power for 1 s at different z-positions in the optical path. The experimental parameters were entered into the computer model and the irradiance vs. position (in meters) of the computer model output data was compared to the graph of normalized irradiance vs. z-position (in meters) of the Z-scan experiment. Experimentally measured values were compared to calculations from the laser propagation model; the results of this comparison showed that the modeling program is a proper measuring tool in the outcome of a thermal lensing experiment. Public Release Code: AFRL-RH-AB-2010-0043 PA# 10-350

  3. Precision glass molding: Toward an optimal fabrication of optical lenses

    Science.gov (United States)

    Zhang, Liangchi; Liu, Weidong

    2017-03-01

    It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pas due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

  4. An ion-optical bench for testing ion source lenses

    Science.gov (United States)

    Stoffels, J. J.; Ells, D. R.

    1988-06-01

    An ion-optical bench has been designed and constructed to obtain experimental data on the focusing properties of ion lenses in three dimensions. The heart of the apparatus is a position-sensitive detector (PSD) that gives output signals proportional to the x and y positions of each ion impact. The position signals can be displayed on an oscilloscope screen and analyzed by a two-parameter pulse-height analyzer, thereby giving a visual picture of the ion beam cross section and intensity distribution. The PSD itself is mounted on a track and is movable during operation from a position immediately following the ion lens to 30 cm away. This enables the rapid collection of accurate data on the intensity distribution and divergence angles of ions leaving the source lens. Examples of ion lens measurements are given.

  5. Numerical wave optics and the lensing of gravitational waves by globular clusters

    CERN Document Server

    Moylan, Andrew J; Scott, Susan M; Searle, Antony C; Bicknell, G V

    2008-01-01

    We consider the possible effects of gravitational lensing by globular clusters on gravitational waves from asymmetric neutron stars in our galaxy. In the lensing of gravitational waves, the long wavelength, compared with the usual case of optical lensing, can lead to the geometrical optics approximation being invalid, in which case a wave optical solution is necessary. In general, wave optical solutions can only be obtained numerically. We describe a computational method that is particularly well suited to numerical wave optics. This method enables us to compare the properties of several lens models for globular clusters without ever calling upon the geometrical optics approximation, though that approximation would sometimes have been valid. Finally, we estimate the probability that lensing by a globular cluster will significantly affect the detection, by ground-based laser interferometer detectors such as LIGO, of gravitational waves from an asymmetric neutron star in our galaxy, finding that the probability...

  6. Atom optical shop testing of electrostatic lenses using an atom interferometer

    CERN Document Server

    Hromada, Ivan; Holmgren, William F; Gregoire, Maxwell D; Cronin, Alexander D

    2013-01-01

    We used an atom interferometer for atom optical shop testing of lenses for atomic de Broglie waves. We measured focal lengths and spherical aberrations of electrostatic lenses in three independent ways based on contrast data, phase data, or calculations of de Broglie wavefront curvature. We report focal lengths of -2.5 km and -21.7 km with 5% uncertainty for different lenses. All three methods give consistent results. Understanding how lenses magnify and distort atom interference fringes helps improve atom beam velocity measurements made with phase choppers [New J. Phys. 13, 115007 (2011)], which in turn will improve the accuracy of atomic polarizability measurements.

  7. Large-scale optical diffraction tomography for inspection of optical plastic lenses

    CERN Document Server

    Kim, Kyoohyun; Park, YongKeun

    2015-01-01

    Herein is presented an optical diffraction tomography (ODT) technique for measuring 3-D refractive index (RI) maps of optical plastic lenses. A Mach-Zehnder interferometer was used to measure multiple complex optical fields of a plastic lens immersed in RI matching oil, at various rotational orientations. From this, ODT was used to reconstruct a 3-D RI distribution of the plastic lens with unprecedented RI sensitivity (dn = 4.21 x 10^-5) and high resolution (12.8 um). As a demonstration, 3-D RI distributions of a 2-mm-diameter borosilicate sphere and a 5-mm-diameter plastic lens

  8. Specific features of measuring the optical power of artificial refractive and diffractive-refractive eye lenses

    Science.gov (United States)

    Lenkova, G. A.

    2016-08-01

    Methods for monitoring the optical power of artificial refractive eye lenses (intraocular lenses) based on measuring focal lengths in air and in medium are analyzed. The methods for determining the refraction of diffractive-refractive lenses (in particular, of MIOL-Akkord type), with allowance for the specific features of the diffractive structure, are considered. A computer simulation of the measurement of the focal length of MIOL-Akkord lenses is performed. The effective optical power of the diffractive component of these lenses is shown to depend on the diaphragm diameter. The optimal diaphragm diameter, at which spherical aberrations do not affect the position of foci, is found to be 3 mm. Possible errors in measuring the focal lengths are analyzed, and the necessary corrections that must be introduced into measurement results and calculations of refractions are determined.

  9. Optics effects of splitting dipole magnets into several thin lenses

    CERN Document Server

    Leunissen, L H A

    1998-01-01

    The evaluation of the dynamic aperture and the calculation of non linear optics parameters have been made so far with the simplest model of dipole, i.e. a single thin lens positioned at the centre of each thick dipole. It was shown recently that the non-linear chromaticity decreases significantly when the thick lens is represented by two thin lenses or more instead of one. In this note the study is extended to amplitude detuning and dynamic aperture. Unlike the observation reported on non-linear chromatic detuning we find no significant changes for the dynamic aperture and amplitude d etuning when the dipole magnets are split in more than one thin lens. Furthermore, non-uniform azimuthal distribution of the multipoles inside the dipole is shown not to change the above-mentio ned results. In both cases, the influence of the beta-funtions is expected to give large effect for a given dipole. However, integrated over one cell this effect is shown to compensate to a large extent. erture reported on non-linear chro...

  10. The impact of camera optical alignments on weak lensing measures for the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Antonik, M. L.; Bacon, D. J.; Bridle, S.; Doel, P.; Brooks, D.; Worswick, S.; Bernstein, G.; Bernstein, R.; DePoy, D.; Flaugher, B.; Frieman, J. A.; Gladders, M.; Gutierrez, G.; Jain, B.; Jarvis, M.; Kent, S. M.; Lahav, O.; Parker, S. -. J.; Roodman, A.; Walker, A. R.

    2013-04-10

    Telescope point spread function (PSF) quality is critical for realizing the potential of cosmic weak lensing observations to constrain dark energy and test general relativity. In this paper, we use quantitative weak gravitational lensing measures to inform the precision of lens optical alignment, with specific reference to the Dark Energy Survey (DES). We compute optics spot diagrams and calculate the shear and flexion of the PSF as a function of position on the focal plane. For perfect optical alignment, we verify the high quality of the DES optical design, finding a maximum PSF contribution to the weak lensing shear of 0.04 near the edge of the focal plane. However, this can be increased by a factor of approximately 3 if the lenses are only just aligned within their maximum specified tolerances. We calculate the E- and B-mode shear and flexion variance as a function of the decentre or tilt of each lens in turn. We find tilt accuracy to be a few times more important than decentre, depending on the lens considered. Finally, we consider the compound effect of decentre and tilt of multiple lenses simultaneously, by sampling from a plausible range of values of each parameter. We find that the compound effect can be around twice as detrimental as when considering any one lens alone. Furthermore, this combined effect changes the conclusions about which lens is most important to align accurately. For DES, the tilt of the first two lenses is the most important.

  11. [OPTIC PROPERTIES OF MYOPIC CORRECTION BY ORTHOKERATOLOGY CONTACT LENSES (A CASE REPORT)].

    Science.gov (United States)

    Mýlková, M; Pluháček, F

    2017-01-01

    Orthokeratology lenses present a special type of hard contact lenses, which is used especially for myopic correction. The lenses are applied during the night, when thanks to their special shape cause temporally (reversible) change of the cornea shape. During the day, there is not necessary to wear any other refractive correction. Due to the wearing regimen, there is, comparing to the classical contact lenses, higher risk of health complications. For their safe use, it is necessary to pay attention to the application of lenses of adequate parameters, follow up the care and hygiene precautions, regular controls and early treatment of possible problems. The application of contact lenses should be done by experienced and well-educated expert in contact lens fitting. In the Czech Republic, this method is practically not used. The aim of the case report was to follow up the course of concrete application of orthokeratology lenses for myopic correction from the optic (refractive) point of view, and to evaluate the optic changes in the system of the eye. In the followed up subject, there were measured subjective changes in refraction, visual acuity, corneal curvature, corneal and whole eye aberrations, and corneal thickness during the period of one month after the beginning of lens application (initial phase). The same parameters were followed-up during one-month period since the termination of lens wearing for three months (second phase). The subject was a woman, 24 years old, myopic, with the refractive error in the right eye -3.0 spherical diopters and astigmatism of -0.25 cylinder in the axis 90°, and in the left eye -2.75 spherical diopters without astigmatism; without ophthalmologic or systemic diseases. The full correction of the refractive error after the orthokeratology lenses application occurred approximately after four nights (wearing the lenses overnight). Concurrently, during the day, slight recurrence to original values was evident. With the decreased

  12. Thermal lensing compensation principle for the ACIGA's High Optical Power Test Facility Test 1

    Science.gov (United States)

    Degallaix, Jérřome; Slagmolen, Bram; Zhao, Chunnong; Ju, Li; Blair, David

    2005-09-01

    Thermal lensing is becoming recognized as one of the dominant obstacles to the second generation of laser interferometric gravitational wave detectors. Very high optical power is required to circulate in the interferometer to reach the sensitivity goal, creating strong thermal induced wavefront distortion. These effects will be studied at the High Optical Power Test Facility in Gingin, Western Australia. In this paper, we present simulation results for the first test planned for the middle of 2004. This experiment will produce 5 kW of optical power circulating inside a Fabry Perot cavity and will demonstrate large thermal lensing effects.

  13. Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, G.

    2015-01-01

    Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…

  14. Experimental demonstration of free-space optical vortex transmutation with polygonal lenses.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2012-08-01

    Vortex transmutation was predicted to take place when vortices interact with systems possessing discrete rotational symmetries of finite order [Phys. Rev. Lett.95, 123901 (2005)]. Here we report what is believed to be the first experimental demonstration of vortex transmutation. We show that in free space, by simply inserting polygonal lenses into the optical path, the central vorticity of a coaxially incident optical vortex can be changed following the modular transmutation rule. We generate the wavefront at the exit face of the lenses with computer generated holograms and measure the output vorticity using the interference patterns at the focal plane. The results agree well with theoretical predictions.

  15. Clinical comparison of the optical performance of aspheric and spherical intraocular lenses

    NARCIS (Netherlands)

    van Gaalen, Kim W.; Koopmans, Steven A.; Jansonius, Nomdo M.; Kooijman, Aart C.

    2010-01-01

    PURPOSE: To compare the optical performance of aspheric Tecnis ZA9003 and spherical Sensar AR40e intraocular lenses (IOLs). SETTING: Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. METHODS: An aspheric IOL was implan

  16. Placing Limits on Extragalactic Substructure with Gravitational Lenses and Adaptive Optics

    NARCIS (Netherlands)

    Lagattuta, David J.; Vegetti, S.; Auger, M. W.; Fassnacht, C. D.; Koopmans, L. V. E.; McKean, J. P.

    2011-01-01

    We present the first results from a systematic search for extragalactic substructure, using high resolution Adaptive Optics (AO) images of known strong gravitational lenses. In particular we focus on two lens systems, B0128+437 and B1939+666, placing limits on both luminous and dark matter substruct

  17. The impact of camera optical alignments on weak lensing measures for the Dark Energy Survey

    CERN Document Server

    Antonik, Michelle L; Bridle, Sarah; Doel, Peter; Brooks, David; Worswick, Sue; Bernstein, Gary; Bernstein, Rebecca; DePoy, Darren; Flaugher, Brenna; Frieman, Joshua A; Gladders, Michael; Gutierrez, Gaston; Jain, Bhuvnesh; Jarvis, Michael; Kent, Stephen M; Lahav, Ofer; Roodman, Aaron; Walker, Alistair R

    2012-01-01

    Telescope Point Spread Function (PSF) quality is critical for realising the potential of cosmic weak lensing observations to constrain dark energy and test General Relativity. In this paper we use quantitative weak gravitational lensing measures to inform the precision of lens optical alignment, with specific reference to the Dark Energy Survey (DES). We compute optics spot diagrams and calculate the shear and flexion of the PSF as a function of position on the focal plane. For perfect optical alignment we verify the high quality of the DES optical design, finding a maximum PSF contribution to the weak lensing shear of 0.04 near the edge of the focal plane. However this can be increased by a factor of approximately three if the lenses are only just aligned within their maximum specified tolerances. We calculate the E and B-mode shear and flexion variance as a function of de-centre or tilt of each lens in turn. We find tilt accuracy to be a few times more important than de-centre, depending on the lens conside...

  18. Orientation Bias of Optically Selected Galaxy Clusters and Its Impact on Stacked Weak Lensing Analyses

    CERN Document Server

    Dietrich, Jörg P; Song, Jeeseon; McKay, Christopher P Davis Timothy A; Baruah, Leon; Becker, Matthew; Benoist, Christophe; Busha, Michael; da Costa, Luiz A N; Hao, Jiangang; Maia, Marcio A G; Miller, Christopher J; Ogando, Ricardo; Romer, A Kathy; Rozo, Eduardo; Rykoff, Eli; Wechsler, Risa

    2014-01-01

    Weak-lensing measurements of the averaged shear profiles of galaxy clusters binned by some proxy for cluster mass are commonly converted to cluster mass estimates under the assumption that these cluster stacks have spherical symmetry. In this paper we test whether this assumption holds for optically selected clusters binned by estimated optical richness. Using mock catalogues created from N-body simulations populated realistically with galaxies, we ran a suite of optical cluster finders and estimated their optical richness. We binned galaxy clusters by true cluster mass and estimated optical richness and measure the ellipticity of these stacks. We find that the processes of optical cluster selection and richness estimation are biased, leading to stacked structures that are elongated along the line-of-sight. We show that weak-lensing alone cannot measure the size of this orientation bias. Weak lensing masses of stacked optically selected clusters are overestimated by up to 3-6 per cent when clusters can be uni...

  19. Thickness and topographic inspection of RPG contact lenses by optical triangulation

    Science.gov (United States)

    Costa, Manuel F. M.

    2001-06-01

    Optical triangulation as a non-destructive test method extensively proved its usefulness on the dimensional and topographic inspection of a large range of objects and surfaces. In this communication the issue of microtopographic and thickness inspection of hard contact lenses (RPG) is addressed. The use of optical triangulation is discussed based on the results of the application of our MICROTOP.03.MFC microtopographer to this kind of tasks will be presented.

  20. Prospects for clustering and lensing measurements with forthcoming intensity mapping and optical surveys

    CERN Document Server

    Pourtsidou, Alkistis; Crittenden, Robert; Metcalf, R Benton

    2015-01-01

    We explore the potential of using intensity mapping surveys (MeerKAT, SKA) and optical galaxy surveys (DES, LSST) to detect HI clustering and weak gravitational lensing of 21cm emission in auto- and cross-correlation. Our forecasts show that high precision measurements of the clustering and lensing signals can be made in the near future using the intensity mapping technique. Such studies can be used to test the intensity mapping method, and constrain parameters such as the HI density $\\Omega_{\\rm HI}$, the HI bias $b_{\\rm HI}$ and the galaxy-HI correlation coefficient $r_{\\rm HI-g}$.

  1. Prospects for clustering and lensing measurements with forthcoming intensity mapping and optical surveys

    Science.gov (United States)

    Pourtsidou, A.; Bacon, D.; Crittenden, R.; Metcalf, R. B.

    2016-06-01

    We explore the potential of using intensity mapping surveys (MeerKAT, SKA) and optical galaxy surveys (DES, LSST) to detect H I clustering and weak gravitational lensing of 21 cm emission in auto- and cross-correlation. Our forecasts show that high-precision measurements of the clustering and lensing signals can be made in the near future using the intensity mapping technique. Such studies can be used to test the intensity mapping method, and constrain parameters such as the H I density Ω _{H I}, the H I bias b_{H I} and the galaxy-H I correlation coefficient r_{H I-g}.

  2. Micro-lensed single-mode optical fiber with high numerical aperture

    CERN Document Server

    Kato, Shinya; Aoki, Takao

    2013-01-01

    We show that the output mode of a single-mode optical fiber can be directly focused to a sub-wavelength waist with a finite working distance by tapering the fiber to a diameter of the order of the wavelength and terminating it with a spherically/hemispherically shaped tip. Numerical simulations show that a beam waist with a width of as small as 0.62\\lambda can be formed. We fabricate micro-lensed fibers and construct a probe-scanning confocal reflection microscope. Measurements on gold nano-particles show a spatial profile with a width of 0.29\\lambda for \\lambda = 850 nm, which is in good agreement with the numerical simulations. Due to their monolithic structures, these micro-lensed fibers will be flexible substitutes for conventional compound lenses in various experimental conditions such as cryogenic temperature and ultra-high vacuum.

  3. Determination of Electron Optical Properties for Aperture Zoom Lenses Using an Artificial Neural Network Method.

    Science.gov (United States)

    Isik, Nimet

    2016-04-01

    Multi-element electrostatic aperture lens systems are widely used to control electron or charged particle beams in many scientific instruments. By means of applied voltages, these lens systems can be operated for different purposes. In this context, numerous methods have been performed to calculate focal properties of these lenses. In this study, an artificial neural network (ANN) classification method is utilized to determine the focused/unfocused charged particle beam in the image point as a function of lens voltages for multi-element electrostatic aperture lenses. A data set for training and testing of ANN is taken from the SIMION 8.1 simulation program, which is a well known and proven accuracy program in charged particle optics. Mean squared error results of this study indicate that the ANN classification method provides notable performance characteristics for electrostatic aperture zoom lenses.

  4. Determination of injection molding process windows for optical lenses using response surface methodology.

    Science.gov (United States)

    Tsai, Kuo-Ming; Wang, He-Yi

    2014-08-20

    This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.

  5. SKA Weak Lensing I: Cosmological Forecasts and the Power of Radio-Optical Cross-Correlations

    Science.gov (United States)

    Harrison, Ian; Camera, Stefano; Zuntz, Joe; Brown, L.

    2016-09-01

    We construct forecasts for cosmological parameter constraints from weak gravitational lensing surveys involving the Square Kilometre Array (SKA). Considering matter content, dark energy and modified gravity parameters, we show that the first phase of the SKA (SKA1) can be competitive with other Stage III experiments such as the Dark Energy Survey (DES) and that the full SKA (SKA2) can potentially form tighter constraints than Stage IV optical weak lensing experiments, such as those that will be conducted with LSST, WFIRST-AFTA or Euclid-like facilities. Using weak lensing alone, going from SKA1 to SKA2 represents improvements by factors of ˜10 in matter, ˜10 in dark energy and ˜5 in modified gravity parameters. We also show, for the first time, the powerful result that comparably tight constraints (within ˜5%) for both Stage III and Stage IV experiments, can be gained from cross-correlating shear maps between the optical and radio wavebands, a process which can also eliminate a number of potential sources of systematic errors which can otherwise limit the utility of weak lensing cosmology.

  6. Producing optical (contact) lenses by a novel low cost process

    Science.gov (United States)

    Skipper, Richard S.; Spencer, Ian D.

    2005-09-01

    The rapid and impressive growth of China has been achieved on the back of highly labour intensive industries, often in manufacturing, and at the cost of companies and jobs in Europe and America. Approaches that worked well in the 1990's to reduce production costs in the developed countries are no longer effective when confronted with the low labour costs of China and India. We have looked at contact lenses as a product that has become highly available to consumers here but as an industry that has reduced costs by moving to low labour cost countries. The question to be answered was, "Do we have the skill to still make the product in the UK, and can we make it cheap enough to export to China?" if we do not, then contact lens manufacture will move to China sooner or later. The challenge to enter the markets of the BRIC (Brazil, Russia, India and China) countries is extremely exciting as here is the new money, high growth and here is a product that sells to those with disposable incomes. To succeed we knew we had to be radical in our approach; the radical step was very simple: to devise a process in which each step added value to the customer and not cost to the product. The presentation examines the processes used by the major producers and how, by applying good manufacturing practice sound scientific principles to them, the opportunity to design a new low cost patented process was identified.

  7. Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography.

    Science.gov (United States)

    Ryu, Seon Young; Choi, Hae Young; Na, Jihoon; Choi, Woo June; Lee, Byeong Ha

    2008-04-01

    We demonstrate a compact all-fiber sampling probe for an optical coherence tomography (OCT) system. By forming a focusing lens directly on the tip of an optical fiber, a compact sampling probe could be implemented. To simultaneously achieve a sufficiently long working distance and a good lateral resolution, we employed a large-mode area photonic crystal fiber (PCF) and a coreless silica fiber (CSF) of the same diameters. A working distance of up to 1270 microm, a 3 dB distance range of 2210 microm, and a transverse resolution of 14.2 microm were achieved with the implemented PCF lensed fiber; these values are comparable to those obtainable with a conventional objective lens having an NA of 0.25 (10 x). The performance of the OCT system equipped with the proposed PCF lensed fiber is presented by showing the OCT images of a rat finger as a biological sample and a pearl as an in-depth sample.

  8. Optics solutions for pp operation with electron lenses at 100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    White, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-07-12

    Electron lenses for head-on compensation are currently under commissioning and foreseen to be operational for the 2015 polarized proton run. These devices will provide a partial compensation of head-on beam-beam effects and allow to double the RHIC proton luminosity. This note reviews the optics constraints related to beam-beam compensation and summarizes the current lattice options for proton operation at 100 GeV.

  9. Multi-focal spherical media and geodesic lenses in geometrical optics

    CERN Document Server

    Sarbort, Martin

    2013-01-01

    This paper presents a general approach to designing the isotropic spherical media with complex spatial structure that provide different types of imaging for different light rays. It is based on equivalence of the spherical medium and the corresponding geodesic lens. We use this approach to design multi-focal gradient- index lenses embedded into an optically homogeneous region and multi-focal absolute instruments that provide perfect imaging of three-dimensional domains.

  10. Improved optical mass tracer for galaxy clusters calibrated using weak lensing measurements

    CERN Document Server

    Reyes, Reinabelle; Hirata, Christopher M; Bahcall, Neta; Seljak, Uros

    2008-01-01

    We develop an improved mass tracer for clusters of galaxies from optically observed parameters, and calibrate the mass relation using weak gravitational lensing measurements. We employ a sample of ~ 13,000 optically-selected clusters from the Sloan Digital Sky Survey (SDSS) maxBCG catalog, with photometric redshifts in the range 0.1-0.3. The optical tracers we consider are cluster richness, cluster luminosity, luminosity of the brightest cluster galaxy (BCG), and combinations of these parameters. We measure the weak lensing signal around stacked clusters as a function of the different tracers, and use it to determine the tracer with the least amount of scatter. We further use the weak lensing data to calibrate the mass normalization. We find that the best mass estimator for massive clusters is a combination of cluster richness, N_{200}, and the luminosity of the brightest cluster galaxy, L_{BCG}: M_{200\\bar{\\rho}} = (1.27 +/- 0.08) (N_{200}/20)^{1.20 +/- 0.09} (L_{BCG}/\\bar{L}_{BCG}(N_{200}))^{0.71 +/- 0.14} ...

  11. 3D printed broadband transformation optics based all-dielectric microwave lenses

    Science.gov (United States)

    Yi, Jianjia; Nawaz Burokur, Shah; Piau, Gérard-Pascal; de Lustrac, André

    2016-04-01

    Quasi-conformal transformation optics is applied to design electromagnetic devices for focusing and collimating applications at microwave frequencies. Two devices are studied and conceived by solving Laplace’s equation that describes the deformation of a medium in a space transformation. As validation examples, material parameters of two different lenses are derived from the analytical solutions of Laplace’s equation. The first lens is applied to produce an overall directive in-phase emission from an array of sources conformed on a cylindrical structure. The second lens allows deflecting a directive beam to an off-normal direction. Full-wave simulations are performed to verify the functionality of the calculated lenses. Prototypes presenting a graded refractive index are fabricated through three-dimensional polyjet printing using solely dielectric materials. Experimental measurements carried out show very good agreement with numerical simulations, thereby validating the proposed lenses. Such easily realizable designs open the way to low-cost all-dielectric microwave lenses for beam forming and collimation.

  12. Design of the Secondary Optical Elements for Concentrated Photovoltaic Units with Fresnel Lenses

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Chen

    2015-10-01

    Full Text Available The goal of this presented study was to determine the optimum parameters of secondary optical elements (SOEs for concentrated photovoltaic (CPV units with flat Fresnel lenses. Three types of SOEs are under consideration in the design process, including kaleidoscope with equal optical path design (KOD, kaleidoscope with flat top surface (KFTS, and open-truncated tetrahedral pyramid with specular walls (SP. The function of using a SOE with a Fresnel lens in a CPV unit is to achieve high optical efficiency, low sensitivity to the sun tracking error, and improved uniformity of irradiance distribution on the solar cell. Ray tracing technique was developed to simulate the optical characteristics of the CPV unit with various design parameters of each type of SOE. Finally, an optimum KOD-type SOE was determined by parametric design process. The resulting optical performance of the CPV unit with the optimum SOE was evaluated in both single-wavelength and broadband simulation of solar spectrum.

  13. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light

    DEFF Research Database (Denmark)

    Kessel, Line; Eskildsen, Lars; Lundeman, Jesper Holm

    2011-01-01

    BACKGROUND: The human lens is continuously exposed to high levels of light. Ultraviolet radiation is believed to play a causative role in the development of cataract. In vivo, however, the lens is mainly exposed to visible light and the ageing lens absorbs a great part of the short wavelength...... region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. METHODS: Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm) lasers....... The effect of irradiation was evaluated qualitatively by photography and quantitatively by measuring the direct transmission before and after irradiation. Furthermore, the effect of pulsed and continuous laser systems was compared as was the effect of short, intermediate and prolonged exposures. RESULTS...

  14. Optical effects of exposing intact human lenses to ultraviolet radiation and visible light

    DEFF Research Database (Denmark)

    Kessel, Line; Eskildsen, Lars Baunsgaard; Lundeman, Jesper Holm

    2011-01-01

    ABSTRACT: BACKGROUND: The human lens is continuously exposed to high levels of light. Ultraviolet radiation is believed to play a causative role in the development of cataract. In vivo, however, the lens is mainly exposed to visible light and the ageing lens absorbs a great part of the short...... wavelength region of incoming visible light. The aim of the present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet radiation. METHODS: Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and green (532 nm......) lasers. The effect of irradiation was evaluated qualitatively by photography and quantitatively by measuring the direct transmission before and after irradiation. Furthermore, the effect of pulsed and continuous laser systems was compared as was the effect of short, intermediate and prolonged exposures...

  15. Analysis of optical properties in injection-molded and compression-molded optical lenses.

    Science.gov (United States)

    Wang, Chung Yen; Wang, Pei Jen

    2014-04-10

    Numerical mold-flow simulations and experimental measurements for injection-molded lenses have been investigated in form accuracy on a two-cavity mold with various process conditions. First, form profiles of the molded lenses have been measured together with the corresponding simulated mold-temperature distribution and displacement distribution of the lens in the z direction. A flow-through type layout of cooling channels has been devised for balance of mold-temperature distribution in mold cavities with various parametric distances for assessments in uniformity of temperature distribution. Finally, a compression-molding process is proposed for the post-process of birefringence relaxation as well as adequate form accuracy of lenses. In conclusion, optimization of process parameters to achieve good form accuracy in a multicavity mold with symmetric geometry but nonuniform cooling conditions is difficult. A good design of cooling channels plus optimized process conditions could provide uniform mold-temperature distribution so that molded lenses of good quality would be possible. Then, the profile deviation of lenses could be further compensated by profile geometry corrections. In conclusion, the post-compression-molding process could make birefringence-free plastic lenses with good form accuracy.

  16. Towards Precision LSST Weak-Lensing Measurement - I: Impacts of Atmospheric Turbulence and Optical Aberration

    CERN Document Server

    Tyson, M James Jee And J Anthony

    2010-01-01

    The weak-lensing science of the LSST project drives the need to carefully model and separate the instrumental artifacts from the intrinsic lensing signal. The dominant source of the systematics for all ground based telescopes is the spatial correlation of the PSF modulated by both atmospheric turbulence and optical aberrations. In this paper, we present a full FOV simulation of the LSST images by modeling both the atmosphere and the telescope optics with the most current data for the telescope specifications and the environment. To simulate the effects of atmospheric turbulence, we generated six-layer phase screens with the parameters estimated from the on-site measurements. For the optics, we combined the ray-tracing tool ZEMAX and our simulated focal plane data to introduce realistic aberrations and focal plane height fluctuations. Although this expected flatness deviation for LSST is small compared with that of other existing cameras, the fast f-ratio of the LSST optics makes this focal plane flatness vari...

  17. Gravitationally Lensed QSOs: Optical Monitoring with the EOCA and the Liverpool Telescope (LT)

    CERN Document Server

    Goicoechea, L J; Ovaldsen, J E; Koptelova, E; Shalyapin, V N; Gil-Merino, R

    2006-01-01

    The aim of this contribution is to present the two first phases of the optical monitoring programme of the Gravitational Lenses group at the Universidad de Cantabria (GLUC, http://grupos.unican.es/glendama/). In an initial stage (2003 March-June), the Estacion de Observacion de Calar Alto (EOCA) was used to obtain VR frames of SBS 0909+532 and QSO 0957+561. These observations in 2003 led to accurate fluxes of the two components of both double QSOs, which are being compared and complemented with data from other 1-1.5 m telescopes located in the North Hemisphere: Fred Lawrence Whipple Observatory (USA), Maidanak Observatory (Uzbekistan) and Wise Observatory (Israel). On the other hand, the GLUC started the second phase of its monitoring programme in 2005 January. In this second phase, they are using the 2 m fully robotic Liverpool Telescope (LT). The key idea is the two-band photometric follow-up of four lensed QSOs with different main lensing galaxies: SBS 0909+532 (elliptical), QSO 0957+561 (giant cD), B1600+...

  18. Higher order aberration comparison between two aspherical intraocular lenses: MC6125AS and Akreos advanced optics

    Institute of Scientific and Technical Information of China (English)

    Mohammad; Taher; Rajabi; Sara; Korouji; Mahgol; Farjadnia; Mohammad; Naderan; Mohammad; Bagher; Rajabi; Bahram; Khosravi; Seyed; Mehdi; Tabatabaie

    2015-01-01

    AIM: To compare higher order aberrations in two aspherical intraocular lenses(IOLs): Akreos advanced optics(AO) and Dr. Schmidt Microcrystalline 6125 aspheric anterior surface(MC6125AS) with each other. METHODS: Forty eyes of 39 patients underwent phacoemulsification and Akreos AO and MC6125 AS were implanted in their eyes in a random manner. Three months post-operatively, higher order aberrations including spherical aberration, coma aberration, and total aberrations were measured and compared.RESULTS: The total aberration was 0.24±0.17 in eyes with Dr. Schmidt and 0.20 ±0.01 in eyes with Akreos AO(P =0.361). The mean of coma aberration was 0.17 ±0.21 and 0.09 ±0.86 in Dr. Schmidt and Akreos lenses,respectively(P =0.825). Total spherical aberration was almost the same in both groups(mean: 0.05, P =0.933).Best corrected visual acuity in Akreos AO(0.10±0.68) and Dr. Schmidt(0.09±0.67) did not differ significantly(P =0.700). CONCLUSION: There is no statistically significant difference in the higher order aberrations between these two aspherical lenses.

  19. Design & Analysis of Optical Lenses by using 2D Photonic Crystals for Sub-wavelength Focusing

    Directory of Open Access Journals (Sweden)

    Rajib Ahmed

    2013-01-01

    Full Text Available 2D Photonic lenses (Convex-Convex, Convex-Plane, Plane-Convex, Concave-Concave, Concave-plane, and PlaneConcave have been designed, simulated and optimized for optical communication using FDTD method. The effect of Crystal structures (Rectangular, Hexagonal, Face centered Cubic (FCC, Body centered Cubic (BCC, variation lattice constant (Λ, hole radius(r, reflective index (n, is demonstrated to get optimized parameters. Finally, with optimized parameters the effect of variation of lens radius on focal lengths and Electrical Field Intensity (Ey is analyzed. Like optical lens, the focal length of photonic lens is also increased with lens radii, has dependency on optical axis. Moreover, with optimized parameters, ConcaveConcave lens have been found as an optimal photonic lens that show sub-wavelength focusing with spatial resolutions-9.22439μm (Rectangular crystal, 7.379512μm (Hexagonal Crystal, 7.840732μm (FCC, BCC.

  20. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Science.gov (United States)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  1. Controllable parabolic lensed liquid-core optical fiber by using electrostatic force.

    Science.gov (United States)

    Tang, Chun Yin; Zhang, Xuming; Chai, Yang; Hui, Long; Tao, Lili; Tsang, Yuen H

    2014-08-25

    For typical optical fiber system, an external lens accessory set is required to adjust the optical path of output light, which however is limited by the fixed parameter of the lens accessory setup. Considering spherical aberration in the imaging process and its small focusable spot size, a complicated lens combination is required to compensate the aberration. This paper has demonstrated a unique method to fabricate liquid-core lensed fibers by filling water and NOA61 respectively into hollow Teflon AF fibers and silicate fiber, the radius of curvature of the liquid lens can be controlled by adjusting the applied voltage on the core liquid and even parabolic shape lens can be produced with enough applied voltage. The experiment has successfully demonstrated a variation of focal length from 0.628 mm to 0.111 mm responding to the change of applied voltage from 0V to 3.2KV (L = 2mm) for the Teflon AF fiber, as well as a variation of focal length from 0.274 mm to 0.08 mm responding to the change of applied voltage from 0V to 3KV (L = 2mm) for the silicate fiber. Further simulation shows that the focused spot size can be reduced to 2 µm by adjusting the refractive index and fiber geometry. Solid state parabolic lensed fiber can be produced after NOA61 is solidified by the UV curing.

  2. Optical beam-shaping design based on aspherical lenses for circularization collimation, and expansion of elliptical laser beams

    Science.gov (United States)

    Serkan, Mert; Kirkici, Hulya

    2008-01-01

    We present two optical system designs using aspherical lenses for beam circularization, collimation, and expansion of semiconductor lasers for possible application in lidar systems. Two different optical lens systems are investigated; namely, two aspherical lens and single aspherical lens systems. Software package programs of ZEMAX and MATLAB to simulate the optical designs are used. The beam reshaping results are presented for one specific laser beam output.

  3. Consumer electronic optics: how small can a lens be: the case of panomorph lenses

    Science.gov (United States)

    Thibault, Simon; Parent, Jocelyn; Zhang, Hu; Du, Xiaojun; Roulet, Patrice

    2014-09-01

    In 2014, miniature camera modules are applied to a variety of applications such as webcam, mobile phone, automotive, endoscope, tablets, portable computers and many other products. Mobile phone cameras are probably one of the most challenging parts due to the need for smaller and smaller total track length (TTL) and optimized embedded image processing algorithms. As the technology is developing, higher resolution and higher image quality, new capabilities are required to fulfil the market needs. Consequently, the lens system becomes more complex and requires more optical elements and/or new optical elements. What is the limit? How small an injection molded lens can be? We will discuss those questions by comparing two wide angle lenses for consumer electronic market. The first lens is a 6.56 mm (TTL) panoramic (180° FOV) lens built in 2012. The second is a more recent (2014) panoramic lens (180° FOV) with a TTL of 3.80 mm for mobile phone camera. Both optics are panomorph lenses used with megapixel sensors. Between 2012 and 2014, the development in design and plastic injection molding allowed a reduction of the TTL by more than 40%. This TTL reduction has been achieved by pushing the lens design to the extreme (edge/central air and material thicknesses as well as lens shape). This was also possible due to a better control of the injection molding process and material (low birefringence, haze and thermal stability). These aspects will be presented and discussed. During the next few years, we don't know if new material will come or new process but we will still need innovative people and industries to push again the limits.

  4. Visual Performance and Optical Quality of Standardized Asymmetric Soft Contact Lenses in Patients With Keratoconus.

    Science.gov (United States)

    Suzaki, Asaki; Maeda, Naoyuki; Fuchihata, Mutsumi; Koh, Shizuka; Nishida, Kohji; Fujikado, Takashi

    2017-06-01

    To evaluate the visual performance and optical quality of a standardized asymmetric soft contact lens (SCL) used for correction of higher-order aberrations (HOAs) in eyes with keratoconus. We included 30 eyes (26 patients) with keratoconus (average K: 45.7 ± 2.3 diopters [D]). The patients were subjected to corneal tomography, aberrometry, measurements of manifest refraction and visual acuity (VA), and visual analog scale (VAS) assessments. The study lenses were made using a molding method and consisted of six standardized types, in which an asymmetric power distribution of approximately 2 to 12 D (2-D step) was used to correct HOAs. The lens type suitable for each eye was selected based on the corneal tomography and aberrometry data. The on-eye performance of the lens was evaluated using aberrometry (4-mm pupil), over refraction, VA, and VAS. The standardized asymmetric SCL improved the best spectacle-corrected VA from -0.07 ± 0.09 to -0.11 ± 0.08 logMAR (P keratoconus who wear rigid gas-permeable lenses.

  5. Subaru Telescope adaptive optics observations of gravitationally lensed quasars in the Sloan Digital Sky Survey

    Science.gov (United States)

    Rusu, Cristian E.; Oguri, Masamune; Minowa, Yosuke; Iye, Masanori; Inada, Naohisa; Oya, Shin; Kayo, Issha; Hayano, Yutaka; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto

    2016-05-01

    We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 28 gravitationally lensed quasars and candidates (23 doubles, 1 quad, 1 possible triple, and 3 candidates) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in five systems, without a priori knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low-resolution data, and we show that in our sample of lensing galaxies the observed light profile is more elliptical than the mass, for ellipticity ≳0.25. We also identify eight doubles for which the sources of external and internal shear are more reliably separated, and should therefore be prioritized in monitoring campaigns aimed at measuring time delays in order to infer the Hubble constant.

  6. Impact of Cosmetics on the Physical Dimension and Optical Performance of Silicone Hydrogel Contact Lenses.

    Science.gov (United States)

    Luensmann, Doerte; Yu, Mili; Yang, Jeffery; Srinivasan, Sruthi; Jones, Lyndon

    2015-07-01

    To evaluate the impact of cosmetics on silicone hydrogel (SiHy) contact lens shape, lens power, and optical performance. In this in vitro experiment, 7 SiHy materials were coated with 9 marketed brands of cosmetics, including hand creams (HCs) (3), eye makeup removers (MRs) (3), and mascaras (3). Diameter, sagittal depth, and base curve were determined using the Chiltern (Optimec Limited), whereas lens power and optical performance were assessed using the Contest Plus (Rotlex). Six replicates were used for each lens and cosmetic combination. Measurements were repeated after a cleaning cycle using a one-step hydrogen peroxide solution. Makeup removers had the greatest impact on diameter, sagittal depth, and base curve, resulting in changes of up to 0.5, 0.15, and 0.77 mm, respectively. The HCs and mascaras had little impact on these parameters; however, differences were observed between lens types. Optical performance was reduced with all mascaras, and a decrease of greater than 2 units on a 0 to 10 scale (10=uniform power distribution) was seen for 5 lens types exposed to waterproof mascara (Pcosmetics (± 0.25 diopter; P>0.05). Lens cleaning resulted in some recovery of the lens parameters, and efficiency varied between cosmetics. Some eye MRs and waterproof mascaras changed the shape and optical performance of some SiHy lenses. Further research is needed to understand the clinical implications for SiHy lens wearers using cosmetics.

  7. Subaru Telescope adaptive optics observations of gravitationally lensed quasars in the Sloan Digital Sky Survey

    CERN Document Server

    Rusu, Cristian E; Minowa, Yosuke; Iye, Masanori; Inada, Naohisa; Oya, Shin; Kayo, Issha; Hayano, Yutaka; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto

    2015-01-01

    We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 26 gravitationally lensed quasars (24 doubles, 1 quad, and 1 possible triple) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in 5 systems, without a-priory knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low...

  8. Ray equation for a spatially variable uniaxial crystal and its use in the optical design of liquid-crystal lenses.

    Science.gov (United States)

    Jenkins, Charles; Bingham, Richard; Moore, Kenneth; Love, Gordon D

    2007-07-01

    To be able to design optical systems (e.g., variable focus or zoom lenses) made from liquid-crystal devices, it is necessary to be able to ray trace in a birefringent medium where the angle of the optical axis is a function of position in the device. To our knowledge, the theory required to achieve this has not previously been published, and we derive a suitable algorithm and give some examples of its use.

  9. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A. [Center for Turbulence Research, Stanford University, Stanford, California 94305-3024 (United States)

    2015-06-15

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  10. Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide

    Science.gov (United States)

    Karp, Jason H.; Ford, Joseph E.

    2009-08-01

    Conventional CPV systems focus sunlight directly onto a PV cell, usually through a non-imaging optic to avoid hot spots. In practice, many systems use a shared tracking platform to mount multiple smaller aperture lenses, each concentrating light into an associated PV cell. Scaling this approach to the limit would result in a thin sheet-like geometry. This would be ideal in terms of minimizing the tracking system payload, especially since such thin sheets can be arranged into louvered strips to minimize wind-force loading. However, simply miniaturizing results in a large number of individual PV cells, each needed to be packaged, aligned, and electrically connected. Here we describe for the first time a different optical system approach to solar concentrators, where a thin lens array is combined with a shared multimode waveguide. The benefits of a thin optical design can therefore be achieved with an optimum spacing of the PV cells. The guiding structure is geometrically similar to luminescent solar concentrators, however, in micro-optic waveguide concentrators sunlight is coupled directly into the waveguide without absorption or wavelength conversion. This opens a new design space for high-efficiency CPV systems with the potential for cost reduction in both optics and tracking mechanics. In this paper, we provide optical design and preliminary experimental results of one implementation specifically intended to be compatible with large-scale roll processing. Here the waveguide is a uniform glass sheet, held between the lens array and a corresponding array of micro-mirrors self-aligned to each lens focus during fabrication.

  11. Optical performance of toric intraocular lenses in the presence of decentration

    Institute of Scientific and Technical Information of China (English)

    Bin; Zhang; Jin-Xue; Ma; Dan-Yan; Liu; Ying-Hua; Du; Cong-Rong; Guo; Yue-Xian; Cui

    2015-01-01

    · AIM: To evaluate the optical performance of toric intraocular lenses(IOLs) after decentration and with different pupil diameters, but with the IOL astigmatic axis aligned.· METHODS: Optical performances of toric T5 and SN60 AT spherical IOLs after decentration were tested on a theoretical pseudophakic model eye based on the Hwey-Lan Liou schematic eye using the Zemax ray-tracing program. Changes in optical performance were analyzed in model eyes with 3-mm, 4-mm, and 5-mm pupil diameters and decentered from 0.25 mm to 0.75 mm with an interval of 5° at the meridian direction from0° to 90°. The ratio of the modulation transfer function(MTF) between a decentered and a centered IOL(MTFDecentration/MTFCentration) was calculated to analyze the decrease in optical performance.· RESULTS: Optical performance of the toric IOL remained unchanged when IOLs were decentered in any meridian direction. The MTFs of the two IOLs decreased,whereas optical performance remained equivalent after decentration. The MTFDecentration/MTFCentrationratios of the IOLs at a decentration from 0.25 mm to 0.75 mm were comparable in the toric and SN60 AT IOLs. After decentration, MTF decreased further, with the MTF of the toric IOL being slightly lower than that of the SN60 AT IOL. Imaging qualities of the two IOLs decreased when the pupil diameter and the degree of decentration increased, but the decrease was similar in the toric and spherical IOLs.· CONCLUSION: Toric IOLs were comparable to spherical IOLs in terms of tolerance to decentration at the correct axial position.

  12. Optical lenses design and experimental investigations of a dynamic focusing unit for a CO2 laser scanning system

    Science.gov (United States)

    Chen, Wei; Xu, Yue; Zhang, Huaxin; Liu, Peng; Jiao, Guohua

    2016-09-01

    Laser scanners are critical components in material processing systems, such as welding, cutting, and drilling. To achieve high-accuracy processing, the laser spot size should be small and uniform in the entire objective flat field. However, traditional static focusing method using F-theta objective lens is limited by the narrow flat field. To overcome these limitations, a dynamic focusing unit consisting of two lenses is presented in this paper. The dual-lens system has a movable plano-concave lens and a fixed convex lens. As the location of the movable optical elements is changed, the focal length is shifted to keep a small focus spot in a broad flat processing filed. The optical parameters of the two elements are theoretical analyzed. The spot size is calculated to obtain the relationship between the moving length of first lens and the shift focus length of the system. Also, the Zemax model of the optical system is built up to verify the theoretical design and optimize the optical parameter. The proposed lenses are manufactured and a test system is built up to investigate their performances. The experimental results show the spot size is smaller than 450um in all the 500*500mm 2 filed with CO2 laser. Compared with the other dynamic focusing units, this design has fewer lenses and no focusing spot in the optical path. In addition, the focal length minimal changes with the shit of incident laser beam.

  13. Pathologic comparison of asymmetric or sulcus fixation of 3-piece intraocular lenses with square versus round anterior optic edges.

    Science.gov (United States)

    Ollerton, Andrew; Werner, Liliana; Strenk, Susan; Strenk, Lawrence; Leishman, Lisa; Bodnar, Zachary; Kirk, Kevin R; Michelson, Jennifer; Mamalis, Nick

    2013-08-01

    To evaluate the pathologic findings of 3-piece intraocular lenses (IOLs) with asymmetric or sulcus fixation in pseudophakic cadaver eyes, comparing IOLs with square or round edges on the anterior optic surface. Comparative case series with pathology. A total of 661 pseudophakic cadaver eyes, obtained from eye banks within the United States, implanted with different IOLs. Anterior segment scanning of whole eyes with a high-frequency ultrasound system or high-resolution anterior segment magnetic resonance imaging followed by gross examination. Selected eyes were processed for complete histopathologic analysis. Findings from imaging, gross, and histopathologic evaluation that could be related to out-of-the-bag fixation of the lenses. Of 661 pseudophakic cadaver eyes obtained, 13 had 3-piece hydrophobic acrylic IOLs with anterior and posterior square optic edges, and 14 had 3-piece lenses with anterior round edges (13 silicone lenses and 1 hydrophobic acrylic lens) without symmetric in-the-bag fixation. These 27 selected eyes were processed for complete histopathologic analysis. Gross findings in both groups were composed of IOL decentration and tilt, pigmentary dispersion within the anterior segment and on the IOL surface, and iris transillumination defects. Histopathology of the 14 eyes with 3-piece IOLs with round anterior optic edges showed mild focal disruption of the iris pigmented layer and loop protrusion/erosion in the ciliary sulcus. Additional changes observed in the 13 eyes with square anterior optic edge IOLs included iris changes, such as vacuolization, disruption and loss of the pigmented epithelial layers, iris thinning and atrophy, synechiae, and pigmentary dispersion within the trabecular meshwork. One eye also exhibited initial signs of optic nerve disc cupping. In this series, pathologic findings were more severe in eyes implanted with 3-piece IOLs with square anterior optic edges, suggesting that IOLs with round anterior edges are more suitable for

  14. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  15. Bessel beams in tunable acoustic gradient index lenses and optical trap assisted nanolithography

    Science.gov (United States)

    McLeod, Euan

    2009-12-01

    Bessel beams are laser beams whose shape gives them nondiffracting and self-healing properties. They find use in applications requiring a narrow laser beam with a high depth of field. The first part of this thesis presents the study of a new adaptive optical element capable of generating rapidly tunable Bessel beams: the tunable acoustic gradient index (TAG) lens. This device uses piezoelectrically-generated acoustic waves to modulate a fluid's density and refractive index, leading to electrically controllable lensing behavior. Both modeling and experiment are used to explain the observed multiscale Bessel beams. Because the TAG lens operates at frequencies of hundreds of kilohertz, the effective Bessel beam cone angle continuously varies at timescales on the order of microseconds or smaller-orders of magnitude faster than other existing technologies. In addition, the TAG lens may be driven with a Fourier superposition of multiple frequencies, which could enable the generation of arbitrary patterns. The second part of this thesis presents the application of Bessel beams in a new probe-based direct-write optical nanolithography method called optical trap assisted nanolithography (OTAN). When compared to alternative techniques, OTAN makes probe placement and parallelization easier. The method uses Bessel beam optical tweezers to trap dielectric microspheres in close proximity to a surface. These microspheres are then illuminated with pulses from a second laser beam, whose fluence is enhanced directly below the microsphere by focusing and near-field effects to a level great enough to modify the substrate. This technique is used to produce 100 nm features, which are less than lambda/3, and whose sizes agree well with finite-difference time-domain models of the experiment. A demonstration is given of how the technique can be parallelized by trapping multiple microspheres with multiple beams and exposing all spheres in unison with a single pulsed beam. Finally, modeling

  16. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    Directory of Open Access Journals (Sweden)

    Steven Bache

    Full Text Available Telecentric optical computed tomography (optical-CT is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc. The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS. Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm. DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  17. Influence of temperature on the optical system with large diameter off-axis parabolic lenses

    Science.gov (United States)

    Su, Yaru; Ruan, Hao; Liu, Jie

    2016-10-01

    In this work, an optical system with large diameter off-axis parabolic lenses was adopted to achieve diffraction gratings by laser interference exposure. The diffraction wavefront aberration caused by temperature variations was simulated using ZEMAX. Through theoretical analysis and optical simulation, it is proved that the diffraction wavefront aberration of holographic grating caused by the pinhole's location errors (it is assumed that when the displacement of pinhole exists along one axis, the locations of the pinhole along the other two orthogonal axes are in a state of precise adjustment ) is much larger when the displacement occurs along z axis than along the other two axes, and the diffraction wavefront aberration is the smallest when the displacement occurs along x axis. If the ambient temperature changes by 1 degree, the PV value is 0.0631λ when the location of the pinhole changes by 0.121mm along z axis, 0.0034λor 0.0672λ when the location of the pinhole changes by 0.002mm along x axis or 0.03mm along y axis. To reach the diffraction limit (that means the PV value is 0.25λ), the decentering value of the pinhole along z axis should be less than 0.0341mm. In conclusion, the position error along z axis is an important factor to influence the PV value of diffraction grating, and the effect of temperature on the PV value of diffraction grating can be neglected.

  18. Design of lenses to project the image of a pupil in optical testing interferometers.

    Science.gov (United States)

    Malacara, Z; Malacara, D

    1995-02-01

    When an optical surface or lens in an interferometer (Twyman-Green or Fizeau interferometer) is tested, the wave front at the pupil of the element being tested does not have the same shape as at the observation plane, because this shape changes along its propagation trajectory if the wave front is not flat or spherical. An imaging lens must then be used, as reported many times in the literature, to project the image of the pupil of the system being tested over the observation plane. This lens is especially necessary if the deviation of the wave front from sphericity is large, as in the case of testing paraboloidal or hyperboloidal surfaces. We show that the wave front at both positions does not need to have the same shape. The only condition is that the interferograms at both places be identical, which is a different condition. This leads to some considerations that should be taken into account in the optical design of such lenses.

  19. Electron Lenses for Experiments on Nonlinear Dynamics with Wide Stable Tune Spreads in the Fermilab Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, G. [Fermilab; Carlson, K. [Fermilab; McGee, M. W. [Fermilab; Nobrega, L. E. [Fermilab; Romanov, A. L. [Fermilab; Ruan, J. [Fermilab; Valishev, A. [Fermilab; Noll, D. [Frankfurt U.

    2015-06-01

    Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.

  20. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment

    CERN Document Server

    Udalski, A; Szymański, G

    2015-01-01

    We present both the technical overview and main science drivers of the fourth phase of the Optical Gravitational Lensing Experiment (hereafter OGLE-IV). OGLE-IV is currently one of the largest sky variability surveys worldwide, targeting the densest stellar regions of the sky. The survey covers over 3000 square degrees in the sky and monitors regularly over a billion sources. The main targets include the inner Galactic Bulge and the Magellanic System. Their photometry spans the range of $12

  1. Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing.

    Science.gov (United States)

    Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu

    2016-04-15

    A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.

  2. The fascinating early history of optics! Archaeological optics 2009: our knowledge of the early history of lenses, mirrors, and artificial eyes!

    Science.gov (United States)

    Enoch, Jay M.

    2009-08-01

    The early history of optics and vision science (older term: physiological optics) is indeed fascinating. The earliest known true lenses have been found in "eyes" of Egyptian statues which contain superb, complex, and well-polished eye-lens units. The oldest ones known are dated circa 2575 BCE = BC, Dynasty IV, Old Kingdom. These eye-lens units induce a fascinating and powerful visual illusion, but they are just too good to have been the first lenses, or even the first lenses of this design! So saying, no earlier dateable lenses have been found in Egypt or elsewhere. Recently, at the Boston Museum of Fine Arts, the writer noted a previously undetected lens in this series (a first in the Western Hemisphere). Oddly, dateable simpler magnifying lenses and burning glasses seem to have appeared later in time (?)! Manufactured mirrors are quite a bit older, dating from circa 6000 BCE in atal Hyk, located in south-central modern-day Turkey. Using these ancient mirrors, the image quality obtained is remarkable! Recently discovered ancient artificial eyes, located, in situ, in exhumed corpses, have been dated circa 3000 BCE (one discovered in Iran) 5000 BCE (one found in Spain). On the 3000 BCE artificial eye, there are drawn light rays (the writer believes these to be the oldest known depiction of light rays!) spreading out from (or passing into) the iris/ pupil border! Added interesting aspects associated with the early development of light-rays are considered. Thus, early optics can be readily traced back to the Neolithic era (the new stone age), and in some cases before that time period. We have deep roots indeed!

  3. Age-related compaction of lens fibers affects the structure and optical properties of rabbit lenses

    Directory of Open Access Journals (Sweden)

    Al-Ghoul Walid M

    2007-12-01

    Full Text Available Abstract Background The goal of this investigation was to correlate particular age-related structural changes (compaction to the amount of scatter in rabbit lenses and to determine if significant fiber compaction occurred in the nuclear and inner cortical regions. Methods New Zealand White rabbits at 16–20 months old (adult; n = 10 and at 3.5–4 years old (aged; n = 10 were utilized for this study. Immediately after euthanising, scatter was assessed in fresh lenses by low power helium-neon laser scan analysis. Scatter data was analyzed both for whole lenses and regionally, to facilitate correlation with morphometric data. After functional analysis, lenses were fixed and processed for scanning electron microcopy (SEM; right eyes and light microscopy (LM; left eyes. Morphometric analysis of SEM images was utilized to evaluate compaction of nuclear fibers. Similarly, measurements from LM images were used to assess compaction of inner cortical fibers. Results Scatter was significantly greater in aged lenses as compared to adult lenses in all regions analyzed, however the difference in the mean was slightly more pronounced in the inner cortical region. The anterior and posterior elliptical angles at 1 mm (inner fetal nucleus were significantly decreased in aged vs. adult lenses (anterior, p = 0.040; posterior, p = 0.036. However, the average elliptical angles at 2.5 mm (outer fetal nucleus were not significantly different in adult and aged lenses since all lenses examined had comparable angles to inner fetal fibers of aged lenses, i.e. they were all compacted. In cortical fibers, measures of average cross-sectional fiber area were significantly different at diameters of both 6 and 7 mm as a function of age (p = 0.011 and p = 0.005, respectively. Accordingly, the estimated fiber volume was significantly decreased in aged as compared to adult lenses at both 6 mm diameter (p = 0.016 and 7 mm diameter (p = 0.010. Conclusion Morphometric data indicates

  4. Virial-to-optical velocity ratios of local disk galaxies from combined kinematics and galaxy-galaxy lensing

    CERN Document Server

    Reyes, Reinabelle; Gunn, James E; Nakajima, Reiko; Seljak, Uros; Hirata, Chris M

    2011-01-01

    In this paper, we measure the virial-to-optical velocity ratios V_vir/V_opt of disk galaxies in the Sloan Digital Sky Survey (SDSS) at a mean redshift of = 0.07 and with stellar masses 10^9 M_sun < M_* < 10^11 M_sun. V_vir/V_opt, the ratio of the circular velocity measured at the virial radius of the dark matter halo (~150 kpc) to that at the optical radius of the disk (~10 kpc), is a powerful observational constraint on disk galaxy formation. It links galaxies to their dark matter haloes dynamically and constrains the total mass profile of disk galaxies over an order of magnitude in length scale. For this measurement, we combine V_vir derived from halo masses measured with galaxy-galaxy lensing, with V_opt derived from the Tully-Fisher relation (TFR) from Reyes et al. (2011). In anticipation of this combination, we use similarly-selected galaxy samples for both the lensing and TFR analysis. For three M_* bins with lensing-weighted mean stellar masses of 0.6, 2.7, and 6.5 x 10^10 M_sun, we find halo-to...

  5. The population of galaxy-galaxy strong lenses in forthcoming optical imaging surveys

    CERN Document Server

    Collett, Thomas E

    2015-01-01

    Ongoing and future imaging surveys represent significant improvements in depth, area and seeing compared to current data-sets. These improvements offer the opportunity to discover up to three orders of magnitude more galaxy-galaxy strong lenses than are currently known. In this work we forecast the number of lenses discoverable in forthcoming surveys and simulate their properties. We generate a population of statistically realistic strong lenses and simulate observations of this population for the Dark Energy Survey (DES), Large Synoptic Survey Telescope (LSST) and Euclid surveys. We verify our model against the galaxy-scale lens search of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS), predicting 250 discoverable lenses compared to 220 found by Gavazzi et al (2014). The predicted Einstein radius distribution is also remarkably similar to that found by Sonnenfeld et al (2013). For future surveys we find that, assuming Poisson limited lens galaxy subtraction, searches in DES, LSST and Euclid dataset...

  6. Light scattering and light transmittance in intraocular lenses explanted because of optic opacification.

    Science.gov (United States)

    Michelson, Jennifer; Werner, Liliana; Ollerton, Andrew; Leishman, Lisa; Bodnar, Zachary

    2012-08-01

    To assess light scattering and light transmittance in intraocular lenses (IOLs) explanted because of optic opacification. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Poly(methyl methacrylate) (PMMA) IOLs with snowflake degeneration, hydrophilic acrylic IOLs with different calcification patterns, and 1 calcified silicone IOL explanted from an eye with asteroid hyalosis were studied with gross and light microscopy. Light scattering was measured with an EAS-1000 Scheimpflug camera. Light transmittance was measured with a Lambda 35 UV/Vis spectrophotometer (single-beam configuration with RSA-PE-20 integrating sphere). Analyses were performed at room temperature in the hydrated state and compared with controls. The study evaluated 8 PMMA IOLs, 22 hydrophilic acrylic IOLs, and 1 silicone IOL. Light scattering was as follows: 208 to 223 computer-compatible tapes (CCTs) for PMMA IOLs with snowflake degeneration (control = 9 CCTs); 90 to 227 CCTs for calcified hydrophilic acrylic IOLs (controls = 12 to 23 CCTs); 223 CCTs for the calcified silicone IOL (control = 5 CCTs). The mean light transmittance in the visible light spectrum was 81.08% to 97.10% for PMMA IOLs (control = 98.80%); 78.94% to 97.32% for hydrophilic acrylic IOLs (controls = 97.32% to 98.66%); 94.68% for the silicone IOL (control = 97.74%). Intraocular lens opacification led to very high levels of light scattering and a potential for decreased light transmittance, which play a role in the development of symptoms such as glare and halos, decreased contrast sensitivity, and eventually decreased visual acuity. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Colour matters: the effects of lensing on the positional offsets between optical and submillimetre galaxies in Herschel-ATLAS

    CERN Document Server

    Bourne, N; Dunne, L; Dye, S; Eales, S; Hoyos, C; Gonzalez-Nuevo, J; Smith, D J B; Valiante, E; de Zotti, G; Ivison, R J; Rowlands, K

    2014-01-01

    We report an unexpected variation in the positional offset distributions between Herschel-ATLAS sub-millimetre (submm) sources and their optical associations, depending on both 250-{\\mu}m signal-to-noise ratio and 250/350-{\\mu}m colour. We show that redder and brighter submm sources have optical associations with a broader distribution of positional offsets than would be expected if these offsets were due to random positional errors in the source extraction. The observation can be explained by two possible effects: either red submm sources trace a more clustered population than blue ones, and their positional errors are increased by confusion; or red submm sources are generally at high redshifts and are frequently associated with low-redshift lensing structures which are identified as false counterparts. We perform various analyses of the data, including the multiplicity of optical associations, the redshift and magnitude distributions in H-ATLAS in comparison to HerMES, and simulations of weak lensing, and w...

  8. On conformal lenses

    CERN Document Server

    Chen, Huanyang; Li, Hui

    2011-01-01

    Plane mirror can make one object into two for observers on the object's side. Yet, there seems no way to achieve the same effect for observers from all directions. In this letter, we will design a new class of gradient index lenses from multivalued optical conformal mapping. We shall call them the conformal lenses. Such lenses can transform one source into two (or even many) omnidirectionally. Like the overlapped illusion optics does, they can even transform multiple sources into one. Rather than using negative index materials, implementation here only needs isotropic positive index materials like other gradient index lenses. One obvious drawback however, is that they have singular permittivity values which restrict them to functioning at one single frequency. This however, needs not be the case when applying transmutation methods, which enable the lenses to work in a broadband frequency range.

  9. Relation between injected volume and optical parameters in refilled isolated porcine lenses

    NARCIS (Netherlands)

    Koopmans, SA; Terwee, T; Haitjema, HJ; Deuring, H; van Aarle, S; Kooijman, AC

    2004-01-01

    Purpose: This study was performed to elucidate the correlation between added lens refill material and enhanced lens power as well as the correlation between lens refilling volume and accommodative amplitude as determined by equatorial stretching of ex vivo refilled pigs' lenses. Methods: Nine porcin

  10. Optical testing of long cylindrical lenses by means of scanning deflectometry

    Science.gov (United States)

    van Amstel, Willem D.; van de Goor, Peter F.; Horijon, Jef L.; Nuyens, Peter G. J. M.

    2000-11-01

    We present an extremely simple and powerful test set-up for measuring the position and the focal line straightness (lateral) and flatness (longitudinal) of cylindrical lenses, in particular of very long cylindrical lenses. Measurement results are presented for 330 mm and 650 mm long plano- convex cylindrical lenses with a focal length f approximately equals 48 mm, showing that a (lateral) straightness measurement accuracy of about +/- 1 micrometers is achieved easily with a set-up using not much more than a laser, a simple beam deflector from a barcode scanner, a PSD (position-sensitive photo diode) with associated electronics and a translation stage. A fully automated cylindrical lens test set-up version, using a PC for control and data processing will be explained. For the 330 mm long cylindrical lenses, the lateral straightness showed better than between 3 and 10 micrometers (peak to peak) and the longitudinal flatness between 20 and 80 micrometers (peak to peak) without corrective bending. It will be demonstrated that the aberration coefficients, as measured by this physical ray tracing approach, are in accordance with the results from numerical simulation by means of a commercially available ray-tracing program.

  11. Aspherics in spectacle lenses

    Science.gov (United States)

    Dürsteler, Juan Carlos

    2016-12-01

    A review of the use of aspherics in the last decades, understood in a broad sense as encompassing single-vision lenses with conicoid surfaces and free-form and progressive addition lenses (PALs) as well, is provided. The appearance of conicoid surfaces to correct aphakia and later to provide thinner and more aesthetically appealing plus lenses and the introduction of PALs and free-form surfaces have shaped the advances in spectacle lenses in the last three decades. This document basically considers the main target optical aberrations, the idiosyncrasy of single lenses for correction of refractive errors and the restrictions and particularities of PAL design and their links to science vision and perception.

  12. Additive manufacturing of tunable lenses

    Science.gov (United States)

    Schlichting, Katja; Novak, Tobias; Heinrich, Andreas

    2017-02-01

    Individual additive manufacturing of optical systems based on 3D Printing offers varied possibilities in design and usage. In addition to the additive manufacturing procedure, the usage of tunable lenses allows further advantages for intelligent optical systems. Our goal is to bring the advantages of additive manufacturing together with the huge potential of tunable lenses. We produced tunable lenses as a bundle without any further processing steps, like polishing. The lenses were designed and directly printed with a 3D Printer as a package. The design contains the membrane as an optical part as well as the mechanical parts of the lens, like the attachments for the sleeves which contain the oil. The dynamic optical lenses were filled with an oil. The focal length of the lenses changes due to a change of the radius of curvature. This change is caused by changing the pressure in the inside of the lens. In addition to that, we designed lenses with special structures to obtain different areas with an individual optical power. We want to discuss the huge potential of this technology for several applications. Further, an appropriate controlling system is needed. Wéll show the possibilities to control and regulate the optical power of the lenses. The lenses could be used for illumination tasks, and in the future, for individual measurement tasks. The main advantage is the individuality and the possibility to create an individual design which completely fulfills the requirements for any specific application.

  13. A fast processing route of aspheric polydimethylsiloxane lenses array (APLA) and optical characterization for smartphone microscopy

    Science.gov (United States)

    Fuh, Yiin-Kuen; Lai, Zheng-Hong

    2017-02-01

    A fast processing route of aspheric polydimethylsiloxane (PDMS) lenses array (APLA) is proposed via the combined effect of inverted gravitational and heat-assisted forces. The fabrication time can be dramatically reduced to 30 s, compared favorably to the traditional duration of 2 hours of repeated cycles of addition-curing processes. In this paper, a low-cost flexible lens can be fabricated by repeatedly depositing, inverting, curing a hanging transparent PDMS elastomer droplet on a previously deposited curved structure. Complex structures with aspheric curve features and various focal lengths can be successfully produced and the fabricated 4 types of APLA have various focal lengths in the range of 7.03 mm, 6.00 mm, 5.33 mm, and 4.43 mm, respectively. Empirically, a direct relationship between the PDMS volume and focal lengths of the lenses can be experimentally deducted. Using these fabricated APLA, an ordinary commercial smartphone camera can be easily transformed to a low-cost, portable digital microscopy (50×magnification) such that point of care diagnostic can be implemented pervasively.

  14. Fabrication tolerances and metrology requirements for ion-exchanged micro-optic lenses: What's good enough?

    Science.gov (United States)

    Messerschmidt, B; Possner, U; Houde-Walter, S N

    1997-11-01

    Allowable deviations in index profiles, dopant distributions, and concentration dependence of diffusion coefficients are determined for collimating microlenses. Examples of high (and low) numerical aperture lenses are given for silver/sodium (and lithium/sodium) ion exchanges. Using the full lens aperture, one can ensure diffraction-limited performance only when the index is measured to within 1.0 x 10(-4) (4.3 x 10(-5)) of the optimum values. Fabrication tolerances for diffraction-limited performance over 80% of the numerical aperture are expressed in terms of the concentration-dependent diffusion coefficient, which typically must be held to within +/-4.7% (+/-11.5%) of ideal values.

  15. Compound refractive lenses as prefocusing optics for X-ray FEL radiation

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, Philip, E-mail: paheim@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); MacDonald, Michael [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); University of Michigan, 500 South State Street, Ann Arbor, MI 48109 (United States); Nagler, Bob; Lee, Hae Ja; Galtier, Eric; Arnold, Brice; Xing, Zhou [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-02-17

    A prefocusing compound refractive lens was implemented for the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated and observed at 5 keV. The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3–10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. The X-ray focus was also determined by the ablation imprint method.

  16. Effect of low-addition soft contact lenses with decentered optical design on myopia progression in children: a pilot study

    Directory of Open Access Journals (Sweden)

    Fujikado T

    2014-09-01

    Full Text Available Takashi Fujikado,1 Sayuri Ninomiya,2 Takuma Kobayashi,2 Asaki Suzaki,3 Mitsuhiko Nakada,3 Kohji Nishida4 1Department of Applied Visual Science, Osaka University Graduate School of Medicine, Suita, 2Itami Chuo Eye Clinic, Itami, 3Menicon, Nagoya, 4Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan Purpose: To investigate the effect of low-addition soft contact lenses (CLs with decentered optical design on the progression of myopia in children in a pilot study.Subjects and methods: Twenty-four Japanese children age 10–16 years with baseline myopia of –0.75 to –3.50 D sphere and ≤1.00 D cylinder were studied. The new CLs were designed to have a nasal decentration with the optical center centered on the line of sight, and with progressive-addition power of +0.5 D peripherally. Monofocal soft CLs were used as controls. A pair of new CLs or control CLs was randomly assigned to the children, and they wore the lenses for 12 months during the first phase. Then, the type of CLs was changed, ie, a crossover design, and the children were observed for another 12 months during the second phase. The end points were changes in axial length and refractive error (spherical equivalent under cycloplegia.Results: The change of axial length in the new-CL and control-CL groups was not different between 12 months and baseline, the change of axial length between 12 months and 1 month in the new-CL group (0.09±0.08 mm was significantly smaller (47% than that in the control-CL group (0.17±0.08 mm, P<0.05. During the same period, the change of refractive error in the new-CL group was not significantly different from that in the control group. Neither the change in axial length nor refractive error in the new-CL group was significantly different from those in the control-CL group in the second phase.Conclusion: This pilot study suggests that low-addition soft CLs with decentered optical design can reduce the degree of axial

  17. Lasers, lenses and light curves : adaptive optics microscopy and peculiar transiting exoplanets

    NARCIS (Netherlands)

    Werkhoven, Theodorus Isaak Mattheus van

    2014-01-01

    In the first part of this thesis, we present an adaptive optics implementation for multi-photon microscopy correcting sample-induced wavefront aberrations using either direct wavefront sensing to run a close-loop adaptive optics system (Chapter 3), or use a model-based sensorless approach to iterati

  18. Cluster Lenses

    CERN Document Server

    Kneib, Jean-Paul; 10.1007/s00159-011-0047-3

    2012-01-01

    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining...

  19. Efficient Analytical Approaches to the Optics of Compound Refractive Lenses for Use with Synchrotron X-rays

    DEFF Research Database (Denmark)

    Poulsen, Stefan Othmar; Poulsen, Henning Friis

    2014-01-01

    The properties of compound refractive lenses (CRLs) of biconcave parabolic lenses for focusing and imaging synchrotron X-rays have been investigated theoretically by ray transfer matrix analysis and Gaussian beam propagation. We present approximate analytical expressions, that allow fast estimation...

  20. Polyadic devil's lenses.

    Science.gov (United States)

    Calatayud, Arnau; Monsoriu, Juan A; Mendoza-Yero, Omel; Furlan, Walter D

    2009-12-01

    Devil's lenses (DLs) were recently proposed as a new kind of kinoform lens in which the phase structure is characterized by the "devil's staircase" function. DLs are considered fractal lenses because they are constructed following the geometry of the triadic Cantor set and because they provide self-similar foci along the optical axis. Here, DLs are generalized allowing the inclusion of polyadic Cantor distributions in their design. The lacunarity of the selected polyadic fractal distribution is an additional design parameter. The results are coined polyadic DLs. Construction requirements and interrelations among the different parameters of these new fractal lenses are also presented. It is shown that the lacunarity parameter affects drastically the irradiance profile along the optical axis, appodizing higher-order foci, and these features are proved to improve the behavior of conventional DLs under polychromatic illumination.

  1. Optical Dispersion, Permittivity Spectrum and Thermal-Lensing Effect in Nickel-Doped Zinc Sulfide Nanoparticles

    Science.gov (United States)

    Abbasi, F.; Koushki, E.; Majles Ara, M. H.; Sahraei, R.

    2017-07-01

    In this paper, Ni-doped ZnS (ZnS:Ni2+) nanoparticles (NPs) have been prepared through a chemical method. The average size of the particle is 45 nm. Thin films of the particles have been prepared by using the spin-coating method. The linear and nonlinear optical properties of Ni-doped ZnS thin films and the colloidal solution of them have been studied widely. Using a precise numerical method, the refractive index curve (dispersion curve), absorption coefficient and optical permittivity of Ni-doped ZnS film have been obtained. Using these values, the absorption coefficient of the colloidal solution of Ni-doped ZnS particles has been simulated and compared with experimental results. Finally, using the z-scan method at low laser irradiation, the thermo-optical effect has been studied and the nonlinear refractive index due to this effect has been reported.

  2. "True" physical optics for the accurate characterization of antenna radomes and lenses

    NARCIS (Netherlands)

    Neto, A.

    2003-01-01

    With the introduction of the "True" Physical Optics, the source in the far field of the canonical structure was not assumed but instead to use the exact dielectric slab's GF's in orde to obtain a more accurate approximation of the PO currents in both the external and the internal sides of the radome

  3. The optical length effect, diffraction pattern and thermal lensing of Disperse Orange 25

    Science.gov (United States)

    Salmani, S.; Ara, M. H. Majles

    2016-08-01

    The nonlinear responses of an azo dye, Disperse Orange 25 (DO25), are investigated under two irradiation of continuous Lasers at 532 and 632 nm wavelengths and the third order refractive index is measured by use of Z-scan technique. At 632 nm wavelength (far from the absorption peak), the close z-scan plots show that this material has a very good nonlinear response with negative sign indicating self-defocusing. The effect of optical length and concentration of samples in nonlinear responses have been investigated experimentally. Also, the radius variation at far field observed due to thermal lens effect. Finally, at other wavelength, 532 nm (near from the absorption peak), the nonlinear optical responses increase sharply so the diffraction rings appear and the numbers of rings increase with the incident laser power.

  4. Electron Lenses and Cooling for the Fermilab Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, G. [Fermilab; Burov, A. [Fermilab; Lebedev, V. [Fermilab; Nagaitsev, S. [Fermilab; Prebys, E. [Fermilab; Valishev, A. [Fermilab

    2015-11-05

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whether nonlinear integrable optics allows electron coolers to exceed limitations set by both coherent or incoherent instabilities excited by space charge.

  5. Optical aberrations of intraocular lenses measured in vivo and in vitro

    Science.gov (United States)

    Barbero, Sergio; Marcos, Susana; Jiménez-Alfaro, Ignacio

    2003-10-01

    Corneal and ocular aberrations were measured in a group of eyes before and after cataract surgery with spherical intraocular lens (IOL) implantation by use of well-tested techniques developed in our laboratory. By subtraction of corneal from total aberration maps, we also estimated the optical quality of the intraocular lens in vivo. We found that aberrations in pseudophakic eyes are not significantly different from aberrations in eyes before cataract surgery or from previously reported aberrations in healthy eyes of the same age. However, aberrations in pseudophakic eyes are significantly higher than in young eyes. We found a slight increase of corneal aberrations after surgery. The aberrations of the IOL and the lack of balance of the corneal spherical aberrations by the spherical aberrations of the intraocular lens also degraded the optical quality in pseudophakic eyes. We also measured the aberrations of the IOL in vitro, using an eye cell model, and simulated the aberrations of the IOL on the basis of the IOL's physical parameters. We found a good agreement among in vivo, in vitro, and simulated measures of spherical aberration: Unlike the spherical aberration of the young crystalline lens, which tends to be negative, the spherical aberration of the IOL is positive and increases with lens power. Computer simulations and in vitro measurements show that tilts and decentrations might be contributors to the increased third-order aberrations in vivo in comparison with in vitro measurements.

  6. A Keck Adaptive Optics Survey of a Representative Sample of Gravitationally-Lensed Star-Forming Galaxies: High Spatial Resolution Studies of Kinematics and Metallicity Gradients

    CERN Document Server

    Leethochawalit, Nicha; Ellis, Richard S; Stark, Daniel P; Richard, Johan; Zitrin, Adi; Auger, Matthew

    2015-01-01

    We discuss spatially resolved emission line spectroscopy secured for a total sample of 15 gravitationally lensed star-forming galaxies at a mean redshift of $z\\simeq2$ based on Keck laser-assisted adaptive optics observations undertaken with the recently-improved OSIRIS integral field unit (IFU) spectrograph. By exploiting gravitationally lensed sources drawn primarily from the CASSOWARY survey, we sample these sub-L$^{\\ast}$ galaxies with source-plane resolutions of a few hundred parsecs ensuring well-sampled 2-D velocity data and resolved variations in the gas-phase metallicity. Such high spatial resolution data offers a critical check on the structural properties of larger samples derived with coarser sampling using multiple-IFU instruments. We demonstrate how serious errors of interpretation can only be revealed through better sampling. Although we include four sources from our earlier work, the present study provides a more representative sample unbiased with respect to emission line strength. Contrary t...

  7. Lenses – Light, Bodies and Representations. A paper on the optical device that enables visual perception through representation

    DEFF Research Database (Denmark)

    Rehder, Mads

    I will discuss the many unique lenses available to visual anthropological research and how a nuanced and differentiated view on them can be the key to understanding the complexity of the representations we, as visual anthropologist, are creating.......I will discuss the many unique lenses available to visual anthropological research and how a nuanced and differentiated view on them can be the key to understanding the complexity of the representations we, as visual anthropologist, are creating....

  8. Lenses – Light, Bodies and Representations. A paper on the optical device that enables visual perception through representation

    DEFF Research Database (Denmark)

    Rehder, Mads

    I will discuss the many unique lenses available to visual anthropological research and how a nuanced and differentiated view on them can be the key to understanding the complexity of the representations we, as visual anthropologist, are creating.......I will discuss the many unique lenses available to visual anthropological research and how a nuanced and differentiated view on them can be the key to understanding the complexity of the representations we, as visual anthropologist, are creating....

  9. Electron lenses and cooling for the Fermilab Integrable Optics Test Accelerator

    CERN Document Server

    Stancari, G; Lebedev, V; Nagaitsev, S; Prebys, E; Valishev, A

    2015-01-01

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whet...

  10. The Optical Gravitational Lensing Experiment: Analysis of the Bulge RR Lyrae Population from the OGLE-III Data

    Science.gov (United States)

    Pietrukowicz, P.; Udalski, A.; Soszyński, I.; Nataf, D. M.; Wyrzykowski, Ł.; Poleski, R.; Kozłowski, S.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Ulaczyk, K.

    2012-05-01

    We have analyzed the data on 16,836 RR Lyrae (RR Lyr) variables observed toward the Galactic bulge during the third phase of the Optical Gravitational Lensing Experiment (OGLE-III), which took place in 2001-2009. Using these standard candles, we show that the ratio of total-to-selective extinction toward the bulge is given by RI = AI /E(V - I) = 1.080 ± 0.007 and is independent of color. We demonstrate that the bulge RR Lyr stars form a metal-uniform population, slightly elongated in its inner part. The photometrically derived metallicity distribution is sharply peaked at [Fe/H] = -1.02 ± 0.18, with a dispersion of 0.25 dex. In the inner regions (|l| < 3°, |b| < 4°) the RR Lyr tend to follow the barred distribution of the bulge red clump giants. The distance to the Milky Way center inferred from the bulge RR Lyr is R 0 = 8.54 ± 0.42 kpc. We report a break in the mean density distribution at a distance of ~0.5 kpc from the center indicating its likely flattening. Using the OGLE-III data, we assess that (4-7) × 104 type ab RR Lyr variables should be detected toward the bulge area of the ongoing near-IR VISTA Variables in the Via Lactea (VVV) survey, where the uncertainty partially results from the unknown RR Lyr spatial density distribution within 0.2 kpc from the Galactic center.

  11. Combining flat crystals, bent crystals and compound refractive lenses for high-energy X-ray optics.

    Science.gov (United States)

    Shastri, S D

    2004-03-01

    Compound refractive lenses (CRLs) are effective for collimating or focusing high-energy X-ray beams (50-100 keV) and can be used in conjunction with crystal optics in a variety of configurations, as demonstrated at the 1-ID undulator beamline of the Advanced Photon Source. As a primary example, this article describes the quadrupling of the output flux when a collimating CRL, composed of cylindrical holes in aluminium, is inserted between two successive monochromators, i.e. a modest-energy-resolution premonochromator followed by a high-resolution monochromator. The premonochromator is a cryogenically cooled divergence-preserving bent double-Laue Si(111) crystal device delivering an energy width DeltaE/E approximately 10(-3), which is sufficient for most experiments. The high-resolution monochromator is a four-reflection flat Si(111) crystal system resembling two channel-cuts in a dispersive arrangement, reducing the bandwidth to less than 10(-4), as required for some applications. Tests with 67 and 81 keV photon energies show that the high-resolution monochromator, having a narrow angular acceptance of a few microradians, exhibits a fourfold throughput enhancement due to the insertion of a CRL that reduces the premonochromatized beam's vertical divergence from 29 micro rad to a few microradians. The ability to focus high-energy X-rays with CRLs having long focal lengths (tens of meters) is also shown by creating a line focus of 70-90 micro m beam height in the beamline end-station with both the modest-energy-resolution and the high-energy-resolution monochromatic X-rays.

  12. Design of spherical symmetric gradient index lenses

    Science.gov (United States)

    Miñano, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; González, Juan C.; Santamaría, Asunción

    2012-10-01

    Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.

  13. Characterization of Optical Lenses to be Considered for the Imaging of Crystal Dendrite Growth

    Science.gov (United States)

    Wing, Frank M.

    1999-01-01

    Dynamic fracture is a phenomenon that is extremely sensitive to small perturbations in system parameters. This phenomenon is, in some ways, similar to that of dendritic crystal growth, although it is governed by different physical principles. Crystal dendrite growth patterns are affected by parameters such as temperature, pressure, and gravity. By studying the behavior of crystal dendrites in a controlled, microgravity environment, a greater understanding of dynamic fracture could be revealed. A sealed cubical container contains four stingers, which facilitate the growth of crystal dendrites. The container has five windows and is emersed in a liquid, for thermal isolation. The tip of a dendrite can advance in any direction, therefore three-dimensional images of the process are desired. Furthermore, because of the rapid growth rate, a fast image frame rate is required for accurate tracking of dendrite tip velocity. In addition, optical parameters such as field of view, depth of focus, and resolution are examined, as well as the working distance between a lens and the target of observation.

  14. Shaped Plasma Lenses for Optical Beam Control at High Laser Intensities

    Science.gov (United States)

    Hubbard, R. F.; Palastro, J. P.; Johnson, L. A.; Hafizi, B.; Gordon, D. F.; Penano, J. R.; Helle, M. H.; Kaganovich, D.

    2016-10-01

    A plasma channel is a cylindrical plasma column with an on-axis density minimum. A short plasma channel can focus a laser pulse in much the same manner as a conventional lens or off-axis parabola. If the plasma has an off-axis density maximum (``inverse channel''), it behaves like a negative lens and acts to defocus the pulse. In either case, a shaped plasma lens (SPL) may be placed in the beamline at locations where the laser intensity or fluence is orders of magnitude above the damage threshold for conventional solid optics. When placed after an off-axis parabola, SPLs may provide additional flexibility and spot size control and may also be useful in suppressing laser prepulse. For high power, ultrashort laser pulses, the broad laser bandwidth and extreme intensities produce chromatic and phase aberrations and amplitude distortions that degrade the lens focusing or defocusing performance. Although there have been a few experiments that demonstrate laser pulse focusing by a shaped plasma lens, generation and control of the plasma present significant challenges. Potential applications of SPLs to laser-plasma accelerators will be discussed. Supported by the Naval Research Laboratory Base Program.

  15. The Optical Gravitational Lensing Experiment (OGLE-II). Difference Image Analysis of the Bulge Data.

    Science.gov (United States)

    Wozniak, P. R.

    2000-12-01

    During 1997-1999 observing seasons (mid March to mid December) the OGLE-II project collected more than 11,000 2Kx8K frames (over 370 GB of pixel data) of the Galactic Bulge using 1.3m Warsaw Telescope at the Las Campanas Observatory, Chile. Each of the 49 fields has roughly 200-300 measurements in I band. The fields span the range approximately from -10 to 10 deg in galactic longitude. I present a complete reanalysis of this data set using the optimal image subtraction method developed by Alard and Lupton (1998) and Alard (1999). Databases of difference measurements contain about 100,000 variable objects. This information is supplemented with colors from DoPhot photometry. Noise properties of our difference light curves are exceptionally good for this kind of massive monitoring program. The nongaussian tail in the distribution of residuals is totally negligible for usual applications. For faint stars the measurement errors are only 1.15 times photon noise. The difference photometry is always at least a factor of 2 better than results from DoPhot. Systematic effects due to blending are greatly relieved, the most important difference being the unbiased value of the variable light centroid. We discovered 512 microlensing events (compared to 214 from DoPhot photometry, Udalski et al. 2000). 305 of those were found fully algorithmically and have good quality light curves making them very well suited for optical depth determination. In the nearest future we plan to obtain an upper limit on the number of jupiters around microlenses as these should manifest themselves in the nongaussian tail of the residual distribution. Next possibilities include much better and larger extinction maps of the bulge and studies of the galactic bar. With 300-500 events we should be able to study the depth of the lens/source populations (Stanek 1996).

  16. Development and Beam-Shape Analysis of an Integrated Fiber-Optic Confocal Probe for High-Precision Central Thickness Measurement of Small-Radius Lenses

    Directory of Open Access Journals (Sweden)

    Boonsong Sutapun

    2015-04-01

    Full Text Available This work describes a new design of a fiber-optic confocal probe suitable for measuring the central thicknesses of small-radius optical lenses or similar objects. The proposed confocal probe utilizes an integrated camera that functions as a shape-encoded position-sensing device. The confocal signal for thickness measurement and beam-shape data for off-axis measurement can be simultaneously acquired using the proposed probe. Placing the probe’s focal point off-center relative to a sample’s vertex produces a non-circular image at the camera’s image plane that closely resembles an ellipse for small displacements. We were able to precisely position the confocal probe’s focal point relative to the vertex point of a ball lens with a radius of 2.5 mm, with a lateral resolution of 1.2 µm. The reflected beam shape based on partial blocking by an aperture was analyzed and verified experimentally. The proposed confocal probe offers a low-cost, high-precision technique, an alternative to a high-cost three-dimensional surface profiler, for tight quality control of small optical lenses during the manufacturing process.

  17. Further Evidence that Quasar X-Ray Emitting Regions Are Compact: X-Ray and Optical Microlensing in the Lensed Quasar Q J0158-4325

    OpenAIRE

    Morgan, Christopher W.; Hainline, Laura J.; Chen, Bin; Tewes, Malte; Kochanek, Christopher S.; Dai, Xinyu; Kozlowski, Szymon; Blackburne, Jeffrey A.; Mosquera, Ana M.; Chartas, George; Courbin, Frederic; Meylan, Georges

    2012-01-01

    We present four new seasons of optical monitoring data and six epochs of X-ray photometry for the doubly-imaged lensed quasar Q J0158-4325. The high-amplitude, short-period microlensing variability for which this system is known has historically precluded a time delay measurement by conventional methods. We attempt to circumvent this limitation by application of a Monte Carlo microlensing analysis technique, but we are only able to prove that the delay must have the expected sign (image A lea...

  18. Gravitational lensing

    CERN Document Server

    Dodelson, Scott

    2017-01-01

    Gravitational lensing is a consequence of general relativity, where the gravitational force due to a massive object bends the paths of light originating from distant objects lying behind it. Using very little general relativity and no higher level mathematics, this text presents the basics of gravitational lensing, focusing on the equations needed to understand the phenomena. It then applies them to a diverse set of topics, including multiply imaged objects, time delays, extrasolar planets, microlensing, cluster masses, galaxy shape measurements, cosmic shear, and lensing of the cosmic microwave background. This approach allows undergraduate students and others to get quickly up to speed on the basics and the important issues. The text will be especially relevant as large surveys such as LSST and Euclid begin to dominate the astronomical landscape. Designed for a one semester course, it is accessible to anyone with two years of undergraduate physics background.

  19. Ophthalmic Lenses

    CERN Document Server

    Bhootra, Ajay Kumar

    2009-01-01

    This book is uniquely meant for the ophthalmologists, optometrists and opticians to help the world see better by excellent vision through the services of technicians and clinical principle based ophthalmology so that the management of ocular problems can be done for a better vision . Informs that a wide range of material and design of ophthalmic lenses with innovative developments is available. This book presents comprehensively rich information about the ophthalmic lenses and their dispensing tips . It will be highly useful mainly for the students of optometry and opticians, ophthalmologists,

  20. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    CERN Document Server

    Stancari, Giulio

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compens...

  1. Learning unit: Thin lenses

    Science.gov (United States)

    Nita, L.-S.

    2012-04-01

    Learning unit: Thin lenses "Why objects seen through lenses are sometimes upright and sometimes reversed" Nita Laura Simona National College of Arts and Crafts "Constantin Brancusi", Craiova, Romania 1. GEOMETRIC OPTICS. 13 hours Introduction (models, axioms, principles, conventions) 1. Thin lenses (Types of lenses. Defining elements. Path of light rays through lenses. Image formation. Required physical quantities. Lens formulas). 2. Lens systems (Non-collated lenses. Focalless systems). 3. Human eye (Functioning as an optical system. Sight defects and their corrections). 4. Optical instruments (Characteristics exemplified by a magnifying glass. Paths of light rays through a simplified photo camera. Path of light rays through a classical microscope) (Physics curriculum for the IXth grade/ 2011). This scenario exposes a learning unit based on experimental sequences (defining specific competencies), as a succession of lessons started by noticing a problem whose solution assumes the setup of an experiment under laboratory conditions. Progressive learning of theme objectives are realised with sequential experimental steps. The central cognitive process is the induction or the generalization (development of new knowledge based on observation of examples or counterexamples of the concept to be learnt). Pupil interest in theme objectives is triggered by problem-situations, for example: "In order to better see small objects I need a magnifying glass. But when using a magnifier, small object images are sometimes seen upright and sometimes seen reversed!" Along the way, pupils' reasoning will converge to the idea: "The image of an object through a lens depends on the relative distances among object, lens, and observer". Associated learning model: EXPERIMENT Specific competencies: derived from the experiment model, in agreement with the following learning unit steps I. Evoking - Anticipation: Size of the problem, formulation of hypotheses and planning of experiment. II

  2. Twin axial vortices generated by Fibonacci lenses.

    Science.gov (United States)

    Calatayud, Arnau; Ferrando, Vicente; Remón, Laura; Furlan, Walter D; Monsoriu, Juan A

    2013-04-22

    Optical vortex beams, generated by Diffractive Optical Elements (DOEs), are capable of creating optical traps and other multi-functional micromanipulators for very specific tasks in the microscopic scale. Using the Fibonacci sequence, we have discovered a new family of DOEs that inherently behave as bifocal vortex lenses, and where the ratio of the two focal distances approaches the golden mean. The disctintive optical properties of these Fibonacci vortex lenses are experimentally demonstrated. We believe that the versatility and potential scalability of these lenses may allow for new applications in micro and nanophotonics.

  3. Point Diffraction Interferometry to Measure Local Curvatures and Caustics of Noisy Wave Fronts: Application for Determining Optical Properties of Fish Lenses

    Science.gov (United States)

    Vallmitjana, S.; Ricart, I.; Bosch, S.; Gargallo, A.; Acosta, E.

    2015-02-01

    The study of caustics is important because they contain information about the image formation properties of optical systems. In this work we use the concept of caustic as a set of focal points, and we have developed a second order approach theory to determine local slopes and curvatures of a wavefront emerging from an optical system. The method is based on the use of a point diffraction interferometer, and the analysis of the interferograms allows us to compute the focal region. Experimental results obtained with a plano-convex lens demonstrate the accuracy of the combined theoretical-experimental method here developed. Application to noisy wavefronts such as those produced by biological samples, specifically in crystalline lenses of fish eyes, are also exposed.

  4. Planar Lenses at Visible Wavelengths

    CERN Document Server

    Khorasaninejad, Mohammadreza; Devlin, Robert C; Oh, Jaewon; Zhu, Alexander Y; Capasso, Federico

    2016-01-01

    Sub-wavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as meta-lenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405 nm, 532 nm, and 660 nm with corresponding efficiencies of 86%, 73%, and 66%. The meta-lenses can resolve nanoscale features separated by sub-wavelength distances and provide magnification as high as 170x with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that meta-lenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

  5. Electron optics

    CERN Document Server

    Grivet, Pierre; Bertein, F; Castaing, R; Gauzit, M; Septier, Albert L

    1972-01-01

    Electron Optics, Second English Edition, Part I: Optics is a 10-chapter book that begins by elucidating the fundamental features and basic techniques of electron optics, as well as the distribution of potential and field in electrostatic lenses. This book then explains the field distribution in magnetic lenses; the optical properties of electrostatic and magnetic lenses; and the similarities and differences between glass optics and electron optics. Subsequent chapters focus on lens defects; some electrostatic lenses and triode guns; and magnetic lens models. The strong focusing lenses and pris

  6. Discovery of eight lensing clusters of galaxies

    CERN Document Server

    Liang, S M; Han, J L; Jiang, Y Y

    2013-01-01

    Clusters of galaxies have a huge mass which can act as gravitational lenses. Galaxies behind clusters can be distorted to form arcs in images by the lenses. Herein a search was done for giant lensed arcs by galaxy clusters using the SDSS data. By visually inspecting SDSS images of newly identified clusters in the SDSS DR8 and Stripe 82 data, we discover 8 strong lensing clusters together with additional 3 probable and 6 possible cases. The lensed arcs show bluer colors than the member galaxies of clusters. The masses and optical luminosities of galaxy clusters interior to the arcs are calculated, and the mass-to-light ratios are found to be in the range of a few tens of M_Solar/L_Solar, consistent with the distribution of previously known lensing clusters.

  7. Thermal lensing of laser materials

    Science.gov (United States)

    Davis, Mark J.; Hayden, Joseph S.

    2014-10-01

    This paper focuses on the three main effects that can induce wave-front distortion due to thermal lensing in laser gain media: 1) thermo-optic (dn/dT); 2) stress-optic; and 3) surface deformation (e.g., "end-bulging" of a laser rod). Considering the simple case of a side-pumped cylindrical rod which is air- or water-cooled along its length, the internal temperature distribution has long been known to assume a simple parabolic profile. Resulting from this are two induced refractive index variations due to thermo-optic and stress-optic effects that also assume a parabolic profile, but generally not of the same magnitude, nor even of the same sign. Finally, a small deformation on the rod ends can induce a small additional lensing contribution. We had two goals in this study: a) use finite-element simulations to verify the existing analytical expressions due to Koechner1 and Foster and Osterink; and b) apply them to glasses from the SCHOTT laser glass portfolio. The first goal was a reaction to more recent work by Chenais et al. who claimed Koechner made an error in his analysis with regard to thermal stress, throwing into doubt conclusions within studies since 1970 which made use of his equations. However, our re-analysis of their derivations, coupled with our FE modeling, confirmed that the Koechner and Foster and Osterink treatments are correct, and that Chenais et al. made mistakes in their derivation of the thermally-induced strain. Finally, for a nominal laser rod geometry, we compared the thermally-induced optical distortions in LG-680, LG-750, LG-760, LG-770, APG-1, and APG-2. While LG-750, -760, and -770 undergo considerable thermo-optic lensing, their stress-optic lensing is nearly of the same magnitude but of opposite sign, leading to a small total thermal lensing signature.

  8. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Ninth Edition Optics: Ninth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommen

  9. Further Evidence that Quasar X-Ray Emitting Regions Are Compact: X-Ray and Optical Microlensing in the Lensed Quasar Q J0158-4325

    CERN Document Server

    Morgan, Christopher W; Chen, Bin; Tewes, Malte; Kochanek, Christopher S; Dai, Xinyu; Kozlowski, Szymon; Blackburne, Jeffrey A; Mosquera, Ana M; Chartas, George; Courbin, Frederic; Meylan, Georges

    2012-01-01

    We present four new seasons of optical monitoring data and six epochs of X-ray photometry for the doubly-imaged lensed quasar Q J0158-4325. The high-amplitude, short-period microlensing variability for which this system is known has historically precluded a time delay measurement by conventional methods. We attempt to circumvent this limitation by application of a Monte Carlo microlensing analysis technique, but we are only able to prove that the delay must have the expected sign (image A leads image B). Despite our failure to robustly measure the time delay, we successfully model the microlensing at optical and X-ray wavelengths to find a half light radius for soft X-ray emission log(r_{1/2,X,soft}/cm) = 14.3^{+0.4}_{-0.5}, an upper limit on the half-light radius for hard X-ray emission log(r_{1/2,X,hard}/cm) <= 14.6 and a refined estimate of the inclination-corrected scale radius of the optical R-band (rest frame 3100 Angstrom) continuum emission region of log(r_s/cm) = 15.6+-0.3.

  10. Biomimetic Gradient Index (GRIN) Lenses

    Science.gov (United States)

    2006-01-01

    optics include single lenses inspired by cephalopod (octopus) eyes and a three-lens, wide field of view, optical system for a surveillance sensor...camera. Details are easily resolv- able with the polymer lens. This lens system was installed on an Evolution unmanned aerial vehicle (UAV) with a...lens system was installed in an NRL Evolution UAV and used to record video images at a height of up to 1000 ft. The index gradients in the polymer

  11. Optics

    CERN Document Server

    Fincham, W H A

    2013-01-01

    Optics: Eighth Edition covers the work necessary for the specialization in such subjects as ophthalmic optics, optical instruments and lens design. The text includes topics such as the propagation and behavior of light; reflection and refraction - their laws and how different media affect them; lenses - thick and thin, cylindrical and subcylindrical; photometry; dispersion and color; interference; and polarization. Also included are topics such as diffraction and holography; the limitation of beams in optical systems and its effects; and lens systems. The book is recommended for engineering st

  12. Measurements of nonlinear lensing in a semiconductor disk laser gain sample under optical pumping and using a resonant femtosecond probe laser

    Science.gov (United States)

    Quarterman, A. H.; Mirkhanov, S.; Smyth, C. J. C.; Wilcox, K. G.

    2016-09-01

    Accurate characterizations of the nonlinear refractive index of semiconductor disk laser (SDL) gain samples are of critical importance for understanding the behavior of self-mode-locked SDLs. Here we describe measurements of nonlinear lensing in an SDL gain sample for a wide range of optical pump intensities and using a probe which is on resonance with the quantum wells in the SDL gain sample and whose intensity, pulse duration, and spot size are chosen to be similar to those reported in self-mode-locked SDLs. Under these conditions, we determine an effective value of the nonlinear refractive index, n2 = -6.5 × 10-13 cm2/W at zero pump intensity, and find that the value of n2 changes by less than 25% over the range of pump intensities studied. The nonlinear refractive index is measured using a variation on the well-established z-scan technique, which was modified to make it better suited to the measurement of optically pumped samples.

  13. New Physical Optics Method for Curvilinear Refractive Surfaces and its Verification in the Design and Testing of W-band Dual-Aspheric Lenses

    Science.gov (United States)

    2013-10-01

    aspheric ( plano -convex) and (b) optimized dual- aspheric W-band PTFE lenses as needed for a non-paraxial system of Fig. 1 . . 10 3 Profiles of (a) full...is comparable with the given lens diameter Dc = 140mm. Following conventional solutions, non-paraxial lenses of plano -convex type are usually em...optimized by applying more advanced methods, e.g., full-wave approaches, etc. When considering plano -convex lenses by ray-tracing methods, we arrive at

  14. Magnetic electron lenses

    CERN Document Server

    1982-01-01

    No single volume has been entirely devoted to the properties of magnetic lenses, so far as I am aware, although of course all the numerous textbooks on electron optics devote space to them. The absence of such a volume, bringing together in­ formation about the theory and practical design of these lenses, is surprising, for their introduction some fifty years ago has created an entirely new family of commercial instruments, ranging from the now traditional transmission electron microscope, through the reflection and transmission scanning microscopes, to co­ lumns for micromachining and microlithography, not to mention the host of experi­ mental devices not available commercially. It therefore seemed useful to prepare an account of the various aspects of mag­ netic lens studies. These divide naturally into the five chapters of this book: the theoretical background, in which the optical behaviour is described and formu­ lae given for the various aberration coefficients; numerical methods for calculat­ ing...

  15. Interactions of benzalkonium chloride with soft and hard contact lenses

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, J.M.; Cheeks, L.; Green, K. (Medical College of Georgia, Augusta (USA))

    1990-02-01

    We measured the uptake and washout of benzalkonium chloride, using radioactive tracer, by representative hard and soft contact lenses. Uptake by soft contact lenses after 7 days of continuous exposure is high (30 to 56 micrograms/mg of lens weight), with a low percentage of washout in 24 hours (between 0.2% and 1.5% of total uptake). High-water content lenses absorb greater quantities of benzalkonium than do low-water content lenses. Hard lenses take up a much smaller quantity of benzalkonium but release between 30% and 60% of total uptake during washout for 24 hours. Fluorosilicone-acrylate polymer lenses adsorb and release the most preservative, while polymethylmethacrylate lenses (Paragon Optical Inc, Mesa, Ariz) adsorb and release the least. The released benzalkonium from either soft or hard lenses is of a sufficient concentration to be at or above the upper limits of safety.

  16. Characterizing elusive, faint dusty star-forming galaxies: a lensed, optically-undetected ALMA galaxy at z~3.3

    CERN Document Server

    Santini, P; Fontana, A; Merlin, E; Maiolino, R; Mason, C; Mignano, A; Pilo, S; Amorin, R; Berta, S; Bourne, N; Calura, F; Daddi, E; Elbaz, D; Grazian, A; Magliocchetti, M; Michalowski, M J; Pentericci, L; Pozzi, F; Rodighiero, G; Schreiber, C; Valiante, R

    2016-01-01

    We present the serendipitous ALMA detection of a faint submillimeter galaxy (SMG) lensed by a foreground z~1 galaxy. By optimizing the source detection to deblend the system, we accurately build the full spectral energy distribution of the distant galaxy from the I814 band to radio wavelengths. It is extremely red, with a I-K colour larger than 2.5. We estimate a photometric redshift of 3.28 and determine the physical parameters. The distant galaxy turns out to be magnified by the foreground lens by a factor of ~1.5, which implies an intrinsic Ks-band magnitude of ~24.5, a submillimeter flux at 870um of ~2.5 mJy and a SFR of ~150-300Msun/yr, depending on the adopted tracer. These values place our source towards the faint end of the distribution of observed SMGs, and in particular among the still few faint SMGs with a fully characterized spectral energy distribution, which allows us not only to accurately estimate its redshift but also to measure its stellar mass and other physical properties. The galaxy studi...

  17. Evaluation of corneal optical properties in subjects wearing hydrogel etafilcon A contact lenses and the effect of administering mannitol-enriched sodium hyaluronate ophthalmic solution

    Directory of Open Access Journals (Sweden)

    Lombardo M

    2014-11-01

    Full Text Available Marco Lombardo,1,2 Marianna Rosati,1 Marco Pileri,3 Domenico Schiano-Lomoriello,1 Sebastiano Serrao11Fondazione G.B. Bietti IRCCS, 2Vision Engineering Italy Srl, 3Azienda Ospedaliera San Giovanni-Addolorata, Rome, ItalyBackground: The purpose of this study was to evaluate the effect of daily administration of mannitol-enriched sodium hyaluronate ophthalmic solution on the corneal optical properties of subjects wearing low Dk hydrogel (etafilcon A contact lenses (CLs.Methods: Forty-five subjects wearing etafilcon A CLs daily for more than 6 months were recruited into this pilot study. Fifteen of the subjects administered a 10% mannitol-enriched 0.05% sodium hyaluronate solution (study group once daily and 30 subjects did not administer any ophthalmic solution (control group. The subjects were examined at baseline and one month after recruitment. Changes in central corneal thickness (CCT and corneal light backscatter were evaluated by Scheimpflug imaging (Pentacam HR. Changes in corneal total high-order aberration, corneal spherical aberration, coma, and trefoil were evaluated using the OPD scan II.Results: At one month, corneal light backscatter decreased significantly in the study group (≤18.30 arbitrary units; P<0.05 and this was highly correlated with a decrease in CCT (R=0.81; P=0.04. The decrease in corneal total high-order aberration, spherical aberration, and coma was significantly higher in the study group than in the control group (P<0.05. No changes in corneal light backscatter or CCT were found in the control group during follow-up.Conclusion: Once-daily administration of a mannitol-enriched lubricant ophthalmic solution was effective for improving the corneal optical quality and reducing corneal swelling in subjects wearing low Dk hydrogel (etafilcon A CLs during one month follow-up.Keywords: corneal optical quality, corneal high-order aberrations, Scheimpflug imaging, corneal backscattering, contact lens, hypertonic lubricant

  18. Adaptive Optics and planned HST follow-up observations of the strongly lensed SNIa iPTF16geu

    Science.gov (United States)

    Goobar, Ariel; Amanullah, Rahman; Kulkarni, Shri; Steidel, Charles; Law, David

    2016-10-01

    Adaptive optics (AO) observations of iPTF16geu (ATel #9603) were carried out on October 11 with NACO in Natural Guide Star (NGS) mode on VLT. A bright star 30" SE of the SN position provided for the AO corrections.

  19. Adjustable fluidic lenses for ophthalmic corrections.

    Science.gov (United States)

    Marks, Randall; Mathine, David L; Peyman, Gholam; Schwiegerling, Jim; Peyghambarian, Nasser

    2009-02-15

    We report on two fluidic lenses that have been developed for ophthalmic applications. The lenses use a circular aperture to demonstrate optical powers between -20 and +20 D and a rectangular aperture to demonstrate astigmatism with values ranging from 0 to 8 D. Measurements of image quality were made with the fluidic lens using a model eye. Both lenses were variable and controllable by adjusting the fluid volume of the lens. To the best of our knowledge this is the first demonstration of a continuously variable lens for control of astigmatism.

  20. Mitochondrial "movement" and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples.

    Science.gov (United States)

    Bantseev, Vladimir; Youn, Hyun-Yi

    2006-12-01

    Mitochondria provide energy generated by oxidative phosphorylation and at the same time play a central role in apoptosis and aging. As a byproduct of respiration, the electron transport chain is known to be the major intracellular site for the generation of reactive oxygen species (ROS). Exposure to solar and occupational ultraviolet (UV) radiation, and thus production of ROS and subsequent cell death, has been implicated in a large spectrum of skin and ocular pathologies, including cataract. Retinal pigment epithelial cell apoptosis generates photoreceptor dysfunction and ultimately visual impairment. The purpose of this article was to characterize in vitro changes following oxidative stress with UV-B radiation in (a) ocular lens optics and cellular function in terms of mitochondrial dynamics of bovine lens epithelium and superficial cortical fiber cells and (b) human retinal pigment epithelial (ARPE-19) cells. Cultured bovine lenses and confluent cultures of ARPE-19 cells were irradiated with broadband UV-B radiation at energy levels of 0.5 and 1.0 J/cm(2). Lens optical function (spherical aberration) was monitored daily up to 14 days using an automated laser scanning system that was developed at the University of Waterloo. This system consists of a single collimated scanning helium-neon laser source that projects a thin (0.05 mm) laser beam onto a plain mirror mounted at 45 degrees on a carriage assembly. This mirror reflects the laser beam directly up through the scanner table surface and through the lens under examination. A digital camera captures the actual position and slope of the laser beam at each step. When all steps have been made, the captured data for each step position is used to calculate the back vertex distance for each position and the difference in that measurement between beams. To investigate mitochondrial movement, the mitochondria-specific fluorescent dye Rhodamine 123 was used. Time series were acquired with a Zeiss 510 (configuration Meta

  1. Types of Contact Lenses

    Science.gov (United States)

    ... back to top ] Rigid Gas Permeable (RGP) Contact Lenses Rigid gas permeable contact lenses (RGPs) are more durable ... Ortho-K) Orthokeratology, or Ortho-K, is a lens fitting procedure that uses specially designed rigid gas permeable (RGP) contact lenses to change the ...

  2. Weak gravitational lensing with the Square Kilometre Array

    CERN Document Server

    Brown, M L; Camera, S; Harrison, I; Joachimi, B; Metcalf, R B; Pourtsidou, A; Takahashi, K; Zuntz, J A; Abdalla, F B; Bridle, S; Jarvis, M; Kitching, T D; Miller, L; Patel, P

    2015-01-01

    We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.

  3. Nanofocusing refractive X-ray lenses

    Energy Technology Data Exchange (ETDEWEB)

    Boye, Pit

    2010-02-05

    This thesis is concerned with the optimization and development of the production of nanofocusing refractive X-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution X-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of X-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in X-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small X-ray beams well beyond the 100 nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The rst one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wave field along the

  4. The Structure of the X-ray and Optical Emitting Regions of the Lensed Quasar Q 2237+0305

    CERN Document Server

    Mosquera, A M; Chen, B; Dai, X; Blackburne, J A; Chartas, G

    2013-01-01

    We use gravitational microlensing to determine the size of the X-ray and optical emission regions of the quadruple lens system Q 2237+0305. The optical half-light radius, log(R_{1/2,V}/cm)=16.41\\pm0.18 (at lambda_{rest}=2018 \\AA), is significantly larger than the observed soft, log(R_{1/2,soft}/cm)=15.76^{+0.41}_{-0.34} (1.1-3.5 keV in the rest frame), and hard, log(R_{1/2,hard}/cm)=15.46^{+0.34}_{-0.29} (3.5-21.5 keV in the rest frame), band X-ray emission. There is a weak evidence that the hard component is more compact than the soft, with log(R_{1/2,soft}/R_{1/2,hard}) \\sim 0.30^{+0.53}_{-0.45}. This wavelength-dependent structure agrees with recent results found in other lens systems using microlensing techniques, and favors geometries in which the corona is concentrated near the inner edge of the accretion disk. While the available measurements are limited, the size of the X-ray emission region appears to be roughly proportional to the mass of the central black hole.

  5. Visual and optical performance of diffractive multifocal intraocular lenses with different haptic designs: 6 month follow-up.

    Science.gov (United States)

    Wang, Mengmeng; Corpuz, Christine Carole C; Fujiwara, Megumi; Tomita, Minoru

    2014-01-01

    To evaluate and compare the visual acuity outcomes and optical performances of eyes implanted with two diffractive multifocal intraocular lens (IOL) models with either a plate haptic design or a modified-C design. This retrospective study comprised cataract patients who were implanted with either a plate haptic multifocal IOL model (Acriva(UD) Reviol BB MFM 611 [VSY Biotechnology, Amsterdam, the Netherlands], group 1) or a modified-C haptic multifocal IOL model (Acriva(UD) Reviol BB MF 613 [VSY Biotechnology, Amsterdam, the Netherlands], group 2) between June 2012 and May 2013. The 6 month postoperative visual acuity, refraction, defocus curve, contrast sensitivity, and wave-front aberration were evaluated and compared between these eyes, using different IOL models. One hundred fifty-eight eyes of 107 patients were included in this study. Significant improvement in visual acuities and refraction was found in both groups after cataract surgery (P0.05). However, the ocular higher-order aberrations in group 2 were significantly greater than in group 1 (Phaptic design resulted in better optical performances than that with the modified-C haptic design.

  6. Inability to perform posterior segment monitoring by scanning laser ophthalmoscopy or optical coherence tomography with some occlusive intraocular lenses in clinical use.

    Science.gov (United States)

    Yusuf, Imran H; Peirson, Stuart N; Patel, Chetan K

    2012-03-01

    To evaluate whether occlusive intraocular lenses (IOLs) produced by several manufacturers for clinical use equivalently transmit near-infrared (IR) light for scanning laser ophthalmoscopy (SLO) or optical coherence tomography (OCT) imaging. Nuffield Laboratory of Ophthalmology, Oxford University, United Kingdom. Evaluation of diagnostic test or technology. The study evaluated 6 black IOLs of 2 designs: 3 poly(methyl methacrylate) (PMMA) and 3 iris-claw anterior chamber IOLs. Each IOL was placed between a broad-spectrum white light source and a spectroradiometer to generate transmission spectra. Transmission in the near-IR range was examined using an 850 nm light-emitting diode. Scanning laser ophthalmoscopy or OCT imaging using Spectralis spectral-domain SLO or OCT was attempted through occlusive IOLs in a model eye. Artisan iris-claw and MS 612 PMMA occlusive IOLs totally occluded all wavelengths of light, including in the near IR range in which SLO and OCT imaging systems operate. It was not possible to capture SLO or OCT images through the iris-claw and PMMA occlusive IOLs in a model eye. Results suggest the property of near-IR transmission that permits SLO or OCT imaging through occlusive IOLs is restricted to the Morcher range of occlusive IOLs. Patients with non-near IR transmitting IOLs will not be able to receive detailed posterior segment monitoring with SLO or OCT. This finding may have a significant impact on preoperative occlusive IOL selection and the management of current patients with occlusive IOLs. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Sapphire ball lensed fiber probe for common-path optical coherence tomography in ocular imaging and sensing

    Science.gov (United States)

    Zhao, Mingtao; Huang, Yong; Kang, Jin U.

    2013-03-01

    We describe a novel common-path optical coherence tomography (CP-OCT) fiber probe design using a sapphire ball lens for cross-sectional imaging and sensing in retina vitrectomy surgery. Single mode Gaussian beam (TEM00) simulation was used to optimize lateral resolution and working distance (WD) of the common-path probe. A theoretical sensitivity model for CP-OCT was prosed to assess its optimal performance based an unbalanced photodetector configuration. Two probe designs with working distances (WD) 415μm and 1221μm and lateral resolution 11μm and 18μm, respectively were implemented with sensitivity up to 88dB. The designs are also fully compatible with conventional Michelson interferometer based OCT configurations. The reference plane of the probe, located at the distal beam exit interface of the single mode fiber (SMF), was encased within a 25-gauge hypodermic needle by the sapphire ball lens facilitates its applications in bloody and harsh environments. The performances of the fiber probe with 11μm of lateral resolution and 19μm of axial resolution were demonstrated by cross-sectional imaging of a cow cornea and retina in vitro with a 1310nm swept source OCT system. This probe was also attached to a piezoelectric motor for active compensation of physiological tremor for handheld retinal surgical tools.

  8. Weak Lensing Simulations for the SKA

    CERN Document Server

    Patel, Prina; Makhathini, Sphesihle; Abdalla, Filipe; Bacon, David; Brown, Michael L; Heywood, Ian; Jarvis, Matt; Smirnov, Oleg

    2015-01-01

    Weak gravitational lensing measurements are traditionally made at optical wavelengths where many highly resolved galaxy images are readily available. However, the Square Kilometre Array (SKA) holds great promise for this type of measurement at radio wavelengths owing to its greatly increased sensitivity and resolution over typical radio surveys. The key to successful weak lensing experiments is in measuring the shapes of detected sources to high accuracy. In this document we describe a simulation pipeline designed to simulate radio images of the quality required for weak lensing, and will be typical of SKA observations. We provide as input, images with realistic galaxy shapes which are then simulated to produce images as they would have been observed with a given radio interferometer. We exploit this pipeline to investigate various stages of a weak lensing experiment in order to better understand the effects that may impact shape measurement. We first show how the proposed SKA1-Mid array configurations perfor...

  9. EDITORIAL: Focus on Gravitational Lensing

    Science.gov (United States)

    Jain, Bhuvnesh

    2007-11-01

    or quasars which are strongly magnified and sheared. In the last decade, double and quadruply imaged systems due to galactic lenses have been studied with optical and radio observations. An interesting result obtained from the flux ratio 'anomalies' of quadruply imaged systems is the statistical detection of dark sub-clumps in galaxy halos. More broadly, while we have learned a lot about the mass distribution in lens galaxies and improved time delay constraints on the Hubble constant, the limitations of cosmological studies with strong lensing due to uncertainties in lens mass models have also come to be appreciated. That said, progress will no doubt continue with qualitative advances in observations such as astrometric counterparts to the flux anomalies, clever ideas such as the use of spectroscopic signatures to assemble the SLACS lens sample, and combining optical imaging, spectroscopy and radio data to continue the quest for a set of golden lenses to measure the Hubble constant. Galaxy clusters are a fascinating arena for studying the distribution of dark and baryonic matter. Weak and strong lensing information can be combined with dynamical information from the spectroscopic measurements of member galaxies and x-ray/Sunyaev Zeldovich measurements of the hot ionized gas. Hubble Space Telescope observations have yielded spectacular images of clusters, such as Abell 1689, which has over a hundred multiply imaged arcs. Mass measurements have progressed to the level of 10 percent accuracy for several clusters. Unfortunately, it is unclear if one can do much better for individual clusters given inherent limitations such as unknown projection effects. The statistical study of clusters is likely to remain a promising way to study dark matter, gravity theories, and cosmology. Techniques to combine weak and strong lensing information to obtain the mass distribution of clusters have also advanced, and work continues on parameter-free techniques that are agnostic to the

  10. From Spheric to Aspheric Solid Polymer Lenses: A Review

    Directory of Open Access Journals (Sweden)

    Kuo-Yung Hung

    2011-01-01

    Full Text Available This paper presents a new approach in the use of MEMS technology to fabricate micro-optofluidic polymer solid lenses in order to achieve the desired profile, focal length, numerical aperture, and spot size. The resulting polymer solid lenses can be applied in optical data storage systems, imaging systems, and automated optical inspection systems. In order to meet the various needs of different applications, polymer solid lenses may have a spherical or aspherical shape. The method of fabricating polymer solid lenses is different from methods used to fabricate tunable lenses with variable focal length or needing an external control system to change the lens geometry. The current trend in polymer solid lenses is toward the fabrication of microlenses with a high numerical aperture, small clear aperture (<2 mm, and high transmittance. In this paper we focus on the use of thermal energy and electrostatic force in shaping the lens profile, including both spherical and aspherical lenses. In addition, the paper discusses how to fabricate a lens with a high numerical aperture of 0.6 using MEMS and also compares the optical characteristics of polymer lens materials, including SU-8, Norland Optical Adhesive (NOA, and cyclic olefin copolymer (COC. Finally, new concepts and applications related to micro-optofluidic lenses and polymer materials are also discussed.

  11. Trapping light by mimicking gravitational lensing

    CERN Document Server

    Sheng, C; Wang, Y; Zhu, S N; Genov, D A

    2013-01-01

    One of the most fascinating predictions of the theory of general relativity is the effect of gravitational lensing, the bending of light in close proximity to massive stellar objects. Recently, artificial optical materials have been proposed to study the various aspects of curved spacetimes, including light trapping and Hawking's radiation. However, the development of experimental toy models that simulate gravitational lensing in curved spacetimes remains a challenge, especially for visible light. Here, by utilizing a microstructured optical waveguide around a microsphere, we propose to mimic curved spacetimes caused by gravity, with high precision. We experimentally demonstrate both far-field gravitational lensing effects and the critical phenomenon in close proximity to the photon sphere of astrophysical objects under hydrostatic equilibrium. The proposed microstructured waveguide can be used as an omnidirectional absorber, with potential light harvesting and microcavity applications.

  12. [Optimisation of the visualisation technique for optical paths through intraocular lenses for characterisation of multifocal imaging properties of Fresnel-zone plates].

    Science.gov (United States)

    Reiß, S; Forbrig, J; Guthoff, R F; Terwee, T; Stolz, H; Siewert, S; El-Tamer, A; Hinze, U; Chichkov, B N; Stachs, O

    2014-12-01

    The utilisation of the diffractive properties of Fresnel zone plates offers the possibility of intraocular lens designs with multiple foci. Such intraocular lenses can be manufactured by two-photon polymerisation (2PP). This paper explains the underlying concept and shows the principles for visualisation of the focus properties of such implants.

  13. Gravitational lensing in plasmic medium

    Energy Technology Data Exchange (ETDEWEB)

    Bisnovatyi-Kogan, G. S., E-mail: gkogan@iki.rssi.ru; Tsupko, O. Yu., E-mail: tsupko@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2015-07-15

    The influence of plasma on different effects of gravitational lensing is reviewed. Using the Hamiltonian approach for geometrical optics in a medium in the presence of gravity, an exact formula for the photon deflection angle by a black hole (or another body with a Schwarzschild metric) embedded in plasma with a spherically symmetric density distribution is derived. The deflection angle in this case is determined by the mutual combination of different factors: gravity, dispersion, and refraction. While the effects of deflection by the gravity in vacuum and the refractive deflection in a nonhomogeneous medium are well known, the new effect is that, in the case of a homogeneous plasma, in the absence of refractive deflection, the gravitational deflection differs from the vacuum deflection and depends on the photon frequency. In the presence of a plasma nonhomogeneity, the chromatic refractive deflection also occurs, so the presence of plasma always makes gravitational lensing chromatic. In particular, the presence of plasma leads to different angular positions of the same image if it is observed at different wavelengths. It is discussed in detail how to apply the presented formulas for the calculation of the deflection angle in different situations. Gravitational lensing in plasma beyond the weak deflection approximation is also considered.

  14. One Episode, Two Lenses

    Science.gov (United States)

    Drijvers, Paul; Godino, Juan D.; Font, Vicenc; Trouche, Luc

    2013-01-01

    A deep understanding of students' learning processes is one of the core challenges of research in mathematics education. To achieve this, different theoretical lenses are available. The question is how these different lenses compare and contrast, and how they can be coordinated and combined to provide a more comprehensive view on the topic of…

  15. DESIGN OF THE MULTIORDER INTRAOCULAR LENSES

    Directory of Open Access Journals (Sweden)

    V. G. Kolobrodov

    2015-01-01

    Full Text Available Intraocular lenses (IOLs are used to replace the natural crystalline lens of the eye. Just few basic designs of IOLs are used clinically. Multiorder diffractive lenses (MODL which operate simultaneously in several diffractive orders were proposed to decrease the chromatic aberration. Properties analysis of MODL showed a possibility to use them to develop new designs of IOLs. The purpose of this paper was to develop a new method of designing of multiorder intraocular lenses with decreased chromatic aberration. The theoretical research of the lens properties was carried out. The diffraction efficiency dependence with the change of wavelength was studied. A computer simulation of MODL in a schematic model of the human eye was carried out. It is found the capability of the multiorder diffractive lenses to focus polychromatic light into a segment on the optical axis with high diffraction efficiency. At each point of the segment is present each component of the spectral range, which will build a color image in combination. The paper describes the new design method of intraocular lenses with reduced chromaticism and with endless adaptation. An optical system of an eye with an intraocular lens that provides sharp vision of objects located at a distance of 700 mm to infinity is modeled.

  16. Special diffractive elements for optical trapping fabricated on optical fiber tips using the focused ion beam

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Guerreiro, A.; Viegas, J.; Jorge, P. A. S.

    2016-05-01

    In this work, spiral phase lenses and Fresnel zone lenses for beam tailoring, fabricated on the tip of optical fibers, are reported. The spiral phase lenses allow tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. Whereas, the Fresnel lenses are used as focusing systems. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The output optical intensity profiles matching the numerical simulations are presented and analyzed.

  17. Developments in Accommodating Intraocular Lenses

    Directory of Open Access Journals (Sweden)

    Zeki Tunç

    2012-07-01

    Full Text Available Technical progress in cataract surgery has decreased the incidence of severe complications in this type of surgery. The introduction of micro incision cataract surgery (MICS (sub- 2.0 mm incision allow the surgeon to achieve better postoperative control of astigmatism and higherorder aberration (HOAs with minimum induction of both. It is believed that multifocal lenses provide very successful results, however, there are limitations to these. Implantation of accommodating intraocular lenses (IOLs is an option to treat presbyopia. The IOLs work by using the continued functionality of the ciliary muscle after cataract removal. Accommodating IOLs were designed to avoid the optical side effects of multifocal IOLs. Two main design concepts exist. First, axial shift concepts rely on anterior axial movement of one or two optics creating accommodative ability. Second, curvature change designs are designed to provide significant amplitudes of accommodation with little physical displacement. Accommodative IOLs to correct astigmatism and HOAs in the future are needed. (Turk J Ophthalmol 2012; 42: 288-93

  18. Gravitational lensing of quasars

    CERN Document Server

    Eigenbrod, Alexander

    2013-01-01

    The universe, in all its richness, diversity and complexity, is populated by a myriad of intriguing celestial objects. Among the most exotic of them are gravitationally lensed quasars. A quasar is an extremely bright nucleus of a galaxy, and when such an object is gravitationally lensed, multiple images of the quasar are produced – this phenomenon of cosmic mirage can provide invaluable insights on burning questions, such as the nature of dark matter and dark energy. After presenting the basics of modern cosmology, the book describes active galactic nuclei, the theory of gravitational lensing, and presents a particular numerical technique to improve the resolution of astronomical data. The book then enters the heart of the subject with the description of important applications of gravitational lensing of quasars, such as the measurement of the famous Hubble constant, the determination of the dark matter distribution in galaxies, and the observation of the mysterious inner parts of quasars with much higher r...

  19. COSMOLOGY WITH GRAVITATIONAL LENSES

    Directory of Open Access Journals (Sweden)

    Emilio E. Falco

    2009-01-01

    Full Text Available Gravitational lenses yield a very high rate of return on observational investment. Given their scarcity, their impact on our knowledge of the universe is very signi cant. In the weak- eld limit, lensing studies are based on well-established physics and thus o er a straightforward approach to pursue many currently pressing problems of astrophysics. Examples of these are the signi cance of dark matter and the density, age and size of the universe. I present recent developments in cosmological applications of gravitational lenses, regarding estimates of the Hubble constant using strong lensing of quasars. I describe our recent measurements of time delays for the images of SDSS J1004+4112, and discuss prospects for the future utilizing synoptic telescopes, planned and under construction.

  20. Gravitational Lenses of Wormholes

    CERN Document Server

    Nandi, K K; Zhang, Y Z; Nandi, Kamal Kanti; Zakharov, Alexander V.; Zhang, Yuan-Zhong

    2006-01-01

    Gravitational lensing by traversable Lorentzian wormholes is a new possibility and is analyzed in the strong field limit. Wormhole solutions are considered in the Einstein minimally coupled theory and in the brane world model. The observables in both the theories show significant differences from those in the Schwarzschild black hole lensing. It is shown that the zero mass wormholes act as photon sinks. Some special features of the considered solutions are pointed out.

  1. Plasma surface modification of rigid contact lenses decreases bacterial adhesion.

    Science.gov (United States)

    Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing

    2013-11-01

    Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P plasma technology in contact lens surface modification.

  2. Avaliação da qualidade óptica de lentes de contato gelatinosas na correção de miopia Evaluation of optical performance of soft contact lenses in myopic correction

    Directory of Open Access Journals (Sweden)

    Marcelo Weslley Dalcoll

    2008-12-01

    ções de acuidade visual logMAR de baixo contraste, sensibilidade ao contraste, índice de Strehl, MTF e das aberrações de alta ordem.PURPOSE: To evaluate the optical performance of eyes fitted with two different soft contact lenses: Acuvue® 2 (Vistacon J&J Vision Care Inc., USA and World Vision Disposable Asférica Wave Front® (World Vision Ophthalmic, Brazil. METHODS: An interventional prospective clinical trial studied a sample of 40 myopic patients (-0.75D to -4.50D, with or without astigmatism up to -0.75D. Each patient had one eye randomized to visual performance evaluation including high and low contrast visual acuities, wavefront analysis and contrast sensitivity. RESULTS: The Nidek OPD Scan detected a residual refraction (hypercorrection for both contact lenses. High contrast visual acuity was significantly higher for World Vision soft contact lenses. Low contrast visual acuity was similar for both soft contact lenses. Contrast sensitivity improved significantly at 1.5; 3; 6 e 18 spatial frequencies for both soft contact lenses, but no difference was found between them. Regarding wavefront analysis, no difference was found between both soft contact lenses. There were not significantly differences in the Strehl indices and MTF for both soft contact lenses. CONCLUSION: World Vision Disposable Asférica Wave Front® soft contact lenses had a better performance regarding high contrast visual acuity. However, low contrast visual acuity, wavefront analysis and contrast sensitivity were similar for both soft contact lenses.

  3. The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints

    Science.gov (United States)

    Newman, Andrew B.; Smith, Russell J.; Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter

    2017-08-01

    We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high-σ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M */L using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy & van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2-3σ tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08 M ⊙. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to IMF at low stellar masses (m ≲ 0.3 M ⊙), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M */L relative to the mean matched-σ ETG. We provide the spectra used in this study to facilitate future comparisons.

  4. Polymer Compund Refractive Lenses for Hard X-ray Nanofocusing

    OpenAIRE

    Krywka, Christina; Last, Arndt; Marschall, Felix; Markus, Otto; Georgi, Sebastian; Mueller, Martin; Mohr, Jürgen

    2016-01-01

    Compound refractive lenses fabricated out of SU-8 negative photoresist have been used to generate a nanofocused, i.e. sub-μm sized X-ray focal spot at an X-ray nanodiffraction setup. X-ray microscopy and X-ray diffraction techniques have conceptually different demands on nanofocusing optical elements and so with the application of X-ray nanodiffraction in mind, this paper presents the results of an initial characterization of polymer lenses used as primary focusin...

  5. Gravitational Lensing & Stellar Dynamics

    CERN Document Server

    Koopmans, L V E

    2005-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-anisotropy degeneracies. Second, observational results are presented from the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS) Survey collaborations to illustrate this new methodology in constraining the dark and stellar density profiles, and mass structure, of early-type galaxies to redshifts of unity.

  6. Comparative study on optical performance and visual outcomes between two diffractive multifocal lenses: AMO Tecnis ® ZMB00 and AcrySof ® IQ ReSTOR ® Multifocal IOL SN6AD1

    Directory of Open Access Journals (Sweden)

    Mario Augusto Pereira Dias Chaves

    2016-06-01

    Full Text Available ABSTRACT Purpose: To compare the optical performance and visual outcomes between two diffractive multifocal lenses: AMO Tecnis® ZMB00 and AcrySof® ReSTOR® SN6AD1. Methods: This prospective, non-randomized comparative study included the assessment of 74 eyes in 37 patients referred for cataract surgery and candidates for multifocal intraocular lens implants. Exclusion criteria included existence of any other eye disease, previous eye surgery, high axial myopia, preoperative corneal astigmatism of >1.00 cylindrical diopter (D, and intraoperative or postoperative complications. Ophthalmological evaluation included the measurement of uncorrected distance visual acuity (UDVA, corrected distance visual acuity (CDVA, distance-corrected near visual acuity (DCNVA, and distance-corrected intermediate visual acuity (DCIVA, with analysis of contrast sensitivity (CS, wavefront, and visual defocus curve. Results: Postoperative UDVA was 0.09 and 0.08 logMAR in the SN6AD1 and ZMB00 groups, respectively (p=0.868; postoperative CDVA was 0.04 and 0.02 logMAR in the SN6AD1 and ZMB00 groups, respectively (p=0.68; DCIVA was 0.17 and 0.54 logMAR in the SN6AD1 and ZMB00 groups, respectively (p=0.000; and DCNVA was 0.04 and 0.09 logMAR in the SN6AD1 and ZMB00 groups, respectively (p=0.001. In both cases, there was an improvement in the spherical equivalent and UDVA (p<0.05. Under photopic conditions, the SN6AD1 group had better CS at low frequencies without glare (p=0.04; however, the ZMB00 group achieved better sensitivity at high frequencies with glare (p=0.003. The SN6AD1 and ZMB00 lenses exhibited similar behavior for intermediate vision, according to the defocus curve; however, the ZMB00 group showed a shorter reading distance than the SN6AD1 group. There were no significant differences regarding aberrometry between the two groups. Conclusion: Both lenses promoted better quality of vision for both long and short distances and exhibited a similar behavior for

  7. Automation Enhancement of Multilayer Laue Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Lauer K. R.; Conley R.

    2010-12-01

    X-ray optics fabrication at Brookhaven National Laboratory has been facilitated by a new, state of the art magnetron sputtering physical deposition system. With its nine magnetron sputtering cathodes and substrate carrier that moves on a linear rail via a UHV brushless linear servo motor, the system is capable of accurately depositing the many thousands of layers necessary for multilayer Laue lenses. I have engineered a versatile and automated control program from scratch for the base system and many subsystems. Its main features include a custom scripting language, a fully customizable graphical user interface, wireless and remote control, and a terminal-based interface. This control system has already been successfully used in the creation of many types of x-ray optics, including several thousand layer multilayer Laue lenses.Before reaching the point at which a deposition can be run, stencil-like masks for the sputtering cathodes must be created to ensure the proper distribution of sputtered atoms. Quality of multilayer Laue lenses can also be difficult to measure, given the size of the thin film layers. I employ my knowledge of software and algorithms to further ease these previously painstaking processes with custom programs. Additionally, I will give an overview of an x-ray optic simulator package I helped develop during the summer of 2010. In the interest of keeping my software free and open, I have worked mostly with the multiplatform Python and the PyQt application framework, utilizing C and C++ where necessary.

  8. Replica casting technique for micro Fresnel lenses characterization

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    The available measuring techniques are not always suitable for the characterization of optical surfaces such as Fresnel lenses or polished specimens. A way to overcome these challenges is to reproduce the optical components surface using a polymer casting method and to measure the replicated surf...

  9. Scanning Miniature Microscopes without Lenses

    Science.gov (United States)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the

  10. Gravitational lensing & stellar dynamics

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B

    2006-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-ani

  11. Gravitational lensing & stellar dynamics

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B

    2006-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and

  12. Gravitational lensing & stellar dynamics

    NARCIS (Netherlands)

    Koopmans, L. V. E.; Mamon, GA; Combes, F; Deffayet, C; Fort, B

    2006-01-01

    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-ani

  13. Obituary--rigid contact lenses.

    Science.gov (United States)

    Efron, Nathan

    2010-10-01

    Scleral and corneal rigid lenses represented 100 per cent of the contact lens market immediately prior to the invention of soft lenses in the mid-1960s. In the United Kingdom today, rigid lenses comprise 2 per cent of all new lens fits. Low rates of rigid lens fitting are also apparent in 27 other countries which have recently been surveyed. Thus, the 1998 prediction of the author that rigid lenses--also referred to as 'rigid gas permeable' (RGP) lenses or 'gas permeable' (GP) lenses--would be obsolete by the year 2010 has essentially turned out to be correct. In this obituary, the author offers 10 reasons for the demise of rigid lens fitting: initial rigid lens discomfort; intractable rigid lens-induced corneal and lid pathology; extensive soft lens advertising; superior soft lens fitting logistics; lack of rigid lens training opportunities; redundancy of the rigid lens 'problem solver' function; improved soft toric and bifocal/varifocal lenses; limited uptake of orthokeratology; lack of investment in rigid lenses; and the emergence of aberration control soft lenses. Rigid lenses are now being fitted by a minority of practitioners with specialist skills/training. Certainly, rigid lenses can no longer be considered as a mainstream form of contact lens correction. May their dear souls (bulk properties) rest in peace.

  14. Diffractive lenses recorded in absorbent photopolymers.

    Science.gov (United States)

    Fernández, R; Gallego, S; Márquez, A; Francés, J; Navarro-Fuster, V; Pascual, I

    2016-01-25

    Photopolymers can be appealing materials for diffractive optical elements fabrication. In this paper, we present the recording of diffractive lenses in PVA/AA (Polyvinyl alcohol acrylamide) based photopolymers using a liquid crystal device as a master. In addition, we study the viability of using a diffusion model to simulate the lens formation in the material and to study the influence of the different parameters that govern the diffractive formation in photopolymers. Once we control the influence of each parameter, we can fit an optimum recording schedule to record each different diffractive optical element with the optimum focalization power.

  15. Compound lensing: Einstein Zig-Zags and high multiplicity lensed images

    CERN Document Server

    Collett, Thomas E

    2015-01-01

    Compound strong gravitational lensing is a rare phenomenon, but a handful of such lensed systems are likely to be discovered in forthcoming surveys. In this work, we use a double SIS lens model to analytically understand how the properties of the system impact image multiplicity for the final source. We find that up to six images of a background source can form, but only if the second lens is multiply imaged by the first and the Einstein radius of the second lens is comparable to, but does not exceed that of the first. We then build a model of compound lensing masses in the Universe, using SIE lenses, and assess how the optical depth for multiple imaging by a galaxy-galaxy compound lens varies with source redshift. For a source redshift of 4, we find optical depths of $6 \\times 10^{-6}$ for multiple imaging and $5 \\times 10^{-8}$ for multiplicity of 6 or greater. We find that extreme magnifications are possible, with magnifications of 100 or more for $6 \\times 10^{-9}$ of $z=10$ sources with 0.1 kpc radii. We...

  16. The Search for Lensed Supernovae

    Science.gov (United States)

    Kohler, Susanna

    2017-01-01

    Lawrence Berkeley National Laboratory have a plan. In a recent publication, Daniel Goldstein and Peter Nugent propose the following clever procedure to apply to data from transient surveys:From the data, select only the supernova candidates that appear to be hosted by quiescent elliptical galaxies.Use the host galaxies photometric redshifts to calculate absolute magnitudes for the supernovae in this sample.Select from this only the supernovae above the maximum absolute magnitude expected for Type Ia supernovae.Supernovae selected in this way are likely tricking us: their apparent hosts are probably not their hosts at all! Instead, the supernova is likely behind the galaxy, and the galaxy is just lensing its light. Using this strategy therefore allows us to select supernova candidates that are most likely to be distant, gravitationally lensed Type Ia supernovae.Redshift distribution of the multiply-imaged Type Ia supernovae the authors estimate will be detectable by ZTF and LSST in their respective 3- and 10-year survey durations. [Goldstein Nugent 2017]A convenient aspect of Goldstein and Nugents technique is that we dont need to be able to resolve the lensed multiple images for discovery. This is useful, because ground-based optical surveys dont have the resolution to see the separate images yet theyll still be useful for discovering multiply-imaged supernovae.Future ProspectsHow useful? Goldstein and Nugent use Monte Carlo simulations to estimate how many multiply-imaged Type Ia supernovae will be discoverable with future survey projects. They find that theZwicky Transient Facility (ZTF), which will begin operating this year, should be able to find up to 10 using this technique in a 3-year search. The Large Synoptic Survey Telescope (LSST), which should start operating in 2022, will be able to find around 500 multiply-imaged Type Ia supernovae in a 10-year survey.CitationDaniel A. Goldstein and Peter E. Nugent 2017 ApJL 834 L5. doi:10.3847/2041-8213/834/1/L5

  17. Influence of gravitational lensing on gravitational radiation

    Science.gov (United States)

    Zakharov, A.

    In a paper by Wang, Turner and Stebbins (PRL, Phys. Rev. Lett. 77 (1996) p.2875) an influence of gravitational lensing on increasing an estimated rate of gravitational radiation sources was considered. We show that the authors used the incorrect model for this case and thus they gave overestimated rate of possible events for possible sources of gravitational radiation for the advanced LIGO detector. We show also that if we would use a more correct model of gravitational lensing, one could conclude that more strong influence on increasing rate of estimated events of gravitational radiation for advanced LIGO detector could give gravitational lenses of galactic masses but not gravitational lenses of stellar masses as Wang et al. concluded. Moreover, binary gravitational lenses could give essential distortion of gravitational wave form template, especially gravitational wave template of periodic sources and the effect could be significant for templates of quasi-periodic sources which could be detected by a future gravitational wave space detector like LISA. Recently, the Galactic center was considered by Ruffa (ApJ, 1999) as a gravitational lens that focuses a gravitational wave energy to the Earth. The author used the wave optic approximation to solve this problem and concluded that amplification due to the gravitational lens focusing could be very huge. The conclusion is based on the perfect location of the gravitational wave source, namely the source lies very close to the line passing through the Earth and the gravitational lens (the Galactic Center), therefore the probability of the huge magnification of gravitational wave sources is negligible.

  18. Experimental and theoretical study of bragg-Fresnel optics etched on multilayer structures. Application: lenses for X-Ray imaging; Etude experimentale et theorique d`optiques de bragg-Fresnel gravees sur miroirs interferentiels multicouches. Application: lentilles pour l`imagerie X

    Energy Technology Data Exchange (ETDEWEB)

    Soullie, G.

    1996-10-01

    This work concerns the study of a new type of X-ray focusing optics known as Bragg-Fresnel lenses developed for imaging in the X and X-UV range. These optics, etched on multilayer structure, combine the focusing properties of zone plate with the Bragg reflection of multilayer used like support. Using synchrotron sources and a plasma source produced by a laser, we tested the efficiency and the spatial resolution of these lenses. With a monochromatic beam, we first obtained the image of a object by using the first order diffraction of an elliptical off-axis Bragg-Fresnel lens. By using only one part of a lens, the superposition of different diffraction orders in focal plane can be avoided, thus improving the image contrast. In order to evaluate the chromatic aberrations of these lenses, we have summed on the same image, three exposures at different energies in the band pass of the multilayer. To reduce these kind of aberrations, we used a system composed of two off-axis lenses. To simplify the alignment, we tested an elliptical off-axis lens associated with a lamellar grating. Thus we are able to validate the theoretical approximation of an off-axis Bragg-Fresnel lens to a variable spaced grating. Finally, to show the perturbation brought by the zeroth order, we successively imaged a laser plasma source with a centred and an off-axis elliptical lenses. As with the synchrotron source, a set of images of a test object enabled us to improve the spatial resolution. (author).

  19. Pulsar lensing geometry

    CERN Document Server

    Liu, Siqi; Macquart, J-P; Brisken, Walter; Deller, Adam

    2015-01-01

    Our analysis of archival VLBI data of PSR 0834+06 revealed that its scintillation properties can be precisely modelled using the inclined sheet model (Pen & Levin 2014), resulting in two distinct lens planes. These data strongly favour the grazing sheet model over turbulence as the primary source of pulsar scattering. This model can reproduce the parameters of the observed diffractive scintillation with an accuracy at the percent level. Comparison with new VLBI proper motion results in a direct measure of the ionized ISM screen transverse velocity. The results are consistent with ISM velocities local to the PSR 0834+06 sight-line (through the Galaxy). The simple 1D structure of the lenses opens up the possibility of using interstellar lenses as precision probes for pulsar lens mapping, precision transverse motions in the ISM, and new opportunities for removing scattering to improve pulsar timing. We describe the parameters and observables of this double screen system. While relative screen distances can i...

  20. Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces

    CERN Document Server

    Aieta, Francesco; Kats, Mikhail A; Yu, Nanfang; Blanchard, Romain; Gaburro, Zeno; Capasso, Federico

    2012-01-01

    The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength spaced optical antennas. The lenses and axicons consist of radial distributions of V-shaped nanoantennas that generate respectively spherical wavefronts and non-diffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high numerical aperture lenses such as flat microscope objectives.

  1. Dioptrics of the facet lenses in the dorsal rim area of the cricket Gryllus bimaculatus

    NARCIS (Netherlands)

    Ukhanov, KY; Leertouwer, HL; Gribakin, FG; Stavenga, DG

    1996-01-01

    1. The optics of the corneal facet lenses from the dorsal rim area (DRA) and from the dorso-lateral areas (DA) of the compound eye of the cricket Gryllus bimaculatus were studied. 2. The DRA of the cricket eye contains quite normally shaped facet lenses. The diameter of the facet lens in the DA is 2

  2. 基于数字图像处理技术的透镜焦距测量%Focal length measurement of optical lenses based on digital image processing

    Institute of Scientific and Technical Information of China (English)

    张振久; 赵振宇; 吴新民

    2014-01-01

    针对光学透镜的焦距和后焦距的测量问题,设计了一套由平行光管和自准直仪组成的检测系统。基于数字图像处理技术,解决了测量系统中的自动对焦和双缝图像间距检测两个关键技术问题。实验结果表明,焦距的测量误差小于0.14%,后焦距的测量误差小于0.21%,能够满足一般工业检测需求。%A measurement system consisting of collimator and autocollimator is designed in this study for measuring the focal length and back focal length of optical lenses. The key techniques, autofocusing and distance determination of the double-slit image, are realized by using digital image processing. The experimental results indicate that the measurement error of focal length and back focal length are less than 0.14%and 0.21%, respectively.

  3. A Unified Lense-Thirring Precession Model for Optical and X-Ray Quasi-periodic Oscillations in Black Hole Binaries

    NARCIS (Netherlands)

    Veledina, A.; Poutanen, J.; Ingram, A.

    2013-01-01

    Recent observations of accreting black holes reveal the presence of quasi-periodic oscillations (QPO) in the optical power density spectra. The corresponding oscillation periods match those found in X-rays, implying a common origin. Among the numerous suggested X-ray QPO mechanisms, some may also wo

  4. Cross-correlating Planck CMB lensing with SDSS: Lensing-lensing and galaxy-lensing cross-correlations

    CERN Document Server

    Singh, Sukhdeep; Brownstein, Joel R

    2016-01-01

    We present first results from cross-correlating Planck CMB lensing maps with the Sloan Digital Sky Survey (SDSS) galaxy lensing shape catalog and BOSS galaxy catalogs. For galaxy position vs. CMB lensing cross-correlations, we measure the convergence signal around the galaxies in configuration space, using the BOSS LOWZ ($z\\sim0.30$) and CMASS ($z\\sim0.57$) samples. With fixed Planck 2015 cosmology, doing a joint fit with the galaxy clustering measurement, for the LOWZ (CMASS) sample we find a galaxy bias $b_g=1.75\\pm0.04$ ($1.95\\pm 0.02$) and galaxy-matter cross-correlation coefficient $r_{cc}=1.0\\pm0.2$ ($0.8\\pm 0.1$) using $20lensing. Using the same scales and including the galaxy-galaxy lensing measurements, we constrain $\\Omega_m=0.284\\pm0.024$ and relative calibration bias between the CMB lensing and galaxy lensing to be $b_\\gamma=0.82^{+0.15}_{-0.14}$. The combination of galaxy lensing and CMB lensing also allows us to measure the cosmolo...

  5. Probing the accelerating Universe with radio weak lensing in the JVLA Sky Survey

    CERN Document Server

    Brown, M L; Amara, A; Bacon, D J; Battye, R A; Bell, M R; Beswick, R J; Birkinshaw, M; Böhm, V; Bridle, S; Browne, I W A; Casey, C M; Demetroullas, C; lin, T Enß; Ferreira, P G; Garrington, S T; Grainge, K J B; Gray, M E; Hales, C A; Harrison, I; Heavens, A F; Heymans, C; Hung, C L; Jackson, N J; Jarvis, M J; Joachimi, B; Kay, S T; Kitching, T D; Leahy, J P; Maartens, R; Miller, L; Muxlow, T W B; Myers, S T; Nichol, R C; Patel, P; Pritchard, J R; Raccanelli, A; Refregier, A; Richards, A M S; Riseley, C; Santos, M G; Scaife, A M M; Schäfer, B M; Schilizzi, R T; Smail, I; Starck, J -L; Szepietowski, R M; Taylor, A N; Whittaker, L; Wrigley, N; Zuntz, J

    2013-01-01

    We outline the prospects for performing pioneering radio weak gravitational lensing analyses using observations from a potential forthcoming JVLA Sky Survey program. A large-scale survey with the JVLA can offer interesting and unique opportunities for performing weak lensing studies in the radio band, a field which has until now been the preserve of optical telescopes. In particular, the JVLA has the capacity for large, deep radio surveys with relatively high angular resolution, which are the key characteristics required for a successful weak lensing study. We highlight the potential advantages and unique aspects of performing weak lensing in the radio band. In particular, the inclusion of continuum polarisation information can greatly reduce noise in weak lensing reconstructions and can also remove the effects of intrinsic galaxy alignments, the key astrophysical systematic effect that limits weak lensing at all wavelengths. We identify a VLASS "deep fields" program (total area ~10-20 square degs), to be con...

  6. CALCULATION AND RESEARCH OF CONTACT OPHTHALMIC DUAL APPLICATION LENSES

    Directory of Open Access Journals (Sweden)

    D. N. Cherkasova

    2015-05-01

    Full Text Available Subject of research. Algorithm for calculation of contact ophthalmic lenses for dual application has been suggested based on unified approach for their calculation. The algorithm has been tested on the composition of Goldmann ophthalmic lenses and Panfundoscope lens optical systems. Method. The condition of mutual unambiguous orientation of patient’s eye and instruments is performed at the initial calculation step by face mounting and movement of coordinate table with optical head. Then such type of patient's eye optical system model is selected that the lens would be combined with the front surface of eye cornea optical system. Pupil of patient eye is under anesthesia. At the final calculation step we determine the functions of optical lens image quality and their values based on medical and technical requirements for the components of the complex system. Main results. The algorithm for ophthalmic lenses calculation has been suggested and its correctness has been proved practically on the example of two basic models in the group of such type lenses being applied in practice as a part of complex system with ophthalmic laser coagulators. Optical calculation of Goldmann ophthalmic contact lenses and Panfundoscope is presented. The method of neutralization is optimal for Goldmann lenses. The first component in Panfundoscope operates the position of object planes whereas the second component operates the position of complex system with ophthalmocoagulator's pupils. Computer modeling of complex system "Computer model of eye-ophthalmic lens" in ZEMAX confirmed the correctness of calculation algorithm in which the criteria of diffraction image quality has been used. Application possibility of simplified computer eye model called "Reduced eye" by Verbitskiy has been demonstrated. Practical relevance. The general scientific approach to the problem of synthesis, calculation and research of complex system with contact ophthalmic lenses for diagnostics

  7. Equatorial potassium currents in lenses.

    Science.gov (United States)

    Wind, B E; Walsh, S; Patterson, J W

    1988-02-01

    Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K

  8. Direct fabrication of silicone lenses with 3D printed parts

    Science.gov (United States)

    Kamal, Tahseen; Watkins, Rachel; Cen, Zijian; Lee, W. M.

    2016-11-01

    The traditional process of making glass lenses requires grinding and polishing of the material which is a tedious and sensitive process. Existing polymer lens making techniques, such as high temperature reflow techniques, have been significantly simple lens making processes which cater well to customer industry. Recently, the use of UV-curing liquid lens has ushered in customized lens making (Printed Optics), but contains undesirable yellowing effects. Polydimethylsiloxane (PDMS) is a transparent polymer curable at low temperature (3D printed tools. These silicone lenses have attributes such as smoothness of curvature, resilience to temperature change, low optical aberrations, high transparency (>95%) and minimal aging (yellowing). Moreover, these lenses have a range of focal lengths (3.5 mm to 14.5 mm as well as magnifications (up to 160X). In addition, we created smartphone attachment to turn smart device (tablet or smartphone) into a low-powered microscope. In future we plan to extend this method to produce microlens array.

  9. Roulettes: A weak lensing formalism for strong lensing - II. Derivation and analysis

    CERN Document Server

    Clarkson, Chris

    2016-01-01

    We present a new extension of the weak lensing formalism capable of describing strongly lensed images. This paper accompanies Paper I, where we provided a condensed overview of the approach and illustrated how it works. Here we give all the necessary details, together with some more explicit examples. We solve the non-linear geodesic deviation equation order-by-order, keeping the leading derivatives of the optical tidal matrix, giving rise to a series of maps from which a complete strongly lensed image is formed. The family of maps are decomposed by separating the trace and trace-free parts of each map. Each trace-free tensor represents an independent spin mode, which distort circles into a variety of roulettes in the screen-space. It is shown how summing this series expansion allows us to create large strongly lensed images in regions where convergence, shear and flexion are not sufficient. This paper is a detailed exposition of Paper I which presents the key elements of the subject matter in a wider context...

  10. Roulettes: a weak lensing formalism for strong lensing: II. Derivation and analysis

    Science.gov (United States)

    Clarkson, Chris

    2016-12-01

    We present a new extension of the weak lensing formalism capable of describing strongly lensed images. This paper accompanies Paper I (Clarkson C 2016 Class. Quantum Grav. 33 16LT01), where we provide a condensed overview of the approach and illustrated how it works. Here we give all the necessary details, together with some more explicit examples. We solve the nonlinear geodesic deviation equation order-by-order, keeping the leading derivatives of the optical tidal matrix, giving rise to a series of maps from which a complete strongly lensed image is formed. The family of maps are decomposed by separating the trace and trace-free parts of each map. Each trace-free tensor represents an independent spin mode, which distorts circles into a variety of roulettes in the screen-space. It is shown how summing this series expansion allows us to create large strongly lensed images in regions where convergence, shear and flexion are not sufficient. This paper is a detailed exposition of Paper I [1], which presents the key elements of the subject matter in a wider context.

  11. Roulettes: A weak lensing formalism for strong lensing - I. Overview

    CERN Document Server

    Clarkson, Chris

    2016-01-01

    We present a new perspective on gravitational lensing. We describe a new extension of the weak lensing formalism capable of describing strongly lensed images. By integrating the non-linear geodesic deviation equation, the amplification matrix of weak lensing is generalised to a sum over independent amplification tensors of increasing rank. We show how an image distorted by a generic lens may be constructed as a sum over `roulettes', which are the natural curves associated with the independent spin modes of the amplification tensors. Highly distorted images can be constructed even for large sources observed near or within the Einstein radius of a lens where the shear and convergence are large. The amplitude of each roulette is formed from a sum over appropriate derivatives of the lensing potential. Consequently, measuring these individual roulettes for images around a lens gives a new way to reconstruct a strong lens mass distribution without requiring a lens model. This formalism generalises the convergence, ...

  12. RHIC electron lenses upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Altinbas, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Binello, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Costanzo, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Hock, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mi, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Miller, T. A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Pikin, A. I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Samms, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Shrey, T. C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tan, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; White, S. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    In the Relativistic Heavy Ion Collider (RHIC) 100 GeV polarized proton run in 2015, two electron lenses were used to partially compensate for the head-on beam-beam effect for the first time. Here, we describe the design of the current electron lens, detailing the hardware modifications made after the 2014 commissioning run with heavy ions. A new electron gun with 15-mm diameter cathode is characterized. The electron beam transverse profile was measured using a YAG screen and fitted with a Gaussian distribution. During operation, the overlap of the electron and proton beams was achieved using the electron backscattering detector in conjunction with an automated orbit control program.

  13. Design and verifications of an eye model fitted with contact lenses for wavefront measurement systems

    Science.gov (United States)

    Cheng, Yuan-Chieh; Chen, Jia-Hong; Chang, Rong-Jie; Wang, Chung-Yen; Hsu, Wei-Yao; Wang, Pei-Jen

    2015-09-01

    Contact lenses are typically measured by the wet-box method because of the high optical power resulting from the anterior central curvature of cornea, even though the back vertex power of the lenses are small. In this study, an optical measurement system based on the Shack-Hartmann wavefront principle was established to investigate the aberrations of soft contact lenses. Fitting conditions were micmicked to study the optical design of an eye model with various topographical shapes in the anterior cornea. Initially, the contact lenses were measured by the wet-box method, and then by fitting the various topographical shapes of cornea to the eye model. In addition, an optics simulation program was employed to determine the sources of errors and assess the accuracy of the system. Finally, samples of soft contact lenses with various Diopters were measured; and, both simulations and experimental results were compared for resolving the controversies of fitting contact lenses to an eye model for optical measurements. More importantly, the results show that the proposed system can be employed for study of primary aberrations in contact lenses.

  14. Fluid Lensing and Applications to Remote Sensing of Aquatic Environments

    Science.gov (United States)

    Chirayath, Ved

    2017-01-01

    The use of fluid lensing technology on UAVs is presented as a novel means for 3D imaging of aquatic ecosystems from above the water's surface at the centimeter scale. Preliminary results are presented from airborne fluid lensing campaigns conducted over the coral reefs of Ofu Island, American Samoa (2013) and the stromatolite reefs of Shark Bay, Western Australia (2014), covering a combined area of 15km2. These reef ecosystems were revealed with centimetre-scale 2D resolution, and an accompanying 3D bathymetry model was derived using fluid lensing, Structure from Motion and UAV position data. Data products were validated from in-situ survey methods including underwater calibration targets, depth measurements and millimetre-scale high-dynamic range gigapixel photogrammetry. Fluid lensing is an experimental technology that uses water transmitting wavelengths to passively image underwater objects at high-resolution by exploiting time-varying optical lensing events caused by surface waves. Fluid lensing data are captured from low-altitude, cost-effective electric UAVs to achieve multispectral imagery and bathymetry models at the centimetre scale over regional areas. As a passive system, fluid lensing is presently limited by signal-to-noise ratio and water column inherent optical properties to approximately 10 m depth over visible wavelengths in clear waters. The datasets derived from fluid lensing present the first centimetre-scale images of a reef acquired from above the ocean surface, without wave distortion. The 3D multispectral data distinguish coral, fish and invertebrates in American Samoa, and reveal previously undocumented, morphologically distinct, stromatolite structures in Shark Bay. These findings suggest fluid lensing and multirotor electric drones represent a promising advance in the remote sensing of aquatic environments at the centimetre scale, or 'reef scale' relevant to the conservation of reef ecosystems. Pending further development and validation of

  15. Halo-lensing or Self-lensing? Locating the MACHO Lenses

    Science.gov (United States)

    Nelson, C. A.; Cook, K. H.; Popowski, P.; Drake, A. J.; Marshall, S. L.; Griest, K.; Vandehei, T.; Alcock, C.; Allsman, R. A.; Axelrod, T. S.; Freeman, K. C.; Peterson, B. A.; Alves, D. R.; Becker, A. C.; Stubbs, C. W.; Tomaney, A. B.; Bennett, D. P.; Geha, M.; Lehner, M. J.; Minniti, D.; Pratt, M. R.; Quinn, P. J.; Sutherland, W.; Welch, D.; MACHO Collaboration

    2000-12-01

    There are two principle geometrical arrangements which may explain Large Magellanic Cloud (LMC) microlensing: a) halo-lensing, in which the lensed object is part of the Milky Way galactic halo and b) self-lensing, in which the lensed object is part of the LMC. Self-lensing in turn may be broken into two categories: LMC-LMC self-lensing, in which both the source and the lens reside in the LMC and background self-lensing, in which the lens is a star in the LMC and the source star is drawn from some population behind the LMC. Models suggest the contribution of LMC-LMC self-lensing is small, so the nature of LMC microlensing may be estimated from the location of the microlensing source stars. If the source stars are in the LMC then microlensing is dominated by halo-lensing; conversely if the source stars are located behind the LMC then microlensing is dominated by self-lensing. Since background populations reside behind the LMC, we expect them to be both redder and fainter then the average population of the LMC. We attempt to determine if the MACHO source stars come from such a background population by comparing the HST color-magnitude diagram (CMD) of source stars to the CMD of the average population of the LMC and looking for the effects of extra reddening and extinction. The microlensing source stars are identified by deriving accurate centroids in the ground-based MACHO images using difference image analysis (DIA) and then transforming the DIA coordinates to the HST frame. Preliminary results suggest that halo-lensing accounts for ≳ 40% of the observed microlensing results. Support provided by NASA, DOE, NSF and NPSC.

  16. Comparison between liquid and solid tunable focus lenses

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Alvarado, A; Cruz-Martinez, V M [Universidad Tecnologica de la Mixteca, Carre. Acatlima Km 2.5 Huajuapan de Leon Oaxaca (Mexico); Vazquez-Montiel, S; Munoz-Lopez, J; Diaz-Gonzalez, G [Instituto Nacional de Astrofisica, Optica y Electronica Luis Enrique Erro 1, Tonantzintla Puebla (Mexico); Campos-Garcia, M, E-mail: santiago@mixteco.utm.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-186, 04510, D.F. Mexico (Mexico)

    2011-01-01

    Nowadays more reports in the use of tunable lenses are reported, it is due to the benefits they offer in optical systems design. A tunable lens is an optical system that can focus on a range of positions by changing dynamically one of its geometric parameters. There are several types of tunable lenses, the most known types are the liquid, the solid elastic, with variable refractive index, and lenses that use a dielectric medium. This paper presents the analysis and opto-mechanical design of two tunable lenses, a liquid lens and another Solid Elastic Lens (SEL). Both lenses are made in mounting aluminium and polydimethylsiloxane (PDMS) as refractor medium, the liquid lens use two elastic membranes containing a liquid medium between them while the SEL only use PDMS material as body of the lens (medium refractor). We describe the opto-mechanical performance of both types of lens highlighting the main features of each. Finally, results of a opto-functional comparison between these prototypes are showed.

  17. Wavefront shaping for opaque cylindrical lenses

    CERN Document Server

    Di Battista, Diego; Ancora, Daniele; Lemonaki, Krystalia; Liapis, Evangelos; Tzortzakis, Stelios; Zacharakis, Giannis

    2016-01-01

    Wavefront shaping has revolutionized the concepts of optical imaging and focusing. Contrary to what was believed, strong scattering in the optical paths can be exploited in favor of light focusing through turbid media and ultimately improve optical imaging and light manipulation capabilities. The use of light shapers and appropriately engineered scattering structures, i.e. opaque lenses enables the production of nano-scale confined foci and of extended fields of view. Exploiting this concept we fabricate configurable scattering structures by direct femtosecond laser writing. The properly shaped light trespassing the customized structure, a photonic lattice of parallel rods, forms a light-sheet at user defined positions. We demonstrate that our technique enables light-sheets with sub-micron resolution and extended depth of focus, a significant advantage when compared to the existing free space systems. Moreover, our approach permits to focus light of different wavelengths onto the same defined position without...

  18. Faint Submillimeter Galaxies Behind Lensing Clusters

    Science.gov (United States)

    Hsu, Li-Yen; Lauchlan Cowie, Lennox; Barger, Amy J.; Desai, Vandana; Murphy, Eric J.

    2017-01-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. Observations of massive cluster fields are the best way to explore this faint submillimeter population, thanks to gravitational lensing effects. We have been undertaking a lensing cluster survey with the SCUBA-2 camera on the James Clerk Maxwell Telescope to map nine galaxy clusters, including the northern five clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array and the Very Large Array to determine the accurate positions of our detected sources. Our observations have discovered high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies. Some of these galaxies are still undetected in deep optical and near-infrared images. These results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  19. The optical correction of microphthalmos with rigid gas-permeable contact lenses%透气硬性角膜接触镜矫治先天性小眼球屈光不正

    Institute of Scientific and Technical Information of China (English)

    李军; 亢晓丽; 李海燕

    2010-01-01

    目的 分析先天性小眼球的屈光参数特点,观察透气硬性角膜接触镜(rigid gas-permeable contactlens,RGP)矫治先天性小眼球的屈光不正的效果,并探讨验配注意事项.方法 对视光门诊确诊先天性小眼球的患者7例14只眼,测量眼轴长度、前房深度和角膜曲率,检影验光和主觉验光,并记录裸眼视力(uncorrected visual acuity,UCVA)和框架眼镜的最佳矫正视力(best spectacle corrected visual acuity,SP-VA),配戴特殊设计的试戴镜,荧光素染色评价配适状态,片上验光追加度数,订制RGP,检查戴RGP的最佳矫正视力(best RGP-corrected visual acuity,RGP-VA)、配适情况,并随访观察.结果 14只先天性小眼球的平均角膜曲率半径(6.93±0.27)mm,前房深度(2.46±0.23)mm,眼轴长度(15.67±0.59)mm,验光度数(+17.29±3.52)D,RGP的平均基弧(6.92±0.19)mm,屈光度(+21.91±4.66)D.全部患者的RGP-VA比UCVA都有显著提高.RGP-VA与SP-VA相当.平均随访时间为20个月(7~29月),镜片配适良好,患者均能坚持全天配戴,未发生与角膜接触镜相关的并发症.结论 先天性小眼球的屈光参数显著不同于正常眼球,角膜异常弯曲、前房浅、眼轴短.屈光呈超高度远视,均伴有弱视.RGP是有效的光学矫正手段.为确保订制的RGP参数准确,需要专用的RGP试戴镜.%Objective To analyze the optical parameters of microphthalmos,to observe the effect of optical correction of microphthalmos with rigid gas-permeable contact lenses(RGP),and to discuss the fitting method and cautions.Methods Fourteen eyes of 7 patients with microphthalmos from optometry clinic were fitted with RGP after ocular axis,anterior chamber depth (ACD),corneal curvature,retinoscopy and subjective refraction examined.Uncorrected visual acuity (UCVA),best spectacle-corrected visual acuity (SP-VA) was recorded.Specially designed trial lenses were used,followed by fluorescein pattern evaluation and over-refraction.Best RGP

  20. Modern Surgical Treatment of Congenital Subluxated Lenses

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    Traditional surgical management of subluxated lenses is usuallyassociated with a high incidence of operative and postoperative complicationand a poor visual outcome.We treated a series of 14 patients(26 eyes)whose visual acuity could not be improved with optical correction(phakic oraphakic)with modern microsurgery and automated suction-cutting devices.Preoperative visual acuity ranged from 0.05 to 0.3.Improvement in post-opera-tive visual acuity was documented in all operated eyes,ranging from 0.4 to 1....

  1. Roulettes: a weak lensing formalism for strong lensing: I. Overview

    Science.gov (United States)

    Clarkson, Chris

    2016-08-01

    We present a new perspective on gravitational lensing. We describe a new extension of the weak lensing formalism capable of describing strongly lensed images. By integrating the nonlinear geodesic deviation equation, the amplification matrix of weak lensing is generalised to a sum over independent amplification tensors of increasing rank. We show how an image distorted by a generic lens may be constructed as a sum over ‘roulettes’, which are the natural curves associated with the independent spin modes of the amplification tensors. Highly distorted images can be constructed even for large sources observed near or within the Einstein radius of a lens where the shear and convergence are large. The amplitude of each roulette is formed from a sum over appropriate derivatives of the lensing potential. Consequently, measuring these individual roulettes for images around a lens gives a new way to reconstruct a strong lens mass distribution without requiring a lens model. This formalism generalises the convergence, shear and flexion of weak lensing to arbitrary order, and provides a unified bridge between the strong and weak lensing regimes. This overview paper is accompanied by a much more detailed paper II, arXiv:1603.04652.

  2. Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew

    2009-01-29

    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.

  3. LENSED: a code for the forward reconstruction of lenses and sources from strong lensing observations

    Science.gov (United States)

    Tessore, Nicolas; Bellagamba, Fabio; Metcalf, R. Benton

    2016-12-01

    Robust modelling of strong lensing systems is fundamental to exploit the information they contain about the distribution of matter in galaxies and clusters. In this work, we present LENSED, a new code which performs forward parametric modelling of strong lenses. LENSED takes advantage of a massively parallel ray-tracing kernel to perform the necessary calculations on a modern graphics processing unit (GPU). This makes the precise rendering of the background lensed sources much faster, and allows the simultaneous optimization of tens of parameters for the selected model. With a single run, the code is able to obtain the full posterior probability distribution for the lens light, the mass distribution and the background source at the same time. LENSED is first tested on mock images which reproduce realistic space-based observations of lensing systems. In this way, we show that it is able to recover unbiased estimates of the lens parameters, even when the sources do not follow exactly the assumed model. Then, we apply it to a subsample of the Sloan Lens ACS Survey lenses, in order to demonstrate its use on real data. The results generally agree with the literature, and highlight the flexibility and robustness of the algorithm.

  4. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Technology (Revised) (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Carloni, J. D.; Pankow, J. W.; Gjersing, E. L.; To, B.; Packard, C. E.; Kennedy, C. E.; Kurtz, S. R.

    2012-01-01

    Concentrating photovoltaic (CPV) technology recently gained interest based on its expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems employ Fresnel lenses composed of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density on the cell. The optical and mechanical durability of these lenses, however, is not well established relative to the desired surface life of 30 years. Our research aims to quantify the expected lifetime of PMMA in key market locations (FL, AZ, and CO).

  5. LSST Camera Optics Design

    Energy Technology Data Exchange (ETDEWEB)

    Riot, V J; Olivier, S; Bauman, B; Pratuch, S; Seppala, L; Gilmore, D; Ku, J; Nordby, M; Foss, M; Antilogus, P; Morgado, N

    2012-05-24

    The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, telescope design feeding a camera system that includes a set of broad-band filters and three refractive corrector lenses to produce a flat field at the focal plane with a wide field of view. Optical design of the camera lenses and filters is integrated in with the optical design of telescope mirrors to optimize performance. We discuss the rationale for the LSST camera optics design, describe the methodology for fabricating, coating, mounting and testing the lenses and filters, and present the results of detailed analyses demonstrating that the camera optics will meet their performance goals.

  6. Thermal lensing in silver gallium selenide parametric oscillator crystals.

    Science.gov (United States)

    Marquardt, C L; Cooper, D G; Budni, P A; Knights, M G; Schepler, K L; Dedomenico, R; Catella, G C

    1994-05-20

    We performed an experimental investigation of thermal lensing in silver gallium selenide (AgGaSe(2)) optical parametric oscillator crystals pumped by a 2-µm laser at ambient temperature. We determined an empirical expression for the effective thermal focusing power in terms of the pump power, beam diameter, crystal length, and absorption coefficient. This relation may be used to estimate average power limitations in designing AgGaSe(2) optical parametric oscillators. We also demonstrated an 18% slope efficiency from a 2-µm pumped AgGaSe(2) optical parametric oscillator operated at 77 K, at which temperature thermal lensing is substantially reduced because of an increase in the thermal conductivity and a decrease in the thermal index gradient dn/dT. Cryogenic cooling may provide an additional option for scaling up the average power capability of a 2-µm pumped AgGaSe(2) optical parametric oscillator.

  7. Design and fabrication of Si-HDPE hybrid Fresnel lenses for infrared imaging systems.

    Science.gov (United States)

    Manaf, Ahmad Rosli Abdul; Sugiyama, Tsunetoshi; Yan, Jiwang

    2017-01-23

    In this work, novel hybrid Fresnel lenses for infrared (IR) optical applications were designed and fabricated. The Fresnel structures were replicated from an ultraprecision diamond-turned aluminum mold to an extremely thin layer (tens of microns) of high-density polyethylene polymer, which was directly bonded onto a flat single-crystal silicon wafer by press molding without using adhesives. Night mode imaging results showed that the fabricated lenses were able to visualize objects in dark fields with acceptable image quality. The capability of the lenses for thermography imaging was also demonstrated. This research provides a cost-effective method for fabricating ultrathin IR optical components.

  8. Visual and optical performance of diffractive multifocal intraocular lenses with different haptic designs: 6 month follow-up

    Directory of Open Access Journals (Sweden)

    Wang M

    2014-05-01

    Full Text Available Mengmeng Wang,1,* Christine Carole C Corpuz,1 Megumi Fujiwara,1 Minoru Tomita1,2,*1Shinagawa LASIK Center, Tokyo, Japan; 2Department of Ophthalmology, Wenzhou Medical College, Wenzhou, People’s Republic of China*These authors contributed equally to this workPurpose: To evaluate and compare the visual acuity outcomes and optical performances of eyes implanted with two diffractive multifocal intraocular lens (IOL models with either a plate haptic design or a modified-C design.Methods: This retrospective study comprised cataract patients who were implanted with either a plate haptic multifocal IOL model (AcrivaUD Reviol BB MFM 611 [VSY Biotechnology, Amsterdam, the Netherlands], group 1 or a modified-C haptic multifocal IOL model ( AcrivaUD Reviol BB MF 613 [VSY Biotechnology, Amsterdam, the Netherlands], group 2 between June 2012 and May 2013. The 6 month postoperative visual acuity, refraction, defocus curve, contrast sensitivity, and wave-front aberration were evaluated and compared between these eyes, using different IOL models.Results: One hundred fifty-eight eyes of 107 patients were included in this study. Significant improvement in visual acuities and refraction was found in both groups after cataract surgery (P<0.01. The visual acuity and contrast sensitivity were statistically better in group 1 than in group 2 (P<0.01. No statistically significant difference in the corneal higher-order aberrations was found between the two groups (P>0.05. However, the ocular higher-order aberrations in group 2 were significantly greater than in group 1 (P<0.05.Conclusion: At 6 months postoperatively, both AcrivaUD Reviol BB MFM 611 IOL and AcrivaUD Reviol BB MF 613 IOL achieved excellent visual and refractive outcomes. The multifocal IOL model with plate haptic design resulted in better optical performances than that with the modified-C haptic design.Keywords: AcrivaUD, VSY, plate haptic, modified-C haptic, multifocal

  9. The flat spectrum radio luminosity function, gravitational lensing, galaxy ellipticities and cosmology

    CERN Document Server

    Kochanek, C S

    1996-01-01

    The number of lenses found in the JVAS survey of flat-spectrum radio sources for gravitational lenses is consistent with statistical models of optical surveys for lensed quasars. The 90% confidence limit on Omega_0 in flat cosmological models (Omega_0+lambda_0=1) is approximately 0.15 < Omega_0 < 2. Depending on the RLF model, we predict 2.4 to 3.6 lenses in the JVAS survey and in the first part of the fainter CLASS survey, and 0.3 to 0.6 lenses in the brighter PHFS survey for an Omega_0=1 model. The uncertainties are due to the small numbers of lenses (there are only 4 compact JVAS lenses) and the uncertainties in the radio luminosity function (RLF) caused by the lack of information on the redshift distribution of 10-300 mJy radio sources. If we force the models to produce the observed number of JVAS lenses, the mean redshift of a 50 mJy source varies from z_s=0.4 for Omega_0=0, to 1.9 for Omega_0=1, to almost 4.0 for Omega_0=2 when Omega_0+lambda_0=1. The source fluxes and redshifts of the lenses in t...

  10. Lenses for JWST

    Science.gov (United States)

    Ebeling, Harald; Richard, Johan; Kneib, Jean-Paul; Repp, Andrew; Atek, Hakim; Egami, Eiichi; Windhorst, Rogier; Edge, Alastair

    2016-08-01

    JWST will dramatically advance our knowledge and understanding of the first generations of galaxies at z>10, their role in the re-ionization of the Universe, and the evolutionary processes that gave rise to the complexity and diversity of galaxies at the current epoch. As demonstrated by HST legacy projects like CLASH and the Hubble Frontier Fields, gravitational amplification by massive galaxy clusters can significantly extend the depth of the required observations. However, for JWST, reducing any diffuse background light will be just as crucial. We here propose Spitzer/IRAC observations of six massive cluster lenses, specifically selected as candidates for observation with JWST. By (a) quantifying the amount of intra-cluster light and (b) enabling us to improve our current lens models, the data resulting from the requested observations will be instrumental for the final selection of cluster targets that maximize the scientific returns of deep JWST observations.

  11. Lensed Quasar Hosts

    CERN Document Server

    Peng, C Y; Rix, H W; Keeton, C R; Falco, E E; Kochanek, C S; Lehár, J; McLeod, B A; Peng, Chien Y.; Impey, Chris D.; Rix, Hans-Walter; Keeton, Charles R.; Falco, Emilio E.; Kochanek, Chris S.; Lehar, Joseph; Leod, Brian A. Mc

    2006-01-01

    Gravitational lensing assists in the detection of quasar hosts by amplifying and distorting the host light away from the unresolved quasar core images. We present the results of HST observations of 30 quasar hosts at redshifts 1 1.7 is a factor of 3--6 higher than the local value. But, depending on the stellar content the ratio may decline at z>4 (if E/S0-like), flatten off to 6--10 times the local value (if Sbc-like), or continue to rise (if Im-like). We infer that galaxy bulge masses must have grown by a factor of 3--6 over the redshift range 3>z>1, and then changed little since z~1. This suggests that the peak epoch of galaxy formation for massive galaxies is above z~1. We also estimate the duty cycle of luminous AGNs at z>1 to be ~1%, or 10^7 yrs, with sizable scatter.

  12. Cross-correlating Planck CMB lensing with SDSS: lensing-lensing and galaxy-lensing cross-correlations

    Science.gov (United States)

    Singh, Sukhdeep; Mandelbaum, Rachel; Brownstein, Joel R.

    2017-01-01

    We present results from cross-correlating Planck cosmic microwave background (CMB) lensing maps with the Sloan Digital Sky Survey (SDSS) galaxy lensing shape catalogue and BOSS (Baryon Oscillation Spectroscopic Survey) galaxy catalogues. For galaxy position versus CMB lensing cross-correlations, we measure the convergence signal around the galaxies in configuration space, using the BOSS LOWZ (z ˜ 0.30) and CMASS (z ˜ 0.57) samples. With fixed Planck 2015 cosmology, doing a joint fit with the galaxy clustering measurement, for the LOWZ (CMASS) sample we find a galaxy bias bg = 1.75 ± 0.04 (1.95 ± 0.02) and galaxy-matter cross-correlation coefficient rcc = 1.0 ± 0.2 (0.8 ± 0.1) using 20 < rp < 70 h-1 Mpc, consistent with results from galaxy-galaxy lensing. Using the same scales and including the galaxy-galaxy lensing measurements, we constrain Ωm = 0.284 ± 0.024 and relative calibration bias between the CMB lensing and galaxy lensing to be b_γ =0.82^{+0.15}_{-0.14}. The combination of galaxy lensing and CMB lensing also allows us to measure the cosmological distance ratios (with zl ˜ 0.3, zs ˜ 0.5) R=D_s D_{l,*}/D_{* D_{l,s}}=2.68± 0.29, consistent with predictions from the Planck 2015 cosmology (R=2.35). We detect the galaxy position-CMB convergence cross-correlation at small scales, rp < 1 h-1 Mpc, and find consistency with lensing by NFW haloes of mass Mh ˜ 1013 h-1 M⊙. Finally, we measure the CMB lensing-galaxy shear cross-correlation, finding an amplitude of A = 0.76 ± 0.23 (zeff = 0.35, θ < 2°) with respect to Planck 2015 Λ cold dark matter predictions (1σ level consistency). We do not find evidence for relative systematics between the CMB and SDSS galaxy lensing.

  13. Marius Tscherning (1854-1939): his life and work in optical physiology

    DEFF Research Database (Denmark)

    Norn, Mogens; Jensen, O.A.

    2004-01-01

    Ophthalmology, Marius Tscherning, accommodation, colour vision, dark vision, entopic phenomena, medical history, ophthalmophacometer, optic physiology, photometric glasses, spectacle lenses......Ophthalmology, Marius Tscherning, accommodation, colour vision, dark vision, entopic phenomena, medical history, ophthalmophacometer, optic physiology, photometric glasses, spectacle lenses...

  14. Lensed: a code for the forward reconstruction of lenses and sources from strong lensing observations

    CERN Document Server

    Tessore, Nicolas; Metcalf, R Benton

    2015-01-01

    Robust modelling of strong lensing systems is fundamental to exploit the information they contain about the distribution of matter in galaxies and clusters. In this work, we present Lensed, a new code which performs forward parametric modelling of strong lenses. Lensed takes advantage of a massively parallel ray-tracing kernel to perform the necessary calculations on a modern graphics processing unit (GPU). This makes the precise rendering of the background lensed sources much faster, and allows the simultaneous optimisation of tens of parameters for the selected model. With a single run, the code is able to obtain the full posterior probability distribution for the lens light, the mass distribution and the background source at the same time. Lensed is first tested on mock images which reproduce realistic space-based observations of lensing systems. In this way, we show that it is able to recover unbiased estimates of the lens parameters, even when the sources do not follow exactly the assumed model. Then, we...

  15. The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook

    CERN Document Server

    Mandelbaum, Rachel; Bosch, James; Chang, Chihway; Courbin, Frederic; Gill, Mandeep; Jarvis, Mike; Kannawadi, Arun; Kacprzak, Tomasz; Lackner, Claire; Leauthaud, Alexie; Miyatake, Hironao; Nakajima, Reiko; Rhodes, Jason; Simet, Melanie; Zuntz, Joe; Armstrong, Bob; Bridle, Sarah; Coupon, Jean; Dietrich, Jörg P; Gentile, Marc; Heymans, Catherine; Jurling, Alden S; Kent, Stephen M; Kirkby, David; Margala, Daniel; Massey, Richard; Melchior, Peter; Peterson, John; Roodman, Aaron; Schrabback, Tim

    2013-01-01

    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include realistically complex galaxy models based on high-resolution imaging from space; spatially varying blurring kernel; and combination of multiple different exposures. To facilitate entry by p...

  16. Sub-wavelength Laser Nanopatterning using Droplet Lenses

    Science.gov (United States)

    Duocastella, Martí; Florian, Camilo; Serra, Pere; Diaspro, Alberto

    2015-11-01

    When a drop of liquid falls onto a screen, e.g. a cell phone, the pixels lying underneath appear magnified. This lensing effect is a combination of the curvature and refractive index of the liquid droplet. Here, the spontaneous formation of such lenses is exploited to overcome the diffraction limit of a conventional laser direct-writing system. In particular, micro-droplets are first laser-printed at user-defined locations on a surface and they are later used as lenses to focus the same laser beam. Under conditions described herein, nanopatterns can be obtained with a reduction in spot size primarily limited by the refractive index of the liquid. This all-optics approach is demonstrated by writing arbitrary patterns with a feature size around 280 nm, about one fourth of the processing wavelength.

  17. The Thirring-Lense Effect

    Science.gov (United States)

    Embacher, Franz

    The Thirring-Lense effect is the phenomenon that an observer near a rotating mass, being in a state which is non-rotating with respect to the rest of the universe, experiences extra inertial forces, i.e. becomes dizzy. The first anticipation of the effect goes back to Ernst Mach; its first quantitative prediction on the basis of general relativity was given by Hans Thirring and Joseph Lense. Almost ninety years later, the effect seems to be experimentally verified.

  18. Constraining f (R ) Gravity Theory Using Weak Lensing Peak Statistics from the Canada-France-Hawii-Telescope Lensing Survey

    Science.gov (United States)

    Liu, Xiangkun; Li, Baojiu; Zhao, Gong-Bo; Chiu, Mu-Chen; Fang, Wei; Pan, Chuzhong; Wang, Qiao; Du, Wei; Yuan, Shuo; Fu, Liping; Fan, Zuhui

    2016-07-01

    In this Letter, we report the observational constraints on the Hu-Sawicki f (R ) theory derived from weak lensing peak abundances, which are closely related to the mass function of massive halos. In comparison with studies using optical or x-ray clusters of galaxies, weak lensing peak analyses have the advantages of not relying on mass-baryonic observable calibrations. With observations from the Canada-France-Hawaii-Telescope Lensing Survey, our peak analyses give rise to a tight constraint on the model parameter |fR 0| for n =1 . The 95% C.L. is log10|fR 0|<-4.82 given WMAP9 priors on (Ωm , As ). With Planck15 priors, the corresponding result is log10|fR 0|<-5.16 .

  19. Magnetic Lenz lenses increase the limit-of-detection in nuclear magnetic resonance

    CERN Document Server

    Spengler, Nils; Meissner, Markus V; Wallrabe, Ulrike; Korvink, Jan G

    2016-01-01

    A high NMR detection sensitivity is indispensable when dealing with mass and volume-limited samples, or whenever a high spatial resolution is required. The use of miniaturised RF coils is a proven way to increase sensitivity, but may be impractical and is not applicable to every experimental situation. We present the use of magnetic lenses, denoted as Lenz lenses due to their working principle, to focus the magnetic flux of a macroscopic RF coil into a smaller volume and thereby locally enhance the sensitivity of the NMR experiment - at the expense of the total sensitive volume. Besides focusing, such lenses facilitate re-guiding or re-shaping of magnetic fields much like optical lenses do with light beams. For the first time we experimentally demonstrate the use of Lenz lenses in magnetic resonance and provide a compact mathematical description of the working principle. Through simulations we show that optimal arrangements can be found.

  20. Joint Measurement of Lensing-Galaxy Correlations Using SPT and DES SV Data

    CERN Document Server

    Baxter, E J; Giannantonio, T; Dodelson, S; Jain, B; Huterer, D; Bleem, L E; Crawford, T M; Efstathiou, G; Fosalba, P; Kirk, D; Kwan, J; Sánchez, C; Story, K T; Troxel, M A; Abbott, T M C; Abdalla, F B; Armstrong, R; Benoit-Lévy, A; Benson, B A; Bernstein, G M; Bernstein, R A; Bertin, E; Brooks, D; Carlstrom, J E; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Chown, R; Crocce, M; Cunha, C E; D'Andrea, C B; da Costa, L N; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Evrard, A E; Neto, A Fausti; Flaugher, B; Frieman, J; Gruen, D; Gruendl, R A; Gutierrez, G; de Haan, T; Holder, G P; Honscheid, K; Hou, Z; James, D J; Kuehn, K; Kuropatkin, N; Lima, M; March, M; Marshall, J L; Martini, P; Melchior, P; Miller, C J; Miquel, R; Mohr, J J; Nord, B; Omori, Y; Plazas, A A; Reichardt, C L; Romer, A K; Rykoff, E S; Sanchez, E; Sevilla-Noarbe, I; Sheldon, E; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Stark, A A; Swanson, M E C; Tarle, G; Thomas, D; Walker, A R; Wechsler, R H

    2016-01-01

    We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favored $\\Lambda$CDM cosmological model. It also demonstrates that joint lensing-galaxy correlation measurement considered ...

  1. The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints

    CERN Document Server

    Newman, Andrew B; Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter

    2016-01-01

    We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, they were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high-$\\sigma$ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar $M_*/L$ using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy & van Dokkum. When examined individually, we find find good agreement among these methods for one galaxy. The other two galaxies show 2-5$\\sigma$ tension, depending on the dark matter contribution, when considering IMFs with a fixed low-mass cut-off ...

  2. Uncertainties in pixel-based source reconstruction for gravitationally lensed objects and applications to lensed galaxies

    Science.gov (United States)

    Tagore, Amitpal Singh

    Gravitational lens modeling of spatially resolved sources is a challenging inverse problem that can involve many observational constraints and model parameters. I present a new software package, pixsrc, that works in conjunction with the lensmodel software and builds on established pixel-based source reconstruction (PBSR) algorithms for de-lensing a source and constraining lens model parameters. Using test data, I explore statistical and systematic uncertainties associated with gridding, source regularization, interpolation errors, noise, and telescope pointing. I compare two gridding schemes in the source plane: a fully adaptive grid and an adaptive Cartesian grid. I also consider regularization schemes that minimize derivatives of the source and introduce a scheme that minimizes deviations from an analytic source profile. Careful choice of gridding and regularization can reduce "discreteness noise" in the chi2 surface that is inherent in the pixel-based methodology. With a gridded source, errors due to interpolation need to be taken into account (especially for high S/N data). Different realizations of noise and telescope pointing lead to slightly different values for lens model parameters, and the scatter between different "observations" can be comparable to or larger than the model uncertainties themselves. The same effects create scatter in the lensing magnification at the level of a few percent for a peak S/N of 10. I then apply pixsrc to observations of lensed, high-redshift galaxies. SDSS J0901+1814, is an ultraluminous infrared galaxy at z=2.26 that is also UV-bright, and it is lensed by a foreground group of galaxies at z=0.35. I constrain the lens model using maps of CO(3-2) rotational line emission and optical imaging and apply the lens model to observations of CO(1-0), H-alpha, and [NII] line emission as well. Using the de-lensed images, I calculate properties of the source, such as the gas mass fraction and dynamical mass. Finally, I examine a

  3. Adaptive optical zoom sensor.

    Energy Technology Data Exchange (ETDEWEB)

    Sweatt, William C.; Bagwell, Brett E.; Wick, David Victor

    2005-11-01

    In order to optically vary the magnification of an imaging system, continuous mechanical zoom lenses require multiple optical elements and use fine mechanical motion to precisely adjust the separations between individual or groups of lenses. By incorporating active elements into the optical design, we have designed and demonstrated imaging systems that are capable of variable optical magnification with no macroscopic moving parts. Changing the effective focal length and magnification of an imaging system can be accomplished by adeptly positioning two or more active optics in the optical design and appropriately adjusting the optical power of those elements. In this application, the active optics (e.g. liquid crystal spatial light modulators or deformable mirrors) serve as variable focal-length lenses. Unfortunately, the range over which currently available devices can operate (i.e. their dynamic range) is relatively small. Therefore, the key to this concept is to create large changes in the effective focal length of the system with very small changes in the focal lengths of individual elements by leveraging the optical power of conventional optical elements surrounding the active optics. By appropriately designing the optical system, these variable focal-length lenses can provide the flexibility necessary to change the overall system focal length, and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses.

  4. A Search for Radio Gravitational Lenses, Using the Sloan Digital Sky Survey and the Very Large Array

    CERN Document Server

    Boyce, E R; Bolton, A S; Hewitt, J N; Burles, S; Boyce, Edward R.; Bowman, Judd D.; Bolton, Adam S.; Hewitt, Jacqueline N.; Burles, Scott

    2006-01-01

    We report on a novel search for radio gravitational lenses. Using the Very Large Array, we imaged ten candidates with both dual redshifts in Sloan Digital Sky Survey spectra and 1.4 GHz radio flux >2 mJy in the FIRST survey. The VLA maps show that in each case the radio emission is associated with the foreground galaxy rather than being lensed emission from the background galaxy, although at least four of our targets are strong lenses at optical wavelengths. These SDSS dual-redshift systems do not have lensed radio emission at the sensitivity of current radio surveys.

  5. Cylindrical diffractive lenses recorded on PVA/AA photopolymers

    Science.gov (United States)

    Fernández, R.; Gallego, S.; Márquez, A.; Navarro-Fuster, V.; Francés, J.; Neipp, C.; Beléndez, A.; Pascual, I.

    2016-04-01

    Photopolymers are optical recording materials appealing for many different applications such as holography, data storage, interconnectors, solar concentrations, or wave-guides fabrication. Recently the capacity of photopolymers to record diffractive optical elements (DOE's) has been investigated. Different authors have reported proposes to record DOE like fork gratings, photonics structures, lenses, sinusoidal, blazed or fork gratings. In these experiments there are different experimental set-ups and different photopolymers. In this work due to the improvement in the spatial light modulation technology together with the photopolymer science we propose a recording experimental system of DOE using a Liquid Cristal based on Silicon (LCoS) display as a master to store complex DOE like cylindrical lenses. This technology permits us an accurate control of the phase and the amplitude of the recording beam, with a very small pixel size. The main advantage of this display is that permit us to modify the DOE automatically, we use the software of the LCoS to send the voltage to each pixel In this work we use a photopolymer composed by acrylamide (AA) as polymerizable monomer and polyvinyl alcohol (PVA). We use a coverplated and index matched photopolymer to avoid the influence of the thickness variation on the transmitted light. In order to reproduce the material behaviour during polymerization, we have designed our model to simulate cylindrical lenses and used Fresnel propagation to simulate the light propagation through the DOE and analyze the focal plane and the properties of the recorded lenses.

  6. The Future of Myopia Control Contact Lenses.

    Science.gov (United States)

    Gifford, Paul; Gifford, Kate Louise

    2016-04-01

    The growing incidence of pediatric myopia worldwide has generated strong scientific interest in understanding factors leading to myopia development and progression. Although contact lenses (CLs) are prescribed primarily for refractive correction, there is burgeoning use of particular modalities for slowing progression of myopia following reported success in the literature. Standard soft and rigid CLs have been shown to have minimal or no effect for myopia control. Overall, orthokeratology and soft multifocal CLs have shown the most consistent performance for myopia control with the least side effects. However, their acceptance in both clinical and academic spheres is influenced by data limitations, required off-label usage, and a lack of clear understanding of their mechanisms for myopia control. Myopia development and progression seem to be multifactorial, with a complex interaction between genetics and environment influencing myopigenesis. The optical characteristics of the individual also play a role through variations in relative peripheral refraction, binocular vision function, and inherent higher-order aberrations that have been linked to different refractive states. Contact lenses provide the most viable opportunity to beneficially modify these factors through their close alignment with the eye and consistent wearing time. Contact lenses also have potential to provide a pharmacological delivery device and a possible feedback mechanism for modification of a visual environmental risk. An examination of current patents on myopia control provides a window to the future development of an ideal myopia-controlling CL, which would incorporate the broadest treatment of all currently understood myopigenic factors. This ideal lens must also satisfy safety and comfort aspects, along with overcoming practical issues around U.S. Food and Drug Administration approval, product supply, and availability to target populations. Translating the broad field of myopia research

  7. Aberrations of Gradient-Index Lenses.

    Science.gov (United States)

    Matthews, A. L.

    Available from UMI in association with The British Library. In this thesis, the primary aberrations of lenses with a radial focussing gradient-of-index are analysed. Such a lens has a refractive index profile which decreases continuously and radially outward from the optical axis, so that the surfaces of constant refractive index are circular cylinders which are coaxial with the optical axis. Current applications of these lenses include photocopiers, medical endoscopes, telecommunications systems and compact disc systems. Closed formulae for the primary wavefront aberrations for a gradient-index lens with curved or plane entry and exit faces are obtained from the differential equations of such a lens to assess the primary transverse ray aberrations that it introduces. Identical expressions are then obtained by using the difference in optical path length produced between two rays by the lens. This duplication of the derivations of the primary wavefront aberrations acts as a confirmation of the validity of the expressions. One advantage of these equations is that the contributions due to the primary spherical aberration, coma, astigmatism, field curvature and distortion can be assessed individually. A Fortran 77 program has been written to calculate each of these individual contributions, the total primary wavefront aberrations and the primary transverse ray aberrations. Further confirmation of the validity of the expressions is obtained by using this program to show that the coma and distortion were both zero for fully symmetric systems working at unit magnification. The program is then used to assess the primary wavefront aberrations for a gradient-index lens which is currently of interest to the telecommunications industry. These results are compared with values obtained using a finite ray-tracing program for the total wavefront aberrations. This shows that the primary wavefront aberrations are the completely dominant contribution to the total wavefront

  8. Optical time-lens signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen;

    2014-01-01

    This paper describes the use of optical time lenses for optical signal processing of advanced optical data signals. Examples given include 1.28 Tbaud Nyquist channel serial-to-parallel conversion and spectral magnification of OFDM signals.......This paper describes the use of optical time lenses for optical signal processing of advanced optical data signals. Examples given include 1.28 Tbaud Nyquist channel serial-to-parallel conversion and spectral magnification of OFDM signals....

  9. [Importance of asferic treatment of intraocular lenses in contrast sensitivity of the human eye].

    Science.gov (United States)

    Calţaru, Dana Cristina; Pop, Mihai

    2014-01-01

    Clinical study which follows the influence of asphericity of intraocular lenses on an important parameter of quality of vision in operated cataract patients - contrast sensibility. This is a pilot, prospective study with 131 eyes of 124 patients, which had cataract surgery by phacoemulsification between 2011-2012. All operations were done by the same surgeon. EXCLUSION CRITERIAS WERE: VA ( 0.7; postop refraction >0.75 D sf. or 0.75 D cyl, corneal diseases, optic nerv or retinal pathologies, atypical surgery, pupil diameter 3 mm. Postoperative control was done at six weeks and included : AV, optical correction, contrast sensibility testing, intraocular pressure, posterior pol exam. Contrast sensibility testing was done using a LCD device, in fotopic condition, CC-100 TOPCON. Contrast sensibility graphics were compared between spheric and aspheric lenses for Zeiss, AMO, Bausch&Lomb, Alcon. There were no statistically significant differences between aspherical lenses. Also, there were no differences for the same manufacturer between spherical and aspherical lenses.

  10. A Measurement of CMB Cluster Lensing with SPT and DES Year 1 Data

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, E.J.; et al.

    2017-08-03

    Clusters of galaxies gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint in the CMB on arcminute scales. Measurement of this effect offers a promising way to constrain the masses of galaxy clusters, particularly those at high redshift. We use CMB maps from the South Pole Telescope Sunyaev-Zel'dovich (SZ) survey to measure the CMB lensing signal around galaxy clusters identified in optical imaging from first year observations of the Dark Energy Survey. We detect lensing of the CMB by the galaxy clusters at 6.5$\\sigma$ significance. Using the measured lensing signal, we constrain the amplitude of the relation between cluster mass and optical richness to roughly $20\\%$ precision, finding good agreement with recent constraints obtained with galaxy lensing. The error budget is dominated by statistical noise but includes significant contributions from systematic biases due to the thermal SZ effect and cluster miscentering.

  11. Continuous image distortion by astrophysical thick lenses

    CERN Document Server

    Kling, Thomas P

    2011-01-01

    Image distortion due to weak gravitational lensing is examined using a non-perturbative method of integrating the geodesic deviation and optical scalar equations along the null geodesics connecting the observer to a distant source. The method we develop continuously changes the shape of the pencil of rays from the source to the observer with no reference to lens planes in astrophysically relevant scenarios. We compare the projected area and the ratio of semi-major to semi-minor axes of the observed elliptical image shape for circular sources from the continuous, thick-lens method with the commonly assumed thin-lens approximation. We find that for truncated singular isothermal sphere and NFW models of realistic galaxy clusters, the commonly used thin-lens approximation is accurate to better than 1 part in 10^4 in predicting the image area and axes ratios. For asymmetric thick lenses consisting of two massive clusters separated along the line of sight in redshift up to \\Delta z = 0.2, we find that modeling the ...

  12. The M31 pixel lensing plan campaign: MACHO lensing and self-lensing signals

    Energy Technology Data Exchange (ETDEWEB)

    Calchi Novati, S.; Scarpetta, G. [Istituto Internazionale per gli Alti Studi Scientifici (IIASS), Via Pellegrino 19, I-84019 Vietri Sul Mare (Italy); Bozza, V. [Dipartimento di Fisica E. R. Caianiello, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Italy); Bruni, I.; Gualandi, R. [INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Dall' Ora, M. [INAF, Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, I-80131 Napoli (Italy); De Paolis, F.; Ingrosso, G.; Nucita, A.; Strafella, F. [Dipartimento di Matematica e Fisica E. De Giorgi, Università del Salento, CP 193, I-73100 Lecce (Italy); Dominik, M. [SUPA, University of St Andrews, School of Physics and Astronomy, North Haugh, St Andrews, KY16 9SS (United Kingdom); Jetzer, Ph. [Institute for Theoretical Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland); Mancini, L. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Safonova, M.; Subramaniam, A. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Sereno, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Collaboration: PLAN Collaboration

    2014-03-10

    We present the final analysis of the observational campaign carried out by the PLAN (Pixel Lensing Andromeda) collaboration to detect a dark matter signal in form of MACHOs through the microlensing effect. The campaign consists of about 1 month/year observations carried out over 4 years (2007-2010) at the 1.5 m Cassini telescope in Loiano (Astronomical Observatory of BOLOGNA, OAB) plus 10 days of data taken in 2010 at the 2 m Himalayan Chandra Telescope monitoring the central part of M31 (two fields of about 13' × 12.'6). We establish a fully automated pipeline for the search and the characterization of microlensing flux variations. As a result, we detect three microlensing candidates. We evaluate the expected signal through a full Monte Carlo simulation of the experiment completed by an analysis of the detection efficiency of our pipeline. We consider both 'self lensing' and 'MACHO lensing' lens populations, given by M31 stars and dark matter halo MACHOs, in M31 and the Milky Way, respectively. The total number of events is consistent with the expected self-lensing rate. Specifically, we evaluate an expected signal of about two self-lensing events. As for MACHO lensing, for full 0.5(10{sup –2}) M {sub ☉} MACHO halos, our prediction is for about four (seven) events. The comparatively small number of expected MACHO versus self-lensing events, together with the small number statistics at our disposal, do not enable us to put strong constraints on that population. Rather, the hypothesis, suggested by a previous analysis, on the MACHO nature of OAB-07-N2, one of the microlensing candidates, translates into a sizeable lower limit for the halo mass fraction in form of the would-be MACHO population, f, of about 15% for 0.5 M {sub ☉} MACHOs.

  13. Optimum Combined Lenses for Confocal Biochip Scanning System

    Institute of Scientific and Technical Information of China (English)

    黄国亮; 程京; 周玉祥; 冯继宏; 刘诚迅; 金国藩; 邬敏贤; 严瑛白; 张腾飞; 李林

    2002-01-01

    Laboratory-on-a-chip technology has attracted wide interest in recent years, where the sample preparation, bio-chemical reaction, separation, detection and analysis are performed in a small biochip of the size of a fingernail. To obtain a high detection sensitivity of 1 fluors/μm2 (one fluorescence molecule per square micrometer) in biochip scanning systems, the scanning objective lens is required to have a high numerical aperture (>0.5), very small focal spot (3 mm). This study presents the design of optimum combined lenses including scanning objective and fluorescence focal lenses. The scanning objective had a high numerical aperture (NA) of 0.72, a very small focal spot of 1.67 μm, a long back focal length of 3.2 mm, and a high resolving power of 760 lines/mm. The fluorescence focal lenses had an NA of 0.3, a fluorescence focal spot of 16 μm, a long back focal length of 16.7 mm and a resolving power of 590 lines/mm. The phase aberrations of the combined lenses, including the aspherical aberration and the chromatic aberration corresponding to wavelengths of 532, 570, 635, and 670 nm, were well-corrected. The encircled energy diagram of the lenses was within the diffraction limit. The study also included the focal spot diagram, the optical path difference diagram, the transverse ray fan plot, and the modulation transfer function. A confocal biochip scanning system with designed combined lenses was developed and some experiments were conducted on a multi-channel biochip.

  14. Strong Gravitational Lenses and Multi-Wavelength Galaxy Surveys with AKARI, Herschel, SPICA and Euclid

    OpenAIRE

    Serjeant, Stephen

    2016-01-01

    Submillimetre and millimetre-wave surveys with Herschel and the South Pole Telescope have revolutionised the discovery of strong gravitational lenses. Their follow-ups have been greatly facilitated by the multi-wavelength supplementary data in the survey fields. The forthcoming Euclid optical/near-infrared space telescope will also detect strong gravitational lenses in large numbers, and orbital constraints are likely to require placing its deep survey at the North Ecliptic Pole (the natural ...

  15. Fabrication of nanoscale electrostatic lenses

    Science.gov (United States)

    Sinno, I.; Sanz-Velasco, A.; Kang, S.; Jansen, H.; Olsson, E.; Enoksson, P.; Svensson, K.

    2010-09-01

    The fabrication of cylindrical multi-element electrostatic lenses at the nanoscale presents a challenge; they are high-aspect-ratio structures that should be rotationally symmetric, well aligned and freestanding, with smooth edges and flat, clean surfaces. In this paper, we present the fabrication results of a non-conventional process, which uses a combination of focused gallium ion-beam milling and hydrofluoric acid vapor etching. This process makes it possible to fabricate nanoscale electrostatic lenses down to 140 nm in aperture diameter and 4.2 µm in column length, with a superior control of the geometry as compared to conventional lithography-based techniques.

  16. An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses.

    Science.gov (United States)

    Chen, Ming-Syuan; Chen, Po-Ju; Chen, Michael; Lin, Yi-Hsin

    2014-05-19

    We demonstrated an electrically tunable optical image system with separable focus function and zoom function based on three tunable focusing composite liquid crystal (LC) lenses. One LC lens in charge of the focus function helps to maintain the formed image at the same position and the other two LC lenses in charge of zoom function assist to continuously form an image at image sensor with tunable magnification of image size. The detail optical mechanism is investigated and the concept is demonstrated experimentally. The magnifications of the images can be switched continuously for the target in a range between 10 cm and 100 cm. The optical zoom ratio of this system maintains a constant~6.5:1 independent of the object distance. This study provides not only a guideline to design the image system with an electrically optical zoom, but also provide an experimental process to show how to operate the tunable focusing lenses in such an image system.

  17. Assessment of an approach to printed polymer lenses

    Science.gov (United States)

    Marasco, Peter L.; Foote, Bob

    2017-05-01

    Additive manufacturing is proving its relevancy across a wide spectrum of development, prototyping and manufacturing in the US. However, there is a desire to move the capability beyond modeling and structural components. The use of additive manufacturing techniques to fabricate low-cost optics and optical systems is highly desirable in a number of markets. But processes and techniques for successfully printing an optic are currently very new. This paper discusses early advances in printing optics suitable for commercial and military applications. Data from and analysis of early prototype lenses fabricated using one possible technique will be included and discussed. The potential for additive manufacturing of optics to open the design space for complex optics and reduce development time, lowering cost and speeding up time to market, will also be discussed.

  18. Mechanical properties of intra-ocular lenses

    Science.gov (United States)

    Ehrmann, Klaus; Kim, Eon; Parel, Jean-Marie

    2008-02-01

    Cataract surgery usually involves the replacement of the natural crystalline lens with a rigid or foldable intraocular lens to restore clear vision for the patient. While great efforts have been placed on optimising the shape and optical characteristics of IOLs, little is know about the mechanical properties of these devices and how they interact with the capsular bag once implanted. Mechanical properties measurements were performed on 8 of the most commonly implanted IOLs using a custom build micro tensometer. Measurement data will be presented for the stiffness of the haptic elements, the buckling resistance of foldable IOLs, the dynamic behaviour of the different lens materials and the axial compressibility. The biggest difference between the lens types was found between one-piece and 3-piece lenses with respect to the flexibility of the haptic elements

  19. Microfabrication of hard x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik

    heights and improved uniformity compared to what is currently available. To this end, established fabrication procedures are improved and the toolbox used for lens development is enriched. The central theme of this thesis is x-ray microscopy (XRM). As a spearhead of today’s materials research it provides...... in turn asks for highly precise metrology. Therefore, a mix of techniques including optical profilometry and atomic force microscopy (AFM) has been used to obtain reliable information about the detailed three-dimensional shapes of the lenses. Adequate sample preparation and measuring procedures have been...... of space for sample surroundings and ensure low-divergent and wide x-ray beams with narrow waists. Both results are substantial improvements to what was available at the start of this thesis work. The challenge of making x-ray objectives in silicon by interdigitation of lenslets alternately focusing...

  20. Tunable focalizers: axicons, lenses, and axilenses

    Science.gov (United States)

    Ojeda-Castañeda, Jorge; Gómez-Sarabia, Cristina M.; Ledesma, Sergio

    2013-09-01

    We propose the use of a pair of phase masks, which have both radial and angular variations, for implementing several varifocal devices. One mask of the proposed pair has a complex amplitude transmittance that is the complex conjugate of the other member of the pair. We show that the overall complex amplitude transmittance has only a radial variation after introducing an in-plane rotation, say by an angle β, between the members of the pair. However, we note that the optical power is proportional to the rotation angle β. As examples of the proposed method, we show that the refractive pair is useful for implementing varifocal lenses, tunable axicons, controllable axilenses, as well as annularly distributed focalizers.

  1. Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome.

    Science.gov (United States)

    Maulvi, Furqan A; Soni, Tejal G; Shah, Dinesh O

    2015-01-01

    Current dry eye treatment includes delivering comfort enhancing agents to the eye via eye drops, but low residence time of eye drops leads to low bioavailability. Frequent administration leads to incompliance in patients, so there is a great need for medical device such as contact lenses to treat dry eye. Studies in the past have demonstrated the efficacy of hyaluronic acid (HA) in the treatment of dry eyes using eye drops. In this paper, we present two methods to load HA in hydrogel contact lenses, soaking method and direct entrapment. The contact lenses were characterized by studying their optical and physical properties to determine their suitability as extended wear contact lenses. HA-laden hydrogel contact lenses prepared by soaking method showed release up to 48 h with acceptable physical and optical properties. Hydrogel contact lenses prepared by direct entrapment method showed significant sustained release in comparison to soaking method. HA entrapped in hydrogels resulted in reduction in % transmittance, sodium ion permeability and surface contact angle, while increase in % swelling. The impact on each of these properties was proportional to HA loading. The batch with 200-μg HA loading showed all acceptable values (parameters) for contact lens use. Results of cytotoxicity study indicated the safety of hydrogel contact lenses. In vivo pharmacokinetics studies in rabbit tear fluid showed dramatic increase in HA mean residence time and area under the curve with lenses in comparison to eye drop treatment. The study demonstrates the promising potential of delivering HA through contact lenses for the treatment of dry eye syndrome.

  2. Wavefront measurement of plastic lenses for mobile-phone applications

    Science.gov (United States)

    Huang, Li-Ting; Cheng, Yuan-Chieh; Wang, Chung-Yen; Wang, Pei-Jen

    2016-08-01

    In camera lenses for mobile-phone applications, all lens elements have been designed with aspheric surfaces because of the requirements in minimal total track length of the lenses. Due to the diffraction-limited optics design with precision assembly procedures, element inspection and lens performance measurement have become cumbersome in the production of mobile-phone cameras. Recently, wavefront measurements based on Shack-Hartmann sensors have been successfully implemented on injection-molded plastic lens with aspheric surfaces. However, the applications of wavefront measurement on small-sized plastic lenses have yet to be studied both theoretically and experimentally. In this paper, both an in-house-built and a commercial wavefront measurement system configured on two optics structures have been investigated with measurement of wavefront aberrations on two lens elements from a mobile-phone camera. First, the wet-cell method has been employed for verifications of aberrations due to residual birefringence in an injection-molded lens. Then, two lens elements of a mobile-phone camera with large positive and negative power have been measured with aberrations expressed in Zernike polynomial to illustrate the effectiveness in wavefront measurement for troubleshooting defects in optical performance.

  3. Switchable liquid crystal contact lenses: dynamic vision for the ageing eye

    Science.gov (United States)

    Milton, Harry E.; Gleeson, Helen F.; Morgan, Philip B.; Goodby, John W.; Cowling, Stephen; Clamp, John H.

    2014-02-01

    The inability of the eye to focus on nearby objects, presbyopia, is suffered by ~100% of people over the age of 50. Liquid crystal (LC) spectacle lenses have shown great potential for correcting presbyopia. However, correcting presbyopia in contact lens users has proven elusive and existing commercial options suffer significant compromises in vision and comfort. We describe a novel contact lens that includes a liquid crystal element that offers to correct presbyopia without the compromises associated with other technologies. We fabricated variable focus lenses using a balanced optical system, providing the additional optical power presbyopes require for near vision (typically +1.00 D to +2.00 D). The system uses positive optical power from the two substrates and variable negative optical power from the LC layer to form a balanced optical system which, when unpowered, corrects distance vision. Upon voltage application, the liquid crystal layer decreases in refractive index, resulting in additional optical power in the system, offering correction equivalent to reading glasses. Our new technology is based on a traditional contact lens material which could be placed directly on the eye. The liquid crystal lens employed is well suited to the small optical areas associated with contact lenses. We compare several different LC materials and geometries which are suitable for our application, and discuss the influence of material and geometry on switching times, optical quality and operating voltage. Our contact lenses typically switch +/-2.00D in response to < 10 Vrms with response times of the order of a second.

  4. Novel silicon lenses for long-wave infrared imaging

    Science.gov (United States)

    Kintz, Gregory; Stephanou, Philip; Petersen, Kurt

    2016-05-01

    The design, fabrication and performance of a novel silicon lens for Long Wave Infrared (LWIR) imaging are presented. The silicon lenses are planar in nature, and are created using standard wafer scale silicon micro-fabrication processes. The silicon batch processes are used to generate subwavelength structures that introduce spatially varying phase shifts in the incident light. We will show that the silicon lens designs can be extended to produce lenses of varying focal lengths and diameters, thus enabling IR imaging at significantly lower cost and reduced weight and form factor. An optical design program and a Finite-Difference Time-Domain (FDTD) simulation software tool are used to model the lens performance. The effects of polarization anisotropy are computed for the resultant subwavelength structures. Test samples with lenses with focal lengths in the range of 10 to 50 mm were fabricated. The test sample also included a prism structure, which is characterized by measuring the deflection of a CO2 laser beam and compared to theoretical beam deflection. The silicon lenses are used to produce an image on a VGA micro-bolometer array.

  5. Fabrication of nanoscale electrostatic lenses

    NARCIS (Netherlands)

    Sinno, I.; Sanz-Velasco, A.; Kang, S.; Jansen, H.; Olsson, E.; Enoksson, P.; Svensson, K.

    2010-01-01

    The fabrication of cylindrical multi-element electrostatic lenses at the nanoscale presents a challenge; they are high-aspect-ratio structures that should be rotationally symmetric, well aligned and freestanding, with smooth edges and flat, clean surfaces. In this paper, we present the fabrication r

  6. Weak lensing and cosmological investigation

    CERN Document Server

    Acquaviva, V

    2005-01-01

    In the last few years the scientific community has been dealing with the challenging issue of identifying the dark energy component. We regard weak gravitational lensing as a brand new, and extremely important, tool for cosmological investigation in this field. In fact, the features imprinted on the cosmic microwave background radiation by the lensing from the intervening distribution of matter represent a pretty unbiased estimator, and can thus be used for putting constraints on different dark energy models. This is true in particular for the magnetic-type B-modes of CMB polarization, whose unlensed spectrum at large multipoles (l approximately=1000) is very small even in presence of an amount of gravitational waves as large as currently allowed by the experiments: therefore, on these scales the lensing phenomenon is the only responsible for the observed power, and this signal turns out to be a faithful tracer of the dark energy dynamics. We first recall the formal apparatus of the weak lensing in extended t...

  7. Irlen Lenses and Reading Difficulties.

    Science.gov (United States)

    Hoyt, Creig S.

    1990-01-01

    The article reviews three studies (EC 600 064-066) evaluating the effectiveness of using Irlen tinted lenses with reading-disabled persons. The studies are individually critiqued, and recommendations are offered concerning the methodology of further research. Stressed is the need to determine whether a specific syndrome of scotopic sensitivity…

  8. Advantages of toric scleral lenses.

    NARCIS (Netherlands)

    Visser, E.S.; Visser, R.; Lier, H.J.J. van

    2006-01-01

    PURPOSE: The purpose of this study was to investigate whether back surface toric scleral lenses stabilized (i.e., returned to their original position after rotation) and how long the return times were. Return time was studied in relation with actual wearing time and comfort; moreover, the performanc

  9. Gravitational lensing by gravitational waves

    OpenAIRE

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2008-01-01

    Gravitational lensing by gravitational wave is considered. We notice that although final and initial direction of photons coincide, displacement between final and initial trajectories occurs. This displacement is calculated analytically for the plane gravitational wave pulse. Estimations for observations are discussed.

  10. Active optical zoom system

    Science.gov (United States)

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  11. Characterization of sand lenses embedded in tills

    DEFF Research Database (Denmark)

    Kessler, Timo Christian; Klint, K.E.S.; Nilsson, B.

    2012-01-01

    of the various types of sand lenses is discussed, primarily in relation to the depositional and glaciotectonic processes they underwent. Detailed characterization of sand lenses facilitates such interpretations. Finally, the observations are linked to a more general overview of the distribution of sand lenses......Tills dominate large parts of the superficial sediments on the Northern hemisphere. These glacial diamictons are extremely heterogeneous and riddled with fractures and lenses of sand or gravel. The frequency and geometry of sand lenses within tills are strongly linked to glaciodynamic processes...... occurring in various glacial environments. This study specifically focuses on the appearance and spatial distribution of sand lenses in tills. It introduces a methodology on how to measure and characterize sand lenses in the field with regard to size, shape and degree of deformation. A set of geometric...

  12. Power Profiles of Commercial Multifocal Soft Contact Lenses

    Science.gov (United States)

    Kim, Eon; Bakaraju, Ravi C.; Ehrmann, Klaus

    2017-01-01

    ABSTRACT Purpose To evaluate the optical power profiles of commercially available soft multifocal contact lenses and compare their optical designs. Methods The power profiles of 38 types of multifocal contact lenses—three lenses each—were measured in powers +6D, +3D, +1D, −1D, −3D, and −6D using NIMO TR1504 (Lambda-X, Belgium). All lenses were measured in phosphate buffered saline across 8 mm optic zone diameter. Refractive index of each lens material was measured using CLR 12-70 (Index Instruments, UK), which was used for converting measured power in the medium to in-air radial power profiles. Results Three basic types of power profiles were identified: center-near, center-distance, and concentric-zone ring-type designs. For most of the lens types, the relative plus with respect to prescription power was lower than the corresponding spectacle add. For some lens types, the measured power profiles were shifted by up to 1D across the power range relative to their labeled power. Most of the lenses were designed with noticeable amounts of spherical aberration. The sign and magnitude of spherical aberration can either be power dependent or consistent across the power range. Conclusions Power profiles can vary widely between the different lens types; however, certain similarities were also observed between some of the center-near designs. For the more recently released lens types, there seems to be a trend emerging to reduce the relative plus with respect to prescription power, include negative spherical aberration, and keep the power profiles consistent across the power range. PMID:27748699

  13. Printable ink lenses, diffusers, and 2D gratings.

    Science.gov (United States)

    Ahmed, Rajib; Yetisen, Ali K; Khoury, Anthony El; Butt, Haider

    2017-01-07

    Advances in holography have led to applications including data storage, displays, security labels, and colorimetric sensors. However, existing top-down approaches for the fabrication of holographic devices are complex, expensive, and expertise dependent, limiting their use in practical applications. Here, ink-based holographic devices have been created for a wide range of applications in diffraction optics. A single pulse of a 3.5 ns Nd:YAG laser allowed selective ablation of ink to nanofabricate planar optical devices. The practicality of this method is demonstrated by fabricating ink-based diffraction gratings, 2D holographic patterns, optical diffusers, and Fresnel zone plate (FZP) lenses by using the ink. The fabrication processes were rationally designed using predictive computational modeling and the devices were fabricated within a few minutes demonstrating amenability for large scale printable optics through industrial manufacturing. It is anticipated that ink will be a promising diffraction optical material for the rapid printing of low-cost planar nanophotonic devices.

  14. Thermal-lensing measurement of particle thermophoresis in aqueous dispersions

    Science.gov (United States)

    Rusconi, Roberto; Isa, Lucio; Piazza, Roberto

    2004-03-01

    We show that thermophoresis (particle drift driven by thermal gradients) in aqueous solutions can be measured by using an all-optical thermal-lensing setup, where a temperature gradient is set by a near-infrared laser beam with no need of light-absorbing dyes. After discussing the principles of the method, we study by numerical simulation the nature and extent of parasitic thermal-convection effects, and we describe an optical setup designed to limit them. We finally present preliminary results on thermophoresis in micellar solutions and colloidal dispersions.

  15. Loss of Thiol Repair Systems in Human Cataractous Lenses

    Science.gov (United States)

    Wei, Min; Xing, Kui-Yi; Fan, Yin-Chuan; Libondi, Teodosio; Lou, Marjorie F.

    2015-01-01

    Purpose. The purpose of this study was to investigate the thiol repair systems of thioltransferase (TTase) and thioredoxin (Trx) and oxidation-damaged proteins in human cataractous lenses. Methods. Cataractous lenses in humans (57–85 years of age) were classified into cortical, nuclear, mixed, mature, and hypermature cataract types by using a lens opacity classification system, and were obtained by extracapsular cataract extraction (ECCE) procedure. Cortical and nuclear cataracts were grouped by decreasing order of visual acuity into optical chart reading (R), counting fingers (CF), hand motion (HM), and light perception (LP). ECCE lens homogenate was analyzed for glutathione (GSH) level and enzyme activities of TTase, glutathione reductase (GR), Trx, and thioredoxin reductase (TR). Cortical and nuclear cataractous lenses (8 of each) with visual acuity better than HM were each dissected into cortical and nuclear portions for measurement of glyceraldehyde 3-phosphate dehydrogenase (G3PD) activity. Clear lenses (in humans 49–71 years of age) were used as control. Results. Compared with control, all cataractous lenses lost more than 80% GSH and 70% GR; TR and Trx activity; and 40% to 70% TTase activity, corroborated with the loss in visual acuity. Among cataracts with R and CF visual acuity, cortical cataract lost more cortical G3PD activity (18% of control) than that of nuclear cataract (50% of control), whereas GSH depletion and TTase inactivation were similar in both cataracts. Conclusions. Thiol repair systems were damaged in all types of cataracts. Cortical and nuclear cataracts showed differential G3PD inactivation in the cortex, implying those 2 type of cataracts might be formed through different mechanisms. PMID:25537203

  16. Source Plane Reconstruction of the Bright Lensed Galaxy RCSGA 032727-132609

    Science.gov (United States)

    Sharon, Keren; Gladders, Michael D.; Rigby, Jane R.; Wuyts, Eva; Koester, Benjamin P.; Bayliss, Matthew B.; Barrientos, L. Felipe

    2011-01-01

    We present new HST/WFC3 imaging data of RCS2 032727-132609, a bright lensed galaxy at z=1.7 that is magnified and stretched by the lensing cluster RCS2 032727-132623. Using this new high-resolution imaging, we modify our previous lens model (which was based on ground-based data) to fully understand the lensing geometry, and use it to reconstruct the lensed galaxy in the source plane. This giant arc represents a unique opportunity to peer into 100-pc scale structures in a high redshift galaxy. This new source reconstruction will be crucial for a future analysis of the spatially-resolved rest-UV and rest-optical spectra of the brightest parts of the arc.

  17. Design and simulation of GRIN objective lenses for an imaging fiber based speckle metrology system

    Science.gov (United States)

    Prabhathan, P.; Guru Prasad, A. S.; Haridas, Aswin; Chan, Kelvin H. K.; Murukeshan, V. M.

    2016-11-01

    Gradient-Index (GRIN) lenses are characterized by its small diameter and length, enabling them to be an effective lens for an integrated probe based imaging system. For a speckle-based surface metrology system, the imaging lens plays an important role in deciding the statistical dimensions of the speckles. In such cases, the design and simulation of the lens system would be a key process to better the performance of the lensed imaging fiber probe. In this context, this paper focuses on the design of lensed fiber probes for a speckle-based surface metrological imaging system that can find intra cavity interrogation applications. Different optical properties of GRIN lenses and imaging fibers are considered while designing the final probe distal end to meet the targeted specifications. Singlet GRIN lens configuration is analyzed for a front view configuration and a parameter optimization has been carried out to obtain the specifications including the field-of-view, resolution, working distance and magnification.

  18. Quasar lenses and galactic streams: outlier selection and Gaia multiplet detection

    Science.gov (United States)

    Agnello, Adriano

    2017-10-01

    I describe two novel techniques originally devised to select strongly lensed quasar candidates in wide-field surveys. The first relies on outlier selection in optical and mid-infrared magnitude space; the second combines mid-infrared colour selection with Gaia spatial resolution, to identify multiplets of objects with quasar-like colours. Both methods have already been applied successfully to the Sloan Digital Sky Survey, ATLAS and Dark Energy Survey footprints: besides recovering known lenses from previous searches, they have led to new discoveries, including quadruply lensed quasars, which are rare within the rare-object class of quasar lenses. As a serendipitous by-product, at least four candidate Galactic streams in the South have been identified among foreground contaminants. There is considerable scope for tailoring the WISE-Gaia multiplet search to stellar-like objects, instead of quasar-like, and to automatically detect Galactic streams.

  19. Source Plane Reconstruction of The Bright Lensed Galaxy RCSGA 032727-132609

    CERN Document Server

    Sharon, Keren; Rigby, Jane R; Wuyts, Eva; Koester, Benjamin P; Bayliss, Matthew B; Barrientos, L Felipe

    2012-01-01

    We present new HST/WFC3 imaging data of RCSGA 032727-132609, a bright lensed galaxy at z=1.7 that is magnified and stretched by the lensing cluster RCS2 032727-132623. Using this new high-resolution imaging, we modify our previous lens model (which was based on ground-based data) to fully understand the lensing geometry, and use it to reconstruct the lensed galaxy in the source plane. This giant arc represents a unique opportunity to peer into 100-pc scale structures in a high-redshift galaxy. This new source reconstruction will be crucial for a future analysis of the spatially-resolved rest-UV and rest-optical spectra of the brightest parts of the arc.

  20. SOURCE-PLANE RECONSTRUCTION OF THE BRIGHT LENSED GALAXY RCSGA 032727-132609

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Keren; Gladders, Michael D.; Wuyts, Eva; Bayliss, Matthew B. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Rigby, Jane R. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Koester, Benjamin P. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Barrientos, L. Felipe, E-mail: kerens@kicp.uchicago.edu [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Casilla 306, Santiago 22 (Chile)

    2012-02-20

    We present new Hubble Space Telescope/Wide Field Camera 3 imaging data of RCSGA 032727-132609, a bright lensed galaxy at z = 1.7 that is magnified and stretched by the lensing cluster RCS2 032727-132623. Using this new high-resolution imaging, we modify our previous lens model (which was based on ground-based data) to fully understand the lensing geometry, and use it to reconstruct the lensed galaxy in the source plane. This giant arc represents a unique opportunity to peer into 100 pc scale structures in a high-redshift galaxy. This new source reconstruction will be crucial for a future analysis of the spatially resolved rest-UV and rest-optical spectra of the brightest parts of the arc.

  1. Focusing properties of diffractive lenses constructed with the aperiodic m-bonacci sequence

    Science.gov (United States)

    Furlan, Walter D.; Ferrando, Vicente; Monsoriu, Juan A.

    2015-01-01

    In this contribution we present a new family of diffractive lenses which are designed using the m-bonacci sequence. These lenses are a generalization of the Fibonacci Zone Plates previously reported. Diffractive elements of this type are called aperiodic zone plates because they are characterized by a radial profile that follows a given deterministic aperiodic sequence (Cantor set, Thue-Morse, Fibonacci...). Aperiodic lenses have demonstrated new interesting focusing and imaging properties that have found applications in different fields such as soft X-ray microscopy and spectral domain optical coherence tomography. Here, we show that m-bonacci zone plates are inherently bifocal lenses. We demonstrate that the relative separation of their foci depends on the m-value of the sequence and also can be correlated with the generalized golden ratio. As a particular case, the properties of the m-bonacci sequence with m=2 and m=3, called Fibonacci and Tribonacci Zone Plates respectively are discussed.

  2. Manufacturing: 3D printed micro-optics

    Science.gov (United States)

    Juodkazis, Saulius

    2016-08-01

    Uncompromised performance of micro-optical compound lenses has been achieved by high-fidelity shape definition during two-photon absorption microfabrication. The lenses have been made directly onto image sensors and even onto the tip of an optic fibre.

  3. Origami with negative refractive index to generate super-lenses.

    Science.gov (United States)

    Guenneau, Fanny; Chakrabarti, Sangeeta; Guenneau, Sebastien; Ramakrishna, S Anantha

    2014-10-08

    Negative refractive index materials (NRIM) enable unique effects including superlenses with a high degree of sub-wavelength image resolution, a capability that stems from the ability of NRIM to support a host of surface plasmon states. Using a generalized lens theorem and the powerful tools of transformational optics, a variety of focusing configurations involving complementary positive and negative refractive index media can be generated. A paradigm of such complementary media are checkerboards that consist of alternating cells of positive and negative refractive index, and are associated with very singular electromagnetics. We present here a variety of multi-scale checkerboard lenses that we call origami lenses and investigate their electromagnetic properties both theoretically and computationally. Some of these meta-structures in the plane display thin bridges of complementary media, and this highly enhances their plasmonic response. We demonstrate the design of three-dimensional checkerboard meta-structures of complementary media using transformational optics to map the checkerboard onto three-dimensional corner lenses, the only restriction being that the corresponding unfolded structures in the plane are constrained by the four color-map theorem.

  4. Gravitational Lensing - Einstein's Unfinished Symphony

    CERN Document Server

    Treu, Tommaso

    2014-01-01

    Gravitational lensing - the deflection of light rays by gravitating matter - has become a major tool in the armoury of the modern cosmologist. Proposed nearly a hundred years ago as a key feature of Einstein's theory of General Relativity, we trace the historical development since its verification at a solar eclipse in 1919. Einstein was apparently cautious about its practical utility and the subject lay dormant observationally for nearly 60 years. Nonetheless there has been rapid progress over the past twenty years. The technique allows astronomers to chart the distribution of dark matter on large and small scales thereby testing predictions of the standard cosmological model which assumes dark matter comprises a massive weakly-interacting particle. By measuring distances and tracing the growth of dark matter structure over cosmic time, gravitational lensing also holds great promise in determining whether the dark energy, postulated to explain the accelerated cosmic expansion, is a vacuum energy density or a...

  5. Precision cosmology with time delay lenses: high resolution imaging requirements

    CERN Document Server

    Meng, Xiao-Lei; Agnello, Adriano; Auger, Matthew W; Liao, Kai; Marshall, Philip J

    2015-01-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as "Einstein Rings" in high resolution images. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope $\\gamma'$ of the...

  6. Quantifying the effect of baryon physics on weak lensing tomography

    CERN Document Server

    Semboloni, Elisabetta; Schaye, Joop; van Daalen, Marcel P; McCarthy, Ian J

    2011-01-01

    We use matter power spectra from cosmological hydrodynamic simulations to quantify the effect of baryon physics on the weak gravitational lensing shear signal. The simulations consider a number of processes, such as radiative cooling, star formation, supernovae and feedback from active galactic nuclei (AGN). Van Daalen et al. (2011) used the same simulations to show that baryon physics, in particular the strong feedback that is required to solve the overcooling problem, modifies the matter power spectrum on scales relevant for cosmological weak lensing studies. As a result, the use of power spectra from dark matter simulations can lead to significant biases in the inferred cosmological parameters. We show that the typical biases are much larger than the precision with which future missions aim to constrain the dark energy equation of state, w_0. For instance, the simulation with AGN feedback, which reproduces X-ray and optical properties of groups of galaxies, gives rise to a ~40% bias in w_0. We demonstrate ...

  7. Gravitational lensing statistics with extragalactic surveys - IV. Joint constraints on lambda(0) and Omega(0) from gravitational lensing statistics and CMB anisotropies

    NARCIS (Netherlands)

    Macias-Perez, JF; Helbig, P; Quast, R; Wilkinson, A; Davies, R

    2000-01-01

    We present constraints on the cosmological constant lambda(0) and the density parameter Omega(0) from joint constraints from the analyses of gravitational lensing statistics of the Jo- drell Bank-VLA Astrometric Survey (JVAS), optical gravitational lens surveys from the literature and CMB anisotropi

  8. Gravitational lensing statistics with extragalactic surveys - IV. Joint constraints on lambda(0) and Omega(0) from gravitational lensing statistics and CMB anisotropies

    NARCIS (Netherlands)

    Macias-Perez, JF; Helbig, P; Quast, R; Wilkinson, A; Davies, R

    We present constraints on the cosmological constant lambda(0) and the density parameter Omega(0) from joint constraints from the analyses of gravitational lensing statistics of the Jo- drell Bank-VLA Astrometric Survey (JVAS), optical gravitational lens surveys from the literature and CMB

  9. RELICS: Reionization Lensing Cluster Survey

    Science.gov (United States)

    Coe, Dan A.; RELICS Team

    2017-01-01

    Hubble and Spitzer imaging programs observing galaxy cluster lenses have delivered some of the highest redshift galaxy candidates to date (z ~ 9 - 11, or 540 - 410 Myr after the Big Bang). These magnified galaxies are intrinsically faint, and thus more representative of the sources believed to be primarily responsible for reionization. Magnified galaxies are also observed brightly enough to be prime targets for detailed follow-up study with current and future observatories, including JWST. Building on the successes of CLASH and the Frontier Fields, we have begun RELICS, the Reionization Lensing Cluster Survey. By observing 41 massive clusters for the first time at infrared wavelengths, RELICS will deliver more of the best and brightest high-redshift candidates to the community in time for the November 2017 JWST GO Cycle 1 call for proposals. I will present our early results. I will also discuss prospects for JWST to follow-up known candidates and discover new galaxies at even higher redshifts (z > 11). The discovery efficiency gains from lensing will be even more pronounced at z > 11 if luminosity function faint end slopes are steeper than alpha ~ -2, as suggested by current models and observational extrapolations.

  10. Uncontrolled Selling of Contact Lenses

    Directory of Open Access Journals (Sweden)

    Cem Sundu

    2015-05-01

    Full Text Available Objectives: To evaluate the opticians’ perspective about selling and applying contact lenses (CL in the provincial centre of Mersin. Materials and Methods: Twenty opticians who work in the 4 main districts in the provincial centre of Mersin were included in the study. A questionnaire form which was prepared before was filled out by the participants. Results: Seventy-eight percent of the opticians were selling CL without prescription, whereas 25% also carried out its fitting. Seventyfive percent of the participants did not get any education about contact lenses, while 65% of them were feeling themselves disqualified about CLs. Furthermore, half of the participants did not have enough knowledge about the complications associated with CL usage and 75% of them wanted to receive information about CLs. Conclusion: As a result of the questionnaire, we found out that a significant part of the participants were both selling and fitting contact lenses without prescription. We believe that auditing the opticians is as important as educating the contact lens users. (Turk J Ophthalmol 2015; 45: 102-104

  11. Quasar Structure from Microlensing in Gravitationally Lensed Quasars

    Science.gov (United States)

    Morgan, Christopher W.

    2007-12-01

    I investigate microlensing in gravitationally lensed quasars and discuss the use of its signal to probe quasar structure on small angular scales. I describe our lensed quasar optical monitoring program and RETROCAM, the optical camera I built for the 2.4m Hiltner telescope to monitor lensed quasars. I use the microlensing variability observed in 11 gravitationally lensed quasars to show that the accretion disk size at 2500Å is related to the black hole mass by log(R2500/cm) = (15.70±0.16) + (0.64±0.18)log(MBH/109M⊙). This scaling is consistent with the expectation from thin disk theory (R ∝ MBH2/3), but it implies that black holes radiate with relatively low efficiency, log(η) = -1.54±0.36 + log(L/LE) where η=L/(Mdotc2). With one exception, these sizes are larger by a factor of 4 than the size needed to produce the observed 0.8µm quasar flux by thermal radiation from a thin disk with the same T ∝ R-3/4 temperature profile. More sophisticated disk models are clearly required, particularly as our continuing observations improve the precision of the measurements and yield estimates of the scaling with wavelength and accretion rate. This research made extensive use of a Beowulf computer cluster obtained through the Cluster Ohio program of the Ohio Supercomputer Center. Support for program HST-GO-9744 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26666.

  12. Desempenho visual de lentes de contato gelatinosas de diferentes tipos baseado na análise de frentes de onda Optical performance of different soft contact lenses based on wavefront analysis

    Directory of Open Access Journals (Sweden)

    Roberta Fagnani Gatti

    2008-12-01

    valor médio de outras aberrações de alta ordem (que exclui coma de terceira ordem e aberração esférica de quarta ordem, caracterizada pelo componente "outros" no exame de aberrometria. As lentes Focus® Choice AB apresentaram melhor desempenho visual em relação a este componente. CONCLUSÕES: O uso de lentes de contato gelatinosas alteram o comportamento das aberrações de alta ordem, com tendência ao aumento no valor médio das aberrações de Zernike assimétricas. Tal tendência ao aumento não foi verificada para as aberrações simétricas. Não foram encontradas diferenças estatisticamente significantes ao compararmos o padrão de influência obtido com os seis tipos de lentes incluídos no estudo.PURPOSE: To evaluate the visual performance by wavefront analyses of six different kinds of soft contact lenses: Cooperflex® (Cooper Vision, Frequency® 55 Aspheric (Cooper Vision, World Vision FW® (World Vision, Pure Vision® (Bausch & Lomb, Focus® Monthly (Ciba Vision and Focus® Choice AB (Ciba Vision. METHODS: A prospective study was performed with 130 eyes of 71 myopic or hyperopic patients with astigmatism until 1.50 diopter and best corrected visual acuity 20/20 or better. The patients first underwent ophthalmic examination and then wavefront analyses without visual correction and wearing one of the different contact lenses included in the study. The patients were divided into six similar groups, each one tested with one of the six lenses included in the study. RESULTS: Changes at the values of high order aberrations were verified during the use of contact lenses. In 78 (60% of the 130 analyzed eyes an increase at the RMS (rooth mean square values during the use of contact lens was detected. All types of analyzed contact lenses showed an increase of "coma" aberrations due to contact lens use. Frequency® Aspheric and Cooperflex® had the best visual performance in relation to "coma". There was a decrease in the medium value of spherical aberrations

  13. Planck 2015 results. XV. Gravitational lensing

    CERN Document Server

    Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dunkley, J; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Fergusson, J; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Lesgourgues, J; Levrier, F; Lewis, A; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Mangilli, A; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; McGehee, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Wehus, I K; White, M; Yvon, D; Zacchei, A; Zonca, A

    2015-01-01

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40lensing potential power spectrum and that found in the best-fitting LCDM model based on the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of ...

  14. Void Profile from Planck Lensing Potential Map

    Science.gov (United States)

    Chantavat, Teeraparb; Sawangwit, Utane; Wandelt, Benjamin D.

    2017-02-01

    We use the lensing potential map from Planck CMB lensing reconstruction analysis and the “Public Cosmic Void Catalog” to measure the stacked void lensing potential. We have made an attempt to fit the HSW void profile parameters from the stacked lensing potential. In this profile, four parameters are needed to describe the shape of voids with different characteristic radii R V . However, we have found that after reducing the background noise by subtracting the average background, there is a residue lensing power left in the data. The inclusion of the environment shifting parameter, {γ }V, is necessary to get a better fit to the data with the residue lensing power. We divide the voids into two redshift bins: cmass1 (0.45Digital Sky Survey voids reside in an underdense region.

  15. Characterization of nanophotonic soft contact lenses based on poly (2-hydroxyethyl methacrylate and fullerene

    Directory of Open Access Journals (Sweden)

    Debeljković Aleksandra D.

    2013-01-01

    Full Text Available This work presents comparative research of characteristics of a basic and new nanophotonic material, the latter of which was obtained by incorporation fullerene, C60, in the base material for soft contact lenses. The basic (SL38 and nanophotonic materials (SL38-A for soft contact lenses were obtained by radical polymerization of 2-hydroxyethyl methacrylate and 2-hydroxyethyl methacrylate and fullerene, which were derived by the technology in the production lab of the company Soleko (Milan, Italy. The materials were used for production of soft contact lenses in the company Optix (Belgrade, Serbia for the purposes of this research. Fullerene was used due to its apsorption transmission characteristics in ultraviolet, visible and near infrared spectrum. For the purposes of material characterization for potential application as soft contact lenses, network parameters were calculated and SEM analysis of the materials was performed while the optical properties of the soft contact lenses were measured by a Rotlex device. The values of the diffusion exponent, n, close to 0.5 indicated Fick's kinetics corresponding to diffusion. The investigated hydrogels could be classified as nonporous hydrogels. With Rotlex device, values of optical power and map of defects were showed. The obtained values of optical power and map of defects showed that the optical power of synthesized nanophotonic soft contact lens is identical to the nominal value while this was not the case for the basic lens. Also, the quality of the nanophotonic soft contact lens is better than the basic soft contact lens. Hence, it is possible to synthesize new nanophotonic soft contact lenses of desired optical characteristics, implying possibilities for their application in this field.

  16. Ion exchange tempering of glass ophthalmic lenses.

    Science.gov (United States)

    Keeney, A H; Duerson, H L

    1975-08-01

    We performed low velocity drop-ball tests using 5/8-, 7/8-, and 1-inch diameter steel balls on ophthalmic crown glass lenses chemically tempered by the ion exchange process. Four representative dioptric strengths (+ 2.50 spherical, - 2.50 spherical, -2.50 cylindrical, and plano) were studied with the isolated lenses mounted, convex side up, on the American National Standards Institute Z80 test block. New ion exchange lenses exhibited a 100 to 350% greater capacity for attenuation of energy from low velocity, large size missiles than matched lenses of similar strength prepared by the conventional heat-treating and air-quenching process.

  17. CLASH: z ~ 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7-4431

    CERN Document Server

    Monna, A; Greisel, N; Eichner, T; Drory, N; Postman, M; Zitrin, A; Coe, D; Halkola, A; Suyu, S H; Grillo, C; Rosati, P; Lemze, D; Balestra, I; Snigula, J; Bradley, L; Umetsu, K; Koekemoer, A; Bartelmann, M; Benitez, N; Bouwens, R; Broadhurst, T; Donahue, M; Ford, H; Host, O; Infante, L; Jimenez-Teja, Y; Jouvel, S; Kelson, D; Lahav, O; Medezinski, E; Melchior, P; Meneghetti, M; Merten, J; Molino, A; Moustakas, J; Moustakas, L; Nonino, M; Zheng, W

    2013-01-01

    We present a quintuply lensed z ~ 6 candidate discovered in the field of the galaxy cluster RXC J2248.7-4431 (z ~ 0.348) targeted within the Cluster Lensing and Supernova survey with Hubble (CLASH) and selected in the deep HST Frontier Fields survey. Thanks to the CLASH 16-band HST imaging, we identify the quintuply lensed z ~ 6 candidate as an optical dropout in the inner region of the cluster, the brightest image having magAB=24.81+-0.02 in the f105w filter. We perform a detailed photometric analysis to verify its hiz and lensed nature. We get as photometric redshift z_phot ~ 5.9, and given the extended nature and NIR colours of the lensed images, we rule out low-z early type and galactic star contaminants. We perform a strong lensing analysis of the cluster, using 11 families of multiple lensed images identified in the HST images. Our final best model predicts the hiz quintuply lensed system with a position accuracy of 0.8''. The magnifications of the five images are between 2.4 and 10, which leads to a de...

  18. Radio Weak Lensing Shear Measurement in the Visibility Domain - I. Methodology

    CERN Document Server

    Rivi, Marzia; Makhathini, Sphesihle; Abdalla, Filipe Batoni

    2016-01-01

    The high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will allow cosmological weak lensing measurements at radio wavelengths that are competitive with optical surveys. We present an adaptation to radio data of "lensfit", a method for galaxy shape measurement originally developed and used for optical weak lensing surveys. This likelihood method uses an analytical galaxy model and makes a Bayesian marginalisation of the likelihood over uninteresting parameters. It has the feature of working directly in the visibility domain, which is the natural approach to adopt with radio interferometer data, avoiding systematics introduced by the imaging process. As a proof of concept, we provide results for visibility simulations of individual galaxies with flux density S >= 10muJy at the phase centre of the proposed SKA1-MID baseline configuration, adopting 12 frequency channels in the band 950-1190 MHz. Weak lensing shear measurements from a population of galaxies with rea...

  19. N-body lensed CMB maps: lensing extraction and characterization

    CERN Document Server

    Antolini, Claudia; Martinelli, Matteo; Carbone, Carmelita; Baccigalupi, Carlo

    2013-01-01

    We reconstruct shear maps and angular power spectra from simulated weakly lensed total intensity (TT) and polarised (EB) maps of the Cosmic Microwave Background (CMB) anisotropies, obtained using Born approximated ray-tracing through the N-body simulated Cold Dark Matter (CDM) structures in the Millennium Simulations (MS). We compare the recovered signal with the ${\\Lambda}$CDM prediction, on the whole interval of angular scales which is allowed by the finite box size, extending from the degree scale to the arcminute, by applying a quadratic estimator in the flat sky limit; we consider PRISM-like instrumental specification for future generation CMB satellites, corresponding to arcminute angular resolution of 3.2' and sensitivity of 2.43 ${\\mu}$K-arcmin. The noise bias in the simulations closely follows the estimator prediction, becoming dominated by limits in the angular resolution for the EB signal, at l ${\\simeq}$ 1500. The de-biased signal shows no visible departure from predictions of the weak lensing pow...

  20. The Scales of Gravitational Lensing

    CERN Document Server

    De Paolis, Francesco; Ingrosso, Gabriele; Manni, Luigi; Nucita, Achille; Strafella, Francesco

    2016-01-01

    After exactly a century since the formulation of the general theory of relativity, the phenomenon of gravitational lensing is still an extremely powerful method for investigating in astrophysics and cosmology. Indeed, it is adopted to study the distribution of the stellar component in the Milky Way, to study dark matter and dark energy on very large scales and even to discover exoplanets. Moreover, thanks to technological developments, it will allow the measure of the physical parameters (mass, angular momentum and electric charge) of supermassive black holes in the center of ours and nearby galaxies.

  1. The Scales of Gravitational Lensing

    Directory of Open Access Journals (Sweden)

    Francesco De Paolis

    2016-03-01

    Full Text Available After exactly a century since the formulation of the general theory of relativity, the phenomenon of gravitational lensing is still an extremely powerful method for investigating in astrophysics and cosmology. Indeed, it is adopted to study the distribution of the stellar component in the Milky Way, to study dark matter and dark energy on very large scales and even to discover exoplanets. Moreover, thanks to technological developments, it will allow the measure of the physical parameters (mass, angular momentum and electric charge of supermassive black holes in the center of ours and nearby galaxies.

  2. Natural wormholes as gravitational lenses

    CERN Document Server

    Cramer, J G; Morris, M S; Visser, M; Benford, G; Landis, G A; Cramer, John G; Forward, Robert L; Morris, Michael S; Visser, Matt; Benford, Gregory; Landis, Geoffrey A

    1995-01-01

    Visser has suggested traversable 3-dimensional wormholes that could plausibly form naturally during Big Bang inflation. A wormhole mouth embedded in high mass density might accrete mass, giving the other mouth a net *negative* mass of unusual gravitational properties. The lensing of such a gravitationally negative anomalous compact halo object (GNACHO) will enhance background stars with a time profile that is observable and qualitatively different from that recently observed for massive compact halo objects (MACHOs) of positive mass. We recommend that MACHO search data be analyzed for GNACHOs.

  3. How to Find Gravitationally Lensed Type Ia Supernovae

    CERN Document Server

    Goldstein, Daniel A

    2016-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts ($z\\gtrsim 2$), probe potential SN Ia evolution, and deliver high-precision constraints on $H_0$, $w$, and $\\Omega_m$ via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to have an elliptical galaxy as their host with an absolute magnitude implied by the host's photometric redshift that is far brighter than the absolute magnitude of a normal SN Ia (the brightest type of supernova found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. The primary sources of contamination that affect...

  4. Weak lensing mass reconstructions of the ESO Distant Cluster Survey

    CERN Document Server

    Clowe, D; Aragón-Salamanca, A; Bremer, M; De Lucia, G; Halliday, C; Jablonka, P; Milvang-Jensen, B; Pellò, R; Poggianti, B M; Rudnick, G; Saglia, R; Simard, L; White, S; Zaritsky, D

    2005-01-01

    We present weak lensing mass reconstructions for the 20 high-redshift clusters i n the ESO Distant Cluster Survey. The weak lensing analysis was performed on deep, 3-color optical images taken with VLT/FORS2, using a composite galaxy catalog with separate shape estimators measured in each passband. We find that the EDisCS sample is composed primarily of clusters that are less massive than t hose in current X-ray selected samples at similar redshifts, but that all of the fields are likely to contain massive clusters rather than superpositions of low mass groups. We find that 7 of the 20 fields have additional massive structures which are not associated with the clusters and which can affect the weak lensing mass determination. We compare the mass measurements of the remaining 13 clusters with luminosity measurements from cluster galaxies selected using photometric redshifts and find evidence of a dependence of the cluster mass-to-light ratio with redshift. Finally we determine the noise level in the shear meas...

  5. Ocular Straylight with Different Multifocal Contact Lenses

    NARCIS (Netherlands)

    Łabuz, Grzegorz; López-Gil, Norberto; van den Berg, Thomas J T P; Vargas-Martín, Fernando

    2017-01-01

    PURPOSE: Multifocal contact lenses have been growing in popularity as a modality to correct presbyopic eyes, although visual side effects such as disability glare have been reported. The objective of this study was to investigate the effect of multifocal contact lenses on disability glare by means

  6. Modern scleral lenses part I: clinical features.

    NARCIS (Netherlands)

    Visser, E.S.; Visser, R.; Lier, H.J.J. van; Otten, H.M.

    2007-01-01

    PURPOSE: To evaluate the indications for modern scleral lenses and their clinical performance in patients who were fitted with scleral lenses at the authors' practices. METHODS: In this cross-sectional survey, all the necessary data were obtained at the first follow-up visit during the 5-month study

  7. Planck 2015 results: XV. Gravitational lensing

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Arnaud, M.;

    2016-01-01

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We...

  8. The problem of the three lenses; El problema de las tres lentes

    Energy Technology Data Exchange (ETDEWEB)

    Bernardo Wolf, Kurt; Krotzsch, Guillermo [Universidad Nacional Autonoma de Mexico, Morelos (Mexico)

    2001-06-01

    With how many lenses can we build all optical systems? In the paraxial regime (rays of small angles and thin lenses), the problem is reduced to one solvable with matrices and some wit. It has been concluded in the standard reference that the minimum is three lenses. Our analysis is simple and reveals better the structure of the boundaries between different optical configurations. We note that to form equivalent images only two lenses are required. We say what to do when we only have at hand lenses of a few focal distances. [Spanish] Con cuantas lentes podemos fabricar todos los sistemas opticos? En el regimen paraxial (rayos de angulo pequeno y lentes delgadas), el problema se reduce a uno soluble con matrices y algun ingenio. Se ha concluido en la referencia estandar que el minimo son tres lentes. Nuestro analisis es sencillo y revela mejor la estructura de las fronteras entre distintas configuraciones opticas. Notamos que para formar imagenes equivalentes se requieren solo dos lentes. Decimos que hacer cuando unicamente hay a mano lentes de unas cuantas distancias focales.

  9. An End of Service Life Assessment of PMMA Lenses from Veteran Concentrator Photovoltaic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Khonkar, Hussameldin I.; Herrero, Rebecca; Anton, Ignacio; Johnson, David K.; Vinzant, Todd B.; Deutch, Steve; To, Bobby; Sala, Gabriel; Kurtz, Sarah R.

    2017-03-21

    The optical performance of poly(methyl methacrylate) lenses from veteran concentrator photovoltaic modules was examined after the end of their service life. Lenses from the Martin-Marietta and Intersol module designs were examined from the 'Solar Village' site near Riyadh, Saudi Arabia, as well as the Phoenix Sky Harbor airport, followed by the Arizona Public Service Solar Test and Research (APS-STaR) center in Tempe, Arizona. The various lens specimens were deployed for 20, 27, and 22 years, respectively. Optical characterizations included lens efficiency (Solar Simulator instrument), material transmittance and haze (of coupons cut from veteran lenses, then measured again after their faceted back surface was polished, and then measured again after the incident front surface was polished), and direct transmittance (as a function of detector's acceptance angle, using the Very Low Angular Beam Spread ('VLABS') instrument). Lens efficiency measurements compared the central region to the entire lens, also using hot and cold mirror measurements to diagnose differences in performance. A series of subsequent characterizations was performed because a decrease in performance of greater than 10% was observed for some of the veteran lenses. Surface roughness was examined using atomic force microscopy and scanning electron microscopy. Facet geometry (tip and valley radius) was quantified on cross-sectioned specimens. Molecular weight was compared between the incident and faceted surfaces of the lenses.

  10. Geometry of weak lensing of CMB polarization

    CERN Document Server

    Challinor, A D; Challinor, Anthony; Chon, Gayoung

    2002-01-01

    Hu has presented a harmonic-space method for calculating the effects of weak gravitational lensing on the cosmic microwave background (CMB) over the full sky. Computing the lensed power spectra to first order in the deflection power requires one to formulate the lensing displacement beyond the tangent-space approximation. We point out that for CMB polarization this displacement must undergo geometric corrections on the spherical sky to maintain statistical isotropy of the lensed fields. Although not discussed by Hu, these geometric effects are implicit in his analysis. However, there they are hidden by an overly-compact notation that is both unconventional and rather confusing. Here we aim to ameliorate this deficiency by providing a rigorous derivation of the lensed spherical power spectra.

  11. Gravitational Lensing of Cosmic Microwave Background Polarization

    CERN Document Server

    Ade, P A R; Anthony, A E; Arnold, K; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2013-01-01

    Primary fluctuations in both temperature and polarization of the Cosmic Microwave Background (CMB) reflect the properties of the Universe from the Big Bang until the photons decoupled from matter 380,000 years later. These primary fluctuations are then lensed by large-scale structures (such as clusters of galaxies and filaments of dark matter), with the result that the distribution and properties of dark matter, including the masses of neutrinos, can be determined more accurately by extracting the lensing information than through studying the primary fluctuations alone. Polarization lensing can give cleaner, higher resolution results than temperature lensing. The correlation of lensed CMB polarization with large-scale structure, traced through the Cosmic Infrared Background, was recently detected; however, this correlation does not trace all structure and depends on the relationship between the infrared flux from the galaxies and the underlying mass distribution. Here we report the detection of gravitational ...

  12. Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters

    Science.gov (United States)

    Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; Sako, Masao; Holoien, Thomas W. -S.; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, Stephen Bradley; Donahue, Megan; Filippenko, Alexei V.; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A.; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G.; Umetsu, Keiichi; Zheng, Wei

    2014-01-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  13. Optical holography

    CERN Document Server

    Collier, Robert

    2013-01-01

    Optical Holography deals with the use of optical holography to solve technical problems, with emphasis on the properties of holograms formed with visible light. Topics covered include the Fourier transform, propagation and diffraction, pulsed-laser holography, and optical systems with spherical lenses. A geometric analysis of point-source holograms is also presented, and holograms and hologram spatial filters formed with spatially modulated reference waves are described. This book is comprised of 20 chapters and begins with an introduction to concepts that are basic to understanding hologr

  14. On aberration in gravitational lensing

    CERN Document Server

    Sereno, M

    2008-01-01

    It is known that a relative translational motion between the deflector and the observer affects gravitational lensing. In this paper, a lens equation is obtained to describe such effects on actual lensing observables. Results can be easily interpreted in terms of aberration of light-rays. Both radial and transverse motions with relativistic velocities are considered. The lens equation is derived by first considering geodesic motion of photons in the rest-frame Schwarzschild spacetime of the lens, and, then, light-ray detection in the moving observer's frame. Due to the transverse motion images are displaced and distorted in the observer's celestial sphere, whereas the radial velocity along the line of sight causes an effective re-scaling of the lens mass. The Einstein ring is distorted to an ellipse whereas the caustics in the source plane are still point-like. Either for null transverse motion or up to linear order in velocities, the critical curve is still a circle with its radius corrected by a factor (1+z...

  15. Cosmology with Strong Lensing Systems

    CERN Document Server

    Cao, Shuo; Gavazzi, Raphaël; Piórkowska, Aleksandra; Zhu, Zong-Hong

    2015-01-01

    In this paper, we assemble a catalog of 118 strong gravitational lensing systems from SLACS, BELLS, LSD and SL2S surveys and use them to constrain the cosmic equation of state. In particular we consider two cases of dark energy phenomenology: $XCDM$ model where dark energy is modeled by a fluid with constant $w$ equation of state parameter and in Chevalier - Polarski - Linder (CPL) parametrization where $w$ is allowed to evolve with redshift: $w(z) = w_0 + w_1 \\frac{z}{1+z}$. We assume spherically symmetric mass distribution in lensing galaxies, but relax the rigid assumption of SIS model in favor to more general power-law index $\\gamma$, also allowing it to evolve with redshifts $\\gamma(z)$. Our results for the $XCDM$ cosmology show the agreement with values (concerning both $w$ and $\\gamma$ parameters) obtained by other authors. We go further and constrain the CPL parameters jointly with $\\gamma(z)$. The resulting confidence regions for the parameters are much better than those obtained with a similar metho...

  16. Characterization of germanium linear kinoform lenses at Diamond Light Source.

    Science.gov (United States)

    Alianelli, L; Sawhney, K J S; Tiwari, M K; Dolbnya, I P; Stevens, R; Jenkins, D W K; Loader, I M; Wilson, M C; Malik, A

    2009-05-01

    The unprecedented brilliance achieved by third-generation synchrotron sources and the availability of improved optics have opened up new opportunities for the study of materials at the micrometre and nanometre scale. Focusing the synchrotron radiation to smaller and smaller beams is having a huge impact on a wide research area at synchrotrons. The key to the exploitation of the improved sources is the development of novel optics that deliver narrow beams without loss of brilliance and coherence. Several types of synchrotron focusing optics are successfully fabricated using advanced miniaturization techniques. Kinoform refractive lenses are being developed for hard X-ray beamlines, and the first test results at Diamond are discussed in this paper.

  17. Measurement of the topography of human cadaver lenses using the PAR corneal topography system

    Science.gov (United States)

    Fernandez, Viviana; Manns, Fabrice; Zipper, Stanley; Sandadi, Samith; Hamaoui, Marie; Tahi, Hassan; Ho, Arthur; Parel, Jean-Marie A.

    2001-06-01

    To measure the radius of curvature and asphericity of the anterior and posterior surfaces of crystalline lenses of human Eye-Bank eyes using the PAR Corneal Topography System. The measured values will be used in an optical model of the eye for lens refilling procedures.

  18. RadioLensfit: Bayesian weak lensing measurement in the visibility domain

    CERN Document Server

    Rivi, Marzia; Makhathini, Spheshile; Abdalla, Filipe Batoni

    2016-01-01

    Observationally, weak lensing has been served so far by optical surveys due to the much larger number densities of background galaxies achieved, which is typically by two to three orders of magnitude compared to radio. However, the high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will provide a density of detected galaxies that is comparable to that found at optical wavelengths, and with significant source shape measurements to make large area radio surveys competitive for weak lensing studies. This will lead weak lensing to become one of the primary science drivers in radio surveys too, with the advantage that they will access the largest scales in the Universe going beyond optical surveys, like LSST and Euclid, in terms of redshifts that are probed. RadioLensfit is an adaptation to radio data of "lensfit", a model-fitting approach for galaxy shear measurement, originally developed for optical weak lensing surveys. Its key advantage is working directly in th...

  19. Gravitational lensing statistics with extragalactic surveys - II. Analysis of the Jodrell Bank-VLA Astrometric Survey

    NARCIS (Netherlands)

    Helbig, P; Marlow, D; Quast, R; Wilkinson, PN; Browne, IWA; Koopmans, LVE

    We present constraints on the cosmological constant lambda(0) from gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey (JVAS). Although this is the largest gravitational lens survey which has been analysed, cosmological constraints are only comparable to those from optical

  20. Solar concentration by curved-base Fresnel lenses

    Science.gov (United States)

    Cosby, R. M.

    1977-01-01

    The solar concentration performance of idealized curved base line focusing Fresnel lenses is analyzed. A simple optical model was introduced to study the effects of base curvature and lens f-number. Thin lens ray tracing and the laws of reflection and refraction are used to develop expression for lens transmittance and image plane intensity profiles. The intensity distribution over the solar spectrum, lens dispersion effects, and absorption by the lens material are included in the analysis. Model capabilities include assessment of lens performance in the presence of small transverse tracking errors and the sensitivity of solar image characteristics to focusing.

  1. Planck 2015 results. XV. Gravitational lensing

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤ L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ8Ω0.25m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.

  2. Extreme Gravitational Lensing near Rotating Black Holes

    CERN Document Server

    Beckwith, K; Beckwith, Kris; Done, Chris

    2004-01-01

    We describe a new approach to calculating photon trajectories and gravitational lensing effects in the strong gravitational field of the Kerr black hole. These techniques are applied to explore both the imaging and spectral properties of photons that perform multiple orbits of the central mass before escaping to infinity. Viewed at large inclinations, these higher order photons contribute $\\sim 20 %$ of the total luminosity of the system for a Schwarzschild hole, whilst for an extreme Kerr black hole this fraction rises to $\\sim 60 %$. In more realistic models these photons will be re-absorbed by the disc at large distances from the hole, but this returning radiation could provide a physical mechanism to resolve the discrepancy between the predicted and observed optical/UV colours in AGN. Conversely, at low inclinations, higher order images re-intercept the disc plane close to the black hole, so need not be absorbed by the disc if this is within the plunging region. These photons form a bright ring carrying a...

  3. Quasar structure from microlensing in gravitationally lensed quasars

    Science.gov (United States)

    Morgan, Christopher Warren

    2008-02-01

    I analyze microlensing in gravitationally lensed quasars to yield measurements of the structure of their continuum emission regions. I first describe our lensed quasar monitoring program and RETROCAM, the auxiliary port camera I built for the 2.4m Hiltner telescope to monitor lensed quasars. I describe the application of our Monte Carlo microlensing analysis technique to SDSS 0924+0219, a system with a highly anomalous optical flux ratio. For an inclination angle i, I find an optical scale radius log[( r s /cm)[Special characters omitted.] ] = [Special characters omitted.] . I extrapolate the best-fitting light curves into the future to find a roughly 45% probability that the anomalous image (D) will brighten by at least an order of magnitude during the next decade. I expand our method to make simultaneous estimates of the time delays and structure of HE1104-1805 and QJ0158-4325, two doubly-imaged quasars with microlensing and intrinsic variability on comparable time scales. For HE1104- 1805 I find a time delay of D t AB = t A - t B = [Special characters omitted.] days and estimate a scale radius of log[( r s /cm)[Special characters omitted.] ] = [Special characters omitted.] at 0.2mm in the rest frame. I am unable to measure a time delay for QJ0158-4325, but the scale radius is log[( r s /cm) [Special characters omitted.] ] = 14.9 ±1 0.3 at 0.3mm in the rest frame. I then apply our Monte Carlo microlensing analysis technique to the optical light curves of 11 lensed quasar systems to show that quasar accretion disk sizes at 2500Å are related to black hole mass ( M BH ) by log( R 2500 /cm) = (15.7 ± 0.16) + (0.64± 0.18) log( M BH /10 9 [Special characters omitted.] ). This scaling is consistent with the expectation from thin disk theory (R 0( [Special characters omitted.] ), but it implies that black holes radiate with relatively low efficiency, log(e) = -1.54 ± 0.36 + log( L/L E ) where e=3D L / ( M c 2 ). These sizes are also larger, by a factor of ~ 3, than

  4. Investigations of Galaxy Clusters Using Gravitational Lensing

    Energy Technology Data Exchange (ETDEWEB)

    Wiesner, Matthew P. [Northern Illinois Univ., DeKalb, IL (United States)

    2014-08-01

    In this dissertation, we discuss the properties of galaxy clusters that have been determined using strong and weak gravitational lensing. A galaxy cluster is a collection of galaxies that are bound together by the force of gravity, while gravitational lensing is the bending of light by gravity. Strong lensing is the formation of arcs or rings of light surrounding clusters and weak lensing is a change in the apparent shapes of many galaxies. In this work we examine the properties of several samples of galaxy clusters using gravitational lensing. In Chapter 1 we introduce astrophysical theory of galaxy clusters and gravitational lensing. In Chapter 2 we examine evidence from our data that galaxy clusters are more concentrated than cosmology would predict. In Chapter 3 we investigate whether our assumptions about the number of galaxies in our clusters was valid by examining new data. In Chapter 4 we describe a determination of a relationship between mass and number of galaxies in a cluster at higher redshift than has been found before. In Chapter 5 we describe a model of the mass distribution in one of the ten lensing systems discovered by our group at Fermilab. Finally in Chapter 6 we summarize our conclusions.

  5. The performance of the corrector lenses for the Auger fluorescence detector

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Ricardo; Escobar, Carlos O.; /Campinas State U.

    2005-07-01

    We present an analysis of the effect that the corrector lenses (Schmidt Optics) have on the overall performance of the Auger Fluorescence Detector. The analysis uses real data from the telescopes. Figures of merit for the corrector lenses performance include shower trigger rate and the distribution of the distance of closest approach to the shower axis. As a result of this analysis we may say that the effective light collection area of a telescope nearly doubles with the use of a corrector lens at its aperture.

  6. Tailoring strong lensing cosmographic observations

    Science.gov (United States)

    Linder, Eric V.

    2015-04-01

    Strong lensing time delay cosmography has excellent complementarity with other dark energy probes and will soon have abundant systems detected. We investigate two issues in the imaging and spectroscopic follow-up required to obtain the time delay distance. The first is optimization of spectroscopic resources. We develop a code to optimize the cosmological leverage under the constraint of constant spectroscopic time and find that sculpting the lens system redshift distribution can deliver a 40% improvement in dark energy figure of merit. The second is the role of systematics, correlated between different quantities of a given system or model errors common to all systems. We show how the levels of different systematics affect the cosmological parameter estimation and derive guidance for the fraction of double image vs quad image systems to follow as a function of differing systematics between them.

  7. Braneworld Black Hole Gravitational Lensing

    Science.gov (United States)

    Liang, Jun

    2017-04-01

    A class of braneworld black holes, which I called as Bronnikov-Melnikov-Dehen (BMD) black holes, are studied as gravitational lenses. I obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. I also compare the results with those obtained for Schwarzschild and two braneworld black holes, i.e., the tidal Reissner-Nordström (R-N) and the Casadio-Fabbri-Mazzacurati (CFM) black holes. Supported by Natural Science Foundation of Education Department of Shannxi Provincial Government under Grant No. 15JK1077, and Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No. BJ12-02

  8. Demonstration Telescopes Using "Dollar Optics"

    Science.gov (United States)

    Ross, Paul

    2008-05-01

    I propose a poster that illustrates the use of "dollar optics” for experimentation and for the creation of demonstration telescopes. Handling a variety of lenses and mirrors provides an opportunity for discovering practical optics. Some part of this path of exploration must have been traveled by Galileo as he experimented with spectacle lenses. "Dollar optics” include reading glasses (positive meniscus lenses), convex and concave mirrors, Fresnel sheets, magnifying lenses, and eye loupes. Unwanted distance spectacles (negative meniscus lenses) are available at second-hand stores. Galileo telescopes, "long” 17th century telescopes, and useful demonstration models of Newtonian reflectors can be made with "dollar” optics. The poster will illustrate practical information about "dollar optics” and telescopes: magnification, focal length, and "diopters” disassembling spectacles; creating cheap mounts for spectacle lenses; the importance of optical axes and alignment; eyepieces; and focusing. (A table would be useful with the poster to set out a hands-on display of "dollar optic” telescopes.) Educators, experimenters, and those concerned with astronomy outreach might be interested in this poster. Working with "dollar optics” requires facility with simple tools, interest in planning projects, patience, imagination, and the willingness to invest some time and effort. "Dollar optics” may help to foster creativity and hands-on enthusiasm - as did Galileo's work with simple lenses 400 years ago. "Oh! When will there be an end put to the new observations and discoveries of this admirable instrument?” - Galileo Galilei as quoted by Henry C. King, The History of the Telescope.

  9. Tevatron Electron Lenses: Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; /Fermilab; Bishofberger, Kip; /Los Alamos; Kamerdzhiev, Vsevolod; /Fermilab; Kozub, Sergei; /Serpukhov, IHEP; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; /Fermilab /SLAC /Fermilab /Serpukhov, IHEP /Novosibirsk, IYF /Serpukhov, IHEP /Fermilab

    2008-08-01

    The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [1]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [2]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported in [3,4,5]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation and outline the technical parameters of various subsystems.

  10. Lensing convergence in galaxy redshift surveys

    CERN Document Server

    Cardona, Wilmar; Kunz, Martin; Montanari, Francesco

    2016-01-01

    In this letter we demonstrate the importance of including the lensing contribution in galaxy clustering analyses with large galaxy redshift surveys. It is well known that radial cross-correlations between different redshift bins of galaxy surveys are dominated by lensing. But we show here that also neglecting lensing in the auto-correlations within one bin severely biases cosmological parameter estimation with redshift surveys. It leads to significant shifts for several cosmological parameters, most notably the scalar amplitude, the scalar spectral index and in particular the neutrino mass scale. Especially the latter parameter is one of the main targets of future galaxy surveys.

  11. Nature of a Strongly-Lensed Submillimeter Galaxy SMM J14011+0252

    CERN Document Server

    Motohara, K; Iwamuro, F; Eto, S; Shima, T; Mochida, D; Maihara, T; Nakanishi, K; Kashikawa, N

    2004-01-01

    We have carried out near-infrared JHK spectroscopy of a gravitationally lensed submillimeter galaxy SMM J14011+0252 at z=2.565, using OHS and CISCO on the Subaru telescope. This object consists of two optical components, J1 and J2, which are lensed by the cluster Abell 1835. J1 suffers additional strong lensing by a foreground galaxy at z=0.25 in the cluster. The rest-optical H-alpha, H-beta, and [O II]3727 lines are detected in both J1 and J2, and [N II]6548,6583 lines are also detected in J1. A diagnosis of emission-line ratios shows that the excitation source of J1 is stellar origin, consistent with previous X-ray observations. The continua of J1 and J2 show breaks at rest 4000A, indicating relatively young age. Combined with optical photometry, we have carried out model spectrum fitting of J2 and find that it is a very young (~50 Myr) galaxy of rather small mass (~10e8 M_sol) which suffers some amount of dust extinction. A new gravitational lensing model is constructed to assess both magnification factor ...

  12. Calcification of different designs of silicone intraocular lenses in eyes with asteroid hyalosis.

    Science.gov (United States)

    Stringham, Jack; Werner, Liliana; Monson, Bryan; Theodosis, Raymond; Mamalis, Nick

    2010-08-01

    To describe the association between calcification of older and newer designs of silicone intraocular lenses (IOLs) and asteroid hyalosis. Case series with clinicopathologic correlation. Sixteen silicone IOLs explanted because of decreased visual acuity associated with opacifying deposits on the posterior optic surface. All 16 lenses underwent gross and light microscopic analyses. Selected lenses underwent alizarin red staining or scanning electron microscopy coupled with energy dispersive x-ray spectroscopy for elemental composition. Clinical data in each case were obtained by a questionnaire sent to the explanting surgeons. Clinical data in relation to 111 hydrophilic acrylic lenses explanted because of calcification also were assessed for comparison. Deposit morphologic features and location were evaluated under gross and light microscopy. The calcified nature of the deposits was assessed by histochemical staining and surface analyses. Clinical data obtained included age at IOL implantation, gender, implantation and explantation dates, as well as history of neodymium:yttrium-aluminum-garnet laser treatment. The presence of asteroid hyalosis in the affected eye was investigated for the explanted silicone and hydrophilic acrylic lenses. The 16 lenses were of 8 designs manufactured from different silicone materials, which were explanted 9.21+/-3.66 years after implantation. Neodymium:yttrium-aluminum-garnet laser applications performed in 12 cases partially removed deposits from the lens, followed by a gradual increase in their density after the procedures. The presence of asteroid hyalosis was confirmed in 13 cases; no notes regarding this condition were found in patient charts in the other 3 cases. The deposits were only on the posterior optic surface of the silicone lenses and were composed of calcium and phosphate. A history of asteroid hyalosis was not found in relation to any of the 111 cases of postoperative calcification of hydrophilic acrylic lenses

  13. Topographical Evaluation of the Decentration of Orthokeratology Lenses

    Institute of Scientific and Technical Information of China (English)

    Xiao Yang; Xingwu Zhong; Xiangming Gong; Junwen Zeng

    2005-01-01

    Purpose: To evaluate the amount of lens decentration and various factors affecting decentration after orthokeratology lens wear and to observe the effect of decentration on the visual functions.Methods: Two kinds of orthokeratology lenses were fitted to 270 eyes of 135 patients [initial mean refractive error: (-3.98±1.51)D]. Humphery Instruments ATLAS 990 was used for the computer-assisted analysis of corneal topographical maps. The examination of corneal topography was performed on patients before and after 6 months of wearing orthokeratology lenses. The amount of decentration of orthokeratology lenses was measured by finding the distance between center of optic zone and the pupil center. The factors influencing the amount of decentration were analyzed, including the initial refraction error, astigmatism, keratometry values, corneal eccentricity, and the diameter of lens.Visual symptoms including monocular diplopia, glare around lights were recorded to evaluate the effects of decentration on visual functions.Results: The mean amount of decentration was (0.49±0.34) mm after one night's wear.The mean amount of decentration after 1 month, 3 months and 6 months was (0.57±0.41) mm, (0.55±0.48) mm and (0.59±0.39) mm, respectively. After one month, the amount of decentration was less than 0.50 mm in 51.1% eyes, 0.50~1.0 mm in 35.6% eyes and more than 1.00 mm in 13.3% eyes. The direction of decentration of more than 0.50 mm was mainly in the temporal quadrant (48.5%). Patients with greater initial astigmatism and smaller lenses showed greater decentration (P<0.05). There was no statistically significant difference in decentration between the two groups with different corneal eccentricities and keratometry values (P>0.05). The amount of decentration was greater in patients who complained of monocular diplopia and glare.Conclusions: The amount of decentration of orthokeratology depends on the initial refractive error, astigmatism and the design of orthokeratology

  14. Data transfer through beam steering using agile lensing

    Science.gov (United States)

    Arshad, Muhammad Assad; Reza, Syed Azer; Muhammad, Ahsan

    2016-04-01

    This paper presents a data transfer scheme using multi-focus tunable lenses. The design involves the use of a standard laser source and a variable focus agile lens to steer to the laser beam that passes through the lens. In our proposed system, the beam steer angle depends on an input electrical signal which drives the tunable lens. Therefore the beam steer angle is made to follow the variations in the input electrical drive signal. This is extremely interesting for data transfer applications as the data signal can be used as the input drive signal to the lens. The laser beam is steered according to the input data voltage levels and when the beam is incident on a photo-detector of a finite size, only a fraction of its total incident optical power is received by the photo-detector. This power contribution is proportional to the fraction of the total number of photons per unit area which are incident on the active area of the detector. The remaining photons which are not incident on the photo-detector do not contribute to the received power at the photo-detector. We present the theory of beam steering through a tunable lens and present a theoretical framework which governs data transfer through the proposed method. We also present the transfer function of the proposed system which helps us to calculate its essential theoretical performance parameters such as modulation depth and bit error rates. We also present experimental results to demonstrate efficient data transfer through the proposed method. As tunable lenses are primarily deployed in motion-free multi-focus cameras hence most of the modern portable devices such as cellphones and tablets use these lenses to operate the in-built variable focus cameras that are part of these devices. Because tunable lenses are commonly present in several different portable devices, the proposed method of data transfer between two devices is highly promising as it expands the use of the already deployed tunable lenses with

  15. Tangential Velocity of the Dark Matter in the Bullet Cluster from Precise Lensed Image Redshifts

    Science.gov (United States)

    Molnar, Sandor M.; Broadhurst, Tom; Umetsu, Keiichi; Zitrin, Adi; Rephaeli, Yoel; Shimon, Meir

    2013-09-01

    We show that the fast-moving component of the "Bullet Cluster" (1E0657-56) can induce potentially resolvable redshift differences between multiply lensed images of background galaxies. This moving cluster effect, due to the tangential peculiar velocity of the lens, can be expressed as the scalar product of the lensing deflection angle with the tangential velocity of the mass components; the effect is maximal for clusters colliding in the plane of the sky with velocities boosted by their mutual gravity. The Bullet Cluster is likely to be the best candidate for the first measurement of this effect due to the large collision velocity and because the lensing deflection and the cluster fields can be calculated in advance. We derive the deflection field using multiply lensed background galaxies detected with the Hubble Space Telescope. The velocity field is modeled using self-consistent N-body/hydrodynamical simulations constrained by the observed X-ray and gravitational lensing features of this system. We predict that the triply lensed images of systems "G" and "H" straddling the critical curve of the bullet component will show the largest frequency shifts up to ~0.5 km s-1. These shifts are within the range of the Atacama Large Millimeter/Submillimeter Array for molecular emission, and are near the resolution limit of the new generation high-throughput optical-IR spectrographs. The detection of this effect measures the tangential motion of the subclusters directly, thereby clarifying the tension with ΛCDM, which is inferred from the gas motion less directly. This method may be extended to smaller redshift differences using the Lyα forest toward QSOs lensed by more typical clusters of galaxies. More generally, the tangential component of the peculiar velocities of clusters derived by our method complements the radial component determined by the kinematic Sunyaev-Zel'dovich effect, providing a full three-dimensional description of velocities.

  16. Mass Models and Environment of the New Quadruply Lensed Quasar SDSS J1330+1810

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Inada, Naohisa; Blackburne, Jeffrey A.; Shin, Min-Su; Kayo, Issha; Strauss, Michael A.; Schneider, Donald P.; York, Donald G.

    2008-09-09

    We present the discovery of a new quadruply lensed quasar. The lens system, SDSS J1330+1810 at z{sub s} = 1.393, was identified as a lens candidate from the spectroscopic sample of the Sloan Digital Sky Survey. Optical and near-infrared images clearly show four quasar images with a maximum image separation of 1.76 inch, as well as a bright lensing galaxy. We measure a redshift of the lensing galaxy of z{sub 1} = 0.373 from absorption features in the spectrum. We find a foreground group of galaxies at z = 0.31 centred {approx} 120 inch southwest of the lens system. Simple mass models fit the data quite well, including the flux ratios between images, although the lens galaxy appears to be {approx} 1 mag brighter than expected by the Faber-Jackson relation. Our mass modeling suggests that shear from nearby structure is affecting the lens potential.

  17. Strong Gravitational Lenses and Multi-Wavelength Galaxy Surveys with AKARI, Herschel, SPICA and Euclid

    CERN Document Server

    Serjeant, Stephen

    2016-01-01

    Submillimetre and millimetre-wave surveys with Herschel and the South Pole Telescope have revolutionised the discovery of strong gravitational lenses. Their follow-ups have been greatly facilitated by the multi-wavelength supplementary data in the survey fields. The forthcoming Euclid optical/near-infrared space telescope will also detect strong gravitational lenses in large numbers, and orbital constraints are likely to require placing its deep survey at the North Ecliptic Pole (the natural deep field for a wide class of ground-based and space-based observatories including AKARI, JWST and SPICA). In this paper I review the current status of the multi-wavelength survey coverage in the NEP, and discuss the prospects for the detection of strong gravitational lenses in forthcoming or proposed facilities such as Euclid, FIRSPEX and SPICA.

  18. Gravitational Lensing Signatures of Supermassive Black Holes in Future Radio Surveys

    CERN Document Server

    Bowman, J D; Kiger, J R; Bowman, Judd D.; Hewitt, Jacqueline N.; Kiger, James R.

    2004-01-01

    Observational measurements of the relationship between supermassive black holes (SMBHs) and the properties of their host galaxies are an important method for probing theoretical hierarchical growth models. Gravitational lensing is a unique mechanism for acquiring this information in systems at cosmologically significant redshifts. We review the calculations required to include SMBHs in two standard galactic lens models, a cored isothermal sphere and a broken power law. The presence of the SMBH produces two primary effects depending on the lens configuration, either blocking the core image that is usually predicted to form from a softened lens model, or adding an extra, highly demagnified, image to the predictions of the unaltered lens model. The magnitudes of these effects are very sensitive to galaxy core sizes and SMBH masses. Therefore, observations of these lenses would probe the properties of the inner regions of galaxies, including their SMBHs. Lensing cross-sections and optical depth calculations indic...

  19. Constraining $f(R)$ Gravity Theory Using CFHTLenS Weak Lensing Peak Statistics

    CERN Document Server

    Liu, Xiangkun; Zhao, Gong-Bo; Chiu, Mu-Chen; Fang, Wei; Pan, Chuzhong; Wang, Qiao; Du, Wei; Yuan, Shuo; Fu, Liping; Fan, Zuhui

    2016-01-01

    In this Letter, we report the observational constraints on the Hu-Sawicki $f(R)$ theory derived from weak lensing peak abundances, which are closely related to the mass function of massive halos. In comparison with studies using optical or X-ray clusters of galaxies, weak lensing peak analyses have the advantages of not relying on mass-baryonic observable calibrations. With observations from the Canada-France-Hawaii-Telescope Lensing Survey, our peak analyses give rise to a tight constraint on the model parameter $|f_{R0}|$ for $n=1$. The $95\\%$ CL limit is $\\log_{10}|f_{R0}| < -4.82$ given WMAP9 priors on $(\\Omega_{\\rm m}, A_{\\rm s})$. With Planck15 priors, the corresponding result is $\\log_{10}|f_{R0}| < -5.16$.

  20. Shear Nulling after PSF Gaussianisation: moment-based weak lensing measurements with subpercent noise bias

    CERN Document Server

    Herbonnet, Ricardo; Kuijken, Konrad

    2016-01-01

    Current optical imaging surveys for cosmology are covering large areas of sky. To exploit the statistical power of these surveys for weak lensing measurements requires shape measurement methods with subpercent systematic errors. We introduce a new weak lensing shear measurement algorithm, Shear Nulling after PSF Gaussianisation (SNAPG), designed to avoid the noise biases that affect most other methods. SNAPG operates on images that have been convolved with a kernel that renders the Point Spread Function (PSF) a circular Gaussian, and uses weighted second moments of the sources. The response of such second moments to a shear of the pre-seeing galaxy image can be predicted analytically, allowing us to construct a shear nulling scheme that finds the shear parameters for which the observed galaxies are consistent with an unsheared, isotropically oriented population of sources. The inverse of this nulling shear is then an estimate of the gravitational lensing shear. We identify the uncertainty of the estimated cen...

  1. Real-time detection of an extreme scattering event: constraints on Galactic plasma lenses

    CERN Document Server

    Bannister, Keith W; Tuntsov, Artem V; Walker, Mark A; Johnston, Simon; Reynolds, Cormac; Bignall, Hayley

    2016-01-01

    Extreme scattering events (ESEs) are distinctive fluctuations in the brightness of astronomical radio sources caused by occulting plasma lenses in the interstellar medium. The inferred plasma pressures of the lenses are $\\sim 10^3$ times the ambient pressure, challenging our understanding of gas conditions in the Milky Way. Using a new survey technique, we have discovered an ESE while it was in progress. We report radio and optical follow-up observations. Modelling of the radio data demonstrates that the lensing structure is a density enhancement and that the lens is diverging, ruling out one of two competing physical models. Our technique will uncover many more ESEs, addressing a long-standing mystery of the small-scale gas structure of the Galaxy.

  2. Measuring Repeatability of the Focus-variable Lenses

    Directory of Open Access Journals (Sweden)

    Jan Řezníček

    2014-12-01

    Full Text Available In the field of photogrammetry, the optical system, usually represented by the glass lens, is used for metric purposes. Therefore, the aberration characteristics of such a lens, inducing deviations from projective imaging, has to be well known. However, the most important property of the metric lens is the stability of its glass and mechanical elements, ensuring long-term reliability of the measured parameters. In case of a focus-variable lens, the repeatability of the lens setup is important as well. Lenses with a fixed focal length are usually considered as “fixed” though, in fact, most of them contain one or more movable glass elements, providing the focusing function. In cases where the lens is not equipped with fixing screws, the repeatability of the calibration parameters should be known. This paper derives simple mathematical formulas that can be used for measuring the repeatability of the focus-variable lenses, and gives a demonstrative example of such measuring. The given procedure has the advantage that only demanded parameters are estimated, hence, no unwanted correlations with the additional parameters exist. The test arrangement enables us to measure each demanded magnification of the optical system, which is important in close-range photogrammetry.

  3. Dark Synergy Gravitational Lensing and the CMB

    CERN Document Server

    Hu, W

    2002-01-01

    Power spectra and cross-correlation measurements from the weak gravitational lensing of the cosmic microwave background (CMB) and the cosmic shearing of faint galaxies images will help shed light on quantities hidden from the CMB temperature anisotropies: the dark energy, the end of the dark ages, and the inflationary gravitational wave amplitude. Even with modest surveys, both types of lensing power spectra break CMB degeneracies and they can ultimately improve constraints on the dark energy equation of state w by over an order of magnitude. In its cross correlation with the integrated Sachs-Wolfe effect, CMB lensing offers a unique opportunity for a more direct detection of the dark energy and enables study of its clustering properties. By obtaining source redshifts and cross-correlations with CMB lensing, cosmic shear surveys provide tomographic handles on the evolution of clustering correspondingly better precision on the dark energy equation of state and density. Both can indirectly provide detections of...

  4. Tear exchange and contact lenses: a review.

    Science.gov (United States)

    Muntz, Alex; Subbaraman, Lakshman N; Sorbara, Luigina; Jones, Lyndon

    2015-01-01

    Tear exchange beneath a contact lens facilitates ongoing fluid replenishment between the ocular surface and the lens. This exchange is considerably lower during the wear of soft lenses compared with rigid lenses. As a result, the accumulation of tear film debris and metabolic by-products between the cornea and a soft contact lens increases, potentially leading to complications. Lens design innovations have been proposed, but no substantial improvement in soft lens tear exchange has been reported. Researchers have determined post-lens tear exchange using several methods, notably fluorophotometry. However, due to technological limitations, little remains known about tear hydrodynamics around the lens and, to-date, true tear exchange with contact lenses has not been shown. Further knowledge regarding tear exchange could be vital in aiding better contact lens design, with the prospect of alleviating certain adverse ocular responses. This article reviews the literature to-date on the significance, implications and measurement of tear exchange with contact lenses.

  5. The Sloan Nearby Cluster Weak Lensing Survey

    CERN Document Server

    Kubo, Jeffrey M; Hardin, Frances Mei; Kubik, Donna; Lawhorn, Kelsey; Lin, Huan; Nicklaus, Liana; Nelson, Dylan; Reis, Ribamar R R; Seo, Hee-Jong; Soares-Santos, Marcelle; Stebbins, Albert; Yunker, Tony

    2009-01-01

    We describe and present initial results of a weak lensing survey of nearby ($\\rm{z}\\lesssim0.1$) galaxy clusters in the Sloan Digital Sky Survey (SDSS). In this first study, galaxy clusters are selected from the SDSS spectroscopic galaxy cluster catalogs of \\citet{miller05} and \\citet{berlind06}. We report a total of seven individual low redshift cluster weak lensing measurements which include: A2048, A1767, A2244, A1066, A2199, and two clusters specifically identified with the C4 algorithm. Our program of weak lensing of nearby galaxy clusters in the SDSS will eventually reach $\\sim 200$ clusters, making it the largest weak lensing survey of individual galaxy clusters to date.

  6. Mechanically tunable aspheric lenses via additive manufacture of hanging elastomeric droplets for microscopic applications

    Science.gov (United States)

    Fuh, Yiin-Kuen; Chen, Pin-Wen; Lai, Zheng-Hong

    2016-07-01

    Mechanically deformable lenses with dynamically tunable focal lengths have been developed in this work. The fabricated five types of aspheric polydimethylsiloxane (PDMS) lenses presented here have an initial focal length of 7.0, 7.8, 9.0, 10.0 and 10.2 mm. Incorporating two modes of operation in biconvex and concave-convex configurations, the focal lengths can be tuned dynamically as 5.2-10.2, 5.5-9.9, 6.6-11.9, 6.1-13.5 and 6.6-13.5 mm respectively. Additive manufacturing was utilized to fabricate these five types of aspheric lenses (APLs) via sequential layering of PDMS materials. Complex structures with three-dimensional features and shorter focal lengths can be successfully produced by repeatedly depositing, inverting and curing controlled PDMS volume onto previously cured PDMS droplets. From our experiments, we empirically found a direct dependence of the focal length of the lenses with the amount (volume) of deposited PDMS droplets. This new mouldless, low-cost, and flexible lens fabrication method is able to transform an ordinary commercial smartphone camera into a low-cost portable microscope. A few microscopic features can be readily visualized, such as wrinkles of ladybird pupa and printed circuit board. The fabrication technique by successively applying hanging droplet and facile mechanical focal-length-tuning set-up can be easily adopted in the development of high-performance optical lenses.

  7. Joint measurement of lensing-galaxy correlations using SPT and DES SV data

    Science.gov (United States)

    Baxter, E.; Clampitt, J.; Giannantonio, T.; Dodelson, S.; Jain, B.; Huterer, D.; Bleem, L.; Crawford, T.; Efstathiou, G.; Fosalba, P.; Kirk, D.; Kwan, J.; Sánchez, C.; Story, K.; Troxel, M. A.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Benoit-Lévy, A.; Benson, B.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Carlstrom, J.; Rosell, A. Carnero; Carrasco Kind, M.; Carretero, J.; Chown, R.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; de Haan, T.; Holder, G.; Honscheid, K.; Hou, Z.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nord, B.; Omori, Y.; Plazas, A. A.; Reichardt, C.; Romer, A. K.; Rykoff, E. S.; Sanchez, E.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Stark, A.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; Wechsler, R. H.

    2016-10-01

    We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimetre-wave data from the 2500 sq. deg. South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy-lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoured Λ cold dark matter cosmological model. It also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.

  8. [The problem of amblyopia in subluxated lenses (author's transl)].

    Science.gov (United States)

    Schulz, E

    1980-01-01

    A re-evaluation of the incidence and development of amblyopia was carried out in 27 patients with a history of lens subluxation at pre-school age. Due to insufficiently accurate histories and the heterogeneous composition of the material it is impossible to make any valid statement regarding the critical phase of development of deprivation amblyopia. However, it appears that "form-deprivation" amblyopia may regress spontaneously up to early school age following hygienization of the optic media and if optimal spectacles or contact lenses are worn. In individual cases it has been shown that unilateral amblyopias can and should be treated (pleoptics) following hygienization of the optic media. Therefore, early surgical treatment should be considered in such cases, above all in view of the fact that complications are rare.

  9. Electron Lenses for particle collimation in LHC

    CERN Document Server

    Shiltsev, V

    2008-01-01

    Electron Lenses built and installed in Tevatron have proven themselves as safe and very reliable instruments which can be effectively used in hadron collider operation for a number of applications, including compensation of beam-beam effects , DC beam removal from abort gaps , as a diagnostic tool. In this presentation we – following original proposal – consider in more detail a possibility of using electron lenses with hollow electron beam for ion and proton collimation in LHC.

  10. Coatings and Tints of Spectacle Lenses

    OpenAIRE

    H. Zeki Büyükyıldız

    2012-01-01

    Spectacle lenses are made of mineral or organic (plastic) materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1) Anti-reflection coatings, 2) Hard coatings, 3) Clean coat, 4) Mirror coatings, 5) Color tint coating (one of coloring processes), 6) Photochromic coating (one of photochromic processes), and 7) Anti-fog...

  11. Simulating HST observations of strong lensing clusters

    Science.gov (United States)

    Meneghetti, Massimo

    2014-10-01

    The Frontier Fields {FF} are using galaxy cluster gravitational lensing to boost the powers of Hubble and Spitzer to reveal the faintest galaxies yet observed. Accurate gravitational lensing models with uncertainty estimates are required to study some of the physical parameters of the lensed galaxies. Simulated HST observations of lensing clusters with known mass distributions are ideal to determine the accuracies of these modeling methods. Our team has begun performing these tests, demonstrating that integrated quantities such as lensed number counts are accurately recovered, enabling luminosity functions to be constrained. We have also begun to quantify magnification uncertainties for individual galaxies, but additional tests are needed. Here we propose to create a set of simulated osbervations of clusters selected to be analogs of the CLASH and FF clusters. They will include lensing effects and they will be delivered to the Mikulski Archive for Space Telescopes as a legacy product for others to analyze. They will be usable to extend our tests for robustly determine the accuracies in model magnification and mass measurements. Mass uncertainties will be a key ingredient in efforts to use galaxy clusters to constrain cosmology and theories of structure formation. Results from this program will also be useful to improve lens modeling methods toward more optimal use of the large numbers of lensing constraints available in deep FF imaging. This program will help astronomers realize the full potential of the large investments of Hubble, Spitzer, Chandra, and ground-based observing time in the FF, CLASH, and other past and future cluster lensing observations.

  12. Constraining Source Redshift Distributions with Gravitational Lensing

    CERN Document Server

    Wittman, D

    2012-01-01

    We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that ~40 massive ($\\sigma_v=1200$ km/s) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to ~11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as $N_{lens}^0.5$, but the improvement slows as one is forced to use lenses further ...

  13. Cosmological test using strong gravitational lensing systems

    CERN Document Server

    Yuan, C C

    2015-01-01

    As one of the probes of universe, strong gravitational lensing systems allow us to compare different cosmological models and constrain vital cosmological parameters. This purpose can be reached from the dynamic and geometry properties of strong gravitational lensing systems, for instance, time-delay $\\Delta\\tau$ of images, the velocity dispersion $\\sigma$ of the lensing galaxies and the combination of these two effects, $\\Delta\\tau/\\sigma^2$. In this paper, in order to carry out one-on-one comparisons between $\\Lambda$CDM universe and $R_h=ct$ universe, we use a sample containing 36 strong lensing systems with the measurement of velocity dispersion from the SLACS and LSD survey. Concerning the time-delay effect, 12 two-image lensing systems with $\\Delta\\tau$ are also used. In addition, Monte Carlo (MC) simulations are used to compare the efficiency of the three methods as mentioned above. From simulations, we estimate the number of lenses required to rule out one model at the $99.7\\%$ confidence level. Compar...

  14. UV solid state laser ablation of intraocular lenses

    Science.gov (United States)

    Apostolopoulos, A.; Lagiou, D. P.; Evangelatos, Ch.; Spyratou, E.; Bacharis, C.; Makropoulou, M.; Serafetinides, A. A.

    2013-06-01

    Commercially available intraocular lenses (IOLs) are manufactured from silicone and acrylic, both rigid (e.g. PMMA) and foldable (hydrophobic or hydrophilic acrylic biomaterials), behaving different mechanical and optical properties. Recently, the use of apodizing technology to design new diffractive-refractive multifocals improved the refractive outcome of these intraocular lenses, providing good distant and near vision. There is also a major ongoing effort to refine laser refractive surgery to correct other defects besides conventional refractive errors. Using phakic IOLs to treat high myopia potentially provides better predictability and optical quality than corneal-based refractive surgery. The aim of this work was to investigate the effect of laser ablation on IOL surface shaping, by drilling circular arrays of holes, with a homemade motorized rotation stage, and scattered holes on the polymer surface. In material science, the most popular lasers used for polymer machining are the UV lasers, and, therefore, we tried in this work the 3rd and the 5th harmonic of a Q-switched Nd:YAG laser (λ=355 nm and λ=213 nm respectively). The morphology of the ablated IOL surface was examined with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variations in surface height and, finally, the ablation rates were also mathematically simulated for depicting the possible laser ablation mechanism(s). The experimental results and the theoretical modelling of UV laser interaction with polymeric IOLs are discussed in relation with the physical (optical, mechanical and thermal) properties of the material, in addition to laser radiation parameters (laser energy fluence, number of pulses). The qualitative aspects of laser ablation at λ=213 nm reveal a

  15. Optimal Weak Lensing Skewness Measurements

    CERN Document Server

    Zhang, T J; Zhang, P; Dubinski, J; Zhang, Tong-Jie; Pen, Ue-Li; Zhang, Pengjie; Dubinski, John

    2003-01-01

    Weak lensing measurements are entering a precision era to statistically map the distribution of matter in the universe. The most common measurement has been of the variance of the projected surface density of matter, which corresponds to the induced correlation in alignments of background galaxies. This measurement of the fluctuations is insensitive to the total mass content, like using waves on the ocean to measure its depths. But when the depth is shallow as happens near a beach, waves become skewed. Similarly, a measurement of skewness in the projected matter distribution directly measures the total matter content of the universe. While skewness has already been convincingly detected, its constraint on cosmology is still weak. We address optimal analyses for the CFHT Legacy Survey in the presence of noise. We show that a compensated Gaussian filter with a width of 2.5 arc minutes optimizes the cosmological constraint, yielding $\\Delta \\Omega_m/\\Omega_m\\sim 10%$. This is significantly better than other filt...

  16. Surface Modification of Intraocular Lenses

    Directory of Open Access Journals (Sweden)

    Qi Huang

    2016-01-01

    Full Text Available Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs. Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol, polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO 2 , heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs.

  17. Thin lenses of asymmetric power

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2009-12-01

    Full Text Available It is generally supposed that thin systems, including refracting surfaces and thin lenses, have powers that are necessarily symmetric.  In other words they have powers which can be represented assymmetric dioptric power matrices and in the familar spherocylindrical form used in optometry and ophthalmology.  This paper shows that this is not correct and that it is indeed possible for a thin system to have a power that is not symmetric and which cannot be expressed in spherocylindrical form.  Thin systems of asymmetric power are illustratedby means of a thin lens that is modelled with small prisms and is chosen to have a dioptric power ma-trix that is antisymmetric.  Similar models can be devised for a thin system whose dioptric power matrix is any  2 2 ×  matrix.  Thus any power, symmetric, asymmetric or antisymmetric, is possible for a thin system.  In this sense our understanding of the power of thin systems is now complete.

  18. 3D micro-lenses for free space intra-chip coupling in photonic-integrated circuits (Conference Presentation)

    Science.gov (United States)

    Thomas, Robert; Williams, Gwilym I.; Ladak, Sam; Smowton, Peter M.

    2017-02-01

    The integration of multiple optical elements on a common substrate to create photonic integrated circuits (PIC) has been successfully applied in: fibre-optic communications, photonic computing and optical sensing. The push towards III-Vs on silicon promises a new generation of integrated devices that combine the advantages of both integrated electronics and optics in a single substrate. III-V edge emitting laser diodes offer high efficiency and low threshold currents making them ideal candidates for the optically active elements of the next generation of PICs. Nevertheless, the highly divergent and asymmetric beam shapes intrinsic to these devices limits the efficiency with which optical elements can be free space coupled intra-chip; a capability particularly desirable for optical sensing applications e.g. [1]. Furthermore, the monolithic nature of the integrated approach prohibits the use of macroscopic lenses to improve coupling. However, with the advent of 3D direct laser writing, three dimensional lenses can now be manufactured on a microscopic-scale [2], making the use of micro-lens technology for enhanced free space coupling of integrated optical elements feasible. Here we demonstrate the first use of 3D micro-lenses to improve the coupling efficiency of monolithically integrated lasers. Fabricated from IP-dip photoresist using a Nanoscribe GmbH 3D lithography tool, the lenses are embedded directly onto a structured GaInP/AlGaInP substrate containing arrays of ridge lasers free space coupled to one another via a 200 μm air gap. We compare the coupling efficiency of these lasers with and without micro-lenses through photo-voltage and beam profile measurements and discuss optimisation of lens design.

  19. Degeneracy between Lensing and Occultation in the Analysis of Self-lensing Phenomena

    CERN Document Server

    Han, Cheongho

    2016-01-01

    More than 40 years after the first discussion, it was recently reported the detection of a self-lensing phenomenon within a binary system where the brightness of a background star is magnified by its foreground companion. It is expected that the number of self-lensing binary detections will be increased in a wealth of data from current and future survey experiments. In this paper, we introduce a degeneracy in the interpretation of self-lensing light curves. The degeneracy is intrinsic to self-lensing binaries for which both magnification by lensing and de-magnification by occultation occur simultaneously and is caused by the difficulty in separating the contribution of the lensing-induced magnification from the observed light curve. We demonstrate the severity of the degeneracy by presenting example self-lensing light curves suffering from the degeneracy. We also present the relation between the lensing parameters of the degenerate solutions. The degeneracy would pose as an important obstacle in accurately de...

  20. How to Find Gravitationally Lensed Type Ia Supernovae

    Science.gov (United States)

    Goldstein, Daniel A.; Nugent, Peter E.

    2017-01-01

    Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts (z ≳ 2), probe potential SN Ia evolution, and deliver high-precision constraints on H0, w, and Ωm via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts’ photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. Active galactic nuclei, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse SNe will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that the Large Synoptic Survey Telescope can discover up to 500 multiply imaged SNe Ia using this technique in a 10 year z-band search, more than an order of magnitude improvement over previous estimates. We also predict that the Zwicky Transient Facility should find up to 10 multiply imaged SNe Ia using this technique in a 3 year R-band search—despite the fact that this survey will not resolve a single system.

  1. [Spectacle lenses in sports: optimization of the imaging properties based on physiological aspects].

    Science.gov (United States)

    Becken, Wolfgang; Seidemann, Anne; Altheimer, Helmut; Esser, Gregor; Uttenweiler, Dietmar

    2007-01-01

    The goal of correction spectacles is to create a sharp image on the retina by the combined optical system of the eye and the spectacle lens for a given ametropia. As a matter of principle, in this optical system an aberration free correction can be achieved in the optical centre of the spectacle lens, but not over the entire range of gaze angles. In spectacle optics large angles play an important role, different from paraxial optics where only rays close to the axis with small angles of incidence are relevant. This generates additional aberrations, the so-called oblique astigmatism, which can only be compensated at the expense of the spherical power. Therefore, every spectacle lens represents apart from the main visual point-, a more or less good compromise. For sports lenses in the currently used curved frames, an additional challenge arises from the fact that their orientation in front of the eye is generally not perpendicular to the principal gaze direction but tilted. In this article the imaging properties of such tilted sports lenses are discussed, and it is described why this results in a minor quality without a specific consideration of the obliqueness. The fact that tilted sports spectacles are also able to possess an improved correction behaviour for all gaze angles is due to individual mathematical optimization methods. The aim of the present article is, based on the underlying physical and physiological effects, to point out the advantages of individually optimized sports spectacle lenses in comparison to tilted lenses generated without applying this sophisticated computational method.

  2. Aspherical lens design using hybrid neural-genetic algorithm of contact lenses.

    Science.gov (United States)

    Yen, Chih-Ta; Ye, Jhe-Wen

    2015-10-01

    The design of complex contact lenses involves numerous uncertain variables. How to help an optical designer to first design the optimal contact lens to reduce discomfort when wearing a pair of glasses is an essential design concern. This study examined the impact of aberrations on contact lenses to optimize a contact lens design for myopic and astigmatic eyes. In general, two aspherical surfaces can be assembled in an optical system to reduce the overall volume size. However, this design reduces the spherical aberration (SA) values at wide contact radii. The proposed optimization algorithm with optical design can be corrected to improve the SA value and, thus, reduce coma aberration (TCO) values and enhance the modulation transfer function (MTF). This means integrating a modified genetic algorithm (GA) with a neural network (NN) to optimize multiple-quality characteristics, namely the SA, TCO, and MTF, of contact lenses. When the proposed optional weight NN-GA is implemented, the weight values of the fitness function can be varied to adjust system performance. The method simplifies the selection of parameters in the optimization of optical systems. Compared with the traditional CODE V built-in optimal scheme, the proposed scheme is more flexible and intuitive to improve SA, TCO, and MTF values by 50.03%, 45.78%, and 24.7%, respectively.

  3. CMB-lensing beyond the Born approximation

    Science.gov (United States)

    Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth

    2016-09-01

    We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles l lesssim 2500, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussian nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum, and its imprint on CMB lensing is too small to be seen in present experiments.

  4. Discovery of a Multiply-Lensed Submillimeter Galaxy in Early HerMES Herschel/SPIRE Data

    CERN Document Server

    Conley, A; Vieira, J D; Solares, E A González; Kim, S; Aguirre, J E; Amblard, A; Auld, R; Baker, A J; Beelen, A; Blain, A; Blundell, R; Bock, J; Bradford, C M; Bridge, C; Brisbin, D; Burgarella, D; Carpenter, J M; Chanial, P; Chapin, E; Christopher, N; Clements, D L; Cox, P; Djorgovski, S G; Dowell, C D; Eales, S; Earle, L; Ellsworth-Bowers, T P; Farrah, D; Franceschini, A; Frayer, D; Fu, H; Gavazzi, R; Glenn, J; Griffin, M; Gurwell, M A; Halpern, M; Ibar, E; Ivison, R J; Jarvis, M; Kamenetzky, J; Krips, M; Levenson, L; Lupu, R; Mahabal, A; Maloney, P D; Maraston, C; Marchetti, L; Marsden, G; Matsuhara, H; Mortier, A M J; Murphy, E; Naylor, B J; Neri, R; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rangwala, N; Rawlings, J I; Raymond, G; Riechers, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Schulz, B; Scott, Douglas; Scott, K; Serra, P; Seymour, N; Shupe, D L; Smith, A J; Symeonidis, M; Tugwell, K E; Vaccari, M; Valiante, E; Valtchanov, I; Verma, A; Viero, M P; Vigroux, L; Wang, L; Wiebe, D; Wright, G; Xu, C K; Zeimann, G; Zemcov, M; Zmuidzinas, J

    2011-01-01

    We report the discovery of a bright ($f(250\\mum) > 400$ mJy), multiply-lensed submillimeter galaxy \\obj\\ in {\\it Herschel}/SPIRE Science Demonstration Phase data from the HerMES project. Interferometric 880\\mum\\ Submillimeter Array observations resolve at least four images with a large separation of $\\sim 9\\arcsec$. A high-resolution adaptive optics $K_p$ image with Keck/NIRC2 clearly shows strong lensing arcs. Follow-up spectroscopy gives a redshift of $z=2.9575$, and the lensing model gives a total magnification of $\\mu \\sim 11 \\pm 1$. The large image separation allows us to study the multi-wavelength spectral energy distribution (SED) of the lensed source unobscured by the central lensing mass. The far-IR/millimeter-wave SED is well described by a modified blackbody fit with an unusually warm dust temperature, $88 \\pm 3$ K. We derive a lensing-corrected total IR luminosity of $(1.43 \\pm 0.09) \\times 10^{13}\\, \\mathrm{L}_{\\odot}$, implying a star formation rate of $\\sim 2500\\, \\mathrm{M}_{\\odot}\\, \\mathrm{y...

  5. Three Gravitationally Lensed Supernovae Behind CLASH Galaxy Clusters

    CERN Document Server

    Patel, Brandon; Jha, Saurabh W; Rodney, Steven A; Jones, David O; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G; Matheson, Thomas; Sako, Masao; Holoien, Thomas W -S; Postman, Marc; Coe, Dan; Bartelmann, Matthias; Balestra, Italo; Benitez, Narciso; Bouwens, Rychard; Bradley, Larry; Broadhurst, Tom; Cenko, S Bradley; Donahue, Megan; Filippenko, Alexei V; Ford, Holland; Garnavich, Peter; Grillo, Claudio; Infante, Leopoldo; Jouvel, Stephanie; Kelson, Daniel; Koekemoer, Anton; Lahav, Ofer; Lemze, Doron; Maoz, Dan; Medezinski, Elinor; Melchior, Peter; Meneghetti, Massimo; Molino, Alberto; Moustakas, John; Moustakas, Leonidas A; Nonino, Mario; Rosati, Piero; Seitz, Stella; Strolger, Louis G; Umetsu, Keiichi; Zheng, Wei

    2013-01-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and Abell 383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope (HST) optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while SN CLA11Tib is probably a core-collapse SN. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approximately 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approximately 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates ...

  6. Microlensing of the broad line region in 17 lensed quasars

    CERN Document Server

    Sluse, D; Courbin, F; Meylan, G; Wambsganss, J

    2012-01-01

    When an image of a strongly lensed quasar is microlensed, the different components of its spectrum are expected to be differentially magnified owing to the different sizes of the corresponding emitting region. Chromatic changes are expected to be observed in the continuum while the emission lines should be deformed as a function of the size, geometry and kinematics of the regions from which they originate. Microlensing of the emission lines has been reported only in a handful of systems so far. In this paper we search for microlensing deformations of the optical spectra of pairs of images in 17 lensed quasars. This sample is composed of 13 pairs of previously unpublished spectra and four pairs of spectra from literature. Our analysis is based on a spectral decomposition technique which allows us to isolate the microlensed fraction of the flux independently of a detailed modeling of the quasar emission lines. Using this technique, we detect microlensing of the continuum in 85% of the systems. Among them, 80% s...

  7. Ultra-compact visible chiral spectrometer with meta-lenses

    Science.gov (United States)

    Zhu, Alexander Y.; Chen, Wei-Ting; Khorasaninejad, Mohammadreza; Oh, Jaewon; Zaidi, Aun; Mishra, Ishan; Devlin, Robert C.; Capasso, Federico

    2017-03-01

    Conventional compact spectrometers have a fixed spectral resolution and cannot resolve the polarization properties of light without additional optical elements, while their larger counterparts are bulky and costly. Here, we demonstrate multiple off-axis meta-lenses in the visible integrated on a single planar substrate. They possess both focusing and strongly dispersive properties and are designed to provide different spectral resolutions as well as working wavelength ranges on the same chip. We realize a compact spectrometer using only these meta-lenses and a CMOS camera and achieve detector-limited spectral resolutions as small as 0.3 nm and a total working wavelength range exceeding 170 nm for a beam propagation length of only a few cm. In addition, this spectrometer has the capability to resolve different helicities of light in a single measurement. This chip-camera setup represents the most compact configuration so far achieved for a spectrometer with similar performance and functionality, and its compatibility with large-scale fabrication processes makes it broadly applicable.

  8. In vitro dimensions and curvatures of human lenses.

    Science.gov (United States)

    Rosen, Alexandre M; Denham, David B; Fernandez, Viviana; Borja, David; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie; Augusteyn, Robert C

    2006-03-01

    The purpose of this study was to determine dimensions and curvatures of excised human lenses using the technique of shadowphotogrammetry. A modified optical comparator and digital camera were used to photograph magnified sagittal and coronal lens profiles. Equatorial diameter, anterior and posterior sagittal thickness, anterior and posterior curvatures, and shape factors were obtained from these images. The data were used to calculate lens volumes, which were compared with the lens weights. Measurements were made on 37 human lenses ranging in age from 20 to 99 years. These showed that lens dimensions and the anterior radius of curvature increase linearly throughout adult life while posterior curvature remains constant. The relative shape (or aspect ratio) of the posterior lens is unchanged through adult life since both equatorial diameter and posterior thickness increase at the same rate. The ratio of anterior thickness to posterior thickness is constant at 0.70. It is suggested that in vivo forces alter the apparent location of the lens equator, that the in vitro lens shape corresponds to the maximally accommodated shape in vivo and that the shapes of the accommodated and unaccommodated lens progressively converge toward each other due to lens growth with age, with a convergence point located near the age of total loss of accommodation (55-60 years). Together, these observations provide additional support for the Helmholtz theory of accommodation.

  9. [A girl with dyslexia suspected to have Irlen syndrome, completely relieved by wearing tinted lenses].

    Science.gov (United States)

    Kusano, Yusuke; Awaya, Tomonari; Saito, Keiko; Yoshida, Takeshi; Ide, Minako; Kato, Takeo; Heike, Toshio; Kato, Toshihiro

    2015-11-01

    Irlen syndrome is a proposed perceptual processing disorder characterized by visual distortions while reading. Patients with this syndrome may experience light sensitivity, visual stress, and other related problems such as dyslexia. Tinted lenses and colored overlays have been designed to help individuals with the symptoms of Irlen syndrome. However, there is still debate over the effectiveness of these interventions and whether this syndrome actually exists. In this report, we describe a case involving an 8-year-old girl with dyslexia who experienced severe visual hypersensitivity and whose symptoms completely resolved after wearing tinted lenses. While it is possible that she experienced a psychogenic visual disturbance that was relieved because of the placebo effect, the clinical course of her symptoms matched the findings previously described by Irlen. The patient was unable to read without tinted lenses. With tinted lenses, she could read at the appropriate age level, suggesting that her difficulty was due to a problem in optical information processing. The concepts underlying Irlen syndrome are vaguely defined, and several groups insist that the visual stress associated with this syndrome might be responsible for dyslexia as well as other disorders. These ambiguous criteria may be responsible for the criticism over the validity of this condition. Although this was only an anecdotal case, our patient exhibited the core functional deficit described in Irlen syndrome and showed a dramatic improvement with tinted lenses; therefore, this case may facilitate investigations into the mechanism underlying Irlen syndrome, if it actually exists. Although further studies are required to confirm the validity of this syndrome and the treatment approach, Irlen syndrome should be recognized as a disorder since its symptoms can be easily relieved by wearing tinted lenses or color filters.

  10. Bacterial and fungal biofilm formation on contact lenses and their susceptibility to lens care solutions

    Directory of Open Access Journals (Sweden)

    Siddharth Kackar

    2017-01-01

    Full Text Available Background: Microbial biofilm formation on contact lenses and lens storage cases may be a risk factor for contact lens-associated corneal infections. Various types of contact lens care solutions are used to reduce microbial growths on lenses. Objectives: The present study aimed at comparing the growths of biofilms on the different contact lenses and lens cases. The study also aimed at determining the effect of lens care solutions and bacteriophage on these biofilms. Materials and Methods: One type of hard lens and two types of soft lenses were used for the study. The organisms used were Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 60193 and Escherichia coli ATCC 25922. Biofilm production was performed by modified O'Toole and Kolter method and effect of lens cleaning solutions and a crude coliphage on biofilms was also studied. Results were visualised using scanning electron microscopy and quantitated by colony counting method and spectrophotometric measurement of optical density (OD. Statistical analysis was done by SPSS 11.5, Kruskal–Wallis test and Chi-square test. Results: Soft lens cleaning solutions had a significant inhibitory effect (P = 0.020 on biofilm formation on soft lenses and also lens cases (P < 0.001. Soft lens cleaning solution 2 was more efficient than solution 1. However, no such inhibitory effect was observed with regard to hard lens cleaning solution, but for a significant reduction in the OD values (P < 0.001. There was no significant inhibitory effect by bacteriophages. Conclusion: This study showed the importance of selecting the appropriate lens cleaning solution to prevent biofilm production on contact lenses.

  11. The effect of ionizing radiation on intraocular lenses.

    Science.gov (United States)

    Ellerin, B E; Nisce, L Z; Roberts, C W; Thornell, C; Sabbas, A; Wang, H; Li, P M; Nori, D

    2001-09-01

    The native crystalline lens is the principal shield against ultraviolet radiation (UV), damage to the human retina. Every year in the United States, more than one million patients undergo removal of the natural lens in the course of cataract surgery (phakectomy), at which time an intraocular lens (IOL) is placed in the lens capsule. The IOL thenceforth serves as the principal barrier to ultraviolet radiation over the life of the implant, potentially for decades. The synthetic organic molecules of which IOLs are composed offer little UV protection unless ultraviolet-absorbing chromophores are incorporated into the lens material during manufacture. However, chromophores are alkenes potentially subject to radiolytic degradation. It is unknown whether ionizing radiation at clinical doses (e.g., to the brain or in the head-and-neck region) affects the UV-absorbing capacity of chromophore-bearing IOLs and consequently exposes the retina to potentially chronic UV damage. In addition, the polymers of which IOLs are composed are themselves subject to radiation damage, which theoretically might result in optical distortion in the visible light range. To determine whether megavoltage photon ionizing radiation alters the absorption spectra of ultraviolet-shielding polymethylmethacrylate (PMMA) and organopolysiloxane (silicone) intraocular lenses (IOLs) in the UV (280 nm ionizing irradiation to doses of 2, 5, 10, 20, 40, 60, and 100 Gray, respectively. Because of artifactual aberrations inherent in analyzing convex lenses on a conventional flat-plate spectrophotometer, post-irradiation absorption spectra were subsequently reanalyzed on a Cary 300 spectrophotometer outfitted with a Labsphere Diffused Reflectance Accessory (DRA-CA-30-I) incorporating a Spectralon-coated integrating sphere. Primary: Changes in UV absorbance after irradiation. Secondary: Changes in visible and low-end near-infrared absorbance after irradiation. Photon ionizing radiation in the 2-Gy to 100-Gy range

  12. Three gravitationally lensed supernovae behind clash galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Brandon; McCully, Curtis; Jha, Saurabh W.; Holoien, Thomas W.-S. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Rodney, Steven A.; Jones, David O.; Graur, Or; Riess, Adam G. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218 (United States); Merten, Julian [Jet Propulsion Laboratory, California Institute of Technology, MS 169-327, Pasadena, CA 91109 (United States); Zitrin, Adi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Matheson, Thomas [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Postman, Marc; Coe, Dan; Bradley, Larry [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Bartelmann, Matthias [Institut für Theoretische Astrophysik, Universität Heidelberg, Zentrum für Astronomie, Philosophenweg 12, D-69120 Heidelberg (Germany); Balestra, Italo [INAF-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I-34131 Trieste (Italy); Benítez, Narciso [Instituto de Astrofísica de Andalucía (CSIC), Camino Bajo de Huétor 24, E-18008 Granada (Spain); Bouwens, Rychard [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Broadhurst, Tom, E-mail: bpatel02@physics.rutgers.edu [Department of Theoretical Physics, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); and others

    2014-05-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was ∼1.0 ± 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is ∼0.2 ± 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log{sub 10}μ): 0.83 ± 0.16 mag for SN CLO12Car, 0.28 ± 0.08 mag for SN CLN12Did, and 0.43 ± 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  13. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery.

    Science.gov (United States)

    Maulvi, Furqan A; Lakdawala, Dhara H; Shaikh, Anjum A; Desai, Ankita R; Choksi, Harsh H; Vaidya, Rutvi J; Ranch, Ketan M; Koli, Akshay R; Vyas, Bhavin A; Shah, Dinesh O

    2016-03-28

    Glaucoma is commonly treated using eye drops, which is highly inefficient due to rapid clearance (low residence time) from ocular surface. Contact lenses are ideally suited for controlled drug delivery to cornea, but incorporation of any drug loaded particulate system (formulation) affect the optical and physical property of contact lenses. The objective of the present work was to implant timolol maleate (TM) loaded ethyl cellulose nanoparticle-laden ring in hydrogel contact lenses that could provide controlled drug delivery at therapeutic rates without compromising critical lens properties. TM-implant lenses were developed, by dispersing TM encapsulated ethyl cellulose nanoparticles in acrylate hydrogel (fabricated as ring implant) and implanted the same in hydrogel contact lenses (sandwich system). The TM-ethyl cellulose nanoparticles were prepared by double emulsion method at different ratios of TM to ethyl cellulose. The X-ray diffraction studies revealed the transformation of TM to amorphous state. In vitro release kinetic data showed sustained drug release within the therapeutic window for 168h (NP 1:3 batch) with 150μg loading. Cytotoxicity and ocular irritation study demonstrated the safety of TM-implant contact lenses. In vivo pharmacokinetic studies in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC), with TM-implant contact lenses in comparison to eye drop therapy. In vivo pharmacodynamic data in rabbit model showed sustained reduction in intra ocular pressure for 192h. The study demonstrated the promising potential of implantation technology to treat glaucoma using contact lenses, and could serve as a platform for other ocular diseases.

  14. The conceptual origins of gravitational lensing

    CERN Document Server

    Valls-Gabaud, David

    2012-01-01

    We critically examine the evidence available of the early ideas on the bending of light due to a gravitational attraction, which led to the concept of gravitational lenses, and attempt to present an undistorted historical perspective. Contrary to a widespread but baseless claim, Newton was not the precursor to the idea, and the first Query in his {\\sl Opticks} is totally unrelated to this phenomenon. We briefly review the roles of Voltaire, Marat, Cavendish, Soldner and Einstein in their attempts to quantify the gravitational deflection of light. The first, but unpublished, calculations of the lensing effect produced by this deflection are found in Einstein's 1912 notebooks, where he derived the lensing equation and the formation of images in a gravitational lens. The brief 1924 paper by Chwolson which presents, without calculations, the formation of double images and rings by a gravitational lens passed mostly unnoticed. The unjustly forgotten and true pioneer of the subject is F. Link, who not only publishe...

  15. Electron lenses for super-colliders

    CERN Document Server

    Shiltsev, Vladimir D

    2016-01-01

    This book provides a comprehensive overview of the operating principles and technology of electron lenses in supercolliders.  Electron lenses are a novel instrument for high energy particle accelerators, particularly for the energy-frontier superconducting hadron colliders, including the Tevatron, RHIC, LHC and future very large hadron colliders.  After reviewing the issues surrounding beam dynamics in supercolliders, the book offers an introduction to the electron lens method and its application.  Further chapters describe the technology behind the electron lenses which have recently been proposed, built and employed for compensation of beam-beam effects and for collimation of high-energy high-intensity beams, for compensation of space-charge effects and several other applications in accelerators. The book will be an invaluable resource for those involved in the design, construction and operation of the next generation of hadron colliders.

  16. Developments in projection lenses for HDTV

    Science.gov (United States)

    Rudolph, John D.

    1991-08-01

    Recent focus on the development of HDTV systems worldwide has raised a critical concern--the economic viability of HDTV for the home marketplace. While projection systems performing at or above HDTV-quality levels exist today, they are designed for the institutional market and are priced far above the threshold for the individual consumer. Manufacturers will be under considerable pressure to significantly reduce the cost of HDTV projectors, as will the suppliers of key components such as lenses. Fortunately, recent developments have been made in the design, development and manufacturing technologies used to produce hybrid lenses for high-performance projection systems. This is particularly true for CRT-based front- and rear-projection systems for data and graphics applications. Extending these advances to HDTV would suggest that by the time HDTV is ready for high volume mass production, cost-effective projection lenses will be enhancing, not retarding, the market acceptance of HDTV.

  17. Cluster mass reconstruction from weak gravitational lensing

    CERN Document Server

    Wilson, G; Frenk, C S; Wilson, Gillian; Cole, Shaun; Frenk, Carlos S

    1996-01-01

    Kaiser & Squires have proposed a technique for mapping the dark matter in galaxy clusters using the coherent weak distortion of background galaxy images caused by gravitational lensing. We investigate the effectiveness of this technique under controlled conditions by creating simulated CCD frames containing galaxies lensed by a model cluster, measuring the resulting galaxy shapes, and comparing the reconstructed mass distribution with the original. Typically, the reconstructed surface density is diminished in magnitude when compared to the original. The main cause of this reduced signal is the blurring of galaxy images by atmospheric seeing, but the overall factor by which the reconstructed surface density is reduced depends also on the signal-to-noise ratio in the CCD frame and on both the sizes of galaxy images and the magnitude limit of the sample that is analysed. We propose a method for estimating a multiplicative compensation factor. We test our technique using a lensing cluster drawn from a cosmolo...

  18. Orbital Motion During Gravitational Lensing Events

    CERN Document Server

    Di Stefano, Rosanne

    2014-01-01

    Gravitational lensing events provide unique opportunities to discover and study planetary systems and binaries. Here we build on previous work to explore the role that orbital motion can play in both identifying and learning more about multiple-mass systems that serve as gravitational lenses. We find that a significant fraction of planet-lens and binary-lens light curves are influenced by orbital motion. Furthermore, the effects of orbital motion extend the range of binaries for which lens multiplicity can be discovered and studied. Orbital motion will play an increasingly important role as observations with sensitive photometry, such as those made by the space missions Kepler, Transiting Exoplanet Survey Satellite, (TESS), and WFIRST discover gravitational lensing events. Similarly, the excellent astrometric measurements made possible by GAIA will allow it to study the effects of orbital motion. Frequent observations, such as those made possible with the Korean Microlensing Telescope Network, KMTNet, will al...

  19. WMAP anomaly : Weak lensing in disguise

    CERN Document Server

    Rotti, Aditya; Souradeep, Tarun

    2011-01-01

    Statistical isotropy (SI) has been one of the simplifying assumptions in cosmological model building. Experiments like WMAP and PLANCK are attempting to test this assumption by searching for specific signals in the Cosmic Microwave Background (CMB) two point correlation function. Modifications to this correlation function due to gravitational lensing by the large scale structure (LSS) surrounding us have been ignored in this context. Gravitational lensing will induce signals which mimic isotropy violation even in an isotropic universe. The signal detected in the Bipolar Spherical Harmonic (BipoSH) coefficients $A^{20}_{ll}$ by the WMAP team may be explained by accounting for the lensing modifications to these coefficients. Further the difference in the amplitude of the signal detected in the V-band and W-band maps can be explained by accounting for the differences in the designed angular sensitivity of the instrumental beams. The arguments presented in this article have crucial implications for SI violation s...

  20. Weak lensing in the Dark Energy Survey

    Science.gov (United States)

    Troxel, Michael

    2016-03-01

    I will present the current status of weak lensing results from the Dark Energy Survey (DES). DES will survey 5000 square degrees in five photometric bands (grizY), and has already provided a competitive weak lensing catalog from Science Verification data covering just 3% of the final survey footprint. I will summarize the status of shear catalog production using observations from the first year of the survey and discuss recent weak lensing science results from DES. Finally, I will report on the outlook for future cosmological analyses in DES including the two-point cosmic shear correlation function and discuss challenges that DES and future surveys will face in achieving a control of systematics that allows us to take full advantage of the available statistical power of our shear catalogs.

  1. PICS: Simulations of Strong Gravitational Lensing in Galaxy Clusters

    CERN Document Server

    Li, Nan; Rangel, Esteban M; Florian, Michael K; Bleem, Lindsey E; Heitmann, Katrin; Habib, Salman; Fasel, Patricia

    2015-01-01

    Gravitational lensing has become one of the most powerful tools available for investigating the 'dark side' of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly-lensed variable sources offer yet further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that of the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image-simulation pipeline, PICS (Pipeline for Images of Cosmological Strong lensing) to generate realistic strong gravitational lensing signals from group and cluster scale lenses. PICS uses a low-noise and unbiased densit...

  2. SKA Weak Lensing III: Added Value of Multi-Wavelength Synergies for the Mitigation of Systematics

    CERN Document Server

    Camera, Stefano; Bonaldi, Anna; Brown, Michael L

    2016-01-01

    In this third paper of a series on radio weak lensing for cosmology with the Square Kilometre Array, we scrutinise the added value of synergies between cosmic shear measurements in the radio and optical/near-IR bands for the purpose of mitigating systematic effects. We focus on three main classes of systematics: (i) experimental systematic errors in the observed shear, (ii) signal contamination by intrinsic alignments, and (iii) systematic effects in the estimation of cosmological parameters due to an incorrect modelling of non-linear scales. First, we quantitatively illustrate how the cross-correlation between radio and optical/near-IR cosmic shear surveys will greatly help in mitigating the impact of the systematic effects in the shear measurement considered, opening also the possibility of using such a cross-correlation as a means to detect unknown experimental systematics. Secondly, we show that, thanks to polarisation information, radio weak lensing surveys will be able to mitigate contamination by intri...

  3. Scalar field haloes as gravitational lenses

    CERN Document Server

    Schunck, F E; Mielke, E W

    2006-01-01

    A non-topological soliton model with a repulsive scalar self-interaction of the Emden type provides a constant density core,similarly as the empirical Burkert profile of dark matter haloes. As a further test, we derive the gravitational lens properties of our model, in particular, the demarcation curves between `weak' and `strong' lensing. Accordingly, strong lensing with typically three images is almost three times more probable for our solitonic model than for the Burkert fit. Moreover, some prospective consequences of a possible flattening of dark matter haloes are indicated.

  4. Measuring the dark side (with weak lensing)

    CERN Document Server

    Amendola, Luca; Sapone, Domenico

    2007-01-01

    We introduce a convenient parametrization of dark energy models that is general enough to include several modified gravity models and generalized forms of dark energy. In particular we take into account the linear perturbation growth factor, the anisotropic stress and the modified Poisson equation. We discuss the sensitivity of large scale weak lensing surveys like the proposed DUNE satellite to these parameters. We find that a large-scale weak-lensing tomographic survey is able to easily distinguish the Dvali-Gabadadze-Porrati model from LCDM and to determine the perturbation growth index to an absolute error of 0.02-0.03.

  5. Achromatic Cooling Channel with Li Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2002-04-29

    A linear cooling channel with Li lenses, solenoids, and 201 MHz RF cavities is considered. A special lattice design is used to minimize chromatic aberrations by suppression of several betatron resonances. Transverse emittance of muon beam decreases from 2 mm to 0.5 mm at the channel of about 110 m length. Longitudinal heating is modest, therefore transmission of the channel is rather high: 96% without decay and 90% with decay. Minimal beam emittance achievable by similar channel estimated as about 0.25 mm at surface field of Li lenses 10 T.

  6. High Performance Atomically Thin Flat Lenses

    CERN Document Server

    Lin, Han; Qiu, Chengwei; Jia, Baohua; Bao, Qiaoliang

    2016-01-01

    We experimentally demonstrate ultrathin flat lenses with a thickness of 7 {\\AA}, which corresponds to the fundamental physical limit of the thickness of the material, is fabricated in a large area, monolayer, CVD-prepared tungsten chalcogenides single crystals using the low-cost flexible laser writing method. The lenses apply the ultra-high refractive index to introduce abrupt amplitude modulation of the incident light to achieve three-dimensional (3D) focusing diffraction-limited resolution (0.5{\\lambda}) and a focusing efficiency as high as 31%. An analytical physical model based diffraction theory is derived to simulate the focusing process, which shows excellent agreement with the experimental results.

  7. The final candidate from the JVAS/CLASS search for 6-15 arcsec image separation lensing

    NARCIS (Netherlands)

    McKean, J. P.

    2011-01-01

    A search for 6-15 arcsec image separation lensing in the Jodrell Bank-Very Large Array Astrometric Survey (JVAS) and the Cosmic Lens All-Sky Survey (CLASS) by Phillips et al. found 13 group and cluster gravitational lens candidates. Through radio and optical imaging and spectroscopy, Phillips et al.

  8. Stereoscopic optical viewing system

    Science.gov (United States)

    Tallman, Clifford S.

    1987-01-01

    An improved optical system which provides the operator a stereoscopic viewing field and depth of vision, particularly suitable for use in various machines such as electron or laser beam welding and drilling machines. The system features two separate but independently controlled optical viewing assemblies from the eyepiece to a spot directly above the working surface. Each optical assembly comprises a combination of eye pieces, turning prisms, telephoto lenses for providing magnification, achromatic imaging relay lenses and final stage pentagonal turning prisms. Adjustment for variations in distance from the turning prisms to the workpiece, necessitated by varying part sizes and configurations and by the operator's visual accuity, is provided separately for each optical assembly by means of separate manual controls at the operator console or within easy reach of the operator.

  9. Interlenticular opacification: clinicopathological correlation of a complication of posterior chamber piggyback intraocular lenses.

    Science.gov (United States)

    Gayton, J L; Apple, D J; Peng, Q; Visessook, N; Sanders, V; Werner, L; Pandey, S K; Escobar-Gomez, M; Hoddinott, D S; Van Der Karr, M

    2000-03-01

    To present a clinicopathological correlation of 2 pairs of piggyback posterior chamber intraocular lenses (PC IOLs) explanted because of opacification between the lens optics. Gayton Health Center, Eyesight Associates of Middle Georgia, Warner Robins, Georgia, and Center for Research on Ocular Therapeutics and Biodevices, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina, USA. Two pairs of piggyback AcrySof lenses were explanted from 2 patients with significant visual loss related to opacification between the optics. They were submitted for pathological analysis. Gross and histopathological examinations were performed, and photomicroscopy was used to document the results. Gross examination showed accumulation of a membrane-like white material between the lenses. Histopathological examination revealed that the tissue consisted of retained/proliferative lens epithelial cells (bladder cells or pearls) mixed with lens cortical material. Piggyback PC IOLs were explanted in 2 cases because of a newly described complication, interlenticular opacification. Three surgical means may help prevent this complication: meticulous cortical cleanup, especially in the equatorial region; creation of a relatively large continuous curvilinear capsulorhexis to sequester retained cells peripheral to the IOL optic within the equatorial fornix; insertion of the posterior IOL in the capsular bag and the anterior IOL in the ciliary sulcus to isolate retained cells from the interlenticular space.

  10. X-ray lenses with large aperture; Roentgenlinsen mit grosser Apertur

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Markus

    2010-07-01

    Up to now, most X-ray imaging setups are based on absorption contrast imaging. There is a demand for focused X-rays in many X-ray analysis applications, either to increase the resolution of an imaging system, or, to reduce the time effort of an experiment through higher photon flux. For photon energies higher than 15 keV refractive X-ray optics are more efficient in comparison to non-refractive X-ray optics. The aim of this work was to develop X-ray lenses with large apertures and high transparency. By increasing the number of refracting surfaces while removing unnecessary lens material such lenses have been developed. Utilizing this approach the overall beam deflection angle is large with respect to the lens material it propagates through and so the transparency of the lens is increased. Within this work, X-ray lenses consisting of several thousands of prisms with an edge length in the range of micrometers have been developed and fabricated by deep X-ray lithography. Deep X-ray lithography enables high precision microstrucures with smooth sidewalls and large aspect ratios. The aperture of high-transparency X-ray lenses made this way is greater than 1 mm. They are suitable for photon energies in the range of 8 keV to 24 keV and offer a focal width of smaller than 10 {mu}m at a transparency of around 40%. Furthermore, rolled X-ray lenses have been developed, that are made out of a microstructured polyimide film, which is cut according to the requirements regarding focal length and photon energy. The microstructured film is fabricated by molding, using an anisotropically etched silicon wafer as molding tool. Its mean roughness is in the range of nanometers. The film features prismatic structures, its surface topology is similar to an asparagus field. The measured diameter of the point focus was 18 {mu}m to 31 {mu}m, the calculated opticla efficiency was 37%. Future work will concentrate on increasing the aspect ratio of Prism Lenses and on increasing the rolling

  11. Oxygen permeability of the pigmented material used in cosmetic daily disposable contact lenses

    Directory of Open Access Journals (Sweden)

    Galas S

    2016-12-01

    Full Text Available Stephen Galas, Lenora L Copper Johnson & Johnson Vision Care Inc., Jacksonville, FL, USA Purpose: To evaluate the individual contributions of pigment colorant and packing solution containing polyvinyl pyrrolidone (PVP on the oxygen permeability (Dk of a cosmetic printed etafilcon A daily disposable contact lens packaged with PVP. Method: The oxygen transport of a contact lens is evaluated through the central optical zone of the lens. Cosmetic printed contact lenses contain pigment colorant in the periphery or mid-periphery of the lens. Therefore, to assess the impact of cosmetic print on oxygen permeability, special lenses need to be produced that contain the colorant within the central optical zone. This technique was used to obtain multiple measurements of nonedge-corrected Dk/t of both the center pigmented lens and its nonpigmented equivalent, using a polarographic measurement described in International Organization for Standardization (ISO 18369-4:2006(E, and the Dk derived for each measurement is corrected for edge effect. In addition, the edge-corrected Dk values of lenses made from the same monomer batch were measured. The lenses were packaged and autoclaved with and without proprietary technology which embeds PVP in the contact lens during autoclaving. The resulting Dk value of the printed lens material was then used with thickness data to generate true Dk/t profiles for a given lens power. Results: The edge-corrected Dk of the printed etafilcon A lens with offset pigment colorant was measured to be 19.7×10-11 (cm2/s (mL O2/mL·mmHg at 35°C. This was within ±20% tolerance range as specified in ISO 18369-2:2012(E for the edge-corrected Dk of the nonpigmented etafilcon A control lens evaluated during the same session, 19.5×10-11 (cm2/s (mL O2/mL·mmHg. The edge-corrected Dk values of the lenses packaged with PVP (mean 20.1, standard deviation [SD] 0.3 were also within the ±20% tolerance range compared to those packaged without PVP

  12. Analysis of luminosity distributions of strong lensing galaxies: subtraction of diffuse lensed signal

    Science.gov (United States)

    Biernaux, J.; Magain, P.; Hauret, C.

    2017-08-01

    Context. Strong gravitational lensing gives access to the total mass distribution of galaxies. It can unveil a great deal of information about the lenses' dark matter content when combined with the study of the lenses' light profile. However, gravitational lensing galaxies, by definition, appear surrounded by lensed signal, both point-like and diffuse, that is irrelevant to the lens flux. Therefore, the observer is most often restricted to studying the innermost portions of the galaxy, where classical fitting methods show some instabilities. Aims: We aim at subtracting that lensed signal and at characterising some lenses' light profile by computing their shape parameters (half-light radius, ellipticity, and position angle). Our objective is to evaluate the total integrated flux in an aperture the size of the Einstein ring in order to obtain a robust estimate of the quantity of ordinary (luminous) matter in each system. Methods: We are expanding the work we started in a previous paper that consisted in subtracting point-like lensed images and in independently measuring each shape parameter. We improve it by designing a subtraction of the diffuse lensed signal, based only on one simple hypothesis of symmetry. We apply it to the cases where it proves to be necessary. This extra step improves our study of the shape parameters and we refine it even more by upgrading our half-light radius measurement method. We also calculate the impact of our specific image processing on the error bars. Results: The diffuse lensed signal subtraction makes it possible to study a larger portion of relevant galactic flux, as the radius of the fitting region increases by on average 17%. We retrieve new half-light radii values that are on average 11% smaller than in our previous work, although the uncertainties overlap in most cases. This shows that not taking the diffuse lensed signal into account may lead to a significant overestimate of the half-light radius. We are also able to measure

  13. The discovery of the multiply-imaged lensed Type Ia supernova iPTF16geu

    CERN Document Server

    Goobar, A; Kulkarni, S R; Nugent, P E; Johansson, J; Steidel, C; Law, D; Mortsell, E; Quimby, R; Blagorodnova, N; Brandeker, A; Cao, Y; Cooray, A; Ferretti, R; Fremling, C; Hangard, L; Kasliwal, M; Kupfer, T; Lunnan, R; Masci, F; Miller, A A; Nayyeri, H; Neill, J D; Ofek, E O; Papadogiannakis, S; Petrushevska, T; Ravi, V; Sollerman, J; Sullivan, M; Taddia, F; Walters, R; Wilson, D; Yan, L; Yaron, O

    2016-01-01

    We report the discovery of a gravitationally lensed Type Ia supernova (SN Ia) by the intermediate Palomar Transient Factor (iPTF). The light originating from SNIa iPTF16geu, at redshift $z_{SN}=0.409$, is magnified by an intervening galaxy at $z_{l}=0.216$, acting as a gravitational lens. Using Laser Guide Star Adaptive Optics (LGSAO) OSIRIS and NIRC2 observations at the Keck telescope, as well as measurements with the Hubble Space Telescope, we were able to detect the strong bending of the light path, both for iPTF16geu and its host galaxy. We detect four images of the supernova, approximately 0.3" from the center of the lensing galaxy. iPTF16geu is the first \\snia for which multiple images have been observed. From the fits of the multi-color lightcurve we derive a lensing magnification, $\\Delta m = 4.37 \\pm 0.15$ mag, corresponding to a total amplification of the supernova flux by a factor $\\mu \\sim 56$. The discovery of iPTF16geu suggests that lensing by sub-kpc structures may have been greatly underestima...

  14. Coatings and Tints of Spectacle Lenses

    Directory of Open Access Journals (Sweden)

    H. Zeki Büyükyıldız

    2012-10-01

    Full Text Available Spectacle lenses are made of mineral or organic (plastic materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1 Anti-reflection coatings, 2 Hard coatings, 3 Clean coat, 4 Mirror coatings, 5 Color tint coating (one of coloring processes, 6 Photochromic coating (one of photochromic processes, and 7 Anti-fog coatings. Anti-reflection coatings reduce unwanted reflections from the lens surfaces and increase light transmission. Hard coatings are applied for preventing the plastic lens surface from scratches and abrasion. Hard coatings are not required for the mineral lenses due to their hardness. Clean coat makes the lens surface smooth and hydrophobic. Thus, it prevents the adherence of dust, tarnish, and dirt particles on the lens surface. Mirror coatings are applied onto the sunglasses for cosmetic purpose. Color tinted and photochromic lenses are used for sun protection and absorption of the harmful UV radiations. Anti-fog coatings make the lens surface hydrophilic and prevent the coalescence of tiny water droplets on the lens surface that reduces light transmission. (Turk J Ophthalmol 2012; 42: 359-69

  15. Cosmological applications of strong gravitational lensing

    DEFF Research Database (Denmark)

    Paraficz, Danuta

    value of the energy density of the two above components, together with measuring the Hubble constant that determines the age of the Universe, is a major goal of modern astrophysics. An interesting method for estimating these parameters is strong gravitational lensing of quasars (QSOs). As shown...

  16. Software for Fermat's Principle and Lenses

    Science.gov (United States)

    Mihas, Pavlos

    2012-01-01

    Fermat's principle is considered as a unifying concept. It is usually presented erroneously as a "least time principle". In this paper we present some software that shows cases of maxima and minima and the application of Fermat's principle to the problem of focusing in lenses. (Contains 12 figures.)

  17. GRAVITATIONAL LENSES AND UNCONVENTIONAL GRAVITY THEORIES

    NARCIS (Netherlands)

    BEKENSTEIN, JD; SANDERS, RH

    1994-01-01

    We study gravitational lensing by clusters of galaxies in the context of the generic class of unconventional gravity theories which describe gravity in terms of a metric and one or more scalar fields (called here scalar-tensor theories). We conclude that, if the scalar fields have positive energy, t

  18. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  19. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes ana

  20. Modern scleral lenses part II: patient satisfaction.

    NARCIS (Netherlands)

    Visser, E.S.; Visser, R.; Lier, H.J.J. van; Otten, H.M.

    2007-01-01

    PURPOSE: To evaluate the subjective performance of modern scleral lenses in patients of the clinics of Visser Contact Lens Practice. METHODS: In this cross-sectional survey, all the necessary data were collected at the first follow-up visit during the 5-month study period. In accordance with the

  1. Doubling strong lensing as a cosmological probe

    Science.gov (United States)

    Linder, Eric V.

    2016-10-01

    Strong gravitational lensing provides a geometric probe of cosmology in a unique manner through distance ratios involving the source and lens. This is well-known for the time delay distance derived from measured delays between lightcurves of the images of variable sources such as quasars. Recently, double source plane lens systems involving two constant sources lensed by the same foreground lens have been proposed as another probe, involving a different ratio of distances measured from the image positions and fairly insensitive to the lens modeling. Here we demonstrate that these two different sets of strong lensing distance ratios have strong complementarity in cosmological leverage. Unlike other probes, the double source distance ratio is actually more sensitive to the dark energy equation of state parameters w0 and wa than to the matter density Ωm, for low redshift lenses. Adding double source distance ratio measurements can improve the dark energy figure of merit by 40% for a sample of fewer than 100 low redshift systems, or even better for the optimal redshift distribution we derive.

  2. Strong gravitational lensing versus dynamic galactic mass

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Antonio C.C.; Sodre Junior, Laerte [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas. Dept. de Astronomia

    2006-07-01

    The mass associated to a galaxy is a fundamental property necessary for its description and for the understating of its structure, formation and evolution. In the cosmological context, the mass and density profile of galaxies and galaxy clusters is relevant for the understanding of dark matter properties and the formation dynamics of structures in the Universe. We find the masses of 15 galaxies from the SLACS Survey through two methods: using the stellar velocity dispersion (dynamic method) and using strong gravitational lensing. We discover a discrepancy between the masses obtained through these two methods and develop several models to explain it. We test the models suggested by calculating {chi}{sup 2} statistics and the Bayesian information criteria. Statistical fluctuation and a constant systematic error are strongly discarded as explanations for the mass discrepancy. Our results show evidence of projection effects on the line of sight that add a contamination mass in the strong lensing galactic mass determination. This effect was already observed in greater detail in weak and strong gravitational lensing measures of cluster of galaxies, but was little explored before in the case of strong lensing by galaxies. (author)

  3. Modern scleral lenses part II: patient satisfaction.

    NARCIS (Netherlands)

    Visser, E.S.; Visser, R.; Lier, H.J.J. van; Otten, H.M.

    2007-01-01

    PURPOSE: To evaluate the subjective performance of modern scleral lenses in patients of the clinics of Visser Contact Lens Practice. METHODS: In this cross-sectional survey, all the necessary data were collected at the first follow-up visit during the 5-month study period. In accordance with the pre

  4. Spurious Shear in Weak Lensing with LSST

    CERN Document Server

    Chang, C; Jernigan, J G; Peterson, J R; AlSayyad, Y; Ahmad, Z; Bankert, J; Bard, D; Connolly, A; Gibson, R R; Gilmore, K; Grace, E; Hannel, M; Hodge, M A; Jee, M J; Jones, L; Krughoff, S; Lorenz, S; Marshall, P J; Marshall, S; Meert, A; Nagarajan, S; Peng, E; Rasmussen, A P; Shmakova, M; Sylvestre, N; Todd, N; Young, M

    2012-01-01

    The Large Synoptic Survey Telescope (LSST) is one of the most powerful ground-based weak lensing survey telescopes in the upcoming decade. The complete 10-year survey will image $\\sim$ 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to $r\\sim27.5$, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of \\textit{additive} systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing ana...

  5. Strong lensing interferometry for compact binaries

    NARCIS (Netherlands)

    Pen, U.L.; Yang, I.S.

    2015-01-01

    We propose a possibility to improve the current precision measurements on compact binaries. When the orbital axis is almost perpendicular to our line of sight, a pulsar behind its companion can form two strong lensing images. These images cannot be resolved, but we can use multiwavelength interferom

  6. Improving lensing cluster mass estimate with flexion

    CERN Document Server

    Cardone, Vincenzo F; Er, Xinzhong; Maoli, Roberto; Scaramella, Roberto

    2016-01-01

    Gravitational lensing has long been considered as a valuable tool to determine the total mass of galaxy clusters. The shear profile as inferred from the statistics of ellipticity of background galaxies allows to probe the cluster intermediate and outer regions thus determining the virial mass estimate. However, the mass sheet degeneracy and the need for a large number of background galaxies motivate the search for alternative tracers which can break the degeneracy among model parameters and hence improve the accuracy of the mass estimate. Lensing flexion, i.e. the third derivative of the lensing potential, has been suggested as a good answer to the above quest since it probes the details of the mass profile. We investigate here whether this is indeed the case considering jointly using weak lensing, magnification and flexion. We use a Fisher matrix analysis to forecast the relative improvement in the mass accuracy for different assumptions on the shear and flexion signal - to - noise (S/N) ratio also varying t...

  7. Modern scleral lenses part II: patient satisfaction.

    NARCIS (Netherlands)

    Visser, E.S.; Visser, R.; Lier, H.J.J. van; Otten, H.M.

    2007-01-01

    PURPOSE: To evaluate the subjective performance of modern scleral lenses in patients of the clinics of Visser Contact Lens Practice. METHODS: In this cross-sectional survey, all the necessary data were collected at the first follow-up visit during the 5-month study period. In accordance with the pre

  8. GRAVITATIONAL LENSES AND UNCONVENTIONAL GRAVITY THEORIES

    NARCIS (Netherlands)

    BEKENSTEIN, JD; SANDERS, RH

    1994-01-01

    We study gravitational lensing by clusters of galaxies in the context of the generic class of unconventional gravity theories which describe gravity in terms of a metric and one or more scalar fields (called here scalar-tensor theories). We conclude that, if the scalar fields have positive energy,

  9. Electron Lenses for the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermilab; Valishev, Alexander [Fermilab; Bruce, Roderik [CERN; Redaelli, Stefano [CERN; Rossi, Adriana [CERN; Salvachua, Belen [CERN

    2014-07-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.

  10. CMB-lensing beyond the Born approximation

    CERN Document Server

    Marozzi, Giovanni; Di Dio, Enea; Durrer, Ruth

    2016-01-01

    We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles $\\ell\\lesssim 2500$, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussian nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum...

  11. [Aspheric optics: physical fundamentals].

    Science.gov (United States)

    Mrochen, M; Büeler, M

    2008-03-01

    Especially regarding intraocular lenses and refractive corneal surgery, one finds numerous concepts on how to improve the optical quality of the human eye through aspheric optics. Aspheric optics consists of optical surfaces in which at least one surface (for example, the corneal surface) deviates from the spherical shape. An aspheric (that is, not spherical) surface enables the correction of aberrations, especially the spherical aberration, by freely shaping the optical surface. The optical aberrations of the human eye can theoretically be minimized through the use of aspheric optics; however, the results are always affected by the optical properties of the cornea and the lens. Aspheric intraocular lenses allow a reduction of postoperative spherical aberrations of the patient's eye, but an optimal individualized conformation can result only when the shape of the cornea (asphericity) is considered. By the same token, the ideal corneal asphericity after refractive surgery for an individual eye cannot be defined without knowing the optical properties of the intraocular structure. Theoretical observations of aspheric optics in refractive surgery show that with aspheric approaches, a higher optical quality for the human eye can be attained. These theoretical advantages must, however, prove themselves in everyday clinical routine.

  12. Full covariance of CMB and lensing reconstruction power spectra

    CERN Document Server

    Peloton, Julien; Lewis, Antony; Carron, Julien; Zahn, Oliver

    2016-01-01

    CMB and lensing reconstruction power spectra are powerful probes of cosmology. However they are correlated, since the CMB power spectra are lensed and the lensing reconstruction is constructed using CMB multipoles. We perform a full analysis of the auto- and cross-covariances, including polarization power spectra and minimum variance lensing estimators, and compare with simulations of idealized future CMB-S4 observations. Covariances sourced by fluctuations in the unlensed CMB and instrumental noise can largely be removed by using a realization-dependent subtraction of lensing reconstruction noise, leaving a relatively simple covariance model that is dominated by lensing-induced terms and well described by a small number of principal components. The correlations between the CMB and lensing power spectra will be detectable at the level of $\\sim 5\\sigma$ for a CMB-S4 mission, and neglecting those could underestimate some parameter error bars by several tens of percent. However we found that the inclusion of ext...

  13. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 (Canada); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Da Cunha, E. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn VIC 3122 (Australia); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Michałowski, M. J.; Oteo, I. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo C/ Calvo Sotelo, s/n, E-33007 Oviedo (Spain); Magdis, G. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Riechers, D. A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  14. Swimming Microrobot Optical Nanoscopy.

    Science.gov (United States)

    Li, Jinxing; Liu, Wenjuan; Li, Tianlong; Rozen, Isaac; Zhao, Jason; Bahari, Babak; Kante, Boubacar; Wang, Joseph

    2016-10-12

    Optical imaging plays a fundamental role in science and technology but is limited by the ability of lenses to resolve small features below the fundamental diffraction limit. A variety of nanophotonic devices, such as metamaterial superlenses and hyperlenses, as well as microsphere lenses, have been proposed recently for subdiffraction imaging. The implementation of these micro/nanostructured lenses as practical and efficient imaging approaches requires locomotive capabilities to probe specific sites and scan large areas. However, directed motion of nanoscale objects in liquids must overcome low Reynolds number viscous flow and Brownian fluctuations, which impede stable and controllable scanning. Here we introduce a new imaging method, named swimming microrobot optical nanoscopy, based on untethered chemically powered microrobots as autonomous probes for subdiffraction optical scanning and imaging. The microrobots are made of high-refractive-index microsphere lenses and powered by local catalytic reactions to swim and scan over the sample surface. Autonomous motion and magnetic guidance of microrobots enable large-area, parallel and nondestructive scanning with subdiffraction resolution, as illustrated using soft biological samples such as neuron axons, protein microtubulin, and DNA nanotubes. Incorporating such imaging capacities in emerging nanorobotics technology represents a major step toward ubiquitous nanoscopy and smart nanorobots for spectroscopy and imaging.

  15. Field-induced refractive index variation in the dark conglomerate phase for polarization-independent switchable liquid crystal lenses.

    Science.gov (United States)

    Milton, H E; Nagaraj, M; Kaur, S; Jones, J C; Morgan, P B; Gleeson, H F

    2014-11-01

    Liquid crystal lenses are an emerging technology that can provide variable focal power in response to applied voltage. Many designs for liquid-crystal-based lenses are polarization dependent, so that 50% of light is not focused as required, making polarization-independent technologies very attractive. Recently, the dark conglomerate (DC) phase, which is an optically isotropic liquid crystalline state, has been shown to exhibit a large change in refractive index in response to an applied electric field (Δn=0.04). This paper describes computational modeling of the electrostatic solutions for two different types of 100 μm diameter liquid crystal lenses, which include the DC phase, demonstrating that it shows great potential for efficient isotropic optical switching in lenses. A feature of the field dependence of the refractive index change in the DC phase is that it is approximately linear in a certain range, leading to the prediction of excellent optical quality for driving fields in this regime. Interestingly, a simulated microlens is shown to exhibit two modes of operation: a positive lens based upon a uniform bulk change in refractive index at high voltages, and a negative lens resulting from the induction of a gradient index effect at intermediate voltages.

  16. Deep reactive ion etching of silicon moulds for the fabrication of diamond x-ray focusing lenses

    Science.gov (United States)

    Malik, A. M.; Fox, O. J. L.; Alianelli, L.; Korsunsky, A. M.; Stevens, R.; Loader, I. M.; Wilson, M. C.; Pape, I.; Sawhney, K. J. S.; May, P. W.

    2013-12-01

    Diamond is a highly desirable material for use in x-ray optics and instrumentation. However, due to its extreme hardness and resistance to chemical attack, diamond is difficult to form into a structure suitable for x-ray lenses. Refractive lenses are capable of delivering x-ray beams with nanoscale resolution. A moulding technique for the fabrication of diamond lenses is reported. High-quality silicon moulds were made using photolithography and deep reactive ion etching. The study of the etch process conducted to achieve silicon moulds with vertical sidewalls and minimal surface roughness is discussed. Issues experienced when attempting to deposit diamond into a high-aspect-ratio mould by chemical vapour deposition are highlighted. Two generations of lenses have been successfully fabricated using this transfer-moulding approach with significant improvement in the quality and performance of the optics observed in the second iteration. Testing of the diamond x-ray optics on the Diamond Light Source Ltd synchrotron B16 beamline has yielded a line focus of sub-micrometre width.

  17. Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses

    Science.gov (United States)

    Ji, Shanzuo; Yin, Kezhen; Mackey, Matthew; Brister, Aaron; Ponting, Michael; Baer, Eric

    2013-11-01

    A nanolayered polymer films approach to designing and fabricating gradient refractive index (GRIN) lenses with designer refractive index distribution profiles and an independently prescribed lens surface geometry have been demonstrated to produce a new class of optics. This approach utilized nanolayered polymer materials, constructed with polymethylmethacrylate and a styrene-co-acrylonitrile copolymer with a tailorable refractive index intermediate to bulk materials, to fabricate discrete GRIN profile materials. A process to fabricate nanolayered polymer GRIN optics from these materials through thermoforming and finishing steps is reviewed. A collection of technology-demonstrating previously reported nanolayered GRIN case studies is presented that include: (1) the optical performance of a f/# 2.25 spherical GRIN plano-convex singlet with one quarter (2) the weight of a similar BK7 lens and a bio-inspired aspheric human eye GRIN lens. Original research on the fabrication and characterization of a Luneburg inspired GRIN ball lens is presented as a developing application of the nanolayered polymer technology.

  18. Optics and optical instruments an introduction

    CERN Document Server

    Johnson, B K

    2011-01-01

    This book illustrates basic practical applications of optical principle. Working models of telescopes, microscopes, photographic lenses, and optical projection systems are diagrammed and explained in full, as are the basic experiments for determining accuracy, power, angular field of view, amount of aberration, and all other necessary facts about the instrument. Throughout the book, only elementary mathematics is used, for the benefit of the student and the beginner in the field of optics.The author, an assistant professor at the Imperial College of Science and Technology in London, shows ho

  19. Metacoatings for wavelength scale, high NA plano-concave focusing lenses

    CERN Document Server

    Naserpour, Mahin; Díaz-Aviñó, Carlos; Hashemi, Mahdieh

    2016-01-01

    We design plano-concave silicon lenses with coupled gradient-index plasmonic metacoatings for ultrawide apertured focusing utilizing a reduced region of $\\sim 20 \\lambda^2$. The anomalous refraction induced in the planar input side of the lens and in the boundary of the wavelength-scale focal region boosts the curvature of the emerging wavefront, thus significantly enhancing the resolution of the tightly-focused optical wave. The formation of a light tongue with dimensions approaching those of the concave opening is here evidenced. This scheme is expected to have potential applications in optical trapping and detection.

  20. Algebraic and numerical analysis of imaging properties of thin tunable-focus fluidic membrane lenses with parabolic surfaces.

    Science.gov (United States)

    Miks, Antonin; Novak, Jiri; Novak, Pavel

    2013-04-01

    The theory of third-order aberrations for a system of rotationally symmetric thin tunable-focus fluidic membrane lenses with parabolic surfaces is described. A complex analysis of the third-order design of tunable fluidic lenses is performed considering all types of primary aberrations. Moreover, formulas are derived for the calculation of the change of aberration coefficients of the parabolic tunable fluidic membrane lens with respect to the wavelength. It is shown that spherical aberration of a simple tunable-focus fluidic membrane lens with parabolic surfaces can be corrected, which is not possible with a classical spherical lens. The presented analysis is explained on examples. Derived formulas make possible to calculate parameters of optical systems with fluidic membrane lenses with small residual aberrations.

  1. A Faint Star-Forming System Viewed Through the Lensing Cluster Abell 2218 First Light at z~5.6?

    CERN Document Server

    Ellis, R; Kneib, J P; Kuijken, K; Ellis, Richard; Santos, Mike; Kneib, Jean-Paul; Kuijken, Konrad

    2001-01-01

    We discuss the physical nature of a remarkably faint pair of Lyman alpha-emitting images discovered close to the giant cD galaxy in the lensing cluster Abell 2218 (z=0.18) during a systematic survey for highly-magnified star-forming galaxies beyond z=5. A well-constrained mass model suggests the pair arises via a gravitationally-lensed source viewed at high magnification. Keck spectroscopy confirms the lensing hypothesis and implies the unlensed source is a very faint (I~30) compact (<150 pc) and isolated object at z=5.576 whose optical emission is substantially contained within the Lyman alpha emission line; no stellar continuum is detectable. The available data suggest the source is a promising candidate for an isolated ~10^6 solar mass system seen producing its first generation of stars close to the epoch of reionization.

  2. Deep IRAC Imaging Lensing Galaxy Clusters for JWST 'First Light' Search

    Science.gov (United States)

    Yan, Haojing; Conselice, Christopher; Windhorst, Rogier; Cohen, Seth; Alpaslan, Mehmet; Zitrin, Adi; Broadhurst, Tom; Frye, Brenda; Driver, Simon; Robotham, Aaron; Hopkins, Andrew; Wyithe, Staurt; Jansen, Rolf; Hathi, Nimish; Mechtley, Matthew; Ryan, Russell; Rutkowski, Michael; Finkelstein, Steven; Koekemoer, Anton

    2016-08-01

    JWST has a key goal to search for First Light objects beyond z>10. Our 110-hr JWST GTO program, 'Webb Medium-Deep Fields' (WMDF), will target both blank and lensed fields to probe both the bright and the faint ends of the galaxy luminosity function at z > 10. While a number of well studied lensing clusters exist, not all of them are optimal for the JWST search of First Light objects, either because of their low Ecliptic latitudes (and hence high Zodiacal background) or because of their strong intra-cluster light (ICL) at the critical curve regions corresponding to the redshifts of interest. For this reason, our WMDF candidate lensing targets will include some recently discovered, high-mass (log[M/Msun] ~ 15) galaxy clusters, which we choose either because of their high Ecliptic latitude (beta > 40 deg) or because of their extreme compactness that minimizes the impact of the ICL. As part of our effort to collect ancillary data for these new systems to finalize the target list, we propose IRAC observations for 13 of them that are lacking sufficient data. These 3.6/4.5um data will be critical for our guaranteed JWST program: (1) they will greatly facilitate the modeling of the straylight that JWST will suffer in 1--5 um (the key range to search for z>10--20 objects), a problem that has recently been identified. If left untreated, such straylight components would severely hamper the detection of faint sources in a lensing field. The JWST observations alone would be difficult to separate the ICL from the straylight at the level needed. (2) the new 3.6/4.5um data will best match our deep optical imaging and spectroscopy at HST, Gemini, LBT and MMT. We will derive accurate photometric redshifts for any lensed background galaxies (at znote that these data will be highly valuable for the study of these clusters themselves before the JWST mission.

  3. Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2

    Science.gov (United States)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2011-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies

  4. Embedding perspective cue in holographic projection display by virtual variable-focal-length lenses

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Zhao, Fuliang

    2014-10-01

    To make a view perspective cue emerging in reconstructed images, a new approach is proposed by incorporating virtual variable-focal-length lenses into computer generated Fourier hologram (CGFH). This approach is based on a combination of monocular vision principle and digital hologram display, thus it owns properties coming from the two display models simultaneously. Therefore, it can overcome the drawback of the unsatisfied visual depth perception of the reconstructed three-dimensional (3D) images in holographic projection display (HPD). Firstly, an analysis on characteristics of conventional CGFH reconstruction is made, which indicates that a finite depthof- focus and a non-adjustable lateral magnification are reasons of the depth information lack on a fixed image plane. Secondly, the principle of controlling lateral magnification in wave-front reconstructions by virtual lenses is demonstrated. And the relation model is deduced, involving the depth of object, the parameters of virtual lenses, and the lateral magnification. Next, the focal-lengths of virtual lenses are determined by considering perspective distortion of human vision. After employing virtual lenses in the CGFH, the reconstructed image on focal-plane can deliver the same depth cues as that of the monocular stereoscopic image. Finally, the depthof- focus enhancement produced by a virtual lens and the effect on the reconstruction quality from the virtual lens are described. Numerical simulation and electro-optical reconstruction experimental results prove that the proposed algorithm can improve the depth perception of the reconstructed 3D image in HPD. The proposed method provides a possibility of uniting multiple display models to enhance 3D display performance and viewer experience.

  5. Ultra-broadband and ultra-fast optical signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo

    2015-01-01

    We have recently seen that nanowires can provide unparalleled optical signal processing (OSP) bandwidth and provide ultra-fast operation as well. Utilising the ultra-broad OSP bandwidth for e.g. optical time lenses allows for energy-efficient optical switching. © 2015 OSA.......We have recently seen that nanowires can provide unparalleled optical signal processing (OSP) bandwidth and provide ultra-fast operation as well. Utilising the ultra-broad OSP bandwidth for e.g. optical time lenses allows for energy-efficient optical switching. © 2015 OSA....

  6. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing

    Science.gov (United States)

    Wang, Peng; Mohammad, Nabil; Menon, Rajesh

    2016-02-01

    We exploit the inherent dispersion in diffractive optics to demonstrate planar chromatic-aberration-corrected lenses. Specifically, we designed, fabricated and characterized cylindrical diffractive lenses that efficiently focus the entire visible band (450 nm to 700 nm) onto a single line. These devices are essentially pixelated, multi-level microstructures. Experiments confirm an average optical efficiency of 25% for a three-wavelength apochromatic lens whose chromatic focus shift is only 1.3 μm and 25 μm in the lateral and axial directions, respectively. Super-achromatic performance over the continuous visible band is also demonstrated with averaged lateral and axial focus shifts of only 1.65 μm and 73.6 μm, respectively. These lenses are easy to fabricate using single-step grayscale lithography and can be inexpensively replicated. Furthermore, these devices are thin (<3 μm), error tolerant, has low aspect ratio (<1:1) and offer polarization-insensitive focusing, all significant advantages compared to alternatives that rely on metasurfaces. Our design methodology offers high design flexibility in numerical aperture and focal length, and is readily extended to 2D.

  7. Spectroscopy of MACHO 97-SMC-1 self-lensing within the SMC

    CERN Document Server

    Sahu, K C; Sahu, Kailash C.

    1998-01-01

    More than a dozen microlensing events have been detected so far towards the LMC and 2 towards the SMC. If all the lenses are in the Galactic halo, both the LMC and the SMC events are expected to have similar time scales. However, the first event towards the SMC, MACHO 97-SMC-1, had a time scale of 123 days which is much larger than the typical time scale for the LMC events. From optical depth estimates, we first show that the stars within the SMC play a dominant role as gravitational lenses and can fully account for the observed microlensing events, mainly due to its large physical depth. We also show that if the lenses are within the Magellanic Clouds, then the SMC events should be longer in duration than the LMC events, a fact that is consistent with the observations. The time scale of the event implies that the mass of the lens is >2 solar masses if it is in the Milky Way disk or halo, in which case the lens is expected to be bright and should reveal itself in the spectrum. Here, we present an optical spec...

  8. Experiments on Calibrating Tilt-Shift Lenses for Close-Range Photogrammetry

    Science.gov (United States)

    Nocerino, E.; Menna, F.; Remondino, F.; Beraldin, J.-A.; Cournoyer, L.; Reain, G.

    2016-06-01

    One of the strongest limiting factors in close range photogrammetry (CRP) is the depth of field (DOF), especially at very small object distance. When using standard digital cameras and lens, for a specific camera - lens combination, the only way to control the extent of the zone of sharp focus in object space is to reduce the aperture of the lens. However, this strategy is often not sufficient; moreover, in many cases it is not fully advisable. In fact, when the aperture is closed down, images lose sharpness because of diffraction. Furthermore, the exposure time must be lowered (susceptibility to vibrations) and the ISO increased (electronic noise may increase). In order to adapt the shape of the DOF to the subject of interest, the Scheimpflug rule is to be applied, requiring that the optical axis must be no longer perpendicular to the image plane. Nowadays, specific lenses exist that allow inclining the optical axis to modify the DOF: they are called tilt-shift lenses. In this paper, an investigation on the applicability of the classic photogrammetric model (pinhole camera coupled with Brown's distortion model) to these lenses is presented. Tests were carried out in an environmentally controlled metrology laboratory at the National Research Council (NRC) Canada and the results are hereafter described in detail.

  9. UVA Light-mediated Ascorbate Oxidation in Human Lenses.

    Science.gov (United States)

    Rakete, Stefan; Nagaraj, Ram H

    2017-01-13

    Whether ascorbate oxidation is promoted by UVA light in human lenses and whether this process is influenced by age and GSH levels are not known. In this study, we used paired lenses from human donors. One lens of each pair was exposed to UVA light, whereas the other lens was kept in the dark for the same period of time as the control. Using LC-MS/MS analyses, we found that older lenses (41-73 years) were more susceptible to UVA-induced ascorbate oxidation than younger lenses (18-40 years). Approximately 36% of the ascorbate (relative to control) was oxidized in older lenses compared to ~16% in younger lenses. Furthermore, lenses with higher levels of GSH were less susceptible to UVA-induced ascorbate oxidation compared to those with lower levels, and this effect was not dependent on age. The oxidation of ascorbate led to elevated levels of reactive α-dicarbonyl compounds. In summary, our study showed that UVA light exposure leads to ascorbate oxidation in human lenses and that such oxidation is more pronounced in aged lenses and is inversely related to GSH levels. Our findings suggest that UVA light exposure could lead to protein aggregation through ascorbate oxidation in human lenses.

  10. Electro-optically actuated liquid-lens zoom

    Science.gov (United States)

    Pütsch, O.; Loosen, P.

    2012-06-01

    Progressive miniaturization and mass market orientation denote a challenge to the design of dynamic optical systems such as zoom-lenses. Two working principles can be identified: mechanical actuation and application of active optical components. Mechanical actuation changes the focal length of a zoom-lens system by varying the axial positions of optical elements. These systems are limited in speed and often require complex coupled movements. However, well established optical design approaches can be applied. In contrast, active optical components change their optical properties by varying their physical structure by means of applying external electric signals. An example are liquidlenses which vary their curvatures to change the refractive power. Zoom-lenses benefit from active optical components in two ways: first, no moveable structures are required and second, fast response characteristics can be realized. The precommercial development of zoom-lenses demands simplified and cost-effective system designs. However the number of efficient optical designs for electro-optically actuated zoom-lenses is limited. In this paper, the systematic development of an electro-optically actuated zoom-lens will be discussed. The application of aberration polynomials enables a better comprehension of the primary monochromatic aberrations at the lens elements during a change in magnification. This enables an enhanced synthesis of the system behavior and leads to a simplified zoom-lens design with no moving elements. The change of focal length is achieved only by varying curvatures of targeted integrated electro-optically actuated lenses.

  11. Interferometric Plasmonic Lensing with Nanohole Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-12-18

    Nonlinear photoemission electron microscopy (PEEM) of nanohole arrays in gold films maps propagating surface plasmons (PSPs) launched from lithographically patterned structures. Strong near field photoemission patterns are observed in the PEEM images, recorded following low angle of incidence irradiation of nanohole arrays with sub-15 fs laser pulses centered at 780 nm. The recorded photoemission patterns are attributed to constructive and destructive interferences between PSPs launched from the individual nanoholes which comprise the array. By exploiting the wave nature of PSPs, we demonstrate how varying the array geometry (hole diameter, pitch, and number of rows/columns) ultimately yields intense localized photoemission. Through a combination of PEEM and finite-difference time-domain simulations, we identify the optimal array geometry for efficient light coupling and interferometric plasmonic lensing. We show a preliminary application of inteferometric plasmonic lensing by enhancing the photoemission from the vertex of a gold triangle using nanohole array.

  12. Distance Duality Relation from Strong Gravitational Lensing

    CERN Document Server

    Liao, Kai; Cao, Shuo; Biesiada, Marek; Zheng, Xiaogang; Zhu, Zong-Hong

    2015-01-01

    Under very general assumptions of metric theory of spacetime, photons traveling along null geodesics and photon number conservation, two observable concepts of cosmic distance, i.e. the angular diameter and the luminosity distances are related to each other by the so called distance duality relation (DDR) $D^L=D^A(1+z)^2$. Observational validation of this relation is quite important because any evidence of its violation could be a signal of new physics. In this letter we introduce a new method to test DDR based on strong gravitational lensing systems and supernovae Ia. Using a new compilation of strong lensing systems and JLA compilation of SNe Ia we found no evidence of DDR violation. However, not so much the final result but the method itself is worth attention, because unlike previously proposed techniques, it does not depend on prior assumptions concerning the details of cosmological model and galaxy cluster modelling.

  13. Regular phantom black holes as gravitational lenses

    CERN Document Server

    Eiroa, Ernesto F

    2015-01-01

    The distortion of the spacetime structure in the surroundings of black holes affects the trajectories of light rays. As a consequence, black holes can act as gravitational lenses. Observations of type Ia supernovas, show that our Universe is in accelerated expansion. The usual explanation is that the Universe is filled with a negative pressure fluid called dark energy, which accounts for 70 % of its total density, which can be modeled by a self-interacting scalar field with a potential. We consider a class of spherically symmetric regular phantom black holes as gravitational lenses. We study large deflection angles, using the strong deflection limit, corresponding to an asymptotic logarithmic approximation. In this case, photons passing close to the photon sphere of the black hole experiment several loops around it before they emerge towards the observer, giving place to two infinite sets of relativistic images. Within this limit, we find analytical expressions for the positions and the magnifications of thes...

  14. Atmospheric dispersion effects in weak lensing measurements

    CERN Document Server

    Plazas, Andrés A

    2012-01-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and point spread function (PSF) characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions ($\\Delta{\\bar{R}}$) and in the second moment (width) of the wavelength-averaged PSF ($\\Delta{v}$) for galaxies. We estimate the level of $\\Delta{V}$ that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed the statistical errors of the {\\em Dark Energy Survey (DES)} and the {\\em Large Synoptic Survey Telescope (LSST)} cosmic-shear experiments. We also estimate the $\\Delta{\\bar{R}}$ signals that will produce unacceptable spurious distortions ...

  15. Masses of galaxy clusters from gravitational lensing

    CERN Document Server

    Hoekstra, Henk; Dahle, Haakon; Israel, Holger; Limousin, Marceau; Meneghetti, Massimo

    2013-01-01

    Despite consistent progress in numerical simulations, the observable properties of galaxy clusters are difficult to predict ab initio. It is therefore important to compare both theoretical and observational results to a direct measure of the cluster mass. This can be done by measuring the gravitational lensing effects caused by the bending of light by the cluster mass distribution. In this review we discuss how this phenomenon can be used to determine cluster masses and study the mass distribution itself. As sample sizes increase, the accuracy of the weak lensing mass estimates needs to improve accordingly. We discuss the main practical aspects of these measurements. We review a number of applications and highlight some recent results.

  16. Can weak lensing surveys confirm BICEP2 ?

    CERN Document Server

    Chisari, Nora Elisa; Schmidt, Fabian

    2014-01-01

    The detection of B-modes in the Cosmic Microwave Background (CMB) polarization by the BICEP2 experiment, if interpreted as evidence for a primordial gravitational wave background, has enormous ramifications for cosmology and physics. It is crucial to test this hypothesis with independent measurements. A gravitational wave background leads to B-modes in galaxy shape correlations (shear) both through lensing and tidal alignment effects. Since the systematics and foregrounds of galaxy shapes and CMB polarization are entirely different, a detection of a cross-correlation between the two observables would provide conclusive proof for the existence of a primordial gravitational wave background. We find that upcoming weak lensing surveys will be able to detect the cross-correlation between B-modes of the CMB and galaxy shapes. However, this detection is not sufficient to confirm or falsify the hypothesis of a primordial origin for CMB B-mode polarization.

  17. Lensing Reconstruction using redshifted 21cm Fluctuations

    CERN Document Server

    Zahn, O; Zahn, Oliver; Zaldarriaga, Matias

    2005-01-01

    We investigate the potential of second generation measurements of redshifted 21 cm radiation from the epoch of reionization (EOR) to reconstruct the matter density fluctuations along the line of sight. To do so we generalize the quadratic methods developed for the Cosmic Microwave Background (CMB) to 21cm fluctuations. The three dimensional signal can be analyzed into a finite number of line of sight Fourier modes that contribute to the lensing reconstruction. In comparison with reconstruction using the CMB, 21cm fluctuations have a disadvantage of relative featurelessness, which can be compensated for by the fact that there are multiple uncorrelated backgrounds. The multiple redshift information allows to reconstruct relatively small scales even if one is limited by angular resolution. We estimate that a square kilometer of collecting area is needed with a maximal baseline of 3 km to achieve lensing reconstruction noise levels an order of magnitude below CMB quadratic estimator constraints at $l=1000$, and c...

  18. Stationary SMS lenses for concentrating photovoltaics

    Science.gov (United States)

    Kotsidas, Panagiotis; Chatzi, Eleni; Modi, Vijay

    2010-08-01

    This paper presents a novel approach regarding the design of stationary, non imaging, refractive lenses with high acceptance angles. A lens lies on a stationary aperture and as the sun moves throughout the day, the concentrated focal spot is tracked by a moving solar cell. The purpose of this work is to replace the 2-axis tracking of the sun with internal motion of the miniaturized solar cell inside the module. We show families of linear lenses with wide acceptance angles 60. and 30. achieving moderate concentrations of 10 - 30 suns. The lens is designed with a variation of the simultaneous multiple surface (SMS) technique which is combined with a genetic algorithm to optimize the free variables of the problem.

  19. Precision cluster mass determination from weak lensing

    CERN Document Server

    Mandelbaum, Rachel; Baldauf, Tobias; Smith, Robert E

    2009-01-01

    Weak gravitational lensing has been used extensively in the past decade to constrain the masses of galaxy clusters, and is the most promising observational technique for providing the mass calibration necessary for precision cosmology with clusters. There are several challenges in estimating cluster masses, particularly (a) the sensitivity to astrophysical effects and observational systematics that modify the signal relative to the theoretical expectations, and (b) biases that can arise due to assumptions in the mass estimation method, such as the assumed radial profile of the cluster. All of these challenges are more problematic in the inner regions of the cluster, suggesting that their influence would ideally be suppressed for the purpose of mass estimation. However, at any given radius the differential surface density measured by lensing is sensitive to all mass within that radius, and the corrupted signal from the inner parts is spread out to all scales. We develop a new statistic that is ideal for estima...

  20. Strong gravitational lensing and dark energy complementarity

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Eric V.

    2004-01-21

    In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w{sub 0} and time variation w{sub a}. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1 percent accuracy can improve equation of state characterization by 15-50 percent. Next generation surveys should provide data on roughly 105 lens systems, though systematic errors will remain challenging.

  1. Direct Shear Mapping: Prospects for weak lensing studies of individual galaxy-galaxy lensing systems

    CERN Document Server

    de Burgh-Day, Catherine O; Webster, Rachel L; Hopkins, Andrew M

    2015-01-01

    We have investigated, using both a theoretical and an empirical approach, the frequency of low redshift galaxy-galaxy lensing systems in which the signature of weak lensing might be directly detectable. We find good agreement between these two approaches. In order to make a theoretical estimate of the weak lensing shear, $\\gamma$, for each galaxy in a catalogue, we have made an estimate of the asymptotic circular velocity from the stellar mass using three different approaches: from a simulation based relation, from an empirically-derived relation, and using the baryonic Tully-Fisher relation. Using data from the Galaxy and Mass Assembly redshift survey we estimate the frequency of detectable weak lensing at low redshift. We find that to a redshift of $z\\sim 0.6$, the probability of a galaxy being weakly lensed by at least $\\gamma = 0.02$ is $\\sim 0.01$. A scatter in the $M_*-M_h$ relation results in a shift towards higher measured shears for a given population of galaxies. Given this, and the good probability...

  2. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

    CERN Document Server

    Kirk, D; Benoit-Lévy, A; Cawthon, R; Chang, C; Larsen, P; Amara, A; Bacon, D; Crawford, T M; Dodelson, S; Fosalba, P; Giannantonio, T; Holder, G; Jain, B; Kacprzak, T; Lahav, O; MacCrann, N; Nicola, A; Refregier, A; Sheldon, E; Story, K T; Troxel, M A; Vieira, J D; Vikram, V; Zuntz, J; Abbott, T M C; Abdalla, F B; Becker, M R; Benson, B A; Bernstein, G M; Bernstein, R A; Bleem, L E; Bonnett, C; Bridle, S L; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Carlstrom, J E; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Crocce, M; Cunha, C E; D'Andrea, C B; da Costa, L N; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Eifler, T F; Evrard, A E; Flaugher, B; Frieman, J; Gerdes, D W; Goldstein, D A; Gruen, D; Gruendl, R A; Honscheid, K; James, D J; Jarvis, M; Kent, S; Kuehn, K; Kuropatkin, N; Lima, M; March, M; Martini, P; Melchior, P; Miller, C J; Miquel, R; Nichol, R C; Ogando, R; Plazas, A A; Reichardt, C L; Roodman, A; Rozo, E; Rykoff, E S; Sako, M; Sanchez, E; Scarpine, V; Schubnell, M; Sevilla-Noarbe, I; Simard, G; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Swanson, M E C; Tarle, G; Thomas, D; Wechsler, R H; Weller, J

    2015-01-01

    We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg$^{2}$ of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of $z_{\\rm med} {\\sim} 0.7$, while the CMB lensing kernel is broad and peaks at $z{\\sim}2$. The resulting cross-correlation is maximally sensitive to mass fluctuations at $z{\\sim}0.44$. Assuming the Planck 2015 best-fit cosmology, the amplitude of the DES$\\times$SPT cross-power is found to be $A = 0.88 \\pm 0.30$ and that from DES$\\times$Planck to be $A = 0.86 \\pm 0.39$, where $A=1$ corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of $2.9 \\sigma$ and $2.2 \\sigma$ re...

  3. Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing

    CERN Document Server

    Mandelbaum, R; Seljak, U; Guzik, J; Padmanabhan, N; Blake, C; Blanton, M R; Lupton, R; Brinkmann, J; Mandelbaum, Rachel; Hirata, Christopher M.; Seljak, Uros; Guzik, Jacek; Padmanabhan, Nikhil; Blake, Cullen; Blanton, Michael R.; Lupton, Robert; Brinkmann, Jonathan

    2005-01-01

    Weak lensing is emerging as a powerful observational tool to constrain cosmological models, but is at present limited by an incomplete understanding of many sources of systematic error. Many of these errors are multiplicative and depend on the population of background galaxies. We show how the commonly cited geometric test, which is rather insensitive to cosmology, can be used as a ratio test of systematics in the lensing signal at the 1 per cent level. We apply this test to the galaxy-galaxy lensing analysis of the Sloan Digital Sky Survey (SDSS), which at present is the sample with the highest weak lensing signal to noise and has the additional advantage of spectroscopic redshifts for lenses. This allows one to perform meaningful geometric tests of systematics for different subsamples of galaxies at different mean redshifts, such as brighter galaxies, fainter galaxies and high-redshift luminous red galaxies, both with and without photometric redshift estimates. We use overlapping objects between SDSS and th...

  4. Weak Lensing On the Celestial Sphere

    OpenAIRE

    Stebbins, Albert

    1996-01-01

    This paper details a description of the pattern of galaxy image distortion over the entire sky caused by the gravitational lensing which is the result of large scale inhomogeneities in our universe. We present a tensor spherical harmonic formalism to describe this pattern, giving many useful formulae. This is applied to density inhomogeneities, where we compute the angular power spectrum of the shear pattern, as well as the noise properties due to finite galaxy sampling and cosmic variance. W...

  5. Terahertz lenses based on nonuniform metasurfaces

    Science.gov (United States)

    Wang, Zhengbin; Chen, Jinchang; Xue, Manlin

    2015-03-01

    Nonuniform metasurfaces with varying dielectric thicknesses are introduced to full control the transmitted wavefront. Two-port network model is used to analyze the phase shifts of the transmitted field going through dielectric elements. Then, two terahertz convex lenses are designed by using nonuniform polyimide metasurfaces to realize the required abrupt phase distributions. Full-wave simulations demonstrate their excellent performances in controlling the transmitted waves.

  6. Gravitational lensing of wormholes in noncommutative geometry

    CERN Document Server

    Kuhfittig, Peter K F

    2015-01-01

    It has been shown that a noncommutative-geometry background may be able to support traversable wormholes. This paper discusses the possible detection of such wormholes in the outer regions of galactic halos by means of gravitational lensing. The procedure allows a comparison to other models such as the NFW model and f(R) modified gravity and is likely to favor a model based on noncommutative geometry.

  7. SimpLens: Interactive gravitational lensing simulator

    Science.gov (United States)

    Saha, Prasenjit; Williams, Liliya L. R.

    2016-06-01

    SimpLens illustrates some of the theoretical ideas important in gravitational lensing in an interactive way. After setting parameters for elliptical mass distribution and external mass, SimpLens displays the mass profile and source position, the lens potential and image locations, and indicate the image magnifications and contours of virtual light-travel time. A lens profile can be made shallower or steeper with little change in the image positions and with only total magnification affected.

  8. Total Magnification and Magnification Centroid Due to Strongly Naked Singularity Lensing

    CERN Document Server

    DeAndrea, Justin

    2015-01-01

    A strongly naked singularity (SNS) was modelled at the center of the Galaxy. This specific type of naked singularity was characterized in 2008 by Virbhadra and Keeton. The lens is described using the Janis-Newman-Winicour metric, which has an ordinary mass and massless scalar charge parameters. Gravitational lensing by the SNS gives rise to 4 images: 2 images on the same side as the source and 2 images on the opposite side of the source from the optic axis. We compute magnification centroid, magnification centroid shift, and total absolute magnification for many values of the angular source position. The nature of the curve for all three results are qualitatively similar to Schwarzschild black hole lenses, but quantitatively different. Magnification centroid increases as angular source position increases. As angular source position increases, magnification centroid shift increases to a maximum value, and then begins to decrease. As angular source position becomes large, magnification centroid shift will appro...

  9. Vision improvement by correcting higher-order aberrations with customized soft contact lenses in keratoconic eyes

    Science.gov (United States)

    Sabesan, Ramkumar; Jeong, Tae Moon; Carvalho, Luis; Cox, Ian G.; Williams, David R.; Yoon, Geunyoung

    2007-04-01

    Higher-order aberration correction in abnormal eyes can result in significant vision improvement, especially in eyes with abnormal corneas. Customized optics such as phase plates and customized contact lenses are one of the most practical, nonsurgical ways to correct these ocular higher-order aberrations. We demonstrate the feasibility of correcting higher-order aberrations and improving visual performance with customized soft contact lenses in keratoconic eyes while compensating for the static decentration and rotation of the lens. A reduction of higher-order aberrations by a factor of 3 on average was obtained in these eyes. The higher-order aberration correction resulted in an average improvement of 2.1 lines in visual acuity over the conventional correction of defocus and astigmatism alone.

  10. THERMAL LENSING MEASUREMENTS IN THE ANISOTROPIC LASER CRYSTALS UNDER DIODE PUMPING

    Directory of Open Access Journals (Sweden)

    P. A. Loiko

    2012-01-01

    Full Text Available An experimental setup was developed for thermal lensing measurements in the anisotropic diode-pumped laser crystals. The studied crystal is placed into the stable two-mirror laser cavity operating at the fundamental transversal mode. The output beam radius is measured with respect to the pump intensity for different meridional planes (all these planes contain the light propagation direction. These dependencies are fitted using the ABCD matrix method in order to obtain the sensitivity factors showing the change of the optical power of thermal lens due to variation of the pump intensity. The difference of the sensitivity factors for two mutually orthogonal principal meridional planes describes the thermal lens astigmatism degree. By means of this approach, thermal lensing was characterized in the diode-pumped monoclinic Np-cut Nd:KGd(WO42 laser crystal at the wavelength of 1.067 μm for light polarization E || Nm.

  11. The Physical Conditions of a Lensed Star-Forming Galaxy at Z=1.7

    Science.gov (United States)

    Rigby, Jane; Wuyts, E.; Gladders, M.; Sharon, K.; Becker, G.

    2011-01-01

    We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift ' extinction, star formation rate ' ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios, The limit on [O III] 4363 A tightly constrains the oxygen abundance via the "direct" or Te method, for the first time in an average-metallicity galaxy at z approx.2. We compare this result to several standard "bright-line" O abundance diagnostics, thereby testing these empirically-calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, to explore the diversity of ionization conditions and mass-metallicity ratios at z=2.

  12. Physical Conditions of a Lensed Star-Forming Galaxy at Z=1.7

    Science.gov (United States)

    Rigby, Jane; Wuyts, E.; Gladders, M.; Sharon, K.; Becker, G. D.

    2010-01-01

    We report rest-frame optical Keck/NIRSPEC spectroscopy of the brightest lensed galaxy yet discovered, RCSGA 032727-132609 at z=1.7037. From precise measurements of the nebular lines, we infer a number of physical properties: redshift, extinction, star formation rate, ionization parameter, electron density, electron temperature, oxygen abundance, and N/O, Ne/O, and Ar/O abundance ratios. The limit on [O III] 4363 A tightly constrains the oxygen abundance via the "direct" or Tc method, for the first time in all metallicity galaxy at z approx.2. We compare this result to several standard "bright-line" O abundance diagnostics, thereby testing these empirically calibrated diagnostics in situ. Finally, we explore the positions of lensed and unlensed galaxies in standard diagnostic diagrams, and explore the diversity of ionization conditions and mass-metallicity ratios at z=2.

  13. The Origin of Weak Lensing Convergence Peaks

    CERN Document Server

    Liu, Jia

    2016-01-01

    Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on $\\Omega_m$ and $\\sigma_8$ are improved by a factor of up to ~ 2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational data from the 154 deg$^2$ Canada-France-Hawaii Telescope Lensing Survey. We found that while high peaks (with height $\\kappa$ >3.5 $\\sigma_\\kappa$, where $\\sigma_\\kappa$ is the r.m.s. of the convergence $\\kappa$) are typically due to one single massive halo of ~$10^{15}M_\\odot$, low peaks ($\\kappa$ ~ their virial radii), compared with ~0.25 virial radii for halos linked with high peaks, hinting that low peaks are more immune to baryonic processes whose impact is confined to the inner regions of the dark matter halos. Our fi...

  14. Three QSOs acting as strong gravitational lenses

    CERN Document Server

    Courbin, F; Djorgovski, S G; Rerat, F; Tewes, M; Meylan, G; Stern, D; Mahabal, A; Boroson, T; Dheeraj, R; Sluse, D

    2011-01-01

    We report the discovery of three new cases of QSOs acting as strong gravitational lenses on background emission line galaxies: SDSS J0827+5224 (zQSO = 0.293, zs = 0.412), SDSS J0919+2720 (zQSO = 0.209, zs = 0.558), SDSS J1005+4016 (zQSO = 0.230, zs = 0.441). The selection was carried out using a sample of 22,298 SDSS spectra displaying at least four emission lines at a redshift beyond that of the foreground QSO. The lensing nature is confirmed from Keck imaging and spectroscopy, as well as from HST/WFC3 imaging in the F475W and F814W filters. Two of the QSOs have face-on spiral host galaxies and the third is a QSO+galaxy pair. The velocity dispersion of the host galaxies, inferred from simple lens modeling, is between \\sigma_v = 210 and 285 km/s, making these host galaxies comparable in mass with the SLACS sample of early-type strong lenses.

  15. Personal radon dosimetry from eyeglass lenses.

    Science.gov (United States)

    Fleischer, R L; Meyer, N R; Hadley, S A; MacDonald, J; Cavallo, A

    2001-01-01

    Eyeglass lenses are commonly composed of allyl-diglycol carbonate (CR-39), an alpha-particle detecting plastic, thus making such lenses personal radon dosemeters. Samples of such lenses have been obtained, etched to reveal that radon and radon progeny alpha tracks can be seen in abundance, and sensitivities have been calibrated in radon chambers as a primary calibration, and with a uranium-based source of alpha particles as a convenient secondary standard. With one exception natural, environmental (fossil) track densities ranged from less than 3,000 to nearly 70,000 per cm2 for eyeglasses that had been worn for various times from one to nearly five years. Average radon concentrations to which those wearers were exposed are inferred to be in the range 14 to 130 Bq x m(-3) (0.4 to 3.5 pCi x l(-1)). A protocol for consistent, meaningful readout is derived and used. In the exceptional case the fossil track density was 1,780,000 cm(-2) and the inferred (24 h) average radon concentration was 6500 Bq x m(-3) (175 pCi x l(-1)) for a worker at an inactive uranium mine that is used for therapy.

  16. Compact Groups analysis using weak gravitational lensing

    Science.gov (United States)

    Chalela, Martín; Johana Gonzalez, Elizabeth; Garcia Lambas, Diego; Foëx, Gael

    2017-01-01

    We present a weak lensing analysis of a sample of SDSS Compact Groups (CGs). Using the measured radial density contrast profile, we derive the average masses under the assumption of spherical symmetry, obtaining a velocity dispersion for the Singular Isothermal Spherical model, σV = 270 ± 40 km s-1, and for the NFW model, R_{200}=0.53± 0.10 h_{70}^{-1}Mpc. We test three different definitions of CGs centres to identify which best traces the true dark matter halo centre, concluding that a luminosity weighted centre is the most suitable choice. We also study the lensing signal dependence on CGs physical radius, group surface brightness, and morphological mixing. We find that groups with more concentrated galaxy members show steeper mass profiles and larger velocity dispersions. We argue that both, a possible lower fraction of interloper and a true steeper profile, could be playing a role in this effect. Straightforward velocity dispersion estimates from member spectroscopy yields σV ≈ 230 km s-1 in agreement with our lensing results.

  17. The CASTLES Imaging Survey of Gravitational Lenses

    Science.gov (United States)

    Peng, C. Y.; Falco, E. E.; Lehar, J.; Impey, C. D.; Kochanek, C. S.; McLeod, B. A.; Rix, H.-W.

    1997-12-01

    The CASTLES survey (Cfa-Arizona-(H)ST-Lens-Survey) is imaging most known small-separation gravitational lenses (or lens candidates), using the NICMOS camera (mostly H-band) and the WFPC2 (V and I band) on HST. To date nearly half of the IR imaging survey has been completed. The main goals are: (1) to search for lens galaxies where none have been directly detected so far; (2) obtain photometric redshift estimates (VIH) for the lenses where no spectroscopic redshifts exist; (3) study and model the lens galaxies in detail, in part to study the mass distribution within them, in part to identify ``simple" systems that may permit accurate time delay estimates for H_0; (3) measure the M/L evolution of the sample of lens galaxies with look-back time (to z ~ 1); (4) determine directly which fraction of sources are lensed by ellipticals vs. spirals. We will present the survey specifications and the images obtained so far.

  18. Quadrupole Focusing Lenses for Charged Particles

    Energy Technology Data Exchange (ETDEWEB)

    Cork, Bruce; Zajec, Emery

    1953-04-15

    A set of four strong focusing magnetic quadrupole lenses has been constructed and operated. Each lens consists of four air cooled electromagnets with pole tips having a hyperbolic cross section. Each lens is 4 in. long and has an aperture 2 in. in diameter. Measurements of the magnetic field demonstrate that the hyperbolic cross section satisfies the requirements of a constant magnetic field gradient very well. The technique of deflecting a current carrying flexible wire has been used to measure the trajectory of charged particles through the system of lenses. It has been observed that the strong focusing requirements are satisfied. The system of lenses was then used to focus 0.5 Mev protons, 20 Mev deuterons, and 40 Mev alpha particles. The parallel beam of 0.5 Mev protons was detected by observing the incandescence of a quartz plate while the protons were bombarding it. The focused beam was less than 1 mm in diameter. The astigmatic 20 Mev deuteron beam from the 60 in. cyclotron was increased in current density by a factor greater than 30.

  19. Electron lenses for the large hadron collider

    CERN Document Server

    Stancari†, G; Bruce, R; Redaelli, S; Rossi, A; Salvachua Ferrando, B

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beamswhose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-bybunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beamcompensation, and for the demonstration of halo scrapingwith hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. A conceptual design was recently completed, and the project is moving towards a technical design in 2014–2015 for construction in 2015–2017, if needed, after resuming LHC operations and re-assessing collimation needs and requirements at 6.5 TeV. Because of the...

  20. Resultant vertical prism in toric soft contact lenses.

    Science.gov (United States)

    Sulley, Anna; Hawke, Ryan; Lorenz, Kathrine Osborn; Toubouti, Youssef; Olivares, Giovanna

    2015-08-01

    Rotational stability of toric soft contact lenses (TSCLs) is achieved using a range of designs. Designs utilising prism or peripheral ballast may result in residual prism in the optic zone. This study quantifies the vertical prism in the central 6mm present in TSCLs with various stabilisation methods. Vertical prism was computed using published refractive index and vertical thickness changes in the central optic zone on a full lens thickness map. Thickness maps were measured using scanning transmission microscopy. Designs tested were reusable, silicone hydrogel and hydrogel TSCLs: SofLens(®) Toric, PureVision(®)2 for Astigmatism, PureVision(®) Toric, Biofinity(®) Toric, Avaira(®) Toric, clariti(®) toric, AIR OPTIX(®) for ASTIGMATISM and ACUVUE OASYS(®) for ASTIGMATISM; with eight parameter combinations for each lens (-6.00DS to +3.00DS, -1.25DC, 90° and 180° axes). All TSCL designs evaluated had vertical prism in the optic zone except one which had virtually none (0.01Δ). Mean prism ranged from 0.52Δ to 1.15Δ, with three designs having prism that varied with sphere power. Vertical prism in ACUVUE OASYS(®) for ASTIGMATISM was significantly lower than all other TSCLs tested. TSCL designs utilising prism-ballast and peri-ballast for stabilisation have vertical prism in the central optic zone. In monocular astigmats fitted with a TSCL or those wearing a mix of toric designs, vertical prism imbalance could create or exacerbate disturbances in binocular vision function. Practitioners should be aware of this potential effect when selecting which TSCL designs to prescribe, particularly for monocular astigmats with pre-existing binocular vision anomalies, and when managing complaints of asthenopia in monocular astigmats. Copyright © 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. Customized computer models of eyes with intraocular lenses

    Science.gov (United States)

    Rosales, P.; Marcos, S.

    2007-03-01

    We compared experimental wave aberrations in pseudophakic eyes with aspheric intraocular lenses (IOLs) to simulate aberrations from numerical ray tracing on customized computer eye models using corneal topography, angle λ, ocular biometry, IOL geometry, and IOL tilt and decentration measured on the same eyes. We found high correlations between real and simulated aberrations even for the eye with only the cornea, and these increased on average when the IOL geometry and position were included. Relevant individual aberrations were well predicted by the complete eye model. Corneal spherical aberration and horizontal coma were compensated by the IOL, and in 58.3% of the cases IOL tilt and decentration contributed to compensation of horizontal coma. We conclude that customized computer eye models are a good representation of real eyes with IOLs and allow understanding of the relative contribution of optical, geometrical and surgically-related factors to image quality. Corneal spherical aberration is reduced by aspheric IOLs, although other corneal high order aberrations are still a major contributor to total aberrations in pseudophakic eyes. Tilt and decentration of the IOLs represent a relatively minor contribution of the overall optical quality of the eye.

  2. Miniature electrically tunable rotary dual-focus lenses

    Science.gov (United States)

    Zou, Yongchao; Zhang, Wei; Lin, Tong; Chau, Fook Siong; Zhou, Guangya

    2016-03-01

    The emerging dual-focus lenses are drawing increasing attention recently due to their wide applications in both academia and industries, including laser cutting systems, microscopy systems, and interferometer-based surface profilers. In this paper, a miniature electrically tunable rotary dual-focus lens is developed. Such a lens consists of two optical elements, each having an optical flat surface and one freeform surface. The two freeform surfaces are initialized with the governing equation Ar2θ (A is the constant to be determined, r and θ denote the radii and angles in the polar coordinate system) and then optimized by ray tracing technique with additional Zernike polynomial terms for aberration correction. The freeform surfaces are achieved by a single-point diamond turning technique and then a PDMS-based replication process is utilized to materialize the final lens elements. To drive the two coaxial elements to rotate independently, two MEMS thermal rotary actuators are developed and fabricated by a standard MUMPs process. The experimental results show that the MEMS thermal actuator provides a maximum rotation angle of about 8.2 degrees with an input DC voltage of 6.5 V, leading to a wide tuning range for both the two focal lengths of the lens. Specifically, one focal length can be tuned from about 30 mm to 20 mm while the other one can be adjusted from about 30 mm to 60 mm.

  3. Population mixtures and searches of lensed and extended quasars across photometric surveys

    Science.gov (United States)

    Williams, Peter; Agnello, Adriano; Treu, Tommaso

    2017-04-01

    Wide-field photometric surveys enable searches of rare yet interesting objects, such as strongly lensed quasars or quasars with a bright host galaxy. Past searches for lensed quasars based on their optical and near-infrared properties have relied on photometric cuts and spectroscopic preselection (as in the Sloan Quasar Lens Search), or neural networks applied to photometric samples. These methods rely on cuts in morphology and colours, with the risk of losing many interesting objects due to scatter in their population properties, restrictive training sets, systematic uncertainties in catalogue-based magnitudes and survey-to-survey photometric variations. Here, we explore the performance of a Gaussian mixture model to separate point-like quasars, quasars with an extended host and strongly lensed quasars using griz psf and model magnitudes and WISE W1, W2. The choice of optical magnitudes is due to their presence in all current and upcoming releases of wide-field surveys, whereas UV information is not always available. We then assess the contamination from blue galaxies and the role of additional features such as W3 magnitudes or psf-model terms as morphological information. As a demonstration, we conduct a search in a random 10 per cent of the SDSS footprint, and provide the catalogue of the 43 SDSS object with the highest 'lens' score in our selection that survive visual inspection, and are spectroscopically confirmed to host active nuclei. We inspect archival data and find images of 5/43 objects in the Hubble Legacy Archive, including two known lenses. The code and materials are available to facilitate follow-up.

  4. Cosmological Parameters from Multiple-arc Gravitational Lensing Systems; 1, smooth lensing potentials

    CERN Document Server

    Link, R; Link, Robert; Pierce, Michael J.

    1998-01-01

    We describe a new approach for the determination of cosmological parameters using gravitational lensing systems with multiple arcs, exploiting the fact that a given cluster can produce multiple arcs from sources over a broad range in redshift. The coupling between the critical radius of a single arc and the projected mass density of the lensing cluster can be avoided by considering the relative positions of two or more arcs. Cosmological sensitivity appears through the angular size-redshift relation. We consider simulated data constructed using a more general form for the potential, realistic sources, and an assumed cosmology and present a method for simultaneously inverting the lens and extracting the cosmological parameters. The input data required are the image and measured redshifts for the arcs. The technique relies upon the conservation of surface brightness in gravitationally lensed systems. We find that for a simple lens model our approach can recover the cosmological parameters assumed in the constru...

  5. [Intraocular lenses for the correction of refraction errors. Part 1: phakic anterior chamber lenses].

    Science.gov (United States)

    Kohnen, T; Baumeister, M; Cichocki, M

    2005-10-01

    In this overview, the current status of intraocular lens surgery to correct refractive error is reviewed. The interventions are divided into additive surgery with intraocular lens implantation without extraction of the crystalline lens (phakic intraocular lens, PIOL) or the removal of the crystalline lens with implantation of an IOL (refractive lens exchange, RLE). Phakic IOLs are constructed as angle-supported or iris-fixated anterior chamber lenses and posterior chamber lenses that are fixated in the ciliary sulcus. The implantation of phakic IOLs has been demonstrated to be an effective, safe, predictable and stable procedure to correct higher refractive errors. Complications are rare and differ for the three types of PIOL; for anterior chamber lenses these are mainly pupil ovalization and endothelial cell loss.

  6. Weak lensing power spectra for precision cosmology: Multiple-deflection, reduced shear and lensing bias corrections

    CERN Document Server

    Krause, Elisabeth

    2009-01-01

    It is usually assumed that the ellipticity power spectrum measured in weak lensing observations can be expressed as an integral over the underlying matter power spectrum. This is true at second order in the gravitational potential. We extend the standard calculation, constructing all corrections to fourth order in the gravitational potential. There are four types of corrections: corrections to the lensing shear due to multiple-deflections; corrections due to the fact that shape distortions probe the reduced shear $\\gamma/(1-\\kappa)$ rather than the shear itself; corrections associated with the non-linear conversion of reduced shear to mean ellipticity; and corrections due to the fact that observational galaxy selection and shear measurement is based on galaxy brightnesses and sizes which have been (de)magnified by lensing. We show how the previously considered corrections to the shear power spectrum correspond to terms in our analysis, and highlight new terms that were not previously identified. All correctio...

  7. Depth of focus increase by multiplexing programmable diffractive lenses.

    Science.gov (United States)

    Iemmi, C; Campos, J; Escalera, J C; López-Coronado, O; Gimeno, R; Yzuel, M J

    2006-10-30

    A combination of several diffractive lenses written onto a single programmable liquid crystal display (LCD) is proposed for increasing the Depth of Focus (DOF) of the imaging system as a whole. The lenses are spatially multiplexed in a random scheme onto the LCD. The axial irradiance distribution produced by each lens overlaps with the next one producing an extended focal depth. To compare the image quality of the multiplexed lenses, the Modulation Transfer Function (MTF) is calculated. Finally we obtain the experimental Point Spread Functions (PSF) for these multiplexed lenses and experimental results in which an extended object is illuminated under spatially incoherent monochromatic light. We compare the images obtained in the focal plane and in some defocused planes with the single lens and with three multiplexed lenses. The experimental results confirm that the multiplexed lenses produce a high increase in the depth of focus.

  8. Constraints on cosmological models from strong gravitational lensing systems

    CERN Document Server

    Cao, Shuo; Biesiada, Marek; Godlowski, Wlodzimierz; Zhu, Zong-Hong

    2011-01-01

    Using the gravitational lensing theory and cluster mass distribution model, we try to collect a relatively complete observational data concerning an Hubble constant independent ratio between two angular diameter distances $D_{ds}/D_s$ from various large systematic gravitational lens surveys and lensing by galaxy clusters combined with X-ray observations. On one hand, strongly gravitationally lensed quasar-galaxy systems create such a new opportunity by combining stellar kinematics (central velocity dispersion measurements) with lensing geometry (Einstein radius determination from position of images). We apply such a method to a combined gravitational lens data set including 27 data points from Sloan Lens ACS (SLACS), Lens Structure and Dynamics survey (LSD), and Sloan Bright Arcs Survey (SBAS). On the other hand, a new sample of 10 lensing galaxy clusters with redshifts ranging from 0.1 to 0.6 is also used, which is selected carefully from strong gravitational lensing systems with both X-ray satellite observa...

  9. Galaxy–Galaxy Weak-lensing Measurements from SDSS. I. Image Processing and Lensing Signals

    Science.gov (United States)

    Luo, Wentao; Yang, Xiaohu; Zhang, Jun; Tweed, Dylan; Fu, Liping; Mo, H. J.; van den Bosch, Frank C.; Shu, Chenggang; Li, Ran; Li, Nan; Liu, Xiangkun; Pan, Chuzhong; Wang, Yiran; Radovich, Mario

    2017-02-01

    We present our image processing pipeline that corrects the systematics introduced by the point-spread function (PSF). Using this pipeline, we processed Sloan Digital Sky Survey (SDSS) DR7 imaging data in r band and generated a galaxy catalog containing the shape information. Based on our shape measurements of the galaxy images from SDSS DR7, we extract the galaxy–galaxy (GG) lensing signals around foreground spectroscopic galaxies binned in different luminosities and stellar masses. We estimated the systematics, e.g., selection bias, PSF reconstruction bias, PSF dilution bias, shear responsivity bias, and noise rectification bias, which in total is between ‑9.1% and 20.8% at 2σ levels. The overall GG lensing signals we measured are in good agreement with Mandelbaum et al. The reduced χ 2 between the two measurements in different luminosity bins are from 0.43 to 0.83. Larger reduced χ 2 from 0.60 to 1.87 are seen for different stellar mass bins, which is mainly caused by the different stellar mass estimator. The results in this paper with higher signal-to-noise ratio are due to the larger survey area than SDSS DR4, confirming that more luminous/massive galaxies bear stronger GG lensing signals. We divide the foreground galaxies into red/blue and star-forming/quenched subsamples and measure their GG lensing signals. We find that, at a specific stellar mass/luminosity, the red/quenched galaxies have stronger GG lensing signals than their counterparts, especially at large radii. These GG lensing signals can be used to probe the galaxy–halo mass relations and their environmental dependences in the halo occupation or conditional luminosity function framework.

  10. Cross-correlation of gravitational lensing from DES Science Verification data with SPT and Planck lensing

    Science.gov (United States)

    Kirk, D.; Omori, Y.; Benoit-Lévy, A.; Cawthon, R.; Chang, C.; Larsen, P.; Amara, A.; Bacon, D.; Crawford, T. M.; Dodelson, S.; Fosalba, P.; Giannantonio, T.; Holder, G.; Jain, B.; Kacprzak, T.; Lahav, O.; MacCrann, N.; Nicola, A.; Refregier, A.; Sheldon, E.; Story, K. T.; Troxel, M. A.; Vieira, J. D.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Becker, M. R.; Benson, B. A.; Bernstein, G. M.; Bernstein, R. A.; Bleem, L. E.; Bonnett, C.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carlstrom, J. E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Reichardt, C. L.; Roodman, A.; Rozo, E.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Simard, G.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Wechsler, R. H.; Weller, J.

    2016-06-01

    We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg2 of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of zmed ˜ 0.7, while the CMB lensing kernel is broad and peaks at z ˜ 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z ˜ 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DES×SPT cross-power is found to be ASPT = 0.88 ± 0.30 and that from DES×Planck to be APlanck = 0.86 ± 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9σ and 2.2σ, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 ± 0.36 for DES×SPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.

  11. Recent experience with design and manufacture of cine lenses

    Science.gov (United States)

    Thorpe, Michael D.; Dalzell, Kristen E.

    2015-09-01

    Modern cine lenses require a high degree of aberration correction over a large and ever expanding image size. At low to medium volume production levels, these highly corrected designs also require a workable tolerance set and compensation scheme for successful manufacture. In this paper we discuss the design and manufacture of cine lenses with reference to current designs both internal and in the patent literature and some experience in design, tolerancing and manufacturing these lenses in medium volume production.

  12. Strong Lensing, dark matter and H_0 estimate

    OpenAIRE

    Tortora, C.

    2007-01-01

    Gravitational lensing represents a powerful tool to estimate the cosmological pa- rameters and the distribution of dark matter. I will describe the main observable quantities, concentrating on strong lensing, that manifests its effect through the formation of spectacular events, like multiple quasars, Einstein rings and arcs in clusters of galaxies. In events where a quasar is lensed by an intervening galaxy, it is possible to give an estimate of the Hubble constant H_0, by choosing a mass de...

  13. Experimental study of thermal lensing of Nd:YAG laser

    Institute of Scientific and Technical Information of China (English)

    HU Shao-yun; ZHONG Ming; ZUO Yan; FAN Hong-ying

    2006-01-01

    A wavefront method of measuring the thermal lensing of solid-state lasers is proposed.This method is easy to implement and has a high spatial resolution for diagnosing thermal lensing.By this method,the thermal lensing of Nd:YAG laser is studied in detail.And this work provides a means for studying the thermal effects of laser medium and many instructional parameters for optimizing the design of the laser cavity.

  14. Galaxy scale lenses in the RCS2: I. First catalog of candidate strong lenses

    CERN Document Server

    Anguita, T; Gladders, M D; Faure, C; Yee, H; Gilbank, D

    2012-01-01

    We present the first galaxy scale lens catalog from the second Red-Sequence Cluster Survey (RCS2). The catalog contains 60 lensing system candidates comprised of Luminous Red Galaxy (LRG) lenses at 0.2 ~5.5x10e11 M_sun/h) and rich in dark matter (~14 M_sun/L_sun,B*h). Even though a slight increasing trend in the mass-to-light ratio is observed from z=0.2 to z=0.5, current redshift and light profile measurements do not allow stringent constraints on the mass-to-light ratio evolution of LRGs.

  15. Understanding the IGM Through the Use of a Lensed Quasar

    Science.gov (United States)

    Panurach, Teresa; O'Dowd, Matthew

    2017-01-01

    Quasars are among the brightest objects in the universe. In rare gravitationally lensed quasars, their light is split and travels along multiple paths through an intervening lensing galaxy. The light that follows these different paths encounters various parts of the intergalactic medium (IGM) and may show different absorption features, indicating the varying composition of the IGM. By analyzing spectra from a gravitationally lensed quasar, B1422+231, observed by the Gemini North Telescope, we compare the absorption features identified in the lensed images to form a small-scale structure of the IGM.

  16. Contact lenses fitting after intracorneal ring segments implantation in keratoconus

    Directory of Open Access Journals (Sweden)

    Luciane Bugmann Moreira

    2013-08-01

    Full Text Available PURPOSE: Evaluate contact lenses fitting after intracorneal ring implantation for keratoconus, its visual acuity and comfort. METHODS: Retrospective study of patients undergoing contact lenses fitting, after intracorneal ring for keratoconus. The criterion for contact lens fitting was unsatisfactory visual acuity with spectacle correction as referred by the patients. All patients were intolerants to contact lenses prior to intracorneal implantation. Visual acuity analysis was done by conversion of Snellen to logMAR scales. The comfort was evaluated according subjective questioning of good, medium or poor comfort. RESULTS: Nineteen patients were included in the study. Two patients (10.5% did not achieved good comfort with contact lenses and underwent penetrating keratoplasties. All the others 17 patients showed good or medium comfort. Four rigid gas-permeable contact lenses were fitted, one piggyback approach, 3 toric soft contact lenses, 2 soft lenses specially design for keratoconus and 7 disposable soft lenses. The average visual acuity improved from 0.77 ± 0.37 to 0.19 ± 0.13 logMAR units after contact lenses fitting. CONCLUSION: Contact lens fitting after intracorneal ring is possible, provides good comfort, improves visual acuity, and therefore, may postpone the need for penetrating keratoplasty.

  17. SKA weak lensing - III. Added value of multiwavelength synergies for the mitigation of systematics

    Science.gov (United States)

    Camera, Stefano; Harrison, Ian; Bonaldi, Anna; Brown, Michael L.

    2017-02-01

    In this third paper of a series on radio weak lensing for cosmology with the Square Kilometre Array, we scrutinize synergies between cosmic shear measurements in the radio and optical/near-infrared (IR) bands for mitigating systematic effects. We focus on three main classes of systematics: (i) experimental systematic errors in the observed shear; (ii) signal contamination by intrinsic alignments and (iii) systematic effects due to an incorrect modelling of non-linear scales. First, we show that a comprehensive, multiwavelength analysis provides a self-calibration method for experimental systematic effects, only implying errors on cosmological parameters. We also illustrate how the cross-correlation between radio and optical/near-IR surveys alone is able to remove residual systematics with variance as large as 10-5, i.e. the same order of magnitude of the cosmological signal. This also opens the possibility of using such a cross-correlation as a means to detect unknown experimental systematics. Secondly, we demonstrate that, thanks to polarization information, radio weak lensing surveys will be able to mitigate contamination by intrinsic alignments, in a way similar but fully complementary to available self-calibration methods based on position-shear correlations. Lastly, we illustrate how radio weak lensing experiments, reaching higher redshifts than those accessible to optical surveys, will probe dark energy and the growth of cosmic structures in regimes less contaminated by non-linearities in the matter perturbations. For instance, the higher redshift bins of radio catalogues peak at z ≃ 0.8-1, whereas their optical/near-IR counterparts are limited to z ≲ 0.5-0.7. This translates into having a cosmological signal 2-5 times less contaminated by non-linear perturbations.

  18. Radio Weak Lensing Shear Measurement in the Visibility Domain - I. Methodology

    Science.gov (United States)

    Rivi, M.; Miller, L.; Makhathini, S.; Abdalla, F. B.

    2016-08-01

    The high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will allow cosmological weak lensing measurements at radio wavelengths that are competitive with optical surveys. We present an adaptation to radio data of lensfit, a method for galaxy shape measurement originally developed and used for optical weak lensing surveys. This likelihood method uses an analytical galaxy model and makes a Bayesian marginalisation of the likelihood over uninteresting parameters. It has the feature of working directly in the visibility domain, which is the natural approach to adopt with radio interferometer data, avoiding systematics introduced by the imaging process. As a proof of concept, we provide results for visibility simulations of individual galaxies with flux density S ≥ 10μJy at the phase centre of the proposed SKA1-MID baseline configuration, adopting 12 frequency channels in the band 950 - 1190 MHz. Weak lensing shear measurements from a population of galaxies with realistic flux and scalelength distributions are obtained after natural gridding of the raw visibilities. Shear measurements are expected to be affected by `noise bias': we estimate the bias in the method as a function of signal-to-noise ratio (SNR). We obtain additive and multiplicative bias values that are comparable to SKA1 requirements for SNR > 18 and SNR > 30, respectively. The multiplicative bias for SNR >10 is comparable to that found in ground-based optical surveys such as CFHTLenS, and we anticipate that similar shear measurement calibration strategies to those used for optical surveys may be used to good effect in the analysis of SKA radio interferometer data.

  19. Radio weak lensing shear measurement in the visibility domain - I. Methodology

    Science.gov (United States)

    Rivi, M.; Miller, L.; Makhathini, S.; Abdalla, F. B.

    2016-12-01

    The high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will allow cosmological weak lensing measurements at radio wavelengths that are competitive with optical surveys. We present an adaptation to radio data of lensfit, a method for galaxy shape measurement originally developed and used for optical weak lensing surveys. This likelihood method uses an analytical galaxy model and makes a Bayesian marginalization of the likelihood over uninteresting parameters. It has the feature of working directly in the visibility domain, which is the natural approach to adopt with radio interferometer data, avoiding systematics introduced by the imaging process. As a proof of concept, we provide results for visibility simulations of individual galaxies with flux density S ≥ 10 μJy at the phase centre of the proposed SKA1-MID baseline configuration, adopting 12 frequency channels in the band 950-1190 MHz. Weak lensing shear measurements from a population of galaxies with realistic flux and scalelength distributions are obtained after natural gridding of the raw visibilities. Shear measurements are expected to be affected by `noise bias': we estimate the bias in the method as a function of signal-to-noise ratio (SNR). We obtain additive and multiplicative bias values that are comparable to SKA1 requirements for SNR > 18 and SNR > 30, respectively. The multiplicative bias for SNR >10 is comparable to that found in ground-based optical surveys such as CFHTLenS, and we anticipate that similar shear measurement calibration strategies to those used for optical surveys may be used to good effect in the analysis of SKA radio interferometer data.

  20. CAD Integration : new optical design possibilities

    Science.gov (United States)

    Haumonte, Jean-Baptiste; Venturino, Jean-Claude

    2005-09-01

    The development of optical design and analysis tools in a CAD software can help to optimise the design, size and performance of tomorrow's consumer products. While optics was still held back by software limitations, CAD programs were moving forward in leaps and bounds, improving manufacturing technologies and making it possible to design and produce highly innovative and sophisticated products. The problem was that in the past, 'traditional' optical design programs were only able to simulate spherical and aspherical lenses, meaning that the optical designers were limited to designing systems which were a series of imperfect lenses, each one correcting the last. That is why OPTIS has created the first optical design program to be fully integrated into a CAD program. The technology is available from OPTIS in an integrated SOLIDWORKS or CATIA V5 version. Users of this software can reduce the number of lenses needed in a system. Designers will now have access to complex surfaces such as NURBS meaning they will now be able to define free shape progressive lenses and even improve on optical performances using fewer lenses. This revolutionary technology will allow mechanical designers to work on optical systems and to share information with optical designers for the first time. Previously not possible in a CAD program you may now determine all the optical performances of any optical system, providing first order and third order performances, sequential and non-sequential ray-tracing, wavefront surfaces, point spread function, MTF, spot-diagram, using real optical surfaces and guaranteeing the mechanical precision necessary for an optical system.

  1. Weak lensing observation of potentially X-ray underluminous galaxy clusters

    CERN Document Server

    Dietrich, J P; Popesso, P; Zhang, Y -Y; Lombardi, M; Böhringer, H

    2009-01-01

    Optically selected clusters of galaxies display a relation between their optical mass estimates and their X-ray luminosities Lx with a large scatter. A substantial fraction of optically selected clusters have Lx estimates or upper limits significantly below the values expected from the Lx-mass relation established for X-ray selected clusters, i.e., these clusters are X-ray underluminous for their mass. Here we aim to confirm or falsify the X-ray underluminous nature of two clusters, Abell 315 and Abell 1456, with weak gravitational lensing as a third and independent measure of the clusters' masses. We obtained optical wide-field imaging data and selected background galaxies using their colors and measured the shear exerted by the tidal field of the foreground galaxy clusters. We then fitted parametrized models to our shear catalogs. After accounting for projections of large-scale structure and halo triaxiality we find that A~315 is significantly X-ray underluminous for its mass, while no significant lensing s...

  2. FTIR spectroscopic imaging and mapping with correcting lenses for studies of biological cells and tissues.

    Science.gov (United States)

    Kimber, James A; Foreman, Liberty; Turner, Benjamin; Rich, Peter; Kazarian, Sergei G

    2016-06-23

    Histopathology of tissue samples is used to determine the progression of cancer usually by staining and visual analysis. It is recognised that disease progression from healthy tissue to cancerous is accompanied by spectral signature changes in the mid-infrared range. In this work, FTIR spectroscopic imaging in transmission mode using a focal plane array (96 × 96 pixels) has been applied to the characterisation of Barrett's oesophageal adenocarcinoma. To correct optical aberrations, infrared transparent lenses were used of the same material (CaF2) as the slide on which biopsies were fixed. The lenses acted as an immersion objective, reducing scattering and improving spatial resolution. A novel mapping approach using a sliding lens is presented where spectral images obtained with added lenses are stitched together such that the dataset contained a representative section of the oesophageal tissue. Images were also acquired in transmission mode using high-magnification optics for enhanced spatial resolution, as well as with a germanium micro-ATR objective. The reduction of scattering was assessed using k-means clustering. The same tissue section map, which contained a region of high grade dysplasia, was analysed using hierarchical clustering analysis. A reduction of the trough at 1077 cm(-1) in the second derivative spectra was identified as an indicator of high grade dysplasia. In addition, the spatial resolution obtained with the lens using high-magnification optics was assessed by measurements of a sharp interface of polymer laminate, which was also compared with that achieved with micro ATR-FTIR imaging. In transmission mode using the lens, it was determined to be 8.5 μm and using micro-ATR imaging, the resolution was 3 μm for the band at a wavelength of ca. 3 μm. The spatial resolution was also assessed with and without the added lens, in normal and high-magnification modes using a USAF target. Spectroscopic images of cells in transmission mode using two

  3. DeepLensing: The Use of Deep Machine Learning to Find Strong Gravitational Lenses in Astronomical Surveys

    Science.gov (United States)

    Nord, Brian

    2017-01-01

    Strong gravitational lenses have potential as very powerful probes of dark energy and cosmic structure. However, efficiently finding lenses poses a significant challenge—especially in the era of large-scale cosmological surveys. I will present a new application of deep machine learning algorithms to find strong lenses, as well as the strong lens discovery program of the Dark Energy Survey (DES).Strong lenses provide unique information about the evolution of distant galaxies, the nature of dark energy, and the shapes of dark matter haloes. Current and future surveys, like DES and the Large Synoptic Survey Telescope, present an opportunity to find many thousands of strong lenses, far more than have ever been discovered. By and large, searches have heretofore relied on the time-consuming effort of human scanners. Deep machine learning frameworks, like convolutional neural nets, have revolutionized the task of image recognition, and have a natural place in the processing of astronomical images, including the search for strong lenses.Over five observing seasons, which started in August 2013, DES will carry out a wide-field survey of 5000 square degrees of the Southern Galactic Cap. DES has identified nearly 200 strong lensing candidates in the first two seasons of data. We have performed spectroscopic follow-up on a subsample of these candidates at Gemini South, confirming over a dozen new strong lenses. I will present this DES discovery program, including searches and spectroscopic follow-up of galaxy-scale, cluster-scale and time-delay lensing systems.I will focus, however, on a discussion of the successful search for strong lenses using deep learning methods. In particular, we show that convolutional neural nets present a new set of tools for efficiently finding lenses, and accelerating advancements in strong lensing science.

  4. File list: DNS.Oth.05.AllAg.Lenses,_Intraocular [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.05.AllAg.Lenses,_Intraocular mm9 DNase-seq Others Lenses, Intraocular http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.05.AllAg.Lenses,_Intraocular.bed ...

  5. File list: DNS.Oth.50.AllAg.Lenses,_Intraocular [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.50.AllAg.Lenses,_Intraocular mm9 DNase-seq Others Lenses, Intraocular http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.50.AllAg.Lenses,_Intraocular.bed ...

  6. File list: DNS.Oth.20.AllAg.Lenses,_Intraocular [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.20.AllAg.Lenses,_Intraocular mm9 DNase-seq Others Lenses, Intraocular http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.20.AllAg.Lenses,_Intraocular.bed ...

  7. File list: DNS.Oth.10.AllAg.Lenses,_Intraocular [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.10.AllAg.Lenses,_Intraocular mm9 DNase-seq Others Lenses, Intraocular http:...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.10.AllAg.Lenses,_Intraocular.bed ...

  8. Reconstructing the lensing mass in the Universe from photometric catalogue data

    NARCIS (Netherlands)

    Collett, Thomas E.; Marshall, Philip J.; Auger, Matthew W.; Hilbert, Stefan; Suyu, Sherry H.; Greene, Zachary; Treu, Tommaso; Fassnacht, Christopher D.; Koopmans, Leon V. E.; Bradac, Marusa; Blandford, Roger D.

    2013-01-01

    High precision cosmological distance measurements towards individual objects such as time delay gravitational lenses or Type Ia supernovae are affected by weak lensing perturbations by galaxies and groups along the line of sight. In time delay gravitational lenses, 'external convergence',

  9. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  10. Matrix Treatment of Ray Optics.

    Science.gov (United States)

    Quon, W. Steve

    1996-01-01

    Describes a method to combine two learning experiences--optical physics and matrix mathematics--in a straightforward laboratory experiment that allows engineering/physics students to integrate a variety of learning insights and technical skills, including using lasers, studying refraction through thin lenses, applying concepts of matrix…

  11. Contact Lenses for Keratoconus- Current Practice

    Science.gov (United States)

    Moschos, Marilita M.; Nitoda, Eirini; Georgoudis, Panagiotis; Balidis, Miltos; Karageorgiadis, Eleftherios; Kozeis, Nikos

    2017-01-01

    Background: Keratoconus is a chronic, bilateral, usuallly asymmetrical, non-inflammatory, ectatic disorder, being characterized by progressive steepening, thinning and apical scarring of the cornea. Initially, the patient is asymptomatic, but the visual acuity gradually decreases, resulting in significant vision loss due to the development of irregular astigmatism, myopia, corneal thinning and scarring. The classic treatment of visual rehabilitation in keratoconus is based on spectacles and contact lenses (CLs). Objective: To summarize the types of CLs used in the treatment of keratoconus. This is literature review of several important published articles focusing on the visual rehabilitation in keratoconus with CLs. Method: Gas permeable (GP) CLs have been found to achieve better best corrected visual acuity than spectacles, eliminating 3rd-order coma root-mean-square (RMS) error, 3rd-order RMS, and higher-order RMS. However, they have implicated in reduction of corneal basal epithelial cell and anterior stromal keratocyte densities. Soft CLs seem to provide greater comfort and lower cost, but the low oxygen permeability (if the lens is not a silicone hydrogel), and the inability to mask moderate to severe irregular astigmatism are the main disadvantages of them. On the other hand, scleral CLs ensure stable platforms, which eliminate high-order aberrations and provide good centration and visual acuity. Their main disadvantages include the difficulties in application and removal of these lenses along with corneal flattening and swelling. Result: The modern hybrid CLs are indicated in cases of poor centration, poor stability or intolerance with GP lenses. Finally, piggyback CL systems effectively ameliorate visual acuity, but they have been related to corneal neovascularization and giant papillary conjunctivitis. Conclusion: CLs seem to rehabilitate visual performance, diminishing the power of the cylinder and the high-order aberrations. The final choice of CLs is

  12. Spurious Shear in Weak Lensing with LSST

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Kahn, S.M.; Jernigan, J.G.; Peterson, J.R.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jee, M.J.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, P.J.; Marshall, S.; Meert, A.

    2012-09-19

    The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image {approx} 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r {approx} 27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, additive systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than {approx} 10{prime} in the single short exposures, which propagates into a spurious shear correlation function at the 10{sup -4}-10{sup -3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.

  13. Contact Lenses for Keratoconus- Current Practice.

    Science.gov (United States)

    Moschos, Marilita M; Nitoda, Eirini; Georgoudis, Panagiotis; Balidis, Miltos; Karageorgiadis, Eleftherios; Kozeis, Nikos

    2017-01-01

    Keratoconus is a chronic, bilateral, usuallly asymmetrical, non-inflammatory, ectatic disorder, being characterized by progressive steepening, thinning and apical scarring of the cornea. Initially, the patient is asymptomatic, but the visual acuity gradually decreases, resulting in significant vision loss due to the development of irregular astigmatism, myopia, corneal thinning and scarring. The classic treatment of visual rehabilitation in keratoconus is based on spectacles and contact lenses (CLs). To summarize the types of CLs used in the treatment of keratoconus. This is literature review of several important published articles focusing on the visual rehabilitation in keratoconus with CLs. Gas permeable (GP) CLs have been found to achieve better best corrected visual acuity than spectacles, eliminating 3rd-order coma root-mean-square (RMS) error, 3rd-order RMS, and higher-order RMS. However, they have implicated in reduction of corneal basal epithelial cell and anterior stromal keratocyte densities. Soft CLs seem to provide greater comfort and lower cost, but the low oxygen permeability (if the lens is not a silicone hydrogel), and the inability to mask moderate to severe irregular astigmatism are the main disadvantages of them. On the other hand, scleral CLs ensure stable platforms, which eliminate high-order aberrations and provide good centration and visual acuity. Their main disadvantages include the difficulties in application and removal of these lenses along with corneal flattening and swelling. The modern hybrid CLs are indicated in cases of poor centration, poor stability or intolerance with GP lenses. Finally, piggyback CL systems effectively ameliorate visual acuity, but they have been related to corneal neovascularization and giant papillary conjunctivitis. CLs seem to rehabilitate visual performance, diminishing the power of the cylinder and the high-order aberrations. The final choice of CLs is based on their special features, the subsequent

  14. The Strong Lensing Time Delay Challenge (2014)

    Science.gov (United States)

    Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A.

    2014-01-01

    Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation.

  15. Tevatron Electron Lenses: Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; /Fermilab; Bishofberger, Kip; /Los Alamos; Kamerdzhiev, Vsevolod; /Fermilab; Kozub, Sergei; /Serpukhov, IHEP; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; /Fermilab; Seryi, Andrei; /SLAC; Solyak, Nikolai; /Fermilab; Sytnik, Veniamin; /Serpukhov, IHEP; Tiunov, Mikhail; /Novosibirsk, IYF; Tkachenko, Leonid; /Serpukhov, IHEP; Wildman, David; Wolff, Daniel; Zhang, Xiao-Long; /Fermilab

    2011-09-12

    Fermilab's Tevatron is currently the world's highest energy accelerator in which tightly focused beams of 980 GeV protons and antiprotons collide at two dedicated interaction points (IPs). Both beams share the same beam pipe and magnet aperture and, in order to avoid multiple detrimental head-on collisions, the beams are placed on separated orbits everywhere except the main IPs by using high-voltage (HV) electrostatic separators. The electromagnetic beam-beam interaction at the main IPs together with the long-range interactions between separated beams adversely affect the collider performance, reducing the luminosity integral per store (period of continuous collisions) by 10-30%. Tuning the collider operation for optimal performance becomes more and more cumbersome as the beam intensities and luminosity increase. The long-range effects which (besides being nonlinear) vary from bunch to bunch are particularly hard to mitigate. A comprehensive review of the beam-beam effects in the Tevatron Collider Run II can be found in Ref. [1]. The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [1]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [2]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported in [3,4,5]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation and outline the technical parameters of various subsystems.

  16. Focal properties of geodesic waveguide lenses

    Science.gov (United States)

    Verber, C. M.; Vahey, D. W.; Wood, V. E.

    1976-01-01

    The focal properties of uncorrected geodesic lenses in ion-exchanged glass waveguides are reported. A 13.8-mm-focal-length lens resolved beams with an angular separation of 27.6 mrad, while a 28-mm-focal-length lens resolved beams with an angular separation of only 3.3 mrad. Intensity profiles of the focal region of the former lens revealed a 40-micron spot size when the input aperture was 5 mm, and a spot size of 7.7 microns when the aperture was reduced to 1 mm. This value is close to the diffraction-limited spot size of 5.7 microns.

  17. LensTools: Weak Lensing computing tools

    Science.gov (United States)

    Petri, A.

    2016-02-01

    LensTools implements a wide range of routines frequently used in Weak Gravitational Lensing, including tools for image analysis, statistical processing and numerical theory predictions. The package offers many useful features, including complete flexibility and easy customization of input/output formats; efficient measurements of power spectrum, PDF, Minkowski functionals and peak counts of convergence maps; survey masks; artificial noise generation engines; easy to compute parameter statistical inferences; ray tracing simulations; and many others. It requires standard numpy and scipy, and depending on tools used, may require Astropy (ascl:1304.002), emcee (ascl:1303.002), matplotlib, and mpi4py.

  18. Construction progress of the RHIC electron lenses

    Energy Technology Data Exchange (ETDEWEB)

    Fischer W.; Altinbas, Z.; Anerella, M.; Beebe, E.; et al

    2012-05-20

    In polarized proton operation the RHIC performance is limited by the head-on beam-beam effect. To overcome this limitation two electron lenses are under construction. We give an overview of the construction progress. Guns, collectors and the warm electron beam transport solenoids with their power supplies have been constructed. The superconducting solenoids that guide the electron beam during the interaction with the proton beam are near completion. A test stand has been set up to verify the performance of the gun, collector and some of the instrumentation. The infrastructure is being prepared for installation, and simulations continue to optimize the performance.

  19. Strong Lensing Cosmography in the Frontier Fields

    Science.gov (United States)

    Jullo, Eric; Acebron, Ana; Limousin, Marceau; Giocoli, Carlo; Despali, Giulia; Bonamigo, Mario; Bonamigo

    The wealth of strong lensing features observed in the Frontier Fields clusters offers insights on the nature of dark energy. The large number of multiple-images systems with redshifts allows to simultaneously estimate the lens model parameters and the cosmological parameters involved in the distances calculations. In particular for the ΛCDM model, it is possible to estimate the matter density Ω m and the dark energy equations parameters w X . In this talk, I will present recent analyses of systematic errors based on Frontier Fields observed and simulated data.

  20. Contact lenses in pediatrics study in Singapore.

    Science.gov (United States)

    Li, Lim; Moody, Kurt; Tan, Donald T H; Yew, Khoo Chong; Ming, Por Yong; Long, Quah Boon

    2009-07-01

    Previous studies in the United States have evaluated the benefits of soft contact lenses (CLs) in 8- to 12-year-old children and 13- to 17-year-old teens. This study was undertaken in Singapore and evaluated the safety, efficacy, and physiologic performance of daily disposable soft lenses in a population of children. In this open-label, bilateral, 3-month dispensing study, 59 children (8-11 years) were fit with etafilcon A spherical or toric daily disposable lenses (1-DAY ACUVUE or 1-DAY ACUVUE for ASTIGMATISM, Vistakon, Jacksonville, FL). All subjects were neophytes requiring visual correction in both eyes. The refractive inclusion criteria were plano to -9.00 diopter (D) with astigmatism of < or =2.00DC in both eyes, or hyperopia of +0.50 to +6.00D with astigmatism of 0.75D or less. The subjects underwent follow-up evaluations, which included a questionnaire for parents and subjects, at 1 week, 1 month, and 3 months. Of the 59 subjects enrolled, 53 (90%) completed the study successfully. Six subjects were discontinued because of lens handling difficulties (four), unacceptable lens fit (one), and an adverse event (one). Adverse events were reported in three subjects, including the discontinuation, and in each case were due to a chalazion. Overall vision quality, overall comfort, and end-of-day comfort were graded significantly better at each of the follow-up visits compared with baseline with spectacles (P< or =0.0001). Both handling and reported symptoms improved during the course of the study. The questionnaire results indicated that most of both parents and subjects preferred CLs to spectacles across a wide variety of aspects including vision, comfort, handling, and appearance. Significantly, more limbal and bulbar hyperemia was noted at follow-up visits than at baseline (P=0.0001); however, no instances of hyperemia greater than grade 2 were noted at any visit. Significantly, more corneal staining was also noted at the 1- and 3-month follow-up visits than at

  1. Gas lensing in a heated spinning pipe

    CSIR Research Space (South Africa)

    Mafusire, C

    2006-07-01

    Full Text Available Spinning Pipe C MAFUSIRE1,2, A FORBES2, G SNEDDEN3, C MAHLASE3, MM MICHAELIS4 & M MATHUTHU1 1University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe 2CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa 3CSIR Defence Peace Safety... this system. BEAM PROPAGATION THROUGH GAS LENSES The heated spinning pipe acts as a GRIN lens where the refractive index variation inside the pipe is given by The variable parameters of the gas lens in this work were the rotation...

  2. Magnified Weak Lensing Cross Correlation Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Melville P., Clowe, Douglas I.

    2010-11-30

    This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60

  3. Construction progress of the RHIC electron lenses

    Energy Technology Data Exchange (ETDEWEB)

    Fischer W.; Altinbas, Z.; Anerella, M.; Beebe, E.; et al

    2012-05-20

    In polarized proton operation the RHIC performance is limited by the head-on beam-beam effect. To overcome this limitation two electron lenses are under construction. We give an overview of the construction progress. Guns, collectors and the warm electron beam transport solenoids with their power supplies have been constructed. The superconducting solenoids that guide the electron beam during the interaction with the proton beam are near completion. A test stand has been set up to verify the performance of the gun, collector and some of the instrumentation. The infrastructure is being prepared for installation, and simulations continue to optimize the performance.

  4. Magnified Weak Lensing Cross Correlation Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ulmer, Melville P., Clowe, Douglas I.

    2010-11-30

    This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60

  5. Ultimate resolution of indefinite metamaterial flat lenses

    CERN Document Server

    Bénédicto, Jessica; Pollès, Rémi; Moreau, Antoine

    2013-01-01

    We show that any metallo-dielectric multilayer with a hyperbolic dispersion relation can actually be characterized by a complex effective index. This refractive index, extracted from the complex Bloch band diagram, can be directly linked to the super-resolution of a flat lens made of this so- called indefinite metamaterials. This allows for a systematic optimization of the lens design, leading to structures that are outperforming state-of-art flat lenses. We show that, even when fully taking absorption into account, our design provides super-resolved images for visible light up to a distance of one wavelength from the lens edge.

  6. Operations of the Tevatron Electron Lenses

    CERN Document Server

    Zhang, X L; Valishev, A; Stancari, G; Kuznetsov, G; Saewert, G; Kamerdzhiev, V

    2012-01-01

    The two Tevatron Electron Lenses (TEL1 and TEL2) are installed in Tevatron in 2001 and 2006 respectively. TEL1 is operated as the vital parts of the Tevatron for abort gap beam clearing, while TEL2 is functioning as the backup as well as the test device for beam-beam compensation, space charge compensator and soft beam collimator. Both of them are working exceptionally reliable after a few initial kinks being worked out. Their operations in Tevatron are summarized in this report.

  7. Arrival time differences between gravitational waves and electromagnetic signals due to gravitational lensing

    CERN Document Server

    Takahashi, Ryuichi

    2016-01-01

    In this study, we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive $earlier$ than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately $10^5 {\\rm M}_\\odot (f/{\\rm Hz})^{-1}$, where $f$ is the GW frequency. The arrival time difference can reach $\\sim 0.1 \\, {\\rm s} \\, (f/{\\rm Hz})^{-1}$; therefore, it is more prominent for lower GW frequencies. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Det...

  8. CFHTLenS: Combined probe cosmological model comparison using 2D weak gravitational lensing

    CERN Document Server

    Kilbinger, Martin; Heymans, Catherine; Simpson, Fergus; Benjamin, Jonathan; Erben, Thomas; Harnois-Deraps, Joachim; Hoekstra, Henk; Hildebrandt, Hendrik; Kitching, Thomas D; Mellier, Yannick; Miller, Lance; Van Waerbeke, Ludovic; Benabed, Karim; Bonnett, Christopher; Coupon, Jean; Hudson, Michael J; Kuijken, Konrad; Rowe, Barnaby; Schrabback, Tim; Semboloni, Elisabetta; Vafaei, Sanaz; Velander, Malin

    2012-01-01

    We present cosmological constraints from 2D weak gravitational lensing by the large-scale structure in the Canada-France Hawaii Telescope Lensing Survey (CFHTLenS) which spans 154 square degrees in five optical bands. Using accurate photometric redshifts and measured shapes for 4.2 million galaxies between redshifts of 0.2 and 1.3, we compute the 2D cosmic shear correlation function over angular scales ranging between 0.8 and 350 arcmin. Using non-linear models of the dark-matter power spectrum, we constrain cosmological parameters by exploring the parameter space with Population Monte Carlo sampling. The best constraints from lensing alone are obtained for the small-scale density-fluctuations amplitude sigma_8 scaled with the total matter density Omega_m. For a flat LambdaCDM model we obtain sigma_8(Omega_m/0.27)^0.6 = 0.79+-0.03. We combine the CFHTLenS data with WMAP7, BOSS and an HST distance-ladder prior on the Hubble constant to get joint constraints. For a flat LambdaCDM model, we find Omega_m = 0.283+...

  9. A TWO-YEAR TIME DELAY FOR THE LENSED QUASAR SDSS J1029+2623

    Energy Technology Data Exchange (ETDEWEB)

    Fohlmeister, Janine; Wambsganss, Joachim [Astronomisches Rechen-Institut, Zentrum fuer Astronomie der Universitaet Heidelberg, Moenchhofstr. 12-14, D-69120 Heidelberg (Germany); Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Falco, Emilio E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Oguri, Masamune [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Dai, Xinyu [Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2013-02-20

    We present 279 epochs of optical monitoring data spanning 5.4 years from 2007 January to 2012 June for the largest image separation (22.''6) gravitationally lensed quasar, SDSS J1029+2623. We find that image A leads the images B and C by {Delta} t {sub AB} = (744 {+-} 10) days (90% confidence); the uncertainty includes both statistical uncertainties and systematic differences due to the choice of models. With only a {approx}1% fractional error, the interpretation of the delay is limited primarily by cosmic variance due to fluctuations in the mean line-of-sight density. We cannot separate the fainter image C from image B, but since image C trails image B by only 2-3 days in all models, the estimate of the time delay between images A and B is little affected by combining the fluxes of images B and C. There is weak evidence for a low level of microlensing, perhaps created by the small galaxy responsible for the flux ratio anomaly in this system. Interpreting the delay depends on better constraining the shape of the gravitational potential using the lensed host galaxy, other lensed arcs, and the structure of the X-ray emission.

  10. Influence of cosmetically tinted soft contact lenses on higher-order wavefront aberrations and visual performance.

    Science.gov (United States)

    Hiraoka, Takahiro; Ishii, Yuko; Okamoto, Fumiki; Oshika, Tetsuro

    2009-02-01

    To investigate the influence of cosmetically tinted soft contact lenses on ocular higher-order aberrations and visual performance, and to analyze the relationship between these parameters after the lens wear. In 44 eyes of 22 subjects, visual acuity, contrast sensitivity under photopic and mesopic conditions, and ocular higher-order aberrations were evaluated before and after wearing the tinted soft contact lenses (1-day Acuvue Colours; Vistakon, Jacksonville, FL). Contrast sensitivity under a photopic condition was determined at 3, 6, 12, and 18 cycles per degree, and the area under the log contrast sensitivity function (AULCSF) was calculated. Mesopic contrast sensitivity with and without glare was assessed. Ocular higher-order aberrations for a 4-mm pupil were measured, and coma-like, spherical-like, and total higher-order aberrations were determined. The tinted contact lens wearing resulted in significant decreases in log contrast sensitivity at all spatial frequencies (P 0.05), the changes in total higher-order aberrations showed a significant correlation with those in AULCSF (P 0.05). Cosmetically tinted contact lenses increase ocular higher-order aberrations and worsen contrast sensitivity under both photopic and mesopic conditions. Increases in higher-order aberrations are responsible for decreased contrast sensitivity under the photopic condition. Tinted contact lens wearers should be sufficiently informed about the possible reduction in optical quality of the eye and quality of vision.

  11. Wide-Field Lensing Mass Maps from DES Science Verification Data

    CERN Document Server

    Vikram, V; Jain, B; Bacon, D; Amara, A; Becker, M; Bernstein, G; Bonnett, C; Bridle, S; Brout, D; Busha, M; Frieman, J; Gaztanaga, E; Hartley, W; Jarvis, M; Kacprzak, T; Lahav, O; Leistedt, B; Lin, H; Melchior, P; Peiris, H; Rozo, E; Rykoff, E; Sanchez, C; Sheldon, E; Troxel, M; Wechsler, R; Zuntz, J; Abbott, T; Abdalla, F B; Armstrong, R; Banerji, M; Bauer, A H; Benoit-Levy, A; Bertin, E; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Rosell, A Carnero; Kind, M Carrasco; Castander, F J; Crocce, M; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; Diehl, H T; Dietrich, J P; Cunha, C E; Estrada, J; Evrard, A E; Neto, A Fausti; Fernandez, E; Flaugher, B; Fosalba, P; Gerdes, D; Gruen, D; Gruendl, R A; Honscheid, K; James, D; Kent, S; Kuehn, K; Kuropatkin, N; Li, T S; Maia, M A G; Makler, M; March, M; Marshall, J; Martini, Paul; Merritt, K W; Miller, C J; Miquel, R; Neilsen, E; Nichol, R C; Nord, B; Ogando, R; Plazas, A A; Romer, A K; Roodman, A; Sanchez, E; Scarpine, V; Sevilla, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Swanson, M E C; Tarle, G; Thaler, J; Thomas, D; Walker, A R; Weller, J

    2015-01-01

    Weak gravitational lensing allows one to reconstruct the spatial distribution of the projected mass density across the sky. These "mass maps" provide a powerful tool for studying cosmology as they probe both luminous and dark matter. In this paper, we present a weak lensing mass map reconstructed from shear measurements in a 139 deg^2 area from the Dark Energy Survey (DES) Science Verification (SV) data overlapping with the South Pole Telescope survey. We compare the distribution of mass with that of the foreground distribution of galaxies and clusters. The overdensities in the reconstructed map correlate well with the distribution of optically detected clusters. Cross-correlating the mass map with the foreground galaxies from the same DES SV data gives results consistent with mock catalogs that include the primary sources of statistical uncertainties in the galaxy, lensing, and photo-z catalogs. The statistical significance of the cross-correlation is at the 6.8 sigma level with 20 arcminute smoothing. A maj...

  12. Shear nulling after PSF Gaussianisation: Moment-based weak lensing measurements with subpercent noise bias

    Science.gov (United States)

    Herbonnet, Ricardo; Buddendiek, Axel; Kuijken, Konrad

    2017-03-01

    Context. Current optical imaging surveys for cosmology cover large areas of sky. Exploiting the statistical power of these surveys for weak lensing measurements requires shape measurement methods with subpercent systematic errors. Aims: We introduce a new weak lensing shear measurement algorithm, shear nulling after PSF Gaussianisation (SNAPG), designed to avoid the noise biases that affect most other methods. Methods: SNAPG operates on images that have been convolved with a kernel that renders the point spread function (PSF) a circular Gaussian, and uses weighted second moments of the sources. The response of such second moments to a shear of the pre-seeing galaxy image can be predicted analytically, allowing us to construct a shear nulling scheme that finds the shear parameters for which the observed galaxies are consistent with an unsheared, isotropically oriented population of sources. The inverse of this nulling shear is then an estimate of the gravitational lensing shear. Results: We identify the uncertainty of the estimated centre of each galaxy as the source of noise bias, and incorporate an approximate estimate of the centroid covariance into the scheme. We test the method on extensive suites of simulated galaxies of increasing complexity, and find that it is capable of shear measurements with multiplicative bias below 0.5 percent.

  13. Microstructured gradient-index lenses for THz photoconductive antennas

    DEFF Research Database (Denmark)

    Brincker, Mads; Karlsen, Peter; Skovsen, Esben

    2016-01-01

    constant can be designed to function like a gradient index (GRIN) lens. The proposed GRIN substrate lenses have sub-mm dimension, which is smaller than the dimensions of a typical hyper-hemispherical substrate lens (HSL), and could enable fabrication of arrays of closely packed PCA’s with individual lenses...

  14. Cosmological constraints from Subaru weak lensing cluster counts

    CERN Document Server

    Hamana, Takashi; Koike, Michitaro; Miller, Lance

    2015-01-01

    We present results of weak lensing cluster counts obtained from 11 sq.deg SuprimeCam data. Although the area is much smaller than previous work dealing with weak lensing peak statistics, the number density of galaxies usable for weak lensing analysis is about twice as large as those. The higher galaxy number density reduces the noise in the weak lensing mass maps, and thus increases the signal-to-noise ratio of peaks of the lensing signal due to massive clusters. This enables us to construct a weak lensing selected cluster sample by adopting a high threshold S/N, such that the contamination rate due to false signals is small. We find 6 peaks with S/N>5. For all the peaks, previously identified clusters of galaxies are matched within a separation of 1 arcmin, demonstrating good correspondence between the peaks and clusters of galaxies. We evaluate the statistical error using mock weak lensing data, and find Npeak=6+/-3.1 in an effective area of 9.0 sq.deg. We compare the measured weak lensing cluster counts wi...

  15. Extended drug delivery by contact lenses for glaucoma therapy.

    Science.gov (United States)

    Peng, Cheng-Chun; Burke, Michael T; Carbia, Blanca E; Plummer, Caryn; Chauhan, Anuj

    2012-08-20

    We combine laboratory-based timolol release studies and in vivo pharmacodynamics studies in beagle dogs to evaluate the efficacy of glaucoma therapy through extended wear contact lenses. Commercial contact lenses cannot provide extended delivery of ophthalmic drugs and so the studies here focused on increasing the release duration of timolol from ACUVUE TruEye contact lenses by incorporating vitamin E diffusion barriers. The efficacy of timolol delivered via extended wear contact lenses was then compared to eye drops in beagle dogs that suffer from spontaneous glaucoma. The lenses were either replaced every 24h or continuously worn for 4 days, and the pharmacodynamics effect of changes in the intraocular pressure (IOP) of timolol from the ACUVUE TruEye contact lenses can be significantly increased by incorporation of vitamin E. The in vivo studies showed that IOP reduction from baseline by pure contact lens on daily basis was comparable with that by eye drops but with only 20% of drug dose, which suggested higher drug bioavailability for contact lenses. In addition, by inclusion of vitamin E into the lenses, the IOP was reduced significantly during the 4-day treatment with continuous wear of lens.

  16. New observable for gravitational lensing effects during transits

    CERN Document Server

    Kasuya, Shinta; Mishima, Risa

    2010-01-01

    We investigate gravitational lensing effects of an extrasolar planet transiting its host star. We focus on the `rising spikes' of the light curve just before and after the transit, which is a peculiar feature of the gravitational lensing, and find that it could be a novel observable for determining physical parameters. Detectability of such an effect is also discussed.

  17. Self-lensing of a Singular Isothermal Sphere

    OpenAIRE

    Wang, Yun

    1999-01-01

    Many astrophysical systems can be approximated as isothermal spheres. In an isothermal sphere, the ``foreground'' objects can act as lenses on ``background'' objects in the same distribution. We study gravitational lensing by a singular isothermal sphere analytically. Our results may have interesting applications.

  18. Increased Expression of Interleukin-18 in Lenses of Ovariectomized Rats.

    Science.gov (United States)

    Nagai, Noriaki; Ogata, Fumihiko; Kawasaki, Naohito; Ito, Yoshimasa

    2016-01-01

    Previous studies showed an increased prevalence of cataracts in postmenopausal women. In this study, we investigated changes in the levels of calcium ion (Ca(2+)) and interleukin (IL)-18, which are factors in cataract development, in the lenses of ovariectomized (OVX) rats, a model of postmenopausal woman. Although the Ca(2+) content in the blood of OVX rats increased 1 month after ovariectomy and subsequently decreased, the Ca(2+) content in the lenses was unchanged in OVX rats 1-3 months after ovariectomy. The Ca(2+)-ATPase activity in the lenses of OVX rats peaked 1 month after ovariectomy, and the behavior of Ca(2+)-ATPase activity in lenses of OVX rats was similar to that of the Ca(2+) concentration in the blood. It is possible that hypercalcemia increases the Ca(2+) inflow into the lens; however, the enhanced Ca(2+)-ATPase activity prevents the Ca(2+) level from rising. On the other hand, we found that the levels of both IL-18 and interferon (IFN)-γ in the lenses of OVX rats were significantly increased as compared with the lenses of sham (control) rats during the period 1-3 months after surgery. These results suggest that the expression of IFN-γ via IL-18 in the lenses of OVX rats is induced by ovariectomy, and that excessive IL-18 and IFN-γ production in the lenses may be related to cataract development in postmenopausal women. These findings support those of previous studies that assessed lens opacification in postmenopausal women.

  19. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    Louw, de P.G.B.; Eeman, S.; Siemon, B.; `Voortman, B.R.; Gunnink, J.; Baaren, E.S.; Oude Essink, G.H.P.

    2011-01-01

    In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and

  20. Shallow rainwater lenses in deltaic areas with saline seepage

    NARCIS (Netherlands)

    De Louw, Perry G.B.; Eeman, Sara; Siemon, Bernhard; Voortman, Bernard R.; Gunnink, Jan; Van Baaren, Esther S.; Oude Essink, Gualbert

    2011-01-01

    In deltaic areas with saline seepage, fresh water availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence an